White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber
NASA Astrophysics Data System (ADS)
Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2016-12-01
We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.
Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A
2014-09-22
We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.
Tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer
NASA Astrophysics Data System (ADS)
Hernández-Arriaga, M. V.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Álvarez-Tamayo, R. I.; Santiago-Hernández, H.; Bello-Jiménez, M.; Kuzin, E. A.
2017-11-01
An experimental study of an all-fiber tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer is presented. A microfiber filter with length of 6 mm and diameter of 20 μm is used to achieve single laser wavelength tuning in a range of 19.4 nm and dual-wavelength laser operation at 1761.8 and 1793.4 nm with a channel spacing of 31.6 nm. The abrupt-tapered structure allows multi-modal interference at the air-cladding interface. The proposed in-fiber interferometer exhibits characteristics of low cost and simple fabrication, making it suitable for practical applications in wavelength filtering and wavelength selection in all-fiber lasers.
Supercontinuum generation in an imaging fiber taper
NASA Astrophysics Data System (ADS)
Shi, Kebin; Omenetto, Fiorenzo G.; Liu, Zhiwen
2006-12-01
We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 μm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.
NASA Astrophysics Data System (ADS)
Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.
2018-02-01
Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.
Chen, Nan-Kuang; Hsu, Kuei-Chu; Liaw, Shien-Kuei; Lai, Yinchieh; Chi, Sien
2008-08-01
A tapered fiber with a depressed-index outer ring is fabricated and dispersion engineered to generate a widely tunable (1250-1650 nm) fundamental-mode leakage loss with a high cutoff slope (-1.2 dB/nm) and a high attenuation for stop band (>50 dB) by modification of both waveguide and material dispersions. The higher cutoff slope is achieved with a larger cross angle between the two refractive index dispersion curves of the tapered fiber and surrounding optical liquids through the use of depressed-index outer ring structures in double-cladding fibers.
Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.
Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2016-02-01
Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3 cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.
High-efficiency power transfer for silicon-based photonic devices
NASA Astrophysics Data System (ADS)
Son, Gyeongho; Yu, Kyoungsik
2018-02-01
We demonstrate an efficient coupling of guided light of 1550 nm from a standard single-mode optical fiber to a silicon waveguide using the finite-difference time-domain method and propose a fabrication method of tapered optical fibers for efficient power transfer to silicon-based photonic integrated circuits. Adiabatically-varying fiber core diameters with a small tapering angle can be obtained using the tube etching method with hydrofluoric acid and standard single-mode fibers covered by plastic jackets. The optical power transmission of the fundamental HE11 and TE-like modes between the fiber tapers and the inversely-tapered silicon waveguides was calculated with the finite-difference time-domain method to be more than 99% at a wavelength of 1550 nm. The proposed method for adiabatic fiber tapering can be applied in quantum optics, silicon-based photonic integrated circuits, and nanophotonics. Furthermore, efficient coupling within the telecommunication C-band is a promising approach for quantum networks in the future.
Double-clad fiber with a tapered end for confocal endomicroscopy.
Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline
2011-11-01
We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber.
NASA Astrophysics Data System (ADS)
Wang, F.; Yao, C. F.; Li, C. Z.; Jia, Z. X.; Li, Q.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2018-02-01
We report the experimental observation of breathing solitons and a third harmonic in a tapered fluorotellurite photonic crystal fiber (PCF) pumped by a 1560 nm femtosecond fiber laser. The PCF has a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 1325 nm to 906 nm over the transition region. By finely controlling the dispersion map of the tapered PCF and increasing the order of the optical solitons, their breathing behavior is observed in the frequency domain and the number of breaths goes up to 9. Furthermore, the breathing behavior of the optical soliton is transferred to the third harmonic through inter-modal phase-matched processes in the tapered PCF, and the third harmonic also breathes with an increase in the pump power.
Zou, Weiwen; Jiang, Wenning; Chen, Jianping
2013-03-11
This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.
Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio
2013-09-09
Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.
Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber.
Trevisanutto, J O; Linhananta, A; Das, G
2016-12-15
The authors demonstrated the fabrication of a fiber Bragg grating-like plasmonic nanostructure on the surface of a tapered optical fiber using gold nanorods (GNRs). A multimode optical fiber with core and cladding diameters of 105 and 125 μm, respectively, was used to make a tapered fiber using a dynamic etching process. The tip diameter was ∼100 nm. Light from a laser was coupled to the untapered end of the fiber, which produced a strong evanescent field around the tapered section of the fiber. The gradient force due to the evanescent field trapped the GNRs on the surface of the tapered fiber. The authors explored possible causes of the GNR distribution. The plasmonic structure will be a good candidate for sensing based on surface enhanced Raman scattering.
Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film.
Zhang, Lei; Gu, Fuxing; Lou, Jingyi; Yin, Xuefeng; Tong, Limin
2008-08-18
A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9-94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.
Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF.
Zheng, Ximeng; Debord, Benoît; Vincetti, Luca; Beaudou, Benoît; Gérôme, Frédéric; Benabid, Fetah
2016-06-27
We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.
Double-clad fiber with a tapered end for confocal endomicroscopy
Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline
2011-01-01
We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259
NASA Astrophysics Data System (ADS)
Zhang, Na; Xu, Wei; You, Shanhong; Yu, Cheungchuen; Yu, Changyuan; Dong, Bo; Li, Kunpu
2018-03-01
A novel fiber-optic sensing structure based on miniaturized modal interferometer (MMI) for simultaneous refractive index (RI), strain and temperature measurement is proposed. It is mainly based on Mach-Zehnder interferometer (MZI) and formed by introducing a down taper between two adjacent up tapers in one single mode fiber (SMF). Experimental results demonstrate a RI sensitivity of 131.93 nm/RIU, a strain sensitivity of 0.0007 nm/ με and a temperature sensitivity of 0.0878 nm/°C respectively. The sensor is merely made of SMF which is cheap and available, and the whole fabrication process contains only cleaving and splicing and can be well controlled by a commercial fiber splicer.
Balloon-like singlemode-tapered multimode-singlemode fiber structure for refractive index sensing
NASA Astrophysics Data System (ADS)
Yang, Biyao; Niu, Yanxiong; Yang, Bowen; Dai, Lingling; Hu, Yanhui; Yin, Yiheng; Ding, Ming
2017-10-01
A novel high sensitivity refractive index sensor based on balloon-like singlemode-tapered multimode-singlemode (STMS) fiber structure has been proposed and experimentally demonstrated. Combining the tapering and bending endows the proposed sensor with large evanescent field, resulting in high sensitivity. Experimental results show that the proposed sensor has an average sensitivity of 1104.75 nm/RIU (RI Unit) in the range of 1.33-1.41 and a maximum sensitivity of 3374.50 nm/RIU at RI of 1.41.
Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming
2017-10-01
Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun
2016-08-15
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
Research on dual-parameter optical fiber sensor based on few-mode fiber with two down-tapers
NASA Astrophysics Data System (ADS)
Wang, Xue; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang
2017-10-01
A dual-parameter optical fiber sensor, which is fabricated by sandwiching a segment of few-mode fiber (FMF) with two down-tapers between two segments of standard single-mode fibers (SMFs), is investigated theoretically and experimentally. The two down-tapers on the FMF can enhance the evanescent field, making the sensor more sensitive to changes in the external environment. The refractive index (RI) and temperature are measured simultaneously using the different sensitivities of the two dips in this experimental interference spectrum. The measured temperature sensitivities are 0.097 and 0.114 nm/°C, and the RI sensitivities are -97.43 and -108.07 nm/RIU, respectively. Meanwhile, the simple SMF-FMF-SMF structure is also measured. By comparing the experimental results of the two structures, the sensitivities of the proposed structure based on the dual-taper FMF are significantly improved. In addition, the sensor is easy to fabricate and cost effective.
Misalignment tolerant efficient inverse taper coupler for silicon waveguide
NASA Astrophysics Data System (ADS)
Wang, Peng; Michael, Aron; Kwok, Chee Yee; Chen, Ssu-Han
2015-12-01
This paper describes an efficient fiber to submicron silicon waveguide coupling based on an inversely tapered silicon waveguide embedded in a SiO2 waveguide that is suspended in air. The inverse taper waveguide consist of a 50um long and 240nm thick silicon that linearly taper in width from 500nm to 120nm, which is embedded in SiO2. The SiO2 waveguide is 6um wide and 10um long. The simulation results show that the coupling loss of this new approach is 2.7dB including the interface loss at the input and output. The tolerance to fiber misalignment at the input of the coupler is 2um in both horizontal and vertical directions for only 1.5dB additional loss.
Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping
2017-07-24
All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.
Liao, Meisong; Yan, Xin; Gao, Weiqing; Duan, Zhongchao; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake
2011-08-01
We try to obtain stable supercontinuum (SC) generation with broad bandwidth under relative simple pump conditions. We use a 1.3-m-long highly nonlinear tellurite microstructured fiber and pump it by a 15 ps 1064 nm fiber laser. One segment of the fiber is tapered from a core diameter of 3.4 μm to 1.3 μm. For the first time five-order stimulated Raman scatterings (SRSs) are observed for soft glass fibers. SC covering 730-1700 nm is demonstrated with the pump-pulse-energy of several nJ. The mechanisms of SC broadening are mainly SRS, self-phase modulation (SPM) and cross phase modulation (XPM). The tapered segment has two advantages. Firstly it increases the nonlinearity of fiber by several times. Secondly, it acts as a compensation for the dispersion of the untapered segment, and mitigates the walk-off between pump pulse and SRS peaks.
Sensitive Leptospira DNA detection using tapered optical fiber sensor.
Zainuddin, Nurul H; Chee, Hui Y; Ahmad, Muhammad Z; Mahdi, Mohd A; Abu Bakar, Muhammad H; Yaacob, Mohd H
2018-03-23
This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang
2013-02-15
We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.
Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers
NASA Astrophysics Data System (ADS)
Brunetti, A. C.; Scolari, L.; Weirich, J.; Eskildsen, L.; Bellanca, G.; Bassi, P.; Bjarklev, A.
2008-10-01
A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at λ = 1364 nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed by increasing the temperature from 25 °C to 100 °C. The measurements are compared to a simulated spectrum obtained by means of a vectorial Beam Propagation Method model.
All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.
Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun
2016-04-04
An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun
2016-01-01
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885
Jiang, Tongxiao; Wang, Aimin; Wang, Guizhong; Zhang, Wei; Niu, Fuzeng; Li, Chen; Zhang, Zhigang
2014-01-27
A tapered silica photonic crystal fiber was designed and fabricated to generate more than one octave spanning supercontinuum (from 550 nm to 1400 nm at -30 dB level), by an input pulse of 40 fs 200 pJ directly from an Yb:fiber ring laser. The low pulse energy spectrum broadening are favorable to generate the high contrast f ceo signals with low noise. The f ceo signal with 40 dB signal-to-noise ratio was detected, which helps to build a compact real-world frequency comb.
Narrowband spectral filter based on biconical tapered fiber
NASA Astrophysics Data System (ADS)
Celaschi, Sergio; Malheiros-Silveira, Gilliard N.
2018-02-01
The ease of fabrication and compactness of devices based on tapered optical fibers contribute to its potential using in several applications ranging from telecommunication components to sensing devices. In this work, we proposed, fabricated, and characterized a spectral filter made of biconical taper from a coaxial optical fiber. This filter is defined by adiabatically tapering a depressed-cladding fiber. The adiabatic taper profile obtained during fabrication prevents the interference of other modes than HE11 and HE12 ones, which play the main role for the beating phenomenon and the filter response. The evolution of the fiber shapes during the pulling was modeled by two coupled partial differential equations, which relate the normalized cross-section area, and the axial velocity of the fiber elongation. These equations govern the mass and axial momentum conservation. The numerical results of the filter characteristics are in good accordance with the experimental ones. The filter was packaged in order to let it ready for using in optical communication bands. The characteristics are: free spectral range (FSR) of 6.19 nm, insertion loss bellow 0.5 dB, and isolation > 20 dB at C-band. Its transmission spectrum extends from 1200 to 1600 nm where the optical fiber core supports monomode transmission. Such characteristics may also be interesting to be applied in sensing applications. We show preliminary numerical results assuming a biconic taper embedded into a dielectric media, showing promising results for electro-optic sensing applications.
Measuring bacterial growth by refractive index tapered fiber optic biosensor.
Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein
2010-12-02
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.
Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits.
Wood, Michael; Sun, Peng; Reano, Ronald M
2012-01-02
We demonstrate coupling from tapered optical fibers to 450 nm by 250 nm silicon strip waveguides using compact cantilever couplers. The couplers consist of silicon inverse width tapers embedded within silicon dioxide cantilevers. Finite difference time domain simulations are used to design the length of the silicon inverse width taper to as short as 6.5 μm for a cantilever width of 2 μm. Modeling of various strip waveguide taper profiles shows reduced coupling losses for a quadratic taper profile. Infrared measurements of fabricated devices demonstrate average coupling losses of 0.62 dB per connection for the quasi-TE mode and 0.50 dB per connection for the quasi-TM mode across the optical telecommunications C band. In the wavelength range from 1477 nm to 1580 nm, coupling losses for both polarizations are less than 1 dB per connection. The compact, broadband, and low-loss coupling scheme enables direct access to photonic integrated circuits on an entire chip surface without the need for dicing or cleaving the chip.
Changes of propagation light in optical fiber submicron wires
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.
2013-05-01
At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.
Refractive index sensors based on the fused tapered special multi-mode fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong
2016-01-01
In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.
Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian
2016-06-01
We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Kazemi, A.; Latifi, H.; Karimi Azar, M.; Hosseini, S. M.; Ghezelaiagh, M. H.
2010-09-01
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-L-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria.
Thulium fiber laser lithotripsy using tapered fibers.
Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2010-01-01
The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.
Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Chan, Chi Chiu; Dong, Xinyong; Poh, C. L.; Li, Tao
2013-03-01
A temperature-independent refractometer by using a tapered photonic crystal fiber (PCF) based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered PCF of 29 mm long between two standard single mode fibers (SMFs) with the fully collapsed air holes of the PCF in the fusion splicing region. It has been found that tapering the PCF greatly enhances the sensitivity of the refractometer. A maximum sensitivity of 1529 nm/RIU (refractive index unit) is achieved within the range from 1.3355 to 1.413. The refractometer is nearly temperature-insensitive due to the ultra low temperature dependence of the used.
Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber
Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang
2017-01-01
Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level. PMID:28966849
Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang
2017-09-01
Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level.
Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array
NASA Astrophysics Data System (ADS)
Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.
2018-06-01
A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.
Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun
2017-01-01
A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618
Refractive index sensor based on plastic optical fiber with tapered structure.
De-Jun, Feng; Guan-Xiu, Liu; Xi-Lu, Liu; Ming-Shun, Jiang; Qing-Mei, Sui
2014-04-01
This work reports a refractive index sensor made of plastic optical fiber (POF) with tapered structure. Transmission loss is measured when the external environment's refractive index changes from 1.33 to 1.41. Three wavelengths (532, 633, and 780 nm) are used to evaluate the sensitivity of the sensor, and results indicate that 633 nm is the best sensing wavelength due to the increased levels of sensitivity achieved at this wavelength. A biconical sensing structure is designed to enhance the sensitivity of the sensor. A sensitivity of 950 μW/RIU at 633 nm is obtained for a biconical sensing structure when launched power is 1 mW. Due to its sensitivity to the refractive index and simple construction, POF with tapered structure has potential applications in the biosensing field.
Kudlinski, A; Lelek, M; Barviau, B; Audry, L; Mussot, A
2010-08-02
Using a low-cost microchip laser and a long photonic crystal fiber taper, we report a supercontinuum source with a very efficient visible conversion, especially in the blue region (around 420 nm). About 30 % of the total average output power is located in the 350-600 nm band, which is of primary importance in a number of biophotonics applications such as flow cytometry or fluorescence imaging microscopy for instance. We successfully demonstrate the use of this visible-enhanced source for a three-color imaging of HeLa cells in wide-field microscopy.
A refractive index sensor based on taper Michelson interferometer in multimode fiber
NASA Astrophysics Data System (ADS)
Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong
2016-11-01
A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.
Side-pumping combiner for high-power fiber laser based on tandem pumping
NASA Astrophysics Data System (ADS)
Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun
2017-11-01
We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.
Linslal, C L; Mohan, P M S; Halder, A; Gangopadhyay, T K
2012-06-01
The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.
Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua
2012-01-01
A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.
High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure.
Liu, Dejun; Mallik, Arun Kumar; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang
2015-09-01
A high sensitivity refractive index (RI) sensor based on a tapered small core single-mode fiber (SCSMF) structure sandwiched between two traditional single-mode fibers (SMF28) is reported. The microheater brushing technique was employed to fabricate the tapered fiber structures with different waist diameters of 12.5, 15.0, and 18.8 μm. Experiments demonstrate that the fiber sensor with a waist diameter of 12.5 μm offers the best sensitivity of 19212.5 nm/RIU (RI unit) in the RI range of 1.4304 to 1.4320. All sensors fabricated in this Letter show good linearity in terms of the spectral wavelength shift versus changes in RI. Furthermore, the sensor with the best sensitivity to RI was also used to measure relative humidity (RH) without any coating materials applied to the fiber surface. Experimental results show that the spectral wavelength shift changes exponentially as the RH varies from 60% to 95%. A maximum sensitivity of 18.3 nm per relative humidity unit (RHU) was achieved in the RH range of 90.4% to 94.5% RH.
Long-period grating fabricated by periodically tapering standard single-mode fiber.
Shao, Li-Yang; Zhao, Jian; Dong, Xinyong; Tam, H Y; Lu, C; He, Sailing
2008-04-01
We fabricated an asymmetric long-period grating (LPG) by periodically tapering a section of standard single-mode fiber using a resistive filament heating. The LPG exhibits large peak transmission attenuation of -30.31 dB with only 22 periods in a 1.0 cm long optical fiber and possesses unique characteristics for sensing applications. The bending and strain sensitivities are 1.74 nm m and 1.11 pm/mu epsilon, respectively. The polarization dependent loss is large, up to 11.65 dB, which is caused by an asymmetric index profile in the cross section of the tapered LPG.
Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection
NASA Astrophysics Data System (ADS)
Nardone, Vincent; Kapoor, Rakesh
2008-02-01
In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.
Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.
2017-01-01
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421
Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F
2017-06-02
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.
Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.
Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis
2016-12-20
Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.
Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.
Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R
2013-02-11
We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.
Multimode interference tapered fiber refractive index sensors.
Biazoli, Claudecir R; Silva, Susana; Franco, Marcos A R; Frazão, Orlando; Cordeiro, Cristiano M B
2012-08-20
Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained.
A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.
2013-06-01
We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu
We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less
NASA Astrophysics Data System (ADS)
Huntington, S. T.; Jarvis, S. P.
2003-05-01
Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.
Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers.
Fedotov, Andrey; Noronen, Teppo; Gumenyuk, Regina; Ustimchik, Vasiliy; Chamorovskii, Yuri; Golant, Konstantin; Odnoblyudov, Maxim; Rissanen, Joona; Niemi, Tapio; Filippov, Valery
2018-03-19
We present a birefringent Yb-doped tapered double-clad fiber with a record core diameter of 96 µm. An impressive gain of over 38 dB was demonstrated for linearly polarized CW and pulsed sources at a wavelength of 1040 nm. For the CW regime the output power was70 W. For a mode-locked fiber laser a pulse energy of 28 µJ with 292 kW peak power was reached at an average output power of 28 W for a 1 MHz repetition rate. The tapered double-clad fiber has a high value of polarization extinction ratio at 30 dB and is capable of delivering the linearly polarized diffraction-limited beam (M 2 = 1.09).
Low-temperature sensitivity periodically tapered photonic crystal-fiber-based refractometer.
Wang, Pengfei; Bo, Lin; Guan, Chunying; Semenova, Yuliya; Wu, Qiang; Brambilla, Gilberto; Farrell, Gerald
2013-10-01
In this Letter, an all-fiber refractometer with a simple configuration of periodical tapers on a photonic crystal fiber (PCF) is proposed and investigated experimentally. The proposed fiber refractive index (RI) sensor consists of a PCF sandwiched between two standard single-mode fibers, with tapers periodically fabricated along the PCF using a CO(2) laser beam focused by a ZnSe cylindrical lens. The proposed fiber sensor can be used for RI sensing by measuring the wavelength shift of the multimode interference dip over the transmission spectrum. An average sensitivity of 222 nm/RIU has been experimentally achieved over a RI range from 1.33 to 1.38. The proposed refractometer is also significantly less sensitive to temperature, and an experimental demonstration of this reduced sensitivity is presented. The proposed RI sensor benefits from simplicity and low-cost and achieves a competitive sensitivity compared with other existing fiber-optic sensors.
NASA Astrophysics Data System (ADS)
Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando
2018-05-01
A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.
Dynamical thermal effects in InGaAsP microtubes at telecom wavelengths.
Tian, Zhaobing; Bianucci, Pablo; Roche, Philip J R; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Poole, Philip J; Kirk, Andrew G; Plant, David V
2012-07-01
We report on the observation of a dynamical thermal effect in InGaAsP microtubes at telecom wavelengths. The microtubes are fabricated by releasing a strained semiconductor bilayer and are picked up by abruptly tapered optical fibers for subsequent coupling with adiabatically tapered optical fibers. As a result of absorption by InAs quantum dots embedded in the tube structure, these microtubes show dynamical thermal effects at wavelengths around 1525 nm and 1578 nm, while they are passive at longer wavelengths near 1634 nm. The photon absorption induced thermal effect is visualized by generating a pair of microbottles. The dynamical thermal effect can be avoided or exploited for passive or active applications by utilizing appropriate resonance wavelengths.
NASA Astrophysics Data System (ADS)
Wonko, R.; Moś, J. E.; Stasiewicz, K. A.; Jaroszewicz, L. R.
2017-05-01
Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg's gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
Pulido-Navarro, María Guadalupe; Escamilla-Ambrosio, Ponciano Jorge; Marrujo-García, Sigifredo; Álvarez-Chávez, José Alfredo; Martínez-Piñón, Fernando
2017-07-01
In this work the feasibility of employing two well-known techniques already used on designing optical fiber sensors is explored. The first technique employed involves monomode tapered fibers, which were fabricated using a taper machine designed, built, and implemented in our laboratory. This implementation greatly reduced the costs and fabrication time allowing us to produce the desired taper length and transmission conditions. The second technique used fiber Bragg gratings, which we decided to have mechanically induced and for that reason we devised and produced our own mechanical gratings with the help of a computer numerical control tool. This grating had to be fabricated with aluminum to withstand temperatures of up to 600°C. When light traveling through an optical fiber reaches a taper it couples into the cladding layer and comes back into the core when the taper ends. In the same manner, when the light encounters gratings in the fiber, it couples to the cladding modes, and when the gratings end, the light couples back into the core. For our experimentation, the tapering machine was programmed to fabricate single-mode tapers with 3 cm length, and the mechanically induced gratings characteristics were 5 cm length, and had a period of 500 μm and depth of the period of 300 μm. For the conducting tests, the tapered fiber is positioned in between two aluminum slabs, one grooved and the other plane. These two blocks accomplish the mechanically induced long period grating (LPG); the gratings on the grooved plaque are imprinted on the taper forming the period gratings. An optical spectrum analyzer is used to observe the changes on the transmission spectrum as the temperature varies from 20°C to 600°C. The resultant attenuation peak wavelength in the transmission spectrum shifts up to 8 nm, which is a higher shift compared to what has been reported using nontapered fibers. As the temperature increases there is no longer a shift, but there is significant power loss. Such a characteristic can be used as well for sensing applications.
Bent optical fiber tapers for refractometery and biosensing
NASA Astrophysics Data System (ADS)
Penchev, Emil; Eftimov, Tinko; Bock, Wojtek
2015-01-01
We report the results of our study of the spectral shifts caused by surrounding refractive index changes (SRI) in bent fibre tapers. Fused and etched fibre tapers were fabricated using a gas burner and HF acid. Spectral shifts as high as 200 nm have been observed for SRI variations from 1.33 to 1.44 and sensitivity as high as 830 nm/r.i.u. around water RI values. We present results for refractometric measurements of cow milk of varying fat content and compare results with those obtained with conventional Abbe refractometers and high sensitivity double resonance LPGs.
Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C
1998-02-01
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.
Fiber-coupled dielectric-loaded plasmonic waveguides.
Gosciniak, Jacek; Volkov, Valentyn S; Bozhevolnyi, Sergey I; Markey, Laurent; Massenot, Sébastien; Dereux, Alain
2010-03-01
Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagation over the 100-microm-long distance.
Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation
NASA Astrophysics Data System (ADS)
Lozano-Hernandez, T.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Hernandez-Garcia, J. M.; Sierra-Hernandez, J. M.
2018-02-01
We present an experimental study of liquid refractive index effects into Ytterbium ring fiber laser cavity configuration. The laser is operated using a bi-tapered optical fiber immersed in water-alcohol concentrations. When the tapered fiber is dipped into a distilled water, a single lasing line with a peak power centered at 1025 nm is achieved. Afterward, by changing the polarization state into the cavity the lasing line can be switched. Moreover, by modifying the refractive index liquid surrounding media the lasing lines can be controlled and special liquid provide nonlinear response. The laser offers compactness, low effective cost and good stability.
Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji
2006-03-15
We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.
Ji, Chongke; Zhao, Chun-Liu; Kang, Juan; Dong, Xinyong; Jin, Shangzhong
2012-05-01
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded tapered fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 × 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/μm for displacement in the range of 0-400 μm, and ∼0.0097 nm/°C for temperature between 20 °C and 70 °C.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun
2015-06-01
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.
NASA Astrophysics Data System (ADS)
Tong, Chengguo; Chen, Xudong; Zhou, Yu; He, Jiang; Yang, Wenlei; Geng, Tao; Sun, Weimin; Yuan, Libo
2018-06-01
This study presents a simple Mach-Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are - 0.54 nm mɛ-1 and 0.058 nm °C-1, and - 0.53 nm mɛ-1 and 0.055 nm °C-1 to strain and temperature, respectively. The depth sensitivities are - 3.3 dB mɛ- 1, - 0.015 dB °C-1 and -5.8 dB mɛ-1, and 0.06 dB °C-1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.
NASA Astrophysics Data System (ADS)
Tong, Chengguo; Chen, Xudong; Zhou, Yu; He, Jiang; Yang, Wenlei; Geng, Tao; Sun, Weimin; Yuan, Libo
2018-03-01
This study presents a simple Mach-Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are - 0.54 nm mɛ-1 and 0.058 nm °C-1, and - 0.53 nm mɛ-1 and 0.055 nm °C-1 to strain and temperature, respectively. The depth sensitivities are - 3.3 dB mɛ- 1, - 0.015 dB °C-1 and -5.8 dB mɛ-1, and 0.06 dB °C-1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.
Integrated polarizers based on tapered highly birefringent photonic crystal fibers.
Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S
2014-07-28
This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned.
Tunable fiber laser based on the refractive index characteristic of MMI effects
NASA Astrophysics Data System (ADS)
Ma, Lin; Qi, Yanhui; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng
2014-04-01
A tunable erbium-doped all-fiber laser has been demonstrated. This tunable laser is based on a tunable fiber filter using the refractive index characteristics of multimode interference effects. A thinner no-core fiber with a diameter of 104 μm is used to fabricate the tunable fiber filter. The joint point of the thinner no-core fiber with SMF is a taper, which improves its sensitivity for refractive index changes. The filter exhibits a very sensitive response to the change of the environmental refractive index, which is about 1000 nm/RIU in the RI range from 1.418 to 1.427. The tunable fiber laser based on the filter achieved a tunability of 32 nm, with the wavelength tuned from 1532 nm to 1564 nm covering the full C-band. The 3 dB bandwidth of the tunable laser is less than 0.02 nm with the signal-to-noise ratio of about 40 dB.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
Efficient Q-switched operation in 1.64 μm Er:YAG tapered rod laser
NASA Astrophysics Data System (ADS)
Polyakov, Vadim M.; Vitkin, Vladimir V.; Krylov, Alexandr A.; Uskov, Alexander V.; Mak, Andrey A.
2017-02-01
We model output characteristics of the 1645 nm 8 mJ 10 ns 100 Hz Q-switched Er:YAG DPSSL. The laser is end pumped at a wavelength of 1532 nm. Fiber-coupled diode laser module was 10 nm FWHM, 12 W CW, 200 μm, NA 0.22. Various tapering of the active rod has been considered for 1 mm diameter, 20 mm long and 0.5% Er doping. We discuss the heat deposition process, the energy storage efficiency and the average power limitations for Q-switched regime of generation and amplification, and find the system scalable for the high power operation.
NASA Astrophysics Data System (ADS)
Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina
2017-08-01
In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.
All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.
Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin
2018-04-01
We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.
NASA Astrophysics Data System (ADS)
Latif, A. A.; Mohamad, H.; Abu Bakar, M. H.; Muhammad, F. D.; Mahdi, M. A.
2016-02-01
We have proposed and demonstrated a carbon nanotube-based mode-locked erbium-doped fiber laser with switchable wavelength in the C-band wavelength region by varying the net gain cross section of erbium. The carbon nanotube is coated on a tapered fiber to form the saturable absorber for the purpose of mode-locking by exploiting the concept of evanescent field interaction on the tapered fiber with the carbon nanotube in a ring cavity configuration. The propagation loss is adjusted by inducing macrobend losses of the optical fiber in the cavity through a fiber spooling technique. Since the spooling radius can be gradually adjusted to achieve continuous tuning of attenuation, this passive tuning approach can be an alternative to optical tunable attenuator, with freedom of external device integration into the laser cavity. Based on this alteration, the net gain cross section of the laser system can be tailored to three different lasing wavelength ranges; 1533, 1560 nm and both (1533 and 1560 nm) with the minimum pulse duration of 734 fs. The proposed design is simple and stable with high beam quality and good reliability for multiple applications.
Bolpasi, V; von Klitzing, W
2010-11-01
A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation.
NASA Astrophysics Data System (ADS)
Teng, Chuanxin; Yu, Fangda; Jing, Ning; Zheng, Jie
2016-11-01
The temperature dependence of a refractive index (RI) sensing probe based on a U-shape tapered plastic optical fiber (POF) was investigated experimentally. The changes in light propagation loss in the probe induced by temperature are of the same order of magnitude as those induced by measured RI changes. The temperature dependence loss and temperature dependence RI deviation of the sensing probe were measured (at the wavelength of 635 nm) in temperature of 10-60 °C. By extracting pure temperature dependence of the sensing probe alone, the influence of temperature to the sensor was characterized.
Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper
NASA Astrophysics Data System (ADS)
Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong
2018-01-01
A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.
Cheng, Tonglei; Usaki, Ryo; Duan, Zhongchao; Gao, Weiqing; Deng, Dinghuan; Liao, Meisong; Kanou, Yasuhire; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake
2014-02-24
Soliton self-frequency shift (SSFS) and third-harmonic generation (THG) are observed in a four-hole As2S5 chalcogenide microstructured optical fiber (MOF). The As2S5 MOF is tapered to offer an ideal environment for SSFS. After tapering, the zero-dispersion wavelength (ZDW) shifts from 2.02 to 1.61 μm, and the rate of SSFS can be enhanced by increasing the energy density of the pulse. By varying the average input power from 220 to 340 mW, SSFS of a soliton central wavelength from 2.206 to 2.600 μm in the mid-infrared is observed in the tapered segment, and THG at 632 nm is observed in the untapered segment.
NASA Astrophysics Data System (ADS)
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
NASA Astrophysics Data System (ADS)
Picard, Marie-Josée.; Latrasse, Christine; Larouche, Carl; Painchaud, Yves; Poulin, Michel; Pelletier, François; Guy, Martin
2016-03-01
One of the biggest challenges of silicon photonics is the efficient coupling of light between the sub-micron SiP waveguides and a standard optical fiber (SMF-28). We recently proposed a novel approach based on a spot-size converter (SSC) that fulfills this need. The SSC integrates a tapered silicon waveguide and a superimposed structure made of a plurality of rods of high index material, disposed in an array-like configuration and embedded in a cladding of lower index material. This superimposed structure defines a waveguide designed to provide an efficient adiabatic transfer, through evanescent coupling, to a 220 nm thick Si waveguide tapered down to a narrow tip on one side, while providing a large mode overlap to the optical fiber on the other side. An initial demonstration was made using a SSC fabricated with post-processing steps. Great coupling to a SMF-28 fiber with a loss of 0.6 dB was obtained for TEpolarized light at 1550 nm with minimum wavelength dependence. In this paper, SSCs designed for operation at 1310 and 1550 nm for TE/TM polarizations and entirely fabricated in a CMOS fab are presented.
Maegami, Yuriko; Takei, Ryohei; Omoda, Emiko; Amano, Takeru; Okano, Makoto; Mori, Masahiko; Kamei, Toshihiro; Sakakibara, Youichi
2015-08-10
We experimentally demonstrate low-loss and polarization-insensitive fiber-to-chip coupling spot-size converters (SSCs) comprised of a three dimensionally tapered Si wire waveguide, a SiON secondary waveguide, and a SiO(2) spacer inserted between them. Fabricated SSCs with the SiO(2) spacer exhibit fiber-to-chip coupling loss of 1.5 dB/facet for both the quasi-TE and TM modes and a small wavelength dependence in the C- and L-band regions. The SiON secondary waveguide is present only around the SSC region, which significantly suppresses the influence of the well-known N-H absorption of plasma-deposited SiON at around 1510 nm.
NASA Astrophysics Data System (ADS)
Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin
2018-05-01
In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.
Application of fiber tapers in astronomy
NASA Astrophysics Data System (ADS)
Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss
2006-06-01
Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Chongke; Zhao Chunliu; Kang Juan
2012-05-15
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded taperedmore » fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 x 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/{mu}m for displacement in the range of 0-400 {mu}m, and {approx}0.0097 nm/ deg. C for temperature between 20 deg. C and 70 deg. C.« less
González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando
2017-01-01
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161
González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz Del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Muñoz-Pacheco, Jesús Manuel; Chávez-Ramírez, Francisco
2017-09-06
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.
Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation.
Hammer, Jonas; Cavanna, Andrea; Pennetta, Riccardo; Chekhova, Maria V; Russell, Philip St J; Joly, Nicolas Y
2018-05-15
Precise control of the dispersion landscape is of crucial importance if optical fibers are to be successfully used for the generation of three-photon states of light-the inverse of third-harmonic generation (THG). Here we report gas-tuning of intermodal phase-matched THG in sub-micron-diameter tapered optical fiber. By adjusting the pressure of the surrounding argon gas up to 50 bars, intermodally phase-matched third-harmonic light can be generated for pump wavelengths within a 15 nm range around 1.38 μm. We also measure the infrared fluorescence generated in the fiber when pumped in the visible and estimate that the accidental coincidence rate in this signal is lower than the predicted detection rate of photon triplets.
Savaliya, Priten; Dhawan, Anuj
2016-10-01
Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana.
Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav
2013-12-01
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues. © 2013.
Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Zhang, Kailiang; Liu, Bo; Yao, Jianquan
2015-08-15
A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The tapered all-solid WAF is fabricated by using a fusion splicer, and the sensor is formed by immersing the tapered all-solid WAF into the MF. The transmission spectra have been measured and analyzed under different magnetic-field intensities. Experimental results show that the acquired magnetic-field sensitivity is 44.57 pm/Oe for a linear magnetic-field intensity range from 50 to 200 Oe. All-solid WAF has very similar thermal expansion coefficient for high- and low-refractive-index glasses, so mode profile is not affected by thermal drifts. Also, magnetically induced refractive-index changes into the ferrofluid are of the order of ∼5×10(-2), while the corresponding thermally induced refractive-index changes into the ferrofluid are expected to be lower. The temperature response has also been detected, and the temperature-induced wavelength shift perturbation is less than 0.3 nm from temperature of 26.9°C-44°C. The proposed magnetic-field sensor has such advantages as low temperature sensitivity, simple structure, and ease of fabrication. It also indicates that the magnetic-field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field.
In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation
Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.
2013-01-01
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947
NASA Astrophysics Data System (ADS)
Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Zhang, Hao; Song, Binbin; Liu, Bo; Yao, Jianquan
2016-05-01
A low-temperature-sensitive relative humidity (RH) sensor based on multimode interference effects has been proposed. The sensor consists of a section of tapered square no-core fiber (TSNCF) coated with SiO2 nanoparticles which is fabricated by splicing the TSNCF with two single-mode fibers (SMFs). The refractive index of SiO2 nanoparticles changes with the variation of environmental humidity levels. Characteristics of the transmission spectral have been investigated under different humidity levels. The wavelength shifts up to 10.2 nm at 1410 nm and 11.5 nm at 1610 nm for a RH range of 43.6-98.6% have been experimentally achieved, and the corresponding sensitivities reach 456.21 pm/%RH and 584.2 pm/%RH for a RH range of 83-96.6%, respectively. The temperature response of the proposed sensor has also been experimentally investigated. Due to the fact that the sensing head is made of a pure silica rod with a low thermal expansion coefficient and the thermo-optic coefficient, the transmission spectrum shows a low temperature sensitivity of about 6 pm/°C for an environmental temperature of 20.9-80 °C, which is a desirable merit to resolve the temperature cross sensitivity. Therefore, the proposed sensor could be applied to breath analysis applications with low temperature fluctuations.
NASA Astrophysics Data System (ADS)
Lee, Hui Jing; Abdullah, Fairuz; Ismail, Aiman
2017-11-01
This paper presents finite numerical modelling on the cross-sectional region of tapered single mode fiber and graphene-clad tapered fiber. Surface acoustic wave propagation across the tapered surface region on tapered single mode fiber has a high threshold power at 61.87 W which is challenging to overcome by the incident pump wave. Surface acoustic wave propagation of fiber surface however made tapered wave plausible in the optical sensor application. This research introduces graphene as the cladding layer on tapered fiber, acoustic confinement occurs due to the graphene cladding which lowers the threshold power from 61.87 W to 2.17 W.
300 mW of coherent light at 488 nm using a generic approach
NASA Astrophysics Data System (ADS)
Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter
2008-02-01
We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.
A nanowaveguide platform for collective atom-light interaction
NASA Astrophysics Data System (ADS)
Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.
2015-08-01
We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.
Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters
NASA Astrophysics Data System (ADS)
Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong
2017-09-01
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.
Seven-core multicore fiber transmissions for passive optical network.
Zhu, B; Taunay, T F; Yan, M F; Fini, J M; Fishteyn, M; Monberg, E M; Dimarcello, F V
2010-05-24
We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.
Monitoring techniques for the manufacture of tapered optical fibers.
Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P
2015-10-01
The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.
Using a slightly tapered optical fiber to attract and transport microparticles.
Sheu, Fang-Wen; Wu, Hong-Yu; Chen, Sy-Hann
2010-03-15
We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.
High-sensitivity sucrose erbium-doped fiber ring laser sensor
NASA Astrophysics Data System (ADS)
Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.
2017-02-01
We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.
Tapered enlarged ends in multimode optical fibers.
Brenci, M; Falciai, R; Scheggi, A M
1982-01-15
Radiation characteristics of multimode fibers with enlarged tapers were investigated on a number of samples obtained by varying the fiber drawing speed with a given law corresponding to a prefixed taper profile. The characterization of the fibers was made by near- and far-field intensity pattern measurements as well as by measuring the losses introduced by the taper. With a suitable choice of parameters the taper constitutes a reasonable low-loss component useful, for example, for either efficient coupling to large-spot high-power density sources or connecting fibers of different sizes. Conversely at the exit of the fiber the taper can be used for beam shaping which is of interest for mechanical or surgical applications.
Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.
Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G
2014-10-15
We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10 pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1 mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Xia, Feng; Hu, Hai-feng; Chen, Mao-qing
2017-11-01
A novel refractive index (RI) sensor based on photonic crystal fiber Mach-Zehnder interferometer (PCF-MZI) was proposed. It was realized by cascading a section of PCF with half-taper collapse regions (HTCRs) between two single mode fibers (SMFs). The relationship between RI sensitivity and interference length of the PCF-MZI was firstly investigated. Both simulation and experimental results showed that RI sensitivity increased with the increase of interference length. Afterwards, influence of HTCR parameters on RI sensitivity was experimentally investigated to further improve the sensitivity. With intensification of arc discharge intensity in HTCR fabrication process, HTCR with larger maximum taper diameter and longer collapsed region length was obtained, which enhanced evanescent field of the PCF-MZI and then generated higher RI sensitivity. Consequently, a high RI sensitivity of 181.96 nm/refractive index unit (RIU) was achieved in the RI range of 1.3333-1.3574. Increasing arc discharge intensity in HTCR fabrication process has the capacity to improve RI sensitivity of PCF-MZI and meanwhile provides higher mechanical strength and longer sensor life compared to the traditional method of tapering the fiber, which improves the RI sensitivity at the cost of reducing mechanical strength of the sensor. This PCF-MZI was characterized by high RI sensitivity, ease of fabrication, high mechanical strength, and robustness.
Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun
2016-02-01
Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.
Supercontinuum generation in a tapered tellurite microstructured optical fiber
NASA Astrophysics Data System (ADS)
Yan, X.; Ohishi, Y.
2014-07-01
Supercontinuum generation (SCG) was investigated in tapered tellurite microstructured optical fibers (MOFs) for various taper profiles. We emphasize on the procedure for finding the dispersion profile that achieve the best width of the SC spectra. An enhancement of the SCG is achieved by varying the taper waist diameter along its length in a carefully designed, and an optimal degree of tapering is found to exist for tapers with an axially uniform waist. We also show the XFROG spectrograms of the pulses propagating through different tapered fibers, confirming the optimized taper conditions.
Sheu, Fang-Wen; Huang, Yen-Si
2013-01-01
A stripped no-core optical fiber with a 125 μm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-μm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-μm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber. PMID:23449118
Sheu, Fang-Wen; Huang, Yen-Si
2013-02-28
A stripped no-core optical fiber with a 125 µm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-µm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-µm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.
In-line optical fiber sensors based on cladded multimode tapered fibers.
Villatoro, Joel; Monzón-Hernández, David; Luna-Moreno, Donato
2004-11-10
The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.
Wang, Yingying; Dai, Shixun; Li, Guangtao; Xu, Dong; You, Chenyang; Han, Xin; Zhang, Peiqing; Wang, Xunsi; Xu, Peipeng
2017-09-01
We report a broadband supercontinuum (SC) generation in chalcogenide (ChG) step-index tapered fibers pumped in the normal dispersion regime. The fibers consisting of As 2 S 3 core and As 38 S 62 cladding glasses were fabricated using the isolated stacked extrusion method. A homemade tapering platform allows us to accurately control the core diameters and transition region lengths of the tapered fibers. An SC generation spanning from 1.4 to 7.2 μm was achieved by pumping a 12-cm-long tapered fiber with femtosecond laser pulses at 3.25 μm. To the best of our knowledge, this is the broadest SC generation obtained experimentally in tapered fibers when pumped in the normal dispersion regime so far. The effects of waist diameter and transition region length of the tapered fiber on the SC spectral behavior were also investigated.
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
The fabrication of a tapered fiber connector and its coupling efficiency
NASA Astrophysics Data System (ADS)
Qinggui, Hu; Chengzhong, Li
2017-11-01
In order to reduce the adverse influence of transversal displacement of the optical fiber connector, we propose the directional tapered communication fiber connector, in which the fiber head is tapered according to the signal transmission direction to improve efficiency. We used a flame-brush technique to produce the tapered fiber successfully. In the next step, two experiments in different environments were performed; one in a static environment and the other in a vibration environment. The first experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same transversal displacement. The second experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same frequency and amplitude.
Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference
NASA Astrophysics Data System (ADS)
Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.
2018-03-01
We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.
65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management.
Yang, Peilong; Teng, Hao; Fang, Shaobo; Hu, Zhongqi; Chang, Guoqing; Wang, Junli; Wei, Zhiyi
2018-04-15
We implement an ultrafast Yb-doped all-fiber laser which incorporates tapered single-mode fibers for managing nonlinearity and dispersion. The tapered fiber placed in the oscillator cavity aims to broaden the optical spectrum of the intracavity pulse. At the oscillator output, we use another tapered fiber to perform pulse compression. The resulting 66.1-MHz Yb-doped all-fiber oscillator self-starts and generates 0.4-nJ, 65-fs pulses, which can serve as a compact and robust seed source for subsequent high-power, high-energy amplifiers.
NASA Astrophysics Data System (ADS)
Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.
2018-02-01
This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.
Rusu, M; Kivistö, Samuli; Gawith, C; Okhotnikov, O
2005-10-17
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
NASA Astrophysics Data System (ADS)
Rusu, M.; Kivistö, Samuli; Gawith, C. B. E.; Okhotnikov, O. G.
2005-10-01
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
NASA Astrophysics Data System (ADS)
Wang, Yingying; Dai, Shixun; Peng, Xuefeng; Zhang, Peiqing; Wang, Xunsi; You, Chenyang
2018-01-01
We report a broadband supercontinuum generation in a chalcogenide fiber taper with an ultra-high numerical aperture. The chalcogenide step-index fiber consisting of As2Se3 core and As2S3 cladding was fabricated by using the isolated stacked extrusion method. The fiber taper with a core diameter of 1.75 μm was prepared by employing a homemade tapering setup. By pumping the fiber taper with a femtosecond laser pulses at 3.3 μm, a broadband supercontinuum generation spanning from 1.9 to 5.7 μm was achieved.
Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.
Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut
2015-09-15
We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.
Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm
NASA Astrophysics Data System (ADS)
Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning
2016-03-01
We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.
Ultra-low-loss optical fiber nanotapers.
Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David
2004-05-17
Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.
Principles and performance of tapered fiber lasers: from uniform to flared geometry.
Kerttula, Juho; Filippov, Valery; Chamorovskii, Yuri; Ustimchik, Vasily; Golant, Konstantin; Okhotnikov, Oleg G
2012-10-10
We have studied the recently demonstrated concept of fiber lasers based on active tapered double-clad fiber (T-DCF) in copropagating and counterpropagating configurations, both theoretically and experimentally, and compared the performance to fiber lasers based on conventional cylindrical fibers in end-pumped configurations. Specific properties of T-DCFs were considered theoretically using a rate-equation model developed for tapered fibers, and a detailed comparative study was carried out experimentally. Furthermore, we have studied mode coupling effects in long adiabatic tapers due to coiling and local bending. The results allow us to conclude that, with proper fiber design, the T-DCF technology offers a high-potential alternative for bright, cost-effective fiber devices.
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
Mesoscopic effect of spectral modulation for the light transmitted by a SNOM tip
NASA Astrophysics Data System (ADS)
Rähn, M.; Pärs, M.; Palm, V.; Jaaniso, R.; Hizhnyakov, V.
2010-06-01
The effect of a tapered metal-coated optical fiber terminated by a sub-wavelength aperture (SWA) on the spectrum of the transmitted light is investigated experimentally. Under certain conditions a remarkable spectral modulation of the transmitted light can be observed. This effect is of a mesoscopic origin, occurring only for a certain interval of SWA diameters. One can conclude that a noticeable modulation appears when the number of the transmitted fiber modes is small but exceeds unity, thus indicating the presence of a phase shift between different modes. To discern between two possible sources of such phase shift, the fiber length dependence of the output spectrum has been studied. According to the results obtained for the used sample of 200 nm SNOM tip, the observed phase shift is mostly caused rather by the inherent modal dispersion of the multimode fiber than by the mode-dependent light slowdown in the tapered region close to SWA due to the coupling to surface plasmons of the metal coating. The SWA acts here mainly as an effective mode filter.
Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.
2011-05-01
A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.
Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration
NASA Astrophysics Data System (ADS)
Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi
2018-04-01
In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.
High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier
NASA Astrophysics Data System (ADS)
Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.
2016-03-01
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
Fabrication of longitudinally arbitrary shaped fiber tapers
NASA Astrophysics Data System (ADS)
Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.
2018-02-01
We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Waynant, Ronald W.
2001-01-01
We present a novel all-optical-waveguide method for ultraviolet (UV), visible (VIS) and infrared (IR) laser delivery including a lens-free method of laser-to-fiber coupling using a simple uncoated glass hollow taper. Based on the grazing incidence effect, the hollow taper provides a way of direct launching, without any intermediate focusing elements, high power laser radiation into delivery fibers. Because of the mutual action of the nearly parallel laser excitation, the mode coupling process, and mode filtering effect, the hollow taper serves as a mode converter that transforms the highly multimode profile of the input laser emission into a high-quality Gaussian-shaped profile at the taper output. When the grazing incidence effect of the taper is applied to laser delivery, the maintenance of high reflectance coefficients in a wide spectral region allows to utilize the same uncoated hollow taper for laser radiation in the UV, VIS and IR ranges. Applying the experimental hollow-taper based delivery systems, we obtain high laser- to-taper and taper-to-fiber coupling efficiencies.
Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.
Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J
2011-04-01
An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.
Tapered GRIN fiber microsensor.
Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B
2014-12-15
The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach.
Tapered fiber based high power random laser.
Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun
2016-04-18
We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL.
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.
Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J
2009-08-01
We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.
Welding-fume-induced transmission loss in tapered optical fibers
NASA Astrophysics Data System (ADS)
Yi, Ji-Haeng
2015-09-01
This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.
NASA Astrophysics Data System (ADS)
Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.
2018-03-01
This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming
2017-10-01
In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.
Mid-IR soliton compression in silicon optical fibers and fiber tapers.
Peacock, Anna C
2012-03-01
Numerical simulations are used to investigate soliton compression in silicon core optical fibers at 2.3 μm in the mid-infrared waveguide regime. Compression in both standard silicon fibers and fiber tapers is compared to establish the relative compression ratios for a range of input pulse conditions. The results show that tapered fibers can be used to obtain higher levels of compression for moderate soliton orders and thus lower input powers. © 2012 Optical Society of America
Soliton propagation in tapered silicon core fibers.
Peacock, Anna C
2010-11-01
Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications.
NASA Astrophysics Data System (ADS)
Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.
2015-03-01
A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.
Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.
MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P
2015-01-01
We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1986-01-01
A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.
Microdroplet-etched highly birefringent low-loss fiber tapers.
Mikkelsen, Jared C; Poon, Joyce K S
2012-07-01
We use hydrofluoric acid microdroplets to directly etch highly birefringent biconical fiber tapers from standard single-mode fibers. The fiber tapers have micrometer-sized cross sections, which are controlled by the etching condition. The characteristic teardrop cross section leads to a high group birefringence of B(G)≈0.017 and insertion losses <0.7 dB over waist lengths of about 2.1 mm.
Pisanello, Marco; Oldenburg, Ian A.; Sileo, Leonardo; Markowitz, Jeffrey E.; Peterson, Ralph E.; Della Patria, Andrea; Haynes, Trevor M.; Emara, Mohamed S.; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L.
2017-01-01
Optogenetics promises spatiotemporal precise control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons when compared to the standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs. PMID:28628101
Pisanello, Ferruccio; Mandelbaum, Gil; Pisanello, Marco; Oldenburg, Ian A; Sileo, Leonardo; Markowitz, Jeffrey E; Peterson, Ralph E; Della Patria, Andrea; Haynes, Trevor M; Emara, Mohamed S; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L
2017-08-01
Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.
An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper
NASA Astrophysics Data System (ADS)
Chen, Z.; Ma, S.; Dutta, N. K.
2010-08-01
In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.
Micro particle launcher/cleaner based on optical trapping technology.
Liu, Zhihai; Liang, Peibo; Zhang, Yu; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo
2015-04-06
Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.
980 nm tapered lasers with photonic crystal structure for low vertical divergence
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua
2016-10-01
High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Magnetic field tunability of optical microfiber taper integrated with ferrofluid.
Miao, Yinping; Wu, Jixuan; Lin, Wei; Zhang, Kailiang; Yuan, Yujie; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan
2013-12-02
Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element.
Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.
Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong
2017-11-27
In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.
Tapered fibers embedded in silica aerogel.
Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A
2009-09-15
We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
NASA Astrophysics Data System (ADS)
Ishizawa, Atsushi; Goto, Takahiro; Kou, Rai; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki
2017-07-01
We demonstrate on-chip octave-spanning supercontinuum (SC) generation with a Si-wire waveguide (SWG). We precisely controlled the SWG width so that the group velocity becomes flat over a wide wavelength range. By adjusting the SWG length, we could reduce the optical losses due to two-photon absorption and pulse propagation. In addition, for efficient coupling between the laser pulse and waveguide, we fabricated a two-step inverse taper at both ends of the SWG. Using a 600-nm-wide SWG, we were able to generate a broadband SC spectrum at wavelengths from 1060 to 2200 nm at a -40 dB level with only 50-pJ laser energy from an Er-doped fiber laser oscillator. We found that we can generate an on-chip broadband SC spectrum with an SWG with a length even as small as 1.7 mm.
Yuan, Yinquan; Ding, Liyun
2011-10-24
For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America
Pulse compression using a tapered microstructure optical fiber.
Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J
2006-05-01
We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.
NASA Astrophysics Data System (ADS)
Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang
2016-09-01
Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.
Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber.
Liu, Zhengyong; Tse, Ming-Leung Vincent; Zhang, A Ping; Tam, Hwa-Yaw
2014-10-15
A novel microfluidic flowmeter integrated with microfiber Bragg grating (µFBG) is presented. Two glass capillaries and a short length of high-light-absorption Co²⁺-doped optical fiber were stacked inside a larger outer capillary tube. The stack was then drawn into a tapered device. Two microchannels with the diameter of ~50 μm were formed inside the capillaries for flowing of microfluidics. An FBG was inscribed in the tapered Co²⁺-doped fiber with waist diameter of ~70 μm, and acts as a flow-rate sensor. A pump laser with wavelength of 1480 nm was utilized to locally heat the µFBG, rendering the µFBG as miniature "hot-wire" flowmeter. The flow rate of the liquid in the microchannels is determined by the induced wavelength shift of the µFBG. The experimental results achieve a minimum detectable change of ~16 nL/s in flow rate, which is very promising in the use as part of biochips.
Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen
2012-10-22
We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.
Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.
Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo
2017-07-24
We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.
Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei
2014-01-01
Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.
Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holleis, S.; Hoinkes, T.; Wuttke, C.
2014-04-21
We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less
Tapered polysilicon core fibers for nonlinear photonics.
Suhailin, Fariza H; Shen, Li; Healy, Noel; Xiao, Limin; Jones, Maxwell; Hawkins, Thomas; Ballato, John; Gibson, Ursula J; Peacock, Anna C
2016-04-01
We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1 μm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems.
Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks
NASA Astrophysics Data System (ADS)
Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.
2016-01-01
Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.
Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper
NASA Astrophysics Data System (ADS)
Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan
2010-03-01
A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.
Photonic lantern with multimode fibers embedded
NASA Astrophysics Data System (ADS)
Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min
2014-08-01
A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.
Tapered holey fibers for spot-size and numerical-aperture conversion.
Town, G E; Lizier, J T
2001-07-15
Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.
A direction detective asymmetrical twin-core fiber curving sensor
NASA Astrophysics Data System (ADS)
An, Maowei; Geng, Tao; Yang, Wenlei; Zeng, Hongyi; Li, Jian
2015-10-01
Long period fiber gratings (LPFGs), which can couple the core mode to the forward propagating cladding modes of a fiber and have the advantage of small additional loss, no backward reflection, small size, which is widely used in optical fiber sensors and optical communication systems. LPFG has different fabricating methods, in order to write gratings on the twin-core at the same time effectively, we specially choose electric heating fused taper system to fabricate asymmetric dual-core long period fiber grating, because this kind of method can guarantee the similarity of gratings on the twin cores and obtain good geometric parameters of LPFG, such as cycle, cone waist. Then we use bending test platform to conduct bending test for each of the core of twin-core asymmetric long period fiber grating. Experiments show that: the sensitivity of asymmetrical twin-core long period fiber grating's central core under bending is -5.47nm·m, while the sensitivity of asymmetric twin-core long period fiber grating partial core changed with the relative position of screw micrometer. The sensitivity at 0°, 30°, 90° direction is -4.22nm·m, -9.84nm·m, -11.44nm·m respectively. The experiment results strongly demonstrate the properties of rim sensing of asymmetrical twin-core fiber gratings which provides the possibility of simultaneously measuring the bending magnitude and direction and solving the problem of cross sensing when multi-parameter measuring. In other words, we can detect temperature and bend at the same time by this sensor. As our knowledge, it is the first time simultaneously measuring bend and temperature using this structure of fiber sensors.
Rudy, Charles W; Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L
2013-08-01
We report a supercontinuum spanning well over an octave of measurable bandwidth from about 1 to 3.7 μm in a 2.1 mm long As₂S₃ fiber taper using the in situ tapering method. A sub-100-fs mode-locked thulium-doped fiber laser system with ~300 pJ of pulse energy was used as the pump source. Third-harmonic generation was observed and currently limits the pump pulse energy and achievable spectral bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Ronald A.; Ilev, Ilko K.
We present a study on the design and parameter optimization of a flexible high-peak-power fiber-optic laser delivery system using commercially available solid-core silica fibers and an experimental glass hollow waveguide (HW). The fiber-optic delivery system provides a flexible, safe, and easily and precisely positioned laser irradiation for many applications including uniform illumination for digital particle image velocimetry (DPIV). The delivery fibers, when coupled through a line-generating lens, produce a uniform thin laser sheet illumination for accurate and repeatable DPIV two-dimensional velocity measurements. We report experimental results on homogenizing the laser beam profile using various mode-mixing techniques. Furthermore, because a fundamentalmore » problem for fiber-optic-based high-peak-power laser delivery systems is the possible damage effects of the fiber material, we determine experimentally the peak power density damage threshold of various delivery fibers designed for the visible spectral range at a typical DPIV laser wavelength of 532 nm. In the case of solid-core silica delivery fibers using conventional lens-based laser-to-fiber coupling, the damage threshold varies from 3.7 GW/cm{sup 2} for a 100-{mu}m-core-diameter high-temperature fiber to 3.9 GW/cm{sup 2} for a 200-{mu}m-core-diameter high-power delivery fiber, with a total output laser energy delivered of at least 3-10 mJ for those respective fibers. Therefore, these fibers are marginally suitable for most macro-DPIV applications. However, to improve the high-power delivery capability for close-up micro-DPIV applications, we propose and validate an experimental fiber link with much higher laser power delivery capability than the solid-core fiber links. We use an uncoated grazing-incidence-based tapered glass funnel coupled to a glass HW with hollow air-core diameter of 700 {mu}m, a low numerical aperture of 0.05, and a thin inside cladding of cyclic olefin polymer coating for optimum transmission at 532 nm. Because of the mode homogenizing effect and lower power density, the taper-waveguide laser delivery technique ensured high damage threshold for the delivery HW, and as a result, no damage occurred at the maximum measured input laser energy of 33 mJ used in this study.« less
Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao
2017-11-01
A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Bi-Tapered Fiber Sensor Using a Supercontinuum Light Source for a Broad Spectral Range
NASA Astrophysics Data System (ADS)
Garcia Mina, Diego Felipe
We describe the fabrication bi-tapered optical fiber sensors designed for shorter wavelength operation and we study their optical properties. The new sensing system designed and built for the project is a specialty optical fiber that is single-mode in the visible/near infrared wavelength region of interest. In fabricating the tapered fiber we control the taper parameters, such as the down-taper and up-taper rate, shape and length, and the fiber waist diameter and length. The sensing is mode is via the electromagnetic field, which is evanescent outside the optical fiber and is confined close to the fiber's surface (within a couple hundred nanometers). The fiber sensor system has multiple advantages as a compact, simple device with an ability to detected tiny changes in the refractive index. We developed a supercontinuum light source to provide a wide spectral wavelength range from visible to near IR. The source design was based on coupling light from a femtosecond laser in a photonic crystal fiber designed for high nonlinearity. The output light was efficiently coupled into the bi-tapered fiber sensor and good signal to noise was achieved across the wavelength region. The bi-tapered fiber starts and ends with a single mode fiber in the waist region there are many modes with different propagation constants that couple to the environment outside the fiber. The signals have a strong periodic component as the wavelength is scanned; we exploit the periodicity in the signal using a discrete Fourier transform analysis to correlate signal phase changes with the refractive index changes in the local environment. For small index changes we also measure a strong correlation with the dominant Fourier amplitude component. Our experiments show that our phase-based signal processing technique works well at shorter wavelengths and we extract a new feature, the Fourier amplitude, to measure the refractive index difference. We conducted experiments using aqueous medium with controlled refractive index, such as water-glycerol mixtures. We find sensitivity to changes in the refractive index close to 0.00002 in so-called Refractive Index Units (RIUs). That is smaller than reported in recent literature, but by no means a limiting value. The technique is not limited to aqueous solutions surrounding the fiber, but it can also be adapted to study volatile organic compounds. Future improvements in the fiber sensing system are discussed, including adding thin films to the surface for label-free detection and to draw the electromagnetic field to the fiber's surface.
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-03-03
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1 S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-01-01
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608
NASA Astrophysics Data System (ADS)
Song, Rui; Lei, Chengmin; Han, Kai; Chen, Zilun; Pu, Dongsheng; Hou, Jing
2017-05-01
Supercontinuum generation directly from a nonlinear fiber amplifier, especially from a nonlinear ytterbium-doped fiber amplifier, attracts more and more attention due to its all-fiber structure, high optical to optical conversion efficiency, and high power output potential. However, the modeling of supercontinuum generation from a nonlinear fiber amplifier has been rarely reported. In this paper, the modeling of a tapered Ytterbium-doped fiber amplifier for visible extended to infrared supercontinuum generation is proposed based on the combination of the laser rate equations and the generalized nonlinear Schrödinger equation. Ytterbium-doped fiber amplifier generally can not generate visible extended supercontinuum due to its pumping wavelength and zero-dispersion wavelength. However, appropriate tapering and four-wave mixing makes the visible extended supercontinuum generation from an ytterbium-doped fiber amplifier possible. Tapering makes the zero-dispersion wavelength of the ytterbium-doped fiber shift to the short wavelength and minimizes the dispersion matching. Four-wave mixing plays an important role in the visible spectrum generation. The influence of pulse width and pump power on the supercontinuum generation is calculated and analyzed. The simulation results imply that it is promising and possible to fabricate a visible-to-infrared supercontinuum with low pump power and flat spectrum by using the tapered ytterbium-doped fiber amplifier scheme as long as the related parameters are well-selected.
Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities
NASA Astrophysics Data System (ADS)
André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando
2016-09-01
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems
NASA Astrophysics Data System (ADS)
Nguyen, Victor; Montalbo, Trisha; Manolatou, Christina; Agarwal, Anu; Hong, Ching-yin; Yasaitis, John; Kimerling, L. C.; Michel, Jurgen
2006-02-01
A coupler to efficiently transfer broadband light from a single-mode optical fiber to a single-mode high-index contrast waveguide has been fabricated on a silicon substrate. We utilized a novel coupling scheme, with a vertically asymmetric design consisting of a stepwise parabolic graded index profile combined with a horizontal taper, to simultaneously confine light in both directions. Coupling efficiency has been measured as a function of the device dimensions. The optimal coupling efficiency is achieved for structures whose length equals the focal distance of the graded index and whose input width is close to the mode field diameter of the fiber. The fabricated structure is compact, robust and highly efficient, with an insertion loss of 2.2dB at 1550nm. The coupler exhibits less than 1dB variation in coupling efficiency in the measured spectral range from 1520nmto1620nm. The lowest insertion loss of 1.9dB is measured at 1540nm. The coupler design offers highly efficient coupling for single mode waveguides of core indices up to 2.2.
Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics
NASA Astrophysics Data System (ADS)
Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.
2018-02-01
Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).
Collection of Light From an Optical Fiber With a Numerical Aperture Greater Than One
NASA Technical Reports Server (NTRS)
Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)
1996-01-01
In an optical fiber having NA greater than 1, light may be internally reflected when it strikes the fiber end at a fiber-air interface. This problem may be overcome by modification of the fiber by reverse tapering the core. Light is redirected by the taper to strike the interface at an angle closer to normal. This allows light to exit the fiber end that would by internally reflected in an untapered fiber of NA greater than 1. The novelty of the present invention lies in the tapering of the fiber core for increased through transmission of light. Prior art devices have made use of fiber tapers to achieve mode control or fiber coupling. The problem of internal reflection has not been addressed as it is one that is not as important in fibers having NA less than 1, which are more common. In chemical sensing it is advantageous to make use of fibers having higher NA due to an increased sensitivity. However the advantages in sensitivity are diminished due to the loss of signal at the fiber-air interface. The present invention overcomes the problem of loss at the interface, thus facilitating the use of high NA fibers for chemical sensing.
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji
2007-01-01
The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.
Tapered optical fiber sensor based on localized surface plasmon resonance.
Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen
2012-09-10
A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.
Acoustic vibration sensor based on nonadiabatic tapered fibers.
Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong
2012-11-15
A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.
Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han
2014-01-01
By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108
Optical cross-talk and surface characterization of SERS nanoimaging bundle substrates
NASA Astrophysics Data System (ADS)
Kiser, John B.; Cullum, Brian M.
2010-04-01
Due to the narrow vibrational bandwidths and unique molecular fingerprints, Raman spectroscopy can be an information rich transduction technique for chemical imaging. Dynamic systems are often difficult to measure using spontaneous Raman due to the relatively weak scattering cross-sections. Using a Raman enhancement mechanism such as surface enhanced Raman scattering (SERS), exposure times can be reduced to a reasonable level for dynamic imaging, due to the increased Raman signal intensity. This paper will discuss the development of a novel SERS substrate, fabricated on the tips of fiber-optic imaging bundles, which can be integrated into a multispectral imaging system for non-scanning chemical imaging. These substrates are fabricated by mechanically tapering a polished fiber optic imaging bundle consisting of 30,000 individual elements; producing 100-nm or smaller diameter core elements on the distal tip. Chemical etching with hydrofluoric acid creates uniform cladding spikes onto which a SERS active metal is vacuum deposited, forming the SERS active surface. By varying the size of the silver islands deposited on the cladding peaks active, surface plasmons can be tuned to various excitation frequencies. The surface of these tapered fiber optic probes will be evaluated by analysis of the SERS signal, location and shape of the active surface plasmons. The cross talk between the fiber elements will also be evaluated.
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
"Photonic lantern" spectral filters in multi-core Fiber.
Birks, T A; Mangan, B J; Díez, A; Cruz, J L; Murphy, D F
2012-06-18
Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.
NASA Astrophysics Data System (ADS)
Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.
2014-03-01
Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.
NASA Astrophysics Data System (ADS)
Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M. C.; Robledo-Fava, R.
2014-10-01
We present a wavelength tuning of an Erbium-Doped Fiber Ring Laser (EDFRL) based in a Mach-Zehnder fiber interferometer (MZFI) that consists on two tapers fabricated on commercial SMF28 from Corning as an intracavity filter. The MZFI spectral interference pattern is modified by external refractive index changes that alter the light transmission characteristics. In this work, the fiber device is immersed into a glycerol solution with higher dispersion in its refractive index in relation with temperature. Since the temperature sensitiveness of the glycerol is much higher than that of the fiber in a temperature range from 25-110 °C, therefore, the spectral changes are mainly due to the dispersion of glycerol refractive index when heat increases. Also, when this device is inserted into the EDFRL cavity, the gain spectrum of the EDF is modified accordingly and the changes, which can be controlled in an electrical heater, allow the tuning of the laser wavelength determined by the interference fringes. A wavelength shift as high as 180 pm/°C and a tunable range of 12 nm are obtained. The side mode suppression ratio (SMSR) of the fiber laser is around 25-30 dB depending on the notch filtering position. The insertion losses of the filter are below 0.3 dB and the measured wavelength shift has a quasilinear dependence as a function of temperature in the 80-110 °C. This method is very simple, portable and inexpensive over traditional methods to tune a fiber laser.
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.
Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji
2013-11-18
A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.
Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.
Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun
2013-05-06
We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.
Tapered rib fiber coupler for semiconductor optical devices
Vawter, Gregory A.; Smith, Robert Edward
2001-01-01
A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.
NASA Astrophysics Data System (ADS)
Languirand, Eric Robert
Chemical imaging is an important tool for providing insight into function, role, and spatial distribution of analytes. This thesis describes the use of imaging fiber bundles (IFB) for super-resolution reconstruction using surface enhanced Raman scattering (SERS) showing improvement in resolution with arrayed bundles for the first time. Additionally this thesis describes characteristics of the IFB with regards to cross-talk as a function of aperture size. The first part of this thesis characterizes the IFB for both tapered and untapered bundles in terms of cross-talk. Cross-talk is defined as the amount of light leaking from a central fiber element in the imaging fiber bundle to surrounding fiber elements. To make this measurement ubiquitous for all imaging bundles, quantum dots were employed. Untapered and tapered IFB possess cross-talk of 2% or less, with fiber elements down to 32nm. The second part of this thesis employs a super resolution reconstruction algorithm using projection onto convex sets for resolution improvement. When using IFB arrays, the point spread function (PSF) of the array can be known accurately if the fiber elements over fill the pixel detector array. Therefore, the use of the known PSF compared to a general blurring kernel was evaluated. Relative increases in resolution of 12% and 2% at the 95% confidence level are found, when compared to a reference image, for the general blurring kernel and PSF, respectively. The third part of this thesis shows for the first time the use of SERS with a dithered IFB array coupled with super-resolution reconstruction. The resolution improvement across a step-edge is shown to be approximately 20% when compared to a reference image. This provides an additional means of increasing the resolution of fiber bundles beyond that of just tapering. Furthermore, this provides a new avenue for nanoscale imaging using these bundles. Lastly, synthetic data with varying degrees of signal-to-noise (S/N) were employed to explore the relationship S/N has with the reconstruction process. It is generally shown that increasing the number images used in the reconstruction process and increasing the S/N will improve the reconstruction providing larger increases in resolution.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Active Q switching of a fiber laser with a microsphere resonator
NASA Astrophysics Data System (ADS)
Kieu, Khanh; Mansuripur, Masud
2006-12-01
We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power ˜102W, duration ˜160ns) at a low pump-power threshold (˜3mW).
Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro
2013-02-11
In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).
NASA Astrophysics Data System (ADS)
Ahmad, H.; Jasim, A. A.
2017-07-01
A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.
NASA Astrophysics Data System (ADS)
Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.
2012-03-01
In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
High-power fused assemblies enabled by advances in fiber-processing technologies
NASA Astrophysics Data System (ADS)
Wiley, Robert; Clark, Brett
2011-02-01
The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.
Additive manufacturing of short and mixed fibre-reinforced polymer
Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.
2018-01-09
Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel
1998-06-01
Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.
High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong
2016-05-01
In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.
NASA Astrophysics Data System (ADS)
Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping
2016-01-01
A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.
Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe
2013-09-01
The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.
Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement.
Gao, Song; Zhang, Liang; Xu, Yanping; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-12-12
A one-end pumping Brillouin random fiber laser (BRFL) based on a 5-km tapered fiber (TF) is demonstrated. The enhanced Rayleigh scattering and the increased power density from tapering in the TF provide good directionality and a high degree of coherent feedback. Both the transmitting and TF enhanced Rayleigh scattered pump lights formed effective bi-direction pumping for the Brillouin gain in the standing cavity configuration in the distributed way as the gain and random feedback in the same fiber. The linewidth of the laser shows ~1.17 kHz while the relative intensity noise (RIN) has been verified to be suppressed comparing with that of the two-end pumping of the standard single mode fiber (SMF). Furthermore, utilizing the proposed laser, a high-resolution (~kHz) linewidth measurement method is demonstrated without long delay fiber (>100km) and extra frequency shifter thanks to the acoustic frequency shift from fiber itself.
NASA Astrophysics Data System (ADS)
Chen, Shimeng; Liu, Yun; Gao, Xiaotong; Liu, Xiuxin; Peng, Wei
2014-11-01
We present a wavelength-tunable tapered optics fiber surface Plasmon resonance (SPR) sensor by polishing the end faces of multimode fibers(MMF).Two hard plastic clad optical fibers joint closely and are used as the light input and output channels. Their end faces are polished to produce two oblique planes, which are coated with gold film to be the sensing surface and the front mirror. The presence of the tapered geometry formed by the two oblique planes in the orthogonal directions makes it possible to adjust incident angle through changing the tilt angles of the two end faces, so as to achieve tuning the SPR coupling wavelength-angle pair. Compared with previous researches based a tapered optic fiber probe, we report the approach theoretically increase the signal noise ratio (SNR) by separating incident and emergent light propagating in the different coordinate fiber. Since fabricating the sensing surface and the front mirror on the two fibers to replace one single fiber tip, there is more incident light can reach the sensing surface and satisfy SPR effective. In addition, this improvement in structure has advantages of large grinding and sensing area, which can lead to high sensitivity and simple manufacture process of the sensor. Experimental measurement demonstrates the sensor has a favorable SPR resonanceabsorption and the ability of measuring refractive index (RI) of aqueous solution. This novel tapered SPR sensor has the potential to be applied to the biological sensing field.
NASA Technical Reports Server (NTRS)
Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad
1995-01-01
The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.
Leakage of the fundamental mode in photonic crystal fiber tapers.
Nguyen, Hong C; Kuhlmey, Boris T; Steel, Michael J; Smith, Cameron L; Mägi, Eric C; McPhedran, Ross C; Eggleton, Benjamin J
2005-05-15
We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes. These experimental results are discussed in the context of the so-called fundamental mode cutoff described by Kuhlmey et al. [Opt. Express 10, 1285 (2002)], which apply to PCFs with a finite microstructure.
Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement
NASA Astrophysics Data System (ADS)
Roy, V.; Paré, C.; Labranche, B.; Laperle, P.; Desbiens, L.; Boivin, M.; Taillon, Y.
2017-02-01
A polarization-maintaining Yb-doped large mode area fiber with depressed-index inner cladding layer and confinement of rare-earth dopants has been drawn as a long tapered fiber. The larger end features a core/clad diameter of 56/400 μm and core NA 0.07, thus leading to an effective mode area over 1000 μm2. The fiber was tested up to 100 W average power, with near diffraction-limited output as the beam quality M2 was measured < 1.2. As effective single-mode guidance is enforced in the first section due to enhanced bending loss, subsequent adiabatic transition of the mode field in the taper section preserves single-mode amplification towards the larger end of the fiber.
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.
NASA Astrophysics Data System (ADS)
Stevens, G.; Woodbridge, T.
2016-03-01
We present results from our recent efforts on developing single-mode fused couplers in ZBLAN fibre. We have developed a custom fusion workstation for working with lower melting temperature fibres, such as ZBLAN and chalcogenide fibres. Our workstation uses a precisely controlled electrical heater designed to operate at temperatures between 100 - 250°C as our heat source. The heated region of the fibers was also placed in an inert atmosphere to avoid the formation of microcrystal inclusions during fusion. We firstly developed a process for pulling adiabatic tapers in 6/125 μm ZBLAN fibre. The tapers were measured actively during manufacture using a 2000 nm source. The process was automated so that the heater temperature and motor speed automatically adjusted to pull the taper at constant tension. This process was then further developed so that we could fuse and draw two parallel 6/125 μm ZBLAN fibres, forming a single-mode coupler. Low ratio couplers (1-10%) that could be used as power monitors were manufactured that had an excess loss of 0.76 dB. We have also manufactured 50/50 splitters and wavelength division multiplexers (WDMs). However, the excess loss of these devices was typically 2 - 3 dB. The increased losses were due to localised necking and surface defects forming as the tapers were pulled further to achieve a greater coupling ratio. Initial experiments with chalcogenide fibre have shown that our process can be readily adapted for chalcogenide fibres. A 5% coupler with 1.5 dB insertion loss was manufactured using commercial of the shelf (COTS) fibres.
Ultra-low-loss tapered optical fibers with minimal lengths
NASA Astrophysics Data System (ADS)
Nagai, Ryutaro; Aoki, Takao
2014-11-01
We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.
NASA Astrophysics Data System (ADS)
Jin, Wa; Liu, Xuejing; Jin, Wei
2017-10-01
We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered elliptical microfibers (MFs) inside glass tubes. The encapsulation does not change the optical property of the MF but protects the elliptical MF from external disturbance and contamination and makes the micro-laboratory robust. Such micro-laboratory can be easily integrated into standard fiber-optic circuits with low loss, making the elliptical MF-based devices more practical for real-world applications. Evanescent field sensing is realized by fabricating micro-channel on the PMC for ingress/egress of sample liquids/gas. Based on the encapsulated elliptical MF PMCs, we demonstrated RI sensitivity of 2024 nm per refractive index unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.
Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard
2014-11-17
We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels.
Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio
2015-10-01
Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.
Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier.
Bobkov, Konstantin; Andrianov, Alexey; Koptev, Maxim; Muravyev, Sergey; Levchenko, Andrei; Velmiskin, Vladimir; Aleshkina, Svetlana; Semjonov, Sergey; Lipatov, Denis; Guryanov, Alexey; Kim, Arkady; Likhachev, Mikhail
2017-10-30
We demonstrate a novel amplification regime in a counter-pumped, relatively long (2 meters), large mode area, highly Yb-doped and polarization-maintaining tapered fiber, which offers a high peak power directly from the amplifier. The main feature of this regime is that the amplifying signal propagates through a thin part of the tapered fiber without amplification and experiences an extremely high gain in the thick part of the tapered fiber, where most of the pump power is absorbed. In this regime, we have demonstrated 8 ps pulse amplification to a peak power of up to 0.76 MW, which is limited by appearance of stimulated Raman scattering. In the same regime, 28 ps chirped pulses are amplified to a peak power of 0.35 MW directly from the amplifier and then compressed with 70% efficiency to 315 ± 10 fs, corresponding to an estimated peak power of 22 MW.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Faruki, M. J.; Jasim, A. A.; Ooi, S. I.; Thambiratnam, K.
2018-02-01
A passively Q-switched fiber laser using a Saturable Absorber (SA) fabricated from a new Poly (N-vinyl Carbazole) - Polypyrrole/Graphene Oxide (PNVC-PPy/GO) nanocomposite material deposited on a tapered fiber is proposed and demonstrated. The PNVC-PPy/GO composition is deposited along a 3 mm length of the 6.5 cm tapered fiber which has a tapered waist of 8 μm. Q-switched pulses are obtained with repetition rates of 25.15-42.7 kHz and pulse widths of 5.74-2.48 μs over a pump power range of 12.8-40.0 mW. A maximum average power of 0.19 mW and pulse energy of 4.43 nJ are also observed. The proposed Q-switched maintains advantages of a simple design and low fabrication cost while at the same time generating high quality Q-switched pulses.
Polymer optical fiber tapering using hot water
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro
2017-06-01
We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.
Twist-induced tuning in tapered fiber couplers.
Birks, T A
1989-10-01
The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.
Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion
NASA Astrophysics Data System (ADS)
Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.
2018-01-01
We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.
Very low-loss passive fiber-to-chip coupling with tapered fibers.
Paatzsch, T; Smaglinski, I; Abraham, M; Bauer, H D; Hempelmann, U; Neumann, G; Mrozynski, G; Kerndlmaier, W
1997-07-20
A novel passive fiber-to-chip coupling based on the use of fiber tapers embedded in a guiding structure is proposed. By beam-propagation calculations it is verified that this new coupling method exhibits a very low insertion loss. Major advantages of the proposed method compared with butt coupling are demonstrated by simulation results: first, tolerance requirements for the fibers, e.g., diameter variations and core eccentricity, and for fabrication of the alignment structure are reduced by at least 1 order of magnitude. Second, coupling to waveguides of nearly arbitrary dimensions and refractive indices seems to be possible. Experimental results on thermal drawing of fiber tapers are presented and used as input data for the simulations. A concept for fabrication of the new coupling method with the Lithographic Galvanik Abformung (LIGA) technique is presented.
NASA Astrophysics Data System (ADS)
Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.
2015-11-01
Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.
Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers.
Ibrahim, S A; Rahman, N A; Abu Bakar, M H; Girei, S H; Yaacob, M H; Ahmad, H; Mahdi, M A
2015-02-09
We demonstrate an ammonia sensor composed of a tapered multimode fiber coated with polyaniline nanofibers that operates at room temperature (26°C). The optical properties of the polyaniline layer changes when it is exposed to ammonia, leading to a change in the absorption of evanescent field. The fiber sensor was tested by exposing it to ammonia at different concentrations and the absorbance is measured using a spectrophotometer system. Measured response and recovery times are about 2.27 minutes and 9.73 minutes, respectively. The sensor sensitivity can be controlled by adjusting the tapered fiber diameter and the highest sensitivity is achieved when the diameter is reduced to 20 µm.
Design and optimization of broadband tapered optical fibers with a nanofiber waist.
Stiebeiner, Ariane; Garcia-Fernandez, Ruth; Rauschenbeutel, Arno
2010-10-25
The control over the transmission properties of tapered optical fibers (TOFs) is an important requirement for a whole range of applications. Using a carefully designed flame pulling process that allows us to realize preset fiber radius profiles, we fabricate TOFs with a nanofiber waist. We study the spectral transmission properties of these TOFs as a function of the taper profile and the waist length and show how the transmission band of the TOF can be tuned via different fiber profile parameters. Based on these results, we have designed a nanofiber-waist TOF with broadband transmission for surface spectroscopy of organic molecules. Moreover, our method allows us to analyze the loss mechanisms of optical nanofibers.
High finesse microfiber knot resonators made from double-ended tapered fibers.
Xiao, Limin; Birks, T A
2011-04-01
We fabricated optical microfiber knot resonators from thin tapered fibers (diameter down to 1 μm) linked to untapered fiber at both ends. We demonstrated a finesse of about 100, over twice as high as previously reported for microfiber resonators. Low-loss encapsulation of microfiber knot resonators in hydrophobic silica aerogel was also investigated.
Sun, Dandan; Wang, Guanjun
2017-01-01
A compact and label-free optical fiber sensor based on a taper interferometer cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for detection of a breast cancer biomarker (HER2). The tapered fiber-optic interferometer is extremely sensitive to the ambient refractive index (RI). In addition, being insensitive to the RI variation, the FBG can be applied as a temperature thermometer due to its independent response to the temperature. Surface functionalization to the sensor is carried out to achieve specific targeting of the unlabeled biomarkers. The result shows that the proposed sensor presents a low limit-of-detection (LOD) of 2 ng/mL, enabling its potentials of application in early diagnosis on the breast cancer. PMID:29113127
Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd
2015-05-04
Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.
Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd
2015-01-01
Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634
Theoretical study of mode evolution in active long tapered multimode fiber.
Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng
2016-08-22
A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.
NASA Astrophysics Data System (ADS)
Yi, Ji-Haeng
2015-11-01
The optical transmission loss in a tapered fiber fabricated by using plasmonic Au nanoparticle deposition was investigated in the tapered region of the fiber. The amount of Au nanoparticle deposition was determined as a function of time, and the transmission loss was then compared with the losses of several spatial modes. The higher-order mode was found to affect the rate of increase in the transmission loss during the initial period of deposition, and a lower-order mode was found to contribute to the process during the latter period of deposition.
Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.
Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel
2010-04-01
A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.
Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners
NASA Astrophysics Data System (ADS)
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan
2015-03-01
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
Ultralow-threshold microcavity Raman laser on a microelectronic chip
NASA Astrophysics Data System (ADS)
Kippenberg, T. J.; Spillane, S. M.; Armani, D. K.; Vahala, K. J.
2004-06-01
Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 µm^3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 µW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.
Ultralow-threshold microcavity Raman laser on a microelectronic chip.
Kippenberg, T J; Spillane, S M; Armani, D K; Vahala, K J
2004-06-01
Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 (microm)3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 microW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.
Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Li, Tao; Hu, Limin; Qian, Wenwen; Zhang, Quanyao; Jin, Shangzhong
2012-11-01
A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m-1 and 8.35 dB/m-1 are achieved in the measurement ranges of 0.36-0.87 m-1 and 0.87-1.34 m-1, respectively, with the resolution of 0.0012 m-1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.
Fang, Zhiwei; Lin, Jintian; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya
2015-10-19
We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high-Q-factor of 2.12 × 10(6) in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.
Pump and Signal Taper for Airclad Fibers
2006-01-05
as follows: Crystal Fibre A/S will develop a taper/coupler solution to interface between a new polarization maintaining/polarizing amplifier fiber ...MM) pump combiner with a high NA air-clad output. The input side of the combiner is 7 individual MM pump delivery solid all- glass fibers . The NA of...pump combiner. MOTIVATION FINAL REPORT ITEM 0002 In a typical standard fused fiber coupler a number of all- glass 0.22 NA pump
Single muscle fiber adaptations with marathon training.
Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David
2006-09-01
The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P < 0.05) with the training program. Muscle fiber size declined (P < 0.05) by approximately 20% in both fiber types after training. P(o) was maintained in both fiber types with training and increased (P < 0.05) by 18% in the MHC IIa fibers after taper. This resulted in >60% increase (P < 0.05) in force per cross-sectional area in both fiber types. Fiber V(o) increased (P < 0.05) by 28% in MHC I fibers with training and was unchanged in MHC IIa fibers. Peak power increased (P < 0.05) in MHC I and IIa fibers after training with a further increase (P < 0.05) in MHC IIa fiber power after taper. These data show that marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.
Optical pulse compression in dispersion decreasing photonic crystal fiber.
Travers, J C; Stone, J M; Rulkov, A B; Cumberland, B A; George, A K; Popov, S V; Knight, J C; Taylor, J R
2007-10-01
Improvements to tapered photonic crystal fiber (PCF) fabrication have allowed us to make up to 50 m long PCF tapers with loss as low as 30 dB/km. We discuss the design constraints for tapered PCFs used for adiabatic soliton compression and demonstrate over 15 times compression of pulses from over 830 fs to 55 fs duration at a wavelength of 1.06 lm, an order of magnitude improvement over previous results.
Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng
2013-01-01
We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5. PMID:24141267
Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng
2013-10-17
We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10⁻⁵.
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
Tapered optical fiber sensor for label-free detection of biomolecules.
Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei
2011-01-01
This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber's first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair.
Nanoantenna couplers for metal-insulator-metal waveguide interconnects
NASA Astrophysics Data System (ADS)
Onbasli, M. Cengiz; Okyay, Ali K.
2010-08-01
State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.
NASA Astrophysics Data System (ADS)
Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya
2018-03-01
This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.
Tapered-fiber-based refractive index sensor at an air/solution interface.
Lu, Ping; Harris, Jeremie; Wang, Xiaozhen; Lin, Ganbin; Chen, Liang; Bao, Xiaoyi
2012-10-20
An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach-Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber.
Low-loss deposition of solgel-derived silica films on tapered fibers.
Kakarantzas, G; Leon-Saval, S G; Birks, T A; Russell, P St J
2004-04-01
Films of porous silica are deposited on the uniform waists of tapered fibers in minutes by a modified solgel dip coating method, inducing less than 0.2 dB of loss. The coated tapers are an ideal platform for realizing all-fiber devices that exploit evanescent-field interactions with the deposited porous film. As an example we demonstrate structural long-period gratings in which a periodic index variation in the film arises from the porosity variation produced by spatially varying exposure of the waist to a scanned CO2 laser beam. The long period grating is insensitive to temperature up to 800 degrees C.
Optimized optical devices for edge-coupling-enabled silicon photonics platform
NASA Astrophysics Data System (ADS)
Png, Ching Eng; Ang, Thomas Y. L.; Ong, Jun Rong; Lim, Soon Thor; Sahin, Ezgi; Chen, G. F. R.; Tan, D. T. H.; Guo, Tina X.; Wang, Hong
2018-02-01
We present a library of high-performance passive and active silicon photonic devices at the C-band that is specifically designed and optimized for edge-coupling-enabled silicon photonics platform. These devices meet the broadband (100 nm), low-loss (< 2dB per device), high speed (>= 25 Gb/s), and polarization diversity requirements (TE and TM polarization extinction ratio <= 25 dB) for optical communication applications. Ultra-low loss edge couplers, broadband directional couplers, high-extinction ratio polarization beam splitters (PBSs), and high-speed modulators are some of the devices within our library. In particular, we have designed and fabricated inverse taper fiber-to-waveguide edge couplers of tip widths ranging from 120 nm to 200 nm, and we obtained a low coupling loss of 1.80+/-0.28 dB for 160 nm tip width. To achieve polarization diversity operation for inverse tapers, we have experimentally realized different designs of polarization beam splitters (PBS). Our optimized PBS has a measured extinction ratio of <= 25 dB for both the quasiTE modes, and quasi-TM modes. Additionally, a broadband (100 nm) directional coupler with a 50/50 power splitting ratio was experimentally realized on a small footprint of 20×3 μm2 . Last but not least, high-speed silicon modulators with a range of carrier doping concentrations and offset of the PN junction can be used to optimise the modulation efficiency, and insertion losses for operation at 25 GHz.
NASA Astrophysics Data System (ADS)
He, Ying; Ma, Yufei; Tong, Yao; Yu, Xin; Peng, Zhenfang; Gao, Jing; Tittel, Frank K.
2017-12-01
A long distance, distributed gas sensing using the micro-nano fiber evanescent wave (FEW) quartz enhanced photoacoustic spectroscopy technique was demonstrated. Such a sensor scheme has the advantages of higher detection sensitivity, distributed gas sensing ability, lower cost, and a simpler fabrication procedure compared to conventional FEW gas sensors using a photonic crystal fiber or a tapered fiber with chemical sputtering. A 3 km single mode fiber with multiple tapers and an erbium doped fiber amplifier with an output optical power of 700 mW were employed to perform long distance, distributed gas measurements.
High spectral purity silicon ring resonator photon-pair source
NASA Astrophysics Data System (ADS)
Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.
2015-05-01
Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.
Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.
Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2013-02-11
In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.
Zheng, Shouguo; Zeng, Xinhua; Luo, Wei; Jradi, Safi; Plain, Jérôme; Li, Miao; Renaud-Goud, Philippe; Deturche, Régis; Wang, Zengfu; Kou, Jieting; Bachelot, Renaud; Royer, Pascal
2013-01-14
In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.
Markowski, Konrad; Jędrzejewski, Kazimierz; Marzęcki, Michał; Osuch, Tomasz
2017-04-01
A novel concept of a Fabry-Perot (F-P) cavity composed of two linearly chirped fiber Bragg gratings written in a thermally fused fiber taper is presented. Both chirped gratings are written in counter-directional chirp configuration, where chirps resulting from the optical fiber taper profile and linearly increasing grating periods cancel each other out, forming a high-quality F-P resonator. A new strain-sensing mechanism is proposed in the presented structure, which is based on strain-induced detuning of the F-P resonator. Due to the different strain and temperature responses of the cavity, the resonator can be used for the simultaneous measurement of these physical quantities, or it can be used as a temperature-independent strain sensor.
Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper
NASA Astrophysics Data System (ADS)
Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li
2018-06-01
A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
NASA Astrophysics Data System (ADS)
Das, Bishuddhananda; Middya, Tapas Ranjan; Gangopadhyay, Sankar
2017-12-01
We report the theoretical investigation of the coupling optics involving laser diode to single-mode circular core parabolic index fiber via upside down tapered hemispherical microlens on the tip of the fiber in the presence of possible transverse and angular mismatches. Using the relevant ABCD matrix for such tapered hemispherical microlens, we formulate analytical expressions for the coupling efficiencies in the presence of the said two mismatches. Further, the transmitted spot size of the source via the hemispherical lens and the tapered region should match with the spot size of the fiber for obtaining maximum coupling. The investigations have been made for two practical wavelengths, namely 1.3 and 1.5 μm in order to find the tolerance of this coupling device with respect to the said kinds of mismatches at the concerned wavelengths. Although our simple method predicts the concerned coupling optics excellently, the evaluation of the concerned efficiencies and associated losses involve little computations. Thus this user-friendly technique and also the results found thereof will benefit the designers and packagers who are working in the field of optical technology.
Kuszak, J R; Mazurkiewicz, M; Jison, L; Madurski, A; Ngando, A; Zoltoski, R K
2006-01-01
The results of a recent study on accommodation in humans and baboons has revealed that lens fiber structure and organization are key components of the mechanism of accommodation. Dynamic focusing involves the controlled displacement and replacement, or realignment, of cortical fiber-ends at sutures as the mechanism of accommodation at the fiber level. This emended explanation of the mechanism of accommodation raises the following question: as the structure of crystalline lenses are only similar, not identical between species, is accommodative amplitude related to differences in the structure and organization of fibers between species? To address this question, we have quantitatively examined the structure and organization of fibers in a number of the more commonly used animal models (mice, cattle, frogs, rabbits and chickens) for lens research. Lenses (a minimum of 12-18 lenses/species) from mice, cattle, frogs and rabbits were used for this study. Prior to fixation for structural analysis, measurements of the gross shape of the lenses (equatorial diameter, anterior and posterior minor radii [anterior + posterior minor radius = polar axis]) were taken directly through a stereo surgical dissecting microscope equipped with an ocular reticle. Lenses were then prepared for and examined by light (LM), transmission (TEM) and scanning electron microscopy (SEM). Scale computer-assisted drawings (CADs) of lenses and lens fibers were then constructed from quantitative data as described above and from quantitative data contained in micrographs. The differences in fiber structure and organization that effect accommodative range arise early in development and are continued throughout lifelong lens growth. In umbilical suture lenses (avian) secondary fibers develop with almost completely tapered anterior ends (85-90% reduction of their measures of width and thickness at the equator). By comparison, in lenses with line sutures (e.g. frogs and rabbits) secondary fibers develop with just a 50-60% reduction in anterior fiber taper. In lenses with Y sutures (mice and cattle), fiber width taper is only 25-40%. However, in all cases, while the taper of the posterior end width of fibers is just slightly less (approx. 15-20%) than that of anterior ends, posterior end thickness is only reduced by one half that of anterior thickness. In humans, the mechanism of accommodation at the fiber level involves the controlled realignment of very flattened and flared, rather than tapered fiber-ends at sutures. In this manner, the simultaneous increase in lens thickness and surface curvature in the accommodated state is the result of fiber-ends being overlapped along multiple (9-12) suture branches covering the majority of the anterior and posterior surfaces. The results of this animal study strongly suggest that accommodative range is directly related to quantitative differences in fiber structure and organization in the different suture types. The very broad accommodative range in birds is made possible, at least in part, by the almost complete tapering of fiber-ends at umbilical sutures. In contrast, the essentially negligible accommodative range of animals that have line- and Y-suture lenses is at least partially the result of the fact that these lenses have fibers with very little end taper. Thus, the blunt ends of fibers in line- and Y-suture lenses precludes any significant overlap of end segments to effect accommodation.
Theoretical analysis of fused tapered side-pumping combiner for all-fiber lasers and amplifiers
NASA Astrophysics Data System (ADS)
Lei, Chengmin; Chen, Zilun; Leng, Jinyong; Gu, Yanran; Hou, Jing
2017-05-01
We report detailed theoretical analysis on the influence of the fused depth, launch mode and taper ratio on the performance of side-pumping combiner. The theoretical analysis indicates that the coupling efficiency and loss mechanism of the combiner is closely related to the fused depth, tapering ratio and the launch mode. Experimentally, we fabricate combiners consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (20/400 μm, NA=0.46). The combined pump coupling efficiency of two pump port is 97.2% with the maximum power handling of 1.8 kW and the insertion signal loss is less than 3%.
Mode-field adapter for tapered-fiber-bundle signal and pump combiners.
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael
2015-02-01
We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.
Fiber optic engine for micro projection display.
Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan
2010-03-01
A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.
Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2018-06-01
Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.
Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2017-08-01
Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.
Two-mode elliptical-core weighted fiber sensors for vibration analysis
NASA Technical Reports Server (NTRS)
Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.
1992-01-01
Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.
NASA Astrophysics Data System (ADS)
Pakarzadeh, H.; Rezaei, S. M.
2016-01-01
In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.
Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching
2005-01-01
In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.
Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo
2012-01-15
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.
Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.
Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír
2016-03-07
Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.
A nanodiamond-tapered fiber system with high single-mode coupling efficiency.
Schröder, Tim; Fujiwara, Masazumi; Noda, Tetsuya; Zhao, Hong-Quan; Benson, Oliver; Takeuchi, Shigeki
2012-05-07
We present a fiber-coupled diamond-based single photon system. Single nanodiamonds containing nitrogen vacancy defect centers are deposited on a tapered fiber of 273 nanometer in diameter providing a record-high number of 689,000 single photons per second from a defect center in a single-mode fiber. The system can be cooled to cryogenic temperatures and coupled evanescently to other nanophotonic structures, such as microresonators. The system is suitable for integrated quantum transmission experiments, two-photon interference, quantum-random-number generation and nano-magnetometry.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
Autonomous Cryogenic Leak Detector for Improving Launch Site Operations
NASA Technical Reports Server (NTRS)
Goswami, Kisholoy
2013-01-01
NASA, military, and commercial satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. This project has developed a tapered optical fiber sensor for detecting hydrogen. The invention involves incorporating chemical indicators on the tapered end of an optical fiber using organically modified silicate nanomaterials. The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and qualify various mission-critical chemicals. Historically, hydrogen, helium, nitrogen, oxygen, and argon are the first five gases of HGDL focus. The use of these cryogenic fluids in the area of propulsion offers challenges. Due to their extreme low temperatures, these fluids induce contraction of the materials they contact, a potential cause of leakage. Among them, hydrogen is of particular concern. Small sensors are needed in multiple locations without adding to the structural weight. The most vulnerable parts of the engine are the connection flanges on the transfer lines, which have to support cycles of large thermal amplitude. The thermal protection of the engine provides a closed area, increasing the likelihood of an explosive atmosphere. Thus, even a small leak represents an unacceptable hazardous condition during loading operations, in flight, or after an aborted launch. Tapered fibers were first fabricated from 1/1.3-mm core/cladding (silica/ plastic) optical fibers. Typically a 1-ft (approx. 30- cm) section of the 1-mm fiber is cut from the bundle and marked with a pen into five 2-.-in. (.5.7-cm) sections. A propane torch is applied at every alternate mark to burn the jacket and soften the glass core. While the core is softening, the two ends of the fiber are pulled apart slowly to create fine tapers of .- to .-in. (.6- to 12-mm) long on the 1-mm optical fiber. Following this, the non-tapered ends of the fibers are polished to a 0.3-micron finish. Then these fibers were coated with indicators sensitive to hydrogen. The tapered hydrogen detection system with its unique flexibility is the only system that can be placed in many locations inside the vehicles and detect the exact location of leaks, saving millions of dollars for launch vehicle industries.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
Portable fiber-optic taper coupled optical microscopy platform
NASA Astrophysics Data System (ADS)
Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping
2017-04-01
The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Qifeng; Li, Yunpu; Yang, Jiandong; Fu, Xinghu; Bi, Weihong; Li, Yanjun
2016-10-01
A tension sensor of Photonic Crystal Fiber(PCF) is presented based on core-offset splicing and waist-enlarged fiber taper. The tension response characteristics of the sensor are studied experimentally. To analyzing the modal interference, many samples with different PCF lengths between the two splicing areas, different core-offset distances and different waist-enlarged fiber taper diameters are fabricated and tested. When the tension range is 0 to 4000μɛ, the results show that the spectrum is blue shift with the increasing of the axial tension. The sensitivity is-2.1 pm/μɛ. The experimental results show that the tension sensitivity can be not influenced by the PCF lengths, the core-offset distances.The waist-enlarged fiber taper diameters and the tension sensor is very sensitive to axial tension and the relationship between the wavelength shift and tension is linearity. To determine the number of the interfering modes, the transmission spectra of these sensor is transformed by the fast fourier transform (FFT) method. There are several peaks in the spatial frequency spectra at these sensors. Only one cladding mode is dominantly excited, while the other cladding modes are weak. The spatial frequency is proportional to the differential mode group index. Compared with the traditional fiber sensor, this sensor has some advantages including the easily fabricated, simple structure and high sensitivity. It can be used in industrial production, building monitoring, aerospace and other fields.
NASA Astrophysics Data System (ADS)
Razak, N. A.; Hamida, B. A.; Irawati, N.; Habaebi, M. H.
2017-06-01
Adiabaticity is one of the essential criteria in producing good fabricated tapered fibers. Good tapered fibers can be use in sensor application such as humidity sensor, temperature sensor and refractive index sensor. In this paper, good tapering silica fiber is produced by using flame brushing technique and then, the microfiber is coated with polymer Polyaniline (PAni) to sense different type of alcohols with different concentrations. The outcome of this experiment gives excellent repeatability in the detection of alcohol sensing with a sensitivity of 0.1332 μW/% and a resolution of 3.764%. In conclusion, conducting polymer coated optical microfiber sensor for alcohol detection with low cost, effective and simple set-up was successfully achieved in this study.
Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator.
Zhang, Kun; Wang, Yue; Wu, Yi-Hui
2017-08-01
We achieved enhanced Fano resonance by coupling a bottle resonator with a special non-adiabatic tapered fiber, where there is a high intensity distribution ratio between high-order and fundamental modes in the tapered region, as well as single mode propagation in the waist region. The resonance line shape is theoretically proved to be related to the intensity distribution ratio of the two fiber modes and their phase shift. An enhanced Fano line shape with an extinction ratio over 15 dB is experimentally reached by improving the intensity distribution ratio and tuning the phase shift. The results can remarkably improve the sensitivity of whispering-gallery mode microresonators in the field of optical sensing.
Waveguide-loaded silica fibers for coupling to high-index micro-resonators
NASA Astrophysics Data System (ADS)
Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.
2016-01-01
Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.
Optical fiber refractometer based on tapered tilted-fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wang, Tao; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Yu, Zhe; Xue, Meng
2016-11-01
Tilted fiber Bragg gratings (TFBGs) have been demonstrated to be accurate refractometers as they couple light from the fiber core to the cladding. In our experiment, we changed the physical structure of the TFBGs to improve the refractive index sensing ability. One way is to stretch the grating section 5 mm longer. The result showed that not only the number of the cladding mode of the TFBG decreases but also the full width half-maximum (FWHM) of the cladding modes and core mode changes. The FWHM of the cladding mode of the tapered TFBG is more than twice than that of the original. However, the refractive index sensitivity of the tapered TFBG has no obvious improvement. Another way is to etch the grating section with 20% hydrofluoric acid solution. We find that the smaller the clad diameter, the higher the refractive index sensitivity of the TFBG.
Radiation Losses Due to Tapering of a Double-Core Optical Waveguide
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)
2001-01-01
The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.
Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen
2015-08-12
Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.
2010-09-01
l ri Laser Splicing / Welding r li i / l i Contact Bonding t t i Wafer Level Bonding Mineralic, Fusion . Anodic, Eutectic, Glass-frit, liquid...28-29 September 2010 SET-171 Mid-IR Fiber Laser Workshop partly sponsored by Tapering and splicing device as well as process control developed...Components Laser based splicing and tapering Multimode fiber (ø720µm) with spliced end cap (ø1500µm) © Fraunhofer IOF 28-29 September 2010 SET-171 Mid-IR
Wang, Yan; Li, Hanyang; Zhao, Liyuan; Liu, Yongjun; Liu, Shuangqiang; Yang, Jun
2017-01-23
We demonstrate efficient coupling to the optical whispering gallery modes (WGMs) of nematic liquid crystal (NLC) microdroplets immersed in an immiscible aqueous environment. An individual NLC microdroplet, confined at the tip of a microcapillary, was coupled via a tapered optical fiber waveguide positioned correctly within its vicinity. Critical coupling of the taper-microdroplet system was facilitated by adjusting the gap between the taper and the microdroplet to change the overlap of the evanescent electromagnetic fields; efficient and controlled power transfer from the taper waveguide to the NLC microdroplet is indeed possible via the proposed technique. We also found that NLC microdroplets can function as highly sensitive thermal sensors: A maximum temperature sensitivity of 267.6 pm/°C and resolution of 7.5 × 10-2 °C were achieved in a 78-μm-diameter NLC microdroplet.
Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules
Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei
2011-01-01
This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair. PMID:22163821
Optically driven self-oscillations of a silica nanospike at low gas pressures
NASA Astrophysics Data System (ADS)
Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.
2016-09-01
We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.
NASA Astrophysics Data System (ADS)
Atsumi, Yuki; Yoshida, Tomoya; Omoda, Emiko; Sakakibara, Youichi
2017-09-01
A surface optical coupler based on a vertically curved Si waveguide was designed for coupling with high-numerical aperture single-mode optical fibers with a mode-field diameter of 5 µm. This coupler has a quite small device size, with a height of approximately 12 µm, achieved by introducing an effective spot-size converter configured with the combination of an extremely short Si exponential-inverse taper and a dome-structured SiO2 lens formed on the coupler top. The designed coupler shows high-efficiency optical coupling, with a loss of 0.8 dB for TE polarized light, as well as broad-band coupling with a 0.5-dB-loss band of 420 nm.
Efficient spot size converter for higher-order mode fiber-chip coupling.
Lai, Yaxiao; Yu, Yu; Fu, Songnian; Xu, Jing; Shum, Perry Ping; Zhang, Xinliang
2017-09-15
We propose and demonstrate a silicon-based spot size converter (SSC), composed of two identical tapered channel waveguides and a Y-junction. The SSC is designed for first-order mode fiber-to-chip coupling on the basis of mode petal separation and the recombination method. Compared with a traditional on-chip SSC, this method is superior with reduced coupling loss when dealing with a higher-order mode. To the best of our knowledge, we present the first experimental observations of a higher-order SSC which is fully compatible with a standard fabrication process. Average coupling losses of 3 and 5.5 dB are predicted by simulation and demonstrated experimentally. A fully covered 3 dB bandwidth over a 1515-1585 nm wavelength range is experimentally observed.
Manipulation of spontaneous emission in a tapered photonic crystal fibre
NASA Astrophysics Data System (ADS)
Myers, S. J.; Fussell, D. P.; Dawes, J. M.; Mägi, E.; McPhedran, R. C.; Eggleton, B. J.; de Sterke, C. Martijn
2006-12-01
We characterize the spontaneous emission of dye that is introduced into the central core of a tapered photonic crystal fiber. Since the photonic crystal period in the fibre cladding varies along the taper, the transmission and spontaneous emission spectra over a wide range of relative frequencies can be observed. The spontaneous emission spectra of the fibre transverse to the fiber axis show suppression due to partial band-gaps of the structure, and also enhancement of spontaneous emission near the band edges. We associate these with van Hove features, as well as finite cluster size effects.
Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah
2016-01-25
We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).
Characterization of the UV detector of Solar Orbiter/Metis
NASA Astrophysics Data System (ADS)
Uslenghi, Michela; Schühle, Udo H.; Teriaca, Luca; Heerlein, Klaus; Werner, Stephan
2017-08-01
Metis, one of the instruments of the ESA mission Solar Orbiter (to be launched in February 2019), is a coronograph able to perform broadband polarization imaging in the visible range (580-640 nm), and narrow band imaging in UV (HI Lyman-α 121.6 nm) . The detector of the UV channel is an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single stage Microchannel Plate intensifier, sealed with an entrance MgF2 window and provided with an opaque KBr photocathode. Before integration in the instrument, the UVDA (UV Detector Assembly) Flight Model has been characterized at the MPS laboratory and calibrated in the UV range using the detector calibration beamline of the Metrology Light Source synchrotron of the Physikalisch-Technische Bundesanstalt (PTB). Linearity, spectral calibration, and response uniformity at 121.6 nm have been measured. Preliminary results are reported in this paper.
Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.
Yu, Huijuan; Huang, Qiangxian; Zhao, Jian
2014-06-25
A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.
Critical Coupling Between Optical Fibers and WGM Resonators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy
2009-01-01
Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.
Ding, Li; Blackwell, Richard I; Künzler, Jay F; Knox, Wayne H
2008-06-10
By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing approximately 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.
Optical fiber sensors measurement system and special fibers improvement
NASA Astrophysics Data System (ADS)
Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav
2017-06-01
We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment of the splicing process has to be prepared for any new optical fibers and new fibers combinations. The splicing of the same types of fibers from different manufacturers can be adjusted by several tested changes in the splicing process. We are able to splice PCF with standard telecommunication fiber with attenuation up to 2 dB. The method is also presented. Development of these new techniques and methods of the optical fibers splicing are made with respect to using these fibers to another research and development in the field of optical fibers sensors, laser frequency stabilization and laser interferometry based on optical fibers. Especially for the field of laser frequency stabilization we developed and present new techniques to closing microstructured fibers with gases inside.
NASA Astrophysics Data System (ADS)
Bao, Weijia; Qiao, Xueguang; Yin, Xunli; Rong, Qiangzhou; Wang, Ruohui; Yang, Hangzhou
2017-12-01
We demonstrate a compact fiber-optic quasi-Michelson interferometer (QMI) for micro-displacement measurement. The sensor comprises a micro-structure of a reflection taper tip containing a refractive index modification (RIM) as a coupling window over the interface between core and cladding of the fiber. Femtosecond laser-based direct inscription technique is used to achieve this window inscription and to induce large refractive index change. The RIM acts as a window for the strong coupling and recoupling of core-to-cladding modes. As the core and cladding modes are reflected at the taper tip and coupled back to lead-in fiber, a well-defined interference spectrum is achieved. The spectral intensity exhibits a high micro-bending sensitivity of 4 . 94 dB / μm because of the sensitivity to bending of recoupled intensity of cladding modes. In contrast, the spectral wavelength is insensitive to bending but linearly responds to temperature. The simultaneous measurements, including power-referenced for displacement and wavelength-referenced for temperature, were achieved by selective interference dip monitoring.
Effect of waist diameter and twist on tapered asymmetrical dual-core fiber MZI filter.
Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong
2015-10-01
A compact in-fiber Mach-Zehnder interferometer (MZI) filter fabricated from custom-designed asymmetrical dual-core fiber is numerically analyzed in detail and experimentally verified. The asymmetrical dual-core fiber has core diameters and a core pitch of 6.9, 6, and 19.9 μm, respectively. The fiber tapering technique is introduced to fuse the originally uncoupled cores into strong coupling tapered regions. The length and diameter of the waist region have a close impact on the splitting ratio, which further affects the spectral properties of the MZI filter. The field evolution with varied waist parameters is characterized by the finite element method and beam propagation method. Repeatable comb filters with ∼15 dB extinction ratio are successfully achieved under the guidance of simulated optimum conditions. The twist-induced circular birefringence gives rise to a retardance that causes the spectral shifts of the MZI filter. The theoretical and experimental results confirm that the relative wavelength shift is proportional to the retardance, which follows a sinc function in the limit of a large twist rate.
Performance improvement of optical fiber coupler with electric heating versus gas heating.
Shuai, Cijun; Gao, Chengde; Nie, Yi; Peng, Shuping
2010-08-20
Gas heating has been widely used in the process of fused biconical tapering. However, as the instability and asymmetric flame temperature of gas heating exist, the performance of the optical devices fabricated by this method was affected. To overcome the problems resulting from gas combustion, an electric heater is designed and manufactured using a metal-ceramic (MoSi(2)) as a heating material. Our experimental data show that the fused-taper machine with an electric heater has improved the performance of optical devices by increasing the consistency of the extinction ratio, excess loss, and the splitting ratio over that of the previous gas heating mode. Microcrystallizations and microcracks were observed at the fused region of the polarization-maintaining (PM) fiber coupler and at the taper region with scanning electron microscopy and atomic force microscopy respectively. The distribution of the microcrystallizations and microcracks are nonuniform along the fiber with gas heating, while their distribution is rather uniform with electric heating. These findings show that the novel optical fiber coupler with an electric heater has improved the performance of optical fiber devices by affecting the consistency of the optical parameters and micromorphology of the surface of PM fiber.
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER
2017-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859
Massive photothermal trapping and migration of particles by a tapered optical fiber.
Xin, Hongbao; Li, Xingmin; Li, Baojun
2011-08-29
A simple but highly efficient method for particles or bacteria trapping and removal from water is of great importance for local water purification, particularly, for sanitation. Here, we report a massive photothermal trapping and migration of dielectric particles (SiO2, 2.08-µm diameter) in water by using a tapered optical fiber (3.1-µm diameter for taper). With a laser beam of 1.55 µm (170 mW) injected into the fiber, particles moved towards the position, which is about 380 µm away from the tip of the fiber, and assembled at a 290 µm × 100 µm spindle-shaped region. The highest assembly speed of particles is 22.1 ind./s and the highest moving velocity is 20.5 µm/s, which were induced by both negative photophoresis and temperature gradient. The number of assembled particles can reach 10,150 in 15 minutes. With a move of the fiber, the assembled particles will also migrate. We found that, when the fiber was moved 172 µm away from its original location, almost all of the assembled 10,150 particles were migrated to a new location in 140 s with a distance of 172 µm from their original location.
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
NASA Astrophysics Data System (ADS)
Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin
2017-07-01
In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.
Effect of external index of refraction on multimode fiber couplers.
Wang, G Z; Murphy, K A; Claus, R O
1995-12-20
The dependence of the performance of fused-taper multimode fiber couplers on the refractive index of the material surrounding the taper region has been investigated both theoretically and experimentally. It has been identified that for a 2 × 2 multimode fiber coupler there is a range of output-power-coupling ratios for which the effect of the external refractive index is negligible. When the coupler is tapered beyond this region, the performance becomes dependent on the external index of refraction and lossy. To analyze the multimode coupler-loss mechanism, we develop a two-dimensional ray-optics model that incorporates trapped cladding-mode loss and core-mode loss through frustrated total internal reflection.
Computer-simulation results support the experimental observations. Related issues such as coupler fabrication and packaging are also discussed.
Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud
2005-06-01
We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).
Taking a look at the calibration of a CCD detector with a fiber-optic taper
Alkire, R. W.; Rotella, F. J.; Duke, N. E. C.; Otwinowski, Zbyszek; Borek, Dominika
2016-01-01
At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry. PMID:27047303
A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du
2010-01-18
A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.
Effects of 780 nm Optical Illumination on Loss in Superconducting Microwave Resonator
NASA Astrophysics Data System (ADS)
Budoyo, R. P.; Hertzberg, J. B.; Ballard, C. J.; Voigt, K. D.; Hoffman, J. E.; Grover, J. A.; Solano, P.; Lee, J.; Rolston, S. L.; Orozco, L. A.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.
2015-03-01
Understanding the effects of light incident on a superconducting circuit is an important step toward building a hybrid quantum system where a superconducting qubit or resonator is coupled to atoms trapped on a tapered optical fiber. We fabricated a microscale thin-film Al superconducting LC resonator (frequency 6.72 GHz) on sapphire substrate and mounted it inside an Al 3d cavity (TE101 mode frequency 7.50 GHz). Using an optical fiber, we illuminated the resonator with 780 nm light, and measured the change in internal quality factor and resonant frequency of the resonator as a function of applied optical power. The results suggest that the illumination causes an increase in rf drive-dependent dissipation. While optical illumination is expected to enhance dissipation due to quasiparticles, rf drive dependence is more typically seen in two-level-system dissipation. We compare the results with the change in loss from increased resonator temperature, and discuss various mechanisms of loss from optical illumination. Work supported by NSF through the Physics Frontier Center at the Joint Quantum Institute (JQI), and by the Center of Nanophysics and Advanced Materials (CNAM).
NASA Astrophysics Data System (ADS)
Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.
2011-01-01
We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.
Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.
Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz
2016-06-10
In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design.
STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials
2016-11-02
STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of
NASA Astrophysics Data System (ADS)
Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther
2018-02-01
1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.
Tolstikhin, Valery; Saeidi, Shayan; Dolgaleva, Ksenia
2018-05-01
We report on the design optimization and tolerance analysis of a multistep lateral-taper spot-size converter based on indium phosphide (InP), performed using the Monte Carlo method. Being a natural fit to (and a key building block of) the regrowth-free taper-assisted vertical integration platform, such a spot-size converter enables efficient and displacement-tolerant fiber coupling to InP-based photonic integrated circuits at a wavelength of 1.31 μm. An exemplary four-step lateral-taper design featuring 0.35 dB coupling loss at optimal alignment of a standard single-mode fiber; ≥7 μm 1 dB displacement tolerance in any direction in a facet plane; and great stability against manufacturing variances is demonstrated.
Thin-Ribbon Tapered Couplers For Dielectric Waveguides
NASA Technical Reports Server (NTRS)
Otoshi, Tom Y.; Shimabukuro, Fred I.; Yeh, Cavour
1996-01-01
Thin-ribbon tapered couplers proposed for launching electro-magnetic waves into dielectric waveguides, which include optical fibers. Intended for use with ribbon dielectric waveguides designed for operation at millimeter or submillimeter wavelengths, made of high-relative-permittivity, low-loss materials and thicknesses comparable to or less than free-space design wavelengths. Coupling efficiencies exceeds those of older tapered couplers.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Yu, Da-Peng
2009-08-01
Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.
Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited
NASA Astrophysics Data System (ADS)
Li, Lu; Yan, Pei-Guang; Wang, Yong-Gang; Duan, Li-Na; Sun, Hang; Si, Jin-Hai
2015-12-01
In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator (Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition (PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-dB spectral width and pulse duration are measured to be 1.245 nm and 317 ps, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61378024) and the Natural Science Fund of Guangdong Province, China (Grant No. S2013010012235).
Zibaii, Mohammad Ismail; Latifi, Hamid; Saeedian, Zahra; Chenari, Zinab
2014-06-05
Silver nanoparticles (SNPs) exhibit antibacterial properties via bacterial inactivation and growth inhibition but the mechanism is not yet completely understood. In this study a label free and rapid detection method for study of antimicrobial activity of the SNP against Escherichia coli (E. coli K-12) is investigated using a nonadiabtic tapered fiber optic (NATOF) biosensor. The results show that SNPs interact with bacteria either by anchoring to or penetrating into the bacterial cell layer. These mechanism changes the refractive index (RI) of the tapered region, which in turn lead to the changes in the optical characteristics of the tapered fiber and output signals. With similar conditions for bacteria, the inhibition rate of the E. coli growth was measured by colony counting method as an experimental control and the results were compared with those obtained from the fiber sensor measurements. For SNP concentrations ranging from 0 to 50 μg ml(-1) the inhibition rates of the E. coli growth were measured to be from 1.27 h(-1) to -0.69 h(-1) and from -3.00×10(-3) h(-1) to -1.98×10(-2) h(-1) for colony counting and optical fiber biosensor, respectively. The results demonstrate the potential of the proposed NATOF biosensor as a label free and rapid sensing platform for understanding the mechanism of antibacterial effects of SNPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Microstructured optical fiber photonic wires with subwavelength core diameter.
Lizé, Yannick; Mägi, Eric; Ta'eed, Vahid; Bolger, Jeremy; Steinvurzel, Paul; Eggleton, Benjamin
2004-07-12
We demonstrate fabrication of robust, low-loss silica photonic wires using tapered microstructured silica optical fiber. The fiber is tapered by a factor of fifty while retaining the internal structure and leaving the air holes completely open. The air holes isolate the core mode from the surrounding environment, making it insensitive to surface contamination and contact leakage, suggesting applications as nanowires for photonic circuits . We describe a transition between two different operation regimes of our photonic wire from the embedded regime, where the mode is isolated from the environment, to the evanescent regime, where more than 70% of the mode intensity can propagate outside of the fiber. Interesting dispersion and nonlinear properties are identified.
Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins
NASA Astrophysics Data System (ADS)
Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.
1994-07-01
An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.
NASA Astrophysics Data System (ADS)
Sammouda, Marwa; Taher, Aymen Belhadj; Bahloul, Faouzi; Bin, Philippe Di
2016-09-01
We propose to connect a single-mode fiber (SMF) to a dual-concentric cores fiber (DCCF) using an adiabatically tapered microstructured mode converter, and to evaluate the SMF LP01 mode and the DCCF LP01 and LP02 modes selective excitations performances. We theoretically and numerically study this selective excitation method by calculating the effective indices of the propagated modes, the adiabaticity criteria, the coupling loss, and the modes amplitudes along the tapered structure. This study shows that this method is able to achieve excellent selective excitations of the first two linearly polarized modes (LP01 and LP02) among the five guided modes in the DCCF with a negligible loss. The part of the LP01 and LP02 modes from the total power are 99% and 84% corresponding to 0.1 and 0.8 dB losses, respectively.
A Review of Multimode Interference in Tapered Optical Fibers and Related Applications.
Wang, Pengfei; Zhao, Haiyan; Wang, Xianfan; Farrell, Gerald; Brambilla, Gilberto
2018-03-14
In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom.
A Review of Multimode Interference in Tapered Optical Fibers and Related Applications
Wang, Pengfei; Zhao, Haiyan; Wang, Xianfan; Brambilla, Gilberto
2018-01-01
In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom. PMID:29538333
All-fiber orbital angular momentum mode generation and transmission system
NASA Astrophysics Data System (ADS)
Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin
2017-11-01
We proposed and demonstrated an all-fiber system for generating and transmitting orbital angular momentum (OAM) mode light. A specially designed multi-core fiber (MCF) was used to endow with guide modes different phase change and two tapered transition regions were used for providing low-loss interfaces between different fiber structures. By arranging the refractive index distribution among the multi-cores and controlling the length of MCF, which essentially change the phase difference between the neighboring cores, OAM modes with different topological charge l can be generated selectively. Through two tapered transition regions, the non-OAM mode light can be effectively injected into the MCF and the generated OAM mode light can be easily launched into OAM mode supporting fiber for long distance and high purity transmission. Such an all-fiber OAM mode generation and transmission system owns the merits of flexibility, compactness, portability, and would have practical application value in OAM optical fiber communication systems.
Wenke, G; Zhu, Y
1983-12-01
The coupling of CSP lasers to single-mode fibers with different coupling structures made on the fiber face is investigated. In this case easy to make coupling arrangements such as tapers and microlenses, result in a high launching efficiency (approximately 2-dB loss), in contrast to launching from gain-guided lasers with strong astigmatism and a broader far-field pattern. Index-guiding lasers exhibit, however, a higher sensitivity to optical feedback. Laser output power and wavelength are changed due to reflections from the fiber tip. Critical distances exist which lead to a highly unstable laser spectrum. A comparison of the influence of various fiber faces on laser power and wavelength stability is presented. It is concluded that a tapered fiber end with a large working distance reduces the influence on the laser's performance.
Larocque, Hugo; Lu, Ping; Bao, Xiaoyi
2016-04-01
Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542 rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.
LP01 to LP0m mode converters using all-fiber two-stage tapers
NASA Astrophysics Data System (ADS)
Mellah, Hakim; Zhang, Xiupu; Shen, Dongya
2015-11-01
A mode converter between LP01 and LP0m modes is proposed using two stages of tapers. The first stage is formed by an adiabatically tapering a circular fiber to excite the desirable LP0m mode. The second stage is formed by inserting an inner core (tapered from both sides) with a refractive index smaller than the original core. This second stage is used to obtain low insertion loss and high extinction ratio of the desired LP0m mode. Three converters between LP01 and LP0m, m=2, 3, and 4, are designed for C-band, and simulation results show that less than 0.24, 0.54 and 0.7 dB insertion loss and higher than 15, 16, and 17.5 dB extinction ratio over the entire band were obtained for the three converters, respectively.
NASA Astrophysics Data System (ADS)
Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole
2018-02-01
We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.
Taking a look at the calibration of a CCD detector with a fiber-optic taper
Alkire, R. W.; Rotella, F. J.; Duke, Norma E. C.; ...
2016-02-16
At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistributionmore » of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. As a result, the degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry.« less
NASA Astrophysics Data System (ADS)
Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang
2017-04-01
A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.
NASA Astrophysics Data System (ADS)
Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.
2014-05-01
This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.
Channel plasmon-polariton guiding by subwavelength metal grooves.
Bozhevolnyi, Sergey I; Volkov, Valentyn S; Devaux, Eloïse; Ebbesen, Thomas W
2005-07-22
We report on realization of channel plasmon-polariton (CPP) propagation along a subwavelength metal groove. Using imaging with a near-field microscope and end-fire coupling with a tapered fiber connected to a tunable laser at telecommunication wavelengths (1425-1620 nm), we demonstrate low-loss (propagation length approximately 100 microm) and well-confined (mode width approximately 1.1 microm) CPP guiding along a triangular 0.6 microm-wide and 1 microm-deep groove in gold. We develop a simple model based on the effective-index method that accounts for the main features of CPP guiding and provides a clear physical picture of this phenomenon.
Volkov, Valentyn S; Han, Zhanghua; Nielsen, Michael G; Leosson, Kristjan; Keshmiri, Hamid; Gosciniak, Jacek; Albrektsen, Ole; Bozhevolnyi, Sergey I
2011-11-01
We report on the realization of long-range dielectric-loaded surface plasmon polariton waveguides (LR-DLSPPWs) consisting of straight and bent subwavelength dielectric ridges deposited on thin and narrow metal stripes supported by a dielectric buffer layer covering a low-index substrate. Using imaging with a near-field optical microscope and end-fire coupling with a tapered fiber connected to a tunable laser at telecommunication wavelengths (1425-1545 nm), we demonstrate low-loss (propagation length ∼500 μm) and well-confined (mode width ∼1 μm) LR-DLSPPW mode guiding and determine the propagation and bend loss.
Martan, T; Nemecek, T; Komanec, M; Ahmad, R; Zvanovec, S
2017-03-20
Detecting explosive, flammable, or toxic industrial liquids reliably and accurately is a matter of civic responsibility that cannot be treated lightly. Tapered optical fibers (TOFs) and suspended core microstructured optical fibers (SC MOFs) were separately used as sensors of liquids without being compared to each other. We present a highly sensitive time-stable TOF sensor incorporated in the pipeline system for the in-line regime of measurement. This paper is furthermore focused on the comparison of this TOF and SC MOF of similar parameters for the detection of selected liquids. A validated method that incorporates TOF and SC MOF of small core (waist) diameter for refractometric detection is presented. The principle of detection is based on the overlap of an enhanced evanescent wave with a liquid analyte that either fills the cladding holes of the SC MOF or surrounds the waist area of the TOF. Optical power within the evanescent wave for both sensing structures and selected liquid analytes is analyzed. Measurement results concerning TOF and SC MOF are compared. Calculations to ascertain the limit of detection (LOD) for each sensor and the sensitivity (S) to refractive indices of liquid analytes in the range of 1.4269 to 1.4361 were performed at a wavelength of 1550 nm with the lowest refractive index step of 0.0007. Results affirming that S=600.96 dB/RIU and LOD=0.0733 RIU for the SC MOF and S=1143.2 dB/RIU and LOD of 0.0026 RIU for the TOF sensor were achieved, clearly illustrating that TOF-based sensors can reach close to two times greater sensitivity and 30 times higher limit of detection. This paper extends the comparison of the fiber sensors by discussing the potential applications.
Zakaria, Rozalina; Sheng, Ong Yong; Wern, Kam; Shamshirband, Shahaboddin; Wahab, Ainuddin Wahid Abdul; Petković, Dalibor; Saboohi, Hadi
2014-05-01
A soft methodology study has been applied on tapered plastic multimode sensors. This study basically used tapered plastic multimode fiber [polymethyl methacrylate (PMMA)] optics as a sensor. The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 and 10 mm, respectively. In addition, a tapered PMMA probe, which was coated by silver film, was fabricated and demonstrated using a calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observation increment in the transmission of the sensor that is immersed in solutions at high concentrations. As the concentration was varied from 0 to 6 ppm, the output voltage of the sensor increased linearly. The silver film coating increased the sensitivity of the proposed sensor because of the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber. In this study, the polynomial and radial basis function (RBF) were applied as the kernel function of the support vector regression (SVR) to estimate and predict the output voltage response of the sensors with and without silver film according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf were used in an attempt to minimize the generalization error bound so as to achieve generalized performance. An adaptive neuro-fuzzy interference system (ANFIS) approach was also investigated for comparison. The experimental results showed that improvements in the predictive accuracy and capacity for generalization can be achieved by the SVR_poly approach in comparison to the SVR_rbf methodology. The same testing errors were found for the SVR_poly approach and the ANFIS approach.
Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.
Dai, Daoxin; Mao, Mao
2015-11-02
An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.
Finite-Difference Time-Domain Analysis of Tapered Photonic Crystal Fiber
NASA Astrophysics Data System (ADS)
Ali, M. I. Md; Sanusidin, S. N.; Yusof, M. H. M.
2018-03-01
This paper brief about the simulation of tapered photonic crystal fiber (PCF) LMA-8 single-mode type based on correlation of scattering pattern at wavelength of 1.55 μm, analyzation of transmission spectrum at wavelength over the range of 1.0 until 2.5 μm and correlation of transmission spectrum with the refractive index change in photonic crystal holes with respect to taper size of 0.1 until 1.0 using Optiwave simulation software. The main objective is to simulate using Finite-Difference Time-Domain (FDTD) technique of tapered LMA-8 PCF and for sensing application by improving the capabilities of PCF without collapsing the crystal holes. The types of FDTD techniques used are scattering pattern and transverse transmission and principal component analysis (PCA) used as a mathematical tool to model the data obtained by MathCad software. The simulation results showed that there is no obvious correlation of scattering pattern at a wavelength of 1.55 μm, a correlation obtained between taper sizes with a transverse transmission and there is a parabolic relationship between the refractive index changes inside the crystal structure.
Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater
NASA Astrophysics Data System (ADS)
Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping
2011-12-01
Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.
Liquid core microbubble resonators for highly sensitive temperature sensing
NASA Astrophysics Data System (ADS)
Ward, Jonathan M.; Yang, Yong; Nic Chormaic, Sile
2014-03-01
It is experimentally shown that a large thermal blue shift of up to 100 GHz/K (0.2 nm/K at a wavelength of 775 nm) can be achieved with higher order radial modes in an ethanol-filled microbubble whispering gallery mode resonator (WGR). Q-factors for the most thermally sensitive modes are typically 105, equivalent to a measurement resolution of 8.5 mK. The thermal shift rate is determined for different modes when the core of the microbubble is filled with air, water, and ethanol. The measured shifts are compared against Finite Element Model (FEM) simulations. It is also shown that, if the microbubble is in the quasi-droplet regime, the fundamental TE mode in a bubble with a 500 nm wall is estimated to experience a shift of 35 GHz/K, while the effective index is still high enough to allow efficient coupling to a tapered optical fiber. Nonetheless, at a wall thickness of 1 μm, the most sensitive modes (n = 2) observed were still strongly coupled.
NASA Astrophysics Data System (ADS)
Jasim, A. A.; Ahmad, H.
2017-12-01
The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.
Fabrication et caracterisation d'hybrides optiques tout-fibre 120° et 90° achromatiques
NASA Astrophysics Data System (ADS)
Khettal, Elyes
This thesis presents the fabrication and characterization of optical hybrids as all-fiber 3 x 3 and 4 x 4 couplers. A hybrid does two things; it splits power equally and acts as an interferometer. As an interferometer, it allows to accurately measure the amplitude and phase of an optical signal with respect to a reference signal. Like in a radio receiver, a local oscillator is used to interfere with the incoming signal to produce a beating signal. The complex amplitude is then rebuilt using the output signals of the hybrid. This is known as coherent detection. Since this thesis is a follow-up to a previous project, the main goal is to improve the fabrication process of the couplers in order to give it a certain level of repeatability and reproducibility. The 3 x 3 coupler will be used as a platform of development since the fabrication process is pretty much the same for both couplers. The secondary objective is to validate the theoretical concepts of a broadband hybrid in the form of an asymmetric 4 x 4 coupler. The theory explaining the functioning these couplers is presented and the experimental parameters necessary to their fabrication are derived. The fabrication method used is that of fusion-tapering that has been used for many years to produce 2 x 2 couplers and fiber tapers. The procedure consists of holding fibers together tangentially and fusing them into a monolithic structure with the help a propane flame. The structure is then tapered by linear motorized stages and the procedure is stopped when the desired optical response is achieved. The component is then securely packaged in a hollow metal tube. The critically step of the procedure is holding the fibers together in a desired pattern - a triangle for 3 x 3 couplers and a square or a diamond for 4 x 4 couplers. New methods to make this step more repeatable are highlighted. Several cross-sections of fused couplers are shown and the level of success of the new methods is discussed. The characterization methods in transmission and phase are described and the experimental results are presented. The transmission spectra of the 3 x 3 coupler that was built are presented. Its performances in phase at several wavelengths of the C band (1530-1565 nm) are measured and analyzed. The built hybrid has low loss (<0,8 dB) and shows a phase drift lower than 5° on about 40 nm. Its ability to measure phase accurately is demonstrated by demodulating a digital QPSK signal. In order to validate the theory of the broadband 4 x 4 hybrid, a new fusion-tapering approach is developed and tested. It is used to make biconical 2 x 2 couplers that allow to test the adiabatic transfer of supermodes, a core concept of broadband hybrids. This however does not yield the expected result and an alternative approach is proposed and tested. This new approach gives more encouraging results, confirming the hypothesis and forecasting a viable way to build broadband hybrids. The main goal of the project cannot be considered as achieved since the procedure to hold the fibers together does not guarantee that they stay in the desired pattern. Since this step is so crucial for the hybrids to work correctly, it casts doubt on whether it is possible to build a broadband hybrid that requires a very precise structure made of four fibers. Despite this, the results show that such a component is possible and the question is only about how to build it.
Optical spectrum measurement of a cell-adhered microcavity for the cell-cycle analysis applications
NASA Astrophysics Data System (ADS)
Saito, Ryusuke; Terakawa, Mitsuhiro; Tanabe, Takasumi
2015-03-01
We build a setup and demonstrate successful measurement of the transmittance spectrum of a whispering gallery mode silica optical microcavity in which NIH 3T3 cells adhered on the top surface to achieve real-time and label-free measurement of the cell cycle. Label-free measurement is expected to prevent the cells to exhibit secondary effect. We build a system that enables the control of the gap distance between the microcavity and the tapered fiber, both of which are placed in the cell culture medium. The optimization of the tapered fiber diameter is the key to measure the spectrum of a microcavity in liquid. A swept wavelength laser light at a wavelength of 766 to 780 nm is used for the measurement. The cavity exhibit a Q of 1 . 0 ×106 in air, where the value is 1 . 0 ×105 in the medium and drops to 3 . 1 ×104 after the cell-adhesion. Still the Q of the microcavity is sufficiently high to detect the change at the cavity surface. Indeed we observe slight spectrum shift toward a longer wavelength, which we believe is due to the adherence of NIH 3T3 cells on the silica microcavity.The successful measurement of the transmittance spectrum of a microcavity in cell culture medium is the first step to realize the analysis of the cell-cycle based on microcavity system.
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena
2011-04-11
We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America
High power (2+1) ×1 taper-fused all-fiber side-pumped combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Ma, Yi; Yan, Hong
2018-03-01
A novel design and fabrication method of a (2+1) ×1 taper-fused all-fiber side-pumped combiner is reported. The pump coupling efficiency of this pump combiner was studied theoretically and experimentally. The measurement results indicated that the coupling efficiency of the pump light is 96.5%, the signal-to-pump isolation reaches 31dB, and the signal loss of the combiner is 0.19dB. A backward-pumped fiber laser system was established by using this (2+1) ×1 side-pumped combiner directly, achieving a signal laser output of 1007W with M2=1.33.
Lu, Ping; Harris, Jeremie; Xu, Yanping; Lu, Yuangang; Chen, Liang; Bao, Xiaoyi
2012-11-15
Simultaneous measurements of refractive index (RI) and temperature are proposed and experimentally demonstrated by using a tapered bend-resistant fiber interferometer. Different phase shifts of an inner and outer cladding mode of the fiber interferometer are measured to determine the temperature compensated RI of a glycerol solution. The temperature coefficients of the inner and outer cladding modes are -0.0253 rad/°C and -0.0523 rad/°C, and the RI coefficients are 4.0403 rad/RIU and 44.823 rad/RIU, respectively. The minimum errors of temperature and RI are 0.6°C and 0.001 RIU, respectively.
All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid.
Zhang, Junying; Qiao, Xueguang; Yang, Hangzhou; Wang, Ruohui; Rong, Qiangzhou; Lim, Kok-Sing; Ahmad, Harith
2017-01-10
A method for the measurement of a magnetic field by combining a tapered thin-core fiber (TTCF) and magnetic fluid is proposed and experimentally demonstrated. The modal interference effect is caused by the core mode and excited eigenmodes in the TTCF cladding. The transmission spectra of the proposed sensor are measured and theoretically analyzed at different magnetic field strengths. The results field show that the magnetic sensitivity reaches up to -0.1039 dB/Oe in the range of 40-1600 e. The proposed method possesses high sensitivity and low cost compared with other expensive methods.
Bidirectional optical coupler for plastic optical fibers.
Sugita, Tatsuya; Abe, Tomiya; Hirano, Kouki; Itoh, Yuzo
2005-05-20
We have developed a low-loss bidirectional optical coupler for high-speed optical communication with plastic optical fibers (POFs). The coupler, which is fabricated by an injection molding method that uses poly (methyl methacrylate), has an antisymmetric tapered shape. We show that the coupler has low insertion and branching losses. The tapered shape of the receiving branch reduces beam diameter and increases detection efficiency coupling to a photodetector, whose area is smaller than that of the plastic optical fiber. The possibility of more than 15-m bidirectional transmission with a signaling bit rate up to 500 Mbits/s for simplex step-index POFs is demonstrated.
Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S
2011-11-07
We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.
The study of the thermally expanded core technique in end-pumped (N+1)×1 type combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Feng, Yujun; Ma, Yi
2015-02-01
Tapering will raise the signal loss in an end-pumped (N+1)×1 type combiner. In this paper, the Thermally Expanded Core (TEC) technique is used in the signal loss optimization experiment with the tapering ratio of the pump combiner is 0.6. The experimental results indicate that the coupling efficiency of the 1.55μm signal light increases from 81.1% to 86.6%, after being heated 10 minutes at the homo-waist region of the tapered signal fiber with an 8mm wide hydroxygen flame. Detail analysis shows that the TEC technique can both reduce the loss of the LP01 mode and the LP11 mode in the signal fiber.
SiN-assisted polarization-insensitive multicore fiber to silicon photonics interface
NASA Astrophysics Data System (ADS)
Poulopoulos, Giannis N.; Kalavrouziotis, Dimitrios; Mitchell, Paul; Macdonald, John R.; Bakopoulos, Paraskevas; Avramopoulos, Hercules
2015-06-01
We demonstrate a polarization-insensitive coupler interfacing multicore-fiber (MCF) to silicon waveguides. It comprises a 3D glass fanout transforming the circular MCF core-arrangement to linear and performing initial tapering, followed by a Spot-Size-Converter on the silicon chip. Glass waveguides are formed of multiple overlapped modification elements and appropriate offsetting thereof yields tapers with symmetric cross-section. The Spot-Size-Converter is an inverselytapered silicon waveguide with a tapered polymer overcladding where light is initially coupled, whereas phase-matching gradually shifts it towards the silicon core. Co-design of the glass fanout and Spot-Size-Converter obtains theoretical loss below 1dB for the overall Si-to-MCF transition in both polarizations.
Toward efficient fiber-based quantum interface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey
2016-04-01
NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports, vol. 528, no. 1, p. 1-45, 2013. [2] A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park and M.D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, vol. 450, p. 402-406, 2007. [3] Michael J. Burek , Yiwen Chu, Madelaine S.Z. Liddy, Parth Patel, Jake Rochman , Srujan Meesala, Wooyoung Hong, Qimin Quan, Mikhail D. Lukin and Marko Loncar High quality-factor optical nanocavities in bulk single-crystal diamond, Nature communications 6718 (2014) [4] Tim Schroder, Andreas W. Schell, Gunter Kewes, Thomas Aichele, and Oliver Benson Fiber-Integrated Diamond-Based Single Photon Source, Nano Lett. 2011, 11, 198-202 [5]Lars Liebermeister, et. al. "Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center", Appl. Phys. Lett. 104, 031101 (2014)
Fabrication and application of a non-contact double-tapered optical fiber tweezers.
Liu, Z L; Liu, Y X; Tang, Y; Zhang, N; Wu, F P; Zhang, B
2017-09-18
A double-tapered optical fiber tweezers (DOFTs) was fabricated by a chemical etching called interfacial layer etching. In this method, the second taper angle (STA) of DOFTs can be controlled easily by the interfacial layer etching time. Application of the DOFTs to the optical trapping of the yeast cells was presented. Effects of the STA on the axile trapping efficiency and the trapping position were investigated experimentally and theoretically. The experimental results are good agreement with the theoretical ones. The results demonstrated that the non-contact capture can be realized for the large STA (e.g. 90 deg) and there was an optimal axile trapping efficiency as the STA increasing. In order to obtain a more accurate measurement result of the trapping force, a correction factor to Stokes drag coefficient was introduced. This work provided a way of designing and fabricating an optical fiber tweezers (OFTs) with a high trapping efficient or a non-contact capture.
Characterization of a 3D optrode array for infrared neural stimulation
Abaya, T.V.F.; Diwekar, M.; Blair, S.; Tathireddy, P.; Rieth, L.; Clark, G.A.; Solzbacher, F.
2012-01-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%. PMID:23024914
Characterization of a 3D optrode array for infrared neural stimulation.
Abaya, T V F; Diwekar, M; Blair, S; Tathireddy, P; Rieth, L; Clark, G A; Solzbacher, F
2012-09-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%.
The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drory, N.; MacDonald, N.; Byler, N.
2015-02-01
We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffermore » fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.« less
The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope
NASA Astrophysics Data System (ADS)
Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.
2015-02-01
We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
The point-spread function of fiber-coupled area detectors
Holton, James M.; Nielsen, Chris; Frankel, Kenneth A.
2012-01-01
The point-spread function (PSF) of a fiber-optic taper-coupled CCD area detector was measured over five decades of intensity using a 20 µm X-ray beam and ∼2000-fold averaging. The ‘tails’ of the PSF clearly revealed that it is neither Gaussian nor Lorentzian, but instead resembles the solid angle subtended by a pixel at a point source of light held a small distance (∼27 µm) above the pixel plane. This converges to an inverse cube law far from the beam impact point. Further analysis revealed that the tails are dominated by the fiber-optic taper, with negligible contribution from the phosphor, suggesting that the PSF of all fiber-coupled CCD-type detectors is best described as a Moffat function. PMID:23093762
NASA Astrophysics Data System (ADS)
Xia, Liang; Xing, Zengshan; Yu, Jianhui; Lu, Huihui; Guan, Heyuan; Zhong, Yongchun; Chen, Zhe
2017-11-01
We demonstrated strain sensing of a microfiber with a microarched transition region, which was fabricated by flame heated tapering. Due to multimode interference of different propagation modes of microfiber, two main transmission dips were observed at 1215.0 and 1469.8 nm. Enhanced by the microarched transition region, the depth of the dip was up to 19 dB at 1215.0 nm. The position of the dip red-shifted while the axial strain changed from 0 to 1166.2 μɛ. The axial strain sensitivity was up to 56.6 pm/μɛ, which was one order of magnitude higher than that of the traditional optical strain sensor based on microfiber or fiber Bragg grating. The linear correlation coefficient was 98.21%. This kind of microfiber with a microarched transition region can be widely used in various physical, chemical, and biological sensing and detection fields.
NASA Astrophysics Data System (ADS)
Delbeck, Sven; Küpper, Lukas; Heise, Herbert M.
2018-02-01
Spectroscopic analysis of different biofluids and bodyfluid-like media has been realized by using tapered flat silver halide fiber elements as infrared biosensors. Optical stability and biocompatibility testing of the sensor elements have been performed with in-vitro samples under representative physiological conditions. After improving the reproducibility of manufacturing the sensor elements, the incoupling of radiation and the general handling including their chemical composition characterization, the fiber sensors were further optimized for the experiments. Stability tests in physiological solutions as well as porcine blood have shown that best results for biospectroscopic applications are available for the mid-IR fingerprint region, with the most stable behaviour as analyzed by the single-beam spectra. Despite several contrary reports, the silver halide material tested is toxic to cell lines chosen from the DIN standard specification for biocompatibility testing. Spectral changes as well as the results based on the DIN standard showed that pretreatment of the fibers is unavoidable to prevent direct contact of cells or human tissue and the silver halide material. Further applications of tapered flat silver halide fibers for the quantification of analytes in bodyfluids have also been tested by ensheathing the fiber-optic sensor element with a dialysis membrane. With the successfully produced prototype, results of diffusion rates and performance of a membrane-ensheathed fiber probe have been obtained. An invitro monitoring fiber sensor was developed aiming at the implantation of a microdialysis system for the analytical quantification of biomolecules such as glucose, lactate and others.
High spatial sampling light-guide snapshot spectrometer
Wang, Ye; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-01-01
A prototype fiber-based imaging spectrometer was developed to provide snapshot hyperspectral imaging tuned for biomedical applications. The system is designed for imaging in the visible spectral range from 400 to 700 nm for compatibility with molecular imaging applications as well as satellite and remote sensing. An 81 × 96 pixel spatial sampling density is achieved by using a custom-made fiber-optic bundle. The design considerations and fabrication aspects of the fiber bundle and imaging spectrometer are described in detail. Through the custom fiber bundle, the image of a scene of interest is collected and divided into discrete spatial groups, with spaces generated in between groups for spectral dispersion. This reorganized image is scaled down by an image taper for compatibility with following optical elements, dispersed by a prism, and is finally acquired by a CCD camera. To obtain an (x, y, λ) datacube from the snapshot measurement, a spectral calibration algorithm is executed for reconstruction of the spatial–spectral signatures of the observed scene. System characterization of throughput, resolution, and crosstalk was performed. Preliminary results illustrating changes in oxygen-saturation in an occluded human finger are presented to demonstrate the system’s capabilities. PMID:29238115
Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao
2015-08-10
An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited.
NASA Astrophysics Data System (ADS)
Yang, Peilong; Zhang, Peiqing; Dai, Shixun; Wu, Yuehao; Wang, Xunsi; Tao, Guangming; Nie, Qiuhua
2015-05-01
Fibers exhibiting flattened and decreasing dispersion are important in nonlinear applications. Such fibers are difficult to design, particularly in soft glass. In this work, we develop a preliminary design of a highly nonlinear tapered hybrid microstructured optical fiber (TH-MOF) with chalcogenide glass core and tellurite glass microstructure cladding. We then numerically studied its dispersion, loss, and nonlinearity-related optical properties under fundamental mode systematically using the infinitesimal method. The designed TH-MOF exhibits low chromatic dispersion that is similar to a convex function with two zero-dispersion wavelengths and decreases with fiber length from 2 to 5 μm band. The potential use of the TH-MOF in nonlinear applications is demonstrated numerically by a supercontinuum spectrum of 20 dB bandwidth covering 1.96-4.76 μm generated in 2-cm-long TH-MOF using near 3.25-μm fs-laser pump.
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan
2011-09-07
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.
Angle selective fiber coupler.
Barnoski, M K; Morrison, R J
1976-01-01
Angle selective input coupling through the side of a slightly tapered section of Corning highly multimode fiber has been experimentally demonstrated for the first time. This coupling technique allows the possibility of fabricating bidirectional (duplex) couplers for systems employing single strands of multimode, low loss fiber.
Fabrication of 1-D Photonic Crystal Cavity on a Nanofiber Using Femtosecond Laser-induced Ablation.
Nayak, Kali Prasanna; Keloth, Jameesh; Hakuta, Kohzo
2017-02-25
We present a protocol for fabricating 1-D Photonic Crystal (PhC) cavities on subwavelength-diameter tapered optical fibers, optical nanofibers, using femtosecond laser-induced ablation. We show that thousands of periodic nano-craters are fabricated on an optical nanofiber by irradiating with just a single femtosecond laser pulse. For a typical sample, periodic nano-craters with a period of 350 nm and with diameter gradually varying from 50 - 250 nm over a length of 1 mm are fabricated on a nanofiber with diameter around 450 - 550 nm. A key aspect of such a nanofabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. Moreover, the single-shot fabrication makes it immune to mechanical instabilities and other fabrication imperfections. Such periodic nano-craters on nanofiber, act as a 1-D PhC and enable strong and broadband reflection while maintaining the high transmission out of the stopband. We also present a method to control the profile of the nano-crater array to fabricate apodized and defect-induced PhC cavities on the nanofiber. The strong confinement of the field, both transverse and longitudinal, in the nanofiber-based PhC cavities and the efficient integration to the fiber networks, may open new possibilities for nanophotonic applications and quantum information science.
Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F
2011-01-01
This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide.
Dong, Shaofei; Ding, Hui; Liu, Yiying; Qi, Xiaofeng
2012-04-01
A tapered fiber-slab waveguide coupler (TFSC) is proposed in this paper. Both the numerical analysis based on the beam propagation method and experiments are used for investigating the dependencies of TFSC transmission features on their geometric parameters. From the simulations and experimental results, the rules for fabricating a TFSC with low transmission loss and sharp resonant spectra by optimizing the configuration parameters are presented. The conclusions derived from our work may provide helpful references for optimally designing and fabricating TFSC-based devices, such as sensors, wavelength filters, and intensity modulators.
Development of Extinction Imagers for the Determination of Atmospheric Optical Extinction
2014-08-01
system resulting from the effects of both the optics and the camera system (including the electronics). The MSI sensor includes a fiber optic taper...small dots in Fig. 7-1 are due to the fiber optic taper in the system. The brighter region near the center is due to the lens optics. To apply the...a black target wliich was a hollow black box. Clearly it would be a major advantage if we could use "targets of opportunity" from a ship, and in
Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si
NASA Astrophysics Data System (ADS)
Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie
2010-02-01
We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.
NASA Astrophysics Data System (ADS)
Zhao, Liyuan; Wang, Yan; Yuan, Yonggui; Liu, Yongjun; Liu, Shuangqiang; Sun, Weimin; Yang, Jun; Li, Hanyang
2017-11-01
We developed a tunable whispering gallery mode (WGM) microlaser based on dye-doped cholesteric liquid crystal (CLC) microdroplets with controllable size in an aqueous environment. An individual dye-doped CLC microdroplet confined at the tip of a microcapillary was optically pumped via a tapered optical fiber tip positioned within its vicinity. Numerical simulations and various spectral characteristics verify the WGM resonance of the lasing in microdroplets. Thermal tuning of the lasing modes is realized due to the thermo-optic effect of CLC. The proposed CLC microdroplet-based WGM resonator was applied as a temperature sensor and exhibited maximum temperature sensitivity up to 0.96 nm/°C.
Namihira, Y; Kawazawa, T; Wakabayashi, H
1991-03-20
The incident polarization angle and temperature dependence of the polarization and spectral response characteristics of three different types of fiber coupler are presented. The couplers are (1) the biconicalfused- twisted-taper single-mode fiber (coupler A), (2) the asymmetric-etched-fused-taper wavelength division multiplex (coupler B), and (3) the biconical-polished polarization maintaining fiber (coupler C), respectively. It is confirmed experimentally that the polarization characteristics of couplers A and B vary greatly with temperature, but those of coupler C are independent of temperature. Also, the wavelength dependence characteristics of the power splitting ratio of couplers B and C have almost no change with temperature. However, the wavelength dependence of coupler A is greatly changed with temperature. Comparing couplers A and B, it is postulated that the sinusoidal variations of the polarization state vs the incident polarization angle are due to the stress birefringence caused by the fiber twisting when the fused fiber coupler is fabricated and packaged.
Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser.
Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi
2018-06-01
In this work, we fabricate the Mo 0.5 W 0.5 S 2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo 0.5 W 0.5 S 2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm -2 . The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo 0.5 W 0.5 S 2 SAs.
Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi
2018-06-01
In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.
Propagation characteristics of optical fiber structures with arbitrary shape and index variation
NASA Technical Reports Server (NTRS)
Manshadi, F.
1990-01-01
The application of the scalar wave-fast Fourier transform (SW-FFT) technique to the computation of the propagation characteristics of some complex optical fiber structures is presented. The SW-FFT technique is based on the numerical solution of the scalar wave equation by a forward-marching fast Fourier transform method. This solution yields the spatial configuration of the fields as well as its modal characteristics in and around the guiding structure. The following are treated by the SW-FFT method: analysis of coupled optical fibers and computation of their odd and even modes and coupling length; the solution of tapered optical waveguides (transitions) and the study of the effect of the slope of the taper on mode conversion; and the analysis of branching optical fibers and demonstration of their mode-filtering and/or power-dividing properties.
Barclay, Paul; Srinivasan, Kartik; Painter, Oskar
2005-02-07
A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.
Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing
NASA Astrophysics Data System (ADS)
Liang, Yanhong; Yan, Guofeng; He, Sailing
2015-08-01
In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.
Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites
NASA Astrophysics Data System (ADS)
Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei
2017-12-01
The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.
Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz
2015-06-10
A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design.
USDA-ARS?s Scientific Manuscript database
The fiber testing instruments such as HVI can rapidly measure fiber length by testing a tapered fiber beard of the sample. But these instruments that use the beard testing method only report a limited number of fiber length parameters instead of the complete length distribution that is important fo...
NASA Astrophysics Data System (ADS)
Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng
2017-11-01
A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.
Mortazavi, Vajihesadat; Fathi, Mohammadhossein; Katiraei, Najmeh; Shahnaseri, Shirin; Badrian, Hamid; Khalighinejad, Navid
2012-01-01
Background: With the aim of developing methods that could increase the fracture resistance of structurally compromised endodontically treated teeth, this study was conducted to compare the effect of three esthetic post systems on the fracture resistance and failure modes of structurally compromised and normal roots. Materials and Methods: Forty five extracted and endodontically treated maxillary central teeth were assigned to 5 experimental groups (n=9). In two groups, the post spaces were prepared with the corresponding drills of the post systems to be restored with double taper light posts (DT.Light-Post) (group DT.N) and zirconia posts (Cosmopost) (group Zr.N). In other 3 groups thin wall canals were simulated to be restored with Double taper Light posts (DT.W), double taper Light posts and Ribbond fibers (DT+R.W) and Zirconia posts (Zr.W). After access cavity restoration and thermocycling, compressive load was applied and the fracture strength values and failure modes were evaluated. Data were analyzed using two-way ANOVA, Tukey and Fisher exact tests (P<0.05). Results: The mean failure loads (N) were 678.56, 638.22, 732.44, 603.44 and 573.67 for groups DT.N, Zr.N, DT.W, DT+R.W and Zr.w respectively. Group DT+R.W exhibited significantly higher resistance to fracture compared to groups Zr.N, DT.W and Zr.w (P<0.05). A significant difference was detected between groups DT.N and Zr.W (P=0.027). Zirconia posts showed significantly higher root fracture compared to fiber posts (P=0.004). Conclusion: The structurally compromised teeth restored with double taper light posts and Ribbond fibers showed the most fracture resistance and their strengths were comparable to those of normal roots restored with double taper light posts. More desirable fracture patterns were observed in teeth restored with fiber posts. PMID:22623936
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.
2007-07-01
The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.
Measurement Sensitivity Of Liquid Droplet Parameters Using Optical Fibers
NASA Astrophysics Data System (ADS)
Das, Alok K.; Mandal, Anup K.
1990-02-01
A new clad probing technique is used to measure the size, number, refractive index and viscosity of liquid droplets sprayed from a pressure nozzle on an uncoated core-clad fiber. The probe monitors the clad mode power loss within the leaky ray zone represented as a three region fiber. Liquid droplets measured are Glycerine, commercial grade Turpentine, Linseed oil and some oil mixtures. The measurement sensitivity depends on probing conditions and clad diameter which is observed experimentally and verified analytically. A maximum sensitivity is obtained for the tapered probe-fiber diameter made equal to the clad thickness. A slowly tapered probe-fiber and a small end angle as well as separation of the sensor-fiber and the probe-fiber further improve the sensitivity. Under the best probing condition for 90-percent Glycerine droplets of - 50 micron diameter and a 50/125 micron sensor fiber with clad refractive index of 1.465 and 0.2 NA, the measured sensitivity per drop is 0.015 and 0.006 dB, respectively, for (10-20) and (100-200) droplets. Sensitivities for different systems are shown. The sensitivity is optimized by choosing proper fiber for known liquids.
NASA Astrophysics Data System (ADS)
Baili, Amira; Cherif, Rim; Zghal, Mourad
2016-09-01
This paper, originally published on September 15, 2016, was retracted from the SPIE Digital Library on October 5, 2016, due to a high degree of similarity between specific portions of the text of the paper to the following publications: J. Tchahame, J. Beugnot, A. Kudlinski, and T. Sylvestre, "Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber," Opt. Lett. 40, 4281-4284 (2015). doi: 10.1364/OL.40.004281 W. W. Ke, X. J. Wang and X. Tang, "Stimulated Brillouin Scattering Model in Multi-Mode Fiber Lasers," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 5, pp. 305-314, Sept.-Oct. 2014. doi: 10.1109/JSTQE.2014.2303256.
Wide angle near-field optical probes by reverse tube etching.
Patanè, S; Cefalì, E; Arena, A; Gucciardi, P G; Allegrini, M
2006-04-01
We present a simple modification of the tube etching process for the fabrication of fiber probes for near-field optical microscopy. It increases the taper angle of the probe by a factor of two. The novelty is that the fiber is immersed in hydrofluoric acid and chemically etched in an upside-down geometry. The tip formation occurs inside the micrometer tube cavity formed by the polymeric jacket. By applying this approach, called reverse tube etching, to multimode fibers with 200/250 microm core/cladding diameter, we have fabricated tapered regions featuring high surface smoothness and average cone angles of approximately 30 degrees . A simple model based on the crucial role of the gravity in removing the etching products, explains the tip formation process.
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
NASA Astrophysics Data System (ADS)
Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.
2018-02-01
Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.
Tu, Tianyu; Pang, Fufei; Zhu, Shan; Cheng, Jiajing; Liu, Huanhuan; Wen, Jianxiang; Wang, Tingyun
2017-04-17
We have theoretically and experimentally demonstrated a novel approach to excite Bloch surface wave (BSW) on tapered optical fibers, which are coated with one-dimensional photonic crystal (1DPC) consisting of periodic TiO2 and Al2O3 by atomic layer deposition technology. Two resonant dips are found in transmission spectra that are originated from the excitation of BSW for p-polarized light and s-polarized light, respectively. For the first time, we have demonstrated the developed device for refractive index (RI) sensing.
NASA Astrophysics Data System (ADS)
Teng, Chuan-xin; Yu, Fang-da; Jing, Ning; Zheng, Jie
2016-09-01
The temperature influence to a refractive index (RI) sensor based on a macro-bending tapered plastic optical fiber (POF) was investigated experimentally. The total temperature dependence loss (TDLtotal) and total temperature dependence RI deviation (TDRtotal) were measured at different temperature (10-60 °C) over an RI range of 1.33-1.41. The temperature dependence RI deviation of the sensor itself was obtained by subtracting the temperature dependence RI of measured liquid from TDRtotal. Therefore, the influence of temperature variation to the sensor was characterized and corrected.
NASA Astrophysics Data System (ADS)
Laskar, S.; Bordoloi, S.
2016-01-01
This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Biconically tapered fiber optic probes for rapid label-free immunoassays.
Miller, John; Castaneda, Angelica; Lee, Kun Ho; Sanchez, Martin; Ortiz, Adrian; Almaz, Ekrem; Almaz, Zuleyha Turkoglu; Murinda, Shelton; Lin, Wei-Jen; Salik, Ertan
2015-04-01
We report use of U-shaped biconically tapered optical fibers (BTOF) as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G) and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G)-antigen (rabbit anti-mouse IgG) reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.
Saccomandi, P; Di Matteo, F M; Schena, E; Quero, G; Massaroni, C; Giurazza, F; Costamagna, G; Silvestri, S
2017-07-01
Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
Gold Coating of Fiber Tips in Near-Field Scanning Optical Microscopy
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.; Witherow, William K.
2000-01-01
We report what is believed to be the first experimental demonstration of gold coating by a chemical baking process on tapered fiber tips used in near-field scanning optical microscopy. Many tips can be simultaneously coated.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
Transmission degradation and preservation for tapered optical fibers in rubidium vapor.
Lai, Meimei; Franson, James D; Pittman, Todd B
2013-04-20
The use of subwavelength diameter tapered optical fibers (TOFs) in warm rubidium vapor has recently been identified as a promising system for realizing ultralow-power nonlinear optical effects. However, at the relatively high atomic densities needed for many of these experiments, rubidium atoms accumulating on the TOF surface can cause a significant loss of overall transmission through the fiber. Here we report direct measurements of the time scale associated with this transmission degradation for various rubidium density conditions. Transmission is affected almost immediately after the introduction of rubidium vapor into the system, and declines rapidly as the density is increased. More significantly, we show how a heating element designed to raise the TOF temperature can be used to reduce this transmission loss and dramatically extend the effective TOF transmission lifetime.
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
NASA Astrophysics Data System (ADS)
Mu, Xiaodong; Crain, William; Nguyen, Can; Ionov, Pavel; Steinvurzel, Paul; Dotan, Yaniv; Karuza, Petras; Lotshaw, William; Rose, Todd; Beck, Steven; Anderson, F. Scott
2018-02-01
A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16"x14"x2.5" package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13"x11"x1" board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20"x18"x16.25" enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.
Chemical tapering of polymer optical fiber
NASA Astrophysics Data System (ADS)
Rashid, Affa Rozana Abdul; Afiqah Nasution, Amna; Hanim Suranin, Aisyah; Athirah Taib, Nur; Maisarah Mukhtar, Wan; Dasuki, Karsono Ahmad; Annuar Ehsan, Abang
2017-11-01
Polymer optical fibers (POFs) have significant advantages over numerous sensing applications. The key element in developing sensor is by removing the cladding of the fiber. The use of organic solvent is one of the methods to create tapered POF in order to expose the core region. In this study, the etching chemicals involved is acetone, methyl isobutyl ketone (MIBK), and acetone-methanol mixture. The POF is immersed in 100%, 80%, and 50% of acetone and MIBK dilution. In addition, the mixture of acetone and methanol is also used for POF etching by the ratio 2:1 of the volume. Acetone has shown to be the most reactive solvent towards POF due to its fastest etching rate compared to MIBK and acetone-methanol mixture. The POF is immersed and lifted from the solution for a specific time, depending on the power loss properties for the purpose of producing unclad POF. In comparison to silica fiber optic, the advantages of POF in terms of its simple technique and easy handling enable it to produce unclad POF without damaging the core region. The surface roughness of the POF is investigated under the microscope after being immersed into different solvent. This method of chemical tapering of POF can be used as the fundamental technique for sensor development. Next, the unclad fiber is immersed into ethanol solutions in order to determine the reaction of unclad POF towards its surrounding. The findings show that this particular sensor is sensitive towards concentration changes ranging between 10 wt% to 50 wt%.
Strength of small-diameter round and tapered bending members
Ron Wolfe; Joe Murphy
2005-01-01
An early focus on structural use of processed rather than round timber resulted in an underestimation of the structural advantages of retaining the natural form of small-diameter round timber. In the round and tapered form, timbers are not susceptible to the strength-reducing effects of diving grain and exposed juvenile wood. Fiber continuity around knots on the...
New approach for high reliability, low loss splicing between silica and ZBLAN fibers
NASA Astrophysics Data System (ADS)
Carbonnier, Robin; Zheng, Wenxin
2018-02-01
In the past decade, ZBLAN (ZrF4-BaF2-LaF3-NaF) fibers have drawn increasing interest for laser operations at wavelengths where Fused Silica-based (SiO2) fibers do not perform well. One limitation to the expansion of ZBLAN fiber lasers today is the difficulty to efficiently inject and extract light in/from the guiding medium using SiO2 fibers. Although free space and butt coupling have provided acceptable results, consistent and long lasting physical joints between SiO2 and ZBLAN fibers will allow smaller, cheaper, and more robust component manufacturing. While low loss splices have been reported using a traditional splicing approach, the very low mechanical strength of the joint makes it difficult to scale. Difficulties in achieving a strong bond are mainly due to the large difference of transition temperature between ZBLAN and SiO2 fibers ( 260°C vs 1175°C). This paper presents results obtained by using the high thermal expansion coefficient of the ZBLAN fiber to encapsulate a smaller SiO2 fiber. A CO2 laser glass processing system was used to control the expansion and contraction of the ZBLAN material during the splicing process for optimum reliability. This method produced splices between 125μm ZBLAN to 80μm SiO2 fibers with average transmission loss of 0.225dB (measured at 1550nm) and average ultimate tension strength of 121.4gf. The Resulting splices can be durably packaged without excessive care. Other combinations using 125μm SiO2 fibers tapered to 80μm are also discussed.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-10-21
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array
Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-01-01
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637
NASA Astrophysics Data System (ADS)
de Andrés, A. I.; Esteban, Ó.; Embid, M.
2017-08-01
Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.
NASA Astrophysics Data System (ADS)
Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin
2015-01-01
Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).
Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design.
Wu, Tsung-Han; Kieu, K; Peyghambarian, N; Jones, R J
2011-03-14
We report on a low noise all-fiber erbium fs frequency comb based on a simple and robust tapered-fiber carbon nanotube (tf-CNT) design. We mitigate dominant noise sources to show that the free-running linewidth of the carrier-envelope offset frequency (fceo) can be comparable to the best reported performance to date for fiber-based frequency combs. A free-running fceo linewidth of ~20 kHz is demonstrated, corresponding to an improvement of ~30 times over previous work based on a CNT mode-locked fiber laser [Opt. Express 18, 1667 (2010)]. We also demonstrate the use of an acousto-optic modulator external to the laser cavity to stabilize fceo, enabling a 300 kHz feedback control bandwidth. The offset frequency is phase-locked with an in-loop integrated phase noise of ~0.8 rad from 10Hz to 400kHz. We show a resolution-limited linewidth of ~1 Hz, demonstrating over 90% of the carrier power within the coherent fceo signal. The results demonstrate that the relatively simple tf-CNT fiber laser design can provide a compact, robust and high-performance fs frequency comb.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.
Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M
2011-05-23
We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.
NASA Astrophysics Data System (ADS)
Tugchin, B. N.; Janunts, N.; Steinert, M.; Dietrich, K.; Kley, E. B.; Tünnermann, A.; Pertsch, T.
2017-06-01
In this study, we investigate analytically and experimentally the roles of quasi-linearly polarized (LP), hybrid, plasmonic and photonic modes in optical detection and excitation with aperture tips in scanning near-field optical microscopy. Aperture tips are tapered and metal-coated optical fibers where small circular apertures are made at the apex. In aperture tips, there exist plasmonic modes that are bound at the interface of the metal cladding to the inner dielectric fiber and photonic modes that are guided in the area of the increased index in the dielectric fiber core. The fundamental photonic mode, although excited by the free-space Gaussian beam, experiences cutoff and turns into an evanescent mode. The photonic mode also becomes lossier than the plasmonic mode toward the tip aperture, and its power decay due to absorption and reflection is expected to be at least 10-9. In contrast, the fundamental plasmonic mode has no cutoff and thus reaches all the way to the tip aperture. Due to the non-adiabaticity of both modes’ propagations through the taper below a core radius of 600 nm, there occurs coupling between the modes. The transmission efficiency of the plasmonic mode, including the coupling efficiency and the propagation loss, is expected to be about 10-6 that is at least 3 orders of magnitude larger than that of the photonic mode. Toward the tip aperture, the longitudinal field of the photonic mode becomes stronger than the transverse ones while the transverse fields always dominate for the plasmonic mode. Experimentally, we obtain polarization resolved images of the near-field at the tip aperture and compare with the x- and y-components of the fundamental quasi-LP plasmonic and photonic modes. The results show that not only the pattern but also the intensity ratios of the x- and y-components of the aperture near-field match with that of the fundamental plasmonic mode. Consequently, we conclude that only the plasmonic mode reaches the tip aperture and thus governs the near-field interaction outside the tip aperture. Our conclusion remains valid for all aperture tips regardless of the cladding metal type that mainly influences the total transmission efficiency of the aperture tip.
Vertically-tapered optical waveguide and optical spot transformer formed therefrom
Bakke, Thor; Sullivan, Charles T.
2004-07-27
An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.
NASA Astrophysics Data System (ADS)
Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.
2017-09-01
Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.
Single mode variable-sensitivity fiber optic sensors
NASA Technical Reports Server (NTRS)
Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.
1992-01-01
We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.
Pseudo-circulator implemented as a multimode fiber coupler
NASA Astrophysics Data System (ADS)
Bulota, F.; Bélanger, P.; Leduc, M.; Boudoux, C.; Godbout, N.
2016-03-01
We present a linear all-fiber device exhibiting the functionality of a circulator, albeit for multimode fibers. We define a pseudo-circulator as a linear three-port component that transfers most of a multimode light signal from Port 1 to Port 2, and from Port 2 to Port 3. Unlike a traditional circulator which depends on a nonlinear phenomenon to achieve a non-reciprocal behavior, our device is a linear component that seemingly breaks the principle of reciprocity by exploiting the variations of etendue of the multimode fibers in the coupler. The pseudo-circulator is implemented as a 2x2 asymmetric multimode fiber coupler, fabricated using the fusion-tapering technique. The coupler is asymmetric in its transverse fused section. The two multimode fibers differ in area, thus favoring the transfer of light from the smaller to the bigger fiber. The desired difference of area is obtained by tapering one of the fiber before the fusion process. Using this technique, we have successfully fabricated a pseudo-circulator surpassing in efficiency a 50/50 beam-splitter. In all the visible and near-IR spectrum, the transmission ratio exceeds 77% from Port 1 to Port 2, and 80% from Port 2 to Port 3. The excess loss is less than 0.5 dB, regardless of the entry port.
Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun
2012-01-16
A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.
Fiber optic humidity sensor based on the graphene oxide/PVA composite film
NASA Astrophysics Data System (ADS)
Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying
2016-08-01
Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.
Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin
2018-03-15
A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2 pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.
Pruthi, Varun; Talwar, Sangeeta; Nawal, Ruchika Roongta; Pruthi, Preeti Jain; Choudhary, Sarika; Yadav, Seema
2018-01-01
The aim of this study was to evaluate retention & fracture resistance of different fibre posts. 90 extracted human permanent maxillary central incisors were used in this study. For retention evaluation, after obturation, post space preparation was done in all root canals and posts were cemented under three groups. Later, the posts were grasped & pulled out from the roots with the help of a three-jaw chuck at a cross-head speed of 5mm/min. Force required to dislodge each post was recorded in Newtons. To evaluate the fracture behavior of posts, artificial root canals were drilled into aluminium blocks and posts were cemented. Load required to fracture each post was recorded in Newtons. The results of the present study show the mean retention values for Fibrekleer Parallel post were significantly greater than those for Synca Double tapered post & Bioloren Tapered post. The mean retention values of the Double tapered post & the tapered post were not statistically different. The Synca Double tapered post had the highest mean load to fracture, and this value was significantly higher than those of FibreKleer Parallel & Bioloren Tapered post. The mean fracture resistance values of Parallel & tapered post were not statistically different. This study showed parallel posts to have better retention than tapered and double tapered posts. Regarding the fracture resistance, double tapered posts were found to be better than parallel and tapered posts.
NASA Astrophysics Data System (ADS)
Zhu, Yuan; Eschrich, Tina; Leich, Martin; Grimm, Stephan; Kobelke, Jens; Lorenz, Martin; Bartelt, Hartmut; Jäger, Matthias
2017-10-01
The use of short local tapers in large mode area fiber amplifiers is proposed for peak power scaling while maintaining good beam quality. To avoid modal distortions, the powder-sintering (REPUSIL) method was employed to obtain core materials with excellent refractive index homogeneity. First experiments with Yb3+-doped rod-type amplifiers delivered 2 ns pulses with peak powers of 540 kW and energies of 1.4 mJ for the untapered rod and 230 kW for the tapered rod (limited by facet damage). The beam quality improved from an M 2 value of approximately 10 to 3.5. The investigation of the taper structure indicates room for further improvement.
Graphene-clad tapered fiber: effective nonlinearity and propagation losses.
Gorbach, A V; Marini, A; Skryabin, D V
2013-12-15
We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations in asymptotic expansion of Maxwell equations. We analyze the effective nonlinear and attenuation coefficients due to the graphene layer. Based on the recent experimental measurements of the nonlinear graphene conductivity, we predict considerable enhancement of the effective nonlinearity for subwavelength fiber core diameters.
Rolled-up TiO₂ optical microcavities for telecom and visible photonics.
Madani, Abbas; Böttner, Stefan; Jorgensen, Matthew R; Schmidt, Oliver G
2014-01-15
The fabrication of high-quality-factor polycrystalline TiO₂ vertically rolled-up microcavities (VRUMs) by the controlled release of differentially strained TiO₂ bilayered nanomembranes, operating at both telecom and visible wavelengths, is reported. Optical characterization of these resonators reveals quality factors as high as 3.8×10³ in the telecom wavelength range (1520-1570 nm) by interfacing a TiO₂ VRUMs with a tapered optical fiber. In addition, a splitting in the fundamental modes is experimentally observed due to the broken rotational symmetry in our resonators. This mode splitting indicates coupling between clockwise and counterclockwise traveling whispering gallery modes of the VRUMs. Moreover, we show that our biocompatible rolled-up TiO₂ resonators function at several positions along the tube, making them promising candidates for multiplexing and biosensing applications.
High-alignment-accuracy transfer printing of passive silicon waveguide structures.
Ye, Nan; Muliuk, Grigorij; Trindade, Antonio Jose; Bower, Chris; Zhang, Jing; Uvin, Sarah; Van Thourhout, Dries; Roelkens, Gunther
2018-01-22
We demonstrate the transfer printing of passive silicon devices on a silicon-on-insulator target waveguide wafer. Adiabatic taper structures and directional coupler structures were designed for 1310 nm and 1600 nm wavelength coupling tolerant for ± 1 µm misalignment. The release of silicon devices from the silicon substrate was realized by underetching the buried oxide layer while protecting the back-end stack. Devices were successfully picked by a PDMS stamp, by breaking the tethers that kept the silicon coupons in place on the source substrate, and printed with high alignment accuracy on a silicon photonic target wafer. Coupling losses of -1.5 +/- 0.5 dB for the adiabatic taper at 1310 nm wavelength and -0.5 +/- 0.5 dB for the directional coupler at 1600 nm wavelength are obtained.
The comparison of two methods to manufacture fused biconical tapered optical fiber coupler
NASA Astrophysics Data System (ADS)
Wang, Yue; Liu, Hairong
2009-08-01
Optical fiber coupler is a directional coupler which is crucial component for optical fiber communication systems. The fused biconical taper is the most important method in facture of optical fiber coupler, with many advantages of low excess loss, precise coupling ratio, good consistency and stability. In this paper we have introduced a new method to manufacture optical fiber coupler. And more over the new manufacture process has been compared with the traditional manufacture method. In the traditional crafts, two optical fibers are parallel placed, and then use the method of tie a knot of the two optical fibers. In the new process, a new program of fiber placement is introduced. Two optical fibers are parallel placed in the middle of the fixture, and then in order to make the bare part of the optical fiber close as much as possible, the new plan using high temperature resistant material bind the both end of the fiber which are not removing the cladding. After many contrast tests, we can see that adopt the improved method of fiber placement, during the process of fiber pulling, the variation of optical power in the directional arm and the coupler arm are more smooth and steady. But the excess loss (EL) generated in the process of pulling is a bit higher than the traditional method of tie a knot. The tests show that the new method of optical fiber placement is feasible in the actual projects for the manufacture of coupler with low coupling ratio, but for the control of the EL still need further studying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.
2014-01-20
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less
Simultaneous measurement for strain and temperature based on the twisted-tapering fiber structure
NASA Astrophysics Data System (ADS)
Ni, Wenjun; Lu, Ping; Liu, Deming; Zhang, Jiangshan
2017-10-01
A novel special fiber fabrication method based on a common single mode fiber (SMF) for dual-parameters measurement has been proposed and experimentally demonstrated. The fabrication setup is based on a three dimensional electric displacement platform which can realize the function of twisting and tapering at the same time. The proposed novel structure simultaneously undergoes the aforementioned two processes. Then a twisted-tapering fiber structure is formed. There are two dominant resonant wavelengths in the spectrum. Thus, simultaneous measurement for strain and temperature can be achieved. The following result shows that the strain measurement can be achieved by intensity demodulation, with the sensitivity of -0.01565 dB/μɛ and 0.00705 dB/μɛ corresponding to the dip1 and dip2, respectively. Therefore, the total sensitivity of the strain is 0.0227 dB/μɛ. Moreover, the cross impacts of the wavelength shift are - 0.772 pm/μɛ and 0.895 pm/μɛ. Similarly, the wavelength demodulation is selected to temperature measurement. The temperature sensitivity of 50.53pm/°C and 45.12pm/°C are obtained. The cross sensitivity of the intensity variation are 0.04058dB/°C and 0.02031 dB/°C. As a result, the dual-parameters can be described to a cross matrix of the sensitivity value. The proposed sensor has a great potential for engineering applications due to its compact structure, simple manufacture and low cost.
Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel
2015-08-24
We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively.
Comparison of different focusing fiber tips for improved oral diode laser surgery.
Stock, Karl; Stegmayer, Thomas; Graser, Rainer; Förster, Wolfram; Hibst, Raimund
2012-12-01
State of the art for use of the fiber guided diode laser in dental therapy is the application of bare fibers. A novel concept with delivery fiber and exchangeable fiber tips enables the use of tips with special and optimized geometries for various applications. The aim of this study is the comparison of different focusing fiber tips for enhanced cutting efficacy in oral surgery. For this purpose various designs of tip geometry were investigated and optimized by ray tracing simulations. Two applicators, one with a sphere, and another one with a taper, were realized and tested on porcine gingiva (diode laser, 940 nm, 5 W/cw; 7 W/modulated). The cutting depth and quality were determined by light microscope. Histological sections of the cuts were prepared by a cryo-microtome and microscopically analyzed to determine the cut depths and thermal damage zones. The simulations show that, using a sphere as fiber tip, an intensity increase of up to a factor of 16.2 in air, and 13.2 in water compared to a bare 200 µm fiber can be achieved. Although offering high focusing factor in water, the cutting quality of the sphere was rather poor. This is probably caused by a derogation of the focusing quality due to contamination during cutting and light scattering. Much better results were achieved with conically shaped fiber tips. Compared to bare fibers they exhibit improved handling properties with no hooking, more regular and deeper cuts (5 W/cw: 2,393 ± 468 µm, compared to the cleaved bare fiber 5 W/cw: 711 ± 268 µm). The thermal damage zones of the cuts are comparable for the various tips and fibers. In conclusion the results of our study show that cutting quality and efficiency of diode laser on soft tissue can be significantly improved using conically shaped fiber tips. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Quasi-phase-matched χ(3 )-parametric interactions in sinusoidally tapered waveguides
NASA Astrophysics Data System (ADS)
Saleh, Mohammed F.
2018-01-01
In this article, I show how periodically tapered waveguides can be employed as efficient quasi-phase-matching schemes for four-wave mixing parametric processes in third-order nonlinear materials. As an example, a thorough study of enhancing third-harmonic generation in sinusoidally tapered fibers has been conducted. The quasi-phase-matching condition has been obtained for nonlinear parametric interactions in these structures using Fourier-series analysis. The dependencies of the conversion efficiency of the third harmonic on the modulation amplitude, tapering period, longitudinal-propagation direction, and pump wavelength have been studied. In comparison to uniform waveguides, the conversion efficiency has been enhanced by orders of magnitudes. I envisage that this work will have a great impact in the field of guided nonlinear optics using centrosymmetric materials.
NASA Astrophysics Data System (ADS)
Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.
2006-05-01
Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
A dual modality optical fiber sensor
NASA Astrophysics Data System (ADS)
Herrera-Piad, Luis A.; Haus, Joseph W.; Jauregui-Vazquez, Daniel; Lopez-Dieguez, Yanelis; Estudillo-Ayala, Julian M.; Sierra-Hernandez, Juan M.; Hernandez-Garcia, Juan C.; Rojas-Laguna, Roberto
2018-02-01
We propose and demonstrate a fibre optic system based on bi-tapered silica fibre that can simultaneously measure strain and fibre curvature. Both modalities on the signal can be extracted with no measurable crosstalk between them. The experimental signal has a pure phase modulation when strain is applied to the tapered fibre optic section of the sensor and the signal shows only intensity modulation when an un-tapered fibre section is bent. High sensitivity is achieved from the experimental results for strain and bending losses and the estimation of measurement errors is 0.2 and 0.1%, respectively. This system offers low-cost, compactness and it can be adapted for structural health monitoring.
Halting the fuse discharge propagation using optical fiber microwires.
Rocha, A M; Fernandes, G; Domingues, F; Niehus, M; Pinto, A N; Facão, M; André, P S
2012-09-10
We report and analyze the halting of the fuse effect propagation in optical fiber microwires. The increase of the mode field diameter in the tapered region decreases the optical intensity resulting in the extinction of the fuse effect. This fiber element presents a low insertion loss and can be introduced in the optical network in order to protect the active equipment from the damage caused by the fuse effect.
Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.
Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas
2016-12-16
In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.
Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection
Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas
2016-01-01
In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering. PMID:27999245
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-02-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.
Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis
Stiff , Michael R.; Haigler, Candace H.
2016-01-01
Cotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers. We characterized two tip types in Gh fiber (hemisphere and tapered), each with distinct apical diameter, central vacuole location, and distribution of cell wall components. The apex of Gh hemisphere tips was enriched in homogalacturonan epitopes, including a relatively high methyl-esterified form associated with cell wall pliability. Other wall components increased behind the apex including cellulose and the α-Fuc-(1,2)-β-Gal epitope predominantly found in xyloglucan. Gb fibers had only one narrow tip type featuring characters found in each Gh tip type. Pulse-labeling of cell wall glucans indicated wall synthesis at the apex of both Gh tip types and in distal zones. Living Gh hemisphere and Gb tips ruptured preferentially at the apex upon treatment with wall degrading enzymes, consistent with newly synthesized wall at the apex. Gh tapered tips ruptured either at the apex or distantly. Overall, the results reveal diverse cotton fiber tip morphologies and support primary wall synthesis occurring at the apex and discrete distal regions of the tip. PMID:27301434
Fabricating fiber-reinforced composite posts.
Manhart, Jürgen
2011-03-01
Endodontic posts do not increase the strength of the remaining tooth structure in endodontically treated teeth. On the contrary, depending on the post design employed (tapered versus parallel-sided), the root can be weakened relative to the amount of tooth removed during preparation. In many cases, if there has been a high degree of damage to the clinical crown, conservative preparation for an anatomic tapered (biomimetic) post with the incorporation of a ferrule on solid tooth structure is necessary to protect the reaming root structure as well as for the long-term retention of the composite resin core and the definitive restoration. Adhesively luted endodontic posts reinforced with glass or quartz fiber lead to better homogeneous tension distribution when loaded than rigid metal or zirconium oxide ceramic posts. Fiber-reinforced posts also possess advantageous optical properties over metal or metal oxide post systems. The clinician should realize that there are admittedly substantial differences in the mechanical loading capacity of the different fiber-reinforced endodontic posts and should be aware of such differences in order to research and select a suitable post system for use.
NASA Astrophysics Data System (ADS)
Layeghi, Azam; Latifi, Hamid
2018-06-01
A magnetic field vector sensor based on super-paramagnetic fluid and tapered Hi-Bi fiber (THB) in fiber loop mirror (FLM) is proposed. A two-dimensional detection of external magnetic field (EMF) is experimentally demonstrated and theoretically simulated by Jones matrix to analyze the physical operation in detail. A birefringence is obtained due to magnetic fluid (MF) in applied EMF. By surrounding the THB with MF, a tunable birefringence of MF affect the transmission of the sensor. Slow and fast axes of this obtained birefringence are determined by the direction of applied EMF. In this way, the transmission response of the sensor is depended on the angle between the EMF orientation and the main axes of polarization maintaining fiber (PMF) in FLM. The wavelength shift and intensity shift versus EMF orientation show a sinusoidal behavior, while the applied EMF is constant. Also, the changes in the intensity of EMF in a certain direction results in wavelength shift in the sensor spectrum. The maximum wavelength sensitivity of 214 pm/mT is observed.
Signore, Antonio; Benedicenti, Stefano; Kaitsas, Vassilios; Barone, Michele; Angiero, Francesca; Ravera, Giambattista
2009-02-01
This retrospective study investigated the clinical effectiveness over up to 8 years of parallel-sided and of tapered glass-fiber posts, in combination with either hybrid composite or dual-cure composite resin core material, in endodontically treated, maxillary anterior teeth covered with full-ceramic crowns. The study population comprised 192 patients and 526 endodontically treated teeth, with various degrees of hard-tissue loss, restored by the post-and-core technique. Four groups were defined based on post shape and core build-up materials, and within each group post-and-core restorations were assigned randomly with respect to root morphology. Inclusion criteria were symptom-free endodontic therapy, root-canal treatment with a minimum apical seal of 4mm, application of rubber dam, need for post-and-core complex because of coronal tooth loss, and tooth with at least one residual coronal wall. Survival rate of the post-and-core restorations was determined using Kaplan-Meier statistical analysis. The restorations were examined clinically and radiologically; mean observation period was 5.3 years. The overall survival rate of glass-fiber post-and-core restorations was 98.5%. The survival rate for parallel-sided posts was 98.6% and for tapered posts was 96.8%. Survival rates for core build-up materials were 100% for dual-cure composite and 96.8% for hybrid light-cure composite. For both glass-fiber post designs and for both core build-up materials, clinical performance was satisfactory. Survival was higher for teeth retaining four and three coronal walls.
Integrated double-clad photonic crystal fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Jun; Gu, Yanran; Chen, Zilun
2017-10-01
This paper studies and fabricates an integrated double-clad photonic crystal fiber amplifier, which overcomes the shortcomings of space application and makes full use of excellent property of double-clad photonic crystal fiber. In the experiment, the (6 + 1) × 1 end-pump coupler with DC-PCF is fabricated. The six pump fibers are fabricated with 105 / 125μm (NA = 0.22) multi-mode fiber. The signal fiber is made of ordinary single-mode fiber SMF-28. Then we spliced the tapered fiber bundle to photonic crystal fiber. At last, we produce double-clad photonic crystal fiber with an end-cap that are able to withstand high average power and protect the system. We have fabricated an integrated Yb-double-clad photonic crystal fiber amplifier.
Wavelength-independent all-fiber mode converters.
Lai, K; Leon-Saval, S G; Witkowska, A; Wadsworth, W J; Birks, T A
2007-02-15
We have used two different photonic crystal fiber (PCF) techniques to make all-fiber mode converters. An LP(01) to LP(11) mode converter was made by the ferrule technique on a drawing tower, and an LP(01) to LP(02) mode converter was made by controlled hole inflation of an existing PCF on a tapering rig. Both devices rely on adiabatic propagation rather than resonant coupling; so high extinction was achieved across a wide wavelength range.
Cai, M; Vahala, K
2000-02-15
We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.
Chemical Silver Coating of Fiber Tips in Near-Field Scanning Optical Microscopy
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.; Witherow, William K.
1998-01-01
We report what is believed to be the first experimental demonstration of silver coating by a wet chemical process on tapered fiber tips used in near-field scanning optical microscopy. The process is at room temperature and pressure and takes only a few minutes to complete. Many tips can be simultaneously coated.
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Corrugated metal-coated tapered tip for scanning near-field optical microscope.
Antosiewicz, Tomasz J; Szoplik, Tomasz
2007-08-20
This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.
Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.
Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred
2011-10-10
We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-01-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344
Spectral narrowing of a 980 nm tapered diode laser bar
NASA Astrophysics Data System (ADS)
Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte
2011-03-01
High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.
NASA Astrophysics Data System (ADS)
Son, Gyeongho; Jung, Youngho; Yu, Kyoungsik
2017-04-01
We report a directional-coupler-based refractive index sensor and its cost-effective fabrication method using hydrofluoric acid droplet wet-etching and surface-tension-driven liquid flows. The proposed fiber sensor consists of a pair of twisted tapered optical fibers with low excess losses. The fiber cores in the etched microfiber region are exposed to the surrounding medium for efficient interaction with the guided light. We observe that the etching-based low-loss fiber-optic sensors can measure the water droplet volume by detecting the refractive index changes of the surrounding medium around the etched fiber core region.
Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.
2018-02-01
A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.
Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
NASA Astrophysics Data System (ADS)
Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.
2018-01-01
Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.
Microwave Photonics Systems Based on Whispering-gallery-mode Resonators
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.
2013-01-01
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358
Microwave photonics systems based on whispering-gallery-mode resonators.
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K
2013-08-05
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.
A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source
NASA Astrophysics Data System (ADS)
Chen, Xiuyan; Jiang, Huawei
2016-12-01
A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.
Escherichia coli biosensors for environmental, food industry and biological warfare agent detection
NASA Astrophysics Data System (ADS)
Allil, R. C. S. B.; Werneck, M. M.; da Silva-Neto, J. L.; Miguel, M. A. L.; Rodrigues, D. M. C.; Wandermur, G. L.; Rambauske, D. C.
2013-06-01
This work has the objective to research and develop a plastic optical fiber biosensor based taper and mPOF LPG techniques to detect Escherichia coli by measurements of index of refraction. Generally, cell detection is crucial in microbiological analysis of clinical, food, water or environmental samples. However, methods current employed are time consuming, taking at least 72 hours in order to produce reliable responses as they depend on sample collection and cell culture in controlled conditions. The delay in obtaining the results of the analysis can result in contamination of a great number of consumers. Plastic Optical Fiber (POF) biosensors consist in a viable alternative for rapid and inexpensive scheme for cells detection. A study the sensitivity of these sensors for microbiological detection, fiber Tapers and Long Period Grating (LPG) both in poly-methyl-methacrylate (PMMA) were realized as possible candidates to take part of a biosensor system to detect Escherichia coli in water samples. In this work we adopted the immunocapture technique, which consists of quantifying bacteria in a liquid sample, attract-ing and fixing the bacteria on the surface of the polymer optical fiber, by the antigen-antibody reaction. The results were obtained by optical setup that consists in a side of the fiber a LED coupled to a photodetector through a POF with the taper in the middle of it. On the other side of the POF a photodetector receives this light producting a photocurrent. The output voltage is fed into the microcontroller A/D input port and its output data is sent via USB to a LabView software running in a microcomputer. The results showed the possibility of the POF in biosensor application capable to detect E. coli for environmental and food industry and for detecting and identifying biological-warfare agents using a very rapid response sensor, applicable to field detection prototypes.
2 μm laser oscillation of Ho3+:Tm3+-codoped silica microspheres.
Peng, Longxiang; Huang, Yantang; Duan, Yafan; Zhuang, Shijian; Liao, Tingdi; Xu, Canhua
2017-09-10
2 μm laser oscillation with a low threshold has been achieved in Ho 3+ :Tm 3+ -codoped silica microspheres (HTCSMs). Ho 3+ :Tm 3+ -codoped solgel functionalization film is applied to the surface of a silica microsphere, and an optical tapered fiber is adopted to couple an 808 nm continuous-wave laser to serve as the pump light source. Multimode and single-mode laser oscillations around 2 μm within the eye-safe wave band are observed due to the I 7 5→I 8 5 transitions of Ho 3+ ions sensitized by Tm 3+ . The morphology characteristics of microspheres determine the multimode laser oscillation spectrum. The free spectral range is in good accordance with the calculated value based on Mie scattering theory. The HTCSM laser oscillation shows characteristics of good capability, simple process, high flexibility, and low cost.
Multi-wavelength transceiver integration on SOI for high-performance computing system applications
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Cherchi, Matteo; Neumeyr, Christian; Ortsiefer, Markus; Malacarne, Antonio
2015-03-01
We present a vision for transceiver integration on a 3 μm SOI waveguide platform for systems scalable to Pb/s. We also present experimental results from the first building blocks developed in the EU-funded RAPIDO project. At 1.3 μm wavelength 80 Gb/s per wavelength is to be achieved using hybrid integration of III-V optoelectronics on SOI. Goals include athermal operation, low-loss I/O coupling, advanced modulation formats and packet switching. An example of the design results is an interposer chip that consists of 12 μm thick SOI waveguides locally tapered down to 3 μm to provide low-loss coupling between an optical single-mode fiber array and the 3 μm SOI chip. First example of experimental results is a 4x4 cyclic AWGs with 5 nm channel spacing, 0.4 dB/facet fiber coupling loss, 3.5 dB center-tocenter loss, and -23 dB adjacent channel crosstalk in 3.5x1.5 mm2 footprint. The second example result is a new VCSEL design that was demonstrated to have up to 40 Gb/s operation at 1.55 μm.
Particle trapping in 3-D using a single fiber probe with an annular light distribution.
Taylor, R; Hnatovsky, C
2003-10-20
A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.
Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A
2014-09-01
We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.
Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources
NASA Technical Reports Server (NTRS)
White, Preston A., III
1992-01-01
Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM.
Silicone polymer waveguide bridge for Si to glass optical fibers
NASA Astrophysics Data System (ADS)
Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.
2015-03-01
Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.
NASA Astrophysics Data System (ADS)
Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen
2017-04-01
We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.
Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming
2016-04-01
We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.
Highly tunable birefringent microstructured optical fiber.
Kerbage, C; Steinvurzel, P; Reyes, P; Westbrook, P S; Windeler, R S; Hale, A; Eggleton, B J
2002-05-15
We demonstrate a method for introducing and dynamically tuning birefringence in a microstructured optical fiber. Waveguide asymmetry in the fiber is obtained by selective filling of air holes with polymer, and tunability is achieved by temperature tuning of the polymer's index. The fiber is tapered such that the mode field expands into the cladding and efficiently overlaps the polymer that has been infused into the air holes, ensuring enhanced tunability and low splice loss. Experimental results are compared with numerical simulations made with the beam propagation method and confirm birefringence tuning that corresponds to a phase change of 6pi for a 1-cm length of fiber.
NASA Astrophysics Data System (ADS)
Wu, Jindong; Chen, Liuhua; Li, Qingguo; Wu, Wenwen; Sun, Keyuan; Wu, Xingkun
2011-07-01
Four non-zero-dispersion-shifted fibers with almost the same large effective area (Aeff) and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An Aeff of greater than 71 μm2 is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the 1550nm dispersion slope from 0.072ps/nm2/km to 0.063ps/nm2/km or 0.05ps/nm2/km, increasing the 1550nm dispersion from 4.972ps/nm/km to 5.679ps/nm/km or 7.776ps/nm/km, and shifting the zero-dispersion wavelength from 1500nm to 1450nm. One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the 1550nm dispersion slope from 0.12ps/nm2/km to 0.085ps/nm2/km, increasing the 1550nm dispersion from -4ps/nm/km to -6.016ps/nm/km, providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.
Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya
2014-06-16
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.
Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.
Zhang, Chi; Gao, Yingxin
2012-07-26
Most of the myofibers in long muscles of vertebrates terminate within fascicles without reaching either end of the tendon, thus force generated in myofibers has to be transmitted laterally through the extracellular matrix (ECM) to adjacent fibers; which is defined as the lateral transmission of force in skeletal muscles. The goal of this study was to determine the mechanisms of lateral transmission of force between the myofiber and ECM. In this study, a 2D finite element model of single muscle fiber was developed to study the effects of mechanical properties of the endomysium and the tapered ends of myofiber on lateral transmission of force. Results showed that most of the force generated is transmitted near the end of the myofiber through shear to the endomysium, and the force transmitted to the end of the model increases with increased stiffness of ECM. This study also demonstrated that the tapered angle of the myofiber ends can reduce the stress concentration near the myofiber end while laterally transmitting force efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.
2013-10-01
sources and on a fiber OPO at red wavelengths. The fiber Raman laser reached 20 W of output power at 1019 nm, pulsed operation at 835 nm, and M2 = 2 at...1019 nm from a double-clad fiber Raman laser . These three results are all world records or world firsts. It was also found that the fiber OPO suffers...power multimode diode sources and on a fiber OPO at red wavelengths. With the fiber Raman laser we reach 20 W of output power at 1019 nm, pulsed
Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi
2015-08-10
A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.
NASA Astrophysics Data System (ADS)
Main, Philip; Mosley, Peter J.; Ding, Wei; Zhang, Lijian; Gorbach, Andrey V.
2016-12-01
We propose a compact, fiber-integrated architecture for photon-pair generation by parametric downconversion with unprecedented flexibility in the properties of the photons produced. Our approach is based on a thin-film lithium niobate nanowaveguide, evanescently coupled to a tapered silica microfiber. We demonstrate how controllable mode hybridization between the fiber and waveguide yields control over the joint spectrum of the photon pairs. We also investigate how independent engineering of the linear and nonlinear properties of the structure can be achieved through the addition of a tapered, proton-exchanged layer to the waveguide. This allows further refinement of the joint spectrum through custom profiling of the effective nonlinearity, drastically improving the purity of the heralded photons. We give details of a source design capable of generating heralded single photons in the telecom wavelength range with purity of at least 0.95, and we provide a feasible fabrication methodology.
NASA Astrophysics Data System (ADS)
Bernini, Romeo; Grimaldi, Immacolata A.; Persichetti, Gianluca; Testa, Genni
2017-02-01
In recent years, microbottle resonators that support non-degenerate whispering gallery modes (WGMs), propagating by successive total internal reflections close to the resonator surface and all along its axis, have been widely investigated due to their potential applications in optical sensing, microlasers and nonlinear optics. To overcome some drawbacks of the standard silica microbottle resonators, we focused our attention on polymers such as SU-8 resist and NOA resins. A drop of polymeric material is dispensed onto a fiber stem, providing a mechanical support for the bottle resonator, and is photo-polymerized by an UV lamp. The interrogation system, usually constituted by a tapered silica fiber evanescently coupled with the microresonator, is substituted by a more stable planar waveguide realized in SU-8 by means of standard photolithography technique. Moreover, for guarantying the stability to surrounding disturbance of the coupling between the microbottle resonator and the planar waveguide, the fiber stem is glued to substrate. Two drilled holes in the substrate allow the rise of the glue at the ends of the fiber stem and the fixing of sensor on PMMA substrate. In the present work, we presented an integrated full polymeric platform with self-assembled bottle microresonators packaged in a stable structure. SU-8 and NOA based microbottles are realized and morphologically characterized. The low autofluorescence emission and long term stability make the NOA based bottles suitable to be employed in a great variety of conditions. Bulk sensing measurements are performed by using water:ethanol solutions and a bulk sensitivity of 120 nm/RIU is estimated.
Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
Riley, Mark R; Lucas, Pierre; Le Coq, David; Juncker, Christophe; Boesewetter, Dianne E; Collier, Jayne L; DeRosa, Diana M; Katterman, Matthew E; Boussard-Plédel, Catherine; Bureau, Bruno
2006-11-05
Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations. (c) 2006 Wiley Periodicals, Inc.
40nm tunable multi-wavelength fiber laser
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin
2014-12-01
A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.
Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission.
Mamyshev, P V; Mollenauer, L F
1996-03-15
In a soliton transmission system using lumped amplifiers, pseudo phase matching allows four-wave mixing fields from soliton-soliton collisions to grow uncontrollably and inf lict severe penalties. Through numerical simulation, we show that this growth can be eliminated, or at least greatly reduced, through the use of fiber whose dispersion is tapered, either continuously or in steps, in conformity with the fiber loss curve.
Lierstuen, L O; Sudbø, A S
1995-02-20
The butt-coupling loss between different tapered rectangular waveguides and a standard single-mode optical fiber has been calculated. Losses as low as 0.16 dB can be reached for waveguides with a refractive-index contrast in the range of 0.5% to 1.96%. The fabrication tolerances are such that practical devices with coupling losses below 0.25 dB are feasible.
Low loss fusion splicing of micron scale silica fibers.
Pal, Parama; Knox, Wayne H
2008-07-21
Tapered micron-sized optical fibers may be important in the future for development of microscale integrated photonic devices. Complex photonic circuits require many devices and a robust technique for interconnection. We demonstrate splicing of four micron diameter step-index air-clad silica microfibers using a CO2 laser. We obtain splice losses lower than 0.3%. Compared with evanescent coupling of microfibers, our splices are more mechanically stable and efficient.
Zhang, Yu; Lei, Jiaojie; Zhang, Yaxun; Liu, Zhihai; Zhang, Jianzhong; Yang, Xinghua; Yang, Jun; Yuan, Libo
2017-10-30
The ability to arrange cells and/or microparticles into the desired pattern is critical in biological, chemical, and metamaterial studies and other applications. Researchers have developed a variety of patterning techniques, which either have a limited capacity to simultaneously trap massive particles or lack the spatial resolution necessary to manipulate individual particle. Several approaches have been proposed that combine both high spatial selectivity and high throughput simultaneously. However, those methods are complex and difficult to fabricate. In this article, we propose and demonstrate a simple method that combines the laser-induced convection flow and fiber-based optical trapping methods to perform both regular and special spatial shaping arrangement. Essentially, we combine a light field with a large optical intensity gradient distribution and a thermal field with a large temperature gradient distribution to perform the microparticles shaping arrangement. The tapered-fiber-based laser-induced convection flow provides not only the batch manipulation of massive particles, but also the finer manipulation of special one or several particles, which break out the limit of single-fiber-based massive/individual particles photothermal manipulation. The combination technique allows for microparticles quick accumulation, single-layer and multilayer arrangement; special spatial shaping arrangement/adjustment, and microparticles sorting.
Hirschfeld, T.B.
1985-09-24
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.
Hirschfeld, Tomas B.
1985-01-01
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.
The research on the design and performance of 7×1 pump combiners
NASA Astrophysics Data System (ADS)
Cao, Yang; Sheng, Quan; Fu, Shijie; Zhang, Haiwei; Bai, Xiaolei; Shi, Wei; Yao, Jianquan
2018-02-01
The 7×1 end-pumped pump combiners employing 105/125 μm multimode fibers as pump fibers are investigated. Based on the results of our theoretical analysis, sufficient taper length (TL) and low refractive index (RI) of the capillary have been adopted to fabricate high transmission efficiency combiners. A 7×1 end-pumped pump combiner with an average transmission efficiency of 98.9% and a total return loss of 1.1‰ is fabricated in experiments, which could find its application in high-power fiber laser systems.