Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV
NASA Astrophysics Data System (ADS)
van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent
2014-10-01
The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.
SEE Sensitivity Analysis of 180 nm NAND CMOS Logic Cell for Space Applications
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
2016-07-01
This paper focus on Single Event Effects caused by energetic particle strike on sensitive locations in CMOS NAND logic cell designed in 180nm technology node to be operated in space radiation environment. The generation of SE transients as well as upsets as function of LET of incident particle has been determined for logic devices onboard LEO and GEO satellites. The minimum magnitude pulse and pulse-width for threshold LET was determined to estimate the vulnerability /susceptibility of device for heavy ion strike. The impact of temperature, strike location and logic state of NAND circuit on total SEU/SET rate was estimated with physical mechanism simulations using Visual TCAD, Genius, runSEU program and Crad computer codes.
Electron beam mask writer EBM-9500 for logic 7nm node generation
NASA Astrophysics Data System (ADS)
Matsui, Hideki; Kamikubo, Takashi; Nakahashi, Satoshi; Nomura, Haruyuki; Nakayamada, Noriaki; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Katsap, Victor; Saito, Kenichi; Kobayashi, Ryoei; Miyamoto, Nobuo; Ogasawara, Munehiro
2016-10-01
Semiconductor scaling is slowing down because of difficulties of device manufacturing below logic 7nm node generation. Various lithography candidates which include ArF immersion with resolution enhancement technology (like Inversed Lithography technology), Extreme Ultra Violet lithography and Nano Imprint lithography are being developed to address the situation. In such advanced lithography, shot counts of mask patterns are estimated to increase explosively in critical layers, and then it is hoped that multi beam mask writer (MBMW) is released to handle them within realistic write time. However, ArF immersion technology with multiple patterning will continue to be a mainstream lithography solution for most of the layers. Then, the shot counts in less critical layers are estimated to be stable because of the limitation of resolution in ArF immersion technology. Therefore, single beam mask writer (SBMW) can play an important role for mask production still, relative to MBMW. Also the demand of SBMW seems actually strong for the logic 7nm node. To realize this, we have developed a new SBMW, EBM-9500 for mask fabrication in this generation. A newly introduced electron beam source enables higher current density of 1200A/cm2. Heating effect correction function has also been newly introduced to satisfy the requirements for both pattern accuracy and throughput. In this paper, we will report the configuration and performance of EBM-9500.
Layout decomposition of self-aligned double patterning for 2D random logic patterning
NASA Astrophysics Data System (ADS)
Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.
2011-04-01
Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.
Writing time estimation of EB mask writer EBM-9000 for hp16nm/logic11nm node generation
NASA Astrophysics Data System (ADS)
Kamikubo, Takashi; Takekoshi, Hidekazu; Ogasawara, Munehiro; Yamada, Hirokazu; Hattori, Kiyoshi
2014-10-01
The scaling of semiconductor devices is slowing down because of the difficulty in establishing their functionality at the nano-size level and also because of the limitations in fabrications, mainly the delay of EUV lithography. While multigate devices (FinFET) are currently the main driver for scalability, other types of devices, such as 3D devices, are being realized to relax the scaling of the node. In lithography, double or multiple patterning using ArF immersion scanners is still a realistic solution offered for the hp16nm node fabrication. Other lithography candidates are those called NGL (Next Generation Lithography), such as DSA (Directed-Self-Assembling) or nanoimprint. In such situations, shot count for mask making by electron beam writers will not increase. Except for some layers, it is not increasing as previously predicted. On the other hand, there is another aspect that increases writing time. The exposure dose for mask writing is getting higher to meet tighter specifications of CD uniformity, in other words, reduce LER. To satisfy these requirements, a new electron beam mask writer, EBM-9000, has been developed for hp16nm/logic11nm generation. Electron optical system, which has the immersion lens system, was evolved from EBM-8000 to achieve higher current density of 800A/cm2. In this paper, recent shot count and dose trend are discussed. Also, writing time is estimated for the requirements in EBM-9000.
Results from a new 193nm die-to-database reticle inspection platform
NASA Astrophysics Data System (ADS)
Broadbent, William H.; Alles, David S.; Giusti, Michael T.; Kvamme, Damon F.; Shi, Rui-fang; Sousa, Weston L.; Walsh, Robert; Xiong, Yalin
2010-05-01
A new 193nm wavelength high resolution reticle defect inspection platform has been developed for both die-to-database and die-to-die inspection modes. In its initial configuration, this innovative platform has been designed to meet the reticle qualification requirements of the IC industry for the 22nm logic and 3xhp memory generations (and shrinks) with planned extensions to the next generation. The 22nm/3xhp IC generation includes advanced 193nm optical lithography using conventional RET, advanced computational lithography, and double patterning. Further, EUV pilot line lithography is beginning. This advanced 193nm inspection platform has world-class performance and the capability to meet these diverse needs in optical and EUV lithography. The architecture of the new 193nm inspection platform is described. Die-to-database inspection results are shown on a variety of reticles from industry sources; these reticles include standard programmed defect test reticles, as well as advanced optical and EUV product and product-like reticles. Results show high sensitivity and low false and nuisance detections on complex optical reticle designs and small feature size EUV reticles. A direct comparison with the existing industry standard 257nm wavelength inspection system shows measurable sensitivity improvement for small feature sizes
Spin wave based parallel logic operations for binary data coded with domain walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urazuka, Y.; Oyabu, S.; Chen, H.
2014-05-07
We numerically investigate the feasibility of spin wave (SW) based parallel logic operations, where the phase of SW packet (SWP) is exploited as a state variable and the phase shift caused by the interaction with domain wall (DW) is utilized as a logic inversion functionality. A designed functional element consists of parallel ferromagnetic nanowires (6 nm-thick, 36 nm-width, 5120 nm-length, and 200 nm separation) with the perpendicular magnetization and sub-μm scale overlaid conductors. The logic outputs for binary data, coded with the existence (“1”) or absence (“0”) of the DW, are inductively read out from interferometric aspect of the superposed SWPs, one of themmore » propagating through the stored data area. A practical exclusive-or operation, based on 2π periodicity in the phase logic, is demonstrated for the individual nanowire with an order of different output voltage V{sub out}, depending on the logic output for the stored data. The inductive output from the two nanowires exhibits well defined three different signal levels, corresponding to the information distance (Hamming distance) between 2-bit data stored in the multiple nanowires.« less
Results from prototype die-to-database reticle inspection system
NASA Astrophysics Data System (ADS)
Mu, Bo; Dayal, Aditya; Broadbent, Bill; Lim, Phillip; Goonesekera, Arosha; Chen, Chunlin; Yeung, Kevin; Pinto, Becky
2009-03-01
A prototype die-to-database high-resolution reticle defect inspection system has been developed for 32nm and below logic reticles, and 4X Half Pitch (HP) production and 3X HP development memory reticles. These nodes will use predominantly 193nm immersion lithography (with some layers double patterned), although EUV may also be used. Many different reticle types may be used for these generations including: binary (COG, EAPSM), simple tritone, complex tritone, high transmission, dark field alternating (APSM), mask enhancer, CPL, and EUV. Finally, aggressive model based OPC is typically used, which includes many small structures such as jogs, serifs, and SRAF (sub-resolution assist features), accompanied by very small gaps between adjacent structures. The architecture and performance of the prototype inspection system is described. This system is designed to inspect the aforementioned reticle types in die-todatabase mode. Die-to-database inspection results are shown on standard programmed defect test reticles, as well as advanced 32nm logic, and 4X HP and 3X HP memory reticles from industry sources. Direct comparisons with currentgeneration inspection systems show measurable sensitivity improvement and a reduction in false detections.
Top-coatless 193nm positive-tone development immersion resist for logic application
NASA Astrophysics Data System (ADS)
Liu, Lian Cong; Yeh, Tsung Ju; Lin, Yeh-Sheng; Huang, Yu Chin; Kuo, Chien Wen; Huang, Wen Liang; Lin, Chia Hung; Yu, Chun Chi; Hsu, Ray; Wan, I.-Yuan; Lin, Jeff; Im, Kwang-Hwyi; Lim, Hae Jin; Jeon, Hyun K.; Suzuki, Yasuhiro; Xu, Cheng Bai
2015-03-01
In this paper, we summarize our development efforts for a top-coatless 193nm immersion positive tone development (PTD) contact hole (C/H) resist with improved litho and defect performances for logic application specifically with an advance node. The ultimate performance goal was to improve the depth of focus (DoF) margin, mask error enhancement factor (MEEF), critical dimension uniformity (CDU), contact edge roughness (CER), and defect performance. Also, the through pitch CD difference was supposed to be comparable to the previous control resist. Effects of polymer and PAG properties have been evaluated for this purpose. The material properties focused in the evaluation study were polymer activation energy (Ea), polymer solubility differentiated by polymerization process types, and diffusion length (DL) and acidity (pKa) of photoacid generator (PAG). Additionally, the impact of post exposure bake (PEB) temperature was investigated for process condition optimization. As a result of this study, a new resist formulation to satisfy all litho and defect performance was developed and production yield was further improved.
New designs of a complete set of Photonic Crystals logic gates
NASA Astrophysics Data System (ADS)
Hussein, Hussein M. E.; Ali, Tamer A.; Rafat, Nadia H.
2018-03-01
In this paper, we introduce new designs of all-optical OR, AND, XOR, NOT, NOR, NAND and XNOR logic gates based on the interference effect. The designs are built using 2D square lattice Photonic Crystal (PhC) structure of dielectric rods embedded in air background. The lattice constant, a, and the rod radius, r, are designed to achieve maximum operating range of frequencies using the gap map. We use the Plane Wave Expansion (PWE) method to obtain the band structure and the gap map of the proposed designs. The operating wavelengths achieve a wide band range that varies between 1266.9 nm and 1996 nm with center wavelength at 1550 nm. The Finite-Difference Time-Domain (FDTD) method is used to study the field behavior inside the PhC gates. The gates satisfy their truth tables with reasonable power contrast ratio between logic '1' and logic '0'.
NASA Technical Reports Server (NTRS)
Haley, Paul
1991-01-01
The C Language Integrated Production System (CLIPS) cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is also relevant to ongoing problem solving. Goal generation can be mimicked in simple cases using forward chaining. However, such mimicry requires manual coding of additional rules which can assert an inadequate goal representation for every condition in every rule that can have corresponding facts derived by backward chaining. In general, for N rules with an average of M conditions per rule the number of goal generation rules required is on the order of N*M. This is clearly intractable from a program maintenance perspective. We describe the support in Eclipse for backward chaining which it automatically asserts as it checks rule conditions. Important characteristics of this extension are that it does not assert goals which cannot match any rule conditions, that 2 equivalent goals are never asserted, and that goals persist as long as, but no longer than, they remain relevant.
Twin-bit via resistive random access memory in 16 nm FinFET logic technologies
NASA Astrophysics Data System (ADS)
Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung
2018-04-01
A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.
Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges
NASA Astrophysics Data System (ADS)
Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.
2013-04-01
The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.
NASA Astrophysics Data System (ADS)
D'Souza, Noel Michael
Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, "straintronics", involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (˜0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ˜200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.
Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David
2016-07-25
Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.
N7 logic via patterning using templated DSA: implementation aspects
NASA Astrophysics Data System (ADS)
Bekaert, J.; Doise, J.; Gronheid, R.; Ryckaert, J.; Vandenberghe, G.; Fenger, G.; Her, Y. J.; Cao, Y.
2015-07-01
In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). Insertion of DSA for IC fabrication is seriously considered for the 7 nm node. At this node the DSA technology could alleviate costs for multiple patterning and limit the number of masks that would be required per layer. At imec, multiple approaches for inserting DSA into the 7 nm node are considered. One of the most straightforward approaches for implementation would be for via patterning through templated DSA; a grapho-epitaxy flow using cylindrical phase BCP material resulting in contact hole multiplication within a litho-defined pre-pattern. To be implemented for 7 nm node via patterning, not only the appropriate process flow needs to be available, but also DSA-aware mask decomposition is required. In this paper, several aspects of the imec approach for implementing templated DSA will be discussed, including experimental demonstration of density effect mitigation, DSA hole pattern transfer and double DSA patterning, creation of a compact DSA model. Using an actual 7 nm node logic layout, we derive DSA-friendly design rules in a logical way from a lithographer's view point. A concrete assessment is provided on how DSA-friendly design could potentially reduce the number of Via masks for a place-and-routed N7 logic pattern.
Towards a Minimal Architecture for a Printable, Modular, and Robust Sensing Skin
2014-04-27
hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for...the total logic complexity and reduce sensor throughput. The final selection can be made to balance these effects given a specific application. Sensor...Company (TSMC)’s 65-nm GPLUSTC CMOS standard cells. Table II shows the number of gates (standard cells) and flip -flops generated for the given number of
Design of fast signal processing readout front-end electronics implemented in CMOS 40 nm technology
NASA Astrophysics Data System (ADS)
Kleczek, Rafal
2016-12-01
The author presents considerations on the design of fast readout front-end electronics implemented in a CMOS 40 nm technology with an emphasis on the system dead time, noise performance and power dissipation. The designed processing channel consists of a charge sensitive amplifier with different feedback types (Krummenacher, resistive and constant current blocks), a threshold setting block, a discriminator and a counter with logic circuitry. The results of schematic and post-layout simulations with randomly generated input pulses in a time domain according to the Poisson distribution are presented and analyzed. Dead time below 20 ns is possible while keeping noise ENC ≈ 90 e- for a detector capacitance CDET = 160 fF.
Current control of time-averaged magnetization in superparamagnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Bapna, Mukund; Majetich, Sara A.
2017-12-01
This work investigates spin transfer torque control of time-averaged magnetization in a small 20 nm × 60 nm nanomagnet with a low thermal stability factor, Δ ˜ 11. Here, the nanomagnet is a part of a magnetic tunnel junction and fluctuates between parallel and anti-parallel magnetization states with respect to the magnetization of the reference layer generating a telegraph signal in the current versus time measurements. The response of the nanomagnet to an external field is first analyzed to characterize the magnetic properties. We then show that the time-averaged magnetization in the telegraph signal can be fully controlled between +1 and -1 by voltage over a small range of 0.25 V. NIST Statistical Test Suite analysis is performed for testing true randomness of the telegraph signal that the device generates when operated at near critical current values for spin transfer torque. Utilizing the probabilistic nature of the telegraph signal generated at two different voltages, a prototype demonstration is shown for multiplication of two numbers using an artificial AND logic gate.
A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.
Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna
2015-08-01
A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm.
Patterning and templating for nanoelectronics.
Galatsis, Kosmas; Wang, Kang L; Ozkan, Mihri; Ozkan, Cengiz S; Huang, Yu; Chang, Jane P; Monbouquette, Harold G; Chen, Yong; Nealey, Paul; Botros, Youssry
2010-02-09
The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.
de Chantal, Pier-Luc; Markovits, Henry
2017-02-01
There is little consensus about the nature of logical reasoning and, equally important, about how it develops. To address this, we looked at the early origins of deductive reasoning in preschool children. We examined the contribution of two factors to the reasoning ability of very young children: inhibitory capacity and the capacity to generate alternative ideas. In a first study, a total of 32 preschool children were all given generation, inhibition, and logical reasoning measures. Logical reasoning was measured using knowledge-based premises such as "All dogs have legs," and two different inferences: modus ponens and affirmation of the consequent. Results revealed that correctly reasoning with both inferences is not related to the measure of inhibition, but is rather related to the capacity to generate alternative ideas. In a second study, 32 preschool children were given either the generation or the inhibition task before the logical reasoning measure. Results showed that receiving the generation task beforehand significantly improved logical reasoning compared to the inhibition task given beforehand. Overall, these results provide evidence for the greater importance of idea generation in the early development of logical reasoning.
Approaching soft X-ray wavelengths in nanomagnet-based microwave technology
Yu, Haiming; d' Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D.
2016-01-01
Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic. PMID:27063401
Negative-tone imaging with EUV exposure toward 13nm hp
NASA Astrophysics Data System (ADS)
Tsubaki, Hideaki; Nihashi, Wataru; Tsuchihashi, Toru; Yamamoto, Kei; Goto, Takahiro
2016-03-01
Negative-tone imaging (NTI) with EUV exposure has major advantages with respect to line-width roughness (LWR) and resolution due in part to polymer swelling and favorable dissolution mechanics. In NTI process, both resist and organic solvents play important roles in determining lithography performances. The present study describes novel chemically amplified resist materials based on NTI technology with EUV using a specific organic solvents. Lithographic performances of NTI process were described in this paper under exposures using ASML NXE:3300 EUV scanner at imec. It is emphasized that 14 nm hp was nicely resolved under exposure dose of 37 mJ/cm2 without any bridge and collapse, which are attributed to the low swelling character of NTI process. Although 13 nm hp resolution was potentially obtained, a pattern collapse still restricts its resolution in case coating resist film thickness is 40 nm. Dark mask limitation due mainly to mask defectivity issue makes NTI with EUV favorable approach for printing block mask to produce logic circuit. A good resolution of CD-X 21 nm/CD-Y 32 nm was obtained for block mask pattern using NTI with usable process window and dose of 49 mJ/cm2. Minimum resolution now reaches CD-X 17 nm / CD-Y 23 nm for the block. A 21 nm block mask resolution was not affected by exposure dose and explored toward low dose down to 18 mJ/cm2 by reducing quencher loading. In addition, there was a negligible amount of increase in LCDU for isolated dot pattern when decreasing exposure dose from 66 mJ/cm2 to 24 mJ/cm2. On the other hand, there appeared tradeoff relationship between LCDU and dose for dense dot pattern, indicating photon-shot noise restriction, but strong dependency on patterning features. Design to improve acid generation efficiency was described based on acid generation mechanism in traditional chemically amplified materials which contains photo-acid generator (PAG) and polymer. Conventional EUV absorber comprises of organic compounds is expected to have 1.6 times higher EUV absorption than polyhydroxystyrene based on calculation. However, observed value of acid amount was comparable or significantly worse than polyhydroxystyrene.
Results from a new die-to-database reticle inspection platform
NASA Astrophysics Data System (ADS)
Broadbent, William; Xiong, Yalin; Giusti, Michael; Walsh, Robert; Dayal, Aditya
2007-03-01
A new die-to-database high-resolution reticle defect inspection system has been developed for the 45nm logic node and extendable to the 32nm node (also the comparable memory nodes). These nodes will use predominantly 193nm immersion lithography although EUV may also be used. According to recent surveys, the predominant reticle types for the 45nm node are 6% simple tri-tone and COG. Other advanced reticle types may also be used for these nodes including: dark field alternating, Mask Enhancer, complex tri-tone, high transmission, CPL, EUV, etc. Finally, aggressive model based OPC will typically be used which will include many small structures such as jogs, serifs, and SRAF (sub-resolution assist features) with accompanying very small gaps between adjacent structures. The current generation of inspection systems is inadequate to meet these requirements. The architecture and performance of a new die-to-database inspection system is described. This new system is designed to inspect the aforementioned reticle types in die-to-database and die-to-die modes. Recent results from internal testing of the prototype systems are shown. The results include standard programmed defect test reticles and advanced 45nm and 32nm node reticles from industry sources. The results show high sensitivity and low false detections being achieved.
Radiation tolerant combinational logic cell
NASA Technical Reports Server (NTRS)
Maki, Gary R. (Inventor); Whitaker, Sterling (Inventor); Gambles, Jody W. (Inventor)
2009-01-01
A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.
Electro-optical logic gates based on graphene-silicon waveguides
NASA Astrophysics Data System (ADS)
Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi
2016-08-01
In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.
Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo
2017-11-28
Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.
Synthesizing genetic sequential logic circuit with clock pulse generator.
Chuang, Chia-Hua; Lin, Chun-Liang
2014-05-28
Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.
Partial hyperbolicity and attracting regions in 3-dimensional manifolds
NASA Astrophysics Data System (ADS)
Potrie, Rafael
The need for reliable, fiber-based sources of entangled and paired photons has intensified in recent years because of potential uses in optical quantum communication and computing. In particular, indistinguishable photon sources are an inherent part of several quantum communication protocols and are needed to establish the viability of quantum communication networks. This thesis is centered around the development of such sources at telecommunication-band wavelengths. In this thesis, we describe experiments on entangled photon generation and the creation of quantum logic gates in the C-band, and on photon indistinguishability in the O-band. These experiments utilize the four-wave mixing process in fiber which occurs as a result of the Kerr nonlinearity, to create paired photons. To begin, we report the development of a source of 1550-nm polarization entangled photons in fiber. We then interface this source with a quantum Controlled-NOT gate, which is a universal quantum logic gate. We set experimental bounds on the process fidelity of the Controlled-NOT gate. Next, we report a demonstration of quantum interference between 1310-nm photons produced in independent sources. We demonstrate high quantum interference visibility, a signature of quantum indistinguishability, while using distinguishable pump photons. Together, these efforts constitute preliminary steps toward establishing the viability of fiber-based quantum communication, which will allow us to utilize existing infrastructure for implementing quantum communication protocols.
Bird's-eye view on noise-based logic.
Kish, Laszlo B; Granqvist, Claes G; Horvath, Tamas; Klappenecker, Andreas; Wen, He; Bezrukov, Sergey M
2014-01-01
Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as ( i ) What does practical determinism mean? ( ii ) Is noise-based logic a Turing machine? ( iii ) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, ( iv ) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.
Bird's-eye view on noise-based logic
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Granqvist, Claes G.; Horvath, Tamas; Klappenecker, Andreas; Wen, He; Bezrukov, Sergey M.
2014-09-01
Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as (i) What does practical determinism mean? (ii) Is noise-based logic a Turing machine? (iii) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, (iv) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.
Multi-input and binary reproducible, high bandwidth floating point adder in a collective network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip; Steinmacher-Burow, Burkhard
2016-11-15
To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.
Synthesizing genetic sequential logic circuit with clock pulse generator
2014-01-01
Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665
Reconstruction of Sea State One
1988-02-01
this section only a general overview of the wave computer system will be offered. A more comprehensive treatment of this subject is available in Appendix...1) Sync Strip and Threshold Processing Card (2) Pulse Generation Logic Card (3) X Vector Logic Card (4) Y Vector Logic Card (5) Blanking Interval...output by this comparator when the threshold is crossed, which shall be referred to as threshold crossing (THC). (2) PULSE GENERATION LOGIC CARD Turning
Dual Interlocked Logic for Single-Event Transient Mitigation
2017-03-01
SPICE simulation and fault-injection analysis. Exemplar SPICE simulations have been performed in a 32nm partially- depleted silicon-on-insulator...in this work. The model has been validated at the 32nm SOI technology node with extensive heavy-ion data [7]. For the SPICE simulations, three
C code generation from Petri-net-based logic controller specification
NASA Astrophysics Data System (ADS)
Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei
2017-08-01
The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.
Topological computation based on direct magnetic logic communication.
Zhang, Shilei; Baker, Alexander A; Komineas, Stavros; Hesjedal, Thorsten
2015-10-28
Non-uniform magnetic domains with non-trivial topology, such as vortices and skyrmions, are proposed as superior state variables for nonvolatile information storage. So far, the possibility of logic operations using topological objects has not been considered. Here, we demonstrate numerically that the topology of the system plays a significant role for its dynamics, using the example of vortex-antivortex pairs in a planar ferromagnetic film. Utilising the dynamical properties and geometrical confinement, direct logic communication between the topological memory carriers is realised. This way, no additional magnetic-to-electrical conversion is required. More importantly, the information carriers can spontaneously travel up to ~300 nm, for which no spin-polarised current is required. The derived logic scheme enables topological spintronics, which can be integrated into large-scale memory and logic networks capable of complex computations.
Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig
2013-05-01
ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.
A hybrid nanomemristor/transistor logic circuit capable of self-programming
Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A. A.; Wu, Wei; Stewart, Duncan R.; Williams, R. Stanley
2009-01-01
Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing. PMID:19171903
A hybrid nanomemristor/transistor logic circuit capable of self-programming.
Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A A; Wu, Wei; Stewart, Duncan R; Williams, R Stanley
2009-02-10
Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing.
Multi-input and binary reproducible, high bandwidth floating point adder in a collective network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Eisley, Noel A; Heidelberger, Philip
To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to themore » collective logic device and receive outputs only once from the collective logic device.« less
Magnetic tunnel junction based spintronic logic devices
NASA Astrophysics Data System (ADS)
Lyle, Andrew Paul
The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of Magnetic Quantum Cellular Automata (MQCA). MQCA has the potential to be thousands of times more energy efficient than CMOS technology. While interesting, these systems are academic unless they can be interfaced into current technologies. This dissertation pushed past a major hurdle by experimentally demonstrating a spintronic input/output (I/O) interface for the magnetostatically coupled nanomagnets by incorporating MTJs. This spintronic interface allows individual nanomagnets to be programmed using spin transfer torque and read using magneto resistance structure. Additionally the spintronic interface allows statistical data on the reliability of the magnetic coupling utilized for data propagation to be easily measured. The integration of spintronics and MQCA for an electrical interface to achieve a magnetic logic device with low power creates a competitive post-CMOS logic device. The final logic architecture that was studied used MTJs to compute logic functions and magnetic domain walls to communicate between gates. Simulations were used to optimize the design of this architecture. Spin transfer torque was used to compute logic function at each MTJ gate and was used to drive the domain walls. The design demonstrated that multiple nanochannels could be connected to each MTJ to realize fan-out from the logic gates. As a result this logic scheme eliminates the need for intermediate reads and conversions to pass information from one logic gate to another.
Processor register error correction management
Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.
2016-12-27
Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.
NASA Astrophysics Data System (ADS)
Mailfert, Julien; Van de Kerkhove, Jeroen; De Bisschop, Peter; De Meyer, Kristin
2014-03-01
A Metal1-layer (M1) patterning study is conducted on 20nm node (N20) for random-logic applications. We quantified the printability performance on our test vehicle for N20, corresponding to Poly/M1 pitches of 90/64nm, and with a selected minimum M1 gap size of 70nm. The Metal1 layer is patterned with 193nm immersion lithography (193i) using Negative Tone Developer (NTD) resist, and a double-patterning Litho-Etch-Litho-Etch (LELE) process. Our study is based on Logic test blocks that we OPCed with a combination of calibrated models for litho and for etch. We report the Overlapping Process Window (OPW), based on a selection of test structures measured after-etch. We find that most of the OPW limiting structures are EOL (End-of-Line) configurations. Further analysis of these individual OPW limiters will reveal that they belong to different types, such as Resist 3D (R3D) and Mask 3D (M3D) sensitive structures, limiters related to OPC (Optical Proximity Corrections) options such as assist placement, or the choice of CD metrics and tolerances for calculation of the process windows itself. To guide this investigation, we will consider a `reference OPC' case to be compared with other solutions. In addition, rigorous simulations and OPC verifications will complete the after-etch measurements to help us to validate our experimental findings.
Multi-bit operations in vertical spintronic shift registers
NASA Astrophysics Data System (ADS)
Lavrijsen, Reinoud; Petit, Dorothée C. M. C.; Fernández-Pacheco, Amalio; Lee, JiHyun; Mansell, Mansell; Cowburn, Russell P.
2014-03-01
Spintronic devices have in general demonstrated the feasibility of non-volatile memory storage and simple Boolean logic operations. Modern microprocessors have one further frequently used digital operation: bit-wise operations on multiple bits simultaneously. Such operations are important for binary multiplication and division and in efficient microprocessor architectures such as reduced instruction set computing (RISC). In this paper we show a four-stage vertical serial shift register made from RKKY coupled ultrathin (0.9 nm) perpendicularly magnetised layers into which a 3-bit data word is injected. The entire four stage shift register occupies a total length (thickness) of only 16 nm. We show how under the action of an externally applied magnetic field bits can be shifted together as a word and then manipulated individually, including being brought together to perform logic operations. This is one of the highest level demonstrations of logic operation ever performed on data in the magnetic state and brings closer the possibility of ultrahigh density all-magnetic microprocessors.
Multi-bit operations in vertical spintronic shift registers.
Lavrijsen, Reinoud; Petit, Dorothée C M C; Fernández-Pacheco, Amalio; Lee, Jihyun; Mansell, Mansell; Cowburn, Russell P
2014-03-14
Spintronic devices have in general demonstrated the feasibility of non-volatile memory storage and simple Boolean logic operations. Modern microprocessors have one further frequently used digital operation: bit-wise operations on multiple bits simultaneously. Such operations are important for binary multiplication and division and in efficient microprocessor architectures such as reduced instruction set computing (RISC). In this paper we show a four-stage vertical serial shift register made from RKKY coupled ultrathin (0.9 nm) perpendicularly magnetised layers into which a 3-bit data word is injected. The entire four stage shift register occupies a total length (thickness) of only 16 nm. We show how under the action of an externally applied magnetic field bits can be shifted together as a word and then manipulated individually, including being brought together to perform logic operations. This is one of the highest level demonstrations of logic operation ever performed on data in the magnetic state and brings closer the possibility of ultrahigh density all-magnetic microprocessors.
Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems
2014-08-31
a Gel Logic System using UV transillumination and a 535 nm optical filter ( Kodak ). The positive control PCR was performed by taking an aliquot of the...described in the section above. Samples were excited by a UV transilluminator ( Kodak ). For imaging, a 520 ± 10 nm bandpass filter (Edmund Optics) was
High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes
NASA Astrophysics Data System (ADS)
Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried
2017-09-01
As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.
High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes.
Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried
2017-09-01
As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.
Field results from a new die-to-database reticle inspection platform
NASA Astrophysics Data System (ADS)
Broadbent, William; Yokoyama, Ichiro; Yu, Paul; Seki, Kazunori; Nomura, Ryohei; Schmalfuss, Heiko; Heumann, Jan; Sier, Jean-Paul
2007-05-01
A new die-to-database high-resolution reticle defect inspection platform, TeraScanHR, has been developed for advanced production use with the 45nm logic node, and extendable for development use with the 32nm node (also the comparable memory nodes). These nodes will use predominantly ArF immersion lithography although EUV may also be used. According to recent surveys, the predominant reticle types for the 45nm node are 6% simple tri-tone and COG. Other advanced reticle types may also be used for these nodes including: dark field alternating, Mask Enhancer, complex tri-tone, high transmission, CPL, etc. Finally, aggressive model based OPC will typically be used which will include many small structures such as jogs, serifs, and SRAF (sub-resolution assist features) with accompanying very small gaps between adjacent structures. The current generation of inspection systems is inadequate to meet these requirements. The architecture and performance of the new TeraScanHR reticle inspection platform is described. This new platform is designed to inspect the aforementioned reticle types in die-to-database and die-to-die modes using both transmitted and reflected illumination. Recent results from field testing at two of the three beta sites are shown (Toppan Printing in Japan and the Advanced Mask Technology Center in Germany). The results include applicable programmed defect test reticles and advanced 45nm product reticles (also comparable memory reticles). The results show high sensitivity and low false detections being achieved. The platform can also be configured for the current 65nm, 90nm, and 130nm nodes.
Microeconomics of process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.
Integrated circuit test-port architecture and method and apparatus of test-port generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teifel, John
A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. Themore » computer then completes the generation of the RTL code.« less
III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications
NASA Astrophysics Data System (ADS)
Huang, Cheng-Ying
As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing BTBT leakage. With further replacement of raised InGaAs spacers by recessed, doping-graded InP spacers at high field regions, BTBT leakage can be reduced ~100:1. Using the above-mentioned techniques, record high performance InAs MOSFETs with a 2.7 nm InAs channel and a ZrO2 gate dielectric were demonstrated with Ion = 500 microA/microm at Ioff = 100 nA/microm and VDS =0.5 V, showing the highest on-state performance among all the III-V MOSFETs and comparable performance to 22 nm Si FinFETs. Record low leakage InGaAs MOSFETs with recessed InP source/drain spacers were also demonstrated with minimum I off = 60 pA/microm at 30 nm-Lg , and Ion = 150 microA/microm at I off = 1 nA/microm and VDS =0.5 V. This recessed InP source/drain spacer technique improves device scalability and enables III-V MOSFETs for low standby power logic applications. Furthermore, ultra-thin InAs channel MOSFETs were fabricated on Si substrates, exhibiting high yield and high transconductance gm ~2.0 mS/microm at 20 nm- Lg and VDS =0.5 V. With further scaling of gate lengths, a 12 nm-Lg III-V MOSFET has shown maximum Ion/Ioff ratio ~8.3x105 , confirming that III-V MOSFETs are scalable to sub-10-nm technology nodes.
A Cu2+-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate
NASA Astrophysics Data System (ADS)
Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun
2015-06-01
A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu2+ over other metal ions in acetonitrile. Upon addition of Cu2+ ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu2+, the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu2+ can be restored with the introduction of EDTA or S2-. Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu2+ and S2- as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated.
Fegade, Umesh A; Sahoo, Suban K; Singh, Amanpreet; Singh, Narinder; Attarde, Sanjay B; Kuwar, Anil S
2015-05-04
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu(2+) and Zn(2+) in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn(2+) and Cu(2+) ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu(2+) and Zn(2+) ions, respectively. Further, we have effectively utilized the two metal ions (Cu(2+) and Zn(2+)) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm. Copyright © 2015 Elsevier B.V. All rights reserved.
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...
Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits
Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2014-01-01
Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits. PMID:24463956
Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.
Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2014-01-27
Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.
A method for feature selection of APT samples based on entropy
NASA Astrophysics Data System (ADS)
Du, Zhenyu; Li, Yihong; Hu, Jinsong
2018-05-01
By studying the known APT attack events deeply, this paper propose a feature selection method of APT sample and a logic expression generation algorithm IOCG (Indicator of Compromise Generate). The algorithm can automatically generate machine readable IOCs (Indicator of Compromise), to solve the existing IOCs logical relationship is fixed, the number of logical items unchanged, large scale and cannot generate a sample of the limitations of the expression. At the same time, it can reduce the redundancy and useless APT sample processing time consumption, and improve the sharing rate of information analysis, and actively respond to complex and volatile APT attack situation. The samples were divided into experimental set and training set, and then the algorithm was used to generate the logical expression of the training set with the IOC_ Aware plug-in. The contrast expression itself was different from the detection result. The experimental results show that the algorithm is effective and can improve the detection effect.
Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure
Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.
2016-01-01
An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036
Selected area growth integrated wavelength converter based on PD-EAM optical logic gate
NASA Astrophysics Data System (ADS)
Bin, Niu; Jifang, Qiu; Daibing, Zhou; Can, Zhang; Song, Liang; Dan, Lu; Lingjuan, Zhao; Jian, Wu; Wei, Wang
2014-09-01
A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.
Test aspects of the JPL Viterbi decoder
NASA Technical Reports Server (NTRS)
Breuer, M. A.
1989-01-01
The generation of test vectors and design-for-test aspects of the Jet Propulsion Laboratory (JPL) Very Large Scale Integration (VLSI) Viterbi decoder chip is discussed. Each processor integrated circuit (IC) contains over 20,000 gates. To achieve a high degree of testability, a scan architecture is employed. The logic has been partitioned so that very few test vectors are required to test the entire chip. In addition, since several blocks of logic are replicated numerous times on this chip, test vectors need only be generated for each block, rather than for the entire circuit. These unique blocks of logic have been identified and test sets generated for them. The approach employed for testing was to use pseudo-exhaustive test vectors whenever feasible. That is, each cone of logid is tested exhaustively. Using this approach, no detailed logic design or fault model is required. All faults which modify the function of a block of combinational logic are detected, such as all irredundant single and multiple stuck-at faults.
NASA Astrophysics Data System (ADS)
Salerno, Antonio; de la Fuente, Isabel; Hsu, Zack; Tai, Alan; Chang, Hammer; McNamara, Elliott; Cramer, Hugo; Li, Daoping
2018-03-01
In next generation Logic devices, overlay control requirements shrink to sub 2.5nm level on-product overlay. Historically on-product overlay has been defined by the overlay capability of after-develop in-scribe targets. However, due to design and dimension, the after development metrology targets are not completely representative for the final overlay of the device. In addition, they are confined to the scribe-lane area, which limits the sampling possibilities. To address these two issues, metrology on structures matching the device structure and which can be sampled with high density across the device is required. Conventional after-etch CDSEM techniques on logic devices present difficulties in discerning the layers of interest, potential destructive charging effects and finally, they are limited by the long measurement times[1] [2] [3] . All together, limit the sampling densities and making CDSEM less attractive for control applications. Optical metrology can overcome most of these limitations. Such measurement, however, does require repetitive structures. This requirement is not fulfilled by logic devices, as the features vary in pitch and CD over the exposure field. The solution is to use small targets, with a maximum pad size of 5x5um2 , which can easily be placed in the logic cell area. These targets share the process and architecture of the device features of interest, but with a modified design that replicates as close as possible the device layout, allowing for in-device metrology for both CD and Overlay. This solution enables measuring closer to the actual product feature location and, not being limited to scribe-lanes, it opens the possibility of higher-density sampling schemes across the field. In summary, these targets become the facilitator of in-device metrology (IDM), that is, enabling the measurements both in-device Overlay and the CD parameters of interest and can deliver accurate, high-throughput, dense and after-etch measurements for Logic. Overlay improvements derived from a high-densely sampled Overlay map measured with 5x5 um2 In Device Metrology (IDM) targets were investigated on a customer Logic application. In this work we present both the main design aspects of the 5x5 um2 IDM targets, as well as the results on the improved Overlay performance.
Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing
2017-09-19
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
A Single-Material Logical Junction Based on 2D Crystal PdS2.
Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas
2016-02-03
A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Cu²⁺-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate.
Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun
2015-06-15
A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu(2+) over other metal ions in acetonitrile. Upon addition of Cu(2+) ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu(2+), the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu(2+) can be restored with the introduction of EDTA or S(2-). Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu(2+) and S(2-) as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated. Copyright © 2015 Elsevier B.V. All rights reserved.
Fuzzy Logic as a Tool for Assessing Students' Knowledge and Skills
ERIC Educational Resources Information Center
Voskoglou, Michael Gr.
2013-01-01
Fuzzy logic, which is based on fuzzy sets theory introduced by Zadeh in 1965, provides a rich and meaningful addition to standard logic. The applications which may be generated from or adapted to fuzzy logic are wide-ranging and provide the opportunity for modeling under conditions which are imprecisely defined. In this article we develop a fuzzy…
Estimating Single-Event Logic Cross Sections in Advanced Technologies
NASA Astrophysics Data System (ADS)
Harrington, R. C.; Kauppila, J. S.; Warren, K. M.; Chen, Y. P.; Maharrey, J. A.; Haeffner, T. D.; Loveless, T. D.; Bhuva, B. L.; Bounasser, M.; Lilja, K.; Massengill, L. W.
2017-08-01
Reliable estimation of logic single-event upset (SEU) cross section is becoming increasingly important for predicting the overall soft error rate. As technology scales and single-event transient (SET) pulse widths shrink to widths on the order of the setup-and-hold time of flip-flops, the probability of latching an SET as an SEU must be reevaluated. In this paper, previous assumptions about the relationship of SET pulsewidth to the probability of latching an SET are reconsidered and a model for transient latching probability has been developed for advanced technologies. A method using the improved transient latching probability and SET data is used to predict logic SEU cross section. The presented model has been used to estimate combinational logic SEU cross sections in 32-nm partially depleted silicon-on-insulator (SOI) technology given experimental heavy-ion SET data. Experimental SEU data show good agreement with the model presented in this paper.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
Linear {GLP}-algebras and their elementary theories
NASA Astrophysics Data System (ADS)
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
Radiation Status of Sub-65 nm Electronics
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2011-01-01
Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.
Improved control of multi-layer overlay in advanced 8nm logic nodes
NASA Astrophysics Data System (ADS)
Kim, Tae-Sun; Park, Young-Sik; Kim, Yong-Chul; Kim, Byoung-Hoon; Lee, Ji-Hun; Kwak, Min-Keun; Choi, Sung-Won; Park, Joon-Soo; Yang, Hong-Cheon; Meixner, Philipp; Lee, Dong-jin; Kwon, Oh-Sung; Kim, Hyun-Su; Park, Jin-Tae; Lee, Sung-Min; Grouwstra, Cedric; van der Meijden, Vidar; El Kodadi, Mohamed; Kim, Chris; Guittet, Pierre-Yves; Nooitgedagt, Tjitte
2018-03-01
With the increase of litho-etch steps the industry requires metrology to deliver solutions to improve throughput of overlay measurements without impacting accuracy. ASML's YieldStar 350E is capable of utilizing targets, which can measure the overlay of multiple layers simultaneously. For the work discussed in this paper, an evaluation is performed on Logic product wafers using both single-layer and multi-layer (MLT) quad type targets (able to capture up to four litho-etch steps). Different target types were compared in terms of Move-and-Acquire (MA) time, residual and matching to SEM. Using the MLT targets, an MA time improvement of 56% was demonstrated on the singlelayer. The maximum delta between the overlay residual among the YieldStar targets after applying an high order model was shown to be 0.05 nm. In comparison to after-etch overlay, the correlation of the MLT target was determined with an R2 > 0.95 using a set-get wafer with induced 10 nm overlay range. On a normal production wafer, the correlation was R2 > 0.67, which is high on a wafer without induced overlay. The comparison of modeling parameters between SEM and MLT targets shows a good match (< 0.16nm) as well.
Fundamental physics issues of multilevel logic in developing a parallel processor.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Anirban; Miki, Kazushi
2007-06-01
In the last century, On and Off physical switches, were equated with two decisions 0 and 1 to express every information in terms of binary digits and physically realize it in terms of switches connected in a circuit. Apart from memory-density increase significantly, more possible choices in particular space enables pattern-logic a reality, and manipulation of pattern would allow controlling logic, generating a new kind of processor. Neumann's computer is based on sequential logic, processing bits one by one. But as pattern-logic is generated on a surface, viewing whole pattern at a time is a truly parallel processing. Following Neumann's and Shannons fundamental thermodynamical approaches we have built compatible model based on series of single molecule based multibit logic systems of 4-12 bits in an UHV-STM. On their monolayer multilevel communication and pattern formation is experimentally verified. Furthermore, the developed intelligent monolayer is trained by Artificial Neural Network. Therefore fundamental weak interactions for the building of truly parallel processor are explored here physically and theoretically.
Integrated circuits and logic operations based on single-layer MoS2.
Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras
2011-12-27
Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.
The fundamental downscaling limit of field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamaluy, Denis, E-mail: mamaluy@sandia.gov; Gao, Xujiao
2015-05-11
We predict that within next 15 years a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs) will be reached. Specifically, we show that at room temperatures all FETs, irrespective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths. These findings were confirmed by performing quantum mechanical transport simulations for a variety of 6-, 5-, and 4-nm gate length Si devices, optimized to satisfy high-performance logic specifications by ITRS. Different channel materials and wafer/channel orientations have also been studied; it is found that altering channel-source-drain materials achieves only insignificant increasemore » in switching energy, which overall cannot sufficiently delay the approaching downscaling limit. Alternative possibilities are discussed to continue the increase of logic element densities for room temperature operation below the said limit.« less
Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu; Liu, Guohua
2017-04-01
Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH=7.0 phosphate buffered saline (PBS) solution without 365nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH=5.0 PBS) and 365nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. Copyright © 2016 Elsevier B.V. All rights reserved.
The fundamental downscaling limit of field effect transistors
Mamaluy, Denis; Gao, Xujiao
2015-05-12
We predict that within next 15 years a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs) will be reached. Specifically, we show that at room temperatures all FETs, irrespective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths. These findings were confirmed by performing quantum mechanical transport simulations for a variety of 6-, 5-, and 4-nm gate length Si devices, optimized to satisfy high-performance logic specifications by ITRS. Different channel materials and wafer/channel orientations have also been studied; it is found that altering channel-source-drain materials achieves only insignificant increasemore » in switching energy, which overall cannot sufficiently delay the approaching downscaling limit. Alternative possibilities are discussed to continue the increase of logic element densities for room temperature operation below the said limit.« less
System on chip module configured for event-driven architecture
Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.
2017-10-17
A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.
Programmable pulse generator based on programmable logic and direct digital synthesis.
Suchenek, M; Starecki, T
2012-12-01
The paper presents a new approach of pulse generation which results in both wide range tunability and high accuracy of the output pulses. The concept is based on the use of programmable logic and direct digital synthesis. The programmable logic works as a set of programmable counters, while direct digital synthesis (DDS) as the clock source. Use of DDS as the clock source results in stability of the output pulses comparable to the stability of crystal oscillators and quasi-continuous tuning of the output frequency.
The Application of Logic Programming to Communication Education.
ERIC Educational Resources Information Center
Sanford, David L.
Recommending that communication students be required to learn to use computers not merely as number crunchers, word processors, data bases, and graphics generators, but also as logical inference makers, this paper examines the recently developed technology of logical programing in computer languages. It presents two syllogisms and shows how they…
NASA Technical Reports Server (NTRS)
Pitts, E. R.
1981-01-01
Program converts cell-net data into logic-gate models for use in test and simulation programs. Input consists of either Place, Route, and Fold (PRF) or Place-and-Route-in-Two-Dimensions (PR2D) layout data deck. Output consists of either Test Pattern Generator (TPG) or Logic-Simulation (LOGSIM) logic circuitry data deck. Designer needs to build only logic-gate-model circuit description since program acts as translator. Language is FORTRAN IV.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
ERIC Educational Resources Information Center
Thoma, Michael
2017-01-01
This paper presents an approach to the critical analysis of textbook knowledge, which, working from a discourse theory perspective (based on the work of Foucault), refers to the performative nature of language. The critical potential of the approach derives from an analysis of knowledge-generating logics, which produce particular images of reality…
Method and apparatus for controlling multiple motors
Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.
1987-01-01
A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.
Recent Trends in Spintronics-Based Nanomagnetic Logic
NASA Astrophysics Data System (ADS)
Das, Jayita; Alam, Syed M.; Bhanja, Sanjukta
2014-09-01
With the growing concerns of standby power in sub-100-nm CMOS technologies, alternative computing techniques and memory technologies are explored. Spin transfer torque magnetoresistive RAM (STT-MRAM) is one such nonvolatile memory relying on magnetic tunnel junctions (MTJs) to store information. It uses spin transfer torque to write information and magnetoresistance to read information. In 2012, Everspin Technologies, Inc. commercialized the first 64Mbit Spin Torque MRAM. On the computing end, nanomagnetic logic (NML) is a promising technique with zero leakage and high data retention. In 2000, Cowburn and Welland first demonstrated its potential in logic and information propagation through magnetostatic interaction in a chain of single domain circular nanomagnetic dots of Supermalloy (Ni80Fe14Mo5X1, X is other metals). In 2006, Imre et al. demonstrated wires and majority gates followed by coplanar cross wire systems demonstration in 2010 by Pulecio et al. Since 2004 researchers have also investigated the potential of MTJs in logic. More recently with dipolar coupling between MTJs demonstrated in 2012, logic-in-memory architecture with STT-MRAM have been investigated. The architecture borrows the computing concept from NML and read and write style from MRAM. The architecture can switch its operation between logic and memory modes with clock as classifier. Further through logic partitioning between MTJ and CMOS plane, a significant performance boost has been observed in basic computing blocks within the architecture. In this work, we have explored the developments in NML, in MTJs and more recent developments in hybrid MTJ/CMOS logic-in-memory architecture and its unique logic partitioning capability.
A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration
NASA Astrophysics Data System (ADS)
Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves
2011-07-01
An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications.
Automated ILA design for synchronous sequential circuits
NASA Technical Reports Server (NTRS)
Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.
1991-01-01
An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.
NASA Astrophysics Data System (ADS)
Glasser, Joshua; Pratt, Tim
2008-10-01
Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.
ILT optimization of EUV masks for sub-7nm lithography
NASA Astrophysics Data System (ADS)
Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin
2017-06-01
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
LSI logic for phase-control rectifiers
NASA Technical Reports Server (NTRS)
Dolland, C.
1980-01-01
Signals for controlling phase-controlled rectifier circuit are generated by combinatorial logic than can be implemented in large-scale integration (LSI). LSI circuit saves space, weight, and assembly time compared to previous controls that employ one-shot multivibrators, latches, and capacitors. LSI logic functions by sensing three phases of ac power source and by comparing actual currents with intended currents.
Computer Aided Wirewrap Interconnect.
1980-11-01
ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through
Fu, Zhen-Hai; Yan, Lu-Bin; Zhang, Xiaolong; Zhu, Fan-Fan; Han, Xin-Long; Fang, Jianguo; Wang, Ya-Wen; Peng, Yu
2017-05-16
Relay recognition of copper(ii) ions and biothiols via a fluorescence "on-off-on" cascade was designed and realized as a new sequential combination of cations and small molecules. Probe 1 bearing a fluorescein skeleton was thus synthesized, which performed well in 100% HEPES buffer (pH = 7.0) solution, as a highly sensitive, selective fluorescence sensor for Cu 2+ . The limit of detection (LOD, 0.017 ppm) was obtained, and this value is much lower than 1.3 ppm, allowed by US EPA. The 1 : 1 complex generated from fast sensing of Cu 2+ when excited at 491 nm, showed good relay recognition for biothiols (i.e., Cys, Hcy and GSH with low detection limits of 0.12 μM, 0.036 μM and 0.024 μM, respectively) via remarkable fluorescence enhancement. The origin of this relay process was disclosed through ESI-MS and corresponding density functional theory (DFT) computations. Notably, probe 1 can be utilized for the construction of a molecular logic gate with the IMPLICATION function by using the above fluorescence changes. Moreover, this relay recognition was also applied to HepG2 cell imaging successfully.
Enzyme-Based Logic Gates and Networks with Output Signals Analyzed by Various Methods.
Katz, Evgeny
2017-07-05
The paper overviews various methods that are used for the analysis of output signals generated by enzyme-based logic systems. The considered methods include optical techniques (optical absorbance, fluorescence spectroscopy, surface plasmon resonance), electrochemical techniques (cyclic voltammetry, potentiometry, impedance spectroscopy, conductivity measurements, use of field effect transistor devices, pH measurements), and various mechanoelectronic methods (using atomic force microscope, quartz crystal microbalance). Although each of the methods is well known for various bioanalytical applications, their use in combination with the biomolecular logic systems is rather new and sometimes not trivial. Many of the discussed methods have been combined with the use of signal-responsive materials to transduce and amplify biomolecular signals generated by the logic operations. Interfacing of biocomputing logic systems with electronics and "smart" signal-responsive materials allows logic operations be extended to actuation functions; for example, stimulating molecular release and switchable features of bioelectronic devices, such as biofuel cells. The purpose of this review article is to emphasize the broad variability of the bioanalytical systems applied for signal transduction in biocomputing processes. All bioanalytical systems discussed in the article are exemplified with specific logic gates and multi-gate networks realized with enzyme-based biocatalytic cascades. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications
NASA Astrophysics Data System (ADS)
Arcamone, Julien; Dupré, Cécilia; Arndt, Grégory; Colinet, Eric; Hentz, Sébastien; Ollier, Eric; Duraffourg, Laurent
2014-10-01
This work reports on top-down nanoelectromechanical resonators, which are among the smallest resonators listed in the literature. To overcome the fact that their electromechanical transduction is intrinsically very challenging due to their very high frequency (100 MHz) and ultimate size (each resonator is a 1.2 μm long, 100 nm wide, 20 nm thick silicon beam with 100 nm long and 30 nm wide piezoresistive lateral nanowire gauges), they have been monolithically integrated with an advanced fully depleted SOI CMOS technology. By advantageously combining the unique benefits of nanomechanics and nanoelectronics, this hybrid NEMS-CMOS device paves the way for novel breakthrough applications, such as NEMS-based mass spectrometry or hybrid NEMS/CMOS logic, which cannot be fully implemented without this association.
Implementation of trinary logic in a polarization encoded optical shadow-casting scheme.
Rizvi, R A; Zaheer, K; Zubairy, M S
1991-03-10
The design of various multioutput trinary combinational logic units by a polarization encoded optical shadow-casting (POSC) technique is presented. The POSC modified algorithm is employed to design and implement these logic elements in a trinary number system with separate and simultaneous generation of outputs. A detailed solution of the POSC logic equations for a fixed source plane and a fixed decoding mask is given to obtain input pixel coding for a trinary half-adder, full adder, and subtractor.
Digital logic circuit based on two component molecular systems of BSA and salen
NASA Astrophysics Data System (ADS)
Hai-Bin, Lin; Feng, Chen; Hong-Xu, Guo
2018-02-01
A new fluorescent molecular probe 1 was designed and constructed by combining bovine serum albumin (BSA) and N,N‧-bis(salicylidene)ethylenediamine (salen). Stimulated by Zn2 +, tris, or EDTAH2Na2, the distance between BSA and salen was regulated, which was accompanied by an obvious change in the fluorescence intensity at 350 or 445 nm based on Förster resonance energy transfer. Moreover, based on the encoding binary digits in these inputs and outputs applying positive logic conventions, a monomolecular circuit integrating one OR, three NOT, and three YES gates, was successfully achieved.
7/5nm logic manufacturing capabilities and requirements of metrology
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Bello, A. F.; Solecky, Eric; Vaid, Alok
2018-03-01
This paper will provide an update to previous works [2][4][9] to our view of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry, concentrating on logic technology for foundries. First, we will review of the needs of patterned defect, critical dimensional (CD/3D), overlay and films metrology, and present the extensive list of applications for which metrology solutions are needed. We will then update the industry's progress towards addressing gating technical limits of the most important of these metrology solutions, highlighting key metrology technology gaps requiring industry attention and investment.
NASA Astrophysics Data System (ADS)
Yang, Jiaqi; Li, Ting; Yu, Mingyuan; Zhang, Shuangshuang; Lin, Fujiang; He, Lin
2017-08-01
This paper analyzes the power consumption and delay mechanisms of the successive-approximation (SA) logic of a typical asynchronous SAR ADC, and provides strategies to reduce both of them. Following these strategies, a unique direct-pass SA logic is proposed based on a full-swing once-triggered DFF and a self-locking tri-state gate. The unnecessary internal switching power of a typical TSPC DFF, which is commonly used in the SA logic, is avoided. The delay of the ready detector as well as the sequencer is removed from the critical path. A prototype SAR ADC based on the proposed SA logic is fabricated in 130 nm CMOS. It achieves a peak SNDR of 56.3 dB at 1.2 V supply and 65 MS/s sampling rate, and has a total power consumption of 555 μW, while the digital part consumes only 203 μW. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.
Technology Review of Multi-Agent Systems and Tools
2005-06-01
over a network, including the Internet. A web services architecture is the logical evolution of object-oriented analysis and design coupled with...the logical evolution of components geared towards the architecture, design, implementation, and deployment of e-business solutions. As in object...querying. The Web Services architecture describes the principles behind the next generation of e- business architectures, presenting a logical evolution
NASA Astrophysics Data System (ADS)
Strangio, S.; Palestri, P.; Lanuzza, M.; Esseni, D.; Crupi, F.; Selmi, L.
2017-02-01
In this work, a benchmark for low-power digital applications of a III-V TFET technology platform against a conventional CMOS FinFET technology node is proposed. The analysis focuses on full-adder circuits, which are commonly identified as representative of the digital logic environment. 28T and 24T topologies, implemented in complementary-logic and transmission-gate logic, respectively, are investigated. Transient simulations are performed with a purpose-built test-bench on each single-bit full adder solution. The extracted delays and energy characteristics are post-processed and translated into figures-of-merit for multi-bit ripple-carry-adders. Trends related to the different full-adder implementations (for the same device technology platform) and to the different technology platforms (for the same full-adder topology) are presented and discussed.
ERIC Educational Resources Information Center
Gulliksen, Marte S.; Hjardemaal, Finn R.
2016-01-01
The study is aimed at generating knowledge on how faculty teachers reflect and justify their choice of subject content logic in teacher education, exemplified by a concurrent pre-service Subject Teacher Education in design, art, and crafts. Focus-group interviews generated data. Three topics were discussed: too many choices, different logics, and…
Screening of cardiomyocyte fluorescence during cell contraction by multi-dimensional TCSPC
NASA Astrophysics Data System (ADS)
Chorvat, D., Jr.; Abdulla, S.; Elzwiei, F.; Mateasik, A.; Chorvatova, A.
2008-02-01
Autofluorescence is one of the most versatile non-invasive tools for mapping the metabolic state of living tissues, such as the heart. We present a new approach to the investigation of changes in endogenous fluorescence during cardiomyocyte contraction - by spectrally-resolved, time correlated, single photon counting (TCSPC). Cell contraction is stimulated by external platinum electrodes, incorporated in a home-made bath and triggered by a pulse generator at a frequency of 0.5 Hz (to stabilize sarcoplasmic reticulum loading), or 5 Hz (the rat heart rate). Cell illumination by the laser is synchronized with cell contraction, using TTL logic pulses operated by a stimulator and delayed to study mitochondrial metabolism at maximum contraction (10-110 ms) and/or at steady state (1000-1100 ms at 0.5 Hz). To test the setup, we recorded calcium transients in cells loaded with the Fluo-3 fluorescent probe (excited by 475 nm pulsed picosecond diode laser). We then evaluated recordings of flavin AF (excited by 438 nm pulsed laser) at room and physiological temperatures. Application of the presented approach will shed new insight into metabolic changes in living, contracting myocytes and, therefore, regulation of excitation-contraction coupling and/or ionic homeostasis and, thus, heart excitability.
Optical programmable Boolean logic unit.
Chattopadhyay, Tanay
2011-11-10
Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.
Pu, Fang; Ren, Jinsong; Qu, Xiaogang
2014-06-25
Molecular logic gates in response to chemical, biological, or optical input signals at a molecular level have received much interest over the past decade. Herein, we construct "plug and play" logic systems based on the fluorescence switching of guest molecules confined in coordination polymer nanoparticles generated from nucleotide and lanthanide ions. In the system, the addition of new modules directly enables new logic functions. PASS 0, YES, PASS 1, NOT, IMP, OR, and AND gates are successfully constructed in sequence. Moreover, different logic gates (AND, INH, and IMP) can be constructed using different guest molecules and the same input combinations. The work will be beneficial to the future logic design and expand the applications of coordination polymers.
NASA Astrophysics Data System (ADS)
Huynh-Bao, Trong; Ryckaert, Julien; Sakhare, Sushil; Mercha, Abdelkarim; Verkest, Diederik; Thean, Aaron; Wambacq, Piet
2016-03-01
In this paper, we present a layout and performance analysis of logic and SRAM circuits for vertical and lateral GAA FETs using 5nm (iN5) design rules. Extreme ultra-violet lithography (EUVL) processes are exploited to print the critical features: 32 nm gate pitch and 24 nm metal pitch. Layout architectures and patterning compromises for enabling the 5nm node will be discussed in details. A distinct standard-cell template for vertical FETs is proposed and elaborated for the first time. To assess electrical performances, a BSIM-CMG model has been developed and calibrated with TCAD simulations, which accounts for the quasi-ballistic transport in the nanowire channel. The results show that the inbound power rail layout construct for vertical devices could achieve the highest density while the interleaving diffusion template can maximize the port accessibility. By using a representative critical path circuit of a generic low power SoCs, it is shown that the VFET-based circuit is 40% more energy efficient than LFET designs at iso-performance. Regarding SRAMs, benefits given by vertical channel orientation in VFETs has reduced the SRAM area by 20%~30% compared to lateral SRAMs. A double exposures with EUV canner is needed to reach a minimum tip-to-tip (T2T) of 16 nm for middle-of-line (MOL) layers. To enable HD SRAMs with two metal layers, a fully self-aligned gate contact for LFETs and 2D routing of the top electrode for VFETs are required. The standby leakage of vertical SRAMs is 4~6X lower than LFET-based SRAMs at iso-performance and iso-area. The minimum operating voltage (Vmin) of vertical SRAMs is 170 mV lower than lateral SRAMs. A high-density SRAM bitcell of 0.014 um2 can be obtained for the iN5 technology node, which fully follows the SRAM scaling trend for the 45nm nodes and beyond.
Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration
NASA Technical Reports Server (NTRS)
DeGregorio, Kelly; Wilson, Dale G.
2009-01-01
Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.
Photon-triggered nanowire transistors
NASA Astrophysics Data System (ADS)
Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu
2017-10-01
Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.
Photon-triggered nanowire transistors.
Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu
2017-10-01
Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.
Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell
NASA Astrophysics Data System (ADS)
Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng
2016-06-01
Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03169b
Prototype of a gigabit data transmitter in 65 nm CMOS for DEPFET pixel detectors at Belle-II
NASA Astrophysics Data System (ADS)
Kishishita, T.; Krüger, H.; Hemperek, T.; Lemarenko, M.; Koch, M.; Gronewald, M.; Wermes, N.
2013-08-01
This paper describes the recent development of a gigabit data transmitter for the Belle-II pixel detector (PXD). The PXD is an innermost detector currently under development for the upgraded KEK-B factory in Japan. The PXD consists of two layers of DEPFET sensor modules located at 1.8 and 2.2 cm radii. Each module is equipped with three different ASIC types mounted on the detector substrate with a flip-chip technique: (a) SWITCHER for generating steering signals for the DEPFET sensors, (b) DCD for digitizing the signal currents, and (c) DHP for performing data processing and sending the data off the module to the back-end data handling hybrid via ∼ 40 cm Kapton flex and 12-15 m twisted pair (TWP) cables. To meet the requirements of the PXD data transmission, a prototype of the DHP data transmitter has been developed in a 65-nm standard CMOS technology. The transmitter test chip consists of current-mode logic (CML) drivers and a phase-locked loop (PLL) which generates a clock signal for a 1.6 Gbit/s output data stream from an 80 cm reference clock. A programmable pre-emphasis circuit is also implemented in the CML driver to compensate signal losses in the long cable by shaping the transmitted pulse response. The jitter performance was measured as 25 ps (1 σ distribution) by connecting the chip with 38 cm flex and 10 m TWP cables.
A computer program for the generation of logic networks from task chart data
NASA Technical Reports Server (NTRS)
Herbert, H. E.
1980-01-01
The Network Generation Program (NETGEN), which creates logic networks from task chart data is presented. NETGEN is written in CDC FORTRAN IV (Extended) and runs in a batch mode on the CDC 6000 and CYBER 170 series computers. Data is input via a two-card format and contains information regarding the specific tasks in a project. From this data, NETGEN constructs a logic network of related activities with each activity having unique predecessor and successor nodes, activity duration, descriptions, etc. NETGEN then prepares this data on two files that can be used in the Project Planning Analysis and Reporting System Batch Network Scheduling program and the EZPERT graphics program.
Enhancement of Magnetization in Y3Fe5O12 Epitaxial Thin Films
NASA Astrophysics Data System (ADS)
Brangham, Jack T.; Gallagher, James C.; Yang, Angela S.; White, Shane P.; Adur, Rohan; Ruane, Willam T.; Esser, Bryan D.; Page, Michael R.; Hammel, P. Chris; McComb, David W.; Yang, Fengyuan
The ability to generate pure spin currents has applications in telecommunications, radar, and spin-based logic. Y3Fe5O12 (YIG) is one of the best materials for dynamic generation of spin currents due to its low damping, narrow ferromagnetic resonance (FMR) linewidth, and insulating behavior. We grow stoichiometric, high quality, epitaxial YIG thin films with thicknesses ranging from 4 to 250 nm on Gd3Ga5O12 by off-axis magnetron sputtering and characterize the YIG films by various techniques. The temperature dependence of the saturation magnetization was independently measured by in-plane vibrating sample magnetometry, out-of-plane magnetic shape anisotropy, and angular-dependent FMR absorption from 10 K to the Curie temperature of 530 K. The room temperature saturation magnetization was also measured with frequency dependent FMR. All measurements show a magnetization enhancement of 15% or greater when compared to reported magnetization values of bulk YIG crystals. We speculate this is due to suppression of the long wavelength magnons due to the finite size of the films.
Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong
2018-06-01
A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.
VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate
NASA Astrophysics Data System (ADS)
Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab
2017-08-01
Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.
Molecular computational elements encode large populations of small objects
NASA Astrophysics Data System (ADS)
Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.
2006-10-01
Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.
Molecular computational elements encode large populations of small objects.
de Silva, A Prasanna; James, Mark R; McKinney, Bernadine O F; Pears, David A; Weir, Sheenagh M
2006-10-01
Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 microm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.
Novel all-optical logic gate using an add/drop filter and intensity switch.
Threepak, T; Mitatha, S; Yupapin, P P
2011-12-01
A novel design of all-optical logic device is proposed. An all-optical logic device system composes of an optical intensity switch and add/drop filter. The intensity switch is formed to switch signal by using the relationship between refraction angle and signal intensity. In operation, two input signals are coupled into one with some coupling loss and attenuation, in which the combination of add/drop with intensity switch produces the optical logic gate. The advantage is that the proposed device can operate the high speed logic function. Moreover, it uses low power consumption. Furthermore, by using the extremely small component, this design can be put into a single chip. Finally, we have successfully produced the all-optical logic gate that can generate the accurate AND and NOT operation results.
FELERION: a new approach for leakage power reduction
NASA Astrophysics Data System (ADS)
R, Anjana; Somkuwar, Ajay
2014-12-01
The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%-94% as compared to the conventional approach.
Synthesizing Biomolecule-based Boolean Logic Gates
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2012-01-01
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588
Knijnenburg, Theo A.; Klau, Gunnar W.; Iorio, Francesco; Garnett, Mathew J.; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F. A.
2016-01-01
Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present ‘Logic Optimization for Binary Input to Continuous Output’ (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models. PMID:27876821
Synthesizing biomolecule-based Boolean logic gates.
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2013-02-15
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
Knijnenburg, Theo A; Klau, Gunnar W; Iorio, Francesco; Garnett, Mathew J; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F A
2016-11-23
Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.
Orbach, Ron; Remacle, Françoise; Levine, R D; Willner, Itamar
2012-12-26
The Toffoli and Fredkin gates were suggested as a means to exhibit logic reversibility and thereby reduce energy dissipation associated with logic operations in dense computing circuits. We present a construction of the logically reversible Toffoli and Fredkin gates by implementing a library of predesigned Mg(2+)-dependent DNAzymes and their respective substrates. Although the logical reversibility, for which each set of inputs uniquely correlates to a set of outputs, is demonstrated, the systems manifest thermodynamic irreversibility originating from two quite distinct and nonrelated phenomena. (i) The physical readout of the gates is by fluorescence that depletes the population of the final state of the machine. This irreversible, heat-releasing process is needed for the generation of the output. (ii) The DNAzyme-powered logic gates are made to operate at a finite rate by invoking downhill energy-releasing processes. Even though the three bits of Toffoli's and Fredkin's logically reversible gates manifest thermodynamic irreversibility, we suggest that these gates could have important practical implication in future nanomedicine.
Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo
2016-10-01
Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.
The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2008-01-01
The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.
Bilayer avalanche spin-diode logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien; Fadel, Eric R.
2015-11-15
A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.
NASA Astrophysics Data System (ADS)
Lam, Ho-Pun; Governatori, Guido
We present the design and implementation of SPINdle - an open source Java based defeasible logic reasoner capable to perform efficient and scalable reasoning on defeasible logic theories (including theories with over 1 million rules). The implementation covers both the standard and modal extensions to defeasible logics. It can be used as a standalone theory prover and can be embedded into any applications as a defeasible logic rule engine. It allows users or agents to issues queries, on a given knowledge base or a theory generated on the fly by other applications, and automatically produces the conclusions of its consequences. The theory can also be represented using XML.
Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew; Chinn, Steve
2018-02-01
We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.
A m-ary linear feedback shift register with binary logic
NASA Technical Reports Server (NTRS)
Perlman, M. (Inventor)
1973-01-01
A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.
Magnon-based logic in a multi-terminal YIG/Pt nanostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganzhorn, Kathrin, E-mail: kathrin.ganzhorn@wmi.badw.de; Klingler, Stefan; Wimmer, Tobias
2016-07-11
Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allows to move from charge to spin based logic gates. We study a proof-of-principle logic device based on the ferrimagnetic insulator Yttrium Iron Garnet, with Pt strips acting as injectors and detectors for non-equilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of severalmore » GHz and straightforward down-scaling make our device promising for applications.« less
A logic-based method for integer programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooker, J.; Natraj, N.R.
1994-12-31
We propose a logic-based approach to integer programming that replaces traditional branch-and-cut techniques with logical analogs. Integer variables are regarded as atomic propositions. The constraints give rise to logical formulas that are analogous to separating cuts. No continuous relaxation is used. Rather, the cuts are selected so that they can be easily solved as a discrete relaxation. (In fact, defining a relaxation and generating cuts are best seen as the same problem.) We experiment with relaxations that have a k-tree structure and can be solved by nonserial dynamic programming. We also present logic-based analogs of facet-defining cuts, Chv{acute a}tal rank,more » etc. We conclude with some preliminary computational results.« less
Advanced Feedback Methods in Information Retrieval.
ERIC Educational Resources Information Center
Salton, G.; And Others
1985-01-01
In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…
Quantum Enhanced Inference in Markov Logic Networks
NASA Astrophysics Data System (ADS)
Wittek, Peter; Gogolin, Christian
2017-04-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
NASA Astrophysics Data System (ADS)
Faisal, A.; Hasan, S.; Suherman
2018-03-01
AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.
Quantum Enhanced Inference in Markov Logic Networks.
Wittek, Peter; Gogolin, Christian
2017-04-19
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
Quantum Enhanced Inference in Markov Logic Networks
Wittek, Peter; Gogolin, Christian
2017-01-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning. PMID:28422093
NASA Astrophysics Data System (ADS)
Rapoport, Diego L.
2011-01-01
In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown's primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard's gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation, generates the matrix logic which supersedes the classical logic of connectives and which has for particular subtheories fuzzy and quantum logics. Thus, from a primitive distinction in the vacuum plane and the axioms of the calculus of distinction, we can derive by incorporating paradox, the world conception succinctly described above.
X-ray mask fabrication advancements at the Microlithographic Mask Development Center
NASA Astrophysics Data System (ADS)
Kimmel, Kurt R.; Hughes, Patrick J.
1996-05-01
The Microlithographic Mask Development Center (MMD) was established as the X-ray mask manufacturing facility at the IBM Microelectronics Division semiconductor fabricator in Essex Junction, Vermont. This center, in operation for over two years, produces high yielding, defect-free X-ray masks for competitive logic and memory products at 250nm groundrules and below. The MMD is a complete mask facility that manufactures silicon membrane mask blanks in the NIST format and finished masks with electroplated gold X-ray absorber. Mask patterning, with dimensions as small as 180 nm, is accomplished using IBM-built variable shaped spot e-beam systems. Masks are routinely inspected and repaired using state-of-the-art equipment: two KLA SEM Specs for defect inspection, a Leica LMS 2000 for image placement characterization, an Amray 2040c for image dimension characterization and a Micrion 8000 XMR for defect repair. This facility maintains a baseline mask process with daily production of 250nm, 32Mb SRAM line monitor masks for the continuous improvement of mask quality and processes. Development masks are produced for several semiconductor manufacturers including IBM, Motorola, Loral, and Sanders. Masks for 64Mb and 256Mb DRAM (IBM) and advanced logic/SRAM (IBM and Motorola) designs have also been delivered. This paper describes the MMD facility and its technical capabilities. Key manufacturing metrics such as mask turnaround time, parametric yield learning and defect reduction activities are highlighted. The challenges associated with improved mask quality, sub-180nm mask fabrication, and the transition to refractory metal absorber are discussed.
NASA Astrophysics Data System (ADS)
Mondal, Sucheta; Barman, Saswati; Choudhury, Samiran; Otani, Yoshichika; Barman, Anjan
2018-07-01
Ultrafast spin dynamics in ferromagnetic nanodot arrays with dot diameter 100 nm and thickness 20 nm arranged in honeycomb and octagonal lattice symmetries are studied to explore the tunability of the collective magnetization dynamics. By varying the inter-dot separation between 30 nm and 300 nm drastic variation in the precessional dynamics from strongly collective to completely isolated regime has been observed by using all-optical time-resolved magneto-optical Kerr microscope. Micromagnetic simulation is exploited to gain insights about the resonant mode profiles and magnetic coupling between the nanodots. A significant spectral and spatial variation in the resonant mode with increasing dipolar interaction is demonstrated with increasing inter-dot separation. The spins driven by effective field inside single nanodots are prone to precess independently, generating two self-standing centre and edge modes in the array that are influenced by the relative orientation between the inter-dot coupling direction and bias magnetic field. The anisotropic behavior of dipolar field is rigorously investigated here. Splitting of the centre mode in case of octagonal lattice is experimentally observed here as a consequence of the anisotropic dipolar field between the nanodot pairs coupled horizontally and vertically, which is not found in the honeycomb lattice. In addition, proper understanding of the modification of dynamic mode profile by neighboring dipolar interaction built up here, is imperative for further control of the dynamic dipolar interaction and the corresponding collective excitation in magnonic crystals. The usage of nanodot lattices with complex basis structures can be advantageous for the designing of high density magnetic recording media, spin-wave filter and logic devices.
Design automation techniques for custom LSI arrays
NASA Technical Reports Server (NTRS)
Feller, A.
1975-01-01
The standard cell design automation technique is described as an approach for generating random logic PMOS, CMOS or CMOS/SOS custom large scale integration arrays with low initial nonrecurring costs and quick turnaround time or design cycle. The system is composed of predesigned circuit functions or cells and computer programs capable of automatic placement and interconnection of the cells in accordance with an input data net list. The program generates a set of instructions to drive an automatic precision artwork generator. A series of support design automation and simulation programs are described, including programs for verifying correctness of the logic on the arrays, performing dc and dynamic analysis of MOS devices, and generating test sequences.
Guz, Nataliia; Halámek, Jan; Rusling, James F.; Katz, Evgeny
2014-01-01
The biocatalytic cascade based on enzyme-catalyzed reactions activated by several biomolecular input signals and producing output signal after each reaction step was developed as an example of a logically reversible information processing system. The model system was designed to mimic the operation of concatenated AND logic gates with optically readable output signals generated at each step of the logic operation. Implications include concurrent bioanalyses and data interpretation for medical diagnostics. PMID:24748446
NASA Astrophysics Data System (ADS)
Crouse, Michael; Liebmann, Lars; Plachecki, Vince; Salama, Mohamed; Chen, Yulu; Saulnier, Nicole; Dunn, Derren; Matthew, Itty; Hsu, Stephen; Gronlund, Keith; Goodwin, Francis
2017-03-01
The initial readiness of EUV patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. Thus, Design Technology Co-optimization (DTCO) has become a critical part of technology enablement as scaling has become more challenging and the industry pushes the limits of EUV lithography. The working partnership between the design teams and the process development teams typically involves an iterative approach to evaluate the manufacturability of proposed designs, subsequent modifications to those designs and finally a design manual for the technology. While this approach has served the industry well for many generations, the challenges at the Beyond 7nm node require a more efficient approach. In this work, we describe the use of "Design Intent" lithographic layout optimization where we remove the iterative component of DTCO and replace it with an optimization that achieves both a "patterning friendly" design and minimizes the well-known EUV stochastic effects. Solved together, this "design intent" approach can more quickly achieve superior lithographic results while still meeting the original device's functional specifications. Specifically, in this work we will demonstrate "design intent" optimization for critical BEOL layers using design tolerance bands to guide the source mask co-optimization. The design tolerance bands can be either supplied as part of the original design or derived from some basic rules. Additionally, the EUV stochastic behavior is mitigated by enhancing the image log slope (ILS) for specific key features as part of the overall optimization. We will show the benefit of the "design intent approach" on both bidirectional and unidirectional 28nm min pitch standard logic layouts and compare the more typical iterative SMO approach. Thus demonstrating the benefit of allowing the design to float within the specified range. Lastly, we discuss how the evolution of this approach could lead to layout optimization based entirely on some minimal set of functional requirements and process constraints.
Built-in-test by signature inspection (bitsi)
Bergeson, Gary C.; Morneau, Richard A.
1991-01-01
A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.
Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell.
Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng
2016-07-07
Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Actinic inspection of EUV reticles with arbitrary pattern design
NASA Astrophysics Data System (ADS)
Mochi, Iacopo; Helfenstein, Patrick; Rajeev, Rajendran; Fernandez, Sara; Kazazis, Dimitrios; Yoshitake, Shusuke; Ekinci, Yasin
2017-10-01
The re ective-mode EUV mask scanning lensless imaging microscope (RESCAN) is being developed to provide actinic mask inspection capabilities for defects and patterns with high resolution and high throughput, for 7 nm node and beyond. Here we, will report on our progress and present the results on programmed defect detection on random, logic-like patterns. The defects we investigated range from 200 nm to 50 nm size on the mask. We demonstrated the ability of RESCAN to detect these defects in die-to-die and die-to-database mode with a high signal to noise ratio. We also describe future plans for the upgrades to increase the resolution, the sensitivity, and the inspection speed of the demo tool.
Orbach, Ron; Remacle, Françoise; Levine, R. D.; Willner, Itamar
2012-01-01
The Toffoli and Fredkin gates were suggested as a means to exhibit logic reversibility and thereby reduce energy dissipation associated with logic operations in dense computing circuits. We present a construction of the logically reversible Toffoli and Fredkin gates by implementing a library of predesigned Mg2+-dependent DNAzymes and their respective substrates. Although the logical reversibility, for which each set of inputs uniquely correlates to a set of outputs, is demonstrated, the systems manifest thermodynamic irreversibility originating from two quite distinct and nonrelated phenomena. (i) The physical readout of the gates is by fluorescence that depletes the population of the final state of the machine. This irreversible, heat-releasing process is needed for the generation of the output. (ii) The DNAzyme-powered logic gates are made to operate at a finite rate by invoking downhill energy-releasing processes. Even though the three bits of Toffoli’s and Fredkin’s logically reversible gates manifest thermodynamic irreversibility, we suggest that these gates could have important practical implication in future nanomedicine. PMID:23236131
Reprogrammable logic in memristive crossbar for in-memory computing
NASA Astrophysics Data System (ADS)
Cheng, Long; Zhang, Mei-Yun; Li, Yi; Zhou, Ya-Xiong; Wang, Zhuo-Rui; Hu, Si-Yu; Long, Shi-Bing; Liu, Ming; Miao, Xiang-Shui
2017-12-01
Memristive stateful logic has emerged as a promising next-generation in-memory computing paradigm to address escalating computing-performance pressures in traditional von Neumann architecture. Here, we present a nonvolatile reprogrammable logic method that can process data between different rows and columns in a memristive crossbar array based on material implication (IMP) logic. Arbitrary Boolean logic can be executed with a reprogrammable cell containing four memristors in a crossbar array. In the fabricated Ti/HfO2/W memristive array, some fundamental functions, such as universal NAND logic and data transfer, were experimentally implemented. Moreover, using eight memristors in a 2 × 4 array, a one-bit full adder was theoretically designed and verified by simulation to exhibit the feasibility of our method to accomplish complex computing tasks. In addition, some critical logic-related performances were further discussed, such as the flexibility of data processing, cascading problem and bit error rate. Such a method could be a step forward in developing IMP-based memristive nonvolatile logic for large-scale in-memory computing architecture.
Integrated all-optical programmable logic array based on semiconductor optical amplifiers.
Dong, Wenchan; Huang, Zhuyang; Hou, Jie; Santos, Rui; Zhang, Xinliang
2018-05-01
The all-optical programmable logic array (PLA) is one of the most important optical complex logic devices that can implement combinational logic functions. In this Letter, we propose and experimentally demonstrate an integrated all-optical PLA at the operation speed of 40 Gb/s. The PLA mainly consists of a delay interferometer (DI) and semiconductor optical amplifiers (SOAs) of different lengths. The DI is used to pre-code the input signals and improve the reconfigurability of the scheme. The longer SOAs are nonlinear media for generating canonical logic units (CLUs) using four-wave mixing. The shorter SOAs are used to select the appropriate CLUs by changing the working states; then reconfigurable logic functions can be output directly. The results show that all the CLUs are realized successfully, and the optical signal-to-noise ratios are above 22 dB. The exclusive NOR gate and exclusive OR gate are experimentally demonstrated based on output CLUs.
Biosensors with Built-In Biomolecular Logic Gates for Practical Applications
Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh
2014-01-01
Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423
Coloured Logic Petri Nets and analysis of their reachable trees
NASA Astrophysics Data System (ADS)
Wang, Jing; Du, YuYue; Yu, ShuXia
2015-11-01
Logic Petri nets (LPNs) can describe and analyse the batch processing function and passing value indeterminacy in cooperative systems, and alleviate the state space explosion problem. However, the indeterminate data of logical output transitions cannot be described explicitly in LPNs. Therefore, Coloured Logic Petri nets (CLPNs) are defined in this paper. It can determine the indeterminate data of logic output transitions in LPNs, i.e., the indeterminate data can be represented definitely in CLPNs. A vector matching method is proposed to judge the enabling transitions and analyse CLPNs. From the marking equation and the proposed reachable tree generation algorithm of CLPNs, a reachable tree can be built, and reachable markings are calculated. The advantage of CLPNs can be shown based on the number of leaf nodes of the reachability tree, and CLPNs can solve the indeterminate data of logical output transitions. Finally, an example shows that CLPNs can further reduce the dimensionality of reachable markings.
Photonic ququart logic assisted by the cavity-QED system.
Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Ma, Song-Ya
2015-08-14
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology.
Photonic ququart logic assisted by the cavity-QED system
Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Ma, Song-Ya
2015-01-01
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology. PMID:26272869
Brain Computation Is Organized via Power-of-Two-Based Permutation Logic.
Xie, Kun; Fox, Grace E; Liu, Jun; Lyu, Cheng; Lee, Jason C; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z
2016-01-01
There is considerable scientific interest in understanding how cell assemblies-the long-presumed computational motif-are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic ( N = 2 i -1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors-the synaptic switch for learning and memory-were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques-which preferentially encode specific and low-combinatorial features and project inter-cortically-is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6-which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems-is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain's basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.
Brain Computation Is Organized via Power-of-Two-Based Permutation Logic
Xie, Kun; Fox, Grace E.; Liu, Jun; Lyu, Cheng; Lee, Jason C.; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z.
2016-01-01
There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex. PMID:27895562
Figure Control of Lightweight Optical Structures
NASA Technical Reports Server (NTRS)
Main, John A.; Song, Haiping
2005-01-01
The goal of this paper is to demonstrate the use of fuzzy logic controllers in modifying the figure of a piezoceramic bimorph mirror. Non-contact electron actuation technology is used to actively control a bimorph mirror comprised two PZT-5H wafers by varying the electron flux and electron voltages. Due to electron blooming generated by the electron flux, it is difficult to develop an accurate control model for the bimorph mirror through theoretical analysis alone. The non-contact shape control system with electron flux blooming can be approximately described with a heuristic model based on experimental data. Two fuzzy logic feedback controllers are developed to control the shape of the bimorph mirror according to heuristic fuzzy inference rules generated from previous experimental results. Validation of the proposed fuzzy logic controllers is also discussed.
Electrical comparison of iN7 EUV hybrid and EUV single patterning BEOL metal layers
NASA Astrophysics Data System (ADS)
Larivière, Stéphane; Wilson, Christopher J.; Kutrzeba Kotowska, Bogumila; Versluijs, Janko; Decoster, Stefan; Mao, Ming; van der Veen, Marleen H.; Jourdan, Nicolas; El-Mekki, Zaid; Heylen, Nancy; Kesters, Els; Verdonck, Patrick; Béral, Christophe; Van den Heuvel, Dieter; De Bisschop, Peter; Bekaert, Joost; Blanco, Victor; Ciofi, Ivan; Wan, Danny; Briggs, Basoene; Mallik, Arindam; Hendrickx, Eric; Kim, Ryoung-han; McIntyre, Greg; Ronse, Kurt; Bömmels, Jürgen; Tőkei, Zsolt; Mocuta, Dan
2018-03-01
The semiconductor scaling roadmap shows the continuous node to node scaling to push Moore's law down to the next generations. In that context, the foundry N5 node requires 32nm metal pitch interconnects for the advanced logic Back- End of Line (BEoL). 193immersion usage now requires self-aligned and/or multiple patterning technique combinations to enable such critical dimension. On the other hand, EUV insertion investigation shows that 32nm metal pitch is still a challenge but, related to process flow complexity, presents some clear motivations. Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers. In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.
Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel
NASA Astrophysics Data System (ADS)
Badran, Hussain Ali
In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.
A novel productivity-driven logic element for field-programmable devices
NASA Astrophysics Data System (ADS)
Marconi, Thomas; Bertels, Koen; Gaydadjiev, Georgi
2014-06-01
Although various techniques have been proposed for power reduction in field-programmable devices (FPDs), they are still all based on conventional logic elements (LEs). In the conventional LE, the output of the combinational logic (e.g. the look-up table (LUT) in many field-programmable gate arrays (FPGAs)) is connected to the input of the storage element; while the D flip-flop (DFF) is always clocked even when not necessary. Such unnecessary transitions waste power. To address this problem, we propose a novel productivity-driven LE with reduced number of transitions. The differences between our LE and the conventional LE are in the FFs-type used and the internal LE organisation. In our LEs, DFFs have been replaced by T flip-flops with the T input permanently connected to logic value 1. Instead of connecting the output of the combinational logic to the FF input, we use it as the FF clock. The proposed LE has been validated via Simulation Program with Integrated Circuit Emphasis (SPICE) simulations for a 45-nm Complementary Metal-Oxide-Semiconductor (CMOS) technology as well as via a real Computer-Aided Design (CAD) tools on a real FPGA using the standard Microelectronic Center of North Carolina (MCNC) benchmark circuits. The experimental results show that FPDs using our proposal not only have 48% lower total power but also run 17% faster than conventional FPDs on average.
Synthetic guide star generation
Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA
2008-06-10
A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.
Synthetic guide star generation
Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.
2004-03-09
A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.
Effects of ultra-thin Si-fin body widths upon SOI PMOS FinFETs
NASA Astrophysics Data System (ADS)
Liaw, Yue-Gie; Chen, Chii-Wen; Liao, Wen-Shiang; Wang, Mu-Chun; Zou, Xuecheng
2018-05-01
Nano-node tri-gate FinFET devices have been developed after integrating a 14 Å nitrided gate oxide upon the silicon-on-insulator (SOI) wafers established on an advanced CMOS logic platform. These vertical double gate (FinFET) devices with ultra-thin silicon fin (Si-fin) widths ranging from 27 nm to 17 nm and gate length down to 30 nm have been successfully developed with a 193 nm scanner lithography tool. Combining the cobalt fully silicidation and the CESL strain technology beneficial for PMOS FinFETs was incorporated into this work. Detailed analyses of Id-Vg characteristics, threshold voltage (Vt), and drain-induced barrier lowering (DIBL) illustrate that the thinnest 17 nm Si-fin width FinFET exhibits the best gate controllability due to its better suppression of short channel effect (SCE). However, higher source/drain resistance (RSD), channel mobility degradation due to dry etch steps, or “current crowding effect” will slightly limit its transconductance (Gm) and drive current.
Doubly fed induction generator wind turbines with fuzzy controller: a survey.
Sathiyanarayanan, J S; Kumar, A Senthil
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.
Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic.
D'Souza, Noel; Salehi Fashami, Mohammad; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha
2016-02-10
Nanomagnetic implementations of Boolean logic have attracted attention because of their nonvolatility and the potential for unprecedented overall energy-efficiency. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque severely compromise the energy-efficiency. Recently, there have been experimental reports of utilizing the Spin Hall effect for switching magnets, and theoretical proposals for strain induced switching of single-domain magnetostrictive nanomagnets, that might reduce the dissipative losses significantly. Here, we experimentally demonstrate, for the first time that strain-induced switching of single-domain magnetostrictive nanomagnets of lateral dimensions ∼200 nm fabricated on a piezoelectric substrate can implement a nanomagnetic Boolean NOT gate and steer bit information unidirectionally in dipole-coupled nanomagnet chains. On the basis of the experimental results with bulk PMN-PT substrates, we estimate that the energy dissipation for logic operations in a reasonably scaled system using thin films will be a mere ∼1 aJ/bit.
Inline detection of Chrome degradation on binary 193nm photomasks
NASA Astrophysics Data System (ADS)
Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe
2013-09-01
193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300mm wafers exposed and the cleaning brought it back almost to its original state after manufacture. Wafer CD, photomask CD and iCDU results can be compared, before and after a standard mask shop cleaning. Measurement points have be chosen in logic areas and SRAM areas, so that their respective behaviours can be studied separately. Transmitted maps before and after cleaning were analysed in terms of CD shift and CDU degradation. The delta map shows a nice correlation with photomask CD shift. iCDU demonstrated the capability to detect a reliable CD range degradation of 5nm on photomask by a comparison between a reference inspection and the current inspection. Die to die inspection mode provides also valuable data, highlighting the degraded chrome sidewalls, more in the photomask centre than on the edges. Ultimately, these results would enable to trigger the preventive cleanings rather than on predefined thresholds. The expected gains for wafer fabs are cost savings (adapted cleanings frequency), increased photomask availability for production, longer photomask lifetime, no additional SEM time neither for photomask nor on wafer.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Clock Controller For Ac Self-Timing Analysis Of Logic System
Lo, Tinchee; Flanagan, John D.
2004-05-18
A clock controller and clock generating method are provided for AC self-test timing analysis of a logic system. The controller includes latch circuitry which receives a DC input signal at a data input, and a pair of continuous out-of-phase clock signals at capture and launch clock inputs thereof. The latch circuitry outputs two overlapping pulses responsive to the DC input signal going high. The two overlapping pulses are provided to waveform shaper circuitry which produces therefrom two non-overlapping pulses at clock speed of the logic system to be tested. The two non-overlapping pulses are a single pair of clock pulses which facilitate AC self-test timing analysis of the logic system.
Multi-variants synthesis of Petri nets for FPGA devices
NASA Astrophysics Data System (ADS)
Bukowiec, Arkadiusz; Doligalski, Michał
2015-09-01
There is presented new method of synthesis of application specific logic controllers for FPGA devices. The specification of control algorithm is made with use of control interpreted Petri net (PT type). It allows specifying parallel processes in easy way. The Petri net is decomposed into state-machine type subnets. In this case, each subnet represents one parallel process. For this purpose there are applied algorithms of coloring of Petri nets. There are presented two approaches of such decomposition: with doublers of macroplaces or with one global wait place. Next, subnets are implemented into two-level logic circuit of the controller. The levels of logic circuit are obtained as a result of its architectural decomposition. The first level combinational circuit is responsible for generation of next places and second level decoder is responsible for generation output symbols. There are worked out two variants of such circuits: with one shared operational memory or with many flexible distributed memories as a decoder. Variants of Petri net decomposition and structures of logic circuits can be combined together without any restrictions. It leads to existence of four variants of multi-variants synthesis.
Versatile logic devices based on programmable DNA-regulated silver-nanocluster signal transducers.
Huang, Zhenzhen; Tao, Yu; Pu, Fang; Ren, Jinsong; Qu, Xiaogang
2012-05-21
A DNA-encoding strategy is reported for the programmable regulation of the fluorescence properties of silver nanoclusters (AgNCs). By taking advantage of the DNA-encoding strategy, aqueous AgNCs were used as signal transducers to convert DNA inputs into fluorescence outputs for the construction of various DNA-based logic gates (AND, OR, INHIBIT, XOR, NOR, XNOR, NAND, and a sequential logic gate). Moreover, a biomolecular keypad that was capable of constructing crossword puzzles was also fabricated. These AgNC-based logic systems showed several advantages, including a simple transducer-introduction strategy, universal design, and biocompatible operation. In addition, this proof of concept opens the door to a new generation of signal transducer materials and provides a general route to versatile biomolecular logic devices for practical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EAGLE Monitors by Collecting Facts and Generating Obligations
NASA Technical Reports Server (NTRS)
Barrnger, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik
2003-01-01
We present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. A monitor for an EAGLE formula checks if a finite trace of states satisfies the given formula. We present, in details, an algorithm for the synthesis of monitors for EAGLE. The algorithm is implemented as a Java application and involves novel techniques for rule definition, manipulation and execution. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace of states. Our initial experiments have been successful as EAGLE detected a previously unknown bug while testing a planetary rover controller.
NASA Astrophysics Data System (ADS)
Wilson, Katherine E.; Henke, E.-F. Markus; Slipher, Geoffrey A.; Anderson, Iain A.
2017-04-01
Electromechanically coupled dielectric elastomer actuators (DEAs) and dielectric elastomer switches (DESs) may form digital logic circuitry made entirely of soft and flexible materials. The expansion in planar area of a DEA exerts force across a DES, which is a soft electrode with strain-dependent resistivity. When compressed, the DES drops steeply in resistance and changes state from non-conducting to conducting. Logic operators may be achieved with different arrangements of interacting DE actuators and switches. We demonstrate combinatorial logic elements, including the fundamental Boolean logic gates, as well as sequential logic elements, including latches and flip-flops. With both data storage and signal processing abilities, the necessary calculating components of a soft computer are available. A noteworthy advantage of a soft computer with mechanosensitive DESs is the potential for responding to environmental strains while locally processing information and generating a reaction, like a muscle reflex.
Method and apparatus for characterizing propagation delays of integrated circuit devices
NASA Technical Reports Server (NTRS)
Blaes, Brent R. (Inventor); Buehler, Martin G. (Inventor)
1987-01-01
Propagation delay of a signal through a channel is measured by cyclically generating a first step-wave signal for transmission through the channel to a two-input logic element and a second step-wave signal with a controlled delay to the second input terminal of the logic element. The logic element determines which signal is present first at its input terminals and stores a binary signal indicative of that determination for control of the delay of the second signal which is advanced or retarded for the next cycle until both the propagation delayed first step-wave signal and the control delayed step-wave signal are coincident. The propagation delay of the channel is then determined by measuring the time between the first and second step-wave signals out of the controlled step-wave signal generator.
NASA Technical Reports Server (NTRS)
Ingle, B. D.; Ryan, J. P.
1972-01-01
A design for a solid-state parasitic speed controller using digital logic was analyzed. Parasitic speed controllers are used in space power electrical generating systems to control the speed of turbine-driven alternators within specified limits. The analysis included the performance characteristics of the speed controller and the generation of timing functions. The speed controller using digital logic applies step loads to the alternator. The step loads conduct for a full half wave starting at either zero or 180 electrical degrees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed amore » new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.« less
POLE.VAULT: A Semantic Framework for Health Policy Evaluation and Logical Testing.
Shaban-Nejad, Arash; Okhmatovskaia, Anya; Shin, Eun Kyong; Davis, Robert L; Buckeridge, David L
2017-01-01
The major goal of our study is to provide an automatic evaluation framework that aligns the results generated through semantic reasoning with the best available evidence regarding effective interventions to support the logical evaluation of public health policies. To this end, we have designed the POLicy EVAlUation & Logical Testing (POLE.VAULT) Framework to assist different stakeholders and decision-makers in making informed decisions about different health-related interventions, programs and ultimately policies, based on the contextual knowledge and the best available evidence at both individual and aggregate levels.
Current-controlled unidirectional edge-meron motion
NASA Astrophysics Data System (ADS)
Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan
2016-11-01
In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.
Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey
Sathiyanarayanan, J. S.; Senthil Kumar, A.
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677
SAQP and EUV block patterning of BEOL metal layers on IMEC's iN7 platform
NASA Astrophysics Data System (ADS)
Bekaert, Joost; Di Lorenzo, Paolo; Mao, Ming; Decoster, Stefan; Larivière, Stéphane; Franke, Joern-Holger; Blanco Carballo, Victor M.; Kutrzeba Kotowska, Bogumila; Lazzarino, Frederic; Gallagher, Emily; Hendrickx, Eric; Leray, Philippe; Kim, R. Ryoung-han; McIntyre, Greg; Colsters, Paul; Wittebrood, Friso; van Dijk, Joep; Maslow, Mark; Timoshkov, Vadim; Kiers, Ton
2017-03-01
The imec N7 (iN7) platform has been developed to evaluate EUV patterning of advanced logic BEOL layers. Its design is based on a 42 nm first-level metal (M1) pitch, and a 32 nm pitch for the subsequent M2 layer. With these pitches, the iN7 node is an `aggressive' full-scaled N7, corresponding to IDM N7, or foundry N5. Even in a 1D design style, single exposure of the 16 nm half-pitch M2 layer is very challenging for EUV lithography, because of its tight tip-to-tip configurations. Therefore, the industry is considering the hybrid use of ArFi-based SAQP combined with EUV Block as an alternative to EUV single exposure. As a consequence, the EUV Block layer may be one of the first layers to adopt EUV lithography in HVM. In this paper, we report on the imec iN7 SAQP + Block litho performance and process integration, targeting the M2 patterning for a 7.5 track logic design. The Block layer is exposed on an ASML NXE:3300 EUV-scanner at imec, using optimized illumination conditions and state-of-the-art metal-containing negative tone resist (Inpria). Subsequently, the SAQP and block structures are characterized in a morphological study, assessing pattern fidelity and CD/EPE variability. The work is an experimental feasibility study of EUV insertion, for SAQP + Block M2 patterning on an industry-relevant N5 use-case.
Logic, Beliefs, and Instruction: A Test of the Default Interventionist Account of Belief Bias
ERIC Educational Resources Information Center
Handley, Simon J.; Newstead, Stephen E.; Trippas, Dries
2011-01-01
According to dual-process accounts of thinking, belief-based responses on reasoning tasks are generated as default but can be intervened upon in favor of logical responding, given sufficient time, effort, or cognitive resource. In this article, we present the results of 5 experiments in which participants were instructed to evaluate the…
The Goals of Linguistic Theory Revisited.
ERIC Educational Resources Information Center
Schank, Roger C.; Wilks, Yorick
There is a need for a new kind of linguistic theory which, while being concerned with both generation and analysis, must include the roles of memory, non-linguistic knowledge, and inference. The role of logic is diminished according to such a theory because inference has no real logical content. Meaning must be studied with respect to the actual…
Scanner focus metrology and control system for advanced 10nm logic node
NASA Astrophysics Data System (ADS)
Oh, Junghun; Maeng, Kwang-Seok; Shin, Jae-Hyung; Choi, Won-Woong; Won, Sung-Keun; Grouwstra, Cedric; El Kodadi, Mohamed; Heil, Stephan; van der Meijden, Vidar; Hong, Jong Kyun; Kim, Sang-Jin; Kwon, Oh-Sung
2018-03-01
Immersion lithography is being extended beyond the 10-nm node and the lithography performance requirement needs to be tightened further to ensure good yield. Amongst others, good on-product focus control with accurate and dense metrology measurements is essential to enable this. In this paper, we will present new solutions that enable onproduct focus monitoring and control (mean and uniformity) suitable for high volume manufacturing environment. We will introduce the concept of pure focus and its role in focus control through the imaging optimizer scanner correction interface. The results will show that the focus uniformity can be improved by up to 25%.
Expanded all-optical programmable logic array based on multi-input/output canonical logic units.
Lei, Lei; Dong, Jianji; Zou, Bingrong; Wu, Zhao; Dong, Wenchan; Zhang, Xinliang
2014-04-21
We present an expanded all-optical programmable logic array (O-PLA) using multi-input and multi-output canonical logic units (CLUs) generation. Based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF), two-input and three-input CLUs are simultaneously achieved in five different channels with an operation speed of 40 Gb/s. Clear temporal waveforms and wide open eye diagrams are successfully observed. The effectiveness of the scheme is validated by extinction ratio and optical signal-to-noise ratio measurements. The computing capacity, defined as the total amount of logic functions achieved by the O-PLA, is discussed in detail. For a three-input O-PLA, the computing capacity of the expanded CLUs-PLA is more than two times as large as that of the standard CLUs-PLA, and this multiple will increase to more than three and a half as the idlers are individually independent.
Executing medical logic modules expressed in ArdenML using Drools.
Jung, Chai Young; Sward, Katherine A; Haug, Peter J
2012-01-01
The Arden Syntax is an HL7 standard language for representing medical knowledge as logic statements. Despite nearly 2 decades of availability, Arden Syntax has not been widely used. This has been attributed to the lack of a generally available compiler to implement the logic, to Arden's complex syntax, to the challenges of mapping local data to data references in the Medical Logic Modules (MLMs), or, more globally, to the general absence of decision support in healthcare computing. An XML representation (ArdenML) may partially address the technical challenges. MLMs created in ArdenML can be converted into executable files using standard transforms written in the Extensible Stylesheet Language Transformation (XSLT) language. As an example, we have demonstrated an approach to executing MLMs written in ArdenML using the Drools business rule management system. Extensions to ArdenML make it possible to generate a user interface through which an MLM developer can test for logical errors.
DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.
Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao
2016-01-13
Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.
Cascaded spintronic logic with low-dimensional carbon
NASA Astrophysics Data System (ADS)
Friedman, Joseph S.; Girdhar, Anuj; Gelfand, Ryan M.; Memik, Gokhan; Mohseni, Hooman; Taflove, Allen; Wessels, Bruce W.; Leburton, Jean-Pierre; Sahakian, Alan V.
2017-06-01
Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.
Automated Translation of Safety Critical Application Software Specifications into PLC Ladder Logic
NASA Technical Reports Server (NTRS)
Leucht, Kurt W.; Semmel, Glenn S.
2008-01-01
The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A few of these benefits include raising the abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at the NASA Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch processing system. They developed a process and a prototype software tool that automatically translates a high-level representation or specification of safety critical application software into ladder logic that executes on a PLC. This process and tool are expected to increase the reliability of the PLC code over that which is written manually, and may even lower life-cycle costs and shorten the development schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that were prototyped by the KSC software engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Dinesh; Thapliyal, Himanshu; Mohammad, Azhar
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs.more » Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.« less
Optimum ArFi laser bandwidth for 10nm node logic imaging performance
NASA Astrophysics Data System (ADS)
Alagna, Paolo; Zurita, Omar; Timoshkov, Vadim; Wong, Patrick; Rechtsteiner, Gregory; Baselmans, Jan; Mailfert, Julien
2015-03-01
Lithography process window (PW) and CD uniformity (CDU) requirements are being challenged with scaling across all device types. Aggressive PW and yield specifications put tight requirements on scanner performance, especially on focus budgets resulting in complicated systems for focus control. In this study, an imec N10 Logic-type test vehicle was used to investigate the E95 bandwidth impact on six different Metal 1 Logic features. The imaging metrics that track the impact of light source E95 bandwidth on performance of hot spots are: process window (PW), line width roughness (LWR), and local critical dimension uniformity (LCDU). In the first section of this study, the impact of increasing E95 bandwidth was investigated to observe the lithographic process control response of the specified logic features. In the second section, a preliminary assessment of the impact of lower E95 bandwidth was performed. The impact of lower E95 bandwidth on local intensity variability was monitored through the CDU of line end features and the LWR power spectral density (PSD) of line/space patterns. The investigation found that the imec N10 test vehicle (with OPC optimized for standard E95 bandwidth of300fm) features exposed at 200fm showed pattern specific responses, suggesting areas of potential interest for further investigation.
Sailors, R. Matthew
1997-01-01
The Arden Syntax specification for sharable computerized medical knowledge bases has not been widely utilized in the medical informatics community because of a lack of tools for developing Arden Syntax knowledge bases (Medical Logic Modules). The MLM Builder is a Microsoft Windows-hosted CASE (Computer Aided Software Engineering) tool designed to aid in the development and maintenance of Arden Syntax Medical Logic Modules (MLMs). The MLM Builder consists of the MLM Writer (an MLM generation tool), OSCAR (an anagram of Object-oriented ARden Syntax Compiler), a test database, and the MLManager (an MLM management information system). Working together, these components form a self-contained, unified development environment for the creation, testing, and maintenance of Arden Syntax Medical Logic Modules.
All-spin logic operations: Memory device and reconfigurable computing
NASA Astrophysics Data System (ADS)
Patra, Moumita; Maiti, Santanu K.
2018-02-01
Exploiting spin degree of freedom of electron a new proposal is given to characterize spin-based logical operations using a quantum interferometer that can be utilized as a programmable spin logic device (PSLD). The ON and OFF states of both inputs and outputs are described by spin state only, circumventing spin-to-charge conversion at every stage as often used in conventional devices with the inclusion of extra hardware that can eventually diminish the efficiency. All possible logic functions can be engineered from a single device without redesigning the circuit which certainly offers the opportunities of designing new generation spintronic devices. Moreover, we also discuss the utilization of the present model as a memory device and suitable computing operations with proposed experimental setups.
Automating generation of textual class definitions from OWL to English.
Stevens, Robert; Malone, James; Williams, Sandra; Power, Richard; Third, Allan
2011-05-17
Text definitions for entities within bio-ontologies are a cornerstone of the effort to gain a consensus in understanding and usage of those ontologies. Writing these definitions is, however, a considerable effort and there is often a lag between specification of the main part of an ontology (logical descriptions and definitions of entities) and the development of the text-based definitions. The goal of natural language generation (NLG) from ontologies is to take the logical description of entities and generate fluent natural language. The application described here uses NLG to automatically provide text-based definitions from an ontology that has logical descriptions of its entities, so avoiding the bottleneck of authoring these definitions by hand. To produce the descriptions, the program collects all the axioms relating to a given entity, groups them according to common structure, realises each group through an English sentence, and assembles the resulting sentences into a paragraph, to form as 'coherent' a text as possible without human intervention. Sentence generation is accomplished using a generic grammar based on logical patterns in OWL, together with a lexicon for realising atomic entities. We have tested our output for the Experimental Factor Ontology (EFO) using a simple survey strategy to explore the fluency of the generated text and how well it conveys the underlying axiomatisation. Two rounds of survey and improvement show that overall the generated English definitions are found to convey the intended meaning of the axiomatisation in a satisfactory manner. The surveys also suggested that one form of generated English will not be universally liked; that intrusion of too much 'formal ontology' was not liked; and that too much explicit exposure of OWL semantics was also not liked. Our prototype tools can generate reasonable paragraphs of English text that can act as definitions. The definitions were found acceptable by our survey and, as a result, the developers of EFO are sufficiently satisfied with the output that the generated definitions have been incorporated into EFO. Whilst not a substitute for hand-written textual definitions, our generated definitions are a useful starting point. An on-line version of the NLG text definition tool can be found at http://swat.open.ac.uk/tools/. The questionaire and sample generated text definitions may be found at http://mcs.open.ac.uk/nlg/SWAT/bio-ontologies.html.
Automating generation of textual class definitions from OWL to English
2011-01-01
Background Text definitions for entities within bio-ontologies are a cornerstone of the effort to gain a consensus in understanding and usage of those ontologies. Writing these definitions is, however, a considerable effort and there is often a lag between specification of the main part of an ontology (logical descriptions and definitions of entities) and the development of the text-based definitions. The goal of natural language generation (NLG) from ontologies is to take the logical description of entities and generate fluent natural language. The application described here uses NLG to automatically provide text-based definitions from an ontology that has logical descriptions of its entities, so avoiding the bottleneck of authoring these definitions by hand. Results To produce the descriptions, the program collects all the axioms relating to a given entity, groups them according to common structure, realises each group through an English sentence, and assembles the resulting sentences into a paragraph, to form as ‘coherent’ a text as possible without human intervention. Sentence generation is accomplished using a generic grammar based on logical patterns in OWL, together with a lexicon for realising atomic entities. We have tested our output for the Experimental Factor Ontology (EFO) using a simple survey strategy to explore the fluency of the generated text and how well it conveys the underlying axiomatisation. Two rounds of survey and improvement show that overall the generated English definitions are found to convey the intended meaning of the axiomatisation in a satisfactory manner. The surveys also suggested that one form of generated English will not be universally liked; that intrusion of too much ‘formal ontology’ was not liked; and that too much explicit exposure of OWL semantics was also not liked. Conclusions Our prototype tools can generate reasonable paragraphs of English text that can act as definitions. The definitions were found acceptable by our survey and, as a result, the developers of EFO are sufficiently satisfied with the output that the generated definitions have been incorporated into EFO. Whilst not a substitute for hand-written textual definitions, our generated definitions are a useful starting point. Availability An on-line version of the NLG text definition tool can be found at http://swat.open.ac.uk/tools/. The questionaire and sample generated text definitions may be found at http://mcs.open.ac.uk/nlg/SWAT/bio-ontologies.html. PMID:21624160
System and method for programmable bank selection for banked memory subsystems
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan
2010-09-07
A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.
Optical Generation of Fuzzy-Based Rules
NASA Astrophysics Data System (ADS)
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
NASA Astrophysics Data System (ADS)
Saint-Jalmes, Hervé; Barjhoux, Yves
1982-01-01
We present a 10 line-7 MHz timing generator built on a single board around two LSI timer chips interfaced to a 16-bit microcomputer. Once programmed from the host computer, this device is able to generate elaborate logic sequences on its 10 output lines without further interventions from the CPU. Powerful architecture introduces new possibilities over conventional memory-based timing simulators and word generators. Loop control on a given sequence of events, loop nesting, and various logic combinations can easily be implemented through a software interface, using a symbolic command language. Typical applications of such a device range from development, emulation, and test of integrated circuits, circuit boards, and communication systems to pulse-controlled instrumentation (radar, ultrasonic systems). A particular application to a pulsed Nuclear Magnetic Resonance (NMR) spectrometer is presented, along with customization of the device for generating four-channel radio-frequency pulses and the necessary sequence for subsequent data acquisition.
NASA Astrophysics Data System (ADS)
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Light-driven OR and XOR programmable chemical logic gates.
Szaciłowski, Konrad; Macyk, Wojciech; Stochel, Grazyna
2006-04-12
Photoelectrodes made of nanocrystalline titanium dioxide modified with various pentacyanoferrates exhibit unique photoelectrochemical properties; photocurrent direction can be switched from anodic to cathodic and vice versa upon changes in photoelectrode potential and incident light wavelength (PhotoElectrochemical Photocurrent Switching, PEPS effect). At certain potentials, anodic photocurrent generated upon UV irradiation has the same intensity as the cathodic photocurrent generated upon visible irradiation. Under these conditions, simultaneous irradiation with UV and visible light results in compensation of anodic and cathodic photocurrents, and zero net photocurrent is observed. This process can be used for construction of unique light-driven chemical logic gates.
Logic, beliefs, and instruction: a test of the default interventionist account of belief bias.
Handley, Simon J; Newstead, Stephen E; Trippas, Dries
2011-01-01
According to dual-process accounts of thinking, belief-based responses on reasoning tasks are generated as default but can be intervened upon in favor of logical responding, given sufficient time, effort, or cognitive resource. In this article, we present the results of 5 experiments in which participants were instructed to evaluate the conclusions of logical arguments on the basis of either their logical validity or their believability. Contrary to the predictions arising from these accounts, the logical status of the presented conclusion had a greater impact on judgments concerning its believability than did the believability of the conclusion on judgments about whether it followed logically. This finding was observed when instructional set was presented as a between-participants factor (Experiment 1), when instruction was indicated prior to problem presentation by a cue (Experiment 2), and when the cue appeared simultaneously with conclusion presentation (Experiments 3 and 4). The finding also extended to a range of simple and more complex argument forms (Experiment 5). In these latter experiments, belief-based judgments took significantly longer than those made under logical instructions. We discuss the implications of these findings for default interventionist accounts of belief bias.
Manuscript for TINS Forum: A postulate on the brain’s basic wiring logic
Tsien, Joe Z
2015-01-01
How should evolution and development build the brain to be capable of flexible and generative cognition? I wish to put forth a “power-of-two”-based wiring logic that provides the basic computational principle in organizing the microarchitecture of cell assemblies that would readily enable knowledge and adaptive behaviors to emerge upon learning. PMID:26482260
ERIC Educational Resources Information Center
Hogan, David; Chan, Melvin; Rahim, Ridzuan; Kwek, Dennis; Aye, Khin Maung; Loo, Siok Chen; Sheng, Yee Zher; Luo, Wenshu
2013-01-01
By any measure, Singapore's educational system has generated an extraordinary record of achievement over the past two or three decades. In this article, we report on one key component of a broader three year investigation into why Singapore has done so well, and explore the logic, strength, resilience and limits of the underlying pedagogical model…
ERIC Educational Resources Information Center
Oldroyd, Betty K.; Schroder, J. J.
1982-01-01
Reviews the advantages and disadvantages of different types of term combination using the positional logic capability of online information retrieval systems and describes a study in which searches for material on "microwave integrated circuits" were conducted in order to find the most economical way of generating the most relevant…
Runtime Analysis of Linear Temporal Logic Specifications
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Havelund, Klaus
2001-01-01
This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.
Quantum Communication without Alignment using Multiple-Qubit Single-Photon States
NASA Astrophysics Data System (ADS)
Aolita, L.; Walborn, S. P.
2007-03-01
We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and quantum teleportation.
A logical approach to semantic interoperability in healthcare.
Bird, Linda; Brooks, Colleen; Cheong, Yu Chye; Tun, Nwe Ni
2011-01-01
Singapore is in the process of rolling out a number of national e-health initiatives, including the National Electronic Health Record (NEHR). A critical enabler in the journey towards semantic interoperability is a Logical Information Model (LIM) that harmonises the semantics of the information structure with the terminology. The Singapore LIM uses a combination of international standards, including ISO 13606-1 (a reference model for electronic health record communication), ISO 21090 (healthcare datatypes), and SNOMED CT (healthcare terminology). The LIM is accompanied by a logical design approach, used to generate interoperability artifacts, and incorporates mechanisms for achieving unidirectional and bidirectional semantic interoperability.
Suhaimi, Nurul Sheeda; Ohae, Chiaki; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng-Lei; Katsuragawa, Masayuki
2015-12-15
We report the generation of five phase-locked harmonics, f₁:2403 nm, f₂:1201 nm, f₃:801 nm, f₄:600 nm, and f₅:480 nm with an exact frequency ratio of 1:2:3:4:5 by implementing a divide-by-three optical frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.
Malleable architecture generator for FPGA computing
NASA Astrophysics Data System (ADS)
Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang
1996-10-01
The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.
NASA Astrophysics Data System (ADS)
Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok
2012-03-01
A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.
32 x 16 CMOS smart pixel array for optical interconnects
NASA Astrophysics Data System (ADS)
Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.
2000-05-01
Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.
Immersion and dry scanner extensions for sub-10nm production nodes
NASA Astrophysics Data System (ADS)
Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.
2015-03-01
Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.
NASA Astrophysics Data System (ADS)
Hu, Zhaoying; Tulevski, George S.; Hannon, James B.; Afzali, Ali; Liehr, Michael; Park, Hongsik
2015-06-01
Carbon nanotubes (CNTs) have been widely studied as a channel material of scaled transistors for high-speed and low-power logic applications. In order to have sufficient drive current, it is widely assumed that CNT-based logic devices will have multiple CNTs in each channel. Understanding the effects of the number of CNTs on device performance can aid in the design of CNT field-effect transistors (CNTFETs). We have fabricated multi-CNT-channel CNTFETs with an 80-nm channel length using precise self-assembly methods. We describe compact statistical models and Monte Carlo simulations to analyze failure probability and the variability of the on-state current and threshold voltage. The results show that multichannel CNTFETs are more resilient to process variation and random environmental fluctuations than single-CNT devices.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M., Jr.; Kubeček, V.; Jelínková, H.
2015-09-01
Optimal conditions of low-threshold collinear parametric Raman comb generation in calcite (CaCO3) are experimentally investigated under 20 ps laser pulse excitation, in agreement with the theoretical study. The collinear parametric Raman generation of the highest number of Raman components in the short calcite crystals corresponding to the optimal condition of Stokes-anti-Stokes coupling was achieved. At the excitation wavelength of 1064 nm, using the optimum-length crystal resulted in the effective multi-octave frequency Raman comb generation containing up to five anti-Stokes and more than four Stokes components (from 674 nm to 1978 nm). The 532 nm pumping resulted in the frequency Raman comb generation from the 477 nm 2nd anti-Stokes up to the 692 nm 4th Stokes component. Using the crystal with a non-optimal length leads to the Stokes components generation only with higher thresholds because of the cascade-like stimulated Raman scattering with suppressed parametric coupling.
Experiments on neural network architectures for fuzzy logic
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Hong, Lu; Zhou, Fu; Wang, Guangfeng; Zhang, Xiaojun
2016-12-15
A novel fluorescent label-free "turn-on" NAD(+) and adenosine triphosphate (ATP) biosensing strategy is proposed by fully exploiting ligation triggered Nanocluster Beacon (NCB). In the presence of the target, the split NCB was brought to intact, which brought the C-rich sequence and enhancer sequence in close proximity resulting in the lightening of dark DNA/AgNCs ("On" mode). Further application was presented for logic gate operation and aptasensor construction. The feasibility was investigated by Ultraviolet-visible spectroscopy (UV-vis), Fluorescence, lifetime and High Resolution Transmission Electron Microscopy (HRTEM) etc. The strategy displayed good performance in the detection of NAD(+) and ATP, with the detection limit of 0.002nM and 0.001mM, the linear range of 10-1000nM and 0.003-0.01mM, respectively. Due to the DNA/AgNCs as fluorescence reporter, the completely label-free fluorescent strategy boasts the features of simplicity and low cost, and showing little reliance on the sensing environment. Meanwhile, the regulation by overhang G-rich sequence not relying on Förster energy transfer quenching manifests the high signal-to-background ratios (S/B ratios). This method not only provided a simple, economical and reliable fluorescent NAD(+) assay but also explored a flexible G-rich sequence regulated NCB probe for the fluorescent biosensors. Furthermore, this sensing mode was expanded to the application of a logic gate design, which exhibited a high performance for not only versatile biosensors construction but also for molecular computing application. Copyright © 2016 Elsevier B.V. All rights reserved.
Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S
2013-10-21
We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.
1D design style implications for mask making and CEBL
NASA Astrophysics Data System (ADS)
Smayling, Michael C.
2013-09-01
At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1D layouts patterned directly will be compared to mask complexity for lines and cuts at nodes larger than 20nm. No such comparison is possible below 20nm since single-patterning does not work below ~80nm pitch using optical exposure tools. Also discussed will be recently published wafer results for line patterns with pitch division by-2 and by-4 at sub-12nm nodes, plus examples of post-etch results for 1D patterns done with cut masks and compared to cuts exposed by a single-column e-beam direct write system.
Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.
Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching
2013-09-07
In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.
NASA Astrophysics Data System (ADS)
Salehi-Fashami, M.; Al-Rashid, M.; Sun, Wei-Yang; Nordeen, P.; Bandyopadhyay, S.; Chavez, A. C.; Carman, G. P.; Atulasimha, J.
2016-10-01
Nanomagnetic logic has emerged as a potential replacement for traditional Complementary Metal Oxide Semiconductor (CMOS) based logic because of superior energy-efficiency (Salahuddin and Datta 2007 Appl. Phys. Lett. 90 093503, Cowburn and Welland 2000 Science 287 1466-68). One implementation of nanomagnetic logic employs shape-anisotropic (e.g. elliptical) ferromagnets (with two stable magnetization orientations) as binary switches that rely on dipole-dipole interaction to communicate binary information (Cowburn and Welland 2000 Science 287 1466-8, Csaba et al 2002 IEEE Trans. Nanotechnol. 1 209-13, Carlton et al 2008 Nano Lett. 8 4173-8, Atulasimha and Bandyopadhyay 2010 Appl. Phys. Lett. 97 173105, Roy et al 2011 Appl. Phys. Lett. 99 063108, Fashami et al 2011 Nanotechnology 22 155201, Tiercelin et al 2011 Appl. Phys. Lett. 99 , Alam et al 2010 IEEE Trans. Nanotechnol. 9 348-51 and Bhowmik et al 2013 Nat. Nanotechnol. 9 59-63). Normally, circular nanomagnets are incompatible with this approach since they lack distinct stable in-plane magnetization orientations to encode bits. However, circular magnetoelastic nanomagnets can be made bi-stable with a voltage induced anisotropic strain, which provides two significant advantages for nanomagnetic logic applications. First, the shape-anisotropy energy barrier is eliminated which reduces the amount of energy required to reorient the magnetization. Second, the in-plane size can be reduced (˜20 nm) which was previously not possible due to thermal stability issues. In circular magnetoelastic nanomagnets, a voltage induced strain stabilizes the magnetization even at this size overcoming the thermal stability issue. In this paper, we analytically demonstrate the feasibility of a binary ‘logic wire’ implemented with an array of circular nanomagnets that are clocked with voltage-induced strain applied by an underlying piezoelectric substrate. This leads to an energy-efficient logic paradigm orders of magnitude superior to existing CMOS-based logic that is scalable to dimensions substantially smaller than those for existing nanomagnetic logic approaches. The analytical approach is validated with experimental measurements conducted on dipole coupled Nickel (Ni) nanodots fabricated on a PMN-PT (Lead Magnesium Niobate-Lead Titanate) sample.
Magnetic-field-controlled reconfigurable semiconductor logic.
Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark
2013-02-07
Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.
Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D
2016-01-25
Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies.
NASA Astrophysics Data System (ADS)
Jara Casas, L. M.; Ceresa, D.; Kulis, S.; Miryala, S.; Christiansen, J.; Francisco, R.; Gnani, D.
2017-02-01
A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (<1 Grad) and Single Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, Vt flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.
Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T
2013-06-01
We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.
Characteristics Of Ferroelectric Logic Gates Using a Spice-Based Model
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2005-01-01
A SPICE-based model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. This model was used to generate the I-V characteristic of several logic gates. The use of ferroelectric field effect transistors in memory circuits is being developed by several organizations. The use of FFETs in other circuits, both analog and digital needs to be better understood. The ability of FFETs to have different characteristics depending on the initial polarization can be used to create logic gates. These gates can have properties not available to standard CMOS logic gates, such as memory, reconfigurability and memory. This paper investigates basic properties of FFET logic gates. It models FFET inverter, NAND gate and multi-input NAND gate. The I-V characteristics of the gates are presented as well as transfer characteristics and timing. The model used is a SPICE-based model developed from empirical data from actual Ferroelectric transistors. It simulates all major characteristics of the ferroelectric transistor, including polarization, hysteresis and decay. Contrasts are made of the differences between FFET logic gates and CMOS logic gates. FFET parameters are varied to show the effect on the overall gate. A recodigurable gate is investigated which is not possible with CMOS circuits. The paper concludes that FFETs can be used in logic gates and have several advantages over standard CMOS gates.
Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.
Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D
2017-03-01
The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.
Executing medical logic modules expressed in ArdenML using Drools
Jung, Chai Young; Sward, Katherine A
2011-01-01
The Arden Syntax is an HL7 standard language for representing medical knowledge as logic statements. Despite nearly 2 decades of availability, Arden Syntax has not been widely used. This has been attributed to the lack of a generally available compiler to implement the logic, to Arden's complex syntax, to the challenges of mapping local data to data references in the Medical Logic Modules (MLMs), or, more globally, to the general absence of decision support in healthcare computing. An XML representation (ArdenML) may partially address the technical challenges. MLMs created in ArdenML can be converted into executable files using standard transforms written in the Extensible Stylesheet Language Transformation (XSLT) language. As an example, we have demonstrated an approach to executing MLMs written in ArdenML using the Drools business rule management system. Extensions to ArdenML make it possible to generate a user interface through which an MLM developer can test for logical errors. PMID:22180871
Origins of Chaos in Autonomous Boolean Networks
NASA Astrophysics Data System (ADS)
Socolar, Joshua; Cavalcante, Hugo; Gauthier, Daniel; Zhang, Rui
2010-03-01
Networks with nodes consisting of ideal Boolean logic gates are known to display either steady states, periodic behavior, or an ultraviolet catastrophe where the number of logic-transition events circulating in the network per unit time grows as a power-law. In an experiment, non-ideal behavior of the logic gates prevents the ultraviolet catastrophe and may lead to deterministic chaos. We identify certain non-ideal features of real logic gates that enable chaos in experimental networks. We find that short-pulse rejection and the asymmetry between the logic states tends to engender periodic behavior. On the other hand, a memory effect termed ``degradation'' can generate chaos. Our results strongly suggest that deterministic chaos can be expected in a large class of experimental Boolean-like networks. Such devices may find application in a variety of technologies requiring fast complex waveforms or flat power spectra. The non-ideal effects identified here also have implications for the statistics of attractors in large complex networks.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
NASA Technical Reports Server (NTRS)
Smith, Edwyn D.
1991-01-01
Two silicon CMOS application specific integrated circuits (ASICs), a data generation chip, and a data checker chip were designed. The conversion of the data generator circuitry into a pair of CMOS ASIC chips using the 1.2 micron standard cell library is documented. The logic design of the data checker is discussed. The functions of the control circuitry is described. An accurate estimate of timing relationships is essential to make sure that the logic design performs correctly under practical conditions. Timing and delay information are examined.
FPGA Implementation of Metastability-Based True Random Number Generator
NASA Astrophysics Data System (ADS)
Hata, Hisashi; Ichikawa, Shuichi
True random number generators (TRNGs) are important as a basis for computer security. Though there are some TRNGs composed of analog circuit, the use of digital circuits is desired for the application of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in free-running ring oscillators as a source of entropy, which consume large power. Another type of TRNG exploits the metastability of a latch to generate entropy. Although this kind of TRNG has been mostly implemented with full-custom LSI technology, this study presents an implementation based on common FPGA technology. Our TRNG is comprised of logic gates only, and can be integrated in any kind of logic LSI. The RS latch in our TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes. To improve the quality and throughput, the output of 64-256 latches are XOR'ed. The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20), and passed NIST statistical test suite without post-processing. Our TRNG with 256 latches occupies 580 slices, while achieving 12.5Mbps throughput.
Computing an operating parameter of a unified power flow controller
Wilson, David G.; Robinett, III, Rush D.
2017-12-26
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Computing an operating parameter of a unified power flow controller
Wilson, David G; Robinett, III, Rush D
2015-01-06
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
NASA Astrophysics Data System (ADS)
Liu, Xiang; Beckwitt, Kale; Wise, Frank
2000-05-01
We demonstrate theoretically and experimentally that spatiotemporal solitons can be generated through noncollinear second-harmonic generation. The resulting Y geometry could be used to implement an optical AND gate with ultrafast, high-contrast operation but without sensitivity to the phases of the input pulses.
Logic Nanocells Within 3-Terminal Ordered Arrays
2007-02-28
DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION STATEMEN A: UNLIMITED AFRL- SR -AR-TR-07-0494 13. SUPPLEMENTARY NOTES 14. ABSTRACT ON SEPARATE SHEET... sputter -coating a 200 nm Au layer. Molecular grafting. Compounds 1, 2 and 3 were synthesized according to literature methods.24 26 The synthesis of 4...neutral (no counter ions ). In order to facilitate molecular conduction, the molecule was designed to be small and contain a continuous Tr-electron system
NASA Astrophysics Data System (ADS)
Stefan Devlin, Benjamin; Nakura, Toru; Ikeda, Makoto; Asada, Kunihiro
We detail a self synchronous field programmable gate array (SSFPGA) with dual-pipeline (DP) architecture to conceal pre-charge time for dynamic logic, and its throughput optimization by using pipeline alignment implemented on benchmark circuits. A self synchronous LUT (SSLUT) consists of a three input tree-type structure with 8bits of SRAM for programming. A self synchronous switch box (SSSB) consists of both pass transistors and buffers to route signals, with 12bits of SRAM. One common block with one SSLUT and one SSSB occupies 2.2Mλ2 area with 35bits of SRAM, and the prototype SSFPGA with 34 × 30 (1020) blocks is designed and fabricated using 65nm CMOS. Measured results show at 1.2V 430MHz and 647MHz operation for a 3bit ripple carry adder, without and with throughput optimization, respectively. We find that using the proposed pipeline alignment techniques we can perform at maximum throughput of 647MHz in various benchmarks on the SSFPGA. We demonstrate up to 56.1 times throughput improvement with our pipeline alignment techniques. The pipeline alignment is carried out within the number of logic elements in the array and pipeline buffers in the switching matrix.
Experimental investigation of a four-qubit linear-optical quantum logic circuit
NASA Astrophysics Data System (ADS)
Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.
2016-09-01
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.
Experimental investigation of a four-qubit linear-optical quantum logic circuit.
Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J
2016-09-20
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.
Mercury Shopping Cart Interface
NASA Technical Reports Server (NTRS)
Pfister, Robin; McMahon, Joe
2006-01-01
Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.
Digital Poetry: A Narrow Relation between Poetics and the Codes of the Computational Logic
NASA Astrophysics Data System (ADS)
Laurentiz, Silvia
The project "Percorrendo Escrituras" (Walking Through Writings Project) has been developed at ECA-USP Fine Arts Department. Summarizing, it intends to study different structures of digital information that share the same universe and are generators of a new aesthetics condition. The aim is to search which are the expressive possibilities of the computer among the algorithm functions and other of its specific properties. It is a practical, theoretical and interdisciplinary project where the study of programming evolutionary language, logic and mathematics take us to poetic experimentations. The focus of this research is the digital poetry, and it comes from poetics of permutation combinations and culminates with dynamic and complex systems, autonomous, multi-user and interactive, through agents generation derivations, filtration and emergent standards. This lecture will present artworks that use some mechanisms introduced by cybernetics and the notion of system in digital poetry that demonstrate the narrow relationship between poetics and the codes of computational logic.
High-efficency stable 213-nm generation for LASIK application
NASA Astrophysics Data System (ADS)
Wang, Zhenglin; Alameh, Kamal; Zheng, Rong
2005-01-01
213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.
Quantum logic gates based on ballistic transport in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragoman, Daniela; Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest; Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro
2016-03-07
The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.
Nanowire systems: technology and design
Gaillardon, Pierre-Emmanuel; Amarù, Luca Gaetano; Bobba, Shashikanth; De Marchi, Michele; Sacchetto, Davide; De Micheli, Giovanni
2014-01-01
Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology. PMID:24567471
Impact of Temporal Masking of Flip-Flop Upsets on Soft Error Rates of Sequential Circuits
NASA Astrophysics Data System (ADS)
Chen, R. M.; Mahatme, N. N.; Diggins, Z. J.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.
2017-08-01
Reductions in single-event (SE) upset (SEU) rates for sequential circuits due to temporal masking effects are evaluated. The impacts of supply voltage, combinational-logic delay, flip-flop (FF) SEU performance, and particle linear energy transfer (LET) values are analyzed for SE cross sections of sequential circuits. Alpha particles and heavy ions with different LET values are used to characterize the circuits fabricated at the 40-nm bulk CMOS technology node. Experimental results show that increasing the delay of the logic circuit present between FFs and decreasing the supply voltage are two effective ways of reducing SE error rates for sequential circuits for particles with low LET values due to temporal masking. SEU-hardened FFs benefit less from temporal masking than conventional FFs. Circuit hardening implications for SEU-hardened and unhardened FFs are discussed.
Field Effect Transistor Behavior in Electrospun Polyaniline/Polyethylene Oxide Nanofibers
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Theofylaktos, Noulie; Mueller, Carl H.; Pinto, Nicholas J.
2004-01-01
Novel transistors and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low-power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. For NASA applications, nanotechnology offers tremendous opportunities for increased onboard data processing, and thus autonomous decision-making ability, and novel sensors that detect and respond to environmental stimuli with little oversight requirements. Polyaniline (PANi) is an intriguing material because its electrical conductivity can be changed from insulating to metallic by varying the doping levels and conformations of the polymer chain, and when combined with polyethylene oxide (PEO), can be formed into nanofibers with diameters ranging from approximately 50 to 500 nm (depending on the deposition conditions). The initial goal of this work was to demonstrate transistor behavior in these nanofibers, thus creating a foundation for future logic devices.
High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2
NASA Astrophysics Data System (ADS)
Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.
2012-06-01
We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei
2017-12-01
A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.
NASA Astrophysics Data System (ADS)
Raley, Angélique; Lee, Joe; Smith, Jeffrey T.; Sun, Xinghua; Farrell, Richard A.; Shearer, Jeffrey; Xu, Yongan; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton; Arnold, John; Felix, Nelson
2018-04-01
We report a sub-30nm pitch self-aligned double patterning (SADP) integration scheme with EUV lithography coupled with self-aligned block technology (SAB) targeting the back end of line (BEOL) metal line patterning applications for logic nodes beyond 5nm. The integration demonstration is a validation of the scalability of a previously reported flow, which used 193nm immersion SADP targeting a 40nm pitch with the same material sets (Si3N4 mandrel, SiO2 spacer, Spin on carbon, spin on glass). The multi-color integration approach is successfully demonstrated and provides a valuable method to address overlay concerns and more generally edge placement error (EPE) as a whole for advanced process nodes. Unbiased LER/LWR analysis comparison between EUV SADP and 193nm immersion SADP shows that both integrations follow the same trend throughout the process steps. While EUV SADP shows increased LER after mandrel pull, metal hardmask open and dielectric etch compared to 193nm immersion SADP, the final process performance is matched in terms of LWR (1.08nm 3 sigma unbiased) and is only 6% higher than 193nm immersion SADP for average unbiased LER. Using EUV SADP enables almost doubling the line density while keeping most of the remaining processes and films unchanged, and provides a compelling alternative to other multipatterning integrations, which present their own sets of challenges.
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Lafuse, Sharon; Smith, Frederick D.; Lu, Sao-Dung; Knox, James C.; Campbell, Mellssa L.; Scull, Timothy D.; Green Steve
2010-01-01
A tool has been developed by the Sabatier Team for analyzing/optimizing CO2 removal assembly, CO2 compressor size, its operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and Hz from oxygen generation assembly. Tests had been conducted using CDRA/Simulation compressor set-up at MSFC in 2003. Analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in CDRA desorption. Optimizing the compressor size and compressor operation logic for an integrated closed air revitalization system Is being conducted by the Sabatier Team.
Real power regulation for the utility power grid via responsive loads
McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A
2009-05-19
A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.
Field programmable gate arrays: Evaluation report for space-flight application
NASA Technical Reports Server (NTRS)
Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan
1992-01-01
Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.
NASA Astrophysics Data System (ADS)
Nurismawati, R.; Sanjaya, Y.; Rusyati, L.
2018-05-01
The aim of this study is to examine the relationship between students’ critical thinking skill and students’ logical thinking skill of Junior High School students in Tasikmalaya city. The respondent consists of 168 students from eighth grade at three public schools in Tasikmalaya City. Science Virtual Test and Test of Logical Thinking were used in this research study. Science virtual test instrument consist of 26 questions with 5 different topics. IBM SPSS 23.00 program was used for analysis of the data. By the findings; students’ critical thinking skill has significant differences in elements of generating purpose, embodying point of view, utilizing concept and making implication and consequence. By Post Hoc LSD Test, from those four elements, there are significant differences between concrete - transitional groups and transitional – concrete groups. There is positive and weak correlation between students’ critical thinking and students’ logical thinking attainment.
False alarm recognition in hyperspectral gas plume identification
Conger, James L [San Ramon, CA; Lawson, Janice K [Tracy, CA; Aimonetti, William D [Livermore, CA
2011-03-29
According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Jin; Yu, Weichao; Wu, Ruqian
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less
Lan, Jin; Yu, Weichao; Wu, Ruqian; ...
2015-12-28
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less
NASA Astrophysics Data System (ADS)
de Andrade, Thales Haddad Novaes; Vilela, Denise Silva
2013-09-01
In Brazil, mathematics education was associated with Jean Piaget's theory. Scholars in the field of education appropriated Piaget's work in different ways, but usually emphasized logical aspects of thought, which probably lead to an expansion of mathematics education influenced by psychology. This study attempts to extend the range of interlocutions and pose a dialogue between the field of mathematics education in Brazil and the sociology of science proposed by David Bloor. The main point of Bloor's theory is that logical-mathematical knowledge is far from being true and universal and is socially conditioned. In particular we will be discussing the first principle of the strong program, which deals with conditions that generate beliefs promoted by education policies in Brazil, such as the MEC/USAID treaties. In this case the "naturalization of logic" was stimulated by a widespread diffusion of both Piaget studies and the Modern Mathematics Movement.
Experimental investigation of a four-qubit linear-optical quantum logic circuit
Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.
2016-01-01
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176
A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun
2017-10-01
In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.
Radiation Tolerant, Low Noise Phase Locked Loops in 65 nm CMOS Technology
NASA Astrophysics Data System (ADS)
Prinzie, Jeffrey; Christiansen, Jorgen; Moreira, Paulo; Steyaert, Michiel; Leroux, Paul
2018-04-01
This work presents an introduction to radiation hardened Phase Locked Loops (PLLs) for nuclear and high-energy physics application. An experimental circuit has been fabricated and irradiated with Xrays up to 600 Mrad. Heavy ions with an LET between 3.2 and 69.2 MeV.cm2/mg were used to verify the SEU cross section of the devices. A Two-photon Absorption (TPA) laser facility has been used to provide detailed results on the SEU sensitivity. The presented circuit employs TMR in the digital logic and an asynchronous phase-frequency detector (PFD) is presented. The PLL has a ringand LC-oscillator to be compared experimentally. The circuit has been fabricated in a 65 nm CMOS technology.
NASA Astrophysics Data System (ADS)
Cominelli, Alessandro; Acconcia, Giulia; Ghioni, Massimo; Rech, Ivan
2018-03-01
Time-correlated single-photon counting (TCSPC) is a powerful optical technique, which permits recording fast luminous signals with picosecond precision. Unfortunately, given its repetitive nature, TCSPC is recognized as a relatively slow technique, especially when a large time-resolved image has to be recorded. In recent years, there has been a fast trend toward the development of TCPSC imagers. Unfortunately, present systems still suffer from a trade-off between number of channels and performance. Even worse, the overall measurement speed is still limited well below the saturation of the transfer bandwidth toward the external processor. We present a routing algorithm that enables a smart connection between a 32×32 detector array and five shared high-performance converters able to provide an overall conversion rate up to 10 Gbit/s. The proposed solution exploits a fully digital logic circuit distributed in a tree structure to limit the number and length of interconnections, which is a major issue in densely integrated circuits. The behavior of the logic has been validated by means of a field-programmable gate array, while a fully integrated prototype has been designed in 180-nm technology and analyzed by means of postlayout simulations.
A computer method of finding valuations forcing validity of LC formulae
NASA Astrophysics Data System (ADS)
Godlewski, Łukasz; Świetorzecka, Kordula; Mulawka, Jan
2014-11-01
The purpose of this paper is to present the computer implementation of a system known as LC temporal logic [1]. Firstly, to become familiar with some theoretical issues, a short introduction to this logic is discussed. The algorithms allowing a deep analysis of the formulae of LC logic are considered. In particular we discuss how to determine if a formula is a tautology, contrtautology or it is satisfable. Next, we show how to find all valuations to satisfy the formula. Finally, we consider finding histories generated by the formula and transforming these histories into the state machine. Moreover, a description of the experiments that verify the implementation are briefly presented.
Low-Level Space Optimization of an AES Implementation for a Bit-Serial Fully Pipelined Architecture
NASA Astrophysics Data System (ADS)
Weber, Raphael; Rettberg, Achim
A previously developed AES (Advanced Encryption Standard) implementation is optimized and described in this paper. The special architecture for which this implementation is targeted comprises synchronous and systematic bit-serial processing without a central controlling instance. In order to shrink the design in terms of logic utilization we deeply analyzed the architecture and the AES implementation to identify the most costly logic elements. We propose to merge certain parts of the logic to achieve better area efficiency. The approach was integrated into an existing synthesis tool which we used to produce synthesizable VHDL code. For testing purposes, we simulated the generated VHDL code and ran tests on an FPGA board.
ERIC Educational Resources Information Center
Kern, Alfred
1983-01-01
Describes an experimental course at Allegheny College in computer-generated poetry, which required students to deal simultaneously with grammar and rhetoric, poetics, the computer and BASIC, logic and artificial intelligence in order to create programs that would generate poetry. Examples of verses produced by course participants are included.…
Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo
2008-02-04
We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.
Self-assembling software generator
Bouchard, Ann M [Albuquerque, NM; Osbourn, Gordon C [Albuquerque, NM
2011-11-25
A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.
NASA Astrophysics Data System (ADS)
Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Xin, Xiang-Jun; Shen, Xiang-Wei; Zhang, Jin-Long; Zhou, Gui-Yao; Li, Shu-Guang; Hou, Lan-Tian
2011-05-01
By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.
Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula
2011-01-01
Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
Mechanically Flexible and High-Performance CMOS Logic Circuits.
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-10-13
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.
NASA Astrophysics Data System (ADS)
Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.
2010-10-01
Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.
Applications of fuzzy logic to control and decision making
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.
Mechanically Flexible and High-Performance CMOS Logic Circuits
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-01-01
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882
Automated Knowledge Generation with Persistent Surveillance Video
2008-03-26
5 2.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Formal Logic . . . . . . . . . . . . . . . . . . . 6 2.1.2...background of Artificial Intelligence and the reasoning engines that will be applied to generate knowledge from data. Section 2.2 discusses background on...generation from persistent video. 4 II. Background In this chapter, we will discuss the background of Artificial Intelligence, Semantic Web, image
Combinational logic for generating gate drive signals for phase control rectifiers
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Trimble, D. W. (Inventor)
1982-01-01
Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng
2017-07-01
Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.
Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue
2016-04-01
In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine. Copyright © 2016 Elsevier B.V. All rights reserved.
Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu
2015-05-01
A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.
A CMake-Based Cross Platform Build System for Tcl/Tk
2011-11-01
expressing the logic for generating user-installable packages of the finished package. While specific com- pilation instructions are typically unique to each...Windows com- pilation . This presented a difficulty for the BRL- CAD project in that neither of these systems inte- grated well with BRL-CAD’s own build...build files. 2. Implement enough of the Tcl/Tk–specific com- pilation macro logic in CMake to support build- 1Twylite’s Coffee project uses CMake to
NASA Technical Reports Server (NTRS)
Feller, A.
1978-01-01
The entire complement of standard cells and components, except for the set-reset flip-flop, was completed. Two levels of checking were performed on each device. Logic cells and topological layout are described. All the related computer programs were coded and one level of debugging was completed. The logic for the test chip was modified and updated. This test chip served as the first test vehicle to exercise the standard cell complementary MOS(C-MOS) automatic artwork generation capability.
The spatiotemporal order of signaling events unveils the logic of development signaling.
Zhu, Hao; Owen, Markus R; Mao, Yanlan
2016-08-01
Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. The model is available upon request. hao.zhu@ymail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
The spatiotemporal order of signaling events unveils the logic of development signaling
Zhu, Hao; Owen, Markus R.; Mao, Yanlan
2016-01-01
Motivation: Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. Results: We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. Availability and implementation: The model is available upon request. Contact: hao.zhu@ymail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153573
Yoshihara, Motojiro; Yoshihara, Motoyuki
In this article, we describe an incorrect use of logic which involves the careless application of the 'necessary and sufficient' condition originally used in formal logic. This logical fallacy is causing frequent confusion in current biology, especially in neuroscience. In order to clarify this problem, we first dissect the structure of this incorrect logic (which we refer to as 'misapplied-N&S') to show how necessity and sufficiency in misapplied-N&S are not matching each other. Potential pitfalls of utilizing misapplied-N&S are exemplified by cases such as the discrediting of command neurons and other potentially key neurons, the distorting of truth in optogenetic studies, and the wrongful justification of studies with little meaning. In particular, the use of the word 'sufficient' in optogenetics tends to generate misunderstandings by opening up multiple interpretations. To avoid the confusion caused by the misleading logic, we now recommend using 'indispensable and inducing' instead of using 'necessary and sufficient.' However, we ultimately recommend fully articulating the limits of what our experiments suggest, not relying on such simple phrases. Only after this problem is fully understood and more rigorous language is demanded, can we finally interpret experimental results in an accurate way.
Lilienthal, S.; Klein, M.; Orbach, R.; Willner, I.; Remacle, F.
2017-01-01
The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series. PMID:28507669
Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu
2013-10-01
This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
Markovits, Henry
2014-12-01
Understanding the development of conditional (if-then) reasoning is critical for theoretical and educational reasons. Here we examined the hypothesis that there is a developmental transition between reasoning with true and contrary-to-fact (CF) causal conditionals. A total of 535 students between 11 and 14 years of age received priming conditions designed to encourage use of either a true or CF alternatives generation strategy and reasoning problems with true causal and CF causal premises (with counterbalanced order). Results show that priming had no effect on reasoning with true causal premises. By contrast, priming with CF alternatives significantly improved logical reasoning with CF premises. Analysis of the effect of order showed that reasoning with CF premises reduced logical responding among younger students but had no effect among older students. Results support the idea that there is a transition in the reasoning processes in this age range associated with the nature of the alternatives generation process required for logical reasoning with true and CF causal conditionals. Copyright © 2014 Elsevier Inc. All rights reserved.
Integrated-Circuit Pseudorandom-Number Generator
NASA Technical Reports Server (NTRS)
Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur
1992-01-01
Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.
2000-01-01
A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.
High-power 266 nm ultraviolet generation in yttrium aluminum borate.
Liu, Qiang; Yan, Xingpeng; Gong, Mali; Liu, Hua; Zhang, Ge; Ye, Ning
2011-07-15
A yttrium aluminum borate [YAl(3)(BO(3))(4)] (YAB) crystal with UV cutoff wavelength of 165 nm is used as the nonlinear optical crystal for fourth harmonic generation. The fundamental frequency laser at 1064 nm from an Nd:YVO(4) master oscillator power amplifier laser was frequency doubled to 532 nm. Using the type I phase-matching YAB crystal, a 5.05 W average power 266 nm UV laser was obtained at the pulse repetition frequency of 65 kHz, corresponding to the conversion efficiency of 12.3% from 532 to 266 nm. The experimental results show great potential for the application of using YAB as a nonlinear optical crystal to get high-power fourth harmonic generation. © 2011 Optical Society of America
A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.
Binh, P H; Trong, V D; Renucci, P; Marie, X
2013-08-01
We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.
Periodic binary sequence generators: VLSI circuits considerations
NASA Technical Reports Server (NTRS)
Perlman, M.
1984-01-01
Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.
Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard
NASA Astrophysics Data System (ADS)
Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team
2015-05-01
194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).
Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio
2013-09-15
Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input-output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary materials are available at Bioinformatics online. santiago.videla@irisa.fr.
Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio
2013-01-01
Motivation: Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. Results: We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input–output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. Availability: caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary information: Supplementary materials are available at Bioinformatics online. Contact: santiago.videla@irisa.fr PMID:23853063
Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.
Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M
2015-12-17
Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing.
Logic circuits based on molecular spider systems.
Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko
2016-08-01
Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bhatta, Sushil Ranjan; Mondal, Bijan; Vijaykumar, Gonela; Thakur, Arunabha
2017-10-02
A unique turn-on fluorescent device based on a ferrocene-aminonaphtholate derivative specific for Hg 2+ cation was developed. Upon binding with Hg 2+ ion, the probe shows a dramatic fluorescence enhancement (the fluorescence quantum yield increases 58-fold) along with a large red shift of 68 nm in the emission spectrum. The fluorescence enhancement with a red shift may be ascribed to the combinational effect of C═N isomerization and an extended intramolecular charge transfer (ICT) mechanism. The response was instantaneous with a detection limit of 2.7 × 10 -9 M. Upon Hg 2+ recognition, the ferrocene/ferrocenium redox peak was anodically shifted by ΔE 1/2 = 72 mV along with a "naked eye" color change from faint yellow to pale orange for this metal cation. Further, upon protonation of the imine nitrogen, the present probe displays a high fluorescence output due to suppression of the C═N isomerization process. Upon deprotonation using strong base, the fluorescence steadily decreases, which indicates that H + and OH - can be used to regulate the off-on-off fluorescence switching of the present probe. Density functional theory studies revealed that the addition of acid leads to protonation of the imine N (according to natural bond orbital analysis), and the resulting iminium proton forms a strong H-bond (2.307 Å) with one of the triazole N atoms to form a five-membered ring, which makes the molecule rigid; hence, enhancement of the ICT process takes place, thereby leading to a fluorescence enhancement with a red shift. The unprecedented combination of H + , OH - , and Hg 2+ ions has been used to generate a molecular system exhibiting the INHIBIT-OR combinational logic operation.
Institutional logic in self-management support: coexistence and diversity.
Bossy, Dagmara; Knutsen, Ingrid Ruud; Rogers, Anne; Foss, Christina
2016-11-01
The prevalence of chronic conditions in Europe has been the subject of health-political reforms that have increasingly targeted collaboration between public, private and voluntary organisations for the purpose of supporting self-management of long-term diseases. The international literature describes collaboration across sectors as challenging, which implies that their respective logics are conflicting or incompatible. In line with the European context, recent Norwegian health policy advocates inter-sectorial partnerships. The aim of this policy is to create networks supporting better self-management for people with chronic conditions. The purpose of our qualitative study was to map different understandings of self-management support in private for-profit, volunteer and public organisations. These organisations are seen as potential self-management support networks for individuals with chronic conditions in Norway. From December 2012 to April 2013, we conducted 50 semi-structured interviews with representatives from relevant health and well-being organisations in different parts of Norway. According to the theoretical framework of institutional logic, representatives' statements are embedded with organisational understandings. In the analysis, we systematically assessed the representatives' different understandings of self-management support. The institutional logic we identified revealed traits of organisational historical backgrounds, and transitions in understanding. We found that the merging of individualism and fellowship in contemporary health policy generates different types of logic in different organisational contexts. The private for-profit organisations were concerned with the logic of a healthy appearance and mindset, whereas the private non-profit organisations emphasised fellowship and moral responsibility. Finally, the public, illness-oriented organisations tended to highlight individual conditions for illness management. Different types of logic may attract different users, and simultaneously, a diversity of logic types may challenge collaboration at the user's expense. Moral implications embed institutional logic implying a change towards individual responsibility for disease. Policy makers ought to consider complexities of logic in order to tailor the different needs of users. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, Niansheng; Wang, Renjie; Tu, Yayi; Pu, Shouzhi; Liu, Gang
2018-05-01
A novel photochromic diarylethene with a triazole-containing 2-(2‧-phenoxymethyl)-benzothiazole group has been synthesized via "click" reaction. The diarylethene exhibited good photochromism and photoswitchable fluorescence. Its fluorescence emission intensity was enhanced 7-fold by acids, accompanied by the red-shift of emission peak from 526 nm to 566 nm and the concomitant color change from dark to bright flavogreen. The diarylethene selectively formed a 1:1 metal complex with Al3+, resulting in a "turn-on" fluorescence signal. The complexation - reaction between Al3+ and the diarylethene is reversible with the binding constant of 2.73 × 103 L mol-1. The limit of detection (LOD) of Al3+ was determined to be 5.94 × 10-8 mol L-1. Based on this unimolecular platform, a logic circuit was fabricated using the fluorescence emission intensity at 572 nm as the output and the combined stimuli of Al3+/EDTA and UV/Vis as the inputs.
Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng
2016-10-04
Herein, a novel universal and label-free homogeneous electrochemical platform is demonstrated, on which a complete set of DNA-based two-input Boolean logic gates (OR, NAND, AND, NOR, INHIBIT, IMPLICATION, XOR, and XNOR) is constructed by simply and rationally deploying the designed DNA polymerization/nicking machines without complicated sequence modulation. Single-stranded DNA is employed as the proof-of-concept target/input to initiate or prevent the DNA polymerization/nicking cyclic reactions on these DNA machines to synthesize numerous intact G-quadruplex sequences or binary G-quadruplex subunits as the output. The generated output strands then self-assemble into G-quadruplexes that render remarkable decrease to the diffusion current response of methylene blue and, thus, provide the amplified homogeneous electrochemical readout signal not only for the logic gate operations but also for the ultrasensitive detection of the target/input. This system represents the first example of homogeneous electrochemical logic operation. Importantly, the proposed homogeneous electrochemical logic gates possess the input/output homogeneity and share a constant output threshold value. Moreover, the modular design of DNA polymerization/nicking machines enables the adaptation of these homogeneous electrochemical logic gates to various input and output sequences. The results of this study demonstrate the versatility and universality of the label-free homogeneous electrochemical platform in the design of biomolecular logic gates and provide a potential platform for the further development of large-scale DNA-based biocomputing circuits and advanced biosensors for multiple molecular targets.
T.Z. Ye; K.J.S. Jayawickrama; G.R. Johnson
2004-01-01
BLUP (Best linear unbiased prediction) method has been widely used in forest tree improvement programs. Since one of the properties of BLUP is that related individuals contribute to the predictions of each other, it seems logical that integrating data from all generations and from all populations would improve both the precision and accuracy in predicting genetic...
Via patterning in the 7-nm node using immersion lithography and graphoepitaxy directed self-assembly
NASA Astrophysics Data System (ADS)
Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel
2017-04-01
Insertion of a graphoepitaxy directed self-assembly process as a via patterning technology into integrated circuit fabrication is seriously considered for the 7-nm node and beyond. At these dimensions, a graphoepitaxy process using a cylindrical block copolymer that enables hole multiplication can alleviate costs by extending 193-nm immersion-based lithography and significantly reducing the number of masks that would be required per layer. To be considered for implementation, it needs to be proved that this approach can achieve the required pattern quality in terms of defects and variability using a representative, aperiodic design. The patterning of a via layer from an actual 7-nm node logic layout is demonstrated using immersion lithography and graphoepitaxy directed self-assembly in a fab-like environment. The performance of the process is characterized in detail on a full 300-mm wafer scale. The local variability in an edge placement error of the obtained patterns (4.0 nm 3σ for singlets) is in line with the recent results in the field and significantly less than of the prepattern (4.9 nm 3σ for singlets). In addition, it is expected that pattern quality can be further improved through an improved mask design and optical proximity correction. No major complications for insertion of the graphoepitaxy directed self-assembly into device manufacturing were observed.
Nearly penalty-free, less than 4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Mori, K.; Saruwatari, M.
1994-05-01
Nearly penalty-free less than 4ps supercontinuum WDM pulses are generated at 6.3 Gbit/s over 1535-1560 nm for the first time using a 200 nm superbroadened supercontinuum in an optical fibre pumped by 1.7 W, 3.3 ps, 1542 nm short pulses from an Er(3+)-doped fibre ring laser.
Unsupervised MDP Value Selection for Automating ITS Capabilities
ERIC Educational Resources Information Center
Stamper, John; Barnes, Tiffany
2009-01-01
We seek to simplify the creation of intelligent tutors by using student data acquired from standard computer aided instruction (CAI) in conjunction with educational data mining methods to automatically generate adaptive hints. In our previous work, we have automatically generated hints for logic tutoring by constructing a Markov Decision Process…
A methodology for double patterning compliant split and design
NASA Astrophysics Data System (ADS)
Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert
2008-11-01
Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.
Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.
2009-03-01
Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.
Analysis method to determine and characterize the mask mean-to-target and uniformity specification
NASA Astrophysics Data System (ADS)
Lee, Sung-Woo; Leunissen, Leonardus H. A.; Van de Kerkhove, Jeroen; Philipsen, Vicky; Jonckheere, Rik; Lee, Suk-Joo; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae
2006-06-01
The specification of the mask mean-to-target (MTT) and uniformity is related to functions as: mask error enhancement factor, dose sensitivity and critical dimension (CD) tolerances. The mask MTT shows a trade-off relationship with the uniformity. Simulations for the mask MTT and uniformity (M-U) are performed for LOGIC devices of 45 and 37 nm nodes according to mask type, illumination condition and illuminator polarization state. CD tolerances and after develop inspection (ADI) target CD's in the simulation are taken from the 2004 ITRS roadmap. The simulation results allow for much smaller tolerances in the uniformity and larger offsets in the MTT than the values as given in the ITRS table. Using the parameters in the ITRS table, the mask uniformity contributes to nearly 95% of total CDU budget for the 45 nm node, and is even larger than the CDU specification of the ITRS for the 37 nm node. We also compared the simulation requirements with the current mask making capabilities. The current mask manufacturing status of the mask uniformity is barely acceptable for the 45 nm node, but requires process improvements towards future nodes. In particular, for the 37 nm node, polarized illumination is necessary to meet the ITRS requirements. The current mask linearity deviates for pitches smaller than 300 nm, which is not acceptable even for the 45 nm node. More efforts on the proximity correction method are required to improve the linearity behavior.
Hum, D S; Route, R K; Fejer, M M
2007-04-15
Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25 degrees -rotated, x-cut, near-stoichiometric lithium tantalate has been performed. Using a face-normal topology for frequency conversion applications allows scalable surface area to avoid surface and volume damage in high-power interactions. First-order, quasi-phase-matched second-harmonic generation was achieved using near-stoichiometric lithium tantalate fabricated by vapor transport equilibration. These crystals supported 1 J of 1064 nm radiation and generated 21 mJ of 532 nm radiation from a 7 ns, Q-switched Nd:YAG laser within a factor of 4.2 of expectation.
NASA Astrophysics Data System (ADS)
Li, Chun-Hao; Tsai, Ming-Jong
2009-06-01
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.
NASA Technical Reports Server (NTRS)
Brown, Robert B.
1994-01-01
A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.
Control logic to track the outputs of a command generator or randomly forced target
NASA Technical Reports Server (NTRS)
Trankle, T. L.; Bryson, A. E., Jr.
1977-01-01
A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).
Logic gates based all-optical binary half adder using triple core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Uthayakumar, T.; Vasantha Jayakantha Raja, R.
2018-06-01
This study presents the implementation of an all-optical binary logic half adder by employing a triple core photonic crystal fiber (TPCF). The noteworthy feature of the present investigation is that an identical set of TPCF schemes, which demonstrated all-optical logic functions in our previous report, has revealed the ability to demonstrate the successful half adder operation. The control signal (CS) power defining the extinction ratios of the output ports for the considered symmetric planar and triangular TPCFs is evaluated through a numerical algorithm. Through suitable CS power and input combinations, the logic outputs are generated from extinction ratios to demonstrate the half adder operation. The results obtained display the significant influence of the input conditions on the delivery of half adder operation for different TPCF schemes considered. Furthermore, chloroform filled TPCF structures demonstrated the efficient low power half adder operation with a significant figure of merit, compared to that of the silica counterpart.
DENA: A Configurable Microarchitecture and Design Flow for Biomedical DNA-Based Logic Design.
Beiki, Zohre; Jahanian, Ali
2017-10-01
DNA is known as the building block for storing the life codes and transferring the genetic features through the generations. However, it is found that DNA strands can be used for a new type of computation that opens fascinating horizons in computational medicine. Significant contributions are addressed on design of DNA-based logic gates for medical and computational applications but there are serious challenges for designing the medium and large-scale DNA circuits. In this paper, a new microarchitecture and corresponding design flow is proposed to facilitate the design of multistage large-scale DNA logic systems. Feasibility and efficiency of the proposed microarchitecture are evaluated by implementing a full adder and, then, its cascadability is determined by implementing a multistage 8-bit adder. Simulation results show the highlight features of the proposed design style and microarchitecture in terms of the scalability, implementation cost, and signal integrity of the DNA-based logic system compared to the traditional approaches.
2015-01-01
Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
The role of Snell's law for a magnonic majority gate.
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Uchida, Hironaga; Inoue, Mitsuteru
2017-08-11
In the fifty years since the postulation of Moore's Law, the increasing energy consumption in silicon electronics has motivated research into emerging devices. An attractive research direction is processing information via the phase of spin waves within magnonic-logic circuits, which function without charge transport and the accompanying heat generation. The functional completeness of magnonic logic circuits based on the majority function was recently proved. However, the performance of such logic circuits was rather poor due to the difficulty of controlling spin waves in the input junction of the waveguides. Here, we show how Snell's law describes the propagation of spin waves in the junction of a Ψ-shaped magnonic majority gate composed of yttrium iron garnet with a partially metallized surface. Based on the analysis, we propose a magnonic counterpart of a core-cladding waveguide to control the wave propagation in the junction. This study has therefore experimentally demonstrated a fundamental building block of a magnonic logic circuit.
Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections
NASA Astrophysics Data System (ADS)
Zhang, Bin; Yang, Xiaokuo; Liu, Jiahao; Li, Weiwei; Xu, Jie
2018-02-01
Nanomagnet logic (NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects. Project supported by the National Natural Science Foundation of China (No. 61302022) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University (Nos. 2015BSKYQD03, 2016KYMZ06).
Metacognition and abstract reasoning.
Markovits, Henry; Thompson, Valerie A; Brisson, Janie
2015-05-01
The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue.
Kumarasabapathy, N.; Manoharan, P. S.
2015-01-01
This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895
Two- and three-input TALE-based AND logic computation in embryonic stem cells.
Lienert, Florian; Torella, Joseph P; Chen, Jan-Hung; Norsworthy, Michael; Richardson, Ryan R; Silver, Pamela A
2013-11-01
Biological computing circuits can enhance our ability to control cellular functions and have potential applications in tissue engineering and medical treatments. Transcriptional activator-like effectors (TALEs) represent attractive components of synthetic gene regulatory circuits, as they can be designed de novo to target a given DNA sequence. We here demonstrate that TALEs can perform Boolean logic computation in mammalian cells. Using a split-intein protein-splicing strategy, we show that a functional TALE can be reconstituted from two inactive parts, thus generating two-input AND logic computation. We further demonstrate three-piece intein splicing in mammalian cells and use it to perform three-input AND computation. Using methods for random as well as targeted insertion of these relatively large genetic circuits, we show that TALE-based logic circuits are functional when integrated into the genome of mouse embryonic stem cells. Comparing construct variants in the same genomic context, we modulated the strength of the TALE-responsive promoter to improve the output of these circuits. Our work establishes split TALEs as a tool for building logic computation with the potential of controlling expression of endogenous genes or transgenes in response to a combination of cellular signals.
Xiao, Sai Jin; Hu, Ping Ping; Chen, Li Qiang; Zhen, Shu Jun; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi
2013-01-01
Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.
Efficient 525 nm laser generation in single or double resonant cavity
NASA Astrophysics Data System (ADS)
Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen
2018-03-01
This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.
A molecular-sized optical logic circuit for digital modulation of a fluorescence signal
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun
2018-03-01
Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, C.-M.; Chang, K.-H.; Yang, Z.-Y.
Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted greenmore » frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.« less
NASA Astrophysics Data System (ADS)
Fu, S. C.; Wang, X.; Chu, H.
2013-02-01
We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.
Yellow light generation by frequency doubling of a fiber oscillator
NASA Astrophysics Data System (ADS)
Bacher, Christoph; Oliveira, Ricardo; Nogueira, Rogério N.; Romano, Valerio; Ryser, Manuel
2016-04-01
Laser sources with light-emission in the yellow spectral range around 577nm are very favorable for a variety of applications. These include applications in astronomy, in ophthalmology or in quantum optics. The generation and amplification of 1154 nm light is not straight forward when using Yb-doped optical fibers, since lasing occurs preferentially around the gain-maximum of 1030 nm. We generate the radiation within a fiber Bragg grating (FBG) based cavity and focused on reducing the amplified spontaneous emission (ASE). After the cavity, the output is frequency doubled to 577nm by using a second harmonic crystal.
Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young
2010-03-20
We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.
NASA Astrophysics Data System (ADS)
Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi
2018-03-01
We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
Failure detection in high-performance clusters and computers using chaotic map computations
Rao, Nageswara S.
2015-09-01
A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.
Borresen, Jon; Lynch, Stephen
2012-01-01
In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.
NASA Astrophysics Data System (ADS)
Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.
2016-07-01
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
A Preliminary Report on the PLATO V Terminal.
ERIC Educational Resources Information Center
Stifle, J. E.
This report is a preliminary description of a prototype of a second generation version of the PLATO IV (Programmed Logic for Automated Teaching Operations) student terminal. Development of a new terminal has been pursued with two objectives: to generate a more economic version of the PLATO IV terminal, and to expand capacities and performance of…
2013-04-01
Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System by Mikella E...Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System Mikella E. Farrell, Dimitra N. Stratis-Cullum, and Paul M. Pellegrino...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2005-11-01
Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines
NASA Technical Reports Server (NTRS)
Le, Martin; Zheng, Xin; Katanyoutant, Sunant
2008-01-01
Single-event upsets (SEUs) pose great threats to avionic systems state machine control logic, which are frequently used to control sequence of events and to qualify protocols. The risks of SEUs manifest in two ways: (a) the state machine s state information is changed, causing the state machine to unexpectedly transition to another state; (b) due to the asynchronous nature of SEU, the state machine's state registers become metastable, consequently causing any combinational logic associated with the metastable registers to malfunction temporarily. Effect (a) can be mitigated with methods such as triplemodular redundancy (TMR). However, effect (b) cannot be eliminated and can degrade the effectiveness of any mitigation method of effect (a). Although there is no way to completely eliminate the risk of SEU-induced errors, the risk can be made very small by use of a combination of very fast state-machine logic and error-detection logic. Therefore, one goal of two main elements of the present method is to design the fastest state-machine logic circuitry by basing it on the fastest generic state-machine design, which is that of a one-hot state machine. The other of the two main design elements is to design fast error-detection logic circuitry and to optimize it for implementation in a field-programmable gate array (FPGA) architecture: In the resulting design, the one-hot state machine is fitted with a multiple-input XNOR gate for detection of illegal states. The XNOR gate is implemented with lookup tables and with pipelines for high speed. In this method, the task of designing all the logic must be performed manually because no currently available logic synthesis software tool can produce optimal solutions of design problems of this type. However, some assistance is provided by a script, written for this purpose in the Python language (an object-oriented interpretive computer language) to automatically generate hardware description language (HDL) code from state-transition rules.
NASA Astrophysics Data System (ADS)
Van Den Broeke, Douglas J.; Laidig, Thomas L.; Chen, J. Fung; Wampler, Kurt E.; Hsu, Stephen D.; Shi, Xuelong; Socha, Robert J.; Dusa, Mircea V.; Corcoran, Noel P.
2004-08-01
Imaging contact and via layers continues to be one of the major challenges to be overcome for 65nm node lithography. Initial results of using ASML MaskTools' CPL Technology to print contact arrays through pitch have demonstrated the potential to further extend contact imaging to a k1 near 0.30. While there are advantages and disadvantages for any potential RET, the benefits of not having to solve the phase assignment problem (which can lead to unresolvable phase conflicts), of it being a single reticle - single exposure technique, and its application to multiple layers within a device (clear field and dark field) make CPL an attractive, cost effective solution to low k1 imaging. However, real semiconductor circuit designs consist of much more than regular arrays of contact holes and a method to define the CPL reticle design for a full chip circuit pattern is required in order for this technique to be feasible in volume manufacturing. Interference Mapping Lithography (IML) is a novel approach for defining optimum reticle patterns based on the imaging conditions that will be used when the wafer is exposed. Figure 1 shows an interference map for an isolated contact simulated using ASML /1150 settings of 0.75NA and 0.92/0.72/30deg Quasar illumination. This technique provides a model-based approach for placing all types features (scattering bars, anti-scattering bars, non-printing assist features, phase shifted and non-phase shifted) for the purpose of enhancing the resolution of the target pattern and it can be applied to any reticle type including binary (COG), attenuated phase shifting mask (attPSM), alternating aperture phase shifting mask (altPSM), and CPL. In this work, we investigate the application of IML to generate CPL reticle designs for random contact patterns that are typical for 65nm node logic devices. We examine the critical issues related to using CPL with Interference Mapping Lithography including controlling side lobe printing, contact patterns with odd symmetry, forbidden pitch regions, and reticle manufacturing constraints. Multiple methods for deriving the interference map used to define reticle patterns for various RET's will be discussed. CPL reticle designs that were created from implementing automated algorithms for contact pattern decomposition using MaskWeaver will also be presented.
C-MOS bulk metal design handbook. [LSI standard cell (circuits)
NASA Technical Reports Server (NTRS)
Edge, T. M.
1977-01-01
The LSI standard cell array technique was used in the fabrication of more than 20 CMOS custom arrays. This technique consists of a series of computer programs and design automation techniques referred to as the Computer Aided Design And Test (CADAT) system that automatically translate a partitioned logic diagram into a set of instructions for driving an automatic plotter which generates precision mask artwork for complex LSI arrays of CMOS standard cells. The standard cell concept for producing LSI arrays begins with the design, layout, and validation of a group of custom circuits called standard cells. Once validated, these cells are given identification or pattern numbers and are permanently stored. To use one of these cells in a logic design, the user calls for the desired cell by pattern number. The Place, Route in Two Dimension (PR2D) computer program is then used to automatically generate the metalization and/or tunnels to interconnect the standard cells into the required function. Data sheets that describe the function, artwork, and performance of each of the standard cells, the general procedure for implementation of logic in CMOS standard cells, and additional detailed design information are presented.
Couto, Francisco M; Pinto, H Sofia
2013-10-01
There is a prominent trend to augment and improve the formality of biomedical ontologies. For example, this is shown by the current effort on adding description logic axioms, such as disjointness. One of the key ontology applications that can take advantage of this effort is the conceptual (functional) similarity measurement. The presence of description logic axioms in biomedical ontologies make the current structural or extensional approaches weaker and further away from providing sound semantics-based similarity measures. Although beneficial in small ontologies, the exploration of description logic axioms by semantics-based similarity measures is computational expensive. This limitation is critical for biomedical ontologies that normally contain thousands of concepts. Thus in the process of gaining their rightful place, biomedical functional similarity measures have to take the journey of finding how this rich and powerful knowledge can be fully explored while keeping feasible computational costs. This manuscript aims at promoting and guiding the development of compelling tools that deliver what the biomedical community will require in a near future: a next-generation of biomedical similarity measures that efficiently and fully explore the semantics present in biomedical ontologies.
Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.
Mero, M; Sipos, A; Kurdi, G; Osvay, K
2011-05-09
Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.
Dried fruits quality assessment by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe
2012-05-01
Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.
A methodology to migrate the gene ontology to a description logic environment using DAML+OIL.
Wroe, C J; Stevens, R; Goble, C A; Ashburner, M
2003-01-01
The Gene Ontology Next Generation Project (GONG) is developing a staged methodology to evolve the current representation of the Gene Ontology into DAML+OIL in order to take advantage of the richer formal expressiveness and the reasoning capabilities of the underlying description logic. Each stage provides a step level increase in formal explicit semantic content with a view to supporting validation, extension and multiple classification of the Gene Ontology. The paper introduces DAML+OIL and demonstrates the activity within each stage of the methodology and the functionality gained.
Correction And Use Of Jitter In Television Images
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.
1989-01-01
Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.
F-15 digital electronic engine control system description
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.
Yang, Hang; Qin, Shiqiao; Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Peng, Gang; Zhang, Xueao
2017-09-22
We fabricated 70 nm Al₂O₃ gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al₂O₃/Si substrate is superior to that on a traditional 300 nm SiO₂/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al₂O₃/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS₂, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices.
Manufacturing of ArF chromeless hard shifter for 65-nm technology
NASA Astrophysics Data System (ADS)
Park, Keun-Taek; Dieu, Laurent; Hughes, Greg P.; Green, Kent G.; Croffie, Ebo H.; Taravade, Kunal N.
2003-12-01
For logic design, Chrome-less Phase Shift Mask is one of the possible solutions for defining small geometry with low MEF (mask enhancement factor) for the 65nm node. There have been lots of dedicated studies on the PCO (Phase Chrome Off-axis) mask technology and several design approaches have been proposed including grating background, chrome patches (or chrome shield) for applying PCO on line/space and contact pattern. In this paper, we studied the feasibility of grating design for line and contact pattern. The design of the grating pattern was provided from the EM simulation software (TEMPEST) and the aerial image simulation software. AIMS measurements with high NA annular illumination were done. Resist images were taken on designed pattern in different focus. Simulations, AIMS are compared to verify the consistency of the process with wafer printed performance.
Multi-wavelength generation based on cascaded Raman scattering and self-frequency-doubling in KTA
NASA Astrophysics Data System (ADS)
Zhong, K.; Li, J. S.; Xu, D. G.; Ding, X.; Zhou, R.; Wen, W. Q.; Li, Z. Y.; Xu, X. Y.; Wang, P.; Yao, J. Q.
2010-04-01
A multi-wavelength laser is developed based on cascaded stimulated Raman scattering (SRS) and self-frequency-doubling in an x-cut KTA crystal pumped by an A-O Q-switched Nd:YAG laser. The generation of 1178 nm from cascaded SRS of 234 and 671 cm-1 Raman modes is observed. The six wavelengths, including the fundamental 1064 nm, four Stokes waves at 1091, 1120, 1146, 1178 nm, and the second harmonic generation (SHG) of 1146 nm, are tens to hundreds of millwatts for each at 10 kHz, corresponding to a total conversion efficiency of 8.72%.
Cascaded Raman lasing in a PM phosphosilicate fiber with random distributed feedback
NASA Astrophysics Data System (ADS)
Lobach, Ivan A.; Kablukov, Sergey I.; Babin, Sergey A.
2018-02-01
We report on the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization maintaining phosphosilicate fiber operating beyond zero dispersion wavelength ( 1400 nm). With increasing pump power from a Yb-doped fiber laser at 1080 nm, the random laser generates subsequently 8 W at 1262 nm and 9 W at 1515 nm with polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 nm and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random lasing.
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.
2018-02-01
We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
A compact OPO/SFG laser for ultraviolet biological sensing
NASA Astrophysics Data System (ADS)
Tiihonen, Mikael; Pasiskevicius, Valdas; Laurell, Fredrik; Jonsson, Per; Lindgren, Mikael
2004-07-01
A compact parametric oscillator (OPO) with intracavity sum-frequency generation (SFG) to generate 293 nm UV laser irradiation, was developed. The OPO/SFG device was pumped by a 100 Hz Nd:YAG laser (1064 nm) of own design, including subsequent second harmonic generation (SHG) in an external periodically poled KTiOPO4 (KTP) crystal. The whole system could be used to deliver more than 30 μJ laser irradiation per pulse (100 Hz) at 293 nm. The UV laser light was introduced in an optical fiber attached to a sample compartment allowing detection of fluorescence emission using a commercial spectrometer. Aqueous samples containing biomolecules (ovalbumin) or bacteria spores (Bacillus subtilis) were excited by the UV-light at 293 nm resulting in strong fluorescence emission in the range 325 - 600 nm.
Direct femtosecond laser surface structuring of crystalline silicon at 400 nm
NASA Astrophysics Data System (ADS)
Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore
2018-03-01
We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.
Generation of the Submicron Soft X-Ray Beam Using a Fresnel Zone Plate
NASA Astrophysics Data System (ADS)
Nishikino, M.; Kawazome, H.; Tanaka, M.; Kishimoto, M.; Hasegawa, N.; Ochi, Y.; Kawachi, T.; Sukegawa, K.; Yamatani, H.; Nagashima, K.; Kato, Y.
We have developed a fully coherent x-ray laser at 13.9 nm and the application research has been started. The generation of submicron x-ray beam is important for the application of high intensity x-ray beam, such as the non-linear optics, the material science, and the biology. The submicron x-ray bee am is generated by the soft x-ray laser with using a Fresnel zone plate. The spot diameter is estimated about 680 nm (290 nm at FWHM) by the theoretical calculation. In this experiment, the diameter of the x-ray beam is measured by the knife-edge scan. The diameter and the intensity are estimated 730 nm (310 nm at FWHM) and 3x1011 W/cm2, respectively.
A novel high-speed CMOS circuit based on a gang of capacitors
NASA Astrophysics Data System (ADS)
Sharroush, Sherif M.
2017-08-01
There is no doubt that complementary metal-oxide semiconductor (CMOS) circuits with wide fan-in suffers from the relatively sluggish operation. In this paper, a circuit that contains a gang of capacitors sharing their charge with each other is proposed as an alternative to long N-channel MOS and P-channel MOS stacks. The proposed scheme is investigated quantitatively and verified by simulation using the 45-nm CMOS technology with VDD = 1 V. The time delay, area and power consumption of the proposed scheme are investigated and compared with the conventional static CMOS logic circuit. It is verified that the proposed scheme achieves 52% saving in the average propagation delay for eight inputs and that it has a smaller area compared to the conventional CMOS logic when the number of inputs exceeds three and a smaller power consumption for a number of inputs exceeding two. The impacts of process variations, component mismatches and technology scaling on the proposed scheme are also investigated.
NASA Astrophysics Data System (ADS)
Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin
2018-04-01
In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.
Artificial neuron synapse transistor based on silicon nanomembrane on plastic substrate
NASA Astrophysics Data System (ADS)
Liu, Minjie; Huang, Gaoshan; Feng, Ping; Guo, Qinglei; Shao, Feng; Tian, Ziao; Li, Gongjin; Wan, Qing; Mei, Yongfeng
2017-06-01
Silicon nanomembrane (SiNM) transistors gated by chitosan membrane were fabricated on plastic substrate to mimic synapse behaviors. The device has both a bottom proton gate (BG) and multiple side gates (SG). Electrical transfer properties of BG show hysteresis curves different from those of typical SiO2 gate dielectric. Synaptic behaviors and functions by linear accumulation and release of protons have been mimicked on this device: excitatory post-synaptic current (EPSC) and paired pulse facilitation behavior of biological synapses were mimicked and the paired-pulse facilitation index could be effectively tuned by the spike interval applied on the BG. Synaptic behaviors and functions, including short-term memory and long-term memory, were also experimentally demonstrated in BG mode. Meanwhile, spiking logic operation and logic modulation were realized in SG mode. Project supported by the National Natural Science Foundation of China (No. 51322201), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120071110025), and Science and Technology Commission of Shanghai Municipality (No. 14JC1400200).
NASA Astrophysics Data System (ADS)
Islam, R.; Uddin, M. M.; Hossain, M. Mofazzal; Matin, M. A.
The design of a 1μm gate length depletion-mode InSb quantum-well field-effect transistor (QWFET) with a 10nm-thick Al2O3 gate dielectric has been optimized using a quantum corrected self-consistent Schrödinger-Poisson (QCSP) and two-dimensional drift-diffusion model. The model predicts a very high electron mobility of 4.42m2V-1s-1 at Vg=0V, a small pinch off gate voltage (Vp) of -0.25V, a maximum extrinsic transconductance (gm) of ˜4.85mS/μm and a drain current density of more than 3.34mA/μm. A short-circuit current-gain cut-off frequency (fT) of 374GHz and a maximum oscillation frequency (fmax) of 645GHz are predicted for the device. These characteristics make the device a potential candidate for low power, high-speed logic electronic device applications.
Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P
2014-02-12
In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.
NASA Astrophysics Data System (ADS)
Santoli, Salvatore
1994-01-01
The mechanistic interpretation of the communication process between cognitive hierarchical systems as an iterated pair of convolutions between the incoming discrete time series signals and the chaotic dynamics (CD) at the nm-scale of the perception (energy) wetware level, with the consequent feeding of the resulting collective properties to the CD software (symbolic) level, shows that the category of quality, largely present in Galilean quantitative-minded science, is to be increasingly made into quantity for finding optimum common codes for communication between different intelligent beings. The problem is similar to that solved by biological evolution, of communication between the conscious logic brain and the underlying unfelt ultimate extra-logical processes, as well as to the problem of the mind-body or the structure-function dichotomies. Perspective cybernated nanotechnological and/or nanobiological interfaces, and time evolution of the 'contact language' (the iterated dialogic process) as a self-organising system might improve human-alien understanding.
Considerations for fine hole patterning for the 7nm node
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei
2016-03-01
One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.
Quantum probabilistic logic programming
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Business logic for geoprocessing of distributed geodata
NASA Astrophysics Data System (ADS)
Kiehle, Christian
2006-12-01
This paper describes the development of a business-logic component for the geoprocessing of distributed geodata. The business logic acts as a mediator between the data and the user, therefore playing a central role in any spatial information system. The component is used in service-oriented architectures to foster the reuse of existing geodata inventories. Based on a geoscientific case study of groundwater vulnerability assessment and mapping, the demands for such architectures are identified with special regard to software engineering tasks. Methods are derived from the field of applied Geosciences (Hydrogeology), Geoinformatics, and Software Engineering. In addition to the development of a business logic component, a forthcoming Open Geospatial Consortium (OGC) specification is introduced: the OGC Web Processing Service (WPS) specification. A sample application is introduced to demonstrate the potential of WPS for future information systems. The sample application Geoservice Groundwater Vulnerability is described in detail to provide insight into the business logic component, and demonstrate how information can be generated out of distributed geodata. This has the potential to significantly accelerate the assessment and mapping of groundwater vulnerability. The presented concept is easily transferable to other geoscientific use cases dealing with distributed data inventories. Potential application fields include web-based geoinformation systems operating on distributed data (e.g. environmental planning systems, cadastral information systems, and others).
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
Interaction Networks: Generating High Level Hints Based on Network Community Clustering
ERIC Educational Resources Information Center
Eagle, Michael; Johnson, Matthew; Barnes, Tiffany
2012-01-01
We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derrouazin, A., E-mail: derrsid@gmail.com; Université de Lorraine, LMOPS, EA 4423, 57070 Metz; CentraleSupélec, LMOPS, 57070 Metz
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitationmore » of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar
2016-12-01
This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.
Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm
NASA Astrophysics Data System (ADS)
Mittal, Ruchi; Kaur, Magandeep
2010-11-01
In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.
NASA Astrophysics Data System (ADS)
Cantu, Pietro; Baldi, Livio; Piacentini, Paolo; Sytsma, Joost; Le Gratiet, Bertrand; Gaugiran, Stéphanie; Wong, Patrick; Miyashita, Hiroyuki; Atzei, Luisa R.; Buch, Xavier; Verkleij, Dick; Toublan, Olivier; Perez-Murano, Francesco; Mecerreyes, David
2010-04-01
In 2009 a new European initiative on Double Patterning and Double Exposure lithography process development was started in the framework of the ENIAC Joint Undertaking. The project, named LENS (Lithography Enhancement Towards Nano Scale), involves twelve companies from five different European Countries (Italy, Netherlands, France, Belgium Spain; includes: IC makers (Numonyx and STMicroelectronics), a group of equipment and materials companies (ASML, Lam Research srl, JSR, FEI), a mask maker (Dai Nippon Photomask Europe), an EDA company (Mentor Graphics) and four research and development institutes (CEA-Leti, IMEC, Centro Nacional de Microelectrónica, CIDETEC). The LENS project aims to develop and integrate the overall infrastructure required to reach patterning resolutions required by 32nm and 22nm technology nodes through the double patterning and pitch doubling technologies on existing conventional immersion exposure tools, with the purpose to allow the timely development of 32nm and 22nm technology nodes for memories and logic devices, providing a safe alternative to EUV, Higher Refraction Index Fluids Immersion Lithography and maskless lithography, which appear to be still far from maturity. The project will cover the whole lithography supply chain including design, masks, materials, exposure tools, process integration, metrology and its final objective is the demonstration of 22nm node patterning on available 1.35 NA immersion tools on high complexity mask set.
Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M.; Tacchi, S.
2015-05-07
We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements hasmore » been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.« less
UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar
NASA Technical Reports Server (NTRS)
Storm, Mark E.; Marsh, Waverly; Barnes, James C.
1998-01-01
Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.
Melanin fluorescence spectra by step-wise three photon excitation
NASA Astrophysics Data System (ADS)
Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles A.
2012-03-01
Melanin is the characteristic chromophore of human skin with various potential biological functions. Kerimo discovered enhanced melanin fluorescence by stepwise three-photon excitation in 2011. In this article, step-wise three-photon excited fluorescence (STPEF) spectrum between 450 nm -700 nm of melanin is reported. The melanin STPEF spectrum exhibited an exponential increase with wavelength. However, there was a probability of about 33% that another kind of step-wise multi-photon excited fluorescence (SMPEF) that peaks at 525 nm, shown by previous research, could also be generated using the same process. Using an excitation source at 920 nm as opposed to 830 nm increased the potential for generating SMPEF peaks at 525 nm. The SMPEF spectrum peaks at 525 nm photo-bleached faster than STPEF spectrum.
NASA Technical Reports Server (NTRS)
Eno, R. F.
1984-01-01
Clock switched on and off in response to data signal. Flip-flop modulator generates square-wave carrier frequency that is half clock frequency and turns carrier on and off. Final demodulator output logical inverse of data input.
The connection between logical and thermodynamic irreversibility
NASA Astrophysics Data System (ADS)
Ladyman, James; Presnell, Stuart; Short, Anthony J.; Groisman, Berry
There has recently been a good deal of controversy about Landauer's Principle, which is often stated as follows: the erasure of one bit of information in a computational device is necessarily accompanied by a generation of kT ln 2 heat. This is often generalised to the claim that any logically irreversible operation cannot be implemented in a thermodynamically reversible way. Norton [2005. Eaters of the lotus: Landauer's principle and the return of Maxwell's demon. Studies in History and Philosophy of Modern Physics, 36, 375-411] and Maroney [2005. The (absence of a) relationship between thermodynamic and logical reversibility. Studies in History and Philosophy of Modern Physics, 36, 355-374] both argue that Landauer's Principle has not been shown to hold in general, and Maroney offers a method that he claims instantiates the operation Reset in a thermodynamically reversible way. In this paper we defend the qualitative form of Landauer's Principle, and clarify its quantitative consequences (assuming the second law of thermodynamics). We analyse in detail what it means for a physical system to implement a logical transformation L, and we make this precise by defining the notion of an L-machine. Then we show that logical irreversibility of L implies thermodynamic irreversibility of every corresponding L-machine. We do this in two ways. First, by assuming the phenomenological validity of the Kelvin statement of the second law, and second, by using information-theoretic reasoning. We illustrate our results with the example of the logical transformation 'Reset', and thereby recover the quantitative form of Landauer's Principle.
Dual Logic and Cerebral Coordinates for Reciprocal Interaction in Eye Contact
Lee, Ray F.
2015-01-01
In order to scientifically study the human brain’s response to face-to-face social interaction, the scientific method itself needs to be reconsidered so that both quantitative observation and symbolic reasoning can be adapted to the situation where the observer is also observed. In light of the recent development of dyadic fMRI which can directly observe dyadic brain interacting in one MRI scanner, this paper aims to establish a new form of logic, dual logic, which provides a theoretical platform for deductive reasoning in a complementary dual system with emergence mechanism. Applying the dual logic in the dfMRI experimental design and data analysis, the exogenous and endogenous dual systems in the BOLD responses can be identified; the non-reciprocal responses in the dual system can be suppressed; a cerebral coordinate for reciprocal interaction can be generated. Elucidated by dual logic deductions, the cerebral coordinate for reciprocal interaction suggests: the exogenous and endogenous systems consist of the empathy network and the mentalization network respectively; the default-mode network emerges from the resting state to activation in the endogenous system during reciprocal interaction; the cingulate plays an essential role in the emergence from the exogenous system to the endogenous system. Overall, the dual logic deductions are supported by the dfMRI experimental results and are consistent with current literature. Both the theoretical framework and experimental method set the stage to formally apply the scientific method in studying complex social interaction. PMID:25885446
Values beyond value? Is anything beyond the logic of capital?
Skeggs, Bev
2014-03-01
We are living in a time when it is frequently assumed that the logic of capital has subsumed every single aspect of our lives, intervening in the organization of our intimate relations as well as the control of our time, including investments in the future (e.g. via debt). The theories that document the incursion of this logic (often through the terms of neoliberalism and/or governmentality) assume that this logic is internalized, works and organizes everything including our subjectivity. These theories performatively reproduce the very conditions they describe, shrinking the domain of values and making it subject to capital's logic. All values are reduced to value. Yet values and value are always dialogic, dependent and co-constituting. In this paper I chart the history by which value eclipses values and how this shrinks our sociological imagination. By outlining the historical processes that institutionalized different organizations of the population through political economy and the social contract, producing ideas of proper personhood premised on propriety, I detail how forms of raced, gendered and classed personhood was formed. The gaps between the proper and improper generate significant contradictions that offer both opportunities to and limits on capitals' lines of flight. It is the lacks, the residues, and the excess that cannot be captured by capital's mechanisms of valuation that will be explored in order to think beyond the logic of capital and show how values will always haunt value. © London School of Economics and Political Science 2014.
Borresen, Jon; Lynch, Stephen
2012-01-01
In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Wang, C. Y.
2017-09-01
Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
NASA Astrophysics Data System (ADS)
Azzali, F.; Ghazali, O.; Omar, M. H.
2017-08-01
The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.
Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal
Ji, Shaohua; Wang, Fang; Zhu, Lili; Xu, Xinguang; Wang, Zhengping; Sun, Xun
2013-01-01
In current inertial confinement fusion (ICF) facilities, KDP and DKDP crystals are the second harmonic generation (SHG) and third harmonic generation (THG) materials for the Nd:glass laser (1053 nm). Based on the trend for the development of short wavelengths for ICF driving lasers, technical solutions for fourth harmonic generation (FHG) will undoubtedly attract more and more attention. In this paper, the rapid growth of an ADP crystal and non-critical phase-matching (NCPM) FHG of a 1053-nm laser using an ADP crystal are reported. The NCPM temperature is 33.7°C. The conversion efficiency from 526 to 263 nm is 70%, and the angular acceptance range is 55.4 mrad; these results are superior to those for the DKDP crystals. This research has shown that ADP crystals will be a competitive candidate in future ICF facilities when the utilisation of high-energy, high-efficiency UV lasers at wavelengths shorter than the present 351 nm is of interest. PMID:23549389
Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal.
Ji, Shaohua; Wang, Fang; Zhu, Lili; Xu, Xinguang; Wang, Zhengping; Sun, Xun
2013-01-01
In current inertial confinement fusion (ICF) facilities, KDP and DKDP crystals are the second harmonic generation (SHG) and third harmonic generation (THG) materials for the Nd:glass laser (1053 nm). Based on the trend for the development of short wavelengths for ICF driving lasers, technical solutions for fourth harmonic generation (FHG) will undoubtedly attract more and more attention. In this paper, the rapid growth of an ADP crystal and non-critical phase-matching (NCPM) FHG of a 1053-nm laser using an ADP crystal are reported. The NCPM temperature is 33.7°C. The conversion efficiency from 526 to 263 nm is 70%, and the angular acceptance range is 55.4 mrad; these results are superior to those for the DKDP crystals. This research has shown that ADP crystals will be a competitive candidate in future ICF facilities when the utilisation of high-energy, high-efficiency UV lasers at wavelengths shorter than the present 351 nm is of interest.
Recent progress on monolithic fiber amplifiers for next generation of gravitational wave detectors
NASA Astrophysics Data System (ADS)
Wellmann, Felix; Booker, Phillip; Hochheim, Sven; Theeg, Thomas; de Varona, Omar; Fittkau, Willy; Overmeyer, Ludger; Steinke, Michael; Weßels, Peter; Neumann, Jörg; Kracht, Dietmar
2018-02-01
Single-frequency fiber amplifiers in MOPA configuration operating at 1064 nm (Yb3+) and around 1550 nm (Er3+ or Er3+:Yb3+) are promising candidates to fulfill the challenging requirements of laser sources of the next generation of interferometric gravitational wave detectors (GWDs). Most probably, the next generation of GWDs is going to operate not only at 1064 nm but also at 1550 nm to cover a broader range of frequencies in which gravitational waves are detectable. We developed an engineering fiber amplifier prototype at 1064 nm emitting 215 W of linearly-polarized light in the TEM00 mode. The system consists of three modules: the seed source, the pre-amplifier, and the main amplifier. The modular design ensures reliable long-term operation, decreases system complexity and simplifies repairing and maintenance procedures. It also allows for the future integration of upgraded fiber amplifier systems without excessive downtimes. We also developed and characterized a fiber amplifier prototype at around 1550 nm that emits 100 W of linearly-polarized light in the TEM00 mode. This prototype uses an Er3+:Yb3+ codoped fiber that is pumped off-resonant at 940 nm. The off-resonant pumping scheme improves the Yb3+-to-Er3+ energy transfer and prevents excessive generation of Yb3+-ASE.
Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices.
Yao, Yifan; Zhang, Lei; Leydecker, Tim; Samorì, Paolo
2018-05-23
Organic crystals are generated via the bottom-up self-assembly of molecular building blocks which are held together through weak noncovalent interactions. Although they revealed extraordinary charge transport characteristics, their labile nature represents a major drawback toward their integration in optoelectronic devices when the use of sophisticated patterning techniques is required. Here we have devised a radically new method to enable the use of photolithography directly on molecular crystals, with a spatial resolution below 300 nm, thereby allowing the precise wiring up of multiple crystals on demand. Two archetypal organic crystals, i.e., p-type 2,7-diphenyl[1]benzothieno[3,2- b][1]benzothiophene (Dph-BTBT) nanoflakes and n-type N, N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires, have been exploited as active materials to realize high-performance top-contact organic field-effect transistors (OFETs), inverter and p-n heterojunction photovoltaic devices supported on plastic substrate. The compatibility of our direct photolithography technique with organic molecular crystals is key for exploiting the full potential of organic electronics for sophisticated large-area devices and logic circuitries, thus paving the way toward novel applications in plastic (opto)electronics.
Design and implementation of low power clock gated 64-bit ALU on ultra scale FPGA
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Murgai, Shruti; Gulati, Anmol; Kumar, Pradeep
2016-03-01
64-bit energy efficient Arithmetic and Logic Unit using negative latch based clock gating technique is designed in this paper. The 64-bit ALU is designed using multiplexer based full adder cell. We have designed a 64-bit ALU with a gated clock. We have used negative latch based circuit for generating gated clock. This gated clock is used to control the multiplexer based 64-bit ALU. The circuit has been synthesized on kintex FPGA through Xilinx ISE Design Suite 14.7 using 28 nm technology in Verilog HDL. The circuit has been simulated on Modelsim 10.3c. The design is verified using System Verilog on QuestaSim in UVM environment. We have achieved 74.07%, 92. 93% and 95.53% reduction in total clock power, 89.73%, 91.35% and 92.85% reduction in I/Os power, 67.14%, 62.84% and 74.34% reduction in dynamic power and 25.47%, 29.05% and 46.13% reduction in total supply power at 20 MHz, 200 MHz and 2 GHz frequency respectively. The power has been calculated using XPower Analyzer tool of Xilinx ISE Design Suite 14.3.
Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R
2016-11-15
Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.
Wang, Niansheng; Wang, Renjie; Tu, Yayi; Pu, Shouzhi; Liu, Gang
2018-05-05
A novel photochromic diarylethene with a triazole-containing 2-(2'-phenoxymethyl)-benzothiazole group has been synthesized via "click" reaction. The diarylethene exhibited good photochromism and photoswitchable fluorescence. Its fluorescence emission intensity was enhanced 7-fold by acids, accompanied by the red-shift of emission peak from 526nm to 566nm and the concomitant color change from dark to bright flavogreen. The diarylethene selectively formed a 1:1 metal complex with Al 3+ , resulting in a "turn-on" fluorescence signal. The complexation - reaction between Al 3+ and the diarylethene is reversible with the binding constant of 2.73×10 3 Lmol -1 . The limit of detection (LOD) of Al 3+ was determined to be 5.94×10 -8 molL -1 . Based on this unimolecular platform, a logic circuit was fabricated using the fluorescence emission intensity at 572nm as the output and the combined stimuli of Al 3+ /EDTA and UV/Vis as the inputs. Copyright © 2018 Elsevier B.V. All rights reserved.
Interactions of double patterning technology with wafer processing, OPC and design flows
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Cork, Chris; Miloslavsky, Alex; Luk-Pat, Gerry; Barnes, Levi; Hapli, John; Lewellen, John; Rollins, Greg; Wiaux, Vincent; Verhaegen, Staf
2008-03-01
Double patterning technology (DPT) is one of the main options for printing logic devices with half-pitch less than 45nm; and flash and DRAM memory devices with half-pitch less than 40nm. DPT methods decompose the original design intent into two individual masking layers which are each patterned using single exposures and existing 193nm lithography tools. The results of the individual patterning layers combine to re-create the design intent pattern on the wafer. In this paper we study interactions of DPT with lithography, masks synthesis and physical design flows. Double exposure and etch patterning steps create complexity for both process and design flows. DPT decomposition is a critical software step which will be performed in physical design and also in mask synthesis. Decomposition includes cutting (splitting) of original design intent polygons into multiple polygons where required; and coloring of the resulting polygons. We evaluate the ability to meet key physical design goals such as: reduce circuit area; minimize rework; ensure DPT compliance; guarantee patterning robustness on individual layer targets; ensure symmetric wafer results; and create uniform wafer density for the individual patterning layers.
Fast quantum logic gates with trapped-ion qubits
NASA Astrophysics Data System (ADS)
Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.
2018-03-01
Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.
Fast quantum logic gates with trapped-ion qubits.
Schäfer, V M; Ballance, C J; Thirumalai, K; Stephenson, L J; Ballance, T G; Steane, A M; Lucas, D M
2018-02-28
Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural 'speed limit' of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds-less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.
The logic-bias effect: The role of effortful processing in the resolution of belief-logic conflict.
Howarth, Stephanie; Handley, Simon J; Walsh, Clare
2016-02-01
According to the default interventionist dual-process account of reasoning, belief-based responses to reasoning tasks are based on Type 1 processes generated by default, which must be inhibited in order to produce an effortful, Type 2 output based on the validity of an argument. However, recent research has indicated that reasoning on the basis of beliefs may not be as fast and automatic as this account claims. In three experiments, we presented participants with a reasoning task that was to be completed while they were generating random numbers (RNG). We used the novel methodology introduced by Handley, Newstead & Trippas (Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 28-43, 2011), which required participants to make judgments based upon either the validity of a conditional argument or the believability of its conclusion. The results showed that belief-based judgments produced lower rates of accuracy overall and were influenced to a greater extent than validity judgments by the presence of a conflict between belief and logic for both simple and complex arguments. These findings were replicated in Experiment 3, in which we controlled for switching demands in a blocked design. Across all three experiments, we found a main effect of RNG, implying that both instructional sets require some effortful processing. However, in the blocked design RNG had its greatest impact on logic judgments, suggesting that distinct executive resources may be required for each type of judgment. We discuss the implications of our findings for the default interventionist account and offer a parallel competitive model as an alternative interpretation for our findings.
On the formalization and reuse of scientific research.
King, Ross D; Liakata, Maria; Lu, Chuan; Oliver, Stephen G; Soldatova, Larisa N
2011-10-07
The reuse of scientific knowledge obtained from one investigation in another investigation is basic to the advance of science. Scientific investigations should therefore be recorded in ways that promote the reuse of the knowledge they generate. The use of logical formalisms to describe scientific knowledge has potential advantages in facilitating such reuse. Here, we propose a formal framework for using logical formalisms to promote reuse. We demonstrate the utility of this framework by using it in a worked example from biology: demonstrating cycles of investigation formalization [F] and reuse [R] to generate new knowledge. We first used logic to formally describe a Robot scientist investigation into yeast (Saccharomyces cerevisiae) functional genomics [f(1)]. With Robot scientists, unlike human scientists, the production of comprehensive metadata about their investigations is a natural by-product of the way they work. We then demonstrated how this formalism enabled the reuse of the research in investigating yeast phenotypes [r(1) = R(f(1))]. This investigation found that the removal of non-essential enzymes generally resulted in enhanced growth. The phenotype investigation was then formally described using the same logical formalism as the functional genomics investigation [f(2) = F(r(1))]. We then demonstrated how this formalism enabled the reuse of the phenotype investigation to investigate yeast systems-biology modelling [r(2) = R(f(2))]. This investigation found that yeast flux-balance analysis models fail to predict the observed changes in growth. Finally, the systems biology investigation was formalized for reuse in future investigations [f(3) = F(r(2))]. These cycles of reuse are a model for the general reuse of scientific knowledge.
Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.
2011-01-01
Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212
Yi, He; Bao, Xin-Yu; Tiberio, Richard; Wong, H-S Philip
2015-02-11
Directed self-assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technology node requirements.
Flow Sheet Is Process Language.
ERIC Educational Resources Information Center
Fehr, Manfred
1988-01-01
Uses heat exchange, evaporator, and distillation pressure examples to illustrate ways of motivating students to participate creatively and generate questions on process engineering logic. Relates the need for providing a link between theory and industrial practice. (RT)
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
NASA Astrophysics Data System (ADS)
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.
2016-09-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.
Low Handicap Golfers Generate More Torque at the Shoe-Natural Grass Interface When Using a Driver
Worsfold, Paul; Smith, Neal A.; Dyson, Rosemary J.
2008-01-01
The aim was to determine the rotational torque occurring at the shoe-natural grass interface during golf swing performance with different clubs, and to determine the influence of handicap and golf shoe design. Twenty-four golfers (8 low 0-7; 8 medium 8-14; and 8 high 15+) performed 5 shots with a driver, 3-iron and 7-iron when 3 shoes were worn: a modern 8 mm metal 7-spike shoe, an alternative 7-spike shoe and a flat soled shoe. Torque was measured at the front and back foot by grass covered force platforms in an outdoor field. Torque at the shoe- natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with maximum mean torque (Tzmax 17-19 Nm) and torque generation in the entire backswing and downswing approximately 40 Nm. At the back foot, torque was less than at the front foot when using the driver, 3-iron and 7-iron. At the back foot Tzmax was 6-7 Nm, and torque generation was 10-16 Nm, with a trend for greater torque generation when using the driver rather than the irons. The metal spike shoe allowed significantly more back foot torque generation when using a driver than a flat- soled shoe (p < 0.05). There was no significant difference between the metal and alternative spike shoes for any torque measure (p > 0.05), although back foot mean torques generated tended to be greater for the metal spike shoe. The golf shot outcomes were similar for low, medium and high handicappers in both metal and alternative spike shoes (metal: 87%; 76%; 54%; alternative: 85%; 74%; 54% respectively). The better, low handicap golfers generated significantly more back foot torque (metal spike: 18.2 Nm; alternative: 15.8 Nm; p < 0.05) when using a driver. Further research should consider back foot shoe-grass interface demands during driver usage by low handicap and lighter body-weight golfers. Key pointsShoe to natural turf torque generation is an important component in performing a golf swing with a driver club.Torque at the shoe to natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with Tzmax (17-19 Nm approx) and torque generation in the entire backswing and downswing of 40 Nm.Torque at the back foot was less than at the front foot when using the driver, 3-iron and 7-iron; Tzmax was 6-7 Nm, and torque generation 10-16 Nm with a trend to be greater when the driver was used.Low handicap golfers generated significantly more torque at the back foot than the medium or high handicappers (P<0.05) when using a driver.The metal spike shoe on natural turf allowed significantly more torque generation at the back foot than a flat-soled golf shoe when using a driver. Results have implications for golf shoe design. PMID:24149910
NASA Astrophysics Data System (ADS)
Yildirim, Murat; Ferhanoglu, Onur; Kobler, James B.; Zeitels, Steven M.; Ben-Yakar, Adela
2013-02-01
Vocal fold scarring is one of the major causes of voice disorders and may arise from overuse or post-surgical wound healing. One promising treatment utilizes the injection of soft biomaterials aimed at restoring viscoelasticity of the outermost vibratory layer of the vocal fold, superficial lamina propria (SLP). However, the density of the tissue and the required injection pressure impair proper localization of the injected biomaterial in SLP. To enhance treatment effectiveness, we are investigating a technique to image and ablate sub-epithelial planar voids in vocal folds using ultrafast laser pulses to better localize the injected biomaterial. It is challenging to optimize the excitation wavelength to perform imaging and ablation at depths suitable for clinical use. Here, we compare maximum imaging depth using two photon autofluorescence and second harmonic generation with third-harmonic generation imaging modalities for healthy porcine vocal folds. We used a home-built inverted nonlinear scanning microscope together with a high repetition rate (2 MHz) ultrafast fiber laser (Raydiance Inc.). We acquired both two-photon autofluorescence and second harmonic generation signals using 776 nm wavelength and third harmonic generation signals using 1552 nm excitation wavelength. We observed that maximum imaging depth with 776 nm wavelength is significantly improved from 114 μm to 205 μm when third harmonic generation is employed using 1552 nm wavelength, without any observable damage in the tissue.
589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope
NASA Astrophysics Data System (ADS)
Saito, Yoshihiko; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Takazawa, Akira; Kato, Mayumi; Ito, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2006-06-01
We developed a high power and high beam quality 589 nm coherent light source by sum-frequency generation in order to utilize it as a laser guide star at the Subaru telescope. The sum-frequency generation is a nonlinear frequency conversion in which two mode-locked Nd:YAG lasers oscillating at 1064 and 1319 nm mix in a nonlinear crystal to generate a wave at the sum frequency. We achieved the qualities required for the laser guide star. The power of laser is reached to 4.5 W mixing 15.65 W at 1064 nm and 4.99 W at 1319 nm when the wavelength is adjusted to 589.159 nm. The wavelength is controllable in accuracy of 0.1 pm from 589.060 and 589.170 nm. The stability of the power holds within 1.3% during seven hours operation. The transverse mode of the beam is the TEM 00 and M2 of the beam is smaller than 1.2. We achieved these qualities by the following technical sources; (1) simple construction of the oscillator for high beam quality, (2) synchronization of mode-locked pulses at 1064 and 1319 nm by the control of phase difference between two radio frequencies fed to acousto-optic mode lockers, (3) precise tunability of wavelength and spectral band width, and (4) proper selection of nonlinear optical crystal. We report in this paper how we built up each technical source and how we combined those.
Deduction Electrified: ERPs Elicited by the Processing of Words in Conditional Arguments
ERIC Educational Resources Information Center
Bonnefond, Mathilde; Van der Henst, Jean-Baptiste
2013-01-01
This study investigates the ERP components associated with the processing of words that are critical to generating and rejecting deductive conditional Modus Ponens arguments ("If P then Q; P//"Therefore, "Q"). The generation of a logical inference is investigated by placing a verb in the minor premise that matches the one used in the antecedent of…
Enhancing the Automatic Generation of Hints with Expert Seeding
ERIC Educational Resources Information Center
Stamper, John; Barnes, Tiffany; Croy, Marvin
2011-01-01
The Hint Factory is an implementation of our novel method to automatically generate hints using past student data for a logic tutor. One disadvantage of the Hint Factory is the time needed to gather enough data on new problems in order to provide hints. In this paper we describe the use of expert sample solutions to "seed" the hint generation…
How I Learned to Love Athletic Recruits
ERIC Educational Resources Information Center
Sacken, Mike
2008-01-01
The author does not think of himself as a logical candidate to help first-generation college athletes graduate. He is 59 and middle class, not a former athlete or a first-generation college graduate, and obviously not hip. More to the point, he is white and Texas-born, and he attended segregated schools his whole student life. He was even at the…
Patterning roadmap: 2017 prospects
NASA Astrophysics Data System (ADS)
Neisser, Mark
2017-06-01
Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.
3-D Synthetic Microstructure Generation with Ellipsoid Particles
2016-09-27
MATLAB scripts in Appendix A, Appendix B, and Appendix C by using 3 -D matrices, where the background is 0 and the particle is 1. For the 3 -D ellipses, it...iy(iy== 0 )=image_size(2); nlo = z0 - floor(diam/2); nhi = z0 + ceil(diam/2)-1; iz = mod(nlo:nhi,image_size( 3 ));iz(iz== 0 )=image_size( 3 ); Itest = logical...z0 + ceil(diam/2)-1; iz = mod(nlo:nhi,image_size( 3 )); iz(iz== 0 )=image_size( 3 ); Itest = logical(I(ix,iy,iz)); if sum(Itest(I_ellipse)) == 0 Itest
Fuzzy logic control for camera tracking system
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Automata-Based Verification of Temporal Properties on Running Programs
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Havelund, Klaus; Lan, Sonie (Technical Monitor)
2001-01-01
This paper presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to Buchi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500
Reynolds, Christopher R; Muggleton, Stephen H; Sternberg, Michael J E
2015-01-01
The use of virtual screening has become increasingly central to the drug development pipeline, with ligand-based virtual screening used to screen databases of compounds to predict their bioactivity against a target. These databases can only represent a small fraction of chemical space, and this paper describes a method of exploring synthetic space by applying virtual reactions to promising compounds within a database, and generating focussed libraries of predicted derivatives. A ligand-based virtual screening tool Investigational Novel Drug Discovery by Example (INDDEx) is used as the basis for a system of virtual reactions. The use of virtual reactions is estimated to open up a potential space of 1.21×1012 potential molecules. A de novo design algorithm known as Partial Logical-Rule Reactant Selection (PLoRRS) is introduced and incorporated into the INDDEx methodology. PLoRRS uses logical rules from the INDDEx model to select reactants for the de novo generation of potentially active products. The PLoRRS method is found to increase significantly the likelihood of retrieving molecules similar to known actives with a p-value of 0.016. Case studies demonstrate that the virtual reactions produce molecules highly similar to known actives, including known blockbuster drugs. PMID:26583052
Thermodynamics of natural selection III: Landauer's principle in computation and chemistry.
Smith, Eric
2008-05-21
This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
Low-Power and High-Speed Technique for logic Gates in 20nm Double-Gate FinFET Technology
NASA Astrophysics Data System (ADS)
Priydarshi, A.; Chattopadhyay, M. K.
2016-10-01
The FinFET is the leading example of multigate MOSFETS to substitute conventional single gate MOSFETs for ultimate scaling [1], The FinFET structure is a combination of a thin channel region and a double gate to suppress the short channel effects (SCEs) and Vthvariation [2], By using FinFET,figure of merits viz, ION, IOFF, output resistance, propagation delay, noise margin and leakage power, can be improved for ultra low power and high performance applications[3]. In this paper, a new high speed low power dynamic circuit design technique has been proposed using 20nm FinFETs. By applying the appropriate clock and sleep signal to the back gates of the FinFETs, the proposed circuit can efficiently control the dynamic power, During the pre-charging period, Vth of PMOS is controlled low so that a fast precharging can occur;
NASA Astrophysics Data System (ADS)
Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.
2014-02-01
Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process.
Measurement of Spectral Broadening in PTS-Polydiacetylene
NASA Astrophysics Data System (ADS)
Bhowmik, Achintya; Thakur, Mrinal
1998-03-01
PTS-polydiacetylene has significant potential for future applications in ultrafast all-optical switches and logic gates.(R. Quintero-Torres and M. Thakur, Appl. Phys. Lett., 66, 1310 (1995).) In this work, we have made detailed measurements of the instantaneous spectral line broadening in a 500 μm thick PTS single-crystal as a function of intensity and wavelength. A mode-locked Ti-Sapphire laser with 2 ps pulse-width at 82 MHz repetition rate, and a Nd:YAG laser with 60 ps pulse-width at 10 Hz repetition rate were used for measurements at 720-840 nm and 1064 nm wavelength respectively. The spectral bandwidth of the beam was recorded before and after passing through the PTS single-crystal by a high-resolution spectrometer. The nonlinear refractive index (n_2) of PTS as a function of wavelength has been determined from the spectral broadening data.
Polydiacetylene as an all-optical picosecond Switch
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A.; Frazier, D. O.; Paley, M. S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) shows a picosecond switching property, which illustrated a partial all-optical picosecond NAND logic gate. The switching phenomenon was demonstrated by waveguiding two collinear beams at 633 nm and 532 nm through a hollow fiber of 50 micrometers diameter, coated from inside with a thin film of PDAMNA. A Z-scan investigations of a PDAMNA thin film on quartz substrate revealed that the switching effect was attributed to an excited state absorption in the systems. The studies also showed that the polymer suffers a photo-oxidation beyond an intensity level of 2.9 x 10(exp 6) w/square cm. The photo-oxidized film has different physical properties that are different from the original film before oxidation. The life time of both excited states before and after oxidation as well as their absorption coefficients were estimated by fitting a three level system model to the experimental results.
Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Zhang, Xueao
2017-01-01
We fabricated 70 nm Al2O3 gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al2O3/Si substrate is superior to that on a traditional 300 nm SiO2/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al2O3/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS2, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices. PMID:28937619
Regular paths in SparQL: querying the NCI Thesaurus.
Detwiler, Landon T; Suciu, Dan; Brinkley, James F
2008-11-06
OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.
Diode-pumped Nd:GAGG-LBO laser at 531 nm
NASA Astrophysics Data System (ADS)
Zou, J.; Chu, H.; Wang, L. R.
2012-03-01
We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.
NASA Astrophysics Data System (ADS)
Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young
2015-08-01
Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.
NASA Astrophysics Data System (ADS)
Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.
2018-05-01
We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.
Shao, Q; Rowe, R C; York, P
2007-06-01
Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.
Storage of sparse files using parallel log-structured file system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Grider, Gary
A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a singlemore » patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. Lawson, R. Marsala, S. Ramakrishnan, X. Zhao, P. Sichta
In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supplymore » sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the "Hardwired Control System" will be replaces with a Programmable Logic Controller (PLC).« less
Wolterbeek, André; Oosterwijk, Thies; Schneider, Steffen; Landsiedel, Robert; de Groot, Didima; van Ee, Renz; Wouters, Mariëlle; van de Sandt, Han
2015-08-15
Synthetic amorphous silica (SAS) like NM-200 is used in a wide variety of technological applications and consumer products. Although SAS has been widely investigated the available reproductive toxicity studies are old and do not cover all requirements of current OECD Guidelines. As part of a CEFIC-LRI project, NM-200 was tested in a two-generation reproduction toxicity study according to OECD guideline 416. Male and female rats were treated by oral gavage with NM-200 at dose levels of 0, 100, 300 and 1000mg/kg bw/day for two generations. Body weight and food consumption were measured throughout the study. Reproductive and developmental parameters were measured and at sacrifice (reproductive) organs and tissues were sampled for histopathological analysis. Oral administration of NM-200 up to 1000mg/kg bw/day had no adverse effects on the reproductive performance of rats or on the growth and development of the offspring into adulthood for two consecutive generations. The NOAEL was 1000mg/kg body weight per day. Copyright © 2015 Elsevier Inc. All rights reserved.
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
Improvement of optical damage in specialty fiber at 266 nm wavelength
NASA Astrophysics Data System (ADS)
Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.
2014-02-01
Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.
Wen, Wenhui; Wang, Yuxin; Liu, Hongji; Wang, Kai; Qiu, Ping; Wang, Ke
2018-01-01
One benefit of excitation at the 1700-nm window is the more accessible modalities of multiphoton signal generation. It is demonstrated here that the transmittance performance of the objective lens is of vital importance for efficient higher-order multiphoton signal generation and collection excited at the 1700-nm window. Two commonly used objective lenses for multiphoton microscopy (MPM) are characterized and compared, one with regular coating and the other with customized coating for high transmittance at the 1700-nm window. Our results show that, fourth harmonic generation imaging of mouse tail tendon and 5-photon fluorescence of carbon quantum dots using the regular objective lens shows an order of magnitude signal higher than those using the customized objective lens. Besides, the regular objective lens also enables a 3-photon fluorescence imaging depth of >1600 μm in mouse brain in vivo. Our results will provide guidelines for objective lens selection for MPM at the 1700-nm window. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates
Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda
2012-01-01
One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values. PMID:22934039
Fuzzy logic applied to prospecting for areas for installation of wood panel industries.
Dos Santos, Alexandre Rosa; Paterlini, Ewerthon Mattos; Fiedler, Nilton Cesar; Ribeiro, Carlos Antonio Alvares Soares; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Juvanhol, Ronie Silva; Branco, Elvis Ricardo Figueira; Mota, Pedro Henrique Santos; da Silva, Lilianne Gomes; Pirovani, Daiani Bernardo; de Jesus, Waldir Cintra; Santos, Ana Carolina de Albuquerque; Leite, Helio Garcia; Iwakiri, Setsuo
2017-05-15
Prospecting for suitable areas for forestry operations, where the objective is a reduction in production and transportation costs, as well as the maximization of profits and available resources, constitutes an optimization problem. However, fuzzy logic is an alternative method for solving this problem. In the context of prospecting for suitable areas for the installation of wood panel industries, we propose applying fuzzy logic analysis for simulating the planting of different species and eucalyptus hybrids in Espírito Santo State, Brazil. The necessary methodological steps for this study are as follows: a) agriclimatological zoning of different species and eucalyptus hybrids; b) the selection of the vector variables; c) the application of the Euclidean distance to the vector variables; d) the application of fuzzy logic to matrix variables of the Euclidean distance; and e) the application of overlap fuzzy logic to locate areas for installation of wood panel industries. Among all the species and hybrids, Corymbia citriodora showed the highest percentage values for the combined very good and good classes, with 8.60%, followed by Eucalyptus grandis with 8.52%, Eucalyptus urophylla with 8.35% and Urograndis with 8.34%. The fuzzy logic analysis afforded flexibility in prospecting for suitable areas for the installation of wood panel industries in the Espírito Santo State can bring great economic and social benefits to the local population with the generation of jobs, income, tax revenues and GDP increase for the State and municipalities involved. The proposed methodology can be adapted to other areas and agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
McDonald, Steve; Turner, Tari; Chamberlain, Catherine; Lumbiganon, Pisake; Thinkhamrop, Jadsada; Festin, Mario R; Ho, Jacqueline J; Mohammad, Hakimi; Henderson-Smart, David J; Short, Jacki; Crowther, Caroline A; Martis, Ruth; Green, Sally
2010-07-01
Rates of maternal and perinatal mortality remain high in developing countries despite the existence of effective interventions. Efforts to strengthen evidence-based approaches to improve health in these settings are partly hindered by restricted access to the best available evidence, limited training in evidence-based practice and concerns about the relevance of existing evidence. South East Asia--Optimising Reproductive and Child Health in Developing Countries (SEA-ORCHID) was a five-year project that aimed to determine whether a multifaceted intervention designed to strengthen the capacity for research synthesis, evidence-based care and knowledge implementation improved clinical practice and led to better health outcomes for mothers and babies. This paper describes the development and design of the SEA-ORCHID intervention plan using a logical framework approach. SEA-ORCHID used a before-and-after design to evaluate the impact of a multifaceted tailored intervention at nine sites across Thailand, Malaysia, Philippines and Indonesia, supported by three centres in Australia. We used a logical framework approach to systematically prepare and summarise the project plan in a clear and logical way. The development and design of the SEA-ORCHID project was based around the three components of a logical framework (problem analysis, project plan and evaluation strategy). The SEA-ORCHID logical framework defined the project's goal and purpose (To improve the health of mothers and babies in South East Asia and To improve clinical practice in reproductive health in South East Asia), and outlined a series of project objectives and activities designed to achieve these. The logical framework also established outcome and process measures appropriate to each level of the project plan, and guided project work in each of the participating countries and hospitals. Development of a logical framework in the SEA-ORCHID project enabled a reasoned, logical approach to the project design that ensured the project activities would achieve the desired outcomes and that the evaluation plan would assess both the process and outcome of the project. The logical framework was also valuable over the course of the project to facilitate communication, assess progress and build a shared understanding of the project activities, purpose and goal.
2010-01-01
Background Rates of maternal and perinatal mortality remain high in developing countries despite the existence of effective interventions. Efforts to strengthen evidence-based approaches to improve health in these settings are partly hindered by restricted access to the best available evidence, limited training in evidence-based practice and concerns about the relevance of existing evidence. South East Asia - Optimising Reproductive and Child Health in Developing Countries (SEA-ORCHID) was a five-year project that aimed to determine whether a multifaceted intervention designed to strengthen the capacity for research synthesis, evidence-based care and knowledge implementation improved clinical practice and led to better health outcomes for mothers and babies. This paper describes the development and design of the SEA-ORCHID intervention plan using a logical framework approach. Methods SEA-ORCHID used a before-and-after design to evaluate the impact of a multifaceted tailored intervention at nine sites across Thailand, Malaysia, Philippines and Indonesia, supported by three centres in Australia. We used a logical framework approach to systematically prepare and summarise the project plan in a clear and logical way. The development and design of the SEA-ORCHID project was based around the three components of a logical framework (problem analysis, project plan and evaluation strategy). Results The SEA-ORCHID logical framework defined the project's goal and purpose (To improve the health of mothers and babies in South East Asia and To improve clinical practice in reproductive health in South East Asia), and outlined a series of project objectives and activities designed to achieve these. The logical framework also established outcome and process measures appropriate to each level of the project plan, and guided project work in each of the participating countries and hospitals. Conclusions Development of a logical framework in the SEA-ORCHID project enabled a reasoned, logical approach to the project design that ensured the project activities would achieve the desired outcomes and that the evaluation plan would assess both the process and outcome of the project. The logical framework was also valuable over the course of the project to facilitate communication, assess progress and build a shared understanding of the project activities, purpose and goal. PMID:20594325
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
Alta, Tjarco D W; Veeger, DirkJan H E J; de Toledo, Joelly M; Janssen, Thomas W J; Willems, W Jaap
2014-11-01
Range of motion after total shoulder arthroplasty is better than after reverse shoulder arthroplasty, however with similar clinical outcome. It is unclear if this difference can only be found in the different range of motion or also in the force generating capacity. (1) are isokinetically produced joint torques of reverse shoulder arthroplasty comparable to those of total shoulder arthroplasty? (2) Does this force-generating capacity correlate with functional outcome? Eighteen reverse shoulder arthroplasty patients (71years (SD 9years)) (21 shoulders, follow-up of 21months (SD 10months)) were recruited, 12 total shoulder arthroplasty patients (69years (SD 9years)) (14 shoulders, follow-up of 35months (SD 11months)). Pre- and post-operative Constant-Murley scores were obtained; two isokinetic protocols (ab-/adduction and ex-/internal rotations) at 60°/s were performed. Twelve of 18 reverse shoulder arthroplasty patients generated enough speed to perform the test (13 shoulders). Mean ab-/adduction torques are 16.3Nm (SD 5.6Nm) and 20.4Nm (SD 11.8Nm). All total shoulder arthroplasty patients generated enough speed (14 shoulders). Mean ab-/adduction torques are 32.1Nm (SD 13.3Nm) and 43.1Nm (SD 21.5Nm). Only 8 reverse shoulder arthroplasty patients (9 shoulders) could perform ex-/internal rotation tasks and all total shoulder arthroplasty patients. Mean ex-/internal rotation torques are 9.3Nm (SD 4.7Nm) and 9.2Nm (SD 2.1Nm) for reverse shoulder arthroplasty, and 17.9Nm (SD 7.7Nm) and 23.5Nm (SD 10.6Nm) for total shoulder arthroplasty. Significant correlations between sub-scores: activity, mobility and strength and external rotation torques for reverse shoulder arthroplasty. Moderate to strong correlation for sub-scores: strength in relation to abduction, adduction and internal rotation torques for total shoulder arthroplasty. Shoulders with a total shoulder arthroplasty are stronger. This can be explained by the absence of rotator cuff muscles and (probably) medialized center of rotation in reverse shoulder arthroplasty. The strong correlation between external rotation torques and post-operative Constant-Murley sub-scores demonstrates that external rotation is essential for good clinical functioning in reverse shoulder arthroplasty. Copyright © 2014 Elsevier Ltd. All rights reserved.
Periodically poled potassium niobate for second-harmonic generation at 463 nm.
Meyn, J P; Klein, M E; Woll, D; Wallenstein, R; Rytz, D
1999-08-15
We report on the fabrication and characterization of quasi-phase-matched potassium niobate crystals for second-harmonic generation. Periodic 30-mum -pitch antiparallel ferroelectric domains are fabricated by means of poling in an electrical field. Both birefrigence and periodic phase shift of the generated second harmonic contribute to phase matching when the d(31) nonlinear optical tensor element is used. 3.8 mW of second-harmonic radiation at 463 nm is generated by frequency doubling of the output of master-oscillator power-amplifier diode laser in a 5-mm-long crystal. The measured effective nonlinear coefficient is 3.7pm/V. The measured spectral acceptance bandwidth of 0.25 nm corresponds to the theoretical value.
OPC model generation procedure for different reticle vendors
NASA Astrophysics Data System (ADS)
Jost, Andrew M.; Belova, Nadya; Callan, Neal P.
2003-12-01
The challenge of delivering acceptable semiconductor products to customers in timely fashion becomes more difficult as design complexity increases. The requirements of current generation designs tax OPC engineers greater than ever before since the readiness of high-quality OPC models can delay new process qualifications or lead to respins, which add to the upward-spiraling costs of new reticle sets, extend time-to-market, and disappoint customers. In their efforts to extend the printability of new designs, OPC engineers generally focus on the data-to-wafer path, ignoring data-to-mask effects almost entirely. However, it is unknown whether reticle makers' disparate processes truly yield comparable reticles, even with identical tools. This approach raises the question of whether a single OPC model is applicable to all reticle vendors. LSI Logic has developed a methodology for quantifying vendor-to-vendor reticle manufacturing differences and adapting OPC models for use at several reticle vendors. This approach allows LSI Logic to easily adapt existing OPC models for use with several reticle vendors and obviates the generation of unnecessary models, allowing OPC engineers to focus their efforts on the most critical layers.
Li, Yong; Wang, Huixia; Dai, Futao; Li, Pei; Jin, Xin; Huang, Yan; Nie, Zhou; Yao, Shouzhuo
2016-12-15
Citrate synthase (CS) is one of the key metabolic enzymes in the Krebs tricarboxylic acid (TCA) cycle. It regulates energy generation in mitochondrial respiration by catalysing the reaction between oxaloacetic acid (OAA) and acetyl coenzyme A (Ac-CoA) to generate citrate and coenzyme A (CoA). CS has been shown to be a biomarker of neurological diseases and various kinds of cancers. Here, a label-free fluorescent assay has been developed for homogeneously detecting CS and its inhibitor based on the in situ generation of CoA-Au(I) co-ordination polymer (CP) and the fluorescence signal-on by SYBR Green II-stained CoA-Au(I) CP. Because of the unique property of the CoA-Au(I) CP, this CS activity assay method could achieve excellent selectivity and sensitivity, with a linear range from 0.0033 U/μL to 0.264 U/μL and a limit of detection to be 0.00165 U/μL. Meanwhile, this assay method has advantages of being facile and cost effective with quick detection. Moreover, based on this method, a biomimetic logic system was established by rationally exploiting the cascade enzymatic interactions in TCA cycle for chemical information processing. In the TCA cycle-derived logic system, an AND-AND-AND-cascaded gate was rigorously operated step by step in one pot, and is outputted by a label-free fluorescent signal with visualized readout. Copyright © 2016 Elsevier B.V. All rights reserved.
High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier
NASA Astrophysics Data System (ADS)
Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.
2016-03-01
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
65-nm full-chip implementation using double dipole lithography
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Chen, J. Fung; Cororan, Noel; Knose, William T.; Van Den Broeke, Douglas J.; Laidig, Thomas L.; Wampler, Kurt E.; Shi, Xuelong; Hsu, Michael; Eurlings, Mark; Finders, Jo; Chiou, Tsann-Bim; Socha, Robert J.; Conley, Will; Hsieh, Yen W.; Tuan, Steve; Hsieh, Frank
2003-06-01
Double Dipole Lithography (DDL) has been demonstrated to be capable of patterning complex 2D patterns. Due to inherently high aerial imaging contrast, especially for dense features, we have found that it has a very good potential to meet manufacturing requirements for the 65nm node using ArF binary chrome masks. For patterning in the k1<0.35 regime without resorting to hard phase-shift masks (PSMs), DDL is one unique Resolution Enhancement Technique (RET) which can achieve an acceptable process window. To utilize DDL for printing actual IC devices, the original design data must be decomposed into "vertical (V)" and "horizontal (H)" masks for the respective X- and Y-dipole exposures. An improved two-pass, model-based, DDL mask data processing methodology has been established. It is capable of simultaneously converting complex logic and memory mask patterns into DDL compatible mask layout. To maximize the overlapped process window area, we have previously shown that the pattern-shielding algorithm must be intelligently applied together with both Scattering Bars (SBs) and model-based OPC (MOPC). Due to double exposures, stray light must be well-controlled to ensure uniform printing across the entire chip. One solution to minimize stray light is to apply large patches of solid chrome in open areas to reduce the background transmission during exposure. Unfortunately, this is not feasible for a typical clear-field poly gate masks to be patterned by a positive resist process. In this work, we report a production-worthy DDL mask pattern decomposition scheme for full-chip application. A new generation of DDL technology reticle set has been developed to verify the printing performance. Shielding is a critical part of the DDL. An innovative shielding scheme has been developed to protect the critical features and minimize the impact of stray light during double exposure.
Ultralow-Power Digital Correlator for Microwave Polarimetry
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Hass, K. Joseph
2004-01-01
A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.
2014-09-01
electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG) applications that operate using thermoelectrically generated energy...semiconductor ECG electrocardiography EEG electroencephalography EMG electromyography FY15 fiscal year 2015 IC integrated circuit MOSFETs
Optimized filtration for reduced defectivity and improved dispense recipe in 193-nm BARC lithography
NASA Astrophysics Data System (ADS)
Do, Phong; Pender, Joe; Lehmann, Thomas; Mc Ardle, Leo P.; Gotlinsky, Barry; Mesawich, Michael
2004-05-01
The implementation of 193 nm lithography into production has been complicated by high defectivity issues. Many companies have been struggling with high defect densities, forcing process and lithography engineers to focus their efforts on chemical filtration instead of process development. After-etch defects have complicated the effort to reduce this problem. In particular it has been determined that chemical filtration at the 90 nm node and below is a crucial item which current industry standard pump recipes and material choices are not able to address. LSI Logic and Pall Corporation have been working together exploring alternative materials and resist pump process parameters to address these issues. These changes will free up process development time by reducing these high defect density issues. This paper provides a fundamental understanding of how 20nm filtration combined with optimized resist pump set-up and dispense can significantly reduce defects in 193nm lithography. The purpose of this study is to examine the effectiveness of 20 nanometer rated filters to reduce various defects observed in bottom anti reflective coating materials. Multiple filter types were installed on a Tokyo Electron Limited Clean Track ACT8 tool utilizing two-stage resist pumps. Lithographic performance of the filtered resist and defect analysis of patterned and non-patterned wafers were performed. Optimized pump start-up and dispense recipes also were evaluated to determine their effect on defect improvements. The track system used in this experiment was a standard production tool and was not modified from its original specifications.
From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size
NASA Astrophysics Data System (ADS)
Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Hartmann, F.; Emmerling, M.; Kamp, M.; Worschech, L.
2014-07-01
Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators.
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.
Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms.
Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi
2016-02-15
Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.
An organic jelly made fractal logic gate with an infinite truth table
Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban
2015-01-01
Widely varying logic gates invented over a century are all finite. As data deluge problem looms large on the information processing and communication industry, the thrust to explore radical concepts is increasing rapidly. Here, we design and synthesis a molecule, wherein, the input energy transmits in a cycle inside the molecular system, just like an oscillator, then, we use the molecule to make a jelly that acts as chain of oscillators with a fractal like resonance band. Hence, with the increasing detection resolution, in the vacant space between two energy levels of a given resonance band, a new band appears, due to fractal nature, generation of newer energy levels never stops. This is natural property of a linear chain oscillator. As we correlate each energy level of the resonance band of organic jelly, as a function of pH and density of the jelly, we realize a logic gate, whose truth table is finite, but if we zoom any small part, a new truth table appears. In principle, zooming of truth table would continue forever. Thus, we invent a new class of infinite logic gate for the first time. PMID:26086417
Simulink(Trademark) Controller for a Reluctance Motor With a Four-Pole Rotor and 36-Tooth Stator
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew J.
2017-01-01
NASA Glenn Research Center has developed a Simulink(Trademark) controller logic for driving a room temperature, 36-teeth stator, four-pole rotor reluctance motor. The Simulink logic was extracted from an existing C++ motor controller that was previously employed to achieve a rotor speed of 3000 rpm. The Simulink controller has additional logic refinements that were not available in past C++ controller, such as the per rev logic component and its frequency filter. The filter provides a more accurate reading of the rotor input signals. The controller is versatile, and with slight modifications, can be used to drive other reluctance motor types incorporating dissimilar stator rotor pole combinations. The original C++ controller was designed with the goal (after appropriate modification) of controlling a future superconducting motor. This superconducting motor will be employed as a test bed for developing other superconducting aviation propulsion motors envisioned for future turbo-electric aircrafts. The Simulink results presented in this paper were generated from simulated rotor inputs. However, in an actual application, these simulated inputs are to be replaced by actual proximity probe signals emanating from D-Space hardware inputs.
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.
2017-05-01
A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.
Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber
NASA Astrophysics Data System (ADS)
Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2016-12-01
We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.
NASA Astrophysics Data System (ADS)
Ghosh, Amal K.
2010-09-01
The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser
NASA Astrophysics Data System (ADS)
Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan
2015-12-01
High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.
NASA Astrophysics Data System (ADS)
Yao, Yuhong; Knox, Wayne H.
2015-03-01
We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.
Initial benchmarking of a new electron-beam raster pattern generator for 130-100 nm maskmaking
NASA Astrophysics Data System (ADS)
Sauer, Charles A.; Abboud, Frank E.; Babin, Sergey V.; Chakarian, Varoujan; Ghanbari, Abe; Innes, Robert; Trost, David; Raymond, Frederick, III
2000-07-01
The decision by the Semiconductor Industry Association (SIA) to accelerate the continuing evolution to smaller linewidths is consistent with the commitment by Etec Systems, Inc. to rapidly develop new technologies for pattern generation systems with improved resolution, critical dimension (CD) uniformity, positional accuracy, and throughput. Current pattern generation designs are inadequate to meet the more advanced requirements for masks, particularly at or below the 100 nm node. Major changes to all pattern generation tools will be essential to meet future market requirements. An electron-beam (e-beam) system that is designed to meet the challenges for 130 - 100 nm device generation with extendibility to the 70-nm range will be discussed. This system has an architecture that includes a graybeam writing strategy, a new state system, and improved thermal management. Detailed changes include a pulse width modulated blanking system, per-pixel deflection, retrograde scanning multipass writing, and a column with a 50 kV accelerating voltage that supports a dose of up to 45 (mu) C/cm2 with minimal amounts of resist heating. This paper examines current issues, our approach to meeting International Technology Roadmap for Semiconductors (ITRS) requirements, and some preliminary results from a new pattern generator.
NASA Astrophysics Data System (ADS)
Hernández-Escobar, E.; Bello-Jiménez, M.; Pottiez, O.; Ibarra-Escamilla, B.; López-Estopier, R.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.
2017-10-01
The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results demonstrate a satisfactory flatness of ~3 dB over a bandwidth of ~1000 nm in the range from 1261 to 2261 nm, achieving to the best of our knowledge, one of the flattest SC generated from noise-like pulses.
Laser Induced Hydrogen Generation from Coal in Water
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Kholikov, Khomidkhodzha; Er, Ali
We report an alternative way of obtaining hydrogen using nanosecond laser pulses and various ranks of coal and coke. SEM-EDS analysis shows the atomic concentrations of elements on each of the powders which also is in good agreement with calorimeter analysis. Coal and coke powders were irradiated with 1064nm IR and 532 nm green Nd:YAG pulsed laser beam for 45 minutes. The volume of the total gas generated after irradiation of each rank was measured using the water displacement method. The amount of gas generated increased when using 532 nm compared to 1064 nm. Post-irradiation SEM images show structural differences with samples before irradiation. The amount of gas generation with respect to laser energy density shows nonlinear correlation. Generated gas concentrations were then analyzed using gas chromatography (GC). Hydrogen and carbon monoxide were the two most highly generated gases, and the efficiency of each rank of coal was determined by analyzing the hydrogen to carbon monoxide ratio. The highest efficiency rank was anthracite, with hydrogen to carbon monoxide ratio of 1.4. GC analysis also showed that the maximum hydrogen generation occurs at 100 mJ/pulse laser energy. The efficiency of each rank of coal was observed to correlate with carbon content. American Chemical Society Petroleum Research Fund.
LogiKit - assisting complex logic specification and implementation for embedded control systems
NASA Astrophysics Data System (ADS)
Diglio, A.; Nicolodi, B.
2002-07-01
LogiKit provides an overall lifecycle solution. LogiKit is a powerful software engineering case toolkit for requirements specification, simulation and documentation. LogiKit also provides an automatic ADA software design, code and unit test generator.
Maximum power point tracking techniques for wind energy systems using three levels boost converter
NASA Astrophysics Data System (ADS)
Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz
2018-05-01
This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.
Building validation tools for knowledge-based systems
NASA Technical Reports Server (NTRS)
Stachowitz, R. A.; Chang, C. L.; Stock, T. S.; Combs, J. B.
1987-01-01
The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification.
NASA Astrophysics Data System (ADS)
Jun, Jinhyuck; Park, Minwoo; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Do, Munhoe; Lee, Dongchan; Kim, Taehoon; Choi, Junghoe; Luk-Pat, Gerard; Miloslavsky, Alex
2015-03-01
As the industry pushes to ever more complex illumination schemes to increase resolution for next generation memory and logic circuits, sub-resolution assist feature (SRAF) placement requirements become increasingly severe. Therefore device manufacturers are evaluating improvements in SRAF placement algorithms which do not sacrifice main feature (MF) patterning capability. There are known-well several methods to generate SRAF such as Rule based Assist Features (RBAF), Model Based Assist Features (MBAF) and Hybrid Assisted Features combining features of the different algorithms using both RBAF and MBAF. Rule Based Assist Features (RBAF) continue to be deployed, even with the availability of Model Based Assist Features (MBAF) and Inverse Lithography Technology (ILT). Certainly for the 3x nm node, and even at the 2x nm nodes and lower, RBAF is used because it demands less run time and provides better consistency. Since RBAF is needed now and in the future, what is also needed is a faster method to create the AF rule tables. The current method typically involves making masks and printing wafers that contain several experiments, varying the main feature configurations, AF configurations, dose conditions, and defocus conditions - this is a time consuming and expensive process. In addition, as the technology node shrinks, wafer process changes and source shape redesigns occur more frequently, escalating the cost of rule table creation. Furthermore, as the demand on process margin escalates, there is a greater need for multiple rule tables: each tailored to a specific set of main-feature configurations. Model Assisted Rule Tables(MART) creates a set of test patterns, and evaluates the simulated CD at nominal conditions, defocused conditions and off-dose conditions. It also uses lithographic simulation to evaluate the likelihood of AF printing. It then analyzes the simulation data to automatically create AF rule tables. It means that analysis results display the cost of different AF configurations as the space grows between a pair of main features. In summary, model based rule tables method is able to make it much easier to create rule tables, leading to faster rule-table creation and a lower barrier to the creation of more rule tables.
Soref, Richard; Hendrickson, Joshua
2015-12-14
Silicon-on-insulator Mach-Zehnder interferometer structures that utilize a photonic crystal nanobeam waveguide in each of two connecting arms are proposed here as efficient 2 × 2 resonant, wavelength-selective electro-optical routing switches that are readily cascaded into on-chip N × N switching networks. A localized lateral PN junction of length ~2 μm within each of two identical nanobeams is proposed as a means of shifting the transmission resonance by 400 pm within the 1550 nm band. Using a bias swing ΔV = 2.7 V, the 474 attojoules-per-bit switching mechanism is free-carrier sweepout due to PN depletion layer widening. Simulations of the 2 × 2 outputs versus voltage are presented. Dual-nanobeam designs are given for N × N data-routing matrix switches, electrooptical logic unit cells, N × M wavelength selective switches, and vector matrix multipliers. Performance penalties are analyzed for possible fabrication induced errors such as non-ideal 3-dB couplers, differences in optical path lengths, and variations in photonic crystal cavity resonances.
Pan, Yi; Shi, Yupeng; Chen, Junying; Wong, Chap-Mo; Zhang, Heng; Li, Mei-Jin; Li, Cheuk-Wing; Yi, Changqing
2016-12-01
In this study, a highly sensitive and selective fluorescent Zn(2+) probe which exhibited excellent biocompatibility, water solubility, and cell-membrane permeability, was facilely synthesized in a single step by grafting polyethyleneimine (PEI) with quinoline derivatives. The primary amino groups in the branched PEI can increase water solubility and cell permeability of the probe PEIQ, while quinoline derivatives can specifically recognize Zn(2+) and reduce the potential cytotoxicity of PEI. Basing on fluorescence off-on mechanism, PEIQ demonstrated excellent sensing capability towards Zn(2+) in absolute aqueous solution, where a high sensitivity with a detection limit as low as 38.1nM, and a high selectivity over competing metal ions and potential interfering amino acids, were achieved. Inspired by these results, elementary logic operations (YES, NOT and INHIBIT) have been constructed by employing PEIQ as the gate while Zn(2+) and EDTA as chemical inputs. Together with the low cytotoxicity and good cell-permeability, the practical application of PEIQ in living cell imaging was satisfactorily demonstrated, emphasizing its wide application in fundamental biology research. Copyright © 2016. Published by Elsevier B.V.
Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng
2015-05-06
In this work, a facile colorimetric method is developed for quantitative detection of human serum albumin (HSA) based on the antiaggregation effect of gold nanoparticles (Au NPs) in the presence of HSA. The citrate-capped Au NPs undergo a color change from red to blue when melamine is added as a cross-linker to induce the aggregation of the NPs. Such an aggregation is efficiently suppressed upon the adsorption of HSA on the particle surface. This method provides the advantages of simplicity and cost-efficiency for quantitative detection of HSA with a detection limit of ∼1.4 nM by monitoring the colorimetric changes of the Au NPs with UV-vis spectroscopy. In addition, this approach shows good selectivity for HSA over various amino acids, peptides, and proteins and is qualified for detection of HSA in a biological sample. Such an antiaggregation effect can be further extended to fabricate an INHIBIT logic gate by using HSA and melamine as inputs and the color changes of Au NPs as outputs, which may have application potentials in point-of-care medical diagnosis.
Pre-PDK block-level PPAC assessment of technology options for sub-7nm high-performance logic
NASA Astrophysics Data System (ADS)
Liebmann, L.; Northrop, G.; Facchini, M.; Riviere Cazaux, L.; Baum, Z.; Nakamoto, N.; Sun, K.; Chanemougame, D.; Han, G.; Gerousis, V.
2018-03-01
This paper describes a rigorous yet flexible standard cell place-and-route flow that is used to quantify block-level power, performance, and area trade-offs driven by two unique cell architectures and their associated design rule differences. The two architectures examined in this paper differ primarily in their use of different power-distribution-networks to achieve the desired circuit performance for high-performance logic designs. The paper shows the importance of incorporating block-level routability experiments in the early phases of design-technology co-optimization by reviewing a series of routing trials that explore different aspects of the technology definition. Since the electrical and physical parameters leading to critical process assumptions and design rules are unique to specific integration schemes and design objectives, it is understood that the goal of this work is not to promote one cell-architecture over another, but rather to convey the importance of exploring critical trade-offs long before the process details of the technology node are finalized to a point where a process design kit can be published.
Achieving realistic performance and decison-making capabilities in computer-generated air forces
NASA Astrophysics Data System (ADS)
Banks, Sheila B.; Stytz, Martin R.; Santos, Eugene, Jr.; Zurita, Vincent B.; Benslay, James L., Jr.
1997-07-01
For a computer-generated force (CGF) system to be useful in training environments, it must be able to operate at multiple skill levels, exhibit competency at assigned missions, and comply with current doctrine. Because of the rapid rate of change in distributed interactive simulation (DIS) and the expanding set of performance objectives for any computer- generated force, the system must also be modifiable at reasonable cost and incorporate mechanisms for learning. Therefore, CGF applications must have adaptable decision mechanisms and behaviors and perform automated incorporation of past reasoning and experience into its decision process. The CGF must also possess multiple skill levels for classes of entities, gracefully degrade its reasoning capability in response to system stress, possess an expandable modular knowledge structure, and perform adaptive mission planning. Furthermore, correctly performing individual entity behaviors is not sufficient. Issues related to complex inter-entity behavioral interactions, such as the need to maintain formation and share information, must also be considered. The CGF must also be able to acceptably respond to unforeseen circumstances and be able to make decisions in spite of uncertain information. Because of the need for increased complexity in the virtual battlespace, the CGF should exhibit complex, realistic behavior patterns within the battlespace. To achieve these necessary capabilities, an extensible software architecture, an expandable knowledge base, and an adaptable decision making mechanism are required. Our lab has addressed these issues in detail. The resulting DIS-compliant system is called the automated wingman (AW). The AW is based on fuzzy logic, the common object database (CODB) software architecture, and a hierarchical knowledge structure. We describe the techniques we used to enable us to make progress toward a CGF entity that satisfies the requirements presented above. We present our design and implementation of an adaptable decision making mechanism that uses multi-layered, fuzzy logic controlled situational analysis. Because our research indicates that fuzzy logic can perform poorly under certain circumstances, we combine fuzzy logic inferencing with adversarial game tree techniques for decision making in strategic and tactical engagements. We describe the approach we employed to achieve this fusion. We also describe the automated wingman's system architecture and knowledge base architecture.
Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames
NASA Astrophysics Data System (ADS)
Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin
2017-05-01
Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.
CMOS-compatible spintronic devices: a review
NASA Astrophysics Data System (ADS)
Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried
2016-11-01
For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.
Simplify to survive: prescriptive layouts ensure profitable scaling to 32nm and beyond
NASA Astrophysics Data System (ADS)
Liebmann, Lars; Pileggi, Larry; Hibbeler, Jason; Rovner, Vyacheslav; Jhaveri, Tejas; Northrop, Greg
2009-03-01
The time-to-market driven need to maintain concurrent process-design co-development, even in spite of discontinuous patterning, process, and device innovation is reiterated. The escalating design rule complexity resulting from increasing layout sensitivities in physical and electrical yield and the resulting risk to profitable technology scaling is reviewed. Shortcomings in traditional Design for Manufacturability (DfM) solutions are identified and contrasted to the highly successful integrated design-technology co-optimization used for SRAM and other memory arrays. The feasibility of extending memory-style design-technology co-optimization, based on a highly simplified layout environment, to logic chips is demonstrated. Layout density benefits, modeled patterning and electrical yield improvements, as well as substantially improved layout simplicity are quantified in a conventional versus template-based design comparison on a 65nm IBM PowerPC 405 microprocessor core. The adaptability of this highly regularized template-based design solution to different yield concerns and design styles is shown in the extension of this work to 32nm with an increased focus on interconnect redundancy. In closing, the work not covered in this paper, focused on the process side of the integrated process-design co-optimization, is introduced.
Learning fuzzy logic control system
NASA Technical Reports Server (NTRS)
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the D.C. motor. Furthermore, the LFLC has better performance in rise time, settling time and steady state error than to the conventional PI controller. This abstract accurately represents the content of the candidate's thesis. I recommend its publication.
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-06-07
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.
Evaluation of Inventory Reduction Strategies: Balad Air Base Case Study
2012-03-01
produced by conducting individual simulations using a unique random seed generated by the default Anylogic © random number generator. The...develops an agent-based simulation model of the sustainment supply chain supporting Balad AB during its closure using the software AnyLogic ®. The...research. The goal of USAF Stockage Policy is to maximize customer support while minimizing inventory costs (DAF, 2011:1). USAF stocking decisions
Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang
2007-10-15
We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.
Martin, A.D.
1986-05-09
Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.
Chen, Junhua; Pan, Jiafeng; Chen, Shu
2018-01-14
A complete set of binary basic logic gates (OR, AND, NOR, NAND, INHIBT, IMPLICATION, XOR and XNOR) is realized on a label-free and enzyme-free sensing platform using caged G-quadruplex as the signal transducer. In the presence of an appropriate input, the temporarily blocked G-rich sequence in the hairpin DNA is released through cleavage by the synergetically-stabilized Mg 2+ -dependent DNAzyme which can be made to function via the input-guided cooperative conjunction of the DNAzyme subunits. In the presence of hemin, the unblocked G-quadruplex DNAzyme catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H 2 O 2 to generate a colored readout signal which can be readily distinguished by the naked eye. This strategy is quite versatile and straightforward for logic operations. Two combinatorial gates (XOR + AND and XOR + NOR) are also successfully fabricated to demonstrate the modularity and scalability of the computing elements. The distinctive advantage of this logic system is that molecular events in aqueous solution could be translated into a color change which can be directly observed by the naked eye without resorting to any analytical instrumentation. Moreover, this work reveals a new route for the design of molecular logic gates that can be executed without any labeling and immobilization procedure or separation and washing step, which holds great promise for intelligent point-of-care diagnostics and in-field applications.
NASA Astrophysics Data System (ADS)
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-05-01
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Fallica, Roberto; Fan, Daniel; Karim, Waiz; Vockenhuber, Michaela; van Bokhoven, Jeroen A.; Ekinci, Yasin
2016-09-01
Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Wen, Wenhui; Wang, Kai
2016-01-11
1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersionmore » enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.« less
Cascade generation in Al laser induced plasma
NASA Astrophysics Data System (ADS)
Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor
2018-05-01
We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.
High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).
Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M
2008-12-15
We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K.; Yoshida, E.; Sugawa, T.
1995-08-01
It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.
Ultrafast Airy beam optical parametric oscillator
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
NASA Astrophysics Data System (ADS)
Nishitani, Junichi; West, Christopher W.; Higashimura, Chika; Suzuki, Toshinori
2017-09-01
Time-resolved photoelectron spectroscopy (TRPES) of gaseous polyatomic molecules using 266-nm (4.7 eV) pump and 42-nm (29.5 eV) probe pulses is presented. A 1-kHz Ti:sapphire laser with a 35 fs pulse duration is employed to generate high harmonics in Kr gas, and the 19th harmonic (42-nm) was selected using two SiC/Mg mirrors. Clear observation of the ultrafast electronic dephasing in pyrazine and photoisomerization of 1,3-cyclohexadiene demonstrates the feasibility of TRPES with the UV pump and VUV probe pulses under weak excitation conditions in the perturbation regime.
Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch
Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi
2010-01-01
Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and ‘memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch. PMID:20212522
Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.
Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi
2010-01-01
Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.
Fuzzy logic control of telerobot manipulators
NASA Technical Reports Server (NTRS)
Franke, Ernest A.; Nedungadi, Ashok
1992-01-01
Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.
Qian, F; Li, G; Ruan, H; Jing, H; Liu, L
1999-09-10
A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {1, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter.
The logical foundations of forensic science: towards reliable knowledge
Evett, Ian
2015-01-01
The generation of observations is a technical process and the advances that have been made in forensic science techniques over the last 50 years have been staggering. But science is about reasoning—about making sense from observations. For the forensic scientist, this is the challenge of interpreting a pattern of observations within the context of a legal trial. Here too, there have been major advances over recent years and there is a broad consensus among serious thinkers, both scientific and legal, that the logical framework is furnished by Bayesian inference (Aitken et al. Fundamentals of Probability and Statistical Evidence in Criminal Proceedings). This paper shows how the paradigm has matured, centred on the notion of the balanced scientist. Progress through the courts has not been always smooth and difficulties arising from recent judgments are discussed. Nevertheless, the future holds exciting prospects, in particular the opportunities for managing and calibrating the knowledge of the forensic scientists who assign the probabilities that are at the foundation of logical inference in the courtroom. PMID:26101288
Dorsey, Susan G.; Schiffman, Rachel; Redeker, Nancy S.; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S.; Grady, Patricia A.
2014-01-01
The NINR Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present a NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR Center Directors’ meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. PMID:25085328
Non-volatile, solid state bistable electrical switch
NASA Technical Reports Server (NTRS)
Williams, Roger M. (Inventor)
1994-01-01
A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.
Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng
2014-12-01
In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
Wang, Baojun; Kitney, Richard I; Joly, Nicolas; Buck, Martin
2011-10-18
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. © 2011 Macmillan Publishers Limited. All rights reserved.
Crystallization-driven assembly of conjugated-polymer-based nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, Ryan C.
2016-10-15
The goal of this project has been to improve our ability to simultaneously control the organization, and therefore the opto-electronic properties, of conjugated-polymer based materials across three different length-scales: 1) the molecular scale, in the sense of controlling growth and functionalization of highly crystalline semiconducting organic materials capable of efficient charge transport, 2) the nanoscale, in terms of positioning n- and p-type materials with domain sizes comparable to exciton diffusion lengths (~ 10 nm) to facilitate charge separation, and 3) the colloidal scale, such that well-defined crystalline nanoscale building blocks can be hierarchically organized into device layers. As described inmore » more detail below, the project was successful in generating powerful new approaches to, and improved fundamental understanding of, processing and self-assembly of organic and hybrid semiconducting materials across all three length-scales. Although the goals of the project were formulated with primarily photovoltaic architectures in mind, the outcomes of the project have significant implications for a variety of conjugated-polymer-based devices including field-effect-transistors for sensors and logic devices, as well as potentially thermoelectrics and battery electrode materials. The project has resulted in 10 peer-reviewed publications to date [1-10], with several additional manuscripts currently in preparation.« less
All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2012-06-01
We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.
Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity
NASA Astrophysics Data System (ADS)
Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.
2016-12-01
We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko
2011-09-01
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.
NASA Astrophysics Data System (ADS)
Akkala, Arun Goud
Leakage currents in CMOS transistors have risen dramatically with technology scaling leading to significant increase in standby power consumption. Among the various transistor candidates, the excellent short channel immunity of Silicon double gate FinFETs have made them the best contender for successful scaling to sub-10nm nodes. For sub-10nm FinFETs, new quantum mechanical leakage mechanisms such as direct source to drain tunneling (DSDT) of charge carriers through channel potential energy barrier arising due to proximity of source/drain regions coupled with the high transport direction electric field is expected to dominate overall leakage. To counter the effects of DSDT and worsening short channel effects and to maintain Ion/ Ioff, performance and power consumption at reasonable values, device optimization techniques are necessary for deeply scaled transistors. In this work, source/drain underlapping of FinFETs has been explored using quantum mechanical device simulations as a potentially promising method to lower DSDT while maintaining the Ion/ Ioff ratio at acceptable levels. By adopting a device/circuit/system level co-design approach, it is shown that asymmetric underlapping, where the drain side underlap is longer than the source side underlap, results in optimal energy efficiency for logic circuits in near-threshold as well as standard, super-threshold operating regimes. In addition, read/write conflict in 6T SRAMs and the degradation in cell noise margins due to the low supply voltage can be mitigated by using optimized asymmetric underlapped n-FinFETs for the access transistor, thereby leading to robust cache memories. When gate-workfunction tuning is possible, using asymmetric underlapped n-FinFETs for both access and pull-down devices in an SRAM bit cell can lead to high-speed and low-leakage caches. Further, it is shown that threshold voltage degradation in the presence of Hot Carrier Injection (HCI) is less severe in asymmetric underlap n-FinFETs. A lifetime projection is carried out assuming that HCI is the major degradation mechanism and it is shown that a 3.4x improvement in device lifetime is possible over symmetric underlapped n-FinFET.
Stitching-aware in-design DPT auto fixing for sub-20nm logic devices
NASA Astrophysics Data System (ADS)
Choi, Soo-Han; Sai Krishna, K. V. V. S.; Pemberton-Smith, David
2017-03-01
As the technology continues to shrink below 20nm, Double Patterning Technology (DPT) becomes one of the mandatory solutions for routing metal layers. From the view point of Place and Route (P&R), the major concerns are how to prevent DPT odd-cycles automatically without sacrificing chip area. Even though the leading-edge P&R tools have advanced algorithms to prevent DPT odd-cycles, it is very hard to prevent the localized DPT odd-cycles, especially in Engineering Change Order (ECO) routing. In the last several years, we developed In-design DPT Auto Fixing method in order to reduce localized DPT odd-cycles significantly during ECO and could achieve remarkable design Turn-Around Times (TATs). But subsequently, as the design complexity continued increasing and chip size continued decreasing, we needed a new In-design DPT Auto Fixing approach to improve the auto. fixing rate. In this paper, we present the Stitching-Aware In-design DPT Auto Fixing method for better fixing rates and smaller chip design. The previous In-design DPT Auto Fixing method detected all DPT odd-cycles and tried to remove oddcycles by increasing the adjacent space. As the metal congestions increase in the newer technology nodes, the older Auto Fixing method has limitations to increase the adjacent space between routing metals. Consequently, the auto fixing rate of older method gets worse with the introduction of the smaller design rules. With DPT stitching enablement at In-design DRC checking procedure, the new Stitching-Aware DPT Auto Fixing method detects the most critical odd-cycles and revolve the odd-cycles automatically. The accuracy of new flow ensures better usage of space in the congested areas, and helps design more smaller chips. By applying the Stitching-Aware DPT Auto Fixing method to sub-20nm logic devices, we can confirm that the auto fixing rate is improved by 2X compared with auto fixing without stitching. Additionally, by developing the better heuristic algorithm and flow for DPT stitching, we can get DPT compliant layout with the acceptable design TATs.