[Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].
Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming
2012-12-01
A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.
Size reduction of submicron magnesium particles prepared by pulsed wire discharge
NASA Astrophysics Data System (ADS)
Duy Hieu, Nguyen; Tokoi, Yoshinori; Tanaka, Kenta; Sasaki, Toru; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi
2018-02-01
In this study, the submicron magnesium particle size was reduced by adjusting ambient gas pressure and input energy. The mean diameter of the prepared particles was determined from transmission electron microscopy images. The geometric mean particle diameter decreased with increasing relative energy, which was defined as the charging energy divided by the evaporation energy of a wire. By this method, Mg particles with a geometric mean diameter of 41.9 nm were prepared. To our knowledge, they are the smallest passivated Mg particles prepared by any method.
Optimizing heterosurface adsorbent synthesis for liquid chromatography
NASA Astrophysics Data System (ADS)
Bogoslovskii, S. Yu.; Serdan, A. A.
2016-03-01
The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.
NASA Astrophysics Data System (ADS)
Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji
2012-02-01
A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.
NASA Astrophysics Data System (ADS)
Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul
2016-07-01
Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.
Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun
2009-09-21
Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.
Misra, R D K; Depan, D; Shah, J
2013-08-21
The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon
2016-07-12
Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less
Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films
NASA Astrophysics Data System (ADS)
Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko
2017-04-01
Electrospray deposition (ESD) is a favorable wet fabrication technique for organic thin films. We investigated the effects of the nozzle tip’s geometrical shape on the spraying properties of an organic solution used for ESD. Five types of cylindrical metal nozzles with zero (flat end) to four protrusions at the tips were prepared for depositing a solution of a small-molecule compound, tris(8-hydroxyquinolinato)aluminum (Alq3) solution. We confirmed that the diameter of the deposited droplets and their size dispersion decreased with an increase in the number of protrusions. The area occupation ratio of small droplets with a diameter smaller than 2 µm increased from 21 to 83% as the number of protrusions was increased from zero to four. The surface roughness root mean square of 60-nm-thick Alq3 films substantially improved from 32.5 to 6.8 nm with increasing number of protrusions.
NASA Astrophysics Data System (ADS)
Kumzerov, Yu. A.; Naberezhnov, A. A.
2016-11-01
This is a review of results from studies of the effect of artificially restricted geometry (the size effect) on the superconducting properties of nanoparticles of low-melting metals (Hg, Pb, Sn, In). Restricted geometrical conditions are created by embedding molten metals under high pressure into nanoporous matrices of two types: channel structures based on chrysotile asbestos and porous alkali-borosilicate glasses. Chrysotile asbestos is a system of parallel nanotubes with channel diameters ranging from 2 to 20 nm and an aspect ratio (channel length to diameter) of up to 107. The glasses are a random dendritic three-dimensional system of interconnected channels with a technologically controllable mean diameter of 2-30 nm. Temperature dependences of the resistance and heat capacity in the region of the superconducting transition and the dependences of the critical temperature on the mean pore diameter are obtained. The critical magnetic fields are also determined.
Zampighi, Guido A.; Zampighi, Lorenzo; Lanzavecchia, Salvatore
2011-01-01
Lens transparency depends on the accumulation of massive quantities (600–800 mg/ml) of twelve primary crystallines and two truncated crystallines in highly elongated “fiber” cells. Despite numerous studies, major unanswered questions are how this heterogeneous group of proteins becomes organized to bestow the lens with its unique optical properties and how it changes during cataract formation. Using novel methods based on conical tomography and labeling with antibody/gold conjugates, we have profiled the 3D-distribution of the αA-crystalline in rat lenses at ∼2 nm resolutions and three-dimensions. Analysis of tomograms calculated from lenses labeled with anti-αA-crystalline and gold particles (∼3 nm and ∼7 nm diameter) revealed geometric patterns shaped as lines, isosceles triangles and polyhedrons. A Gaussian distribution centered at ∼7.5 nm fitted the distances between the ∼3 nm diameter gold conjugates. A Gaussian distribution centered at ∼14 nm fitted the Euclidian distances between the smaller and the larger gold particles and another Gaussian at 21–24 nm the distances between the larger particles. Independent of their diameters, tethers of 14–17 nm in length connected files of gold particles to thin filaments or clusters to ∼15 nm diameter “beads.” We used the information gathered from tomograms of labeled lenses to determine the distribution of the αA-crystalline in unlabeled lenses. We found that αA-crystalline monomers spaced ∼7 nm or αA-crystalline dimers spaced ∼15 nm center-to-center apart decorated thin filaments of the lens cytoskeleton. It thus seems likely that lost or gain of long-range order determines the 3D-structure of the fiber cell and possible also cataract formation. PMID:21909355
A simple gold-coated microstructure fiber polarization filter in two communication windows
NASA Astrophysics Data System (ADS)
Feng, Xinxing; Li, Shuguang; Du, Huijing; Zhang, Yinan; Liu, Qiang
2018-03-01
A polarization filter is designed at two communication windows of 1310 and 1550 nm based on microstructured optical fiber. The model has four large diameter air holes and two gold-coated air holes. The influence of the geometrical parameters of the photonic crystal fiber on the performance of the polarization filter is analyzed by the finite element method. The numerical simulation shows that when the fiber length is 300 μm, the corresponding extinction ratio is 209.7 dB and 179.8 dB, the bandwidth of extinction ratio (ER) better than 20 dB is 150 nm and 350 nm at the communication wavelength of 1310 nm and 1550 nm.
Properties of Smoke from Overheated Materials in Low-Gravity
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Sheredy, William; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-Guang
2009-01-01
Smoke particle size measurements were obtained under low-gravity conditions by overheating several materials typical of those found in spacecraft. The measurements included integral measurements of the smoke particles and physical sample of the particles for Transmission Electron Microscope analysis. The integral moments were combined to obtain geometric mean particle sizes and geometric standard deviations. These results are presented with the details of the instrument calibrations. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter.
NASA Astrophysics Data System (ADS)
Hornburg, Kathryn J.; Kim, Jihwan; Escuti, Michael J.
2017-02-01
We report on the properties of a fast F/1.5 geometric-phase lens with a focal length of 37 mm at 633 nm and a 24.5 mm diameter. This lens employs photo-aligned liquid crystal layers to implement the spatially varying Pancharatnam-Berry phase, leading to the expected polarization- and wavelength-dependent focusing. An achromatic spectrum is achieved using (chiral nematic) multi-twist retarder coatings, with high first-order (>=98%) and low zero-order (<=1%) transmittance across 450-700 nm. We measure traditional optical metrics of the GP lens including focused spot profile and modulation transfer function through knife edge testing and NBS 1963a resolution charts. This work includes a comparison to similar F/# conventional thick and thin lenses.
Effect of field deposition and pore size on Co/Cu barcode nanowires by electrodeposition
NASA Astrophysics Data System (ADS)
Cho, Ji Ung; Wu, Jun-Hua; Min, Ji Hyun; Lee, Ju Hun; Liu, Hong-Ling; Kim, Young Keun
2007-03-01
We have studied the effect of an external magnetic field applied during electrodeposition of Co/Cu barcode nanowires in anodic aluminum oxide nanotemplates. The magnetic properties of the barcode nanowires were greatly enhanced for 50 nm pore diameter regardless of segment aspect ratio, but field deposition has little effect on the 200 nm nanowires. The magnetic improvement is correlated with a structural change, attributed to field modification of the growth habit of the barcode nanowires. A mechanism of growth subject to geometric confinement is proposed.
New generation photoelectric converter structure optimization using nano-structured materials
NASA Astrophysics Data System (ADS)
Dronov, A.; Gavrilin, I.; Zheleznyakova, A.
2014-12-01
In present work the influence of anodizing process parameters on PAOT geometric parameters for optimizing and increasing ETA-cell efficiency was studied. During the calculations optimal geometrical parameters were obtained. Parameters such as anodizing current density, electrolyte composition and temperature, as well as the anodic oxidation process time were selected for this investigation. Using the optimized TiO2 photoelectrode layer with 3,6 μm porous layer thickness and pore diameter more than 80 nm the ETA-cell efficiency has been increased by 3 times comparing to not nanostructured TiO2 photoelectrode.
[Quantitative study of diesel/CNG buses exhaust particulate size distribution in a road tunnel].
Zhu, Chun; Zhang, Xu
2010-10-01
Vehicle emission is one of main sources of fine/ultra-fine particles in many cities. This study firstly presents daily mean particle size distributions of mixed diesel/CNG buses traffic flow by 4 days consecutive real world measurement in an Australia road tunnel. Emission factors (EFs) of particle size distribution of diesel buses and CNG buses are obtained by MLR methods, particle distributions of diesel buses and CNG buses are observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow are decomposed by two log-normal fitting curves for each 30 min interval mean scans, the degrees of fitting between combined fitting curves and corresponding in-situ scans for totally 90 fitting scans are from 0.972 to 0.998. Finally particle size distributions of diesel buses and CNG buses are quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters are 74.5-86.5 nm, geometric standard deviations are 1.88-2.05. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters are 19.9-22.9 nm, geometric standard deviations are 1.27-1.3.
Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H
2011-04-01
An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.
Tapping-mode AFM study of tip-induced polymer deformation under geometrical confinement.
Zhang, Hong; Honda, Yukio; Takeoka, Shinji
2013-02-05
The morphological stability of polymer films is critically important to their application as functional materials. The deformation of polymer surfaces on the nanoscale may be significantly influenced by geometrical confinement. Herein, we constructed a mechanically heterogeneous polymer surface by phase separation in a thin polymer film and investigated the deformation behavior of its nanostructure (∼30 nm thickness and ∼100 nm average diameter) with tapping-mode atomic force microscopy. By changing different scan parameters, we could induce deformation localized to the nanostructure in a controllable manner. A quantity called the deformation index is defined and shown to be correlated to energy dissipation by tip-sample interaction. We clarified that the plastic deformation of a polymer on the nanoscale is energy-dependent and is related to the glass-to-rubber transition. The mobility of polymer chains beneath the tapping tip is enhanced, and in the corresponding region a rubberlike deformation with the lateral motion of the tip is performed. The method we developed can provide insight into the geometrical confinement effects on polymer behavior.
Particle Morphology and Size Results from the Smoke Aerosol Measurement Experiment-2
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Greenberg, Paul S.; Fischer, David; Meyer, Marit; Mulholland, George; Yuan, Zeng-Guang; Bryg, Victoria; Cleary, Thomas; Yang, Jiann
2012-01-01
Results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME-2) which was conducted during Expedition 24 (July-September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The smoke was initially collected in an aging chamber to simulate the transport time from the smoke source to the detector. This effective transport time was varied by holding the smoke in the aging chamber for times ranging from 11 to 1800 s. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis. The TEM grids were analyzed to observe the particle morphology and size parameters. The diagnostics included a prototype two-moment smoke detector and three different measures of moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and, by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations can also be calculated. Overall the majority of the average smoke particle sizes were found to be in the 200 nm to 400 nm range with the quiescent cases producing some cases with substantially larger particles.
NASA Astrophysics Data System (ADS)
Coquelin, L.; Le Brusquet, L.; Fischer, N.; Gensdarmes, F.; Motzkus, C.; Mace, T.; Fleury, G.
2018-05-01
A scanning mobility particle sizer (SMPS) is a high resolution nanoparticle sizing system that is widely used as the standard method to measure airborne particle size distributions (PSD) in the size range 1 nm–1 μm. This paper addresses the problem to assess the uncertainty associated with PSD when a differential mobility analyzer (DMA) operates under scanning mode. The sources of uncertainty are described and then modeled either through experiments or knowledge extracted from the literature. Special care is brought to model the physics and to account for competing theories. Indeed, it appears that the modeling errors resulting from approximations of the physics can largely affect the final estimate of this indirect measurement, especially for quantities that are not measured during day-to-day experiments. The Monte Carlo method is used to compute the uncertainty associated with PSD. The method is tested against real data sets that are monosize polystyrene latex spheres (PSL) with nominal diameters of 100 nm, 200 nm and 450 nm. The median diameters and associated standard uncertainty of the aerosol particles are estimated as 101.22 nm ± 0.18 nm, 204.39 nm ± 1.71 nm and 443.87 nm ± 1.52 nm with the new approach. Other statistical parameters, such as the mean diameter, the mode and the geometric mean and associated standard uncertainty, are also computed. These results are then compared with the results obtained by SMPS embedded software.
Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays
NASA Astrophysics Data System (ADS)
Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.
2013-03-01
Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.
NASA Astrophysics Data System (ADS)
Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.
2015-07-01
We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.
Functionalizing large nanoparticles for small gaps in dimer nanoantennas
NASA Astrophysics Data System (ADS)
Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P.; Tinnefeld, Philip
2016-04-01
The process of functionalizing gold nanoparticles with DNA commonly competes with nanoparticle aggregation, especially for larger particles of more than 80 nm diameter. Longer DNA strands reduce the tendency for aggregation but commonly lead to larger gaps when applied in certain geometrical arrangements such as gap nanoantennas. Here, we demonstrate that reversing the polarization of one of the strands for hybridization (yielding a zipper-like geometry) is sterically possible with uncompromised yields. Using the single dye molecule’s fluorescence lifetime as an indicator of the proximity of the nanoparticle in combination with electrodynamic simulations, we determine the distance between the nanoparticle and the dye placed in a DNA origami pillar. Importantly, compared to the common shear geometry smaller distances between the connected structures are obtained which are independent of the length of the DNA connector. Using the zipper geometry, we then arranged nanoparticles of 100 and 150 nm diameter on DNA origami and formed gap nanoantennas. We find that the previously reported trend of increased fluorescence enhancement of ATTO647N with increasing particle size for 20-100 nm nanoparticles is stopped. Gap nanoantennas built with 150 nm nanoparticles exhibit smaller enhancement than those with 100 nm nanoparticles. These results are discussed with the aid of electrodynamic simulations.
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.
Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin
2012-08-13
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustonen, K.; Laiho, P.; Kaskela, A.
We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directlymore » determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.« less
United role of radon decay products and nano-aerosols in radon dosimetry
NASA Astrophysics Data System (ADS)
Smerajec, M.; Vaupotič, J.
2012-04-01
The major part of human exposure to natural radiation originates from inhalation of radon (Rn) and radon short-lived decay products (RnDP: 218Po, 214Pb, 214Bi and 214Po). RnDP are formed as a result of α-transformation of radon. In the beginning they are positive ions which neutralize and form clusters with air molecules, and later partly attach to background aerosol particles in indoor air. Eventually, they appear as radioactive nano-aerosols with a bimodal size distribution in ranges of 1-10 nm (unattached RnDP) and of 200-800 nm (attached RnDP). When inhaled, they are deposited in the respiratory tract. Deposition is more efficient for smaller particles. Therefore, the fraction (fun) of the unattached RnDP, which appears to be influenced by the number concentration and size distribution of general (background) aerosols in the ambient air, has a crucial role in radon dosimetry. Radon, radon decay products and general aerosols have been monitored simultaneously in the kitchen of a typical rural house under real living conditions, also comprising four human activities generating particular matter: cooking and baking, as two typical activities in kitchen, and cigarette smoking and candle burning. In periods without any human activity, the total number concentration of general aerosol ranged from 1000 to 3000 cm-3,with the geometric mean of particle diameter in the range of 60-68 nm and with 0.1-1 % of particles smaller than 10 nm. Preparation of coffee changed the concentration to 193,000 cm-3, the geometric mean of diameter to 20 nm and fraction of particles smaller than 10 nm to 11 %. The respective changes were for baking cake: 503,000 cm-3, 17 nm and 19 %, for smoking:423,000 cm-3, 83 nm and 0.4 %, and forcandle burning: 945,000 cm-3, 8 nm and 85 %. While, as expected, a reduction of fun was observed during cooking, baking and smoking, when larger particles were emitted, fun did not increase during candle burning with mostly particles smaller than 10 nm produced. Because the processes of RnDP creation by radioactive transformation, their neutralization, clustering and association with aerosol particles need time, the response of fun on the changes in general aerosol is delayed in time and therefore fun response on the fast changes, such as those caused by short human activities, may be obscured and even not observed.
Design and construction of an Offner spectrometer based on geometrical analysis of ring fields.
Kim, Seo Hyun; Kong, Hong Jin; Lee, Jong Ung; Lee, Jun Ho; Lee, Jai Hoon
2014-08-01
A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900-1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang
Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental resultsmore » with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.« less
KaDonna Randolph
2010-01-01
The use of the geometric and arithmetic means for estimating tree crown diameter and crown cross-sectional area were examined for trees with crown width measurements taken at the widest point of the crown and perpendicular to the widest point of the crown. The average difference between the geometric and arithmetic mean crown diameters was less than 0.2 ft in absolute...
Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance.
Messina, Grazia M L; Bocchinfuso, Gianfranco; Giamblanco, Nicoletta; Mazzuca, Claudia; Palleschi, Antonio; Marletta, Giovanni
2018-04-26
Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins.
Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.
2016-01-01
We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056
Characterization of cells and bacteria by photophoretic velocimetry
NASA Astrophysics Data System (ADS)
Helmbrecht, Clemens; Niessner, Reinhard; Haisch, Christoph
2008-02-01
The migration induced by intensive light is termed photophoresis. We could show that the evaluation of light-induced velocities of microparticles, bacteria and cells suspended in water is valuable for the prediction of their intrinsic properties. Two different laser setups were evaluated for photophoretic migration, a He-Ne laser (P = 45 mW, λ = 633 nm) and a diode-pumped cw-Nd:YAG (P = 1.1 W, λ = 532 nm). When analyzing the migration behavior of particles, we find significant differences depending on both, geometrical size and refractive index. We describe migration of PS particles of different size as well as with different refractive index but same diameter, SiO II and melamine resin. The potential for the separation of biological matter is shown as velocity distributions of heat killed bacteria of Escherichia coli, Salmonella enteritidis, and baker's yeast is reported.
Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications
Perez-Taborda, Jaime Andres; Muñoz Rojo, Miguel; Maiz, Jon; Neophytou, Neophytos; Martin-Gonzalez, Marisol
2016-01-01
In this work, we measure the thermal and thermoelectric properties of large-area Si0.8Ge0.2 nano-meshed films fabricated by DC sputtering of Si0.8Ge0.2 on highly ordered porous alumina matrices. The Si0.8Ge0.2 film replicated the porous alumina structure resulting in nano-meshed films. Very good control of the nanomesh geometrical features (pore diameter, pitch, neck) was achieved through the alumina template, with pore diameters ranging from 294 ± 5nm down to 31 ± 4 nm. The method we developed is able to provide large areas of nano-meshes in a simple and reproducible way, being easily scalable for industrial applications. Most importantly, the thermal conductivity of the films was reduced as the diameter of the porous became smaller to values that varied from κ = 1.54 ± 0.27 W K−1m−1, down to the ultra-low κ = 0.55 ± 0.10 W K−1m−1 value. The latter is well below the amorphous limit, while the Seebeck coefficient and electrical conductivity of the material were retained. These properties, together with our large area fabrication approach, can provide an important route towards achieving high conversion efficiency, large area, and high scalable thermoelectric materials. PMID:27650202
Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.
Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai
2017-05-25
We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.
Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
Williams, S P; Langmore, J P
1991-01-01
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522
Study of poly(N,N-dimethylacrylamide)/CdS nanocomposite organic/inorganic gels.
Bekiari, Vlasoula; Pagonis, Konstantinos; Bokias, Georgios; Lianos, Panagiotis
2004-09-14
CdS nanoparticles have been synthesized and stabilized in poly(N,N-dimethylacrylamide) hydrogels. The properties of the composite material have been characterized by UV-vis spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and steady-state and time-resolved luminescence spectroscopy. This material can be obtained in three different states: swollen, shrunk, and freeze-dried. The swollen and the freeze-dried states correspond to a nanocomposite organic/inorganic (wet or dry) gel containing CdS nanoparticles of approximately 50 nm diameter while the shrunk state is a two-phase system containing CdS crystals, which precipitate forming interesting geometrical shapes.
NASA Astrophysics Data System (ADS)
Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.
2004-09-01
Size distributions (d > 15 nm) and volatile properties of combustion particles were measured during test-rig experiments on a jet engine, consisting of a combustor and three simulated turbine stages (HES). The combustor was operated to simulate legacy (inlet temperature 300°C) and contemporary (500°C) cruise conditions, using kerosene with three different fuel sulfur contents (FSC; 50, 400 and 1300 μg g-1). Measurements found that contemporary cruise conditions resulted in lower number emission indices (EIN15) and higher geometric mean particle diameter (dG) than for legacy conditions. Increasing FSC resulted in an overall increase in EIN15 and decrease in dG. The HES stages or fuel additive (APA101) had little influence on EIN15 or dG, however, this is uncertain due to the measurement variability. EIN15 for non-volatile particles was largely independent of all examined conditions.
Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire
NASA Astrophysics Data System (ADS)
Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard
2016-10-01
The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.
Kim, Jung Hyeun; Mulholland, George W.; Kukuck, Scott R.; Pui, David Y. H.
2005-01-01
The slip correction factor has been investigated at reduced pressures and high Knudsen number using polystyrene latex (PSL) particles. Nano-differential mobility analyzers (NDMA) were used in determining the slip correction factor by measuring the electrical mobility of 100.7 nm, 269 nm, and 19.90 nm particles as a function of pressure. The aerosol was generated via electrospray to avoid multiplets for the 19.90 nm particles and to reduce the contaminant residue on the particle surface. System pressure was varied down to 8.27 kPa, enabling slip correction measurements for Knudsen numbers as large as 83. A condensation particle counter was modified for low pressure application. The slip correction factor obtained for the three particle sizes is fitted well by the equation: C = 1 + Kn (α + β exp(−γ/Kn)), with α = 1.165, β = 0.483, and γ = 0.997. The first quantitative uncertainty analysis for slip correction measurements was carried out. The expanded relative uncertainty (95 % confidence interval) in measuring slip correction factor was about 2 % for the 100.7 nm SRM particles, about 3 % for the 19.90 nm PSL particles, and about 2.5 % for the 269 nm SRM particles. The major sources of uncertainty are the diameter of particles, the geometric constant associated with NDMA, and the voltage. PMID:27308102
Quantum-interference transport through surface layers of indium-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong
2013-06-01
We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (
Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong
2013-06-21
We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a 'core-shell-like structure' in individual IZO NWs, where an outer shell of thickness t (~15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (
APEX calibration facility: status and first commissioning results
NASA Astrophysics Data System (ADS)
Suhr, Birgit; Fries, Jochen; Gege, Peter; Schwarzer, Horst
2006-09-01
The paper presents the current status of the operational calibration facility that can be used for radiometric, spectral and geometric on-ground characterisation and calibration of imaging spectrometers. The European Space Agency (ESA) co-funded this establishment at DLR Oberpfaffenhofen within the framework of the hyper-spectral imaging spectrometer Airborne Prism Experiment (APEX). It was designed to fulfil the requirements for calibration of APEX, but can also be used for other imaging spectrometers. A description of the hardware set-up of the optical bench will be given. Signals from two sides can alternatively be sent to the hyper-spectral sensor under investigation. Frome one side the spatial calibration will be done by using an off-axis collimator and six slits of different width and orientation to measure the line spread function (LSF) in flight direction as well as across flight direction. From the other side the spectral calibration will be performed. A monochromator provides radiation in a range from 380 nm to 13 μm with a bandwidth between 0.1 nm in the visible and 5 nm in the thermal infrared. For the relative radiometric calibration a large integrating sphere of 1.65 m diameter and exit port size of 55 cm × 40 cm is used. The absolute radiometric calibration will be done using a small integrating sphere with 50 cm diameter that is regularly calibrated according to national standards. This paper describes the hardware components and their accuracy, and it presents the software interface for automation of the measurements.
NASA Astrophysics Data System (ADS)
Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori
2017-06-01
Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.
NASA Astrophysics Data System (ADS)
Qin, Wanwan; Yang, Jianjun
2017-07-01
We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.
Maleckis, Kaspars; Deegan, Paul; Poulson, William; Sievers, Cole; Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey
2017-11-01
High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2μNm/° and 959.2μNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M-D.
2000-08-23
Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results ofmore » the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10%) compared with the tail regions. This result shows that the ejector device could have a higher bin-to-bin counting uncertainty for ''soft'' particles such as DOP than for a solid dry particle like NaCl. The results suggest that it may be difficult to precisely characterize the size distribution of particles ejected from the mini-dilution system if the particle is not solid.« less
Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.
Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong
2010-10-01
We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.
Anyfantakis, Manos; Varanakkottu, Subramanyan Namboodiri; Rudiuk, Sergii; Morel, Mathieu; Baigl, Damien
2017-10-25
We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.
NASA Astrophysics Data System (ADS)
Jaeger, Valentin E.
1989-04-01
The geometrical accuracy and surface roughness of diamond-turned workpieces is influenced by several parameters: the properties of the machine tool, the cutting process and the environmental conditions. A thin-walled electrode made from an aluminium alloy (wall thickness: 1 mm, length: 169 mm, outer diameter: 126 mm) and intended for an electrostatic measuring instrument, serves as an example to show how quasi-optical surfaces with a surface roughness Rα < 10 nm and deviations from roundness of <= 5 μm can be achieved when some of these influence quantities are optimized. The cylindrical part of the electrode was turned by means of a rounded mirror-finish diamond tool, the width of the cutting edge being 2 mm, the rake angle -6° and the clearance angle 2°. Compliance with the tolerances of geometrical accuracy was particularly difficult. As age-hardened wrought aluminium alloys cannot be stress-relieved by annealing, or only insufficiently, the geometrical accuracy - in particular the roundness - of thin-walled, rotationally symmetric bodies decisively depends on the state of stress of the workpiece material, on the clamping fixture and on the balanced condition of this clamping fixture.
Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei
2011-08-01
A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.
The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals
NASA Astrophysics Data System (ADS)
Ali Safaei
2010-03-01
The size dependency of the cohesive energy of nanocrystals is obtained in terms of their averaged structural and energetic properties, which are in direct proportion with their cohesive energies. The significance of the effect of the geometrical shape of nanoparticles on their thermal stability has been discussed. The model has been found to have good prediction for the case of Cu and Al nanoparticles, with sizes in the ranges of 1-22 nm and 2-22 nm, respectively. Defining a new parameter, named as the surface-to-volume energy-contribution ratio, the relative thermal stabilities of different nanoclusters and their different surface-crystalline faces are discussed and compared to the molecular dynamic (MD) simulation results of copper nanoclusters. Finally, based on the size dependency of the cohesive energy, a formula for the size-dependent diffusion coefficient has been presented which includes the structural and energetic effects. Using this formula, the faster-than-expected interdiffusion/alloying of Au(core)-Ag(shell) nanoparticles with the core-shell structure, the Au-core diameter of 20 nm and the Ag-shell thickness of 2.91 nm, has been discussed and the calculated diffusion coefficient has been found to be consistent with its corresponding experimental value.
NASA Astrophysics Data System (ADS)
Seely, J. F.; McMullin, D. R.; Vest, R.; Sakdinawat, A.; Chang, C.; Jones, A. R.; Bremer, J.
2015-12-01
A zone plate was designed to record the He II 30.4 nm solar irradiance, was fabricated using electron beam lithography, and was absolutely calibrated using the NIST SURF synchrotron. The zone plate has an open support grid identical to those used to successfully launch transmission gratings in previous solar radiometers and is otherwise free-standing with no support membrane that would absorb EUV radiation. The measured efficiency of 3.0 ± 0.1% at 30.4 nm is consistent with detailed modeling of the efficiency and accounting for the geometrical transmittance of the support grid. The binary nature of the zone plate, consisting of opaque gold bars and open spaces with no support membrane, results in excellent long-term stability in space against contamination, radiation damage, and other effects that could alter the efficiency and instrument throughput. The zone plate's focusing property enables the rejection of out-of-band radiation by small apertures and high signal to background values that are superior to previous radiometers. The 4 mm outer diameter of the zone plate and the 25 mm focal length for 30.4 nm radiation enable a compact instrument that is attractive for small CubeSats and other space flight missions where resources are extremely limited.
Overview of a prescribed burning experiment within a boreal forest in Finland
NASA Astrophysics Data System (ADS)
Virkkula, A.; Levula, J.; Pohja, T.; Aalto, P. P.; Keronen, P.; Schobesberger, S.; Clements, C. B.; Pirjola, L.; Kieloaho, A.-J.; Kulmala, L.; Aaltonen, H.; Patokoski, J.; Pumpanen, J.; Rinne, J.; Ruuskanen, T.; Pihlatie, M.; Manninen, H. E.; Aaltonen, V.; Junninen, H.; Petäjä, T.; Backman, J.; Dal Maso, M.; Nieminen, T.; Olsson, T.; Grönholm, T.; Kerminen, V.-M.; Schultz, D. M.; Kukkonen, J.; Sofiev, M.; de Leeuw, G.; Bäck, J.; Hari, P.; Kulmala, M.
2013-08-01
A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha-1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000-3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s-1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1-2 × 106 cm-3 in the plume at a distance of 100-200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker) were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land) measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC flux was observed after the burning. After one year, the fluxes were nearly stabilised close to the level before the burning. The clearcutting and burning of slash increased the total long-term CO2 release from the soil, altered the soil's physical, chemical and biological properties such as increased the available nitrogen contents of the soil, which in turn, affected the level of the long-term fluxes of greenhouse gases.
2016-07-02
beams Superresolution machining Threshold effect of ablation means that structure diameter is less than the beam diameter fs pulses at 800 nm yield 200...Approved for public release: distribution unlimited. Applications of Bessel beams Superresolution machining Threshold effect of ablation means that... Superresolution machining Threshold effect of ablation means that structure diameter is less than the beam diameter fs pulses at 800 nm yield 200 nm
NASA Astrophysics Data System (ADS)
Zhao, ZhongQuan; Fairchild, Paul W.
1998-05-01
For many skin treatments with light, it is important to have deep photon penetration into the skin. Because of absorption and scattering of photons by skin tissue, both the color and the diameter of the incident beam affect the penetration depth of photons. In this study, the dependence of light transmission through human skin tissues (ear lobs and between the fingers) has been measured in-vivo at six wavelengths (532 nm, 632 nm, 675 nm, 810 nm, 911 nm, and 1064 nm). The same measurement was also made on pig skin in-vitro for comparison. It was observed that (1) the photons at 1064 nm penetrate deeper than the other colors studied for a given incident beam diameter; and (2) the transmittance at a particular wavelength increases asymptotically with incident beam diameter. For some skin tissues, the transmittance flattens at about 8 mm for 532 nm photons and approaches saturation at about 12 mm for all other colors. The results on pig skin is similar.
Whole-body nanoparticle aerosol inhalation exposures.
Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R
2013-05-07
Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures.
Whole-Body Nanoparticle Aerosol Inhalation Exposures
Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.
2013-01-01
Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m3/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures. PMID:23685643
Pulse height response of an optical particle counter to monodisperse aerosols
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Grice, S. S.; Cuda, V.
1976-01-01
The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.
NASA Astrophysics Data System (ADS)
Carbone, S.; Ferreira De Brito, J.; Cirino, G. G.; Rizzo, L. V.; Holanda, B. A.; Barbosa, H. M.; Ditas, F.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Moran, D.; Saturno, J.; Andreae, M. O.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Souza, R. A. F. D.; Wang, J.; Palm, B. B.; Jimenez, J. L.; Artaxo, P.
2015-12-01
The Amazon Basin during the wet season has one of the lowest aerosol concentrations worldwide, with air masses with negligible human impact covering thousands of kilometers of pristine forest. The natural environment is strongly modified near urbanized areas, in particular Manaus, a city of nearly two million people. This unique location provides the ideal laboratory to study isolated urban emissions as well the pristine environment by perturbing it in a relatively known fashion. The GoAmazon2014/5 experiment was designed with these questions in mind, combining remote sensing, in situ, and airborne measurements. This manuscript describes the measurements taken at the T0 site, upwind of Manaus, (the Amazonian Tall Tower Observatory, ATTO site), at the T2 site, near Manaus, frequently impacted by relatively fresh emissions from the city and at T3, 60 km downwind of Manaus. This work relates the aerosol dynamics of the mixture of anthropogenic emissions from Manaus and the biogenic air masses, and how it evolves from T2 to T3 under different atmospheric conditions. Focus is on the aerosol size distribution, supported by aerosol mass spectrometry and gas-phase composition, in particular at the T2 site. At T0, the aerosol number concentration has been observed to increase from an average of 380 cm-3 to 1750 cm-3 from the wet to the dry season. The mean geometric diameter increased as well, from 95 nm to 145 nm. Interestingly, at the T2 site no significant difference was observed in number concentration between wet and dry seasons (approximately 4300 cm-3) with an average diameter of 60 nm during the former and 97 nm in the latter. Such measurements provide a unique dataset to understand the aerosol life cycle and the impact of urban emissions in the heart of the Amazon Forest.
Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H
2016-01-13
Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.
Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters
NASA Astrophysics Data System (ADS)
Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.
2018-03-01
Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.
Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon; Kim, Sung Min
2014-07-01
The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser.
Gizzatov, Ayrat; Stigliano, Cinzia; Ananta, Jeyerama S.; Sethi, Richa; Xu, Rong; Guven, Adem; Ramirez, Maricela; Shen, Haifa; Sood, Anil; Ferrari, Mauro; Wilson, Lon J.; Liu, Xuewu; Decuzzi, Paolo
2015-01-01
Porous silicon has been used for the delivery of therapeutic and imaging agents in several biomedical applications. Here, mesoporous silicon nanoconstructs (SiMPs) with a discoidal shape and a sub-micrometer size (1,000 × 400 nm) have been conjugated with gadolinium-tetraazacyclododecane tetraacetic acid Gd(DOTA) molecules and proposed as contrast agents for Magnetic Resonance Imaging. The surface of the SiMPs with different porosities – small pore (SP: ~ 5 nm) and huge pore (HP: ~ 40 nm) – and of bulk, non-porous silica beads (1,000 nm in diameter) have been modified with covalently attached (3-aminopropyl)triethoxysilane (APTES) groups, conjugated with DOTA molecules, and reacted with an aqueous solution of GdCl3. The resulting Gd(DOTA) molecules confined within the small pores of the Gd-SiMPs achieve longitudinal relaxivities r1 of ~ 17 (mM·s)−1, which is 4 times greater than for free Gd(DOTA). This enhancement is ascribed to the confinement and stable chelation of Gd(DOTA) molecules within the SiMP mesoporous matrix. The resulting nanoconstructs possess no cytotoxicity and accumulate in ovarian tumors up to 2% of the injected dose per gram tissue, upon tail vein injection. All together this data suggests that Gd-SiMPs could be efficiently used for MR vascular imaging in cancer and other diseases. PMID:24931336
Gizzatov, Ayrat; Stigliano, Cinzia; Ananta, Jeyerama S; Sethi, Richa; Xu, Rong; Guven, Adem; Ramirez, Maricela; Shen, Haifa; Sood, Anil; Ferrari, Mauro; Wilson, Lon J; Liu, Xuewu; Decuzzi, Paolo
2014-09-28
Porous silicon has been used for the delivery of therapeutic and imaging agents in several biomedical applications. Here, mesoporous silicon nanoconstructs (SiMPs) with a discoidal shape and a sub-micrometer size (1000×400nm) have been conjugated with gadolinium-tetraazacyclododecane tetraacetic acid Gd(DOTA) molecules and proposed as contrast agents for Magnetic Resonance Imaging. The surface of the SiMPs with different porosities - small pore (SP: ∼5nm) and huge pore (HP: ∼40nm) - and of bulk, non-porous silica beads (1000nm in diameter) have been modified with covalently attached (3-aminopropyl)triethoxysilane (APTES) groups, conjugated with DOTA molecules, and reacted with an aqueous solution of GdCl3. The resulting Gd(DOTA) molecules confined within the small pores of the Gd-SiMPs achieve longitudinal relaxivities r1 of ∼17 (mMs)(-)(1), which is 4 times greater than for free Gd(DOTA). This enhancement is ascribed to the confinement and stable chelation of Gd(DOTA) molecules within the SiMP mesoporous matrix. The resulting nanoconstructs possess no cytotoxicity and accumulate in ovarian tumors up to 2% of the injected dose per gram tissue, upon tail vein injection. All together this data suggests that Gd-SiMPs could be efficiently used for MR vascular imaging in cancer and other diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Controlled growth of well-aligned carbon nanotubes with large diameters
NASA Astrophysics Data System (ADS)
Wang, Xianbao; Liu, Yunqi; Zhu, Daoben
2001-06-01
Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.
NASA Astrophysics Data System (ADS)
Leh, Barbara; Siebert, Rainer; Hamzeh, Hussein; Menard, Laurent; Duval, Marie-Alix; Charon, Yves; Abi Haidar, Darine
2012-10-01
Growing interest in optical instruments for biomedical applications has increased the use of optically calibrated phantoms. Often associated with tissue modeling, phantoms allow the characterization of optical devices for clinical purposes. Fluorescent gel phantoms have been developed, mimicking optical properties of healthy and tumorous brain tissues. Specific geometries of dedicated molds offer multiple-layer phantoms with variable thicknesses and monolayer phantoms with cylindrical inclusions at various depths and diameters. Organic chromophores are added to allow fluorescence spectroscopy. These phantoms are designed to be used with 405 nm as the excitation wavelength. This wavelength is then adapted to excite large endogenous molecules. The benefits of these phantoms in understanding fluorescence tissue analysis are then demonstrated. In particular, detectability aspects as a function of geometrical and optical parameters are presented and discussed.
Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.
van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert
2016-02-08
We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.
Experimental far-field imaging properties of a ~5-μm diameter spherical lens.
Ye, Ran; Ye, Yong-Hong; Ma, Hui Feng; Ma, Jun; Wang, Bin; Yao, Jie; Liu, Shuai; Cao, Lingling; Xu, Huanhuan; Zhang, Jia-Yu
2013-06-01
Microscale lenses are mostly used as near-sighted lenses. The far-field imaging properties of a microscale spherical lens, where the lens is spatially separated from the object, are experimentally studied. Our experimental results show that, for a blu-ray disc (an object) whose spacing is 300 nm, the lens can magnify the stripe patterns of the disc when the lens is spatially separated from the object. In the experimentally tested range (0-14 μm), all the magnified images are virtual images. When the distance is increased from 0 to 14 μm the magnification decreases from 1.47× to 1.20× and the field of view increases from 3.8 to 12.2 μm. The image magnification cannot be described by standard geometrical optics.
Strobel, Sebastian; Hernández, Rocío Murcia; Hansen, Allan G; Tornow, Marc
2008-09-17
We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10(-18) farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.
Design and Study of the Observation Optics for the Thomson Scattering Planned at Wendelstein 7-X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantarini, J.; Knauer, J. P.; Pasch, E.
2008-03-19
The main aim of the Thomson scattering system is the measurement of electron temperature and density profiles with high time and spatial resolution. To cover the whole laser beam line (1.6 m) through the plasma cross section, two ports are provided for the observation optics, which image the scattering volumes (each with 28 mm length and 9 mm diameter) onto fiber bundles. The observation optics are important components of the diagnostic set-up, because their imaging properties determine the spectral and spatial resolution of the whole system. Therefore the design of the optics must be optimized according to the geometrical constrainsmore » of the observation ports in terms of position and dimensions. To optimize this optical engineering, the commercial ZEMAX program is used. The composition of the optical system is elaborated to minimize losses of collected light with wavelength from 700 nm up to 1064 nm. Environmental criteria (e.g. neutrons, ECR plasma heating and temperature) will be considered choosing optical materials. First results of calculations will be presented.« less
Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.
Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A
2011-07-01
We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.
Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Brullot, Ward; Bloemen, Maarten; Volodin, Alexander; Song, Kai; Van Dorpe, Pol; Verellen, Niels; Clays, Koen
2016-04-27
We report a new type of nanosphere colloidal lithography to directly fabricate monodisperse silica (SiO2) nanorings by means of reactive ion etching of hollow SiO2 spheres. Detailed TEM, SEM, and AFM structural analysis is complemented by a model describing the geometrical transition from hollow sphere to ring during the etching process. The resulting silica nanorings can be readily redispersed in solution and subsequently serve as universal templates for the synthesis of ring-shaped core-shell nanostructures. As an example we used silica nanorings (with diameter of ∼200 nm) to create a novel plasmonic nanoparticle topology, a silica-Au core-shell nanoring, by self-assembly of Au nanoparticles (<20 nm) on the ring's surface. Spectroscopic measurements and finite difference time domain simulations reveal high quality factor multipolar and antibonding surface plasmon resonances in the near-infrared. By loading different types of nanoparticles on the silica core, hybrid and multifunctional composite nanoring structures could be realized for applications such as MRI contrast enhancement, catalysis, drug delivery, plasmonic and magnetic hyperthermia, photoacoustic imaging, and biochemical sensing.
Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon
2014-01-01
Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan
Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less
Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; ...
2017-09-18
Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less
Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin.
Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A Satyanarayana; Atla, Shashi B; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng
2011-01-01
In this study the "green chemistry" use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16-200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8-14 nm in diameter and 80-100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50-200 nm in diameter), oval (~300 nm in diameter) and nanorod (200-400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.
Stable forming conditions and geometrical expansion of L-shape rings in ring rolling process
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Berti, Guido A.; Kim, Dongwook; Kim, Naksoo
2018-05-01
Based on previous research results concerning the radial-axial ring rolling process of flat rings, this paper details an innovative approach for the determination of the stable forming conditions to successfully simulate the radial ring rolling process of L-shape profiled rings. In addition to that, an analytical model for the estimation of the geometrical expansion of L-shape rings from its initial flat ring preform is proposed and validated by comparing its results with those of numerical simulations. By utilizing the proposed approach, steady forming conditions could be achieved, granting a uniform expansion of the ring throughout the process for all of the six tested cases of rings having the final outer diameter of the flange ranging from 545mm and 1440mm. The validation of the proposed approach allowed concluding that the geometrical expansion of the ring, as estimated by the proposed analytical model, is in good agreement with the results of the numerical simulation, with a maximum error of 2.18%, in the estimation of the ring wall diameter, 1.42% of the ring flange diameter and 1.87% for the estimation of the inner diameter of the ring, respectively.
Ahmed, Suzanne; Gentekos, Dillon T; Fink, Craig A; Mallouk, Thomas E
2014-11-25
Segmented gold-ruthenium nanorods (300 ± 30 nm in diameter and 2.0 ± 0.2 μm in length) with thin Ni segments at one end assemble into few-particle, geometrically regular dimers, trimers, and higher multimers while levitated in water by ∼4 MHz ultrasound at the midpoint of a cylindrical acoustic cell. The assembly of the nanorods into multimers is controlled by interactions between the ferromagnetic Ni segments. These assemblies are propelled autonomously in fluids by excitation with ∼4 MHz ultrasound and exhibit several distinct modes of motion. Multimer assembly and disassembly are dynamic in the ultrasonic field. The relative numbers of monomers, dimers, trimers, and higher multimers are dependent upon the number density of particles in the fluid and their speed, which is in turn determined by the ultrasonic power applied. The magnetic binding energy of the multimers estimated from their speed-dependent equilibria is in agreement with the calculated strength of the magnetic dipole interactions. These autonomously propelled multimers can also be steered with an external magnetic field and remain intact after removal from the acoustic chamber for SEM imaging.
Fabrication of 10nm diameter carbon nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann
2008-09-25
The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.
NASA Astrophysics Data System (ADS)
Virkkula, A.; Levula, J.; Pohja, T.; Aalto, P. P.; Keronen, P.; Schobesberger, S.; Clements, C. B.; Pirjola, L.; Kieloaho, A.-J.; Kulmala, L.; Aaltonen, H.; Patokoski, J.; Pumpanen, J.; Rinne, J.; Ruuskanen, T.; Pihlatie, M.; Manninen, H. E.; Aaltonen, V.; Junninen, H.; Petäjä, T.; Backman, J.; Dal Maso, M.; Nieminen, T.; Olsson, T.; Grönholm, T.; Aalto, J.; Virtanen, T. H.; Kajos, M.; Kerminen, V.-M.; Schultz, D. M.; Kukkonen, J.; Sofiev, M.; De Leeuw, G.; Bäck, J.; Hari, P.; Kulmala, M.
2014-05-01
A prescribed fire experiment was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from prescribed fires of slash fuels and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II measurement station (Station for Measuring Ecosystem-Atmosphere Relations) was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 tons (i.e., ~60 tons ha-1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and in the air from a research aircraft. In the middle of the burning area, CO2 concentration peaked around 2000-3000 ppm above the baseline, and peak vertical flow velocities were ~9 m s-1, as measured with a 10 Hz 3-D sonic anemometer placed within the burn area. In the mobile measurements the peak particle number concentrations were approximately 1-2 × 106 cm-3 in the plume at a distance of 100-200 m from the burn area. On the ground at the SMEAR II station the geometric mean diameter of the mode with the highest concentration was 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase, but, at the end of the smoldering phase, the largest mode was 122 nm. In the volume size distributions, geometric mean diameter of the largest volume mode was 153 nm during the flaming phase and 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurements was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. Elevated concentrations of several volatile organic compounds (VOC) (including acetonitrile, a biomass burning marker) were observed in the smoke plume at ground level. Measurements at the forest floor (i.e., a richly organic layer of soil and debris, characteristic of forested land) showed that VOC fluxes were generally low and consisted mainly of monoterpenes, and VOC flux peaked after the burning. After one year, the fluxes had nearly stabilized close to the level before the burning. The clear-cutting and burning of slash increased the total long-term CO2 release from the soil, and altered the physical, chemical and biological properties of the soil, such as increased the available nitrogen contents of the soil, which in turn, affected the long-term fluxes of greenhouse gases.
Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z.; Hong, J.; Zhang, J.
2013-12-15
The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results onmore » axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.« less
Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions
NASA Astrophysics Data System (ADS)
O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.
2016-05-01
The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.
Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing.
Yang, Z; Hong, J; Zhang, J; Wang, M Y; Zhu, Y
2013-12-01
The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.
Controlling diameter distribution of catalyst nanoparticles in arc discharge.
Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael
2011-11-01
It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.
Computer Model for Sizing Rapid Transit Tunnel Diameters
DOT National Transportation Integrated Search
1976-01-01
A computer program was developed to assist the determination of minimum tunnel diameters for electrified rapid transit systems. Inputs include vehicle shape, walkway location, clearances, and track geometrics. The program written in FORTRAN IV calcul...
NASA Astrophysics Data System (ADS)
Foucher, Johann; Filippov, Pavel; Penzkofer, Christian; Irmer, Bernd; Schmidt, Sebastian W.
2013-04-01
Atomic force microscopy (AFM) is increasingly used in the semiconductor industry as a versatile monitoring tool for highly critical lithography and etching process steps. Applications range from the inspection of the surface roughness of new materials, over accurate depth measurements to the determination of critical dimension structures. The aim to address the rapidly growing demands on measurement uncertainty and throughput more and more shifts the focus of attention to the AFM tip, which represents the crucial link between AFM tool and the sample to be monitored. Consequently, in order to reach the AFM tool's full potential, the performance of the AFM tip has to be considered as a determining parameter. Currently available AFM tips made from silicon are generally limited by their diameter, radius, and sharpness, considerably restricting the AFM measurement capabilities on sub-30nm spaces. In addition to that, there's lack of adequate characterization structures to accurately characterize sub-25nm tip diameters. Here, we present and discuss a recently introduced AFM tip design (T-shape like design) with precise tip diameters down to 15nm and tip radii down to 5nm fabricated from amorphous, high density diamond-like carbon (HDC/DLC) using electron beam induced processing (EBIP). In addition to that advanced design, we propose a new characterizer structure, which allows for accurate characterization and design control of sub-25nm tip diameters and sub-10nm tip edges radii. We demonstrate the potential advantages of combining a small tip shape design, i.e. tip diameter and tip edge radius, and an advanced tip characterizer for the semiconductor industry by the measurement of advanced lithography patterns.
Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method
NASA Astrophysics Data System (ADS)
Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.
2018-03-01
This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.
Studies of dished accelerator grids for 30-cm ion thrusters
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1973-01-01
Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.
Metasurface holograms reaching 80% efficiency.
Zheng, Guoxing; Mühlenbernd, Holger; Kenney, Mitchell; Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2015-04-01
Surfaces covered by ultrathin plasmonic structures--so-called metasurfaces--have recently been shown to be capable of completely controlling the phase of light, representing a new paradigm for the design of innovative optical elements such as ultrathin flat lenses, directional couplers for surface plasmon polaritons and wave plate vortex beam generation. Among the various types of metasurfaces, geometric metasurfaces, which consist of an array of plasmonic nanorods with spatially varying orientations, have shown superior phase control due to the geometric nature of their phase profile. Metasurfaces have recently been used to make computer-generated holograms, but the hologram efficiency remained too low at visible wavelengths for practical purposes. Here, we report the design and realization of a geometric metasurface hologram reaching diffraction efficiencies of 80% at 825 nm and a broad bandwidth between 630 nm and 1,050 nm. The 16-level-phase computer-generated hologram demonstrated here combines the advantages of a geometric metasurface for the superior control of the phase profile and of reflectarrays for achieving high polarization conversion efficiency. Specifically, the design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process. Because of these advantages, our strategy could be viable for various practical holographic applications.
Bandgap engineering of GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Bang-Ming; Yan, Hui; Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn
2016-05-15
Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, whilemore » it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.« less
NASA Astrophysics Data System (ADS)
Qu, Jing; Zhou, Dandan; Xu, Xiaojing; Zhang, Feng; He, Lihong; Ye, Rong; Zhu, Ziyu; Zuo, Baoqi; Zhang, Huanxiang
2012-11-01
Silk fibroin scaffolds are a naturally derived biocompatible matrix with the potential for reconstructive surgical applications. In this study, tussah silk fibroin (TSF) nanofiber with different diameters (400 nm, 800 nm and 1200 nm) and alignment (random and aligned) were prepared by electrospinning, then the growth and migration of mesenchymal stem cells (MSCs) on these materials were further evaluated. CD90 immunofluorescence staining showed that fiber alignment exhibited a strong influence on the morphology of MSCs, indicating that the alignment of the scaffolds could determine the distribution of cells. Moreover, smaller diameter and aligned TSF scaffolds are more favorable to the growth of MSCs as compared with 800 nm and 1200 nm random TSF scaffolds. In addition, the increased migration speed and efficiency of MSCs induced by three-D TSF were verified, highlighting the guiding roles of TSF to the migrated MSCs. More importantly, 400 nm aligned TSF scaffolds dramatically improved cell migratory speed and further induced the most efficient migration of MSCs as compared with larger diameter TSF scaffolds. In conclusion, the data demonstrate that smaller diameter and aligned electrospun TSF represent valuable scaffolds for supporting and promoting MSCs growth and migration, thus raising the possibility of manipulating TSF scaffolds to enhance homing and therapeutic potential of MSCs in cellular therapy.
Fiber-Based 589 nm Laser for Sodium Guide Star
2006-02-01
are combined in a 980/1060 nm WDM coupler and free-space launched through an isolator designed for 1060 nm into a 23 m long Yb doped fiber. This fiber...lenses. The final-stage amplifier comprised a 23 m long YDF with a core diameter of 8 lam and a D-shaped inner cladding of 400 jtm diameter. It was...resolution). (b) High resolution spectrum of the 1178 nm output beam at 534 m W output power, linewidth (FWHM) - 0. 6 nm (0.05 nm resolution). The
Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin
Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A. Satyanarayana; Atla, Shashi B.; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng
2011-01-01
In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8–14 nm in diameter and 80–100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter), oval (~300 nm in diameter) and nanorod (200–400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles. PMID:21747709
Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines
Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...
2007-01-01
A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.
2000-01-01
Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.
Generation of the Submicron Soft X-Ray Beam Using a Fresnel Zone Plate
NASA Astrophysics Data System (ADS)
Nishikino, M.; Kawazome, H.; Tanaka, M.; Kishimoto, M.; Hasegawa, N.; Ochi, Y.; Kawachi, T.; Sukegawa, K.; Yamatani, H.; Nagashima, K.; Kato, Y.
We have developed a fully coherent x-ray laser at 13.9 nm and the application research has been started. The generation of submicron x-ray beam is important for the application of high intensity x-ray beam, such as the non-linear optics, the material science, and the biology. The submicron x-ray bee am is generated by the soft x-ray laser with using a Fresnel zone plate. The spot diameter is estimated about 680 nm (290 nm at FWHM) by the theoretical calculation. In this experiment, the diameter of the x-ray beam is measured by the knife-edge scan. The diameter and the intensity are estimated 730 nm (310 nm at FWHM) and 3x1011 W/cm2, respectively.
NASA Astrophysics Data System (ADS)
Jang, Hae-Won; Kim, Yong-Hoe; Lee, Ki-Wook; Kim, Yoon-Mi; Kim, Jin-Yeol
2017-08-01
We synthesized ultra-thin Ag nanowire (Ag NWs) with sub-15 nm diameters and aspect ratios of 1000 through a water-based high-pressure hydrothermal method in the presence of a tetrabutylammonium dichlorobromide organic salt and glucose reducing agent. In the crystal growth stage, the diameter of the NWs could be controlled by adjusting the pressure, and 15-nm diameter wires were obtained at a pressure of 190 psi. These 2D conductive Ag NW network films showed an excellent optical performance with low haze value of ≤1.0% and 94.5% transmittance at a low sheet resistance of 20 Ω/sq.
NASA Astrophysics Data System (ADS)
Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki
2015-11-01
Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04465k
Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition
Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N.
2014-01-01
We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date. PMID:24448201
Ornelas, Mariana; Azenha, Manuel; Araújo, Maria João; Marques, Eduardo F; Dias-Cabral, A C; Pereira, Carlos; Silva, A Fernando
2016-03-11
A strategy based on water-in-oil emulsion for the dispersion of a sol-gel mixture into small droplets was employed with the view of the production of naproxen-imprinted micro- and nanospheres. The procedure, aiming at a surface imprinting process, comprised the synthesis of a naproxen-derived surfactant. The imprinting process occurred at the interface of the emulsions or microemulsions, by the migration of the NAP-surfactant head into the sol-gel drops to leave surficial imprints due mainly to ion-pair interaction with a cationic group contained within the growing sol-gel network. The surface-imprinted microspheric particles exhibited a log-normal size distribution with geometric mean diameter of 3.1μm. A mesoporous texture was found from measurements of the specific surface area (206m(2)/g) and pore diameter (Dp 2nm). Evaluation of the microspheres as packed HPLC stationary phases resulted in the determination of the selectivity factor against ibuprofen (α=2.1), demonstrating the successful imprinting. Chromatographic efficiency, evaluated by the number of theoretical plates (222platescm(-3)), emerged as an outstanding feature among the set of all relatable formats produced before, an advantage intrinsic to the location of the imprinted sites on the surface. The material presented a capacity of 3.2μmolg(-1). Additionally, exploratory work conducted on their nanoscale counterparts resulted in the production of nanospheres in the size order of 10nm providing good indications of a successful imprinting process. Copyright © 2016 Elsevier B.V. All rights reserved.
Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction.
Fagan, Jeffrey A; Hároz, Erik H; Ihly, Rachelle; Gui, Hui; Blackburn, Jeffrey L; Simpson, Jeffrey R; Lam, Stephanie; Hight Walker, Angela R; Doorn, Stephen K; Zheng, Ming
2015-05-26
In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.
NASA Astrophysics Data System (ADS)
Wilson, J. C.; Saad, M. S.; Axisa, D.
2017-12-01
Aerosol size distributions were measured in the 4 nm to 1000 nm diameter range from the NASA WB-57 aircraft based in Costa Rica from 2004 through 2007. The measurements were made with the Nuclei Mode Aerosol Size Spectrometer (NMASS) and the Focused Cavity Aerosol Spectrometer (FCAS). The NMASS consists of 5 condensation particle counters (CPCs) each operated with a different supersaturation of the working fluid (FC-43). Therefore each CPC has a different lower size cut off. The size cutoffs are near 4nm 8nm, 16 nm, 32nm and 50nm in diameter. The FCAS is an optical particle counter that detects and sizes particles in the 100 to 1000 nm diameter range. By considering counting statistics, it is possible to identify those time intervals during which the counts in the 4 nm channel exceeded the counts in the 8 nm channel. Thus it is possible to clearly identify when there are particles in the 4 to 8 nm diameter range present in the size distribution. These particles have a short lifetime due to coagulation and their presence is taken to be evidence of recent new particle formation (NPF). The measurements made in January-February are contrasted with measurements made in June and August and differences are seen in the frequency with which NPF occurred. We examine the roles of air mass origin as determined by back trajectories, pre-existing aerosol surface area, atmospheric motions and trace gas concentrations in contributing to this difference.
A thermal desorption mass spectrometer for freshly nucleated secondary aerosol particles
NASA Astrophysics Data System (ADS)
Held, A.; Gonser, S. G.
2012-04-01
Secondary aerosol formation in the atmosphere is observed in a large variety of locations worldwide, introducing new particles to the atmosphere which can grow to sizes relevant for health and climate effects of aerosols. The chemical reactions leading to atmospheric secondary aerosol formation are not yet fully understood. At the same time, analyzing the chemical composition of freshly nucleated particles is still a challenging task. We are currently finishing the development of a field portable aerosol mass spectrometer for nucleation particles with diameters smaller than 30 nm. This instrument consists of a custom-built aerosol sizing and collection unit coupled to a time-of-flight mass spectrometer (TOF-MS). The aerosol sizing and collection unit is composed of three major parts: (1) a unipolar corona aerosol charger, (2) a radial differential mobility analyzer (rDMA) for aerosol size separation, and (3) an electrostatic precipitator for aerosol collection. After collection, the aerosol sample is thermally desorbed, and the resulting gas sample is transferred to the TOF-MS for chemical analysis. The unipolar charger is based on corona discharge from carbon fibres (e.g. Han et al., 2008). This design allows efficient charging at voltages below 2 kV, thus eliminating the potential for ozone production which would interfere with the collected aerosol. With the current configuration the extrinsic charging efficiency for 20 nm particles is 32 %. The compact radial DMA similar to the design of Zhang et al. (1995) is optimized for a diameter range from 1 nm to 100 nm. Preliminary tests show that monodisperse aerosol samples (geometric standard deviation of 1.09) at 10 nm, 20 nm, and 30 nm can easily be separated from the ambient polydisperse aerosol population. Finally, the size-segregated aerosol sample is collected on a high-voltage biased metal filament. The collected sample is protected from contamination using a He sheath counterflow. Resistive heating of the filament allows temperature-controlled desorption of compounds of different volatility. We will present preliminary characterization experiments of the aerosol sizing and collection unit coupled to the mass spectrometer. Funding by the German Research Foundation (DFG) under grant DFG HE5214/3-1 is gratefully acknowledged. Han, B., Kim, H.J., Kim, Y.J., and Sioutas, C. (2008) Unipolar charging of ultrafine particles using carbon fiber ionizers. Aerosol Sci. Technol, 42, 793-800. Zhang, S.-H., Akutsu, Y., Russell, L.M., Flagan, R.C., and Seinfeld, J.H. (1995) Radial Differential Mobility Analyzer. Aerosol Sci. Technol, 23, 357-372.
Oya, Yoshifumi; Hata, Kenji; Ohba, Tomonori
2017-10-24
We present the structures of NaCl aqueous solution in carbon nanotubes with diameters of 1, 2, and 3 nm based on an analysis performed using X-ray diffraction and canonical ensemble Monte Carlo simulations. Anomalously longer nearest-neighbor distances were observed in the electrolyte for the 1-nm-diameter carbon nanotubes; in contrast, in the 2 and 3 nm carbon nanotubes, the nearest-neighbor distances were shorter than those in the bulk electrolyte. We also observed similar properties for water in carbon nanotubes, which was expected because the main component of the electrolyte was water. However, the nearest-neighbor distances of the electrolyte were longer than those of water in all of the carbon nanotubes; the difference was especially pronounced in the 2-nm-diameter carbon nanotubes. Thus, small numbers of ions affected the entire structure of the electrolyte in the nanopores of the carbon nanotubes. The formation of strong hydration shells between ions and water molecules considerably interrupted the hydrogen bonding between water molecules in the nanopores of the carbon nanotubes. The hydration shell had a diameter of approximately 1 nm, and hydration shells were thus adopted for the nanopores of the 2-nm-diameter carbon nanotubes, providing an explanation for the large difference in the nearest-neighbor distances between the electrolyte and water in these nanopores.
NASA Technical Reports Server (NTRS)
Mchugh, James G; Derring, Eldridge H
1939-01-01
Report presents the results of an investigation conducted in the NACA 20-foot tunnel to determine the slipstream drag, the body interference, and the cooling characteristics of nacelle-propeller diameter. Four combinations of geometrically similar propellers and nacelles, mounted on standard wing supports, were tested with values of the ratio of nacelle diameter to propeller diameter of 0.25, 0.33, and 0.44.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, Fernando J. A. L., E-mail: fj.cruz@fct.unl.pt; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706; Pablo, Juan J. de
Although carbon nanotubes are potential candidates for DNA encapsulation and subsequent delivery of biological payloads to living cells, the thermodynamical spontaneity of DNA encapsulation under physiological conditions is still a matter of debate. Using enhanced sampling techniques, we show for the first time that, given a sufficiently large carbon nanotube, the confinement of a double-stranded DNA segment, 5′-D({sup *}CP{sup *}GP{sup *}CP{sup *}GP{sup *}AP{sup *}AP{sup *}TP{sup *}TP{sup *}CP{sup *}GP{sup *}CP{sup *}G)-3′, is thermodynamically favourable under physiological environments (134 mM, 310 K, 1 bar), leading to DNA-nanotube hybrids with lower free energy than the unconfined biomolecule. A diameter threshold of 3 nmmore » is established below which encapsulation is inhibited. The confined DNA segment maintains its translational mobility and exhibits the main geometrical features of the canonical B form. To accommodate itself within the nanopore, the DNA's end-to-end length increases from 3.85 nm up to approximately 4.1 nm, due to a ∼0.3 nm elastic expansion of the strand termini. The canonical Watson-Crick H-bond network is essentially conserved throughout encapsulation, showing that the contact between the DNA segment and the hydrophobic carbon walls results in minor rearrangements of the nucleotides H-bonding. The results obtained here are paramount to the usage of carbon nanotubes as encapsulation media for next generation drug delivery technologies.« less
NASA Astrophysics Data System (ADS)
Kardani, Arash; Mehrafrooz, Behzad; Montazeri, Abbas
2018-03-01
Porous nickel-based nanocatalysts have attracted great attention thanks to their high surface-to-volume ratio and desired mechanical properties. One of the major challenges associated with their applications is weakening their shear properties due to their contact with the high fluid flow values at elevated service temperatures. On the other hand, their shear behavior is dominantly influenced by the size and distribution of pores available in their structure. In this study, different nickel samples containing periodic distribution surface porosities with 2 nm diameter are examined via molecular dynamics simulation. Moreover, to explore the effects of porosities distribution, the obtained results are compared with those of the samples having concentrated pores at the bigger size of 10nm. Accordingly, shear loading conditions are imposed to capture the dependency of the shear characteristics of the samples on the location and on the geometrical factors of the aforementioned porosities. Surprisingly, it is revealed that the existence of randomly distributed pores can lead to an enhancement of their yield strain compared to that of non-porous counterparts. The underlying mechanism governing this special behavior is thoroughly studied employing several case studies.
Şahin, Nihat Ege; Comminges, Clément; Le Valant, Anthony; Kiener, Julien; Parmentier, Julien; Napporn, Teko W; Melinte, Georgian; Ersen, Ovidiu; Kokoh, Kouakou B
2018-03-14
Copper-supported mesoporous carbon nanocatalysts (Cu/FDU-15) were synthesized using an easy and convenient one-pot soft-template method for low-overvoltage CO 2 electroreduction. TEM imaging revealed the presence of large Cu nanoparticles (diameter 140 nm) with Cu 2 O nanoparticles (16 nm) as an additional phase. From the electron tomography observations, we found that the copper particles were placed inside and on the exterior surface of the porous FDU-15 support, providing an accessible surface for electrocatalytic reactions. CO 2 electrolyses showed that the mesostructured Cu/FDU-15-350 cathode materials were active towards CO 2 conversion to formic acid with 22 % Faradaic efficiency at a remarkably low overpotential of 290 mV, hydrogen being the only side-product. The catalyst's activity correlates to the calculated metallic surface area, as determined from a geometrical model, confirming that the mesoporous channels act as a diffusion path for the CO 2 molecule, and that the whole Cu surface is accessible to CO 2 , even if particles are entrapped in the carbon matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impacts of corn residue grazing and baling on wind erosion potential in a semiarid environment
USDA-ARS?s Scientific Manuscript database
Implications of corn (Zea mays L.) residue grazing and baling on wind erosion in integrated crop-livestock systems are not well understood. We studied: 1) soil properties affecting wind erosion potential including dry aggregate-size distribution, geometric mean diameter (GMDA), geometric standard de...
Exposure assessment of nano-sized and respirable particles at different workplaces
NASA Astrophysics Data System (ADS)
Tsai, Chuen-Jinn; Huang, Cheng-Yu; Chen, Sheng-Chieh; Ho, Chi-En; Huang, Cheng-Hsiung; Chen, Chun-Wan; Chang, Cheng-Ping; Tsai, Su-Jung; Ellenbecker, Michael J.
2011-09-01
In this study, nanoparticle (NP, diameter < 100 nm) and respirable particles measurements were conducted at three different nanopowder workplaces, including the mixing area of a nano-SiO2-epoxy molding compound plant (primary diameter: 15 nm), bagging areas of a nano-carbon black (nano-CB) (primary diameter: 32 nm) and a nano-CaCO3 (primary diameter: 94 nm) manufacturing plant. Chemical analysis of respirable particle mass (RPM) and NPs was performed to quantify the content of manufactured nanoparticles in the collected samples. Nanopowder products obtained from the plants were used in the laboratory dustiness testing using a rotating drum tester to obtain particle mass and number distributions. The obtained laboratory data were then used to elucidate the field data. Both field and laboratory data showed that NP number and mass concentrations of manufactured materials were close to the background level. Number concentration was elevated only for particles with the electrical mobility diameter >100 nm during bagging or feeding processes, unless there were combustion-related incidental sources existed. Large fraction of nanomaterials was found in the RPM due to agglomeration of nanomaterials or attachment of nanomaterials to the larger particles. From this study, it is concluded that RPM concentration measurements are necessary for the exposure assessment of nanoparticles in workplaces.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
NASA Astrophysics Data System (ADS)
Choi, Sun-Woo; Byun, Young Tae
2018-03-01
The correlation between platinum (Pt) functionalization and chlorine (Cl2) sensing capability in single-walled carbon nanotubes (SWCNTs) was investigated. Utilizing a photoreduction technique via ultraviolet (UV) irradiation, the Pt nanoparticles (NPs) with various diameters of 7-80 nm, which were controlled by Pt precursor concentrations, were successfully functionalized on the sidewalls of SWCNTs. The discrete Pt NP-loaded SWCNTs exhibited significantly enhanced response value (-(ΔR/R0) × 100 = 33.8%) for 1 ppm Cl2 at room temperature (25 °C) compared with that (no response) of pure SWCNTs. On the other hand, in case of continuous Pt NP-loaded SWCNTs, Cl2 sensing capabilities were significantly degraded. The Cl2 sensing capabilities of fabricated sensors tended to correlate with geometric configurations of the catalytic Pt NPs on the sidewalls of SWCNTs, due to differences in the electron pathway.
NASA Astrophysics Data System (ADS)
Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.
2015-03-01
We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.
Pradines, B; Fusai, T; Daries, W; Laloge, V; Rogier, C; Millet, P; Panconi, E; Kombila, M; Parzy, D
2001-08-01
The in vitro activities of ferrochloroquine, chloroquine, quinine, mefloquine, halofantrine, amodiaquine, primaquine, atovaquone and artesunate were evaluated against Plasmodium falciparum isolates from children with uncomplicated malaria from Libreville (Gabon), using an isotopic, micro, drug susceptibility test. The IC(50) values for ferrochloroquine were in the range 0.43-30.9 nM and the geometric mean IC(50) for the 103 isolates was 10.8 nM (95% CI 8.6-13.5 nM), while the geometric means for chloroquine, quinine, mefloquine, amodiaquine and primaquine were 370 nM, 341 nM, 8.3 nM, 18.1 nM and 7.6 microM, respectively. Ferrochloroquine was active against P. falciparum isolates, 95% of which showed in vitro resistance to chloroquine. Weak positive significant correlations were observed between the responses to ferrochloroquine and that to chloroquine, amodiaquine and quinine, but too low to suggest cross-resistance. There was no significant correlation between the response to ferrochloroquine and those to mefloquine, halofantrine, primaquine, atovaquone or artesunate. Ferrochloroquine may be an important alternative drug for the treatment of chloroquine-resistant malaria.
NASA Astrophysics Data System (ADS)
Kishino, Katsumi; Ishizawa, Shunsuke
2015-06-01
The growth of highly uniform arrays of GaN nanocolumns with diameters from 122 to 430 nm on Si (111) substrates was demonstrated. The employment of GaN film templates with flat surfaces (root mean square surface roughness of 0.84 nm), which were obtained using an AlN/GaN superlattice (SL) buffer on Si, contributed to the high-quality selective-area growth of nanocolumns using a thin Ti mask of 5 nm thickness by rf-plasma-assisted molecular beam epitaxy. Although the GaN template included a large number of dislocations (dislocation density ˜1011 cm-2), the dislocation filtering effect of nanocolumns was enhanced with decreasing nanocolumn diameters (D). Systematic transmission electron microscopy (TEM) observation enabled us to explain the dependence of the dislocation propagation behavior in nanocolumns on the nanocolumn diameter for the first time. Plan-view TEM analysis was performed for nanocolumns with D = 120-324 nm by slicing the nanocolumns horizontally at a height of ˜300 nm above their bottoms and dislocation propagation through the nanocolumns was analyzed by the cross-sectional TEM observation of nanocolumns with D ˜ 200 nm. It was clarified that dislocations were effectively filtered in the bottom 300 nm region of the nanocolumns, the dislocation density of the nanocolumns decreased with decreasing D, and for narrow nanocolumns with D < 200 nm, dislocation-free crystals were obtained in the upper part of the nanocolumns. The dramatic improvement in the emission properties of GaN nanocolumns observed with decreasing diameter is discussed in relation to the decreased dislocation density. The laser action of InGaN/GaN-based nanocolumn arrays with a nanocolumn diameter of 170 nm and a period of 200 nm on Si under optical excitation was obtained with an emission wavelength of 407 nm. We also fabricated red-emitting InGaN-based nanocolumn light-emitting diodes on Si that operated at a wavelength of 652 nm, demonstrating vertical conduction through the AlN/GaN SL buffer to the Si substrate.
Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A
2008-05-06
The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.
Experimental investigation of a small solar chimney in the south of Algeria
NASA Astrophysics Data System (ADS)
Hadj, Achouri El; Noureddine, Settou; Mabrouk, Drid Momamed; Belkhir, Negrou; Soumia, Rahmouni
2018-05-01
The solar chimney power plant (SCPP) is an economical device for the production of solar electricity. Among the parameters influencing the efficiency of the solar chimney are the dimensions, namely: Height and diameter of the chimney and diameter and height of the collector. In order to give our contribution we have established a prototype of a solar chimney which allows us to take a real vision on the influence of the geometrical parameters on the air flow under the collector and next the production efficiency of the solar chimney in the south of Algeria. In this study, we take different values of the height and diameter of the tower and of the height of the collector entrance. The results obtained show the remarkable influence of the geometrical parameters on the flow velocity afterwards on the energy produced.
High-aspect-ratio and highly ordered 15-nm porous alumina templates.
Martín, Jaime; Manzano, Cristina V; Caballero-Calero, Olga; Martín-González, Marisol
2013-01-01
Ordered anodic aluminum oxide (AAO) templates with pores <15 nm in diameter and an aspect ratio (length-to-diameter ratio) above 3 × 10(3) have been fabricated using a nonlithographic approach; specifically, by anodizing aluminum in an ethylene-glycol-containing sulfuric acid electrolyte. The pores are the smallest in diameter reported for a self-ordered AAO without pore aspect-ratio limitations and good ordering, which opens up the possibility of obtaining nanowire arrays in the quantum confinement regime that is of interest for efficient thermoelectric generators. The effect of the ethylene glycol addition on both the pore diameter and the ordering is evaluated and discussed. Moreover, 15-nm-diameter Bi(2)Te(3) and poly(3-hexyl thiophene) (P3HT) nanowires have been prepared using these AAO templates. As known, Bi(2)Te(3) is currently the most efficient thermoelectric bulk material for room-temperature operations and, according with theory, its Seebeck coefficient should be increased when it is confined to nanowires with diameters close to 10 nm. On the other hand, P3HT is one of the main candidates for integrating organic photovoltaic and thermoelectric devices, and its properties are also proposed to increase when it is confined to nanoscale structures, mainly due to molecular orientation effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bochong; Kubota, Hitoshi, E-mail: hit-kubota@aist.go.jp; Yakushiji, Kay
The dependence on diameter of the emission power in MgO-based nano-pillar spin torque oscillators (STOs) was systematically investigated. A maximum emission power of over 2.5 μW was obtained around 300 nm in diameter, which is the largest reported to date among the out-of-plane precession STOs. By analyzing physical quantities, precession cone angle of the free-layer magnetization was evaluated. In the diameter range below 300 nm, the increase in power was mainly due to the increase of the injected current. The power decrease above 300 nm is possibly attributed to the decrease in the averaged precession cone angle, suggesting spatial phase difference of magnetization precession.more » This study provides the method for estimating the optimum STO diameter, which is of great importance in practical use.« less
NASA Technical Reports Server (NTRS)
Fastig, Shlomo; Deoung, Russell J.
1998-01-01
Acrylic plastic Fresnel lenses are very light and can have large diameters. Such lenses could be used in lidar telescope receivers if the focal spot is not too large or distorted. This research effort characterizes the focal spot diameter produced by a Fresnel lens with a diameter of 30.5 cm (12 in.). It was found that the focal spot diameter varied from 1.2 mm at 750 nm to 1.6 mm at 910 nm. The focal spot was irregular and not easily described by a Gaussian profile.
Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jayroe, Robert, Jr.
1999-01-01
Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.
Wu, Dan; Tang, Xiaohong; Wang, Kai; Li, Xianqiang
2017-01-01
Semiconductor nanowires(NWs) with subwavelength scale diameters have demonstrated superior light trapping features, which unravel a new pathway for low cost and high efficiency future generation solar cells. Unlike other published work, a fully analytic design is for the first time proposed for optimal geometrical parameters of vertically-aligned GaAs NW arrays for maximal energy harvesting. Using photocurrent density as the light absorbing evaluation standard, 2 μm length NW arrays whose multiple diameters and periodicity are quantitatively identified achieving the maximal value of 29.88 mA/cm2 under solar illumination. It also turns out that our method has wide suitability for single, double and four different diameters of NW arrays for highest photon energy harvesting. To validate this analytical method, intensive numerical three-dimensional finite-difference time-domain simulations of the NWs’ light harvesting are also carried out. Compared with the simulation results, the predicted maximal photocurrent densities lie within 1.5% tolerance for all cases. Along with the high accuracy, through directly disclosing the exact geometrical dimensions of NW arrays, this method provides an effective and efficient route for high performance photovoltaic design. PMID:28425488
Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai
2018-05-01
In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.
Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes
NASA Astrophysics Data System (ADS)
Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng
2016-05-01
Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).
Pappas, Eleftherios P; Alshanqity, Mukhtar; Moutsatsos, Argyris; Lababidi, Hani; Alsafi, Khalid; Georgiou, Konstantinos; Karaiskos, Pantelis; Georgiou, Evangelos
2017-12-01
In view of their superior soft tissue contrast compared to computed tomography, magnetic resonance images are commonly involved in stereotactic radiosurgery/radiotherapy applications for target delineation purposes. It is known, however, that magnetic resonance images are geometrically distorted, thus deteriorating dose delivery accuracy. The present work focuses on the assessment of geometric distortion inherent in magnetic resonance images used in stereotactic radiosurgery/radiotherapy treatment planning and attempts to quantitively evaluate the consequent impact on dose delivery. The geometric distortions for 3 clinical magnetic resonance protocols (at both 1.5 and 3.0 T) used for stereotactic radiosurgery/radiotherapy treatment planning were evaluated using a recently proposed phantom and methodology. Areas of increased distortion were identified at the edges of the imaged volume which was comparable to a brain scan. Although mean absolute distortion did not exceed 0.5 mm on any spatial axis, maximum detected control point disposition reached 2 mm. In an effort to establish what could be considered as acceptable geometric uncertainty, highly conformal plans were utilized to irradiate targets of different diameters (5-50 mm). The targets were mispositioned by 0.5 up to 3 mm, and dose-volume histograms and plan quality indices clinically used for plan evaluation and acceptance were derived and used to investigate the effect of geometrical uncertainty (distortion) on dose delivery accuracy and plan quality. The latter was found to be strongly dependent on target size. For targets less than 20 mm in diameter, a spatial disposition of the order of 1 mm could significantly affect (>5%) plan acceptance/quality indices. For targets with diameter greater than 2 cm, the corresponding disposition was found greater than 1.5 mm. Overall results of this work suggest that efficacy of stereotactic radiosurgery/radiotherapy applications could be compromised in case of very small targets lying distant from the scanner's isocenter (eg, the periphery of the brain).
NASA Astrophysics Data System (ADS)
Watanabe, Tsuyoshi; Taniguchi, Kazutake; Suzuki, Kouta; Iyama, Hiromasa; Kishimoto, Shuji; Sato, Takashi; Kobayashi, Hideo
2016-06-01
Fine hole and dot patterns with bit pitches (bp’s) of less than 40 nm were fabricated in the circular band area of a quartz substrate by R-θ electron beam lithography (EBL), reactive ion etching (RIE), and nanoimprinting. These patterning processes were studied to obtain minimum pitch sizes of hole and dot patterns without pattern collapse. The patterning on the circular band was aimed to apply these patterning processes to future high-density bit-patterned media (BPM) for hard disk drive (HDD) and permanent memory for the long life archiving of digital data. In hole patterning, a minimum-22-nm-bp and 8.2-nm-diameter pattern (1.3 Tbit/in.2) was obtained on a quartz substrate by optimizing the R-θ EBL and RIE processes. Dot patterns were replicated on another quartz substrate by nanoimprinting using a hole-patterned quartz substrate as a master mold followed by RIE. In dot patterning, a minimum-30-nm-bp and 18.5-nm-diameter pattern (0.7 Tbit/in.2) was obtained by introducing new descum conditions. It was observed that the minimum bp of successful patterning increased as the fabrication process proceeded, i.e., from 20 nm bp in the first EBL process to 30 nm bp in the last quartz dot patterning process. From the measured diameters of the patterns, it was revealed that pattern collapse was apt to occur when the value of average diameter plus 3 sigma of diameter was close to the bp. It was suggested that multiple fabrication processes caused the degradation of pattern quality; therefore, hole patterning is more suitable than dot patterning for future applications owing to the lower quality degradation by its simple fabrication process.
Zampighi, G A; Fisher, R S
1997-08-01
In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 +/- 3.8 nm (mean SD, n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a approximately 45-nm-diameter lipid bilayer sphere encased in a cage 77 +/- 4.6 nm (mean SD, n = 42) in diameter. The cage was composed of open-faced pentamers 20-22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60-75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 +/- 9 nm (mean SD, n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (approximately 22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of "caged" and "plain" synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.
Nanowire sensors and arrays for chemical/biomolecule detection
NASA Technical Reports Server (NTRS)
Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.
2005-01-01
We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.
NASA Astrophysics Data System (ADS)
Kondo, Daiyu; Sato, Shintaro; Awano, Yuji
2006-05-01
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.
Digital terrestrial photogrammetric methods for tree stem analysis
Neil A. Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matt Winn
2000-01-01
A digital camera was used to measure diameters at various heights along the stem on 20 red oak trees. Diameter at breast height ranged from 16 to over 60 cm, and height to a 10-cm top ranged from 12 to 20 m. The chi-square maximum anticipated error of geometric mean diameter estimates at the 95 percent confidence level was within ±4 cm for all heights when...
Comparisons between geometrical optics and Lorenz-Mie theory
NASA Technical Reports Server (NTRS)
Ungut, A.; Grehan, G.; Gouesbet, G.
1981-01-01
Both the Lorenz-Mie and geometrical optics theories are used in calculating the scattered light patterns produced by transparent spherical particles over a wide range of diameters, between 1.0 and 100 microns, and for the range of forward scattering angles from zero to 20 deg. A detailed comparison of the results shows the greater accuracy of the geometrical optics theory in the forward direction. Emphasis is given to the simultaneous sizing and velocimetry of particles by means of pedestal calibration methods.
Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.
Cho, Seungho; Kim, Semi; Lee, Kun-Hong
2011-09-15
We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.
Aerosol Inlet Characterization Experiment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullard, Robert L.; Kuang, Chongai; Uin, Janek
2017-05-01
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.
Gold nanoparticle aerosols for rodent inhalation and translocation studies
NASA Astrophysics Data System (ADS)
Möller, Winfried; Gibson, Neil; Geiser, Marianne; Pokhrel, Suman; Wenk, Alexander; Takenaka, Shinji; Schmid, Otmar; Bulgheroni, Antonio; Simonelli, Federica; Kozempel, Jan; Holzwarth, Uwe; Wigge, Christoph; Eigeldinger-Berthou, Sylvie; Mädler, Lutz; Kreyling, Wolfgang G.
2013-04-01
The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols for inhalation studies with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology, and specific surface area, and on interaction with lung tissues and lung cells after 1 h inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600 °C, providing particles of similar mass, but different size and specific surface area. Since there are currently no translocation data available on inhaled Au-NP in the 10-50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radiolabeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1-2 × 107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration. After collection on filters particles can be re-suspended and used for instillation or ingestion studies.
Diode laser (980nm) cartilage reshaping
NASA Astrophysics Data System (ADS)
El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.
2011-03-01
Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.
Effect of Geometric Parameters on Formability and Strain Path During Tube Hydrforming Process
NASA Astrophysics Data System (ADS)
Omar, A.; Harisankar, K. R.; Tewari, Asim; Narasimhan, K.
2016-08-01
Forming limit diagram (FLD) is an important tool to measure the material's formability for metal forming processes. In order to successfully manufacture a component through tube hydroforming process it is very important to know the effect of material properties, process and geometrical parameters on the outcome of finished product. This can be obtained by running a finite element code which not only saves time and money but also gives a result with considerable accuracy. Therefore, in this paper the mutual effect of diameter as well as thickness has been studied. Firstly the finite element based prediction is carried out to assess the formability of seamless and welded tubes with varying thickness. Later on, effect of varying diameter and thickness on strain path is predicted using statistical based regression analysis. Finally, the mutual effect of varying material property alongwith varying thickness and diameter on constraint factor is studied.
The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes
NASA Astrophysics Data System (ADS)
Yoon, Yeoungchin; Park, Jeongwon
2018-04-01
TiO2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO2 at a diameter below 50 nm. The tribological behaviors of TiO2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO2 nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-Ho; Maeng, Jwa-Young; Park, Dongho
2007-07-23
This letter reports a module for airborne particle classification, which consists of a micromachined three-stage virtual impactor for classifying airborne particles according to their size and a flow rate distributor for supplying the required flow rate to the virtual impactor. Dioctyl sebacate particles, 100-600 nm in diameter, and carbon particles, 0.6-10 {mu}m in diameter, were used for particle classification. The collection efficiency and cutoff diameter were examined. The measured cutoff diameters of the first, second, and third stages were 135 nm, 1.9 {mu}m, and 4.8 {mu}m, respectively.
The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes.
Yoon, Yeoungchin; Park, Jeongwon
2018-04-20
TiO 2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO 2 at a diameter below 50 nm. The tribological behaviors of TiO 2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO 2 nanotubes.
Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters
NASA Astrophysics Data System (ADS)
Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong
2017-09-01
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr
In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with amore » precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.« less
Probing plasmon resonances of individual aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi
2018-01-01
The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.
The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water (Paris, France).
da Rocha, Alice; Sivry, Yann; Gelabert, Alexandre; Beji, Zyed; Benedetti, Marc F; Menguy, Nicolas; Brayner, Roberta
2015-05-01
This study aims to characterize nanoparticles with different compositions and structures as well as seeing their evolutions over time in a natural environment such as Seine river water (Paris, France). Face centered cubic (fcc) and hexagonal (hcp) CdS as well as hexagonal (hcp) ZnO nanoparticles were synthesized by the Polyol method. CdS nanoparticles (i) cfc structure: are agglomerated, present 100 nm length with heterogeneous diameter and 10 m2 g(-1) specific surface area (S(g)) from Brunauer Emett and Teller (BET) measurements; (ii) hcp structure: 20 nm and S(g) = 67 m2 g(-1). ZnO hcp nanoparticles presents 50 nm length and 15 nm diameter and S(g) = 54 m2 g(-1). These results are in agreement with X-ray diffraction (XRD), and small angle X-ray scattering (SAXs). After 48 h interaction with Seine river water, cryo-TEM analysis showed that ZnO nanoparticles form spherical agglomerates with 300 nm diameter; CdS nanoparticles (fcc) are agglomerated presenting large diameters (> 500 nm); and CdS nanoparticles (hcp) are not agglomerated and present the same characteristics of the starting material. After 168h of contact with Seine river water, CdS (fcc) presents only 14% of dissolution, CdS (hcp) presents both 60% dissolution and 30% reprecipitation in a cadmium carbonate form and finally almost 90% of ZnO nanoparticles are dissolved.
Analytical characterization of engineered ZnO nanoparticles relevant for hazard assessment
NASA Astrophysics Data System (ADS)
Bragaru, Adina; Kusko, Mihaela; Vasile, Eugeniu; Simion, Monica; Danila, Mihai; Ignat, Teodora; Mihalache, Iuliana; Pascu, Razvan; Craciunoiu, Florea
2013-01-01
The optoelectronic properties of zinc oxide nanoparticles (ZnO-NPs) have determined development of novel applications in catalysis, paints, wave filters, UV detectors, transparent conductive films, solar cells, or sunscreens. While the immediate advantages of using nano-ZnO in glass panel coatings and filter screens for lamps, as protecting products against bleaching, have been demonstrated, the potential environmental effect of the engineered NPs and the associated products was not fully estimated; this issue being of utmost importance, as these materials will be supplied to the market in quantities of tons per year, equating to thousands of square meters. In this study, ZnO-NPs with commercial name Zincox™ have been subjected to a comprehensive characterization, relevant for hazard assessment, using complementary physico-chemical methods. Therefore, the morphological investigations have been corroborated with XRD pattern analyses and UV-Vis absorption related properties resulting an excellent correlation between the geometrical sizes revealed by microscopy (8.0-9.0 nm), and, respectively, the crystallite size (8.2-9.5 nm) and optical size (7.8 nm) calculated from the last two techniques' data. Furthermore, the hydrodynamic diameter of ZnO-NPs and stability of aqueous dispersions with different concentration of nanoparticles have been analyzed as function of significant solution parameters, like concentration, pH and solution ionic strength. The results suggest that solution chemistry exerts a strong influence on ZnO dissolution stability, the complete set of analyses providing useful information toward better control of dosage during biotoxicological tests.
Dislocation filtering in GaN nanostructures.
Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A
2010-05-12
Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.
To evaluate anthropogenic changes in stream bed stability or texture from synoptic stream surveys, we calculated relative bed stability RBS* as the ratio of the geometric mean bed surface substrate diameter to the estimated bankfull critical diameter. RBS* decreased with increas...
Formation of small gold clusters in solution by laser excitation of interband transition
NASA Astrophysics Data System (ADS)
Mafuné, Fumitaka; Kondow, Tamotsu
2003-04-01
Gold nanoparticles with ˜10 nm in average diameter were prepared by laser ablation of a gold metal plate in an aqueous solution of sodium dodecyl sulfate (SDS) and were fragmented by excitation of an interband transition of gold nanoparticles under irradiation of an intense 355-nm pulsed laser. Fragmentation dynamics was investigated by comparing the fragmentation by excitation of a surface plasmon band of gold nanoparticles by a 532-nm laser. It is found that gold nanoparticles with 1.5-nm average diameter are produced together with small gold clusters by properly optimizing the surfactant concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishino, Katsumi, E-mail: kishino@sophia.ac.jp; Sophia Nanotechnology Research Center, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; Ishizawa, Shunsuke
Bottom-up grown structurally graded InGaN-based nanocolumn photonic crystals, in which nanocolumns were arranged in triangular lattice and the nanocolumn diameter changed one-dimensionally from 93 to 213 nm with a fixed lattice constant of 250 nm, were fabricated. The spatial distribution of the diameter resulted in random-laser-like operation under optical excitation. A broad multi-wavelength lasing spectrum with more than 10 peaks was obtained with a full width at half maximum of 27 nm at 505 nm wavelength as well as lowering of the polarization degree, which is expected to be suitable for speckle contrast reduction in laser projection display applications.
NASA Astrophysics Data System (ADS)
Hwang, Da Young; Suh, Dong Hack
2014-05-01
Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs.Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00897a
Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.
Yuill, Elizabeth M; Sa, Niya; Ray, Steven J; Hieftje, Gary M; Baker, Lane A
2013-09-17
Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.
Determination of detonation parameters for liquid High Explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2011-06-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.
Determination of detonation parameters for liquid high explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2012-03-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.
Cr-Si Schottky nano-diodes utilizing anodic aluminum oxide templates.
Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Chung, Ilsub
2014-04-01
We have fabricated Cr nanodot Schottky diodes utilizing AAO templates formed on n-Si substrates. The diameters of the diodes were 75.0, 57.6, and 35.8 nm. Cr nanodot Schottky diodes with smaller diameters yield higher current densities than those with larger diameters due to an enhanced tunnel current contribution, which is attributed to a reduction in the barrier thickness. The diameters of Cr nanodots smaller than the Debye length (156 nm) play an important role in the reduction of barrier thickness. Also, we have fabricated Cr-Si nanorod Schottky diodes with three different lengths (130, 220, and 330 nm) by dry etching of n-Si substrate. Cr-Si nanorod Schottky diodes with longer nanorods yield higher reverse current than those with shorter nanorods due to the enhanced electric field, which is attributed to a high aspect ratio of Si nanorod.
NASA Astrophysics Data System (ADS)
Abbaspour, R.; Brown, D. K.; Bakir, M. S.
2017-02-01
This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.
NASA Astrophysics Data System (ADS)
Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong
2015-01-01
Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry-differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C4H4CuO6 → Cu reaction occurs at ∼250-310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100-400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5-1 μm and fiber diameter of 100-200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.
Distance measurement based on light field geometry and ray tracing.
Chen, Yanqin; Jin, Xin; Dai, Qionghai
2017-01-09
In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.
Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface
NASA Astrophysics Data System (ADS)
Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua
2018-01-01
Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch (P/d) and slot length-to-diameter (l/d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/d = 2 and x/d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.
Design study of dedicated brain PET with polyhedron geometry.
Shi, Han; Du, Dong; Xu, JianFeng; Su, Zhihong; Peng, Qiyu
2015-01-01
Despite being the conventional choice, whole body PET cameras with a 76 cm diameter ring are not the optimal means of human brain imaging. In fact, a dedicated brain PET with a better geometrical structure has the potential to achieve a higher sensitivity, a higher signal-to-noise ratio, and a better imaging performance. In this study, a polyhedron geometrical dedicated brain PET (a dodecahedron design) is compared to three other candidates via their geometrical efficiencies by calculating the Solid Angle Fractions (SAF); the three other candidates include a spherical cap design, a cylindrical design, and the conventional whole body PET. The spherical cap and the dodecahedron have an identical SAF that is 58.4% higher than that of a 30 cm diameter cylinder and 5.44 times higher than that of a 76 cm diameter cylinder. The conceptual polygon-shape detectors (including pentagon and hexagon detectors based on the PMT-light-sharing scheme instead of the conventional square-shaped block detector module) are presented for the polyhedron PET design. Monte Carlo simulations are performed in order to validate the detector decoding. The results show that crystals in a pentagon-shape detector can be successfully decoded by Anger Logic. The new detector designs support the polyhedron PET investigation.
Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface
NASA Astrophysics Data System (ADS)
Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua
2018-06-01
Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
Superparamagnetic properties of carbon nanotubes filled with NiFe{sub 2}O{sub 4} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stojak Repa, K.; Israel, D.; Phan, M. H., E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu
2015-05-07
Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirmed the inverse spinel phase for the synthesized NFO. Transmission electron microscopy confirms spherical NFO nanoparticles with an average diameter of 7.4 nm inside MWCNTs. Magnetometry indicates that both NFO and NFO-filled MWCNTs present a blocking temperature around 52 K, with similar superparamagnetic-like behavior, and weak dipolar interactions, giving rise to a super-spin-glass-like behavior at low temperatures. These properties along with the uniformity of sub-100 nm structuresmore » and the possibility of tunable magnetic response in variable diameter carbon nanotubes make them ideal for advanced biomedical and microwave applications.« less
NASA Astrophysics Data System (ADS)
Iodice, Carmen; Cervadoro, Antonio; Palange, AnnaLisa; Key, Jaehong; Aryal, Santosh; Ramirez, Maricela R.; Mattu, Clara; Ciardelli, Gianluca; O'Neill, Brian E.; Decuzzi, Paolo
2016-01-01
Gold nanoparticles (AuNPs) have been proposed as agents for enhancing photothermal therapy in cancer and cardiovascular diseases. Different geometrical configurations have been used, ranging from spheres to rods and more complex star shapes, to modulate optical and ablating properties. In this work, multiple, ultra-small 6 nm AuNPs are encapsulated into larger spherical polymeric nanoconstructs (SPNs), made out of a poly(lactic acid-co-glycol acid) (PLGA) core stabilized by a superficial lipid-PEG monolayer. The optical and photothermal properties of the resulting nanoconstructs (Au-SPNs) are modulated by varying the initial loading input of AuNPs, ranging between 25 and 150 μgAu. Au-SPNs exhibit a hydrodynamic diameter varying from ~100 to 180 nm, growing with the gold content, and manifest up to 2-fold increase in thermal energy production per unit mass of gold for an initial input of 100 μgAu. Au-SPNs are stable under physiological conditions up to 7 days and have direct cytotoxic effect on tumor cells. The superior photothermal performance of Au-SPNs is assessed in vitro on monolayers of breast cancer cells (SUM-159) and tumor spheroids of glioblastoma multiforme cells (U87-MG). The encapsulation of small AuNPs into larger spherical nanoconstructs enhances photothermal ablation and could favor tumor accumulation.
New Approach for Gas Phase Synthesis and Growth Mechanism of MoS2 Fullerene-like Nanoparticles
NASA Astrophysics Data System (ADS)
Zak, Alla; Feldman, Yishay; Alperovich, Vladimir; Rosentsveig, Rita; Tenne, Reshef
2002-10-01
Inorganic fullerene-like (hollow onion-like) nanoparticles (IF) and nanotubes are of significant interest over the past few years due to their unusual crystallographic morphology and their interesting physical properties. The synthesis of inorganic fullerene-like spherical MoS2 nanoparticles (IF-MoS2) of 5-300nm in diameter was studied in the present work. This process is based on the previous formation of suboxide (MoO3-x) 5-300nm nanoparticles and their subsequent sulfidization. During the sulfidization process the overall geometrical parameters of the suboxide nanoparticles are preserved. The oxide nanoparticles were obtained in-situ by the condensation of the evaporated MoO3 powder precursor. The condensation was provoked not by cooling (conventional method for nano-size particle formation), but by a chemical reaction (partial reduction of the MoO3 vapor by hydrogen). In this case the vapor pressure of the product (MoO2) was much lower than that of the precursor (MoO3). Based on the comprehensive understanding of the IF-MoS2 growth mechanism from MoO3 powder, a gas phase reactor, which allowed reproducible preparation of a pure IF-MoS2 phase (up to 100mg/batch) with controllable sizes, is demonstrated. Further scale-up of this production is underway.
Meric, Zeynep; Mehringer, Christian; Karpstein, Nicolas; Jank, Michael P M; Peukert, Wolfgang; Frey, Lothar
2015-09-14
In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.
Wang, Jian; Pikridas, Michael; Pinterich, Tamara; ...
2017-06-08
A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Pinterich, Tamara
A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less
NASA Astrophysics Data System (ADS)
Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan
2012-03-01
A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.
Ultrafast studies of gold, nickel, and palladium nanorods
NASA Astrophysics Data System (ADS)
Sando, Gerald M.; Berry, Alan D.; Owrutsky, Jeffrey C.
2007-08-01
Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into ˜6μm thick polycarbonate templates. Two nominal pore diameters(10 and 30nm, resulting in nanorod diameters of about 40 and 60nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPRL) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPRL bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000cm-1) probed at 800nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400nm and infrared (5μm) excitation probed at 800nm. The transient absorption using 400nm excitation and 800nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.
Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong
2018-05-01
We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.
2008-05-01
2(b) is again 1.0 mm but has been reduced by an order of magnitude to 0.5 mm. It can be seen that the geometric resolution is now the limiting term...activity) of the system. The on-axis geometric efficiency for a pinhole is given by: (2) and represents the fraction of emitted photons that pass through...0.96 mm. The slight increase in the recon- structed diameter is due to the total resolution of the setup being limited by the geometric resolution which
Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan
2016-09-01
Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.
Nanofiber alignment of a small diameter elastic electrospun scaffold
NASA Astrophysics Data System (ADS)
Patel, Jignesh
Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data providing an accurate, user friendly orientation measurement tool.
NASA Astrophysics Data System (ADS)
Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.
2015-03-01
This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of small-size objects.
Characterisation of adhesional properties of lactose carriers using atomic force microscopy.
Louey, M D; Mulvaney, P; Stewart, P J
2001-06-01
The atomic force microscopy (AFM) colloid probe technique was investigated as a method for the characterisation of adhesional properties of pharmaceutical powder surfaces. Lactose carriers used in dry powder inhaler (DPI) formulations were chosen for investigation since adhesion between the carrier surface and drug particles has been proposed to affect the dispersion of drug particles. Individual adhesion forces were determined by measuring the detachment forces in air between the colloid probe and the lactose particle surface. The colloid probe consisted of a silica sphere (10 microm diameter) attached to a V-shaped silicon nitride cantilever (spring constant, k=0.42 N/m). Adhesion forces were calculated from individual force-distance curves using Hooke's Law. Individual forces measured at various adhesion sites were observed to be reproducible and stable over 10 min (coefficient of variation, CV below 5%). The adhesion force distribution determined from measurements at multiple sites (n>50) on each sample followed a log-normal relationship (regression coefficient, r(2) ranged between 0.95 and 0.99). This enabled characterisation in terms of the geometric mean adhesion force and a geometric standard deviation (GSD). Significant differences (P<0.001) in adhesion force were observed between samples, ranging from 37.47+/-1.95 to 117.48+/-2.20 nN. This study demonstrates the suitability of AFM as sensitive technique for the characterisation of adhesional properties of pharmaceutical particles.
Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik
2014-11-17
The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.
NASA Astrophysics Data System (ADS)
Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.
2018-05-01
The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.
NASA Astrophysics Data System (ADS)
Vahabzadeh Pasikhani, Javad; Gilani, Neda; Ebrahimian Pirbazari, Azadeh
2018-02-01
Freestanding TiO2 nanotubes (FSNTs) with various physical dimensions were fabricated by two-step anodization process with different voltages and anodization times. The detachment method employed in this study involved voltage reduction at the end of the second step and ultrasonic chemical treatment. The results demonstrated that this detachment method is a beneficial technique to create thin open-mouthed and closed-end FSNTs (with lengths of 6-14 μm). Moreover, the influences of anodization conditions on photocatalytic activity, structural properties and geometrical features of FSNTs in comparative degradation of two non-colored (2,4-dichlorophenol) and colored (methylene blue) pollutants were investigated. Findings revealed that the quantity of the photocatalyst utilized is an effective parameter and using the optimum weight (10 mg/100 ml of 2,4-dichlorophenol) could increase the efficiency of the process up to 21%. Further, the results demonstrated that if equal optimum weights of FSNTs are chosen, decreases in voltage and anodization time significantly influence the structural properties, geometrical features, and photodegradation efficiency. The enhancement achieved in the degradation of both 2,4-dichlorophenol and methylene blue using the nanotubes with the shortest diameter (54 nm) and length (6.5 μm), which possess the lowest porosity (0.5) and also the highest surface area (0.53 m2 g-1), nanotubes’ density (19 cm2 cm-2) and wall thickness to length ratio (2). In addition, the results obtained indicated that the degradation reactions follow first-order kinetics in the degradation of the both pollutants. The apparent degradation rate constant of methylene blue was approximately 1.2 times greater than of the 2,4-dichlorophenol due to the negative charge of the nanotubes’ surface and electrostatic adsorptions.
Inverse opal photonic crystals with photonic band gaps in the visible and near-infrared
NASA Astrophysics Data System (ADS)
Jarvis, Brandon C.; Gilleland, Cody L.; Renfro, Tim; Gutierrez, Jose; Parikh, Kunjal; Glosser, R.; Landon, Preston B.
2005-08-01
Colloidal silica spheres with 200nm, 250nm, and 290nm diameters were self-assembled with single crystal crystallites 4-5mm wide and 10-15mm long. Larger spheres with diameters between 1000-2300nm were self-assembled with single crystal crystallites up to 1.5mm wide and 2mm long. The silica opals self-assembled vertically along the [100] direction of the face centered cubic lattice resulting in self-templated opals. Inverse opal photonic crystals with a partial band gap possessing a maximum in the near infrared at 3.8μm were constructed from opal templates composed of 2300nm diameter spheres with chalcogenide Ge33As12Se55 (AMTIR-1), a transparent glass in the near infrared with high refractive index. Inverse gold and gold/ polypropylene composite photonic crystals were fabricated from synthetic opal templates composed of 200-290nm silica spheres. The reflectance spectra and electrical conductance of the resulting structures is presented. Gold was infiltrated into opal templates as gold chloride and heat converted to metallic gold. Opals partially infiltrated with gold were co-infiltrated with polypropylene plastic for mechanical support prior to removal of the silica template with hydrofluoric acid.
ZnO and TiO2 particles: a study on nanosafety and photoprotection
NASA Astrophysics Data System (ADS)
Popov, Alexey; Zhao, Xin; Zvyagin, Andrei; Lademann, Jürgen; Roberts, Michael; Sanchez, Washington; Priezzhev, Alexander; Myllylä, Risto
2010-04-01
Nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) are used in sunscreens as protective compounds against UV radiation. We investigate these particles from the viewpoint of nanosafety (penetration into skin in vivo, production of free radicals when UV-irradiated) as well as UV protection. We show that: a) even after multiple applications, the particles remain within stratum corneum (uppermost skin layer); b) the optimal sizes are 62 nm and 45 nm, respectively for TiO2 and ZnO particles for 310-nm light and, correspondingly, 122 and 140 nm - for 400-nm radiation; c) in general, small particles (25 nm in diameter) are more photoactive than the larger ones (400 nm in diameter); however, on the background if porcine skin in vitro this difference is not seen and is substantially surpassed by skin contribution into production of free radicals.
Kinsey, John S; Timko, Michael T; Herndon, Scott C; Wood, Ezra C; Yu, Zhenhong; Miake-Lye, Richard C; Lobo, Prem; Whitefield, Philip; Hagen, Donald; Wey, Changlie; Anderson, Bruce E; Beyersdorf, Andreas J; Hudgins, Charles H; Thornhill, K Lee; Winstead, Edward; Howard, Robert; Bulzan, Dan I; Tacina, Kathleen B; Knighton, W Berk
2012-04-01
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2, total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5 x 10(15) to 5 x 10(15) particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of approximately 90% for SO2 and particle mass EIs and approximately 60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of approximately 5 as compared with JP-8.
Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes
NASA Astrophysics Data System (ADS)
Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza
2012-03-01
In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.
Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu
2018-06-01
Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.
Improvement of optical damage in specialty fiber at 266 nm wavelength
NASA Astrophysics Data System (ADS)
Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.
2014-02-01
Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.
NASA Astrophysics Data System (ADS)
Sato, Taketomo; Kaneshiro, Chinami; HiroshiOkada, HiroshiOkada; Hasegawa, Hideki
1999-04-01
Attempts were made to form regular arrays of size- andposition-controlled Pt-dots on GaAs and InP by combining an insitu electrochemical process with the electron beam (EB)lithography. This utilizes the precipitation of Pt nano-particles atthe initial stage of electrodeposition. First, electrochemicalconditions were optimized in the mode of self-assembled dot arrayformation on unpatterned substrates. Minimum in-plane dot diameters of22 nm and 26 nm on GaAs and InP, respectively, were obtained underthe optimal pulsed mode. Then, Pt dots were selectively formed onpatterned substrates with open circular windows formed by EBlithography, thereby realizing dot-position control. The Pt dot wasfound to have been deposited at the center of each open window, andthe in-plane diameter of the dot could be controlled by the number,width and period of the pulse-waveform applied to substrates. Aminimum diameter of 20 nm was realized in windows with a diameter of100 nm, using a single pulse. Current-voltage (I-V)measurements using an atomic force microscopy (AFM) system with aconductive probe indicated that each Pt dot/n-GaAs contact possessed ahigh Schottky barrier height of about 1 eV.
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2018-05-01
We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.
Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes
NASA Astrophysics Data System (ADS)
Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.
2004-03-01
Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.
Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal
NASA Astrophysics Data System (ADS)
Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.
2018-02-01
PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.
Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72
NASA Astrophysics Data System (ADS)
Kumar G., Udaya; S., Suresh; M. R., Thansekhar; Babu P., Dinesh
2017-11-01
Effect of varying diameter of metal nanowires on pool boiling heat transfer performance is presented in this study. Copper nanowires (CuNWs) of four different diameters (∼35 nm, ∼70 nm, ∼130 nm and ∼200 nm) were grown directly on copper specimen using template-based electrodeposition technique. Both critical heat flux (CHF) and boiling heat transfer coefficient (h) were found to be improved in surfaces with nanowires as compared to the bare copper surface. Moreover, both the parameters were found to increase with increasing diameter of the nanowires. The percentage increases observed in CHF for the samples with nanowires were 38.37%, 40.16%, 48.48% and 45.57% whereas the percentage increase in the heat transfer coefficient were 86.36%, 95.45%, 184.1% and 131.82% respectively as compared to the bare copper surface. Important reasons believed for this enhancement were improvement in micron scale cavity density and cavity size which arises as a result of the coagulation and grouping of nanowires during the drying process. In addition to this, superhydrophilic nature, capillary effect, and enhanced bubble dynamics parameters (bubble frequency, bubble departure diameter, and nucleation site density) were found to be the concurring mechanisms responsible for this enhancement in heat transfer performance. Qualitative bubble dynamics analysis was done for the surfaces involved and the visual observations are provided to support the results presented and discussed.
Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang
We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.
Superconductivity of a Sn film controlled by an array of Co nanowires
NASA Astrophysics Data System (ADS)
Wei, Zhiyuan; Ye, Zuxin; Rathnayaka, Daya; Lyuksyutov, Igor; Wu, Wenhao; Naugle, Donald
2012-02-01
Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized anodic aluminum oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.
Superconductivity of a Sn film controlled by an array of Co nanowires
NASA Astrophysics Data System (ADS)
Wei, Z.; Ye, Z.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Wu, W.; Naugle, D. G.
2012-09-01
Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized Anodic Aluminum Oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.
Amorphous iron–chromium oxide nanoparticles with long-term stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro
2015-05-15
Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing.
Sze, Jasmine Y Y; Kumar, Shailabh; Ivanov, Aleksandar P; Oh, Sang-Hyun; Edel, Joshua B
2015-07-21
Nanopipettes are an attractive single-molecule tool for identification and characterisation of nucleic acids and proteins in solutions. They enable label-free analysis and reveal individual molecular properties, which are generally masked by ensemble averaging. Having control over the pore dimensions is vital to ensure that the dimensions of the molecules being probed match those of the pore for optimization of the signal to noise. Although nanopipettes are simple and easy to fabricate, challenges exist, especially when compared to more conventional solid-state analogues. For example, a sub-20 nm pore diameter can be difficult to fabricate and the batch-to-batch reproducibility is often poor. To improve on this limitation, atomic layer deposition (ALD) is used to deposit ultrathin layers of alumina (Al2O3) on the surface of the quartz nanopipettes enabling sub-nm tuning of the pore dimensions. Here, Al2O3 with a thickness of 8, 14 and 17 nm was deposited onto pipettes with a starting pore diameter of 75 ± 5 nm whilst a second batch had 5 and 8 nm Al2O3 deposited with a starting pore diameter of 25 ± 3 nm respectively. This highly conformal process coats both the inner and outer surfaces of pipettes and resulted in the fabrication of pore diameters as low as 7.5 nm. We show that Al2O3 modified pores do not interfere with the sensing ability of the nanopipettes and can be used for high signal-to-noise DNA detection. ALD provides a quick and efficient (batch processing) for fine-tuning nanopipettes for a broad range of applications including the detection of small biomolecules like RNA, aptamers and DNA-protein interactions at the single molecule level.
Diameter dependent thermoelectric properties of individual SnTe nanowires
Xu, E. Z.; Li, Z.; Martinez, J. A.; ...
2015-01-15
The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~more » 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.« less
Fröhlich, Eleonore; Meindl, Claudia; Höfler, Anita; Leitinger, Gerd; Roblegg, Eva
2012-01-01
The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants. PMID:22963691
Magnetic vortices in nanocaps induced by curvature
NASA Astrophysics Data System (ADS)
Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.
2018-05-01
Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.
Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method
NASA Astrophysics Data System (ADS)
Souza, João B., Jr.; Varanda, Laudemir C.
2018-02-01
A synthetic procedure is described for the obtaining of superparamagnetic Co nanoparticles (NPs) via hot-injection method in the presence of sodium borohydride. The Co NPs obtained have an average diameter of 5.3 nm and saturation magnetization of 115 emu g-1. A modified Langevin equation is fitted to the magnetization curves using a log-normal distribution for the particle diameter and an effective field to account for dipolar interactions. The calculated magnetic diameter of the Co NPs is 0.6 nm smaller than TEM-derived values, implying a magnetic dead layer of 0.3 nm. The magnetic core is coated with Au to prevent oxidation, resulting in water-stable magneto-plasmonic Co/Au core/shell NPs with saturation of 71.6 emu g-1. The coating adds a localized surface plasmon resonance property with absorbance in the so-called ‘therapeutic window’ (690-900 nm), suitable for biomedical applications. It is suggested that these multifunctional NPs are distinguished as a potential platform for applied and fundamental research.
Wang, Li-juan; Zhu, Zhao-jing; Che, Ke-ke; Ju, Feng-ge
2008-09-01
The microstructures of ibuprofen-hydroxypropyl-bets-cyclodextrin (IBU-HP-beta-CyD) and ibuprofen-beta-cyclodextrin (IBU-beta-CyD) were observed by atomic force microscope (AFM). The high resolving capability of AFM has the tungsten filament probe with the spring constant of 0.06 N x m(-1). Samples were observed in a small scale scanning area of 10.5 nm x 10.5 nm and 800 x 800 pixels. The original scanning images were gained by tapping mode at room temperature. Their three-dimensional reconstruction of microstructure was performed by G3DR software. The outer diameters of HP-beta-CyD and beta-CyD are 1.53 nm. The benzene diameter of IBU is 0.62 nm, fitting to the inner diameters of HP-beta-CyD and beta-CyD. The benzene and hydrophobic chain of IBU enter into the hole of cyclodextrin at 1:1 ratio. The results were evidenced by IR, X-ray diffraction and the phase solubility.
2015-12-11
diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer
NASA Technical Reports Server (NTRS)
Lomax, Harvard
1957-01-01
Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.
An experimental investigation of wall-interference effects for parachutes in closed wind tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.
1989-09-01
A set of 6-ft-diameter ribbon parachutes (geometric porosities of 7%, 15%, and 30%) was tested in various subsonic wind tunnels covering a range of geometric blockages from 2% to 35%. Drag, base pressure, and inflated geometry were measured under full-open, steady-flow conditions. The result drag areas and pressure coefficients were correlated with the bluff-body blockage parameter (i.e., drag area divided by tunnel cross-sectional area) according to the blockage theory of Maskell. The data show that the Maskell theory provides a simple, accurate correction for the effective increase in dynamic pressure caused by wall constraint for both single parachutes and clusters.more » For single parachutes, the empirically derived blockage factor K{sub M} has the value of 1.85, independent of canopy porosity. Derived values of K{sub M} for two- and three-parachute clusters are 1.35 and 1.59, respectively. Based on the photometric data, there was no deformation of the inflated shape of the single parachutes up to a geometric blockage of 22%. In the case of the three-parachute cluster, decreases in both the inflated diameter and the spacing among member parachutes were observed at a geometric blockage of 35%. 11 refs., 9 figs., 3 tabs.« less
Broadband visible light source based on AllnGaN light emitting diodes
Crawford, Mary H.; Nelson, Jeffrey S.
2003-12-16
A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.
Potential health effects of fume particles on the crew of spacecrafts
NASA Technical Reports Server (NTRS)
Ferin, Juraj; Oberdorster, Gunter
1992-01-01
The effect of the size of polymer (e.g., Teflon) particles in fumes inhaled by spacecraft personnel on the condition of the lung tissue and on the recovery of the exposed subjects was investigated in rats receiving a single intrapulmonary instillation, or repeated inhalation exposures to either TiO2 particles with primary particle diameter 20 nm, or TiO2 particles with primary particle diameter 250 nm. It was found that rats exposed to 20-nm-diam particles showed a dramatically higher toxicity and slower recovery compared to the group exposed to the 250-nm-diam particles, due to a larger extent of penetration of the interstitium of the lung by the finer particles.
Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.
Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie
2006-08-01
A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.
Diameter modulation of vertically aligned single-walled carbon nanotubes.
Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo
2012-08-28
We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.
NASA Astrophysics Data System (ADS)
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-01
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a
Chitnis, Parag V.; Koppolu, Sujeethraj; Mamou, Jonathan; Chlon, Ceciel; Ketterling, Jeffrey A.
2013-01-01
This two-part study investigated shell rupture of ultrasound contrast agents (UCAs) under static overpressure conditions and the subharmonic component from UCAs subjected to 20-MHz tonebursts. Five different polylactide-shelled UCAs with shell-thickness-to-radius ratios (STRRs) of 7.5, 30, 40, 65, and 100 nm/μm were subjected to static overpressure in a glycerol-filled test chamber. A video microscope imaged the UCAs as pressure varied from 2 to 330 kPa over 90 min. Images were postprocessed to obtain the pressure threshold for rupture and the diameter of individual microbubbles. Backscatter from individual UCAs was investigated by flowing a dilute UCA solution through a wall-less flow phantom placed at the geometric focus of a 20-MHz transducer. UCAs were subjected to 10- and 20-cycle tonebursts of acoustic pressures ranging from 0.3 to 2.3 MPa. A method based on singular-value decomposition (SVD) was employed to obtain a cumulative subharmonic score (SHS). Different UCA types exhibited distinctly different rupture thresholds that were linearly related to their STRR, but uncorrelated with UCA size. The rupture threshold for the UCAs with an STRR = 100 nm/μm was more than 4 times greater than the UCAs with an STRR = 7.5 nm/μm. The polymer-shelled UCAs produced substantial subharmonic response but the subharmonic response to 20-MHz excitation did not correlate with STRRs or UCA-rupture pressures. The 20-cycle excitation resulted in an SHS that was 2 to 3 times that of UCAs excited with 10-cycle tonebursts. PMID:23287913
NASA Astrophysics Data System (ADS)
Lieb, Sydnie Marie
Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis showed that the particles deviate from spherical and that they are not characterized by a defined structure. This observation supports the theory that nascent soot is not homogenous in structure or composition, and challenges the classical assumption that spherical growth and aggregation are separate, size dependent processes. In light of the new evidence that suggests nascent soot particles are structurally inhomogenous, careful consideration must be given to mobility measurements of particle mass and size. The interpretation of particle volume of irregularly shaped nascent soot particles is considered in this dissertation work. Additionally, uncertainties in the mass density of nascent soot are reviewed and the error in mass calculation is quantified.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne
We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range
Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...
2017-06-08
We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less
Brevnov, Dmitri A; Bungay, Corey
2005-08-04
Electrodeposition of gold mesoparticles on anodized and chemically etched aluminum/copper films deposited on silicon wafers proceeds by instantaneous nucleation and with no diffusion limitations. Both of these phenomena favor the formation of relatively monodispersed gold particles. Under the reported electrodeposition conditions, the relative standard deviation of the particle diameter is 25%. The particle coverage is 7 x 10(8) particles cm(-2). The mean particle diameter varies as a function of electrodeposition time in the range of 40-80 nm. Optical constants of gold mesoparticles are resolved by spectroscopic ellipsometry. A two-layer optical model is constructed to determine both extinction coefficients and refractive indexes of gold mesoparticles as a function of the mean particle diameter. The absorption peak, associated with surface plasmons, is modeled with two Lorentz oscillators. Absorption peak maximums shift from 610 to 675 nm as the mean particle diameter increases from 42 to 74 nm. Electrodeposition of gold particles on technologically relevant substrates, such as aluminum/copper films, is expected to increase the utility of gold particles and facilitate their incorporation in nanostructured materials and a variety of electronic and optical devices.
Exact moduli space metrics for hyperbolic vortex polygons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krusch, S.; Speight, J. M.
2010-02-15
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as {sigma}{sub n,m}, are spaces of C{sub n}-invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of {sigma}{sub n,m} are investigated, and it is found that {sigma}{sub n,n-1} is isometric to the hyperbolic plane of curvature -(3{pi}n){sup -1}. The geodesic flow on {sigma}{sub n,m} and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys.more » Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.« less
Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna
Mattsson, Karin; Adolfsson, Karl; Ekvall, Mikael T.; Borgström, Magnus T.; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy; Prinz, Christelle N.
2016-01-01
Abstract Nanowires (NWs) have unique electrical and optical properties of value for many applications including lighting, sensing, and energy harnessing. Consumer products containing NWs increase the risk of NWs being released in the environment, especially into aquatic ecosystems through sewage systems. Daphnia magna is a common, cosmopolitan freshwater organism sensitive to toxicity tests and represents a likely entry point for nanoparticles into food webs of aquatic ecosystems. Here we have evaluated the effect of NW diameter on the gut penetrance of NWs in Daphnia magna. The animals were exposed to NWs of two diameters (40 and 80 nm) and similar length (3.6 and 3.8 μm, respectively) suspended in water. In order to locate the NWs in Daphnia, the NWs were designed to comprise one inherently fluorescent segment of gallium indium phosphide (GaInP) flanked by a gallium phosphide (GaP) segment. Daphnia mortality was assessed directly after 24 h of exposure and 7 days after exposure. Translocation of NWs across the intestinal epithelium was investigated using confocal fluorescence microscopy directly after 24 h of exposure and was observed in 89% of Daphnia exposed to 40 nm NWs and in 11% of Daphnia exposed to 80 nm NWs. A high degree of fragmentation was observed for NWs of both diameters after ingestion by the Daphnia, although 40 nm NWs were fragmented to a greater extent, which could possibly facilitate translocation across the intestinal epithelium. Our results show that the feeding behavior of animals may enhance the ability of NWs to penetrate biological barriers and that penetrance is governed by the NW diameter. PMID:27181920
NASA Astrophysics Data System (ADS)
Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang
2012-11-01
The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32405a
Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation
2010-01-01
Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. Conclusion Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity. PMID:21126342
Brugaletta, Salvatore; Gomez-Lara, Josep; Diletti, Roberto; Farooq, Vasim; van Geuns, Robert Jan; de Bruyne, Bernard; Dudek, Dariusz; Garcia-Garcia, Hector M; Ormiston, John A; Serruys, Patrick W
2012-02-01
To compare the geometrical parameters of a bioresorbable vascular scaffold (BVS) with a standard metallic stent. The introduction of polymeric bioresorbable materials in the design of novel coronary scaffolds may affect some geometrical parameters, such as eccentricity and symmetry indices, previously introduced as IVUS criteria for optimal metallic stent deployment. From ABSORB Cohort A, ABSORB Cohort B, SPIRIT I, and SPIRIT II, all patients implanted with BVS 1.0, BVS 1.1, or XIENCE V, respectively and intravascular ultrasound analyses post-implantation were selected. The eccentricity index was calculated frame by frame and expressed as an average per device (minimum diameter/maximum diameter). The symmetry index of the device was reported as ([maximum diameter - minimum diameter]/maximum diameter). Six months major adverse cardiac events (MACE) were analyzed. A total of 242 patients were selected (BVS 1.0: n = 28, BVS 1.1: n = 94, XIENCE V: n = 120). The BVS exhibited a significantly lower eccentricity index (BVS 1.0: 0.83 ± 0.09; BVS 1.1: 0.85 ± 0.08; XIENCE V: 0.90 ± 0.06; P < 0.01) and a significantly higher symmetry index (BVS 1.0: 0.30 ± 0.07; BVS 1.1: 0.31 ± 0.06, XIENCE V 0.26 ± 0.07; P < 0.01) as compared to the XIENCE V. An inverse correlation was found between the symmetry and eccentricity indices for both (BVS r = -0.69, P < 0.01; XIENCE V r = -0.61, P < 0.01). No differences in MACE were detected between the groups according to their geometrical parameters. The introduction of a new polymeric material in the design of BVS resulted in a lower eccentricity index and a higher symmetry index as compared to metallic stents, without detectable impact in MACE, at 6 months. Copyright © 2011 Wiley Periodicals, Inc.
Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires
NASA Astrophysics Data System (ADS)
Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un
2015-12-01
Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.
Luo, Ming; Zhou, Ming; Rosa da Silva, Robson; ...
2017-01-24
Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ming; Zhou, Ming; Rosa da Silva, Robson
Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less
Atomic force microscopy investigation of the giant mimivirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang
2010-08-15
Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. Themore » virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.« less
Fast and robust shape diameter function.
Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe
2018-01-01
The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.
NASA Astrophysics Data System (ADS)
Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad
2013-04-01
Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.
High-Resolution, Large-Area, Nano Imprint Lithography
2009-08-27
oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal - silicide nanowires in large...nano-island array preparation , we have successfully fabricated patterned magnetic recording media as described in Fig. 2. About ~30 nm diameter Si...that we fabricated at UCSD with 5-50 nm diameter magnetic islands was used, since a large- area, hard disk size preparation was necessary, and since a
Campanelli, Leonardo C; Oliveira, Nilson T C; da Silva, Paulo Sergio C P; Bolfarini, Claudemiro; Palmieri, Annalisa; Cura, Francesca; Carinci, Francesco; Motheo, Artur J
2018-03-04
The objective of this work was a systemic evaluation of the anodizing treatment in a β-type Ti-15Mo alloy to grow a TiO 2 nanostructured layer for osseointegration improvement. The technical viability of the surface modification was assessed based on the resistance to mechanical fatigue, electrochemical corrosion, and biological response. By using an organic solution of NH 4 F in ethylene glycol, a well-organized array of 90 nm diameter nanotubes was obtained with a potential of 40 V for 6 h, while undefined nanotubes of 25 nm diameter were formed with a potential of 20 V for 1 h. Nevertheless, the production of the 90 nm diameter nanotubes was followed by micrometer pits that significantly reduced the fatigue performance. The undefined nanotubes of 25 nm diameter, besides the greater cell viability and improved osteoblastic cell differentiation in comparison to the as-polished surface, were not deleterious to the fatigue and corrosion properties. This result strengthens the necessity of an overall evaluation of the anodizing treatment, particularly the fatigue resistance, before suggesting it for the design of implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Volumes and intrinsic diameters of hypersurfaces
NASA Astrophysics Data System (ADS)
Paeng, Seong-Hun
2015-09-01
We estimate the volume and the intrinsic diameter of a hypersurface M with geometric information of a hypersurface which is parallel to M at distance T. It can be applied to the Riemannian Penrose inequality to obtain a lower bound of the total mass of a spacetime. Also it can be used to obtain upper bounds of the volume and the intrinsic diameter of the celestial r-sphere without a lower bound of the sectional curvature. We extend our results to metric-measure spaces by using the Bakry-Emery Ricci tensor.
Effect of Shock Precompression on the Critical Diameter of Liquid Explosives
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan
2006-07-01
The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.
Hwang, Da Young; Suh, Dong Hack
2014-06-07
Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs.
Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering
Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.
2008-01-01
Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927
NASA Astrophysics Data System (ADS)
Bun-Athuek, Natthaphon; Yoshimoto, Yutaka; Sakai, Koya; Khajornrungruang, Panart; Suzuki, Keisuke
2017-07-01
The surface and diameter size variations of colloidal silica particles during the chemical mechanical polishing (CMP) of sapphire substrates were investigated using different particle diameters of 20 and 55 nm. Dynamic light scattering (DLS) results show that the silica particles became larger after CMP under both conditions. The increase in particle size in the slurry was proportional to the material removal amount (MRA) as a function of the removed volume of sapphire substrates by CMP and affected the material removal rate (MRR). Transmission electron microscopy (TEM) images revealed an increase in the size of the fine particles and a change in their surface shape in the slurry. The colloidal silica was coated with the material removed from the substrate during CMP. In this case, the increase in the size of 55 nm diameter particles is larger than that of 20 nm diameter particles. X-ray fluorescence spectrometry (XRF) results indicate that the aluminum element from polished sapphire substrates adhered to the surfaces of silica particles. Therefore, MRR decreases with increasing of polishing time owing to the degradation of particles in the slurry.
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-21
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.
Characteristics of nanolite crystallization in volcanic pyroclasts
NASA Astrophysics Data System (ADS)
Mujin, M.; Nakamura, M.; Miyake, A.
2017-12-01
Crystal nucleation and initial growth in silicate melt may control the number density and later stage growth of crystals, such as twinning and morphology, and are therefore fundamental but still poorly understood processes in magma crystallization. Petrographic and experimental studies on groundmass microlites shed light on their importance for understanding eruption dynamics, but most studies did not focus on nanometer scale crystals. Recently, we reported "nanolites (30 nm-1 µm in width)" and "ultrananolites (< 30 nm in diameter)", which are nanoscale crystals with extremely high number density, in the interstices of microlites in pyroclasts. In this presentation, we summarize their mineralogical and petrological characteristics in pyroclasts of the 2011 eruption of Shinmoedake (Kirishima volcano group)1. By covering a wide size-range of crystals (down to 1 nm in diameter) based on scanning electron microscopy with tungsten filament (W-SEM), field emission (FE)-SEM, and transmission electron microscopy (TEM), we found a clear size gap (hiatus) in the size distribution and presence of minimum crystal size. In a dense juvenile fragment, crystals were absent or their number densities were too low to measure the sizes of pyroxene with a diameter of < 20 nm and a width of 30-100 nm, plagioclase with a width of < 100 nm, and Fe-Ti oxide with a diameter of 2-10 nm and a width of 20-100 nm. In pumice clasts, crystals smaller than 100 nm were not found. These observations show that nucleation of nanoscale crystals almost paused (froze) in the late stage of crystallization, possibly due to a decrease in undercooling, increase in interfacial free energy, and decrease in diffusivity in a dehydrated melt, whereas crystal growth was mostly continuous. Ultrananolites were found in pyroxene and Fe-Ti oxide; notably, these were spherical, whereas nanolites and microlites were rectangular. The observed ultrananolite-sized particles might partly include "subcritical clusters", which are particles smaller than the critical nucleation size assumed in the transient nucleation models. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614, and Mujin et al, in revision, Am. Min.
Vo, Evanly; Zhuang, Ziqing
2015-01-01
Carbon nanotubes (CNTs) are currently used in numerous industrial and biomedical applications. Recent studies suggest that workers may be at risk of adverse health effects if they are exposed to CNTs. A National Institute for Occupational Safety and Health (NIOSH) survey of the carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection. Elastomeric half-mask respirators and filtering facepiece respirators (FFRs) are commonly used. Although numerous respirator filtration studies have been done with surrogate engineered nanoparticles, such as sodium chloride, penetration data from engineered nanoparticles such as CNTs are lacking. The aims of this study were to develop a new CNT aerosol respirator testing system and to determine multi-walled CNT (MWCNT) penetration through FFRs. A custom-designed CNT aerosol respirator testing system (CNT-ARTS) was developed which was capable of producing a sufficient amount of airborne MWCNTs for testing of high efficiency FFRs. The size distribution of airborne MWCNTs was 20–10,000 nm, with 99% of the particles between 25 and 2840 nm. The count median diameter (CMD) was 209 nm with a geometric standard deviation (GSD) of 1.98. This particle size range is similar to those found in some work environments (particles ≤6000 nm). The penetration of MWCNTs through six tested FFR models at two constant flow rates of 30 and 85 LPM was determined. Penetration at 85 LPM (0.58–2.04% for N95, 0.15–0.32% for N99, and 0.007–0.009% for P100 FFRs) was greater compared with the values at 30 LPM (0.28–1.79% for N95, 0.10–0.24% for N99, and 0.005–0.006% for P100 FFRs). The most penetrating particle size through all six tested FFR models was found to be in the range of 25–130 nm and 35–200 nm for the 30-LPM and 85-LPM flow rates, respectively. PMID:26166842
S-Layer Architectures: Extending the Morphogenetic Potential of S-Layer Protein Self Assembly
2012-07-11
virus capsids (typically 30 to 100nm in diameter) or hollow (apo) ferritin (12 nm in diameter) S...R., Sleytr, U.B., Pum, D. J. Biol. Chem. 2011, 286, 27416-27424 30. Sára, M. Trends Microbiol. 2001, 9, 47-‐49. 31. Sára
Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirahara, Kaori; Bandow, Shunji; Kociak, Mathieu
2006-05-15
Structural correlation between two adjacent graphitic layers in double-wall carbon nanotubes (DWNTs) was systematically examined by using electron diffraction. Chiral angles and tube diameters were carefully measured, and the chiral indices of individual DWNTs were accurately determined. As a result, it was found that the interlayer distances of DWNTs were widely distributed in the range between 0.34 and 0.38 nm. Chiralities of the inner and outer tubes tended to be distributed at higher chiral angles, approaching 30 deg., for the tubes with diameter D<{approx}3 nm. On the other hand, for the tubes with D>{approx}3 nm, the chiral angles were widelymore » distributed, covering the chiral map entirely. Therefore, we consider that tubes with small diameters have a tendency to form armchair type. Correlation of chiralities between the inner and outer tubes was found to be random.« less
Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire
Adam, Tijjani; U, Hashim
2014-01-01
An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FESEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis. PMID:25237290
Fabrication and transport property of artificial structure of CNTs using SPM nano-manipulation
NASA Astrophysics Data System (ADS)
Maejima, K.; Kida, M.; Yaguchi, Y.; Sudo, K.; Kawamura, T.; Morimoto, T.; Aoki, N.; Ochiai, Y.
2007-04-01
We have established a novel manipulation technique using a glass-micro capillary under a high-resolution CCD microscope so far. Two isolated multi-wall carbon nanotubes (MWNTs) are settled to form a well-aligned cross structure. Recently, we have tried to develop a fine manipulation system using a scanning probe microscope with a silicon cantilever. Therefore, thinner high-quality MWNTs (˜10 nm in diameter) can be utilized in this system. At the junction, we have observed weak localization and Fano-like-effect, zero bias anomaly whose traces were visible even at room temperature with thick MWNTs (˜100 nm in diameter). On the other hand, with thinner high-quality MWNTs (˜10 nm in diameter), we have observed also anomalous I-V characteristic and Altshuler-Aronov-Spivak-like magneto-oscillations at low temperature in the nano-space transport.
Silicon crystallization in nanodot arrays organized by block copolymer lithography
NASA Astrophysics Data System (ADS)
Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard
2014-12-01
Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.
Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film.
Zhang, Lei; Gu, Fuxing; Lou, Jingyi; Yin, Xuefeng; Tong, Limin
2008-08-18
A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9-94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.
Effects of Geometric Variations on Lift Augmentation of Simple-plenum-chamber Ground-effect Models
NASA Technical Reports Server (NTRS)
Davenport, Edwin E.
1961-01-01
Considerable interest has been shown during recent years in ground-effect vehicles. Of the various types proposed, the simple-plenum-chamber vehicle has indicated promise because, although the lift augmentation obtainable appears to be less than that of an annular jet, it may be somewhat less complicated structurally. The present investigation was undertaken to study the effects of some geometric variations upon lift augmentation of a simple plenum chamber within ground proximity. The variables included the ratio inlet area to exit area, plenum-chamber depth, and entrance configuration. An optimum plenum-chamber depth appeared to be between 3 and 10 percent of the plenum-chamber diameter with a ratio of inlet diameter to plenum-chamber diameter of 0.15 for the range of plenum-chamber depths investigated. The most important effect of multiple inlets was the elimination of negative lift augmentation, which was experienced with single sharp-edged inlets, at intermediate heights. Installation of a flared inlet and a turning-vane assembly improved lift augmentation of a single-inlet configuration at intermediate heights.
Interactions and reversal-field memory in complex magnetic nanowire arrays
NASA Astrophysics Data System (ADS)
Rotaru, Aurelian; Lim, Jin-Hee; Lenormand, Denny; Diaconu, Andrei; Wiley, John. B.; Postolache, Petronel; Stancu, Alexandru; Spinu, Leonard
2011-10-01
Interactions and magnetization reversal of Ni nanowire arrays have been investigated by the first-order reversal curve (FORC) method. Several series of samples with controlled spatial distribution were considered including simple wires of different lengths and diameters (70 and 110 nm) and complex wires with a single modulated diameter along their length. Subtle features of magnetic interactions are revealed through a quantitative analysis of the local interaction field profile distributions obtained from the FORC method. In addition, the FORC analysis indicates that the nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters indicative of a reversal-field memory effect.
Correlation between size distribution and luminescence properties of spool-shaped InAs quantum dots
NASA Astrophysics Data System (ADS)
Xie, H.; Prioli, R.; Torelly, G.; Liu, H.; Fischer, A. M.; Jakomin, R.; Mourão, R.; Kawabata, R.; Pires, M. P.; Souza, P. L.; Ponce, F. A.
2017-05-01
InAs QDs embedded in an AlGaAs matrix have been produced by MOVPE with a partial capping and annealing technique to achieve controllable QD energy levels that could be useful for solar cell applications. The resulted spool-shaped QDs are around 5 nm in height and have a log-normal diameter distribution, which is observed by TEM to range from 5 to 15 nm. Two photoluminescence peaks associated with QD emission are attributed to the ground and the first excited states transitions. The luminescence peak width is correlated with the distribution of QD diameters through the diameter dependent QD energy levels.
Polymer nanoimprinting using an anodized aluminum mold for structural coloration
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.
2015-06-01
Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
Kocbach, Anette; Li, Yanjun; Yttri, Karl E; Cassee, Flemming R; Schwarze, Per E; Namork, Ellen
2006-01-01
Background Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry. Methods Vehicle exhaust particles were collected in a road tunnel during two seasons, with and without use of studded tires, whereas wood smoke was collected from a stove with single-stage combustion. Additionally, a reference diesel sample (SRM 2975) was analysed. The samples were characterised using transmission electron microscopy techniques (TEM/HRTEM, EELS and SAED). Furthermore, the elemental and organic carbon fractions were quantified using thermal optical transmission analysis and the content of selected PAHs was determined by gas chromatography-mass spectrometry. Results Carbon aggregates, consisting of tens to thousands of spherical primary particles, were the only combustion particles identified in all samples using TEM. The tunnel samples also contained mineral particles originating from road abrasion. The geometric diameters of primary carbon particles from vehicle exhaust were found to be significantly smaller (24 ± 6 nm) than for wood smoke (31 ± 7 nm). Furthermore, HRTEM showed that primary particles from both sources exhibited a turbostratic microstructure, consisting of concentric carbon layers surrounding several nuclei in vehicle exhaust or a single nucleus in wood smoke. However, no differences were detected in the graphitic character of primary particles from the two sources using SAED and EELS. The total PAH content was higher for combustion particles from wood smoke as compared to vehicle exhaust, whereas no source difference was found for the ratio of organic to total carbon. Conclusion Combustion particles from vehicle exhaust and residential wood smoke differ in primary particle diameter, microstructure, and PAH content. Furthermore, the analysed samples seem suitable for assessing the influence of physicochemical characteristics of particles on biological responses. PMID:16390554
Vortex Mask: Making 80nm contacts with a twist!
NASA Astrophysics Data System (ADS)
Levenson, Marc D.; Dai, Grace; Ebihara, Takeaki
2002-12-01
An optical vortex has a phase that spirals like a corkscrew. Since any nonzero optical amplitude must have a well-defined phase, the axis of a vortex (where the phase is undefined) is always dark. Printed in negative resist, lowest order vortices would produce contact holes with 0.2
NASA Astrophysics Data System (ADS)
Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo
2015-05-01
Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.
Replication of the nano-scale mold fabricated with focused ion beam
NASA Astrophysics Data System (ADS)
Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.
2004-12-01
Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.
Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber
NASA Astrophysics Data System (ADS)
Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2016-12-01
We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.
Transition of carbon nanostructures in heptane diffusion flames
NASA Astrophysics Data System (ADS)
Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui
2017-02-01
The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.
Self-assembled nanotubes from single fluorescent amino acid
NASA Astrophysics Data System (ADS)
Babar, Dipak Gorakh; Sarkar, Sabyasachi
2017-04-01
Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having 200 nm inner diameter and those from tyrosine are having the same around 50 nm diameter.
Silicon Based Colloidal Quantum Dot and Nanotube Lasers
2013-03-01
carrier density is theoretically and experimentally derived to be inversely proportional to the diameter; (b) demonstration of InGaN/ GaN light emitting...diodes and GaN single nanowire photonic crystal laser on silicon characterized by a lasing transition at λ=371.3 nm with a linewidth of 0.55 nm. The...derived to be inversely proportional to the diameter; (b) demonstration of InGaN/ GaN light emitting diodes and GaN single nanowire photonic crystal
NASA Astrophysics Data System (ADS)
Tripathi, S. N.; Thamban, N.
2017-12-01
Indo-Gangetic Plain (IGP) is one of the most populated and polluted regions in northern India. Even though IGP is a well-known "absorbing aerosol hotspot", information of BC mixing state in IGP is mostly unknown. Our calculation on size resolved mixing state in IGP shown that the mixing state of BC changes with the core diameter of BC. The majority of BC particle were thickly coated ( 80%) at lower diameter (75-125 nm) and the externally mixed BC fraction was gradually increased at higher core diameter of BC (125-250 nm). The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6% for a BC core diameter of 70 to 450 nm, indicating that a large fraction of BC particles was internally mixed in IGP. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. A positive correlation between the fTCBC and the mass absorption cross-section at 781nm (MAC781) was also observed (r=0.58). Our results identify that the observed fTCBC in IGP could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing.
NASA Astrophysics Data System (ADS)
Bradshaw, Craig R.; Kemp, Greg; Orosz, Joe; Groll, Eckhard A.
2017-08-01
An improvement to the design process of the rotating spool compressor is presented. This improvement utilizes a comprehensive model to explore two working uids (R410A and R134a), various displaced volumes, at a variety of geometric parameters. The geometric parameters explored consists of eccentricity ratio and length-to-diameter ratio. The eccentricity ratio is varied between 0.81 and 0.92 and the length-to-diameter ratio is varied between 0.4 and 3. The key tradeoffs are evaluated and the results show that there is an optimum eccentricity and length-to-diameter ratio, which will maximize the model predicted performance, that is unique to a particular uid and displaced volume. For R410A, the modeling tool predicts that the overall isentropic efficiency will optimize at a length-to-diameter ratio that is lower than for R134a. Additionally, the tool predicts that as the displaced volume increases the overall isentropic efficiency will increase and the ideal length-to-diameter ratio will shift. The result from this study are utilized to develop a basic design for a 141 kW (40 tonsR) capacity prototype spool compressor for light-commercial air-conditioning applications. Results from a prototype compressor constructed based on these efforts is presented. The volumetric efficiency predictions are found to be very accurate with the overall isentropic efficiency predictions shown to be slightly over-predicted.
Spin Polarization and Quantum Spins in Au Nanoparticles
Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Li, Wen-Hsien
2013-01-01
The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter. PMID:23989607
Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.
2009-03-01
Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.
NASA Astrophysics Data System (ADS)
Koizumi, Hiroshi; Watabe, Junya; Sugiyama, Shin; Hirabayashi, Hideaki; Homma, Tetsuya
2018-06-01
The effect of the sintering temperature of Ce3+-doped Lu3Al5O12 (Ce-LuAG) phosphors on the emission and properties of the crystal structure was studied. A cathodoluminescence peak at 317 nm, which was assigned to lattice defects, was exhibited in addition to emission peaks at 508 and 540 nm for the Ce-LuAG phosphors. The intensities of the 317 nm emission peak for the phosphors with mean particle diameters of 5.0 and 10.0 µm formed at a low sintering temperature of 1430 °C were higher than those for the phosphors with mean particle diameters of 18.0 and 20.5 µm formed at a high sintering temperature of 1550 °C. In contrast, the electroluminescence spectra for fabricated white-light-emitting diodes (LEDs) using the phosphors revealed that the intensity of the peak at 540 nm was strong for the mean particle diameters of 18.0 and 20.5 µm. The intensity of the 540 nm peak, which is attributed to the 4f→5d transition of the Ce3+ activator, showed a dependence on the sintering temperature. The relationship between the optical properties and the lattice defects is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Berkmans, A.; Jagannatham, M.; Priyanka, S.
Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode containsmore » ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.« less
Robinson, Colin; Connell, Simon D.
2017-01-01
Investigations of developing enamel crystals using Atomic and Chemical Force Microscopy (AFM, CFM) have revealed a subunit structure. Subunits were seen in height images as collinear swellings about 30 nM in diameter on crystal surfaces. In friction mode they were visible as positive regions. These were similar in size (30–50 nM) to collinear spherical structures, presumably mineral matrix complexes, seen in developing enamel using a freeze fracturing/freeze etching procedure. More detailed AFM studies on mature enamel suggested that the 30–50 nM structures were composed of smaller units, ~10–15 nM in diameter. These were clustered in hexagonal or perhaps a spiral arrangement. It was suggested that these could be the imprints of initiation sites for mineral precipitation. The investigation aimed at examining original freeze etched images at high resolution to see if the smaller subunits observed using AFM in mature enamel were also present in developing enamel i.e., before loss of the organic matrix. The method used was freeze etching. Briefly samples of developing rat enamel were rapidly frozen, fractured under vacuum, and ice sublimed from the fractured surface. The fractured surface was shadowed with platinum or gold and the metal replica subjected to high resolution TEM. For AFM studies high-resolution tapping mode imaging of human mature enamel sections was performed in air under ambient conditions at a point midway between the cusp and the cervical margin. Both AFM and freeze etch studies showed structures 30–50 nM in diameter. AFM indicated that these may be clusters of somewhat smaller structures ~10–15 nM maybe hexagonally or spirally arranged. High resolution freeze etching images of very early enamel showed ~30–50 nM spherical structures in a disordered arrangement. No smaller units at 10–15 nM were clearly seen. However, when linear arrangements of 30–50 nM units were visible the picture was more complex but also smaller units including ~10–15 nM units could be observed. Conclusions: Structures ~10–15 nM in diameter were detected in developing enamel. While the appearance was complex, these were most evident when the 30–5 nM structures were in linear arrays. Formation of linear arrays of subunits may be associated with the development of mineral initiation sites and attendant processing of matrix proteins. PMID:28670283
Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method
NASA Astrophysics Data System (ADS)
Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul
2011-06-01
Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b
Knot, Harm J; Standen, Nicholas B; Nelson, Mark T
1998-01-01
The effects of inhibitors of ryanodine-sensitive calcium release (RyR) channels in the sarcoplasmic reticulum (SR) and Ca2+-dependent potassium (KCa) channels on the membrane potential, intracellular [Ca2+], and diameters of small pressurized (60 mmHg) cerebral arteries (100–200 μm) were studied using digital fluorescence video imaging of arterial diameter and wall [Ca2+], combined with microelectrode measurements of arterial membrane potential. Ryanodine (10 μm), an inhibitor of RyR channels, depolarized by 9 mV, increased intracellular [Ca2+] by 46 nm and constricted pressurized (to 60 mmHg) arteries with myogenic tone by 44 μm (∼22 %). Iberiotoxin (100 nm), a blocker of KCa channels, under the same conditions, depolarized the arteries by 10 mV, increased arterial wall calcium by 51 nm, and constricted by 37 μm (∼19 %). The effects of ryanodine and iberiotoxin were not additive and were blocked by inhibitors of voltage-dependent Ca2+ channels. Caffeine (10 mm), an activator of RyR channels, transiently increased arterial wall [Ca2+] by 136 ± 9 nm in control arteries and by 158 ± 12 nm in the presence of iberiotoxin. Caffeine was relatively ineffective in the presence of ryanodine, increasing [calcium] by 18 ± 5 nm. In the presence of blockers of voltage-dependent Ca2+ channels (nimodipine, diltiazem), ryanodine and inhibitors of the SR calcium ATPase (thapsigargin, cyclopiazonic acid) were without effect on arterial wall [Ca2+] and diameter. These results suggest that local Ca2+ release originating from RyR channels (Ca2+ sparks) in the SR of arterial smooth muscle regulates myogenic tone in cerebral arteries solely through activation of KCa channels, which regulate membrane potential through tonic hyperpolarization, thus limiting Ca2+ entry through L-type voltage-dependent Ca2+ channels. KCa channels therefore act as a negative feedback control element regulating arterial diameter through a reduction in global intracellular free [Ca2+]. PMID:9490841
NASA Astrophysics Data System (ADS)
Huang, Hailong; Xia, Hui; Xie, Wenke; Guo, Zhibo; Li, Hongjian
2018-06-01
A size-efficient tunable metamaterial absorber (MA) composed of metallic leaf-shaped cell, graphene layer, silicon substrate, and bottom metal film is investigated theoretically and numerically at near-infrared (NIR) regions. Simulation results reveal that the single-band high absorption of 91.9% is obtained at 1268.7 nm. Further results show that the single-band can be simply changed into dual-band high absorption by varying the geometric parameters of top metallic layer at same wavelength regions, yielding two high absorption coefficients of 96.6% and 95.3% at the wavelengths of 1158.7 nm and 1323.6 nm, respectively. And the effect of related geometric parameter on dual-band absorption intensities is also investigated to obtain the optimized one. The peak wavelength can be tuned via modifying the Fermi energy of the graphene layer through controlling the external gate voltage. The work shows that the proposed strategy can be applied to other design of the dual-band structure at infrared regions.
Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T
2016-10-01
Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Ultraviolet Spectroscopy of Asteroid(4) Vesta
NASA Technical Reports Server (NTRS)
Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.
2011-01-01
We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations
NASA Astrophysics Data System (ADS)
Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I.
2017-08-01
In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.
Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin
2013-01-01
Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA
2012-04-17
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Wavelength Independent Optical Microscopy and Lithography
1987-10-31
methods have been used in the past to fabricate the submicron apertures needed in near-field microscopy (2-4). However, under this contract we developed an...screens. Durig, et al. (4) in Zurich produced apertures at the tip of a single crystal of quartz etched using HF to make a fine point and covered...stage pulling process was used . Scanning electron li __ NO iI |06 j JlliM ° wm ..... 3 micrographs of a 100nm diameter pipette and a 500nm diameter
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E
2014-04-15
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Growth of High-Quality Carbon Nanotudes on Free-Standing Diamond Substrates (Postprint)
2010-03-01
thickness and consisting of 20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor, Transmission electron microscopy...multi walled CNTs forming a mat of 5 lm thickness and consisting of 20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2...desired devices. For example, chip cooling with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal
High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure.
Zhou, Guorui; Wu, Qiang; Kumar, Rahul; Ng, Wai Pang; Liu, Hao; Niu, Longfei; Lalam, Nageswara; Yuan, Xiaodong; Semenova, Yuliya; Farrell, Gerald; Yuan, Jinhui; Yu, Chongxiu; Zeng, Jie; Tian, Gui Yun; Fu, Yong Qing
2017-06-16
A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38.
2014-01-01
A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications. PMID:25170326
Gas adsorption and capillary condensation in nanoporous alumina films.
Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K
2008-08-06
Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.
Iron-dextran complex: geometrical structure and magneto-optical features.
Graczykowski, Bartłomiej; Dobek, Andrzej
2011-11-15
Molecular mass of the iron-dextran complex (M(w)=1133 kDa), diameter of its particles (∼8.3 nm) and the content of iron ions in the complex core (N(Fe)=6360) were determined by static light scattering, measurements of refractive index increment and the Cotton-Mouton effect in solution. The known number of iron ions permitted the calculation of the permanent magnetic dipole moment value to be μ(Fe)=3.17×10(-18) erg Oe(-1) and the determination of anisotropy of linear magneto-optical polarizabilities components as Δχ=9.2×10(-21) cm(3). Knowing both values and the value of the mean linear optical polarizability α=7.3×10(-20) cm(3), it was possible to show that the total measured CM effect was due to the reorientation of the permanent and the induced magnetic dipole moments of the complex. Analysis of the measured magneto-optical birefringence indicated very small optical anisotropy of linear optical polarizability components, κ(α), which suggested a homogeneous structure of particles of spherical symmetry. Copyright © 2011 Elsevier Inc. All rights reserved.
Magnetic nanorings and manipulation of nanowires
NASA Astrophysics Data System (ADS)
Chien, C. L.
2006-03-01
The properties of nanoscale entities, such as nanorings and nanowires, and the response of such entities to external fields are dictated by their geometrical shapes and sizes, which can be manipulated by fabrication. We have developed a method for fabricating a large number of nanorings (10^10) of different sizes in the range of 100 nm and ring cross sections. During magnetic reversal, both the vortex state and the rotating onion state appear with different proportions, which depend on the ring diameter, ring cross section, and the profile of the ring cross section. In the case of nanowires in suspension, the large aspect ratio of the nanowires can be exploited for manipulation despite extremely small Reynolds numbers of 10-5. Using AC electric field applied to microelectrodes, both magnetic and non-magnetic nanowires can be efficiently assembled into desired patterns. We also demonstrate rotation of nanowires with precisely controlled rotation speed and chirality, as well as an electrically driven nanowire micromotor a few in size. In collaboration with F. Q. Zhu, D. L. Fan, O. Tchernyshyov, R. C. Cammarata (Johns Hopkins University) and X. C. Zhu and J. G. Zhu (Carnegie-Mellon University).
Control of both particle and pore size in nanoporous palladium alloy powders
Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; ...
2014-07-15
Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less
NASA Astrophysics Data System (ADS)
Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.
2004-09-01
Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.
Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M
2004-09-01
Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.
NASA Astrophysics Data System (ADS)
Raviolo, Sofía; Tejo, Felipe; Bajales, Noelia; Escrig, Juan
2018-01-01
In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d = 40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d = 100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications.
Time-dependent preparation of gelatin-stabilized silver nanoparticles by pulsed Nd:YAG laser
NASA Astrophysics Data System (ADS)
Darroudi, Majid; Ahmad, M. B.; Zamiri, Reza; Abdullah, A. H.; Ibrahim, N. A.; Sadrolhosseini, A. R.
2011-03-01
Colloidal silver nanoparticles (Ag-NPs) were successfully prepared using a nanosecond pulsed Nd:YAG laser, λ = 1064 nm, with laser fluence of approximately about 360 mJ/pulse, in an aqueous gelatin solution. In this work, gelatin was used as a stabilizer, and the size and optical absorption properties of samples were studied as a function of the laser ablation times. The results from the UV-vis spectroscopy demonstrated that the mean diameter of Ag-NPs decrease as the laser ablation time increases. The Ag-NPs have mean diameters ranging from approximately 10 nm to 16 nm. Compared with other preparation methods, this work is clean, rapid, and simple to use.
NASA Astrophysics Data System (ADS)
Fujisawa, Hironori; Kuwamoto, Kei; Nakashima, Seiji; Shimizu, Masaru
2016-02-01
HfO2-based thin films are one of the key dielectric and ferroelectric materials in Si-CMOS LSIs as well as in oxide electronic nanodevices. In this study, we demonstrated the fabrication of a ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire (NW) capacitor structure solely by metalorganic chemical vapor deposition (MOCVD). 15-nm-thick dielectric (Hf,Zr)O2 and 40-nm-thick top ZnO electrode layers were uniformly grown by MOCVD on a ZnO NW template with average diameter, length, and aspect ratio of 110 nm, 10 µm, and ˜90, respectively. The diameter and aspect ratio of the resultant trilayerd NWs are 200-300 nm and above 30, respectively. The crystalline phase of HfO2 and stacked the structure are also discussed.
Formation of metal clusters in halloysite clay nanotubes
NASA Astrophysics Data System (ADS)
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.
2017-12-01
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
Formation of metal clusters in halloysite clay nanotubes.
Vinokurov, Vladimir A; Stavitskaya, Anna V; Chudakov, Yaroslav A; Ivanov, Evgenii V; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A; Lvov, Yuri M
2017-01-01
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c .50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation.
Chnafa, C; Bouillot, P; Brina, O; Delattre, B M A; Vargas, M I; Lovblad, K O; Pereira, V M; Steinman, D A
2017-11-01
Vessel lumen calibres and flow rates are thought to be related by mathematical power laws, reflecting the optimization of cardiac versus metabolic work. While these laws have been confirmed indirectly via measurement of branch calibres, there is little data confirming power law relationships of flow distribution to branch calibres at individual bifurcations. Flow rates and diameters of parent and daughter vessels of the internal carotid artery terminal bifurcation were determined, via robust and automated methods, from 4D phase-contrast magnetic resonance imaging and 3D rotational angiography of 31 patients. Junction exponents were 2.06 ± 0.44 for relating parent to daughter branch diameters (geometrical exponent), and 2.45 ± 0.75 for relating daughter branch diameters to their flow division (flow split exponent). These exponents were not significantly different, but showed large inter- and intra-individual variations, and with confidence intervals excluding the theoretical optimum of 3. Power law fits of flow split versus diameter ratio and pooled flow rates versus diameters showed exponents of 2.17 and 1.96, respectively. A significant negative correlation was found between age and the geometrical exponent (r = -0.55, p = 0.003) but not the flow split exponent. We also found a dependence of our results on how lumen diameter is measured, possibly explaining some of the variability in the literature. Our study confirms that, on average, division of flow to the middle and anterior cerebral arteries is related to these vessels' relative calibres via a power law, but it is closer to a square law than a cube law as commonly assumed.
Povilaitis, R Z; Robinson, M S; van der Bogert, C H; Hiesinger, Harald; Meyer, H M; Ostrach, Lillian
2017-01-01
The global population of lunar craters >20 km in diameter was analyzed by Head et al., (2010) to correlate crater distribution with resurfacing events and multiple impactor populations. The work presented here extends the global crater distribution analysis to smaller craters (5–20 km diameters, n = 22,746). Smaller craters form at a higher rate than larger craters and thus add granularity to age estimates of larger units and can reveal smaller and younger areas of resurfacing. An areal density difference map generated by comparing the new dataset with that of Head et al., (2010) shows local deficiencies of 5–20 km diameter craters, which we interpret to be caused by a combination of resurfacing by the Orientale basin, infilling of intercrater plains within the nearside highlands, and partial mare flooding of the Australe region. Chains of 5–30 km diameter secondaries northwest of Orientale and possible 8–22 km diameter basin secondaries within the farside highlands are also distinguishable. Analysis of the new database indicates that craters 57–160 km in diameter across much of the lunar highlands are at or exceed relative crater densities of R = 0.3 or 10% geometric saturation, but nonetheless appear to fit the lunar production function. Combined with the observation that small craters on old surfaces can reach saturation equilibrium at 1% geometric saturation (Xiao and Werner, 2015), this suggests that saturation equilibrium is a size-dependent process, where large craters persist because of their resistance to destruction, degradation, and resurfacing.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
Shintani, Megumi; Yoshida, Ken; Sakuraba, Shun; Nakahara, Masaru; Matubayasi, Nobuyuki
2011-07-28
Motional correlation times between the hydrophilic and hydrophobic terminal groups in lipid membranes are studied over a wide range of curvatures using the solution-state (1)H NMR-nuclear Overhauser effect (NOE) and molecular dynamics (MD) simulation. To enable (1)H NMR-NOE measurements for large vesicles, the transient NOE method is combined with the spin-echo method, and is successfully applied to a micelle of 1-palmitoyl-lysophosphatidylcholine (PaLPC) with diameter of 5 nm and to vesicles of dipalmitoylphosphatidylcholine (DPPC) with diameters ranging from 30 to 800 nm. It is found that the NOE intensity increases with the diameter up to ∼100 nm, and the model membrane is considered planar on the molecular level beyond ∼100 nm. While the NOE between the hydrophilic terminal and hydrophobic terminal methyl groups is absent for the micelle, its intensity is comparable to that for the neighboring group for vesicles with larger diameters. The origin of NOE signals between distant sites is analyzed by MD simulations of PaLPC micelles and DPPC planar bilayers. The slow relaxation is shown to yield an observable NOE signal even for the hydrophilic and hydrophobic terminal sites. Since the information on distance and dynamics cannot be separated in the experimental NOE alone, the correlation time in large vesicles is determined by combining the experimental NOE intensity and MD-based distance distribution. For large vesicles, the correlation time is found to vary by 2 orders of magnitude over the proton sites. This study shows that NOE provides dynamic information on large vesicles when combined with MD, which provides structural information. © 2011 American Chemical Society
Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang
2012-12-21
The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.
Toward Reconciliation of STEM and SAXS Data from Ionomers by Investigating Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Benetatos, Nicholas; Smith, Brian; Heiney, Paul; Winey, Karen
2005-03-01
We have recently pioneered the use of scanning transmission electron microscopy (STEM) for direct, model independent imaging of the nano-scale morphology of ionomers. To date, the sizes of ionic aggregates determined in STEM experiments are inconsistent with SAXS data interpreted by the Yarusso-Cooper model. To address this discrepancy we have investigated a pair of model nanoparticles (11 and 55 atom Au clusters) with both STEM and SAXS. Using this model system we have improved our method of measuring nanometer scale objects and evaluated the importance of STEM probe size and specimen thickness. While the size of the STEM probe was inconsequential, specimen thicker than 50 nm showed significant depreciation of image quality, which limits our ability to accurately measure particle size. SAXS was performed on dilute suspensions of nanoparticles and fit using a monodisperse, hard-sphere form factor model. For Au11, STEM finds a diameter of 1.3 nm + .14 and SAXS finds a diameter of 1.4 nm. Similarly, both STEM and SAXS determine a diameter of 1.7 nm for Au55. Analysis of these model systems have allowed us to evaluate several factors of potential importance in reconciling STEM and SAXS data from ionomers.
Development of magnetic separation system of magnetoliposomes
NASA Astrophysics Data System (ADS)
Nakao, R.; Matuo, Y.; Mishima, F.; Taguchi, T.; Maenosono, S.; Nishijima, S.
2009-10-01
The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe 3O 4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe 3O 4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.
Ouf, F-X; Mocho, V-M; Pontreau, S; Wang, Z; Ferry, D; Yon, J
2015-01-01
For industrial concerns, and more especially for nuclear applications, the characterization of soot is essential for predicting the behaviour of containment barriers in fire conditions. This study deals with the characterization (emission factor, composition, size, morphology, microstructure) of particles produced during thermal degradation of materials found in nuclear facilities (electrical cables, polymers, oil and solvents). Small-scale experiments have been conducted for oxygen concentrations [O2] ranging from 15% to 21% in order to imitate the oxygen depletion encountered during a confined fire. Particles denote distinct shapes, from aggregates composed of monomers with diameters ranging from 31.2 nm to 52.8 nm, to compact nanoparticles with diameters ranging from 15 nm to 400 nm, and their composition strongly depends on fuel type. Despite the organic to total carbon ratio (OC/TC), their properties are poorly influenced by the decrease in [O2]. Finally, two empirical correlations are proposed for predicting the OC/TC ratio and the monomer diameter, respectively, as a function of the fuel's carbon to hydrogen ratio and the emission factor. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Kai-Peng; Fang, Te-Hua; Lin, Ying-Jhin
2018-02-01
In this study, we investigate the mechanical properties of single-crystal copper (Cu) nanopillars. Critical deformation variations of Cu-nanopillared structures are estimated using in situ transmission electron microscopy compression tests and molecular dynamics simulations. The Young’s moduli of Cu nanopillars with diameters of 2-6 nm were 90.20-124.47 GPa. The contact stiffnesses of the Cu nanopillars with diameters of 400 and 500 nm were 1.33 and 3.86 N m-1, respectively; the Poisson’s ratios for these nanopillars were 0.32 and 0.33. The yield strength of the nanopillars varied from 0.25 GPa at 500 nm to 0.42 GPa at 400 nm; the yield strength of single-crystal Cu nanopillars decreased with increasing diameter. The values of the indented hardness of the Cu block were 0.27 and 1.06 GPa, respectively. Through experimental work and molecular dynamics simulations, we demonstrate that Cu nanopillars exhibit internal stress transmission during compression. When compression reaches the maximum strain, it can be observed that Cu slips. Our results are useful for understanding the mechanical properties, contact, and local deformation of Cu nanopillars.
Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue
2014-01-01
Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241
An 8-channel wavelength demultiplexer based on photonic crystal fiber
NASA Astrophysics Data System (ADS)
Malka, Dror
2017-05-01
We propose a novel 8-channel wavelength demultiplexer based on photonic crystal fiber (PCF) structures that operate at 1530nm, 1535nm, 1540nm, 1545nm, 1550nm, 1555nm, 1560nm and 1565nm wavelengths. The new design is based on replacing some air-holes zones with silicon nitride and lithium niobate materials along the PCF axis with optimization of the PCF size. The reason of using these materials is because that each wavelength has a different value of coupling length. Numerical investigations were carried out on the geometrical parameters by using a beam propagation method (BPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565nm) with low crosstalk ((-16.88)-(-15.93) dB) and bandwidth (4.02-4.69nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.
Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer
NASA Astrophysics Data System (ADS)
Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror
2017-06-01
We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jeremy Benjamin
2014-07-01
In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less
NASA Astrophysics Data System (ADS)
Yang, Tung-Lin
The primary cilium is an organelle that serves as a signaling center of the cell and is involved in the hedgehog signaling, cAMP pathway, Wnt pathways, etc. Ciliary function relies on the transportation of molecules between the primary cilium and the cell, which is facilitated by intraflagellar transport (IFT). IFT88, one of the important IFT proteins in complex B, is known to play a role in the formation and maintenance of cilia in various types of organisms. The ciliary transition zone (TZ), which is part of the gating apparatus at the ciliary base, is home to a large number of ciliopathy molecules. Recent studies have identified important regulating elements for TZ gating in cilia. However, the architecture of the TZ region and its arrangement relative to intraflagellar transport (IFT) proteins remain largely unknown, hindering the mechanistic understanding of the regulation processes. One of the major challenges comes from the tiny volume at the ciliary base packed with numerous proteins, with the diameter of the TZ close to the diffraction limit of conventional microscopes. Using a series of stimulated emission depletion (STED) superresolution images mapped to electron microscopy images, we analyzed the structural organization of the ciliary base. Subdiffraction imaging of TZ components defines novel geometric distributions of RPGRIP1L, MKS1, CEP290, TCTN2 and TMEM67, shedding light on their roles in TZ structure, assembly, and function. We found TCTN2 at the outmost periphery of the TZ close to the ciliary membrane, with a 227+/-18 nm diameter. TMEM67 was adjacent to TCTN2, with a 205+/-20 nm diameter. RPGRIP1L was localized toward the axoneme at the same axial level as TCTN2 and TMEM67, with a 165+/-8 nm diameter. MKS1 was situated between TMEM67 and RPGRIP1L, with an 186+/-21 nm diameter. Surprisingly, CEP290 was localized at the proximal side of the TZ close to the distal end of the centrin-labeled basal body. The lateral width was unexpectedly close to the width of the basal body, distant from the potential Y-links region of the TZ. Moreover, IFT88 was intriguingly distributed in two distinct patterns, forming three puncta or a Y shape at the ciliary base found in human retinal pigment epithelial cells (RPE), human fibroblasts (HFF), mouse inner medullary collecting duct (IMCD) cells and mouse embryonic fibroblasts (MEFs). We hypothesize that the two distribution states of IFT88 correspond to the open and closed gating states of the TZ, where IFT particles aggregate to form three puncta when the gate is closed, and move to form the branches of the Y-shape pattern when the gate is open. Two reservoirs of IFT particles, correlating with phases of ciliary growth, were localized relative to the internal structure of the TZ. These subdiffraction images reveal unprecedented architectural details of the TZ, providing a basic structural framework for future functional studies. To visualize the dynamic movement of IFT particles within primary cilia, we further conducted superresolution live-cell imaging of IFT88 fused to EYFP in IMCD cells. Our findings, in particular, show IFT88 particles pass through the TZ at a reduced speed by approximately 50%, implying the gating mechanism is involved at this region to slow down IFT trafficking. Finally, we report the distinct transport pathways of IFT88 and Smo (Smoothened), an essential player to hedgehog signaling, to support our hypothesis that two proteins are transported in different mechanisms at the ciliary base, based on dual-color superresolution imaging.
Electronic transport behavior of diameter-graded Ag nanowires
NASA Astrophysics Data System (ADS)
Wang, Xue Wei; Yuan, Zhi Hao
2010-05-01
Ag nanowires with a graded diameter in anodic aluminum oxide (AAO) membranes were fabricated by the direct-current electrodeposition. The Ag nanowires have a graded-change in diameter from 8 to 32 nm, which is matched with the graded-change of the AAO pore diameter. Electronic transport measurements show that there is a transport behavior similar to that of a metal-semiconductor junction along the axial direction in the diameter-graded Ag nanowires. Such a novel homogeneous nanojunction will be of great fundamental and practical significance.
Search for solar neutrons using NM-64 equipment
NASA Technical Reports Server (NTRS)
Martinic, N. J.; Reguerin, A.; Palenque, E.; Taquichiri, M. A.; Wada, M.; Inoue, A.; Takahashi, K.
1985-01-01
Two years (1980 to 1982) neutron monitor data from the Chacaltaya (geographic coordinates: N16.32 deg W68. 15 deg; cutoff rigidity: 13.1 GV; altitude: 5,300 m a.s.l.) station has been scanned; the sampling time of the 12NM-64 neutron monitor is 5 min. The nucleonic component increases have been correlated with 66 hard X-, gamma rays satellite data from solar origin, as reported by several groups. Typical neutron monitor time profiles of the events are presented. Chree-analysis was performed discriminating the events according to its solar coordinates. Ground data from solar limb locii are more enhanced at the time of the onset than other geometrically visible flares. Chree histograms of neutron monitor output profiles are also presented from geometrically invisible events from the Chacaltaya station.
Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia
2014-01-01
We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286
Cryo-transmission electron tomography of native casein micelles from bovine milk
Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.
2013-01-01
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067
Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering.
Aragon, Javier; Navascues, Nuria; Mendoza, Gracia; Irusta, Silvia
2017-06-15
Core-shell polycaprolactone/polycaprolactone (PCL/PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) electrospun fibers loaded with synthesized nanohydroxyapatite (HAn) were lased treated to create microporosity. The prepared materials were characterized by XRD, FTIR, TEM and SEM. Uniform and randomly oriented beadless fibrous structures were obtained in all cases. Fibers diameters were in the 150-300nm range. Needle-like HAn nanoparticles with mean diameters of 20nm and length of approximately 150nm were mostly encase inside the fibers. Laser treated materials present micropores with diameters in the range 70-120μm for PCL-HAn/PCL fibers and in the 50-90μm range for PCL-HAn/PVAC material. Only samples containing HAn presented bioactivity after incubation during 30days in simulated body fluid. All scaffolds presented high viability, very low mortality, and human osteoblast proliferation. Biocompatibility was increased by laser treatment due to the surface and porosity modification. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi
2018-03-01
Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.
Keshavarz, M; Mojra, A
2015-05-01
Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. Copyright © 2015 John Wiley & Sons, Ltd.
A 100 electrode intracortical array: structural variability.
Campbell, P K; Jones, K E; Normann, R A
1990-01-01
A technique has been developed for fabricating three dimensional "hair brush" electrode arrays from monocrystalline silicon blocks. Arrays consist of a square pattern of 100 penetrating electrodes, with 400 microns interelectrode spacing. Each electrode is 1.5mm in length and tapers from about 100 microns at its base to a sharp point at the tip. The tips of each electrode are coated with platinum and the entire structure, with the exception of the tips, is insulated with polyimide. Electrical connection to selected electrodes is made by wire bonding polyimide insulated 25 microns diameter gold lead wires to bonding pads on the rear surface of the array. As the geometrical characteristics of the electrodes in such an aray will influence their electrical properties (such as impedance, capacitance, spreading resistance in an electrolyte, etc.) it is desirable that such an array have minimal variability in geometry from electrode to electrode. A study was performed to determine the geometrical variability resulting from our micromachining techniques. Measurements of the diameter of each of the 100 electrodes were made at various planes above the silicon substrate of the array. For the array that was measured, the standard deviation of the diameters was approximately 9% of the mean diameter near the tip, 8% near the middle, and 6% near the base. We describe fabrication techniques which should further reduce these variabilities.
NASA Astrophysics Data System (ADS)
Bandura, Andrei V.; Evarestov, Robert A.; Lukyanov, Sergey I.; Piskunov, Sergei; Zhukovskii, Yuri F.
2017-08-01
Morphologically reproducible wurtzite-structured zinc oxide nanowires (ZnO NWs) can be synthesized by different methods. Since ZnO NWs have been found to possess piezoelectricity, a comprehensive study of their mechanical properties, e.g. deformations caused by external compression or stretching, is one of the actual tasks of this paper. We have calculated wurtzite-structured [0 0 0 1]-oriented ZnO NWs whose diameters have been varied within 1-5 nm and 1-20 nm ranges when using either ab initio (hybrid DFT-LCAO) or force-field (molecular mechanical) methods, respectively (the minimum diameter d NW of experimentally synthesized NWs has been estimated on average to be ~20 nm). When using both chosen calculation approaches, the values of Young’s moduli determined for the mentioned ranges of NW diameters have been found to be qualitatively compatible (168-169 GPa for 5 nm NW thickness), whereas results of molecular mechanical simulations on Y NW for 20 nm-thick NWs (160-162 GPa) have been qualitatively comparable with those experimentally measured along the [0 0 0 1] direction of NW loading. In all the cases, a gradual increase of the NW diameter has resulted in an asymptotic decrease of Young’s modulus consequently approaching that (Y b) of wurtzite-structured ZnO bulk along its [0 0 0 1] axis. The novelty of this study is that we combine the computation methods of quantum chemistry and molecular mechanics, while the majority of previous studies with the same aim have focused on the application of different classical molecular dynamical methods.
SU-F-T-304: Complex Multi-PTV Treatment Evaluation Using a Remotely Processed 3D Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoisak, J; Dragojevic, I; Sutlief, S
Purpose: A new 3D gel dosimeter (ClearView™, Modus Medical Systems) was investigated for use as a QA tool for stereotactic radiosurgery (SRS) plans exhibiting high dose gradients and spatially separated treatment targets. The unique feature of this gel dosimeter is the remote processing service provided by Modus Medical Systems. Methods: The gel dosimeters were filled in either 10 cm diameter or 15 cm diameter clear plastic jars. The jars were then shipped in ice-cooled containers to our department for irradiation. Clinical SRS plans for treatment of multiple metastases and plans with simulated concave structures were applied to a CT scanmore » of the gel dosimeter. The gel was irradiated in treatment position using modulated arcs and then returned in the cooled container for processing. The 3D gel dose was compared to the DICOM-RT dose from the treatment plan to assess dosimetric and geometric agreement. Results: There was no discernible difference between the planned and measured dose for dose gradients as high as 10%/mm, which was the highest gradient we evaluated. Geometric agreement for distant metastases separated by 6 cm was within 1.5 mm. Among three identically irradiated gels using a plan intended for nine metastases, the 3%/3mm gamma passing rate was 84.5% with a range of 14.7%, measured over the entire volume of the dosimeter. Regions of larger gamma values correlated with geometric offsets between the planned and measured data. Conclusion: The gel dosimeter exhibits the dosimetric and geometric characteristics necessary for 3D evaluation of treatment plan deliverability. The range of observed gamma passing rates suggests a high sensitivity to geometric registration. With proper management of geometric registration between planned and measured data, this service should enable a radiation oncology department to use 3D dosimetry in end-to-end testing or patient plan delivery QA without the expense of an in-house processing system.« less
Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.
Ye, Jianglin; Wu, Shuilin; Ni, Kun; Tan, Ziqi; Xu, Jin; Tao, Zhuchen; Zhu, Yanwu
2017-07-19
While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO 2 , and H 2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.
2016-01-01
Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated. PMID:26876009
Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation.
Doyle, Matthew G; Crawford, Sean A; Osman, Elrasheed; Eisenberg, Naomi; Tse, Leonard W; Amon, Cristina H; Forbes, Thomas L
2018-04-01
A complication of fenestrated endovascular aneurysm repair is the potential for stent graft rotation during deployment causing fenestration misalignment and branch artery occlusion. The objective of this study is to demonstrate that this rotation is caused by a buildup of rotational energy as the device is delivered through the iliac arteries and to quantify iliac artery geometric properties associated with device rotation. A retrospective clinical study was undertaken in which iliac artery geometric properties were assessed from preoperative imaging for 42 cases divided into 2 groups: 27 in the nonrotation group and 15 in the rotation group. Preoperative computed tomography scans were segmented, and the iliac artery centerlines were determined. Iliac artery tortuosity, curvature, torsion, and diameter were calculated from the centerline and the segmented vessel geometry. The total iliac artery net torsion was found to be higher in the rotation group compared to the nonrotation group (23.5 ± 14.7 vs 14.6 ± 12.8 mm -1 ; P = .05). No statistically significant differences were found for the mean values of tortuosity, curvature, torsion, or diameter between the 2 groups. Stent graft rotation occurred in 36% of the cases considered in this study. Cases with high iliac artery total net torsion were found to be more likely to have stent graft rotation upon deployment. This retrospective study provides a framework for prospectively studying the influence of iliac artery geometric properties on fenestrated stent graft rotation.
Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors
NASA Astrophysics Data System (ADS)
Wang, Shunqiang; Wan, Yuan; Liu, Yaling
2014-10-01
While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f
Geometric optimization of an active magnetic regenerative refrigerator via second-law analysis
NASA Astrophysics Data System (ADS)
Li, Peng; Gong, Maoqiong; Wu, Jianfeng
2008-11-01
Previous analyses [Z. Yan and J. Chen, J. Appl. Phys. 72, 1 (1992); J. Chen and Z. Yan, ibid., 84, 1791 (1998); Lin et al., Physica B 344, 147 (2004); Yang et al., ibid., 364, 33 (2005); Xia et al., ibid., 381, 246 (2006).] of irreversibilities in magnetic refrigerators overlooked several important losses that could be dominant in a real active magnetic regenerative refrigerator (AMRR). No quantitative expressions have been provided yet to estimate the corresponding entropy generations in real AMRRs. The important geometric parameters of AMRRs, such as the aspect ratio of the active magnetic regenerator and the refrigerant diameter, are still arbitrarily chosen. Expressions for calculating different types of entropy generations in the AMRR were derived and used to optimize the aspect ratio and the refrigerant diameter. An optimal coefficient of performance (15.54) was achieved at an aspect ratio of 6.39 and a refrigerant diameter of 1.1mm for our current system. Further study showed that the dissipative sources (e.g., the fluid friction and the unbalanced magnetic forces) in AMRRs, which were overlooked by previous investigations, could significantly contribute to entropy generations.
Welch, William R W; Piri, Mohammad
2016-01-01
Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.
Optical and Nanoparticle Analysis of Normal and Cancer Cells by Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Szajko, John; Sander, Christopher; Rebuyon, Roland; Easton, Judah; Tanner, Carol; Ruggiero, Steven
2015-03-01
We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for intra-cellular material (lysates) in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000 nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of approximately 50 to 250 nm. Especially significant is a clearly higher density of particles at about 100 nm and smaller for normal cells. Department of Physics, Harper Cancer Research Institute, and the Office of Research at the University of Notre Dame.
Visualizing viral transport and host infection
NASA Astrophysics Data System (ADS)
Son, Kwangmin; Guasto, Jeffrey; Cubillos-Ruiz, Andres; Sullivan, Matthew; Stocker, Roman; MIT Team
2013-11-01
A virus is a non-motile infectious agent that can only replicate inside a living host. They consist of a <100 nm diameter capsid which houses their DNA, and a <20 nm diameter tail used to inject DNA to the host, which are classified into three different morphologies by the tail type: short tail (~ 10 nm, podovirus), rigid contractile tail (~ 100 nm, myovirus), or flexible noncontractile tail (~ 300 nm, siphovirus). Combining microfluidics with epifluorescent microscopy, we studied the simultaneous diffusive transport governing the initial encounter and ultimately the infection of a non-motile cyanobacteria host (~ 1 μm prochlorococcus) and their viral (phage) counterparts in real time. This methodology allows us to quantify the virus-host encounter/adsorption dynamics and subsequently the effectiveness of various tail morphologies for viral infection. Viral transport and the role of viral morphology in host-virus interactions are critical to our understanding of both ecosystem dynamics and human health, as well as to the evolution of virus morphology.
Geometrical Calibration of the Photo-Spectral System and Digital Maps Retrieval
NASA Astrophysics Data System (ADS)
Bruchkouskaya, S.; Skachkova, A.; Katkovski, L.; Martinov, A.
2013-12-01
Imaging systems for remote sensing of the Earth are required to demonstrate high metric accuracy of the picture which can be provided through preliminary geometrical calibration of optical systems. Being defined as a result of the geometrical calibration, parameters of internal and external orientation of the cameras are needed while solving such problems of image processing, as orthotransformation, geometrical correction, geographical coordinate fixing, scale adjustment and image registration from various channels and cameras, creation of image mosaics of filmed territories, and determination of geometrical characteristics of objects in the images. The geometrical calibration also helps to eliminate image deformations arising due to manufacturing defects and errors in installation of camera elements and photo receiving matrices as well as those resulted from lens distortions. A Photo-Spectral System (PhSS), which is intended for registering reflected radiation spectra of underlying surfaces in a wavelength range from 350 nm to 1050 nm and recording images of high spatial resolution, has been developed at the A.N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. The PhSS has undergone flight tests over the territory of Belarus onboard the Antonov AN-2 aircraft with the aim to obtain visible range images of the underlying surface. Then we performed the geometrical calibration of the PhSS and carried out the correction of images obtained during the flight tests. Furthermore, we have plotted digital maps of the terrain using the stereo pairs of images acquired from the PhSS and evaluated the accuracy of the created maps. Having obtained the calibration parameters, we apply them for correction of the images from another identical PhSS device, which is located at the Russian Orbital Segment of the International Space Station (ROS ISS), aiming to retrieve digital maps of the terrain with higher accuracy.
Cross, C E; Hemminger, J C; Penner, R M
2007-09-25
One-dimensional (1D) ensembles of 2-15 nm diameter gold nanoparticles were prepared using physical vapor deposition (PVD) on highly oriented pyrolytic graphite (HOPG) basal plane surfaces. These 1D Au nanoparticle ensembles (NPEs) were prepared by depositing gold (0.2-0.6 nm/s) at an equivalent thickness of 3-4 nm onto HOPG surfaces at 670-690 K. Under these conditions, vapor-deposited gold nucleated selectively at the linear step edge defects present on these HOPG surfaces with virtually no nucleation of gold particles on terraces. The number density of 2-15 nm diameter gold particles at step edges was 30-40 microm-1. These 1D NPEs were up to a millimeter in length and organized into parallel arrays on the HOPG surface, following the organization of step edges. Surprisingly, the deposition of more gold by PVD did not lead to the formation of continuous gold nanowires at step edges under the range of sample temperature or deposition flux we have investigated. Instead, these 1D Au NPEs were used as nucleation templates for the preparation by electrodeposition of gold nanowires. The electrodeposition of gold occurred selectively on PVD gold nanoparticles over the potential range from 700-640 mV vs SCE, and after optimization of the electrodeposition parameters continuous gold nanowires as small as 80-90 nm in diameter and several micrometers in length were obtained.
Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.
Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong
2011-02-01
In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.
Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide.
Abdullayev, Elshad; Joshi, Anupam; Wei, Wenbo; Zhao, Yafei; Lvov, Yuri
2012-08-28
Halloysite clay tubes have 50 nm diameter and chemically different inner and outer walls (inner surface of aluminum oxide and outer surface of silica). Due to this different chemistry, the selective etching of alumina from inside the tube was realized, while preserving their external diameter (lumen diameter changed from 15 to 25 nm). This increases 2-3 times the tube lumen capacity for loading and further sustained release of active chemical agents such as metals, corrosion inhibitors, and drugs. In particular, halloysite loading efficiency for the benzotriazole increased 4 times by selective etching of 60% alumina within the tubes' lumens. Specific surface area of the tubes increased over 6 times, from 40 to 250 m(2)/g, upon acid treatment.
NASA Astrophysics Data System (ADS)
Bancelin, S.; Aimé, C.; Gusachenko, I.; Kowalczuk, L.; Latour, G.; Coradin, T.; Schanne-Klein, M.-C.
2015-03-01
Type I collagen is a major structural protein in mammals that shows highly structured macromolecular organizations specific to each tissue. This biopolymer is synthesized as triple helices, which self-assemble into fibrils (Ø =10-300 nm) and further form various 3D organization. In recent years, Second Harmonic Generation (SHG) microscopy has emerged as a powerful technique to probe in situ the fibrillar collagenous network within tissues. However, this optical technique cannot resolve most of the fibrils and is a coherent process, which has impeded quantitative measurements of the fibril diameter so far. In this study, we correlated SHG microscopy with Transmission Electron Microscopy to determine the sensitivity of SHG microscopy and to calibrate SHG signals as a function of the fibril diameter in reconstructed collagen gels. To that end, we synthetized isolated fibrils with various diameters and successfully imaged the very same fibrils with both techniques, down to 30 nm diameter. We observed that SHG signals scaled as the fourth power of the fibril diameter, as expected from analytical and numerical calculations. This calibration was then applied to diabetic rat cornea in which we successfully recovered the diameter of hyperglycemia-induced fibrils in the Descemet's membrane without having to resolve them. Finally we derived the first hyperpolarizability from a single collagen triple helix which validates the bottom-up approach used to calculate the non-linear response at the fibrillar scale and denotes a parallel alignment of triple helices within the fibrils. These results represent a major step towards quantitative SHG imaging of nm-sized collagen fibrils.
Torfeh, Tarraf; Hammoud, Rabih; McGarry, Maeve; Al-Hammadi, Noora; Perkins, Gregory
2015-09-01
To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this platform represents an important, robust and objective tool to perform routine quality assurance of MR-guided therapeutic applications, where spatial accuracy is paramount. Copyright © 2015 Elsevier Inc. All rights reserved.
The fluorescence properties of aerosol larger than 0.8 μm in an urban and a PBA-dominated location
NASA Astrophysics Data System (ADS)
Gabey, A. M.; Stanley, W. R.; Gallagher, M. W.; Kaye, P. H.
2011-01-01
Dual-wavelength Ultraviolet light-induced fluorescence (UV-LIF) measurements were performed on ambient environmental aerosol in Manchester, UK (urban city centre, winter) and Borneo, Malaysia (remote, tropical), which are taken to represent environments with negligible and significant primary biological aerosol (PBA) influences, respectively. Single-particle fluorescence intensity and optical equivalent diameter were measured with a Wide Issue Bioaerosol Sensor, version 3 (WIBS3) in the diameter range 0.8 μm≤DP≤20 μm for 2-3 weeks and filters were analysed using energy dispersive X-ray (EDX) spectroscopy, which revealed mostly non-PBA dominated particle sizes larger than 1 μm in Manchester. The WIBS3 features three fluorescence channels: Fluorescence excited at 280 nm is recorded at 310-400 nm and 400-600 nm and fluorescence excited at 370 nm is detected at 400-600 nm. In Manchester the primary size mode of fluorescent and non-fluorescent material was at 1.2 μm. In Borneo non-fluorescent material peaked at 1.2 μm and fluorescent at 3-4 μm. The fluorescence intensity at 400-600 nm generally increased with DP at both sites, as did the 310-400 nm intensity in Borneo. In Manchester the 310-400 m fluorescence decreased at DP>4 μm, suggesting this channel offers additional discrimination between fluorescent particle types. Finally, the ratio of fluorescence intensity in two pairs of channels was investigated as a function of particle diameter and this varied significantly between the two environments, demonstrating that the fluorescent aerosol in each can in principle be distinguished using a combination of fluorescence and elastic scattering measurements.
Formation of metal clusters in halloysite clay nanotubes
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...
2017-02-16
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less
Formation of metal clusters in halloysite clay nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less
NASA Astrophysics Data System (ADS)
Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán
2016-10-01
Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.
Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires
NASA Astrophysics Data System (ADS)
Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming
2018-06-01
In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.
NASA Astrophysics Data System (ADS)
Saidani, M.; Belkacem, W.; Bessais, L.; Mliki, N.
2017-08-01
In this paper, we report on self-assembled Co nanoparticles deposited in and on porous silicon (PS) matrix by using UHV evaporation. Four samples were prepared by varying the Co deposited thickness (t = 3, 5, 7 and 10 nm). All samples have been investigated by means of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Physical Properties Measurement System (PPMS). The increase of t has induced an increase of the nanoparticle diameter from 3 nm to about 150 nm. Referring to the magnetic characterizations, this increase has been followed by a single to multi-domain transition. Therefore, this has been evidenced by a switching from superparamagnetism to purely ferromagnetism accompanied by a change in the magnetic reversal dynamics. Thus, by performing micromagnetic calculation, we have shown that a transition from the uniform rotation to vortex state occurs at a critical diameter of about 55 nm.
Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
Wood, Nicholas R; Wolsiefer, Amanda I; Cohn, Robert W; Williams, Stuart J
2013-07-01
A high aspect ratio 3D electrokinetic nanoprobe is used to trap polystyrene particles (200 nm), gold nanoshells (120 nm), and gold nanoparticles (mean diameter 35 nm) at low voltages (<1 V(rms)). The nanoprobe is fabricated using room temperature self-assembly methods, without the need for nanoresolution lithography. The nanoprobe (150-500 nm in diameter, 2-150 μm in length) is mounted on the end of a glass micropipette, enabling user-specified positioning. The nanoprobe is one electrode within a point-and-plate configuration, with an indium-tin oxide cover slip serving as the planar electrode. The 3D structure of the nanoprobe enhances dielectrophoretic capture; further, electro-hydrodynamic flow enhances trapping, increasing the effective trapping region. Numerical simulations show low heating (1 K), even in biological media of moderate conductivity (1 S/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of metal clusters in halloysite clay nanotubes
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.
2017-01-01
Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738
Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T
2012-06-01
Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.
High Pressure Structure and Electrical Resistance Measurements on Cadmium Sulfide Nanoparticles
NASA Astrophysics Data System (ADS)
Montgomery, J. M.; Stemshorn, A. K.; Stanishevsky, A.; Vohra, Y. K.; Weir, S. T.
2010-03-01
Room-temperature four-probe electrical resistance and synchrotron x-ray diffraction measurements have been performed on dried and aqueous suspensions of CdS nanoparticles (25 nm in diameter) to 35 GPa. Nanoparticles used in these experiments were synthesized using the reaction between a cadmium salt and thiourea under hydrothermal conditions without using any surfactants. While the x-ray structure data confirms the irreversible wurtzite -> rocksalt transition seen at 2.5 GPa in bulk CdS, the corresponding resistance drop was not observed in the measured range, indicating that the nanoparticle boundaries may prevent electronic communication between particles. Further studies on dry and aqueous 10 nm nano-spheres and 9 nm diameter nano-rods are planned, and the results of these experiments will be presented.
Nanodiamonds do not provide unique evidence for a Younger Dryas impact
Tian, H.; Schryvers, D.; Claeys, Ph.
2011-01-01
Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer. PMID:21173270
Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.
Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael
2014-01-01
In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.
Guo, Yi; Zetterlund, Per B
2011-10-18
A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buta, R.; de Vaucouleurs, G.
The diameters d/sub r/ of inner ring structures in disk galaxies are used as geometric distance indicators to derive the distances of 453 spiral and lenticular galaxies, mainly in the distance interval 4<..delta..<63 Mpc. The diameters are weighted means from the catalogs to Kormendy, Pedreros and Madore, and the authors. The distances are calculated by means of the two- and three-parameter formulae of Paper II; the adopted mean distance moduli ..mu../sub 0/(r) have mean errors from all sources of 0.6--0.7 mag for the well-observed galaxies.
NASA Astrophysics Data System (ADS)
Song, Dongpo; Lin, Ying; Qian, Gang; Wang, Xinyu; Liu, Xiaohui; Li, Cheng; Watkins, James
2014-03-01
The preparation of well-ordered nanocomposites using block copolymers and nanoparticles (NPs) with precise control over their spatial organization at different length scales remains challenging, especially for NP cores up to 10 nm in diameter and for domain spacings greater than 100 nm. In this work, these challenges have been overcome using amphiphilic bottle brush block copolymers as templates for the self-assembly of ordered, periodic hybrid materials with domain spacings more than 130 nm using functionalized NPs with core diameters up to 15 nm. CdSe NPs of 10 nm or gold NPs of 15 nm bearing 11-mercaptoundecyl-hydroquinone or poly(4-vinylphenol) ligands were selectively incorporated within (polynorbornene-g-polystyrene)-b- (polynorbornene-g-polyethylene oxide) copolymers by taking advantage of hydrogen bonding between the ligand and PEO domain. Well-ordered composites with cylindrical and lamellar morphologies and NP loadings of up to 30 wt% in the target domains were achieved. This strategy provides a simple and robust means to create ordered hybrid materials of large domain spacings allowing for relatively large functional nanoparticles. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-1025020).
Geometric Assortative Growth Model for Small-World Networks
2014-01-01
It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs. PMID:24578661
78 FR 62597 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... Block II missiles, 1000 GBU-39/B Small Diameter Bomb (SDB) with BRU-61 carriage systems, 40 CATM-84H... missiles, 1000 GBU-39/B Small Diameter Bombs (SDB), 40 CATM-84H Captive Air Training Missiles (CATM), 20... Small Diameter Bomb (SDB) I weapon is a 250-lb class, all-up round (AUR) that provides greater than 50nm...
Laser-induced retinal injury thresholds: variation with retinal irradiated area
NASA Astrophysics Data System (ADS)
Lund, David J.; Schulmeister, Karl; Seiser, Bernhard; Edthofer, Florian
2005-04-01
The retinal injury threshold for exposure to a laser source varies as a function of the irradiated area on the retina. Currently accepted guidelines for the safe use of lasers provide that the MPE will increase as the diameter of the irradiated area for retinal diameters between 25 mm and 1700 mm, based on the ED50 data available in the late 1970s. Recent studies by Zuclich and Lund produced data showing that the ED50 for ns-duration exposures at 532 nm and ms duration exposures at 590 nm varied as the square of the diameter of the irradiated area on the retina. This paper will discuss efforts to resolve the disagreement between the new data and the earlier data though an analysis of all accessible data relating the retinal injury threshold to the diameter of the incident beam on the retina and through simulations using computer models of laser-induced injury. The results show that the retinal radiant exposure required to produce retinal injury is a function of both exposure duration and retinal irradiance diameter and that the current guidelines for irradiance diameter dependence do not accurately reflect the variation of the threshold data.
Mukherjee, Pran; Zurbuchen, Thomas H; Guo, L Jay
2009-08-12
We demonstrate complete fabrication process integration and device performance of sturdy, self-supported transmission gratings in silicon. Gratings are patterned with nanoimprint lithography and aluminum liftoff on silicon-on-insulator wafers. Double-sided deep reactive ion etching (DRIE) creates freestanding 120 nm half-pitch gratings with 2000 nm depth and built-in 1 mm pitch bulk silicon support structures. Optical characterization demonstrates 10(-4) transmission of UV in the 190-250 nm band while a 25-30% geometric transparency allows particles to pass unimpeded for space plasma measurements.
Bulk nucleation and growth of inorganic nanowires and nanotubes
NASA Astrophysics Data System (ADS)
Sharma, Shashank
The nanometer scale materials such as nanowires and nanotubes will be of particular interest as building blocks for designing novel sensors, catalysts, electronic, optical, and optoelectronic devices. However, in order to realize these applications, bulk amounts of nanowires and nanotubes need to be synthesized with precise control over the nanostructure characteristics. In addition, the structure-property relationships for one-dimensional structures are expected to be different than their bulk when their diameters are less than a characteristic Bohr exciton radius. This fundamental curiosity also necessitates bulk synthesis of nanostructures. The current bulk nanowire synthesis methods utilize either nanometer scale porous molds or nanometer scale transition metal clusters to template one-dimensional growth. All these techniques have inherent limitations in terms of control over the nanowire diameter distribution, composition, the growth direction, and the ability to generate abrupt interfaces within individual nanowires. In this dissertation, a new concept for bulk nucleation and growth of one-dimensional nanostructures is proposed and demonstrated for a variety of inorganic material systems. In this technique, multiple nanowires nucleate and grow from pools of low-melting metal melts when exposed to an activated gas phase containing the necessary precursors. This concept, hereby termed Low Melting Metals and Activated Gas phase (LMAG) mediated method, is specifically demonstrated for the synthesis of, (a) silicon nanowires grown using molten gallium and silane precursors; (b) silicon compound nanowires using solution of molten gallium and appropriate gas phase precursors, and (c) metal-oxide nanostructures grown using direct reaction of the respective metal melts and oxygen precursors. Nanowires resulted from the same molten gallium pool at high densities (>1011/cm2) and with narrow diameter distribution. The silicon nanowires synthesized using the LMAG technique were single crystalline, defect free, and contained a non uniform, extremely thin oxide sheath (<1.5 nm). The nanowire diameter could be varied from 3 to 100 nm, with lengths up to hundreds of microns. Unique tubular and paintbrush-like morphologies were obtained in gallium oxide (Ga2O3) nanostructures. Small gallium droplets (<100 nm size) allowed Ga2O3 nanowire growth parallel to the substrate, followed by 2-dimensional nanoweb formation. These experiments using small gallium droplets resulted in the growth of crystalline Ga2O3 nanotubes with outer diameters as small as 5 nm and inner diameters as small as 2.5 nm.
MreB Orientation Correlates with Cell Diameter in Escherichia coli.
Ouzounov, Nikolay; Nguyen, Jeffrey P; Bratton, Benjamin P; Jacobowitz, David; Gitai, Zemer; Shaevitz, Joshua W
2016-09-06
Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Phosphatidyl-hydroxytyrosol and phosphatidyl-tyrosol bilayer properties
USDA-ARS?s Scientific Manuscript database
Hydroxytyrosol and tyrosol phospholipids were enzymatically synthesized and investigated for their bilayer properties. Dynamic light scattering demonstrated that hand extrusion at 100 nm consistently resulted in liposomes of nearly 85 nm diameter for both phosphatidyl-hydroxytyrosol (DOPHT) and phos...
NASA Astrophysics Data System (ADS)
Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma
2016-06-01
In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01409g
Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo
Xu, Qingguo; Boylan, Nicholas J.; Suk, Jung Soo; Wang, Ying-Ying; Nance, Elizabeth; Yang, Jeh-Chang; McDonnell, Peter; Cone, Richard; Duh, Elia J.; Hanes, Justin
2013-01-01
Intravitreal injection of biodegradable nanoparticles (NP) holds promise for gene therapy and drug delivery to the back of the eye. In some cases, including gene therapy, NP need to diffuse rapidly from the site of injection in order to reach targeted cell types in the back of the eye, whereas in other cases it may be preferred for the particles to remain at the injection site and slowly release drugs that may then diffuse to the site of action. We studied the movements of polystyrene (PS) nanoparticles of various sizes and surface chemistries in fresh bovine vitreous. PS NP as large as 510 nm rapidly penetrated the vitreous gel when coated with polyethylene glycol (PEG), whereas the movements of NP 1190 nm in diameter or larger were highly restricted regardless of surface chemistry owing to steric obstruction. PS NP coated with primary amine groups (–NH2) possessed positively charged surfaces at the pH of bovine vitreous (pH = 7.2), and were immobilized within the vitreous gel. In comparison, PS NP coated with –COOH (possessing negatively charged surfaces) in the size range of 100–200 nm and at particle concentrations below 0.0025% (w/v) readily diffused through the vitreous meshwork; at higher concentrations (~0.1% w/v), these nanoparticles aggregated within vitreous. Based on the mobility of different sized PS-PEG NP, we estimated the average mesh size of fresh bovine vitreous to be ~550 ± 50 nm. The bovine vitreous behaved as an impermeable elastic barrier to objects sized 1190 nm and larger, but as a highly permeable viscoelastic liquid to non-adhesive objects smaller than 510 nm in diameter. Guided by these studies, we next sought to examine the transport of drug- and DNA-loaded nanoparticles in bovine vitreous. Biodegradable NP with diameter of 227 nm, composed of a poly(lactic-co-glycolic acid) (PLGA)-based core coated with poly(vinyl alcohol) rapidly penetrated vitreous. Rod-shaped, highly-compacted CK30PEG10k/DNA with PEG coating (neutral surface charge; diameter ~60 nm) diffused rapidly within vitreous. These findings will help guide the development of nanoparticle-based therapeutics for the treatment of vision-threatening ocular diseases. PMID:23369761
Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
NASA Technical Reports Server (NTRS)
Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)
2009-01-01
Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.
Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching
2013-01-01
Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268
Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; ...
2015-11-27
Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO 2. We show that the mask opening diameter leads to as much as 4 times increasemore » in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less
Experimental and Analytical Determination of the Geometric Far Field for Round Jets
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James E.; Brown, Clifford E.; Khavaran, Abbas
2005-01-01
An investigation was conducted at the NASA Glenn Research Center using a set of three round jets operating under unheated subsonic conditions to address the question: "How close is too close?" Although sound sources are distributed at various distances throughout a jet plume downstream of the nozzle exit, at great distances from the nozzle the sound will appear to emanate from a point and the inverse-square law can be properly applied. Examination of normalized sound spectra at different distances from a jet, from experiments and from computational tools, established the required minimum distance for valid far-field measurements of the sound from subsonic round jets. Experimental data were acquired in the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center. The WIND computer program solved the Reynolds-Averaged Navier-Stokes equations for aerodynamic computations; the MGBK jet-noise prediction computer code was used to predict the sound pressure levels. Results from both the experiments and the analytical exercises indicated that while the shortest measurement arc (with radius approximately 8 nozzle diameters) was already in the geometric far field for high-frequency sound (Strouhal number >5), low-frequency sound (Strouhal number <0.2) reached the geometric far field at a measurement radius of at least 50 nozzle diameters because of its extended source distribution.
NASA Astrophysics Data System (ADS)
Kishore Mugada, Krishna; Adepu, Kumar
2018-03-01
In this research article, the effect of increasing shoulder diameter on temperature and Zener Holloman (Z)-parameter for friction stir butt welded AA6082-T6 was studied. The temperature at the Advancing side (AS) of weld was measured using the K-Type thermocouple at four different equidistant locations. The developed analytical model is utilized to predict the maximum temperature (Tpeak) during the welding. The strain, strain rate, Z- Parameter for all the shoulders at four distinct locations were evaluated. The temperature increases with increase in shoulder diameter and the maximum temperature was recorded for 24mm shoulder diameter. The computed log Z values are compared with the available process map and results shows that the values are in stable flow region and near to stir zone the values are in Dynamic recrystallization region (DRX). The axial load (Fz) and total tool torque (N-m) are found to be higher for shoulder diameter of 21 mm i.e., 6.3 kN and 56.5 N-m respectively.
[Micropore filters for measuring red blood cell deformability and their pore diameters].
Niu, X; Yan, Z
2001-09-01
Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.
NASA Astrophysics Data System (ADS)
Seibel, Eric J.
2008-02-01
Flexible endoscopes use one sensor element per display pixel. When diameter is reduced to the size of a catheter, there is a significant reduction in the number of pixels within the image. By placing a sub-millimeter microscanner at the tip of a catheter, image quality can be significantly improved. The microscanner consists of a 0.4 mm diameter piezoelectric tube with quadrant electrodes, surrounding a cantilevered singlemode optical fiber. At the distal end, the fiber microscanner is sealed with a 0.9 mm diameter lens assembly, creating a rigid length less than 10 mm at the tip of a highly flexible shaft. The cantilevered fiber is vibrated at the first mode of resonance for bending to generate a circular scan pattern. A spiral scan pattern is generated that constitutes an image frame by modulating the piezoelectric drive signals. By using a custom optical fiber at 80 microns cladding diameter, >10 KHz resonant scanning is achieved, resulting in a 30 Hz frame rate. Red (635 nm), green (532 nm), and blue (442 nm) laser light is scanned by coupling to the fiber scanner. The scanned illumination is detected in a non-confocal arrangement by having one or more optical fibers collecting the backscattered light at MHz pixel rates. Current 1-mm diameter catheterscopes generate 500-line images at maximum fields of view of 100 degrees and spatial resolutions of <20 microns with image zooming. Shaft length of four meters have been fabricated with flexibility of <10 mm bending radius to image previously inaccessible regions of the body.
NASA Astrophysics Data System (ADS)
Nami, Mohsen; Eller, Rhett F.; Okur, Serdal; Rishinaramangalam, Ashwin K.; Liu, Sheng; Brener, Igal; Feezell, Daniel F.
2017-01-01
Controlled bottom-up selective-area epitaxy (SAE) is used to tailor the morphology and photoluminescence properties of GaN/InGaN core-shell nanowire arrays. The nanowires are grown on c-plane sapphire substrates using pulsed-mode metal organic chemical vapor deposition. By varying the dielectric mask configuration and growth conditions, we achieve GaN nanowire cores with diameters ranging from 80 to 700 nm that exhibit various degrees of polar, semipolar, and nonpolar faceting. A single InGaN quantum well (QW) and GaN barrier shell is also grown on the GaN nanowire cores and micro-photoluminescence is obtained and analyzed for a variety of nanowire dimensions, array pitch spacings, and aperture diameters. By increasing the nanowire pitch spacing on the same growth wafer, the emission wavelength redshifts from 440 to 520 nm, while increasing the aperture diameter results in a ˜35 nm blueshift. The thickness of one QW/barrier period as a function of pitch and aperture diameter is inferred using scanning electron microscopy, with larger pitches showing significantly thicker QWs. Significant increases in indium composition were predicted for larger pitches and smaller aperture diameters. The results are interpreted in terms of local growth conditions and adatom capture radius around the nanowires. This work provides significant insight into the effects of mask configuration and growth conditions on the nanowire properties and is applicable to the engineering of monolithic multi-color nanowire LEDs on a single chip.
NASA Astrophysics Data System (ADS)
Xie, Ruijie; Li, Zhiquan; Li, Xin; Gu, Erdan; Niu, Liyong; Sha, Xiaopeng
2018-07-01
In this paper, a new type of light-emitting diodes (LEDs) structure is designed to enhance the light emission efficiency of GaN-based LEDs. The structure mainly includes Ag grating, ITO layer and p-GaN grating. The principle of stimulating the localized surface plasmon to improve the luminous characteristics of the LED by using this structure is discussed. Based on the COMSOL software, the finite element method is used to simulate the LED structure. The normalized radiated powers, the normalized absorbed powers under different wavelength and geometric parameters, and the distribution of the electric field with the particular geometric parameters are obtained. The simulation results show that with a local ITO thickness of 32 nm, an etching depth of 29 nm, a grating period of 510 nm and a duty ratio of 0.5, the emission intensity of the designed GaN-based LED structure has increased by nearly 55 times than the ordinary LED providing a reliable foundation for the development of high-performance GaN-based LEDs.
Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A
2014-01-31
We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.
NASA Astrophysics Data System (ADS)
Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish
2017-01-01
Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.
Peckys, Diana B; de Jonge, Niels
2014-02-01
The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.
Template-assisted fabrication of tin and antimony based nanowire arrays
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian
2012-10-01
Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.
Number size distribution of fine and ultrafine fume particles from various welding processes.
Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas
2013-04-01
Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.
Generation of polypeptide-templated gold nanoparticles using ionizing radiation.
Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal
2013-08-13
Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.
Biodistribution of Encapsulated Indocyanine Green in Healthy Mice
Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman
2009-01-01
Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463
Beam spot diameter of the near-field scanning electron microscopy.
Kyritsakis, A; Xanthakis, J P
2013-02-01
We have examined the beam spot diameter at the anode of the scanning electron microscopy (SEM) in the near-field mode as a function of the anode-tip distance d. The detector lateral resolution of this type of microscopy is approximately equal to this spot diameter. For our calculations we have simulated the apex region of the tip with an ellipsoid of revolution of radii R₁ and R₂ with R₁>R₂ as suggested by TEM images of the realistic tips. We have then solved the Laplace equation to obtain the electrostatic potential and to this we have added a spherical image potential. The calculated electrostatic field is highly asymmetric, being strong along the tip-axis and weakening quickly towards the sides. When a 3-dimensional WKB approximation is used to calculate the electron paths corresponding to such a potential, the latter are shown to bend significantly towards the vertical (tip-axis) direction producing a beam narrowing effect very similar to the beam narrowing effect we discovered for the traditional SEM case. When the values of R₁, R₂ are chosen from fittings to the TEM images of the tips used in the experiments, the beam spot diameter W at the anode (d=25 nm) varies from 12.5 nm to 9 nm depending on the fitted R₁, R₂. These values of W are considerably smaller than previously predicted by calculating solid angles of emission from spherical surfaces (41 nm) but also much closer to the detector lateral resolution (6-7 nm) obtained from differentiating the experimental current step. This trend continued at all other d examined. Furthermore the beam width W was found to decrease quickly with increasing sharpness S=R₁/R₂ of the tip and then saturate. W is also decreasing with decreasing R₁, R₂ with S kept constant. We deduce that the sharpness of the tip is important not only for creating high extraction fields but also for guaranteeing a very small beam spot diameter. Copyright © 2012 Elsevier B.V. All rights reserved.
Geometric analysis of ruptured and nonruptured abdominal aortic aneurysms.
Kimura, Masaru; Hoshina, Katsuyuki; Miyahara, Kazuhiro; Nitta, Jun; Kobayashi, Masaharu; Yamamoto, Sota; Ohshima, Marie
2018-06-15
The objective of this study was to use parameters to determine the geometric differences between ruptured abdominal aortic aneurysms (AAAs) and nonruptured AAAs. Computed tomography data of 38 ruptured AAAs and 215 electively repaired (nonruptured) AAAs were collected from multiple institutes. We compared the ruptured AAA group and nonruptured AAA group with 1:1 matching by using the Mahalanobis distance, which was calculated using the patient's age, sex, and AAA diameter. We selected the longitudinal AAA image in multiplanar reconstruction view, placed a hypothetical ellipse on the aneurysm's protruded curve, and placed a circle on the portion connecting the aneurysm and the aorta. We then measured the aspect ratio (the vertical diameter divided by the horizontal diameter) and fillet radius (the radius of arc). The aspect ratio was significantly lower in the ruptured group than in the nonruptured group (2.02 ± 0.53 vs 2.60 ± 1.02; P = .002), as was the fillet radius (0.28 ± 0.18 vs 0.81 ± 0.44; P < .001). Receiver operating characteristic analysis revealed that the area under the curve of the aspect ratio was 0.688, and the optimal cutoff point was 2.23, with sensitivity and specificity of 0.55 and 0.76, respectively. The area under the curve of the fillet radius was 0.933, and the optimal cutoff was 0.347, with sensitivity and specificity of 0.97 and 0.87, respectively. The geometric analysis performed in this study revealed that ruptured AAAs had a smaller fillet radius and smaller aspect ratio than nonruptured AAAs did. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathanael, A. Joseph; Department of Nanomaterials Engineering, Chungnam National University, Daejeon, 305-764; Mangalaraj, D., E-mail: dmraj800@yahoo.com
In this study, undoped and yttrium (Y) doped nanocrystalline hydroxyapatite crystals were synthesized by the hydrothermal method at 180 Degree-Sign C for 24 h. Highly ordered and oriented hydroxyapatite (HAp) nanorods were prepared by yttrium doping and their nanostructure and physical properties were compared with those of undoped HAp rods. FESEM images showed that the doping with Y ions reduced the diameter (from 25 nm to 15 nm) and increased the length (from 95 nm to 115 nm) of the synthesized rods. The aspect ratio of the undoped and Y-doped nanorods were calculated to be 4.303 (SD = 0.0959) andmore » 7.61 (SD = 0.0355), respectively. Specific surface area (SSA) analysis showed that SSA also increased from 66.74 m{sup 2}/g to 68.57 m{sup 2}/g with the addition of yttrium. Y-doped HAp nanorod reinforced HMWPE composites displayed the better mechanical performance than those reinforced with pure HAp nanorods. The possible strengthening of nanorods and the increase of SSA due to the reduction in the size of nanorods in the presence of yttrium may have contributed to the strengthening of Y-doped HAp/HMWPE composites. - Graphical Abstract: Highly ordered and oriented yttrium doped hydroxyapatite (HAp) nanorods were prepared by hydrothermal method. For undoped HAp the average length of the nanorod is 95 nm with mean diameter of 24 nm and for a Y doped nanorod the average length is {approx} 115 nm and the mean diameter is 15 nm. Mechanical analysis was carried out by polymer/nanoparticle composite method. Highlights: Black-Right-Pointing-Pointer Yttrium doped hydroxyapatite nanorods were prepared by hydrothermal method. Black-Right-Pointing-Pointer The nanorods have highly uniform size distribution. Black-Right-Pointing-Pointer Yttrium substitution and nanostructure formation was confirmed by careful analysis. Black-Right-Pointing-Pointer Mechanical strength was analyzed by polymer nanoparticle reinforcement method.« less
Synthesis and characterization of pHLIP® coated gold nanoparticles.
Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K
2017-07-01
Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.
Boronat, Mercedes; Leyva-Pérez, Antonio; Corma, Avelino
2014-03-18
Particle size is one of the key parameters determining the unexpected catalytic activity of gold, with reactivity improving as the particle gets smaller. While this is valid in the 1-5 nm range, chemists are now investigating the influence of particle size in the subnanometer regime. This is due to recent advances in both characterization techniques and synthetic routes capable of stabilizing these size-controlled gold clusters. Researchers reported in early studies that small clusters or aggregates of a few atoms can be extremely active in some reactions, while 1-2 nm nanoparticles are catalytically more efficient for other reactions. Furthermore, the possibility that small gold clusters generated in situ from gold salts or complexes could be the real active species in homogeneous gold-catalyzed organic reactions should be considered. In this Account, we address two questions. First, what is the origin of the enhanced reactivity of gold clusters on the subnanometer scale? And second, how can we predict the reactions where small clusters should work better than larger nanoparticles? Both geometric factors and electronic or quantum size effects become important in the subnanometer regime. Geometric reasons play a key role in hydrogenation reactions, where only accessible low coordinated neutral Au atoms are needed to dissociate H2. The quantum size effects of gold clusters are important as well, as clusters formed by only a few atoms have discrete molecule-like electronic states and their chemical reactivity is related to interactions between the cluster's frontier molecular orbitals and those of the reactant molecules. From first principles calculations, we predict an enhanced reactivity of small planar clusters for reactions involving activation of CC multiple bonds in alkenes and alkynes through Lewis acid-base interactions, and a better catalytic performance of 3D gold nanoparticles in redox reactions involving bond dissociation by oxidative addition and new bond formation by reductive elimination. In oxidation reactions with molecular O2, initial dissociation of O2 into basic oxygen atoms would be more effectively catalyzed by gold nanoparticles of ∼1 nm diameter. In contrast, small planar clusters should be more active for reactions following a radical pathway involving peroxo or hydroperoxo intermediates. We have experimentally confirmed these predictions for a series of Lewis acid and oxidation reactions catalyzed by gold clusters and nanoparticles either in solution or supported on solid carriers.
NASA Astrophysics Data System (ADS)
Nur Fatin Zuikafly, Siti; Ahmad, Fauzan; Haniff Ibrahim, Mohd; Wadi Harun, Sulaiman
2017-11-01
The paper demonstrates passively Q-switched erbium-doped fiber laser implementing multiwalled carbon nanotubes (MWCNTs) based saturable absorber. The paper is the first to report the use of the MWCNTs with diameter less than 8 nm as typically, the diameter used is 10 to 20 nm. The MWCNTs is incorporated with water soluble host polymer, polyvinyl alcohol (PVA) to produce a MWCNTs polymer composite thin film which is then sandwiched between two fiber connectors. The fabricated SA is employed in the laser experimental setup in ring cavity. The Q-switching regime started at threshold pump power of 103 mW and increasable to 215 mW. The stable pulse train from 41.6 kHz to 76.92 kHz with maximum average output power and pulse energy of 0.17 mW and 3.39 nJ are produced. The shortest pulse width of 1.9 μs is obtained in the proposed experimental work, making it the lowest pulse width ever reported using MWCNTs-based saturable absorber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, V. T., E-mail: vlebedev@pnpi.spb.ru; Toeroek, Gy.; Vinogradova, L. V.
The self-organization of star-shaped polymers in toluene has been studied by small-angle neutron scattering. Polystyrene stars with a mono-C{sub 60} branching center are ordered into globular clusters ({approx}1700 nm in diameter), whereas stars with a double (C{sub 60}-C{sub 60}) center are ordered into anisotropic structures (superchains), which are linked (depending on the concentration) into triads (chain clusters {approx}2500 nm in diameter). On the contrary, heteroarm polystyrene and poly-2-vinylpyridine stars with a C{sub 60} center are weakly associated into dimers. Moderately polar stars with arms composed of polystyrene and diblock copolymer (poly-2-vinylpyridine-poly-tret-butyl methacrylate) form short chains composed of four macromolecules, whilemore » stars of higher polarity based on polystyrene and poly-tret-butyl methacrylate form clusters containing {approx}12 macromolecules {approx}50 nm in diameter. Thus, by varying the structure of the center and the arm polarity, one can control the modes of star structuring.« less
Cryo-transmission electron tomography of native casein micelles from bovine milk.
Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F
2011-12-01
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.
2018-02-01
Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.
NASA Astrophysics Data System (ADS)
Sandhu, Adarsh; Handa, Hiroshi; Abe, Masanori
2010-11-01
Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate—an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)—a hormone secreted in excess amounts by the heart when stressed—to a level of 2.0 pg ml - 1. We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer sized 'probe beads' by nanometer sized 'target beads', enabling the detection of small concentrations of beads as small as 8 nm in 'pumpless' microcapillary systems. Finally, we describe a 'label-less homogeneous' procedure referred to as 'magneto-optical transmission (MT) sensing', where the optical transmission of a solution containing rotating linear chains of magnetic nanobeads was used to detect biomolecules with pM-level sensitivity with a dynamic range of more than four orders of magnitude. Our research on the synthesis and applications of nanoparticles is particularly suitable for point of care diagnostics.
Sandhu, Adarsh; Handa, Hiroshi; Abe, Masanori
2010-11-05
Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate-an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)-a hormone secreted in excess amounts by the heart when stressed-to a level of 2.0 pg ml(-1). We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer sized 'probe beads' by nanometer sized 'target beads', enabling the detection of small concentrations of beads as small as 8 nm in 'pumpless' microcapillary systems. Finally, we describe a 'label-less homogeneous' procedure referred to as 'magneto-optical transmission (MT) sensing', where the optical transmission of a solution containing rotating linear chains of magnetic nanobeads was used to detect biomolecules with pM-level sensitivity with a dynamic range of more than four orders of magnitude. Our research on the synthesis and applications of nanoparticles is particularly suitable for point of care diagnostics.
Influence of particle size distribution on nanopowder cold compaction processes
NASA Astrophysics Data System (ADS)
Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.
2017-06-01
Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.
Mesoporous metal oxide microsphere electrode compositions and their methods of making
Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe
2016-12-06
Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.
NASA Astrophysics Data System (ADS)
Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf
2014-09-01
NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.
Electron tomography study of isolated human centrioles.
Ibrahim, Rana; Messaoudi, Cédric; Chichon, Francisco Javier; Celati, Claude; Marco, Sergio
2009-01-01
Centrioles are components of the centrosome, which is present in most eukaryotic cells (from protozoa to mammals). They organize the microtubule skeleton during interphase and the mitotic spindle during cell division. In ciliate cells, centrioles form basal bodies that are involved in cellular motility. Despite their important roles in biology, the detailed structure of centrioles remains obscure. This work contributes to a more complete model of centriole structure. The authors used electron tomography of isolated centrosomes from the human lymphoblast KE37 to explore the details of subdistal appendages and centriole lumen organization in mother centrioles. Their results reveal that each of the nine subdistal appendages is composed of two halves (20 nm diameter each) fused in a 40 nm tip that extends 100 nm from where it anchors to microtubules. The centriole lumen is filled at the distal domain by a 45 nm periodic stack of rings. Each ring has a 30 nm diameter, is 15 nm thick, and appears to be tilted at 53 degrees perpendicular to the centriole axis. The rings are anchored to microtubules by arms. Based on their results, the authors propose a model of the mother centriole distal structure. Copyright 2008 Wiley-Liss, Inc.
Plasmonic enhancement of ultraviolet fluorescence
NASA Astrophysics Data System (ADS)
Jiao, Xiaojin
Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been experimentally demonstrated for the first time. Lifetime reduction as a function of aperture size and native quantum yield has been accurately predicted by simulation. Simulation further predicts greater net fluorescence enhancement for tryptophan compared to p-terphenyl. In order to increase fluorescence enhancement, the "poor" molecules and structures with proper undercuts are required. Third, UV lifetime modification by Mg nanoapertures has been experimentally demonstrated for the fisrt time. Lifetime reductions of ~13x have been observed for the laser dye p-terphenyl with high QY in a 50 nm diameter aperture with 125 nm undercut. In addition, extraordinary optical transmission of Mg nanohole arrays in the UV has been measured for the first time. By using Al as a reference, the feasibility of applying Mg in the UV plasmonic applications has been evaluated both numerically and experimentally. Finally, this work has established a methodology for the study of plasmonic enhancement of UV fluorescence, including design method, thin-film characterization, nanofabrication with focus ion beam milling, and fluorescence measurement. It has paved the way for more extensive research on UV fluorescence enhancement.
NASA Astrophysics Data System (ADS)
Samanifar, S.; Kashi, M. Almasi; Ramazani, A.
2018-05-01
Magnetic nanowires electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeCoNi NWs with varied diameters (between 60 and 150 nm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. X-ray diffraction patterns indicated the formation of FeCoNi NWs with fcc FeNi and bcc FeCo alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing diameter. First-order reversal curve measurements revealed that, with increasing diameter from 60 to 150 nm, besides a transition from a single domain (SD) state to a pseudo SD state, an increase in the reversible magnetization component of the NWs from 11% to 24% occurred.
Braun, Birgit; Dorgan, John R; Chandler, John P
2008-04-01
Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.
NASA Astrophysics Data System (ADS)
Ostapenko, N. I.; Kerita, O. A.; Ostapenko, Yu. V.
2018-03-01
A comparative study of low-temperature thermoluminescence (5-120 K) of silicon organic polymer poly(di-n-hexyl silane) films, nanocomposites (when the polymer is introduced into nanopores of silica MCM-41 and SBA-15 with diameter of pores 2.8 and 10 nm) as well as solutions of polymer in tetrahydrofuran with different concentrations from 10-3 to 10-5 mol/L was carried out. It was shown that it is possible to control the number of charge carrier traps, as well as their energy distribution by changing the diameter of silica nanopores. It is established that maxima and FWHMs of the thermoluminescence curves of nanocomposites significantly depend on the pore diameter of the nanoporous silica. This result agrees with the data obtained in the investigation of polymer solutions. In the nanocomposite with a minimum pore diameter (2.8 nm), the number and depth of the traps as well as dispersion of their energy are significantly reduced compared to their values in the polymer film.
NASA Astrophysics Data System (ADS)
Popov, Alexey; Lademann, Jürgen; Priezzhev, Alexander; Myllylä, Risto
2009-07-01
Titanium dioxide (TiO2) nanoparticles are extensively used nowadays in sunscreens as protective compounds for human skin from UV radiation. In this paper, such particles are investigated from the viewpoint of penetration into living skin, UV protective properties (compared with silicon (Si) particles) and as sources of free radicals if UV-irradiated. We show that: a) even after multiple applications, the particles are located within the uppermost 3-μm-thick part of the skin; b) the optimal sizes are found to be 62 nm and 55 nm, respectively for TiO2 and Si particles for 310-nm light and, correspondingly, 122 and 70 nm - for 400-nm radiation; c) if applied onto glass, small particles of 25 nm in diameter produce an increased amount of free radicals compared to the larger ones of 400 nm in diameter and placebo itself; however, if applied onto porcine skin in vitro, there is no statistically distinct difference in the amount of radicals generated by the two kinds of particles on skin and by the skin itself. This proves that although particles as part of sunscreens produce free radicals, the effect is negligible in comparison to the production of radicals by skin in vitro.
Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph
2001-06-30
We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature,more » multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.« less
NASA Astrophysics Data System (ADS)
Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo
2016-11-01
Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of <10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.
Morphology and Three-Dimensional Inhalation Flow in Human Airways in Healthy and Diseased Subjects
NASA Astrophysics Data System (ADS)
Van de Moortele, Tristan
We investigate experimentally the relation between anatomical structure and respiratory function in healthy and diseased airways. Computed Tomography (CT) scans of human lungs are analyzed from the data base of a large multi-institution clinical study on Chronic Obstructive Pulmonary Disease (COPD). Through segmentation, the 3D volumes of the airways are determined at total lung capacity. A geometric analysis provides data on the morphometry of the airways, including the length and diameter of branches, the child-to-parent diameter ratio, and branching angles. While several geometric parameters are confirmed to match past studies for healthy subjects, previously unreported trends are reported on the length of branches. Specifically, in most dichotomous airway bifurcation, the branch of smaller diameter tends to be significantly longer than the one of larger diameter. Additionally, the branch diameter tends to be smaller in diseased airways than in healthy airways up to the 7th generation of bronchial branching. 3D fractal analysis is also performed on the airway volume. Fractal dimensions of 1.89 and 1.83 are found for healthy non-smokers and declining COPD subjects, respectively, furthering the belief that COPD (and lung disease in general) significantly affects the morphometry of the airways already in early stages of the disease. To investigate the inspiratory flow, 3D flow models of the airways are generated using Computer Aided Design (CAD) software and 3D printed. Using Magnetic Resonance Velocimetry (MRV), 3-component 3D flow fields are acquired for steady inhalation at Reynolds number Re 2000 defined at the trachea. Analysis of the flow data reveals that diseased subjects may experience greater secondary flow strength in their conducting airways, especially in deeper generations.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.
2012-01-01
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.
Effect of Morphology and Composition on the Hygroscopicity of Soot Aerosols
NASA Astrophysics Data System (ADS)
Williams, L.; Slowik, J.; Davidovits, P.; Jayne, J.; Kolb, C.; Worsnop, D.; Rudich, Y.
2003-12-01
Freshly generated soot aerosols are initially hydrophobic and unlikely to act as cloud condensation nuclei (CCN). However, during combustion many low vapor pressure gas products are formed that may then condense on existing soot aerosols. Additionally, soot particles may acquire coatings as they age, such as acids, salts, and oxygenated organics. An understanding of this aging process and its effect on soot hygroscopicity is necessary to address the potential of soot to act as a CCN. The transformation of soot from hydrophobic to hydrophilic is the focus of this work. An aim here is to determine the minimum coating required for hygroscopic growth. Soot particles produced by combustion of mixtures of fuel and air are size selected by a Differential Mobility Analyzer (DMA) and entrained in a laminar flow passing through a flow tube. The size selected soot particles are mixed with a controlled amount of the gas phase precursors to produce the coatings to be studied. Initial studies are focused on coatings of H2SO4, NH4NO3, and selected organics. The number of particles per unit volume of air is counted by a Condensation Particle Counter (CPC) and the particles are isokinetically sampled into an Aerosol Mass Spectrometer (AMS). Two distinct types of soot aerosols have been observed depending on the type of fuel and air mixture. With soot produced by the combustion of propane and air, the AMS shows a polydisperse particle size distribution with aerodynamic diameters ranging from 100 nm to 400 nm. The aerodynamic diameter is linearly related to the DMA-determined mobility diameter with the product density x shape factor = 1.2. The organic molecules in this soot are mostly PAH compounds. However, when kerosene is added to the propane flame, the soot particle morphology and composition is strikingly altered. While the DMA shows an essentially unchanged mobility diameter distribution, in the range 100 nm to 400, aerodynamic particle diameter is constant at about 100 nm, independent of the mobility diameter. This type of constancy of the aerodynamic diameter has been observed for soot particles in diesel engine exhaust and has been interpreted in terms of a size-dependent effective density. The soot chemical composition is also altered. In this soot the organics are mainly linear hydrocarbons. The differences between these two types of soot with respect to hygroscopicity and effective area are being investigated.
Circular single domains in hemispherical Permalloy nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Clodoaldo I. L de, E-mail: dearaujo@ufv.br; Fonseca, Jakson M.; Sinnecker, João P.
2014-11-14
We have studied ferromagnetic Permalloy clusters obtained by electrodeposition on n-type silicon. Magnetization measurements reveal hysteresis loops almost independent on temperature and very similar in shape to those obtained in nanodisks with diameter bigger than 150 nm. The spin configuration for the ground state, obtained by micromagnetic simulation, shows topological vortices with random chirality and polarization. This behavior in the small diameter clusters (∼80 nm) is attributed to the Dzyaloshinskii-Moriya interaction that arises in its hemispherical geometries. This magnetization behavior can be utilized to explain the magnetoresistance measured with magnetic field in plane and out of sample plane.
Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter
2004-01-01
Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic susceptibility measurements show that they are diamagnetic, and become superconducting at the same temperature as bulk tin (3.7 K). Gallium nitride nanowires have been prepared in alumina membranes with pore diameter 24 nm by a novel method. Gallium nitrate was deposited in the pores from aqueous solution and thermolysed at 1000 degrees C to form Ga2O3, which was reacted with ammonia at 1000 degrees C. The GaN nanowires have the wurtzite structure. Preparation at 1150 degrees C led to the incorporation of aluminium in the GaN. The mesoscopic ordering of the pores in the AAO membranes and their filling by metal nanowires has been studied by SAXS, which shows patterns of Bragg peaks arising from the pore arrays. Additionally, the cobalt nanowires have been the subject of an initial ASAXS study.
Precision Optical Coatings for Large Space Telescope Mirrors
NASA Astrophysics Data System (ADS)
Sheikh, David
This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.
NASA Astrophysics Data System (ADS)
Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.
2013-04-01
The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
Yao, Shenglian; Wang, Xiumei; Liu, Xi; Wang, Ronghan; Deng, Changsheng; Cuil, Fuzhai
2013-07-01
Nanofibers exist ubiquitously in natural extracellular matrix (ECM) of all kinds of human tissues forming hydrated interwoven network. Electrospinning nanotechnology has been proven to be a powerful technique to fabricate controllable nanofibers mimicking the natural ECM structures. Hyaluronic acid (HA), as a critical component of natural ECM, has been widely used in tissue engineering and regenerative medicine. In this study, pure HA nanofibers with average diameter of 33 +/- 5 nm, 59 +/- 12 nm, 79 +/- 12 nm and 113 +/- 19 nm were successfully prepared using different electrospinning parameters. The effect of the ambient relative humidity on HA electrospinnability was investigated for the first time in detail, which was proven to be one of the most important factors to control the morphology of HA nanofibers beside the solution properties. A critical value of humidity for a defined HA solution was observed, only below which HA nanofibers with similar diameters and morphologies could be successfully obtained. When the ambient relative humidity was higher than the critical value, the HA nanofibers started dissolving at the cross points and even fused together forming a spreading layer. Moreover, only a small amount of N, N-Dimethylformamide (DMF) was found to be required to promote the electrospinnability of HA solution by mixing with water as solvents. With the increase in the DMF content, the surface tension of the solution decreased significantly, which was thought to be benefit for the stable Taylor cone and fluid jet formation in electrospinning. At the same time, it should be noted that the conductivity of the solution also decreased with the increase of DMF content in the solution, which was believed to be responsible for the increasing diameters of HA nanofibers corresponding to higher DMF content. Controllable HA nanofibers with diameter below 100 nm have great promising for developing novel nanobiomaterials applied in tissue engineering and regenerative medicine.
SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS
Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...
NASA Astrophysics Data System (ADS)
Yu, Hung Wei; Anandan, Deepak; Hsu, Ching Yi; Hung, Yu Chih; Su, Chun Jung; Wu, Chien Ting; Kakkerla, Ramesh Kumar; Ha, Minh Thien Huu; Huynh, Sa Hoang; Tu, Yung Yi; Chang, Edward Yi
2018-02-01
High-density (˜ 80/um2) vertical InAs nanowires (NWs) with small diameters (˜ 28 nm) were grown on bare Si (111) substrates by means of two-step metal organic chemical vapor deposition. There are two critical factors in the growth process: (1) a critical nucleation temperature for a specific In molar fraction (approximately 1.69 × 10-5 atm) is the key factor to reduce the size of the nuclei and hence the diameter of the InAs NWs, and (2) a critical V/III ratio during the 2nd step growth will greatly increase the density of the InAs NWs (from 45 μm-2 to 80 μm-2) and at the same time keep the diameter small. The high-resolution transmission electron microscopy and selected area diffraction patterns of InAs NWs grown on Si exhibit a Wurtzite structure and no stacking faults. The observed longitudinal optic peaks in the Raman spectra were explained in terms of the small surface charge region width due to the small NW diameter and the increase of the free electron concentration, which was consistent with the TCAD program simulation of small diameter (< 40 nm) InAs NWs.
Effects of body shape on the aerodynamics of a body of revolution at Mach numbers from 1.6 to 4.6
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1985-01-01
The aerodnamic characteristics for several bodies of revolution have been determined from wind tunnel tests at Mach numbers from 1.6 to 4.63. Six bodies, each having a length-to-diameter ratio of 6.67, were investigated. Geometric modifications included forebody shape, afterbody shape, and midsection slope. Significant aerodynamic changes were observed to be functions of geometric change and Mach number. Because of the aerodynamic dependence on geometry as well as Mach number, it is obvious that a number of trades must be considered in selecting a projectile shape.
Thoron concentration, aerosol characteristics of 212Pb and estimation of equivalent dose
NASA Astrophysics Data System (ADS)
Mohery, M.; Abdallah, A. M.; Kelany, Adel M.; Yaghmour, S. J.
2014-08-01
The thoron gas (220Rn) activity concentration as well as activity size distribution of unattached and attached 212Pb to aerosol particles was measured in the open air of Jeddah City, Kingdom of Saudi Arabia. An electroprecipitation method was applied for measuring the 220Rn concentration. A mean activity concentration of 220Rn was determined to be 1.80±0.47 Bq m-3. The unattached activities of 212Pb were collected using the wire screen diffusion battery technique while a low-pressure cascade impactor collected the attached activities. The mean activity median thermodynamic diameter (AMTD) of unattached 212Pb was determined to be 1.32 nm with a relative mean geometric standard deviation (σg) of 1.45. A mean concentration of unattached activity of 212Pb was found to be 9.48±1.12 mBq m-3. A mean unattached fraction (fp) of 0.028±0.002 was obtained at a mean aerosol particle concentration of 29×103 cm-3. Sometimes, the fp values were less than the detection limit of 0.009. A mean activity median aerodynamic diameter (AMAD) of the accumulation mode of attached 212Pb was determined to be 352 nm with a mean (σg) of 2.6. The mean value of specific air activity concentration of 212Pb associated with that mode was determined to be 310±12 mBq m-3. With a dosimetric model calculation (ICRP, 1994) the total and regional deposition fractions, total and regional equivalent doses could be evaluated considering the obtained parameters of the activity size distributions. At a total deposition fraction of about 97% of unattached activities the total equivalent dose to the human lung was determined to be 0.16 μSv while a total equivalent dose of 0.44 μSv was determined at a total deposition fraction of about 23% for the attached activities. It was found that an unattached fraction of fP≈3% yields to about 27% of the total equivalent dose.
Surveying colloid sedimentation by coplanar waveguides
NASA Astrophysics Data System (ADS)
Duţu, C. A.; Vlad, A.; Roda-Neve, C.; Avram, I.; Sandu, G.; Raskin, J.-P.; Melinte, S.
2016-06-01
By using coplanar waveguides, direct access to the dielectric properties of aqueous solutions of polystyrene beads with different diameters from 330 nm to 10 μm is provided. The relative variation of the transmission parameter with respect to water is monitored, ranging from ˜ {3}% obtained for a 9.5% solution with 330 nm diameter beads to ˜22% for 10 μm diameter particles at the same concentration. To highlight its applicability in biosensing, the technique was further employed to survey the clustering between biotin and streptavidin-coated beads. The transmission parameter displays a ˜50% increase for mixtures containing nine volumes of biotin and one volume of streptavidin-modified beads (4.5 ng μl-1 of streptavidin) and reaches ˜400% higher values when equal volumes of biotin and streptavidin-coated beads (22.5 ng μl-1 of streptavidin) were mixed.
NASA Astrophysics Data System (ADS)
He, Qilu; Lilley, Carmen M.
2012-10-01
The influence of both surface and shear effects on the resonant frequency of nanowires (NWs) was studied by incorporating the Young-Laplace equation with the Timoshenko beam theory. Face-centered-cubic metal NWs were studied. A dimensional analysis of the resonant frequencies for fixed-fixed gold (100) NWs were compared to molecular dynamic simulations. Silver NWs with diameters from 10 nm-500 nm were modeled as a cantilever, simply supported and fixed-fixed system for aspect ratios from 2.5-20 to identify the shear, surface, and size effects on the resonant frequencies. The shear effect was found to have a larger significance than surface effects when the aspect ratios were small (i.e., <5) regardless of size for the diameters modeled. Finally, as the aspect ratio grows, the surface effect becomes significant for the smaller diameter NWs.
CORRELATION OF FLORIDA SOIL-GAS PERMEABILITIES WITH GRAIN SIZE, MOISTURE, AND POROSITY
The report describes a new correlation or predicting gas permeabilities of undisturbed or recompacted soils from their average grain diameter (d), moisture saturation factor (m), and porosity (p). he correlation exhibits a geometric standard deviation (GSD) of only 1.27 between m...
NASA Astrophysics Data System (ADS)
Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.
2018-04-01
The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.
Size dependent compressibility of nano-ceria: Minimum near 33 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua
2015-04-20
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less
GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM
NASA Astrophysics Data System (ADS)
Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac
2016-05-01
Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)
2001-01-01
Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.
Structural mechanics of 3-D braided preforms for composites. IV - The 4-step tubular braiding
NASA Technical Reports Server (NTRS)
Hammad, M.; El-Messery, M.; El-Shiekh, A.
1991-01-01
This paper presents the fundamentals of the 4-step 3D tubular braiding process and the structure of the preforms produced. Based on an idealized structural model, geometric relations between the structural parameters of the preform are analytically established. The effects of machine arrangement and operating conditions are discussed. Yarn retraction, yarn surface angle, outside diameter, and yarn volume fraction of the preform in terms of the pitch length, the inner diameter, and the machine arrangement are theoretically predicted and experimentally verified.
NASA Technical Reports Server (NTRS)
Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard
2008-01-01
Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.
Deep proton writing of high aspect ratio SU-8 micro-pillars on glass
NASA Astrophysics Data System (ADS)
Ebraert, Evert; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen
2016-12-01
Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 104 μm-2, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air-gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.
Iwaura, Rika; Ohnishi-Kameyama, Mayumi
2012-07-07
We performed the self-assembly of a 1,18-cytidylic acid-appended bolaamphiphile (C18C) in lemon juice, which contained citric acid, and succeeded in forming left-handed helical nanofibers with diameters, lengths, and pitches of ca. 6-7 nm, several hundred nm to 5 μm, and ca. 30-40 nm, respectively.
Pakrashi, Sunandan; Dalai, Swayamprava; T C, Prathna; Trivedi, Shruti; Myneni, Radhika; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava
2013-05-15
The growing commercial applications had brought aluminium oxide nanoparticles under toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6±22nm and ANP(2), mean hydrodynamic diameter 246.9±39nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (≤1μg/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al(3+) ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) [82.6±22nm (0h) to 246.3±59nm (24h), to 1204±140nm (72h)] and ANP(2) [246.9±39nm (0h) to 368.28±48nm (24h), to 1225.96±186nm (72h)] signifying decreased relative abundance of submicron sized particles (<1000nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1μg/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72h, significant Al(3+) ion release in the test medium [0.092μg/mL for ANP(1), and 0.19μg/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liao, Chengwei; Zhang, Yupeng; Pan, Chunxu
2012-12-01
In this study, a novel vertically aligned carbon material, named "cow-nipple-like" submicro-nano carbon isomeric structure, was synthesized by the thermal decomposition of C2H2 in a chemical-vapor deposition system with a high-voltage external electric field. The microstructures were characterized by using scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy, respectively. The results revealed that (1) the total height of the carbon isomeric structure was in a rang of 90-250 nm; (2) the carbon isomeric structure consisted of a submicro- or nano-sized hemisphere carbon ball with 30-120 nm in diameter at the bottom and a vertically grown carbon nanotube with 10-40 nm in diameter upon the carbon ball; (3) there was a sudden change in diameter at the junction of the carbon ball and carbon nanotube. In addition, the carbon isomeric structure showed an excellent controllability, that is, the density, height, and diameter could be controlled effectively by adjusting the precursor ferrocene concentration in the catalytic solution and C2H2 ventilation time. A possible growth model was proposed to describe the formation mechanism, and a theoretic calculation was carried out to discuss the effect of high-voltage electric field upon the growth of the carbon isomeric structure.
Ding, Yongbo; Kan, Jianquan
2017-12-01
Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.
Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.
Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong
2014-05-01
Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.
NASA Astrophysics Data System (ADS)
Esmaeili, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.
2016-01-01
In this study, we aim to report the role of Cu additive in arrays of pulse-electrodeposited Co nanowires (NWs) with diameters from 30 to 75 nm, embedded in porous aluminum oxide templates. This features the role of Cu additive in composition and crystalline characteristics as well as in the magnetic properties of Co NWs. Increasing the duration of off-time between pulses during the electrodeposition of Co NWs made it possible to increase the amount of Cu content, so that Co-rich CoCu NWs were obtained. The parallel coercivity and squareness values increased up to 1500 Oe and 0.8 for 30 nm diameter Co94Cu6 NWs, starting from 500 Oe and 0.3 for pure Co NWs. On the other hand, although there was a substantial difference between the crystalline characteristics of 75 nm diameter pure Co and CoCu NWs, no considerable change in their magnetic properties was observed using hysteresis loop measurements. In this respect, the first-order reversal curve (FORC) analysis revealed strong inter-wire magnetostatic interactions for the CoCu NWs. Moreover, we studied the effect of thermal annealing, which resulted in an increase in the coercivity of CoCu NWs with different diameters up to 15%. As a result, the addition of small amount of Cu provides an alternative approach to tailoring the magnetic properties of Co NWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; DiCostanzo, D; Gupta, N
Purpose: To test the efficacy of a retrospective metal artifact reduction (MAR) reconstruction algorithm for a commercial computed tomography (CT) scanner for radiation therapy purposes. Methods: High Z geometric integrity and artifact reduction analysis was performed with three phantoms using General Electric’s (GE) Discovery CT. The three phantoms included: a Computerized Imaging Reference Systems (CIRS) electron density phantom (Model 062) with a 6.5 mm diameter titanium rod insert, a custom spine phantom using Synthes Spine hardware submerged in water, and a dental phantom with various high Z fillings submerged in water. Each phantom was reconstructed using MAR and compared againstmore » the original scan. Furthermore, each scenario was tested using standard and extended Hounsfield Unit (HU) ranges. High Z geometric integrity was performed using the CIRS phantom, while the artifact reduction was performed using all three phantoms. Results: Geometric integrity of the 6.5 mm diameter rod was slightly overestimated for non-MAR scans for both standard and extended HU. With MAR reconstruction, the rod was underestimated for both standard and extended HU. For artifact reduction, the mean and standard deviation was compared in a volume of interest (VOI) in the surrounding material (water and water equivalent material, ∼0HU). Overall, the mean value of the VOI was closer to 0 HU for the MAR reconstruction compared to the non-MAR scan for most phantoms. Additionally, the standard deviations for all phantoms were greatly reduced using MAR reconstruction. Conclusion: GE’s MAR reconstruction algorithm improves image quality with the presence of high Z material with minimal degradation of its geometric integrity. High Z delineation can be carried out with proper contouring techniques. The effects of beam hardening artifacts are greatly reduced with MAR reconstruction. Tissue corrections due to these artifacts can be eliminated for simple high Z geometries and greatly reduced for more complex geometries.« less
Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate.
Hou, Yanpan; Zhang, Zicheng; Zhang, Jiande; Liu, Zhuofeng; Song, Zuyin
2015-05-01
As an alternative to water, propylene carbonate (PC) has a good application prospect in the compact pulsed power sources for its breakdown strength higher than that of water, resistivity bigger than 10(9) Ω m, and low freezing temperature (-49 °C). In this paper, the investigation into dielectric breakdown of PC and PC-based nano-fluids (NFs) subjected to high amplitude electric field is presented with microsecond pulses applied to a 1 mm gap full of PC or NFs between spherical electrodes. One kind of NF is composed of PC mixed with 0.5-1.4 vol. % BaTiO3 (BT) nano-particles of mean diameter ≈100 nm and another is mixed with 0.3-0.8 vol. % BT nano-particles of mean diameter ≈30 nm. The experimental results demonstrate the rise of permittivity and improvement of the breakdown strength of NFs compared with PC. Moreover, it is found that there exists an optimum fraction for these NFs corresponding to tremendous surface area in nano-composites with finite mesoscopic thickness. In concrete, the dielectric breakdown voltage of NFs is 33% higher than that of PC as the volume concentration of nano-particles with a 100 nm diameter is 0.9% and the breakdown voltage of NFs is 40% higher as the volume concentration of nano-particles with a 30 nm diameter is 0.6%. These phenomena are considered as the dielectric breakdown voltage of PC-based NFs is increased because the interfaces between nano-fillers and PC matrices provide myriad trap sites for charge carriers, which play a dominant role in the breakdown performance of NFs.
Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2012-07-13
The structure, stability, and catalytic activity of a number of single- and double-wall platinum (n,m) nanotubes ranging in diameter from 0.3 to 2.0 nm were studied using plane-wave based density functional theory in the gas phase and water environment. The change in the catalytic activity toward the oxygen reduction reaction (ORR) with the size and chirality of the nanotube was studied by calculating equilibrium adsorption potentials for ORR intermediates and by constructing free energy diagrams in the ORR dissociative mechanism network. In addition, the stability of the platinum nanotubes is investigated in terms of electrochemical dissolution potentials and by determiningmore » the most stable state of the material as a function of pH and potential, as represented in Pourbaix diagrams. Our results show that the catalytic activity and the stability toward electrochemical dissolution depend greatly on the diameter and chirality of the nanotube. On the basis of the estimated overpotentials for ORR, we conclude that smaller, approximately 0.5 nm in diameter single-wall platinum nanotubes consistently show a huge, up to 400 mV larger overpotential than platinum, indicating very poor catalytic activity toward ORR. This is the result of substantial structural changes induced by the adsorption of any chemical species on these tubes. Single-wall n = m platinum nanotubes with a diameter larger than 1 nm have smaller ORR overpotentials than bulk platinum for up to 180 mV and thus show improved catalytic activity relative to bulk. We also predict that these nanotubes can endure the highest cell potentials but dissolution potentials are still for 110 mV lower than for the bulk, indicating a possible corrosion problem.« less
Stellar integrated fluxes for 216 stars in the wavelength range 380 nm-900 NM
NASA Astrophysics Data System (ADS)
Petford, A. D.; Blackwell, D. E.; Booth, A. J.; Haddock, D. J.; Leggett, S. K.; Mountain, C. M.; Selby, M. J.; Arribas, S.
1988-09-01
The paper reports measurements of the integrated fluxes over the wavelength range 380 nm - 900 nm for 216 stars using a Reticon spectrometer in conjunction with the 1 m Kapteyn telescope of the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Methods are proposed for deriving visible integrated fluxes from 13-colour photometry, UBVRI and BV photometry. Such fluxes are useful for deriving stellar effective temperatures and angular diameters.
Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing
Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less
NASA Astrophysics Data System (ADS)
Chen, Qin-Miao; Zhou, Fang-Fang; Yuan, Hong-Chun; Chen, Jin; Ni, Yi; Zhu, Xi-Fang; Dou, Xiao-Ming
2017-07-01
Chalcopyrite and wurtzite CuInS2 (CIS) nanomaterials were synthesized from Cu2+, In3+, thiourea with or without triethanolamine (TEA) by simple hot injection method at low temperature. The effect of synthesis duration on the various properties of the synthesized CIS nanomaterials was studied. It shows that for chalcopyrite CIS, the optimal synthesis duration is 60 min and the synthesized nanomaterial is in spherical shape with diameter of about 90 nm. However, for the wurtzite CIS, the optimal synthesis duration should reach 150 min and the synthesized nanomaterial looks like nanoplate with thicknesses of ˜10 nm and diameters near 100 nm. The photovoltaic characteristics of two types of nanomaterials are quite different. This study may contribute to the synthesis of CIS nanomaterials at low temperatures.
Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding
Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; ...
2015-11-06
Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less
Glück, R; Mischler, R; Brantschen, S; Just, M; Althaus, B; Cryz, S J
1992-01-01
Hepatitis A virus (HAV) was purified from MRC-5 human diploid cell cultures, inactivated with formalin, and evaluated for safety and immunogenicity in humans. Three vaccine formulations were produced: (a) a fluid preparation containing inactivated HAV, (b) inactivated HAV adsorbed to Al(OH)3, and (c) inactivated HAV coupled to novel immunopotentiating reconstituted influenza virosomes (IRIV). IRIV were prepared by combining phosphatidylcholine, phosphatidylethanolamine, phospholipids originating from the influenza virus envelope, influenza virus hemagglutinin, and neuraminidase. The HAV-IRIV appeared as unilamellar vesicles with a diameter of approximately 150 nm when viewed by transmission electron microscopy. Upon intramuscular injection, the alum-adsorbed vaccine was associated with significantly (P < 0.01) more local adverse reactions than either the fluid or IRIV formulations. 14 d after a single dose of vaccine, all the recipients of the IRIV formulation seroconverted (> or = 20 mIU/ml) versus 30 and 44% for those who received the fluid and alum-adsorbed vaccines, respectively (P < 0.001). The geometric mean anti-HAV antibody titer achieved after immunization with the IRIV-HAV vaccine was also significantly higher (P < 0.005) compared with the other two vaccines. Images PMID:1334977
Inou, Norio
2013-01-01
An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868
Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio
2013-01-01
An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.
Chien, Chia-Hua; Lee, Ping-Chung; Tsai, Wei-Han; Lin, Chien-Hung; Lee, Chih-Hao; Chen, Yang-Yuan
2016-01-01
In this report, the thermoelectric properties of a Bi0.8Sb1.2Te2.9 nanowire (NW) were in-situ studied as it was trimmed from 750 down to 490 and 285 nm in diameter by a focused ion beam. While electrical and thermal conductivities both indubitably decrease with the diameter reduction, the two physical properties clearly exhibit different diameter dependent behaviors. For 750 and 490 nm NWs, much lower thermal conductivities (0.72 and 0.69 W/m-K respectively) were observed as compared with the theoretical prediction of Callaway model. The consequence indicates that in addition to the size effect, extra phonon scattering of defects created by Ga ion irradiation was attributed to the reduction of thermal conductivities. As the NW was further trimmed down to 285 nm, both the electrical and thermal conductivities exhibited a dramatic reduction which was ascribed to the formation of amorphous structure due to Ga ion irradiation. The size dependence of Seebeck coefficient and figure of merit (ZT) show the maximum at 750 nm, then decrease linearly with size decrease. The study not only provides the thoroughly understanding of the size and defect effects on the thermoelectric properties but also proposes a possible method to manipulate the thermal conductivity of NWs via ion irradiation. PMID:27030206
NASA Astrophysics Data System (ADS)
Wang, Fu-Hua; Yoshitake, Takashi; Kim, Do-Kyung; Muhammed, Mamoun; Bjelke, Börje; Kehr, Jan
2003-04-01
The method based on capillary electrophoresis with laser-induced fluorescence detection (CE/LIF) was developed for determination of magnetic iron oxide nanoparticles (hydrodynamic diameters of 100 nm) functionalized with molecules containing primary amino groups. The magnetic nanoparticles with carboxylic or aminopropyl-trimethoxysilane groups at their surface were conjugated to the model proteins (bovine serum albumin, BSA; streptavidin or goat anti-rabbit immunoglobulin G, IgG) using carbodiimide as a zero-length cross-linker. The nanoparticle-protein conjugates (hydrodynamic diameter 163-194 nm) were derivatized with naphthalene-2,3-dicarboxaldehyde reagent and separated by CE/LIF with a helium-cadmium laser (excitation at 442 nm, emission at 488 nm). The separations were carried out by using a fused-silica capillary (effective length 48 cm, inner diameter 75 um) and 100 mM sodium borate buffer (pH 9.2), the potential was 30 kV. The detection limit for BSA-conjugate was 1.3 pg/10 nl, i.e. about 20 amol. The present method provides an efficient and fast tool for sensitive determination of the efficacy of biomolecular functionalization of magnetic nanoparticles. The CE/LIF technique requires only negligible sample volumes for analysis, which is especially suitable for controlling the process of preparation of functionalized nanoparticles with unique properties aimed to be used for diagnostic or therapeutic purposes.
Arkusz, Katarzyna; Paradowska, Ewa; Nycz, Marta; Krasicka-Cydzik, Elżzbieta
2018-05-01
The morphology of self-assembled TiO2 nanotubes layer plays a key role in electrical conductivity and biocompatibility properties in terms of cell proliferation, adhesion and mineralization. Many research studies have been reported in using a TiO2 nanotubes for different medical applications, there is a lack of unified correlation between TNT morphology and its electrochemical properties. The aim of this study was to examine the effects of diameter and annealing conditions on TiO2 nanotubes with identical height and their behaviour as biosensor platform. TiO2 nanotubes layer, 1000 nm thick with nanotubes of diameters in range: 25 ÷ 100 nm, was prepared by anodizing of the titanium foil in ethylene glycol solution. To change the crystal structure and improve the electrical conductivity of the semiconductive TiO2 nanotubes layer the thermal treatment by annealing in argon, nitrogen or air was used. Basing on the electrochemical tests, the XPS and scanning microscopy examinations, as well as the contact angle measurements and the amperometric detection of potassium ferricyanide, it was concluded that the 1000 nm thick TiO2 nanotubes layer with nanotubes of 50 nm diameter, annealed in argon, showed the best physicochemical properties, which helps investigate the adsorption immobilization mechanism. The possibility of using TNT as a biosensor platform was confirmed in hydrogen detection.
Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.
Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas
2013-01-11
Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.
Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores
NASA Astrophysics Data System (ADS)
Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas
2013-01-01
Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.
Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi
2018-07-30
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.
MO-FG-BRA-08: A Preliminary Study of Gold Nanoparticles Enhanced Diffuse Optical Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, K; Dogan, N; Yang, Y
2015-06-15
Purpose: To develop an imaging method by using gold nanoparticles (GNP) to enhance diffuse optical tomography (DOT) for better tumor detection. Methods: Experiments were performed on a tissue-simulating cylindrical optical phantom (30mm diameter, 60mm length). The GNP used are gold nanorods (10nm diameter, 44nm length) with peak light absorption at 840nm. 0.085ml GNP colloid of 96nM concentration was loaded into a 6mm diameter cylindrical hole in the phantom. An 856nm laser beam (14mW) was used as light source to irradiate the phantom at multiple locations through rotating and elevating the phantom. A CCD camera captured the light transmission through themore » phantom for each irradiation with total 40 projections (8 rotation angles in 45degree steps and 5 elevations with 3mm apart). Cone beam CT of the phantom was used to generate the three-dimensional mesh for DOT reconstruction and to identify the true location of the GNP volume. A forward simulation was performed with known phantom optical properties to establish a relationship between the absorption coefficient and concentration of the GNP by matching the simulated and measured transmission. DOT image reconstruction was performed to restore the GNP within the phantom. In addition, a region-constrained reconstruction was performed by confining the solutions within the GNP volume detected from CT. Results: The position of the GNP volume was reconstructed with <2mm error. The reconstructed average GNP concentration within an identical volume was 104nM, 8% difference from the truth. When the CT was used as “a priori”, the reconstructed average GNP concentration was 239nM, about 2.5 times of the true concentration. Conclusion: This study is the first to demonstrate GNP enhanced DOT with phantom imaging. The GNP can be differentiated from their surrounding background. However, the reconstruction methods needs to be improved for better spatial and quantification accuracy.« less
High performance thermoelectric nanocomposite device
Yang, Jihui [Lakeshore, CA; Snyder, Dexter D [Birmingham, MI
2011-10-25
A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.
The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distrib...
Using Symmetry to Design Self-Assembling Protein Cages and Nanomaterials on the Mid-Nanometer Scale
NASA Astrophysics Data System (ADS)
Yeates, Todd
Self-assembling molecular structures having diverse cellular functions are widespread in nature. Some of the largest and most sophisticated types are built from many copies of the same or similar protein molecules arranged following principles of symmetry. A long-standing engineering goal has been to design novel protein molecules to self-assemble into geometrically specific structures similar to the extraordinary structures that have evolved in Nature. Practical routes to this goal have been developed by using ideas in symmetry to articulate the minimum design requirements for achieving various types of symmetric architectures, including cages, extended two-dimensional layers, and three-dimensional crystalline materials. The key requirement is that two distinct self-associating interfaces, each conferring one element of rotational symmetry, have to be engineered into the protein molecule (or molecules), following particular geometric specifications. The main principle is that combining two separate symmetry elements into a single molecular entity produces a molecule that necessarily assembles into an architecture dictated by a symmetry group that is the product of the two simpler contributing symmetries. Recent experiments have demonstrated success using a variety of symmetry-based strategies. Strategic variations are emerging that differ from each other with respect to biophysical features such as flexibility vs rigidity in the assembled structures, and with respect to design aspects such as whether the protein interfaces are inherited from natural oligomeric proteins or are designed de novo by advanced computational methods. The success of these strategies has been proven by determining crystal structures of several giant, self-assembling protein cages and clusters (10-25 nm in diameter), created by design. The ability to create sophisticated supramolecular structures from designed protein subunits opens the way to broad applications in synthetic biology and nanotechnology.
Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel.
Vosburgh, Donna J H; Boysen, Dane A; Oleson, Jacob J; Peters, Thomas M
2011-03-01
One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations.
Airborne Nanoparticle Concentrations in the Manufacturing of Polytetrafluoroethylene (PTFE) Apparel
Vosburgh, Donna J.H.; Boysen, Dane A.; Oleson, Jacob J.; Peters, Thomas M.
2016-01-01
One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric, using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600°C). This study addressed the potential for exposure to particulate matter from this sealing process, by characterizing airborne particles in a facility that produces over 1,000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm−3) compared to that measured in the office area (12,100 particles cm−3). Respirable mass concentrations were negligible throughout the facility (GM=0.002 mg m−3 in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p<0.0001). The sealing workers’ breathing zone concentrations ranged from 147,000 particles cm−3 to 798,000 particles cm−3, and their seam responsibility significantly influenced their breathing zone concentrations (p=0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations. PMID:21347955
Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy
Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...
2014-12-16
Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less
Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.
Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less
NASA Astrophysics Data System (ADS)
Jiang, Kedan; Liu, Yun; Pan, Yefei; Wang, Ru; Hu, Panbing; He, Rujia; Zhang, Lingli; Tong, Guoxiu
2017-05-01
An easy metal-ion-steered solvothermal method was developed for the one-step synthesis of monodisperse, uniform NixFe3-xO4 polycrystalline nanospheres with tunable sphere diameter (40-400 nm) and composition (0 ≤ x ≤ 0.245) via changing just Ni2+/Fe3+ molar ratio (γ). With g increased from 0:1 to 2:1, sphere diameter gradually decreased and crystal size exhibited an inversed U-shaped change tendency, followed by increased Ni/Fe atom ratio from 0% to 0.0888%. An in situ-reduction, coordination-precipitation transformation mechanism was proposed to interpret the metal-ion-steered growth. Size- and composition-dependent static magnetic and microwave absorbing properties were systematically investigated. Saturation magnetization declines with g in a Boltzmann model due to the changes of crystal size, sphere diameter, and Ni content. The coercivity reaches a maximum at γ = 0.75:1 because of the critical size of Fe3O4 single domain (25 nm). Studies on microwave absorption reveal that 150-400 nm Fe3O4 nanospheres mainly obey the quarter-wavelength cancellation model with the single-band absorption; 40-135 nm NixFe3-xO4 nanospheres (0 ≤ x ≤ 0.245) obey the one and three quarter-wavelength cancellation model with the multi-band absorption. 150 nm Fe3O4 nanospheres exhibit the optimal EM wave-absorbing property with an absorbing band of 8.94 GHz and the maximum RL of -50.11 dB.
Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng
2017-12-01
The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.
A six-color four-laser mobile platform for multi-spectral fluorescence imaging endoscopy
NASA Astrophysics Data System (ADS)
Black, John F.; Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Utzinger, Urs; Barton, Jennifer
2015-03-01
The properties of multi-spectral fluorescence imaging using deep-UV-illumination have recently been explored using a fiber-coupled thermal source at 280 nm. The resulting images show a remarkable level of contrast thought to result from the signal being overwhelmingly generated in the uppermost few cell layers of tissue, making this approach valuable for the study of diseases that originate in the endothelial tissues of the body. With a view to extending the technique with new wavelengths, and improving beam quality for efficient small core fiber coupling we have developed a mobile self-contained tunable solid-state laser source of deep UV light. An alexandrite laser, lasing at around 750 nm is frequency doubled to produce 375 nm and then tripled to produce 250 nm light. An optical deck added to the system allows other laser sources to be incorporated into the UV beam-line and a lens system has been designed to couple these sources into a single delivery fiber with core diameters down to 50 microns. Our system incorporates five wavelengths [250 nm, 375 nm, 442 nm (HeCd), 543 nm (HeNe) and 638 nm (diode laser)] as the illumination source for a small diameter falloposcope designed for the study of the distal Fallopian tube origins of high grade serous ovarian cancer. The tunability of alexandrite offers the potential to generate other wavelengths in the 720-800, 360-400 and 240-265 nm ranges, plus other non-linear optical conversion techniques taking advantage of the high peak powers of the laser.
Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders
Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael
2016-01-01
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.
This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are aminomore » acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (C F) is calculated and compared with one set of published measured values. We investigate power law (Ad y) approximations to C F, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (Q F=C F/geometric-cross-section) can be written for homogeneous particles as Q absR F, where Q abs is the absorption efficiency, and R F, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When Q F is plotted vs. m id or mi(m r-1)d, where m=m r+im i is the complex refractive index, the plots for different fractions of water in the particle tend to overlap.« less
NASA Astrophysics Data System (ADS)
Buisset, Christophe; Prasit, Apirat; Lépine, Thierry; Poshyachinda, Saran; Soonthornthum, Boonrucksar; Deboos, Alexis
2016-07-01
The National Astronomical Research Institute (NARIT) is currently developing an all spherical five lenses focal reducer to image a FOV circular of diameter Δθ = 14.6' on the 4K camera with a pixel scale equal to 0.42''/pixel. The spatial resolution will be better than 1.2'' over the full visible spectral domain [400 nm, 800 nm]. The relative irradiance between the ghost and the science images will be lower than 10-4. The maximum distortion will be lower than 1% and the maximum angle of incidence on the filters will be equal to 8°. The focal reducer comprises 1 doublet L1 located at the fork entrance and 1 triplet L2 located in front of the camera. The doublet L1 will be mounted on a tip-tilt mount placed on a robotic sliding rail. L1 will thus be placed in the optical path during the observations with the 4K camera and will be removed during the observations with the other instruments. The triplet L2 will be installed on the instrument cube in front of the camera equipped with the filter wheel. The glass will be manufactured in a specialized company, the mechanical parts will be manufactured by using the NARIT Computer Numerical Control machine and the lenses will be integrated at NARIT. In this paper, we describe the optical and mechanical designs and we present the geometrical performance, the transmission budget and the results of the stray light analyses.
The diameter of Pallas from its occultation of SAO 85009
NASA Technical Reports Server (NTRS)
Wasserman, L. H.; Millis, R. L.; Franz, O. G.; Bowell, E.; Giclas, H. L.; Martin, L. J.; Elliot, J. L.; Dunham, E.; Mink, D.; White, N. M.
1979-01-01
The May 29, 1978, occultation of SAO 85009 by Pallas was observed photoelectrically at seven widely spaced sites. The observations are well represented by an elliptical apparent limb profile having semimajor and semiminor axes of 279.5 + or - 2.9 and 262.7 + or - 4.5 km, respectively. Combining these results with published information on the light curve and rotational pole position, Pallas's mean diameter is found to be 538 + or - 12 km, which yields a mean density for Pallas of 2.8 + or - 0.5 g/cu cm and a visual geometric albedo of 0.103 + or - 0.005. The diameter of Pallas as determined from this occultation is significantly smaller than the values derived by radiometric, polarimetric, and double-image techniques.
Fluorescent and scattering contrast agents in a mouse model of colorectal cancer
NASA Astrophysics Data System (ADS)
Winkler, Amy M.; Rice, Photini F. S.; Troutman, Timothy S.; Backer, Marina V.; Backer, Joseph M.; Drezek, Rebekah A.; Romanowski, Marek; Barton, Jennifer K.
2008-02-01
In previous work we have demonstrated the utility of laser-induced fluorescence (LIF) and optical coherence tomography (OCT) to identify adenoma in mouse models of colorectal cancer with high sensitivity and specificity. However, improved sensitivity to early disease, as well as the ability to distinguish confounders (e.g. fecal contamination, natural variations in mucosal thickness), is desired. In this study, we investigated the signal enhancement of fluorescent and scattering contrast agents in the colons of AOM-treated mice. The fluorescent tracer scVEGF/Cy, targeted to receptors for vascular endothelial growth factor, was visualized on a dual modality OCT/LIF endoscopic system with 1300-nm center wavelength OCT source and 635-nm LIF excitation. Scattering agents were tested with an 890-nm center wavelength endoscopic OCT system. Agents included nanoshells, 120-nm in diameter, and nanorods, 20-nm in diameter by 80-nm in length. Following imaging, colons were excised. Tissue treated with fluorophore was imaged on an epifluorescence microscope. Histological sections were obtained and stained with H&E and silver enhancer to verify disease and identify regions of gold uptake, respectively. Non-specific signal enhancement was observed with the scattering contrast agents. Specificity for adenoma was seen with the scVEGF/Cy dye.
The shock sensitivity of nitromethane/methanol mixtures
NASA Astrophysics Data System (ADS)
Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee
2013-06-01
The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.
U.S. Standard Atmosphere, 1976
1976-10-01
143 - 6 -:183 -1136 -854 10 -356 -3839 -32 -813 -333 - 8 ?3 -N33 -3340 -1387 -880 1063.0 48 -3352 -832 -891 -894 -361 -3499 -902 -3904 -907 1047.0 34...geometric altitude 8 3 Molecular-scala temperature as a function of geopoteatia! altitude 10 4 Kinetic temperature as a function of geometric altitude...N/rn’) F, the set of the 10 values (dimensionless) listed J joule work, energy or in table 3 quantity of 9.80665 m/ 8 ’ heat (N.m) g" 9.80665 n’/ (a’.m
Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.
Dunand, David C; Müllner, Peter
2011-01-11
The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.
20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.
Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T
2013-08-15
We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.
Optimal packing size of non-ligated CdSe nanoclusters for microstructure synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tefera, Anteneh G.; Mochena, Mogus D.; Johnson, Elijah
2014-09-14
Structural and electrostatic properties of nanoclusters of CdSe of diameter 1–2 nm are studied with first principle calculations to determine the optimal size for synthesizing microstructures. Based on robustness of the core structure, i.e., the retention of tetrahedral geometry, hexagonal ring structure, and overall wu{sup ¨}rtzite structure to surface relaxations, we conclude that nanoclusters of ~2 nm diameter are the best candidates to form a dense microstructure with minimal interstitial space. Se-terminated surfaces retain a zigzag structure as Se atoms are pulled out and Cd atoms are pulled in due to relaxation, therefore, are best suited for inter-nanocluster formations.
Electrical characterization of TiO2 nanotubes synthesized through electrochemical anodizing method
NASA Astrophysics Data System (ADS)
Manescu Paltanea, Veronica; Paltanea, Gheorghe; Popovici, Dorina; Jiga, Gabriel
2016-05-01
In the present paper, the electrochemical anodizing method was used for the obtaining of TiO2 nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H2O - 49.5 wt % glycerol - 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.
NASA Astrophysics Data System (ADS)
Shen, Xinglai; Zhang, Haitao; Hao, He; Li, Dan; Li, Qinghua; Yan, Ping; Gong, Mali
2015-06-01
We report the construction of a cascaded fiber amplifier where a 40-μm-core-diameter photonic crystal fiber is utilized in the main amplifier stage. Single-transverse-mode, linearly-polarized, 7.5 ns pulses with 1.5 mJ energy, 123 kW peak power and 10 nm spectral bandwidth centered at 1062 nm are generated. To our knowledge, the pulse energy we obtain is the highest from 40-μm-core-diameter photonic crystal fibers, and also the highest for long pulses (>1 ns) with linear polarization and single transverse mode.
High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication
NASA Astrophysics Data System (ADS)
Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew
2013-03-01
We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.
A simple approach for large-area fabrication of Ag nanorings
NASA Astrophysics Data System (ADS)
Yuan, Zhi-hao; Zhou, Wei; Duan, Yue-qin; Bie, Li-jian
2008-02-01
A simple and low-cost method based on a two-step heat treatment of AgNO3/SiO2 film has been developed for fabricating metal Ag nanoring arrays. The as-prepared nanorings have an inner diameter of 70-250 nm and an average wall thickness (namely wire diameter) of approximately 30 nm with a number density of approximately 109 cm-2 on the surface of the SiO2 matrix. X-ray diffraction (XRD) results reveal that these nanorings exhibit a face-centered cubic crystal structure. Furthermore, a new growth mechanism, namely a molten metal bubble as a self-template, is tentatively proposed for Ag nanorings.
NASA Astrophysics Data System (ADS)
Martin, Matthew Nichols
Gold nanoparticles between 1 and 10 nm in diameter exhibit size-dependent electronic and optical properties that cannot be explained by molecular science and which deviate significantly from their bulk counterparts. For example, the melting temperature of gold nanoparticles less than 5 nm in diameter is around 300 °C [1], whereas bulk gold melts at over 1000 °C [2]. Gold nanoparticles require precise control over particle diameter in order to exploit and tailor their unique properties; however, tuning the size reproducibly and predictably has proved to be a challenge. One of the most difficult obstacles to overcome is nanoparticle aggregation, since nanoparticles flocculate at room temperature quite readily. In 1994, Brust et al. solved the aggregation problem by introducing monolayer protection coatings on gold nanoparticles, in which organic ligand molecules are attached to the nanoparticle surface and create a physical barrier between the gold core and solvent. This was a definitive solution to size stability, since nanoparticles never aggregate, however the synthesis method does not generate monodisperse nanoparticles and has poor size-tuning capabilities. We developed a synthesis method for gold nanoparticles that improves greatly upon the Brust method. Starting from scratch, we discovered a "sweet zone" for aqueous gold nanoparticles, revealing how to make "naked" (stabilizer-free) gold nanoparticles which are continuously and precisely controlled between 3.2 and 5.2 nm in diameter, both reproducibly and predictably. Naked nanoparticles are then coated with organic 1-dodecanethiol ligand molecules, and transferred to hexane. Since all reaction byproducts remain in the water-phase, no postsynthesis cleaning or size-filtering is necessary, reducing the total synthesis time from ~24 hours in the Brust method, to less than 10 minutes. Surprisingly, our nanoparticles are highly negatively charged in nonpolar solvents. This unexpectedly caused nanoparticles to be unstable in toluene but stable in hexane. Consequently, nanoparticles float to the air-toluene interface, and after evaporation of toluene, form large 2D monolayer films of nanoparticle that are uniform at nanometer, micrometer, and millimeter length scales. This facile 2D self-assembly method also displays extremely size-dependent features in the 3.2 -- 5.2 nm range. Additionally, we managed to expand our synthesis method to include smaller gold nanoparticles. Since small gold clusters less than 2 nm in diameter are exponentially more efficient than other conventional catalysts, we labored to synthesize nanoclusters with diameters less than 2 nm, and fortunately, reduced the synthesis time to 2 minutes. With complete size control of gold nanoparticles between 1 and 5 nm, we have developed a truly novel synthesis method that forms a strong basis for many interesting studies. We have also discovered a novel method for place exchange reactions of organic molecular coatings. Ligand exchange of water-soluble thiols for alkylamines was performed at room temperature and occurred in less than 10 seconds, and allowed for the phase-transfer of nanoparticles from nonpolar solvents back to water. This method is extremely useful for the biological nanoparticle community as they are already using nanoparticles for drug delivery, DNA sensing, and molecular recognition.
Vo, Minh D; Papavassiliou, Dimitrios V
2016-04-15
Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.
A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support
NASA Astrophysics Data System (ADS)
Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu
2017-04-01
A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.
Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc
2015-01-01
Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687
Ghoshal, Tandra; Holmes, Justin D; Morris, Michael A
2018-05-08
In an effort to develop block copolymer lithography to create high aspect vertical pore arrangements in a substrate surface we have used a microphase separated poly(ethylene oxide) -b- polystyrene (PEO-b-PS) block copolymer (BCP) thin film where (and most unusually) PS not PEO is the cylinder forming phase and PEO is the majority block. Compared to previous work, we can amplify etch contrast by inclusion of hard mask material into the matrix block allowing the cylinder polymer to be removed and the exposed substrate subject to deep etching thereby generating uniform, arranged, sub-25 nm cylindrical nanopore arrays. Briefly, selective metal ion inclusion into the PEO matrix and subsequent processing (etch/modification) was applied for creating iron oxide nanohole arrays. The oxide nanoholes (22 nm diameter) were cylindrical, uniform diameter and mimics the original BCP nanopatterns. The oxide nanohole network is demonstrated as a resistant mask to fabricate ultra dense, well ordered, good sidewall profile silicon nanopore arrays on substrate surface through the pattern transfer approach. The Si nanopores have uniform diameter and smooth sidewalls throughout their depth. The depth of the porous structure can be controlled via the etch process.
Efficient drug delivery using SiO2-layered double hydroxide nanocomposites.
Li, Li; Gu, Zi; Gu, Wenyi; Liu, Jian; Xu, Zhi Ping
2016-05-15
MgAl-layered double hydroxide (MgAl-LDH) nanoparticles have great potentials in drug and siRNA delivery. In this work, we used a nanodot-coating strategy to prepare SiO2 dot-coated layered double hydroxide (SiO2@MgAl-LDH) nanocomposites with good dispersibility and controllable size for drug delivery. The optimal SiO2@MgAl-LDH nanocomposite was obtained by adjusting synthetic parameters including the mass ratio of MgAl-LDH to SiO2, the mixing temperature and time. The optimal SiO2@MgAl-LDH nanocomposite was shown to have SiO2 nanodots (10-15nm in diameter) evenly deposited on the surface of MgAl-LDHs (110nm in diameter) with the plate-like morphology and the average hydrodynamic diameter of 170nm. We further employed SiO2@MgAl-LDH nanocomposite as a nanocarrier to deliver methotrexate (MTX), a chemotherapy drug, to the human osteosarcoma cell (U2OS) and found that MTX delivered by SiO2@MgAl-LDH nanocomposite apparently inhibited the U2OS cell growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis and spectroscopic study of CdS nanoparticles using hydrothermal method
NASA Astrophysics Data System (ADS)
AL-Mamoori, Mohammed H. K.; Mahdi, Dunia K.; Al-Shrefi, Saif M.
2018-05-01
In this work, cadmium sulfide nanoparticles (powder) with diameter 50.8 nm was prepared using hydrothermal method. The structural and optical properties of CdS nanoparticles was studied by X-ray diffraction, FESEM, EDS, FTIR, UV-Diffuse Reflectance spectroscopy and Photoluminance spectrum. X-ray diffraction reveal the formation the purity of prepared phase of CdS particles with hexagonal wurtzite structure with particle size 31.8nm by using sheerer equation. The energy dispersion scattering (EDS) examination explains that the sample is composed of a large amount of Cd and S which are exactly CdS nanoparticles and there is a very small trace of (Zn) and (O) element observed because of there is a small pollutions in the measurement place of samples. FESEM shows the spherical shape of nanoparticles with around 50.8 nm diameter. The optical absorption spectral study identified the red shift of the sample in comparison to bulk ZnO in three dimensions. Photoluminance spectrum (PL) at room temperature showed that there are two luminescence peaks at 433.14 nm and 518.21nm. Samples demonstrate a sharp emission band at around 433.18 nm, which is attributed to the typical exciton luminescence. The broad band at 518.21nm which were attributed to the trapped luminescence. The green emission band at 518.21 nm was associated with the emission due to electronic transition from the conduction band to an accepter level due to interstitial sulphur ion.
FibrilJ: ImageJ plugin for fibrils' diameter and persistence length determination
NASA Astrophysics Data System (ADS)
Sokolov, P. A.; Belousov, M. V.; Bondarev, S. A.; Zhouravleva, G. A.; Kasyanenko, N. A.
2017-05-01
Application of microscopy to evaluate the morphology and size of filamentous proteins and amyloids requires new and creative approaches to simplify and automate the image processing. The estimation of mean values of fibrils diameter, length and bending stiffness on micrographs is a major challenge. For this purpose we developed an open-source FibrilJ plugin for the ImageJ/FiJi program. It automatically recognizes the fibrils on the surface of a mica, silicon, gold or formvar film and further analyzes them to calculate the distribution of fibrils by diameters, lengths and persistence lengths. The plugin has been validated by the processing of TEM images of fibrils formed by Sup35NM yeast protein and artificially created images of rod-shape objects with predefined parameters. Novel data obtained by SEM for Sup35NM protein fibrils immobilized on silicon and gold substrates are also presented and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2012-10-10
We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2013-03-14
We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
Field emitter arrays and displays produced by ion tracking lithography
NASA Astrophysics Data System (ADS)
Felter, T. E.; Musket, R. G.; Bernhardt, A. F.
2005-12-01
When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter (∼10 nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters (∼100 nm diameter electron guns) for CTC's Thin CRTTM displays, which have been fabricated to diagonal dimensions >13 in. Additional technological applications of ion tracking lithography will be briefly covered.
Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri
2005-11-01
An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.
Chen, Hao; Zhang, Qi; Chou, Stephen Y
2015-02-27
Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.
Economic fabrication of a novel hybrid planar Grating/Fresnel lens for miniature spectrometers.
Zhou, Qian; Li, Xinghui; Geng, Menglin; Hu, Haifei; Ni, Kai; Zhong, Lunchao; Yan, Peng; Wang, Xiaohao
2018-03-05
We propose a new technique to fabricate a highly specialized optical element, a hybrid planar Grating/Fresnel lens (G-Fresnel), which is particularly useful to improve or enable more-affordable miniature/portable spectrometers. Both the Fresnel and the grating surface are fabricated simultaneously by sandwiching soft PDMS between a hard grating and a pre-replicated negative Fresnel surface. Several adhesion reduction techniques are also investigated that help improve both fabrication and cost efficiency (by reducing the solidification time) as well as the lifetime of the mold. Alignment errors are systematically analyzed, and their effects on the G-Fresnel lens evaluated. A compact fabrication platform was built, which is smaller than a volume of 160☓140☓106 mm 3 to fit into a conventional vacuum drying oven, for the fabrication of a G-Fresnel lens with a diameter of 25.4 mm, an equivalent focal length of 25 mm, and a blazed grating pattern with 600 lines/mm spacing. The solidification time was reduced to 2 hours thanks to the improved adhesion reduction technique that permits a PDMS drying-temperature as high as 65 °C. The fabricated G-Fresnel lens was evaluated with regard to both geometrical fabrication precision and optical performance. The measured results, using a step gauge and atomic force microscopy, confirm that this replication technique produces high-quality replicates of the master surface-profile. Furthermore, a prototype spectrometer that uses a G-Fresnel lens was built and evaluated. The spectrometer fits within a volume of about 100 mm☓50 mm☓30 mm, and it operates across a wide wavelength spectrum (450 nm to 650 nm). Both the calculation based on the optical software ZEMAX and the experimental measurements are consistent and confirm that the spectrometer with the G-Fresnel lens can provide a spectral resolution of better than 1.2nm.
NASA Astrophysics Data System (ADS)
Kang, Chiwon; Lee, Hoo-Jeong
2018-05-01
In this paper, we report the results of modulating the processing conditions (mainly, temperature) of a two-step method consisting of sputtering deposition of a Ni catalytic layer and chemical vapor deposition (CVD) of carbon nanotubes (CNTs) on a three-dimensional (3D)-structured Cu mesh to control the morphology of CNTs for advanced Li-ion battery (LIB) applications. We disclosed that CNT growth at a low temperature (700 °C) produced small-diameter CNTs (CNT_S) with an average diameter of ∼20 nm, while that at a high temperature (750 °C) produced large-diameter CNTs (CNT_L) with an average diameter of 200–300 nm. The high-resolution transmission electron microscopy (HR-TEM) and Raman analyses manifested poorly crystalline CNTs for both samples. CNTS showed a specific capacity of 476 mAh g‑1, which is ∼176% superior to that of CNTL (271 mAh g‑1) and ∼128% higher than the theoretical capacity of the state-of-the-art graphites and recently reported nanostructured carbon-based anode materials.
Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process.
Shen, Guozhen; Bando, Yoshio; Golberg, Dmitri
2006-11-23
SiO(2) nanotubes with tunable diameters and lengths have been successfully synthesized via a simple in situ templatelike process by thermal evaporation of SiO, ZnS, and GaN in a vertical induction furnace. The structure and morphologies were systematically investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. Studies found that both the diameters and lengths of the SiO(2) nanotubes can be effectively tuned by simply changing the reaction temperatures. The range of changes was from 30 nm (diameter) and several hundred micrometers (length) at 1450 degrees C to 100 nm (diameter) and 2-10 micrometers (length) at 1300 degrees C. Varying some other experimental parameters results in the formation of additional SiO(2)-based nanostructures, such as core-shell ZnS-SiO(2) nanocables, ZnS nanoparticle filled SiO(2) nanotubes, and fluffy SiO(2) spheres. Based on the observations, an in situ templatelike process was proposed to explain the possible growth mechanism.
Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.
NASA Astrophysics Data System (ADS)
van Zanten, John Hollis
1992-01-01
The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several hundred to more than a thousand fold in the vesicle interior in a few minutes time. Synthetic ionophores were found to preferentially transport Pb^{2+} over Cd^{2+}, thus suggesting that engineered vesicle dispersions can be used as selective separations media. The effect of ionophore concentration, solution pH, solution ionic strength, initial metal ion concentration and vesicle concentration have been investigated.
Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang
2015-01-01
A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721
NASA Astrophysics Data System (ADS)
Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung
2018-02-01
We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.
Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming
2017-10-01
Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.
An analytical fiber bundle model for pullout mechanics of root bundles
NASA Astrophysics Data System (ADS)
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases both the maximum force and corresponding displacement. Estimates of the maximum pullout forces for bundles of 100 roots with identical diameter distribution for different species range from less than 1 kN for barley (Hordeum vulgare) to almost 16 kN for pistachio (Pistacia lentiscus). The model explains why a commonly used assumption that all roots break simultaneously overpredicts the maximum pullout force by a factor of about 1.6-2. This ratio may exceed 3 for diameter distributions that have a large number of small roots like the exponential distribution.
NASA Astrophysics Data System (ADS)
Mao, Haiyang; Wu, Di; Wu, Wengang; Xu, Jun; Hao, Yilong
2009-11-01
A simple lithography-free approach for fabricating diversiform nanostructure forests is presented. The key technique of the approach is that randomly distributed nanoscale residues can be synthesized on substrates simply by removing photoresist with oxygen plasma bombardment. These nanoresidues can function as masks in the subsequent etching process for nanopillars. By further spacer and then deep etching processes, a variety of forests composed of regular, tulip-like or hollow-head nanopillars as well as nanoneedles are successfully achieved in different etching conditions. The pillars have diameters of 30-200 nm and heights of 400 nm-3 µm. The needles reach several microns in height, with their tips less than 10 nm in diameter. Moreover, microstructures containing these nanostructure forests, such as surface microchannels, have also been fabricated. This approach is compatible with conventional micro/nano-electromechanical system (MEMS/NEMS) fabrication.
3D nano-structures for laser nano-manipulation
Seniutinas, Gediminas; Gervinskas, Gediminas; Brasselet, Etienne; Juodkazis, Saulius
2013-01-01
Summary The resputtering of gold films from nano-holes defined in a sacrificial PMMA mask, which was made by electron beam lithography, was carried out with a dry plasma etching tool in order to form well-like structures with a high aspect ratio (height/width ≈ 3–4) at the rims of the nano-holes. The extraordinary transmission through the patterns of such nano-wells was investigated experimentally and numerically. By doing numerical simulations of 50-nm and 100-nm diameter polystyrene beads in water and air, we show the potential of such patterns for self-induced back-action (SIBA) trapping. The best trapping conditions were found to be a trapping force of 2 pN/W/μm2 (numerical result) exerted on a 50-nm diameter bead in water. The simulations were based on the analytical Lorentz force model. PMID:24062979
Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru
2013-08-22
The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.
Mesoporous metal oxide microsphere electrode compositions and their methods of making
Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M
2014-12-16
Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.
Heralded Quantum Gate between Remote Quantum Memories
2009-06-25
emission fre- quency. Second, the geometrical modes from the two fibers are matched to better than 98% as characterized with laser light. Third, the...remains in the trap for several weeks. Doppler-cooling by laser light slightly red detuned from the 2S1=2 $ 2P1=2 transition at 369.5 nm localizes the ions...state decays to the metastable 2D3=2 level. This level is depopulated with a laser near 935.2 nm to maintain efficient cooling and state detection. We
Parametric Study of Sealant Nozzle
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshimi
It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.
NASA Astrophysics Data System (ADS)
Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya
2018-03-01
This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.
Multiple-bolted joints in wood members : a literature review
Peter James Moss
1997-01-01
This study reviewed the literature on experimental and analytical research for the connection of wood members using multiple laterally loaded bolts. From this, the influence of geometric factors were ascertained, such as staggered and aligned fasteners, optimum fastener configurations, row factors and length-to-diameter bolt ratios, spacing, end and edge distances, and...
The Thin Border between Light and Shadow
ERIC Educational Resources Information Center
Guglielmino, M.; Gratton, L. M.; Oss, S.
2010-01-01
We propose a simple, direct estimate of the Sun's diameter based on penumbra observation and measurement in a two-level approach, the first for middle-school pupils and making use of simple geometrical arguments, the second more appropriate to high-school students and based on a slightly more sophisticated approach. (Contains 5 figures.)
NASA Astrophysics Data System (ADS)
Wang, Da-Yang; Jin, Ning-De; Zhuang, Lian-Xin; Zhai, Lu-Sheng; Ren, Ying-Yu
2018-07-01
Three types of rotating electric field conductance sensors (REFCSs) with four, six, and eight electrodes are designed and optimized in this paper to measure the water holdup of oil–gas–water three-phase flow in vertical upward 20 mm inner diameter pipe. The geometric parameters of the REFCSs are optimized using finite element method to access highly sensitive and homogeneous detection fields. The performance of the REFCSs in the water holdup measurement of three-phase flows is experimentally evaluated by generalizing the Maxwell equation. Based on the measured water holdup from the REFCSs, the slippage behaviors in oil–gas–water are uncovered and the superficial velocity of the water phase is determined. The results show that the REFCSs present a high resolution in the water holdup measurement. The REFCS with eight electrodes has better performance than those with four- and six-electrodes, which indicates that its configuration and geometric parameters are more suitable for vertical oil–gas–water three-phase flow measurement in 20 mm inner diameter pipe.
Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.
Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia
2012-01-01
Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.
Ultrabreathable and protective membranes with sub-5 nm carbon nanotube pores
Bui, Ngoc; Meshot, Eric R.; Kim, Sangil; ...
2016-05-09
Here, small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.
Byun, Ji Won; Moon, Jong Hyuk; Bang, Chan Yl; Shin, Jeonghyun; Choi, Gwang Seong
2015-01-01
Some studies have reported the use of 308-nm excimer laser therapy for treating alopecia areata (AA); however, the effectiveness of this therapy on a theoretical basis has not yet been comparatively analyzed. To determine the therapeutic effect of excimer laser therapy on AA. One alopecic patch was divided into control and treated sides in 10 patients with AA. Then, 308-nm excimer laser therapy was administered twice a week for 12 weeks. Photograph and phototrichogram analyses were performed. Photographic assessments by both dermatologists and individuals of the general population showed objective improvements after excimer laser therapy. On the treated side, the hair count and hair diameter had statistically increased after treatment. However, only the hair diameter was found to be significantly high in the treated half when it was compared with the control side. The 308-nm excimer laser has a therapeutic effect on AA, which is proven by photograph and phototrichogram analysis by a side-by-side comparison. © 2015 S. Karger AG, Basel.
Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles
NASA Astrophysics Data System (ADS)
Huong, Tran Thi Thu; Matsumoto, Kazuhiko; Moriya, Masataka; Shimada, Hiroshi; Kimura, Yasuo; Hirano-Iwata, Ayumi; Mizugaki, Yoshinao
2017-08-01
We demonstrated one type of single-electron device that exhibited electrical characteristics similar to those of resistively-coupled SE transistor (R-SET) at 77 K and room temperature (287 K). Three Au electrodes on an oxidized Si chip served as drain, source, and gate electrodes were formed using electron-beam lithography and evaporation techniques. A narrow (70-nm-wide) gate electrode was patterned using thermal evaporation, whereas wide (800-nm-wide) drain and source electrodes were made using shadow evaporation. Subsequently, aqueous solution of citric acid and 15-nm-diameter gold nanoparticles (Au NPs) and toluene solution of 3-nm-diameter Au NPs chemisorbed via decanethiol were dropped on the chip to make the connections between the electrodes. Current-voltage characteristics between the drain and source electrodes exhibited Coulomb blockade (CB) at both 77 and 287 K. Dependence of the CB region on the gate voltage was similar to that of an R-SET. Simulation results of the model based on the scanning electron microscopy image of the device could reproduce the characteristics like the R-SET.
An optical fiber glass containing PbSe quantum dots
NASA Astrophysics Data System (ADS)
Cheng, Cheng; Jiang, Huilü; Ma, Dewei; Cheng, Xiaoyu
2011-09-01
An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO 2 fibers. It can be easily fused and spliced with SiO 2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.
Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.
Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P
2011-08-01
The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Synthesis and characterization of diverse Pt nanostructures in Nafion.
Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D
2014-02-25
With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.
Uneven distribution of inorganic pollutants in marine air originating from ocean-going ships.
Bencs, László; Horemans, Benjamin; Buczyńska, Anna Jolanta; Van Grieken, René
2017-03-01
The distribution of mass, water-soluble inorganic salts and mineral elements of size-segregated aerosols (PM 1 , PM 2.5-1 and PM 10-2.5 ), precursor gaseous pollutants, black carbon, and nanoparticles (10-300 nm size range) at the Southern Bight of the North Sea has been studied. The concentrations of air pollutants peaked over shipping lanes, open-water anchorage areas and frequently navigated waters, due to the presence of mobile emission sources. A considerable decrease in air pollutant levels was seen when diverting from these marine areas towards remote or coastal banks. These findings showed the rapid dispersion of pollutants in the marine air. The nano-aerosol count, originating from ocean-going ships, peaked at lower average aerodynamic diameters (e.g., ≈28 nm) than those, observed from low-displacement vessels (45-50 nm, e.g., for fishing boats). The average diameter of nano-PM depended also on weather conditions, e.g., it was higher (≈50 nm) in air of higher humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Yuan; Yuan, Baohong; Vignola, Joseph
2012-01-01
To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes.
Liu, Yuan; Yuan, Baohong; Vignola, Joseph
2013-01-01
To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes. PMID:24179476
NASA Astrophysics Data System (ADS)
La Fontaine, A.; Coleman, V. A.; Jämting, A. K.; Lawn, M.; Herrmann, J.; Miles, J. R.
2010-06-01
Three different methods for extracting zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles from commercially available sunscreen were investigated to determine the most appropriate route for producing a sample suitable for measuring the primary particle size. Direct dilution of the formulation, centrifugal methods and chemical washing were trialed in combination with ultrasonic processing and surfactant addition to generate samples that are suitable for particle size analysis. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to monitor the extraction and re-dispersion process. Washing with hexane, methanol and water to remove the formulation, in combination with pulsed high-powered ultrasonication and the addition of a charge-stabilizing surfactant was found to be the most efficient way of producing de-agglomerated samples. DLS measurements gave average hydrodynamic particle diameters of 87 nm for ZnO and 76 nm for TiO2, compared to equivalent spherical particle diameters of 21 +/- 12 nm for ZnO (81 particles) and 19 +/- 14 nm for TiO2 (81 particles) obtained from TEM analysis.
Characterization of nZVI mobility in a field scale test.
Kocur, Chris M; Chowdhury, Ahmed I; Sakulchaicharoen, Nataphan; Boparai, Hardiljeet K; Weber, Kela P; Sharma, Prabhakar; Krol, Magdalena M; Austrins, Leanne; Peace, Christopher; Sleep, Brent E; O'Carroll, Denis M
2014-01-01
Nanoscale zerovalent iron (nZVI) particles were injected into a contaminated sandy subsurface area in Sarnia, Ontario. The nZVI was synthesized on site, creating a slurry of 1 g/L nanoparticles using the chemical precipitation method with sodium borohydride (NaBH4) as the reductant in the presence of 0.8% wt. sodium carboxymethylcellulose (CMC) polymer to form a stable suspension. Individual nZVI particles formed during synthesis had a transmission electron microscopy (TEM) quantified particle size of 86.0 nm and dynamic light scattering (DLS) quantified hydrodynamic diameter for the CMC and nZVI of 624.8 nm. The nZVI was delivered to the subsurface via gravity injection. Peak normalized total Fe breakthrough of 71% was observed 1m from the injection well and remained above 50% for the 24 h injection period. Samples collected from a monitoring well 1 m from the injection contained nanoparticles with TEM-measured particle diameter of 80.2 nm and hydrodynamic diameter of 562.9 nm. No morphological changes were discernible between the injected nanoparticles and nanoparticles recovered from the monitoring well. Energy dispersive X-ray spectroscopy (EDS) was used to confirm the elemental composition of the iron nanoparticles sampled from the downstream monitoring well, verifying the successful transport of nZVI particles. This study suggests that CMC stabilized nZVI can be transported at least 1 m to the contaminated source zone at significant Fe(0) concentrations for reaction with target contaminants.
Optical and biometric relationships of the isolated pig crystalline lens.
Vilupuru, A S; Glasser, A
2001-07-01
To investigate the interrelationships between optical and biometric properties of the porcine crystalline lens, to compare these findings with similar relationships found for the human lens and to attempt to fit this data to a geometric model of the optical and biometric properties of the pig lens. Weight, focal length, spherical aberration, surface curvatures, thickness and diameters of 20 isolated pig lenses were measured and equivalent refractive index was calculated. These parameters were compared and used to geometrically model the pig lens. Linear relationships were identified between many of the lens biometric and optical properties. The existence of these relationships allowed a simple geometrical model of the pig lens to be calculated which offers predictions of the optical properties. The linear relationships found and the agreement observed between measured and modeled results suggest that the pig lens confirms to a predictable, preset developmental pattern and that the optical and biometric properties are predictably interrelated.
Optimization of geometric parameters of heat exchange pipes pin finning
NASA Astrophysics Data System (ADS)
Akulov, K. A.; Golik, V. V.; Voronin, K. S.; Zakirzakov, A. G.
2018-05-01
The work is devoted to optimization of geometric parameters of the pin finning of heat-exchanging pipes. Pin fins were considered from the point of view of mechanics of a deformed solid body as overhang beams with a uniformly distributed load. It was found out under what geometric parameters of the nib (diameter and length); the stresses in it from the influence of the washer fluid will not exceed the yield strength of the material (aluminum). Optimal values of the geometric parameters of nibs were obtained for different velocities of the medium washed by them. As a flow medium, water and air were chosen, and the cross section of the nibs was round and square. Pin finning turned out to be more than 3 times more compact than circumferential finning, so its use makes it possible to increase the number of fins per meter of the heat-exchanging pipe. And it is well-known that this is the main method for increasing the heat transfer of a convective surface, giving them an indisputable advantage.
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
NASA Astrophysics Data System (ADS)
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Silver metal nanoparticles study for biomedical and green house applications
NASA Astrophysics Data System (ADS)
Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.
2017-02-01
Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.