Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications
NASA Astrophysics Data System (ADS)
Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao
2012-03-01
Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.
Blue laser diode (450 nm) systems for welding copper
NASA Astrophysics Data System (ADS)
Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.
2018-02-01
This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts
Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2018-02-01
High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.
Visible Color and Photometry of Bright Materials on Vesta
NASA Technical Reports Server (NTRS)
Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.
2012-01-01
The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].
NASA Astrophysics Data System (ADS)
Aryal, Saurav; Finn, Susanna C.; Hewawasam, Kuravi; Maguire, Ryan; Geddes, George; Cook, Timothy; Martel, Jason; Baumgardner, Jeffrey L.; Chakrabarti, Supriya
2018-05-01
Energies and fluxes of precipitating electrons in an aurora over Lowell, MA on 22-23 June 2015 were derived based on simultaneous, high-resolution (≈ 0.02 nm) brightness measurements of N2+ (427.8 nm, blue line), OI (557.7 nm, green line), and OI (630.0 nm, red line) emissions. The electron energies and energy fluxes as a function of time and look direction were derived by nonlinear minimization of model predictions with respect to the measurements. Three different methods were compared; in the first two methods, we constrained the modeled brightnesses and brightness ratios, respectively, with measurements to simultaneously derive energies and fluxes. Then we used a hybrid method where we constrained the individual modeled brightness ratios with measurements to derive energies and then constrained modeled brightnesses with measurements to derive fluxes. Derived energy, assuming Maxwellian distribution, during this storm ranged from 109 to 262 eV and the total energy flux ranged from 0.8 to 2.2 ergs·cm-2·s-1. This approach provides a way to estimate energies and energy fluxes of the precipitating electrons using simultaneous multispectral measurements.
Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng
2016-03-01
Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.
NASA Astrophysics Data System (ADS)
Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping
2017-02-01
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui; Tong, Shi; Liu, Yuan; Boppart, Stephen A.
2013-01-01
We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers. PMID:24104233
NASA Astrophysics Data System (ADS)
Wang, Shaowei; Zhao, Xinyuan; Zhang, Hequn; Cai, Fuhong; Qian, Jun
2016-01-01
Gold Nanorods (GNRs) with tunable aspect ratios can strongly absorb and scatter light in the NIR region due to their localized surface plasmon resonance (LSPR) property, and have been demonstrated to exhibit strong plasmon enhanced multiphoton luminescence (MPL) with brightness many times stronger than the conventional organic chromophores. In this study, we synthesized GNRs with longitudinal LSPR peak at 1036 nm to match our home-built light source 1040 nm femtosecond laser, which locates in the “optical window” where the tissue absorbs relatively little light. PEGylated GNRs with great biocompatibility were intravenously injected through the tail vein into mice. Excited by 1040 nm laser, the GNRs exhibit bright three-photon luminescence (3PL) signals while circulating in the blood vessels. The use of GNRs as bright contrast agents for 3PL imaging of mouse ear blood vessels in vivo was demonstrated. And GNRs targeted in tissues can be excited by 1040 nm laser and could be clearly visualized with no autofluorescence background. These results indicated that 3PL of GNRs is very promising for deep in vivo bioimaging and assessing the distribution of GNRs in tissues with high contrast.
High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement.
Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark
2017-01-20
We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).
Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared.
Danné, Noémie; Kim, Mijin; Godin, Antoine G; Kwon, Hyejin; Gao, Zhenghong; Wu, Xiaojian; Hartmann, Nicolai F; Doorn, Stephen K; Lounis, Brahim; Wang, YuHuang; Cognet, Laurent
2018-06-14
The intrinsic near-infrared photoluminescence observed in long single-walled carbon nanotubes is known to be quenched in ultrashort nanotubes due to their tiny size as compared to the exciton diffusion length in these materials (>100 nm). Here, we show that intense photoluminescence can be created in ultrashort nanotubes (∼40 nm length) upon incorporation of exciton-trapping sp 3 defect sites. Using super-resolution photoluminescence imaging at <25 nm resolution, we directly show the preferential localization of excitons at the nanotube ends, which separate by less than 40 nm and behave as independent emitters. This unexpected observation opens the possibility to synthesize fluorescent ultrashort nanotubes-a goal that has been long thought impossible-for bioimaging applications, where bright near-infrared photoluminescence and small size are highly desirable, and for quantum information science, where high quality and well-controlled near-infrared single photon emitters are needed.
High-brightness 800nm fiber-coupled laser diodes
NASA Astrophysics Data System (ADS)
Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior
2014-03-01
Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.
Extending the wavelength range in the Oclaro high-brightness broad area modules
NASA Astrophysics Data System (ADS)
Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert
2010-02-01
The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.
Properties and Frequency Conversion of High-Brightness Diode-Laser Systems
NASA Astrophysics Data System (ADS)
Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard
An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.
Fluorescence properties of 6-aryl-2‧-deoxy-furanouridine and -pyrrolocytidine and their derivatives
NASA Astrophysics Data System (ADS)
Ro, Jong Jin; Go, Gui Han; Wilhelmsson, L. Marcus; Hyean Kim, Byeang
2018-01-01
2‧-deoxyfuranouridine derivatives presenting various aryl groups have been synthesized through Cu(I)-catalyzed intramolecular cyclizations. Moreover, corresponding pyrrolo-dC derivatives have been synthesized and both families of compounds thoroughly characterized using UV/vis and fluorescence spectroscopy as well as time-dependent density functional theory calculations. The photophysical characterization, show that our newly synthesized derivatives of the important pyrrolo-dC family have high fluorescence quantum yields (QYs) and brightness values. Pyrrolo-dC derivative, 3a, shows an environment sensitive QY of up to >60% and brightness of almost 3000, in low polarity solvents and excitation and emission maxima between 365-381 nm and 479-510 nm, respectively, in solvents of different polarities. Two other derivatives, 3b and 3c, show high QYs and brightness values of up to 3300 that are fairly insensitive to their microenvironment. These promising photophysical features suggest future applicability as fluorescent nucleobase analogs.
Detection of a very bright source close to the LMC supernova SN 1987A
NASA Technical Reports Server (NTRS)
Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.
1987-01-01
High angular resolution observations of the supernova in the Large Magellanic Cloud, SN 1987A, have revealed a bright source separated from the SN by approximately 60 mas with a magnitude difference of 2.7 at 656 nm (H-alpha). Speckle imaging techniques were applied to data recorded with the CfA two-dimensional photon counting detector on the CTIO 4 m telescope on March 25 and April 2 to allow measurements in H-alpha on both nights and at 533 nm and 450 nm on the second night. The nature of this object is as yet unknown, though it is almost certainly a phenomenon related to the SN.
Chu, Jun; Haynes, Russell D; Corbel, Stéphane Y; Li, Pengpeng; González-González, Emilio; Burg, John S; Ataie, Niloufar J; Lam, Amy J; Cranfill, Paula J; Baird, Michelle A; Davidson, Michael W; Ng, Ho-Leung; Garcia, K Christopher; Contag, Christopher H; Shen, Kang; Blau, Helen M; Lin, Michael Z
2014-01-01
A method for non-invasive visualization of genetically labelled cells in animal disease models with micron-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical window” above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail. PMID:24633408
High-brightness 9xxnm fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa
2015-03-01
We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.
NASA Astrophysics Data System (ADS)
Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin
2013-12-01
Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging. Electronic supplementary information (ESI) available: Characterization of AIE properties of TPETPAFN, UV-vis spectra of NPs, PL spectra comparison upon excitation at the donor and receptor absorbance maxima, ex vivo fluorescence imaging of mice organs. See DOI: 10.1039/c3nr04243j
20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.
Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T
2013-08-15
We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.
Advancements of ultra-high peak power laser diode arrays
NASA Astrophysics Data System (ADS)
Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.
2018-02-01
Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.
A high brightness probe of polymer nanoparticles for biological imaging
NASA Astrophysics Data System (ADS)
Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng
2018-03-01
Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.
NASA Technical Reports Server (NTRS)
Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.
1992-01-01
The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.
Huang, Xiaoyong; Wang, Shaoying; Li, Bin; Sun, Qi; Guo, Heng
2018-03-15
In this work, we reported on high-brightness Eu 3+ -activated Ca 3 Lu(AlO) 3 (BO 3 ) 4 (CLAB) red-emitting phosphors. Under 397 nm excitation, the CLAB:Eu 3+ phosphors showed intense red emissions at around 621 nm with CIE coordinates of (0.657, 0.343). The optimal doping concentration of Eu 3+ ions was found to be 30 mol. %, and the CLAB:0.3Eu 3+ sample possessed high-color purity of 93% and ultra-high internal quantum efficiency as great as 98.5%. Importantly, the CLAB:0.3Eu 3+ also had good thermal stability. Finally, a white-light-emitting diode (WLED) lamp with good color-rendering index was fabricated by using a 365 nm ultraviolet chip and the phosphor blends of CLAB:0.3Eu 3+ red-emitting phosphors, (Ba,Sr) 2 SiO 4 :Eu 2+ green-emitting phosphors, and BaMgAl 10 O 7 :Eu 2+ blue-emitting phosphors.
Brightness measurement of an electron impact gas ion source for proton beam writing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications.
Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A
2016-02-01
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.
Gui, Rijun; Wan, Ajun; Liu, Xifeng; Yuan, Wen; Jin, Hui
2014-05-21
Hydrodynamic size-minimized quantum dots (QDs) have outstanding physicochemical properties for applications in multicolor molecular and cellular imaging at the level of single molecules and nanoparticles. In this study, we have reported the aqueous synthesis of Ag2S QDs by using thiol-based multidentate polymers as capping reagents. By regulating the composition of the precursors (AgNO3 and sulfur-N2H4·H2O complex) and multidentate polymers (poly(acrylic acid)-graft-cysteamine-graft-ethylenediamine), as well as the reaction time, Ag2S QDs (2.6-3.7 nm) are prepared, displaying tunable photoluminescence (PL) emission from red to the second near-infrared region (687-1096 nm). The small hydrodynamic thickness (1.6-1.9 nm) of the multidentate polymers yields a highly compact coating for the QDs, which results in the bright fluorescent QDs with high PL quantum yields (QYs: 14.2-16.4%). Experimental results confirm that the QDs have high PL stability and ultralow cytotoxicity, as well as high PLQYs and small hydrodynamic sizes (4.5-5.6 nm) similar to fluorescent proteins (27-30 kDa), indicating the feasibility of highly effective PL imaging in cells and living animals.
MOLA 1064nm Radiometry Measurements: Status and Prospects in Extended Mission
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Abshire, J. B.; Smith, D. E.; Sun, X.; Zuber, M. T.
2002-01-01
The Mars Orbiting Laser Altimeter (MOLA) instrument has measured the brightness of the Mars surface at 1064 nm in a passive mode, from background noise counts, since 1997. After ceasing altimetry collection July 2001, MOLA has taken >50 million high-resolution radiometer observations. Additional information is contained in the original extended abstract.
Brightness of Solar Magnetic Elements As a Function of Magnetic Flux at High Spatial Resolution
NASA Astrophysics Data System (ADS)
Kahil, F.; Riethmüller, T. L.; Solanki, S. K.
2017-03-01
We investigate the relationship between the photospheric magnetic field of small-scale magnetic elements in the quiet-Sun (QS) at disk center and the brightness at 214, 300, 313, 388, 397, and 525.02 nm. To this end, we analyzed spectropolarimetric and imaging time series acquired simultaneously by the Imaging Magnetograph eXperiment magnetograph and the SuFI filter imager on board the balloon-borne observatory {{S}}{{UNRISE}} during its first science flight in 2009, with high spatial and temporal resolution. We find a clear dependence of the contrast in the near ultraviolet and the visible on the line-of-sight component of the magnetic field, B LOS, which is best described by a logarithmic model. This function effectively represents the relationship between the Ca II H-line emission and B LOS and works better than the power-law fit adopted by previous studies. This, along with the high contrast reached at these wavelengths, will help with determining the contribution of small-scale elements in the QS to the irradiance changes for wavelengths below 388 nm. At all wavelengths, including the continuum at 525.40 nm, the intensity contrast does not decrease with increasing B LOS. This result also strongly supports the fact that {{S}}{{UNRISE}} has resolved small strong magnetic field elements in the internetwork, resulting in constant contrasts for large magnetic fields in our continuum contrast at 525.40 nm versus the B LOS scatterplot, unlike the turnover obtained in previous observational studies. This turnover is due to the intermixing of the bright magnetic features with the dark intergranular lanes surrounding them.
Chen, Linfeng; Shi, Xiaodi; Li, Mingzhu; Hu, Junping; Sun, Shufeng; Su, Bin; Wen, Yongqiang; Han, Dong; Jiang, Lei; Song, Yanlin
2015-01-01
Fireflies have drawn considerable attention for thousands of years due to their highly efficient bioluminescence, which is important for fundamental research and photonic applications. However, there are few reports on the reflector layer (RL) of firefly lantern, which contributes to the bright luminescence. Here we presented the detailed microstructure of the RL consisting of random hollow granules, which had high reflectance in the range from 450 nm to 800 nm. Inspired by the firefly lantern, artificial films with high reflectance in the visible region were fabricated using hollow silica microparticles mimicking the structure of the RL. Additionally, the bioinspired structures provided an efficient RL for the chemiluminescence system and could substantially enhance the initial chemiluminescence intensity. The work not only provides new insight into the bright bioluminescence of fireflies, but also is importance for the design of photonic materials for theranostics, detection, and imaging. PMID:26264643
High brightness diode laser module development at nLIGHT Photonics
NASA Astrophysics Data System (ADS)
Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob
2009-05-01
We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.
Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Xie, Zhaoxin; Shi, Wei; Sheng, Quan; Fu, Shijie; Fang, Qiang; Zhang, Haiwei; Bai, Xiaolei; Shi, Guannan; Yao, Jianquan
2017-03-01
1018nm short wavelength Yb3+-doped fiber laser can be widely used for tandem-pumped fiber laser system in 1 μm regime because of its high brightness and low quantum defect (QD). In order to achieve 1018nm short wavelength Yb3+-doped fiber laser with high output power, a steady-state rate equations considering the amplified spontaneous emission (ASE) and Stimulated Raman Scattering (SRS) has been established. We theoretically analyzed the ASE and SRS effects in 1018nm short wavelength Yb3+-doped fiber laser and the simulation results show that the ASE is the main restriction rather than SRS for high power 1018nm short wavelength Yb3+-doped fiber laser, besides the high temperature of fiber is also the restriction for high output power. We use numerical solution of steady-state rate equations to discuss how to suppress ASE in 1018nm short wavelength fiber laser and how to achieve high power 1018nm short-wavelength fiber laser.
Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX
NASA Astrophysics Data System (ADS)
Qi, Yunfei; Zhao, Pengfei; Chen, Qing; Wu, Yulong; Chen, Yongqi; Zou, Yonggang; Lin, Xuechun
2016-10-01
We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).
NASA Astrophysics Data System (ADS)
Mattila, K.; Lehtinen, K.; Väisänen, P.; von Appen-Schnur, G.; Leinert, Ch.
2017-09-01
We present the method and observations for the measurement of the Extragalactic Background Light (EBL) utilizing the shadowing effect of a dark cloud. We measure the surface brightness difference between the opaque cloud core and its unobscured surroundings. In the difference the large atmospheric and Zodiacal light components are eliminated and the only remaining foreground component is the scattered starlight from the cloud itself. Although much smaller, its separation is the key problem in the method. For its separation we use spectroscopy. While the scattered starlight has the characteristic Fraunhofer lines and 400 nm discontinuity, the EBL spectrum is smooth and without these features. Medium resolution spectrophotometry at λ = 380-580 nm was performed with VLT/FORS at ESO of the surface brightness in and around the high-galactic-latitude dark cloud Lynds 1642. Besides the spectrum for the core with AV ≳ 15 mag, further spectra were obtained for intermediate-opacity cloud positions. They are used as proxy for the spectrum of the impinging starlight spectrum and to facilitate the separation of the scattered starlight (cf. Paper II; Mattila et al.). Our spectra reach a precision of ≲ 0.5 × 10-9 erg cm-2 s-1 sr-1 Å-1 as required to measure an EBL intensity in range of ˜1 to a few times 10-9 erg cm-2 s-1 sr-1 Å-1. Because all surface brightness components are measured using the same equipment, the method does not require unusually high absolute calibration accuracy, a condition that has been a problem for some previous EBL projects.
NASA Astrophysics Data System (ADS)
Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.
2015-07-01
In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation
Low-NA fiber laser pumps powered by high-brightness single emitters
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-03-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed high-brightness NEON multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber enabling low-NA power delivery to a customer's fiber laser network. Brightness-enhanced single emitters are engineered with ultra-low divergence for compatibility with the low-NA delivery fiber, with the latest emitters delivering 14 W with 95% of the slow-axis energy contained within an NA of 0.09. The reduced slow-axis divergence is achieved with an optimized epitaxial design, where the peak optical intensity is reduced to both lessen filamentation within the laser cavity and reduce the power density on the output facet thus increasing the emitter reliability. The low mode filling of the fiber allows it to be coiled with diameters down to 70 mm at full operating power despite the small NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules. 50W fiber pump products at 915, 950 and 975 nm wavelengths are presented, including a wavelengthstabilized version at 976 nm.
Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology
NASA Astrophysics Data System (ADS)
Paoletti, R.; Codato, S.; Coriasso, C.; Gotta, P.; Meneghini, G.; Morello, G.; De Melchiorre, P.; Riva, E.; Rosso, M.; Stano, A.; Gattiglio, M.
2018-02-01
This paper reports a DBR High Power Diode Laser (DBR-HPDL) realization, emitting up to 10W in the 920 nm range. High spectral purity (90% power in about 0.5 nm), and wavelength stability versus injected current (about 5 times more than standard FP laser) candidates DBR-HPDL as a suitable device for wavelength stabilized pump source, and high brightness applications exploiting Wavelength Division Multiplexing. Key design aspect is a multiple-orders Electron Beam Lithography (EBL) optical confining grating, stabilizing on same wafer multiple wavelengths by a manufacturable and reliable technology. Present paper shows preliminary demonstration of wafer with 3 pitches, generating DBRHPDLs 2.5 nm spaced.
Optical Properties of CdSe/ZnS Nanocrystals
Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong
2014-01-01
Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047
Crossley, Daniel L; Urbano, Laura; Neumann, Robert; Bourke, Struan; Jones, Jennifer; Dailey, Lea Ann; Green, Mark; Humphries, Martin J; King, Simon M; Turner, Michael L; Ingleson, Michael J
2017-08-30
Post-polymerization modification of the donor-acceptor polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole), PF8-BT, by electrophilic C-H borylation is a simple method to introduce controllable quantities of near-infrared (near-IR) emitting chromophore units into the backbone of a conjugated polymer. The highly stable borylated unit possesses a significantly lower LUMO energy than the pristine polymer resulting in a reduction in the band gap of the polymer by up to 0.63 eV and a red shift in emission of more than 150 nm. Extensively borylated polymers absorb strongly in the deep red/near-IR and are highly emissive in the near-IR region of the spectrum in solution and solid state. Photoluminescence quantum yield (PLQY) values are extremely high in the solid state for materials with emission maxima ≥ 700 nm with PLQY values of 44% at 700 nm and 11% at 757 nm for PF8-BT with different borylation levels. This high brightness enables efficient solution processed near-IR emitting OLEDs to be fabricated and highly emissive borylated polymer loaded conjugated polymer nanoparticles (CPNPs) to be prepared. The latter are bright, photostable, low toxicity bioimaging agents that in phantom mouse studies show higher signal to background ratios for emission at 820 nm than the ubiquitous near-IR emissive bioimaging agent indocyanine green. This methodology represents a general approach for the post-polymerization functionalization of donor-acceptor polymers to reduce the band gap as confirmed by the C-H borylation of poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2c,2cc-diyl) (PF8TBT) resulting in a red shift in emission of >150 nm, thereby shifting the emission maximum to 810 nm.
Multispectral Visible/Infrared Sensors Based on Polymer-Metal Nanocomposites
2010-01-06
transport in the dielectric zone is governed by an activated tunneling process, while the electron transport in the metallic zone can be described by...electrical pathway has formed at this stage, and thermally activated tunneling dominates the charge transport. At very high metal concentration, metallic...25 -20 -15 -10 -5 0 5 10 Cu rre nt , m A Bias Voltage, V Dark Bright Bright >850 nm Figure 12a. Optical absorption spectrum of Blackberry dye
2010-01-01
A new thermographic phosphor based on chromium(III)-doped yttrium aluminum borate (YAB) is obtained as single crystals by high temperature flux growth and as a microcrystalline powder via solution combustion synthesis. The phosphor is excitable both in the blue (λmax 422 nm) and in the red part of the spectrum (λmax 600 nm) and shows bright NIR emission. The brightness of the phosphor is comparable to that of a well-known lamp phosphor Mn(IV)-doped magnesium fluorogermanate. At ambient temperatures, the Cr(III)-doped YAB shows high temperature dependence of the luminescence decay time, which approaches 1% per deg. The material shows no decrease in luminescence intensity at higher temperatures. The new phosphor is particularly promising for applications in temperature-compensated optical chemosensors (including those based on NIR-emitting indicators) and in pressure-sensitive paints. PMID:20473368
Wavelength locking of single emitters and multi-emitter modules: simulation and experiments
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe
2016-03-01
Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.
The ammonia absorption behavior on Jupiter during 2005-2015
NASA Astrophysics Data System (ADS)
Tejfel, Victor G.; V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. Khozhenetz
2017-10-01
V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. KhozhenetzFessenkov Astrophysical Institute, Almaty, KazakhstanWe measured the intensity of the 645 and 787 nm NH3 absorption bands in five latitudinal belts of Jupiter (STrZ, SEB, EZ, NEB and NTrZ) during almost full period of its revolution around the Sun: from 2005 to 2015. The variations in the equivalent widths of the bands were investigated. The permanently lowered intensity of the 787 nm NH3 band in NEB is confirmed. There are also some systematic differences in latitudinal and temporal variations between the 645 and 787 nm ammonia bands. The equivalent width of the 787 nm NH3 band was averaged for all years of observations. Its maximum (W = 18.95 ± 0.75 A) corresponds to EZ, its minimum (W = 15.82 ± 0.68 A) corresponds to NEB. The 645 nm NH3 band shows the maximum in SEB (W = 6.78 ± 0.45 A), and the minimum in NTrZ (W = 5.38 ± 0.36 A). The weakened ammonia absorption is also observed in the Great Red Spot. However, this is due to the increased density of the clouds inside the Spot storm, but not to decreased gaseous ammonia abundance, in contrast to NEB. The brightness temperature of GRS in the infrared and millimeter ranges of thermal radiation is lower, in contrast to NEB, where an increased brightness temperature is observed. The enhanced cloud density may explain also a pretty high brightness of GRS observed in strong methane absorption bands such as the 887 nm CH4 band and more long waved ones.
Quantitative Measurements of Daytime Near Infrared Sky Brightness at the AEOS 3.6 m Telescope
2014-09-01
photometric filters. In the case of the 1250 nm filter, the quoted results reflect the brightness that would be seen through a standard 2MASS J filter [9...brightness per unit wavelength through the broader 2MASS filter with 162 nm bandpass. Given the known colors of the star, we estimate this error to be...Megeath, S. T. “Spectral irradiance calibration in the infrared. XIV. The absolute calibration of 2MASS ,” Astron. J., 126, 1090–1096 (2003) [10] Jim
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.
2014-10-13
High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less
NASA Astrophysics Data System (ADS)
Broell, Markus; Sundgren, Petrus; Rudolph, Andreas; Schmid, Wolfgang; Vogl, Anton; Behringer, Martin
2014-02-01
We present our latest results on developments of infrared and red light emitting diodes. Both chiptypes are based on the Thinfilm technology. For infrared the brightness has been raised by 25% with respect to former products in a package with standard silicon casting, corresponding to a brightness increase of 33% for the bare chip. In a lab package a wallplug efficiency of more than 72% at a wavelength of 850nm could be reached. For red InGaAlP LEDs we could demonstrate a light output in excess of 200lm/W and a brightness of 133lm at a typical operating current of 350mA.
Polymer dots enable deep in vivo multiphoton fluorescence imaging of cerebrovascular architecture
NASA Astrophysics Data System (ADS)
Hassan, Ahmed M.; Wu, Xu; Jarrett, Jeremy W.; Xu, Shihan; Miller, David R.; Yu, Jiangbo; Perillo, Evan P.; Liu, Yen-Liang; Chiu, Daniel T.; Yeh, Hsin-Chih; Dunn, Andrew K.
2018-02-01
Deep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep multiphoton imaging has never before been demonstrated. Here we characterize the multiphoton properties of three pdot variants (CNPPV, PFBT, and PFPV) and demonstrate deep imaging of cortical microvasculature in C57 mice. Specifically, we measure the two- versus three-photon power dependence of these pdots and observe a clear three-photon excitation signature at wavelengths longer than 1300 nm, and a transition from two-photon to three-photon excitation within a 1060 - 1300 nm excitation range. Furthermore, we show that pdots enable in vivo two-photon imaging of cerebrovascular architecture in mice up to 850 μm beneath the pial surface using 800 nm excitation. In contrast with traditional multiphoton probes, we also demonstrate that the broad multiphoton absorption spectrum of pdots permits imaging at longer wavelengths (λex = 1,060 and 1225 nm). These wavelengths approach an ideal biological imaging wavelength near 1,300 nm and confer compatibility with a high-power ytterbium-fiber laser and a high pulse energy optical parametric amplifier, resulting in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths of 900 μm and 1300 μm. Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, which will undoubtedly unlock the ability to interrogate deep structures in vivo.
Scientific Presentations on Superconductivity from 2002-2005
2006-01-01
00 Dark-field reflection, using 211 diffraction vector Bright-field transmission (2111.6nm/1236.6nm)x35, ~ 80 sec interval • 211 Density ~ 3x1011...1.8.1 2b.1.9 High Resolution SEM Figure 2b.1.9.1 Y211/YBCO film on LAO (PV43D) At 77K and at 3T magnetic feild 0 0.2 0.4 0.6 0.8 1 1.2
First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun
NASA Astrophysics Data System (ADS)
Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.
2018-05-01
Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond to ALMA bright points. Conclusions: These observational results are in general agreement with sparse earlier measurements at similar wavelengths. The identification of coronal bright points represents the most important new result. By comparing ALMA and other maps, it was found that the ALMA image was oriented properly and that the procedure of overlaying the ALMA image with other images is accurate at the 5 arcsec level. The potential of ALMA for physics of the solar chromosphere is emphasised.
Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P
2013-02-15
We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
Zhong, Yeteng; Ma, Zhuoran; Zhu, Shoujun; Yue, Jingying; Zhang, Mingxi; Antaris, Alexander L; Yuan, Jie; Cui, Ran; Wan, Hao; Zhou, Ying; Wang, Weizhi; Huang, Ngan F; Luo, Jian; Hu, Zhiyuan; Dai, Hongjie
2017-09-29
In vivo fluorescence imaging in the near-infrared region between 1500-1700 nm (NIR-IIb window) affords high spatial resolution, deep-tissue penetration, and diminished auto-fluorescence due to the suppressed scattering of long-wavelength photons and large fluorophore Stokes shifts. However, very few NIR-IIb fluorescent probes exist currently. Here, we report the synthesis of a down-conversion luminescent rare-earth nanocrystal with cerium doping (Er/Ce co-doped NaYbF 4 nanocrystal core with an inert NaYF 4 shell). Ce doping is found to suppress the up-conversion pathway while boosting down-conversion by ~9-fold to produce bright 1550 nm luminescence under 980 nm excitation. Optimization of the inert shell coating surrounding the core and hydrophilic surface functionalization minimize the luminescence quenching effect by water. The resulting biocompatible, bright 1550 nm emitting nanoparticles enable fast in vivo imaging of blood vasculature in the mouse brain and hindlimb in the NIR-IIb window with short exposure time of 20 ms for rare-earth based probes.Fluorescence imaging in the near-infrared window between 1500-1700 nm (NIR-IIb window) offers superior spatial resolution and tissue penetration depth, but few NIR-IIb probes exist. Here, the authors synthesize rare earth down-converting nanocrystals as promising fluorescent probes for in vivo imaging in this spectral region.
`Giant' nanocrystal quantum dots (gNQDs) as FRET donors
NASA Astrophysics Data System (ADS)
Chern, Margaret; Nguyen, Thuy; Dennis, Allison
2017-02-01
High-quality core/shell CdSe/xCdS quantum dots (QDs) ranging from 3 to 20 nm in diameter were synthesized for use as Förster Resonance Energy Transfer (FRET) donors. gNQDs are carefully characterized for size, emission, absorption, QY, and brightness in both organic and aqueous solution. FRET has been verified in optimally designed systems that use short capping ligands and donor-acceptor pairs that have well-matched emission and absorption spectra. The interplay between shell thickness, donor-acceptor distance, and particle brightness is systematically analyzed to optimize our biosensor design.
Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune
NASA Technical Reports Server (NTRS)
1995-01-01
Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.
Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved across the planet's disk, revealing wind speeds as large as 325 meters per second (730 miles per hour). The largest of the giant, dark storm systems, called the 'Great Dark Spot', received special attention because it resembled Jupiter's Great Red Spot, a storm that has persisted for more than three centuries. The lifetime of Neptune's Great Dark Spot could not be determined from the Voyager data alone, however, because the encounter was too brief. Its evolution was impossible to monitor with ground-based telescopes, because it could not be resolved on Neptune's tiny disk, and its contribution to the disk-integrated brightness of Neptune confused by the presence of a rapidly-varying bright cloud feature, called the 'Bright Companion' that usually accompanied the Great Dark spot.The repaired Hubble Space Telescope provides new opportunities to monitor these and other phenomena in the atmosphere of the most distant planet. Images taken with WFPC-2's Planetary Camera (PC) can resolve Neptune's disk as well as most ground-based telescopes can resolve the disk of Jupiter. The spatial resolution of the HST WFPC-2 images is not as high as that obtained by the Voyager-2 Narrow-Angle Camera during that spacecraft's closest approach to Neptune, but they have a number of other assets that enhance their scientific value, including improved ultra-violet and infrared sensitivity, better signal-to-noise, and, and greater photometric accuracy.The images of Neptune acquired by the WFPC-2 Science team in late June clearly demonstrate these capabilities. The side of the planet facing the Earth at the start of the program (11:36 Universal Time on July 27) was imaged in color filters spanning the ultraviolet (255 and 300-nm), visible (467, 588, 620, and 673- nm), and near-infrared (890-nm) parts of the spectrum. The planet then rotated 180 degrees in longitude, and the opposite hemisphere was imaged in a subset of these colors (300, 467, 588, 620, and 673-nm). The HST/WFPC-2 program more recently conducted by Hammel and Lockwood provides better longitude coverage, and a wider range of observing times, but uses a more restricted set of colors.The ultraviolet pictures show an almost featureless disk that is slightly darker near the edge. The observed contrast increases in the blue, green, red, and near-infrared images, which reveal many of the features seen by Voyager 2, including the dark band near 60 S latitude and several distinct bright cloud features. The bright cloud features are most obvious in the red and infrared parts of the spectrum where methane gas absorbs most strongly (619 and 890 nm). These bright clouds thought to be high above the main cloud deck, and above much of the absorbing methane gas. The edge of the planet's disk also appears somewhat bright in these colors, indicating the presence of a ubiquitous, high-altitude haze layer.The northern hemisphere is occupied by a single prominent cloud band centered near 30 N latitude. This planet-encircling feature may be the same bright cloud discovered last fall by ground-based observers. Northern hemisphere clouds were much less obvious at the time of the Voyager-2 encounter. The tropics are about 20 % darker than the disk average in the 890-nm images, and one of these images reveals a discrete bright cloud on the equator, near the edge of the disk. The southern hemisphere includes two broken bright bands. The largest and brightest is centered at 30 S latitude, and extends for least 40 degrees of longitude, like the Bright Companion to the Great Dark Spot. There is also a thin cloud band at 45 S latitude, which almost encircles the planet.One feature that is conspicuous by its absence is the storm system known as the Great Dark Spot. The second smaller dark spot, DS2, that was seen during the Voyager-2 encounter was also missing. The absence of these dark spots was one of the biggest surprises of this program. The WFPC-2 Science team initially assumed that the two storm systems might be near the edge of the planet's disk, where they would not be particularly obvious. An analysis of their longitude coverage revealed that less than 20 degrees of longitude had been missed in the colors where these spots had their greatest contrast (467 and 588 nm). The Great Dark Spot covered almost 40 degrees of longitude at the time of the Voyager-2 fly-by. Even if it were on the edge of the disk, it would appear as a 'bite' out of the limb. Because no such feature was detected, we concluded that these features had vanished. This conclusion was reinforced by the more recent observations by Hammel and Lockwood, which also show no evidence of discrete dark spots.These dramatic changes in the large-scale storm systems and planet-encircling clouds bands on Neptune are not yet completely understood, but they emphasize the dynamic nature of this planet's atmosphere, and the need for further monitoring. Additional HST WFPC-2 observations are planned for next summer. These two teams are continuing their analysis of these data sets to place improved constraints on these and other phenomena in Neptune's atmosphere.Figure Captions:These almost true-color pictures of Neptune were constructed from HST/WFPC2 images taken in blue (467-nm), green (588- nm), and red (673-nm) spectral filters. There is a bright cloud feature at the south pole, near the bottom right of the image. Bright cloud bands can be seen at 30S and 60S latitude. The northern hemisphere also includes a bright cloud band centered near 30N latitude. The second picture was compiled from images taken after the planet had rotated about 180 degrees of longitude (about 9 hours later) to show the opposite hemisphere.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/High brightness electrodeless Z-Pinch EUV source for mask inspection tools
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2012-03-01
Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.
Comparative study of icy patches on comet nuclei
NASA Astrophysics Data System (ADS)
Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio
2016-07-01
Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed on comet 67P. Additionally jets rising from the same clustered bright feature were detected visually [4]. We analyzed bright patches on the surface of comets 9P, 103P and 67P using multispectral data obtained by the high-resolution instrument (HRI), medium- resolution instrument (MRI) and OSIRIS NAC using various spectral analysis techniques. Clustered bright features on comet 67P have similar visible spectra to the bright patches on comets 9P and 103P. The comparison of the bright patches includes the published results of the IR spectra. References: [1] Sunshine et al., 2006, Science, 311, 1453 [2] Pommerol et al., 2015, A&A, 583, A25 [3] Filacchione et al., 2016, Nature, 529, 368-372 [4] Oklay et al., 2016, A&A, 586, A80 [5] Sunshine et al. 2012, ACM [6] Keller et al., 2007, Space Sci. Rev., 128, 433 [7] Barucci et al., 2016, COSPAR, B04
High-resolution x-ray tomography using laboratory sources
NASA Astrophysics Data System (ADS)
Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing
2006-08-01
X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.
NASA Astrophysics Data System (ADS)
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Wen, Xiangping; Zhang, Guomei; Yang, Jun; Dong, Chuan; Shuang, Shaomin
2015-04-01
We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation.We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00783f
NASA Astrophysics Data System (ADS)
Adachi, Toru; Yamaoka, Masashi; Yamamoto, Mamoru; Otsuka, Yuichi; Liu, Huixin; Hsiao, Chun-Chieh; Chen, Alfred B.; Hsu, Rue-Ron
2010-09-01
The Imager for Sprites and Upper Atmospheric Lightning (ISUAL) payload on board the FORMOSAT-2 satellite carried out the first limb imaging observation of 630 nm airglow for the purpose of studying physical processes in the F region ionosphere. For a total of 14 nights in 2006-2008, ISUAL scanned the midnight latitude-altitude distribution of 630 nm airglow in the Asian sector. On two nights of relatively active conditions (ΣKp = 26, 30+) we found several bright airglow regions, which were highly variable each night in terms of luminosity and location. In relatively quiet conditions (ΣKp = 4-20) near May/June we found two bright regions which were stably located in the midlatitude region of 40°S-10°S (50°S-20°S magnetic latitude (MLAT)) and in the equatorial region of 0°-10°N (10°S-0° MLAT). On one of the quiet nights, FORMOSAT-3/COSMIC and CHAMP simultaneously measured the plasma density in the same region where ISUAL observed airglow. The plasma density data generally show good agreement, suggesting that plasma enhancements were the primary source of these two bright airglow regions. From detailed comparison with past studies we explain that the airglow in the equatorial region was due to the midnight brightness wave produced in association with the midnight temperature maximum, while that in the midlatitude region was due to the typical plasma distribution usually formed in the midnight sector. The fact that the equatorial airglow was much brighter than the midlatitude airglow and was observed on most nights during the campaign period strongly suggests the importance of further studies on the MTM/MBW phenomenology, which is not well reproduced in the current general circulation model.
Comparison of PMC measurements from AIM and SBUV/2
NASA Astrophysics Data System (ADS)
Benze, S.; Randall, C.; Deland, M.; Thomas, G.; Rusch, D.; Bailey, S.; Russell, J.; McClintock, W.; Merkel, A.; Jeppesen, C.
2007-12-01
The Aeronomy of Ice in the Mesosphere (AIM) spacecraft, launched on April 25 from Vandenberg Air Force Base, is a satellite mission that explores Polar Mesospheric Clouds (PMCs) in order to find out why they form and why they are changing. Results of this mission will provide new knowledge about the connection between PMCs and the meteorology of the polar mesosphere. The Cloud Imaging and Particle Size (CIPS) instrument is a nadir- viewing instrument from which PMC frequency and brightness can be inferred. It produces panoramic images of scattered radiation at 265 nm with a field of view of 1800 x 800 km and high spatial resolution. This work provides a first comparison of CIPS PMC morphology to concurrent results from the Solar Backscatter Ultraviolet (SBUV/2) instrument, which has provided a 28-year climatology of PMC brightness and frequency. CIPS and SBUV/2 PMC detections are compared for selected days in the 2007 northern hemispheric season. To facilitate comparison, the CIPS footprint of 1x2 km is binned to match the SBUV/2 footprint of 150x150 km at the PMC altitude of 80 km. Because CIPS measures only one wavelength at 265 nm, the SBUV PMC detection algorithm, which normally uses data at five wavelengths between 252-292 nm, is simplified to an algorithm applying just one wavelength. It will be shown that the single wavelength SBUV/2 algorithm gives similar results to the original algorithm. PMC frequency and brightness derived from both CIPS and SBUV/2 using the common algorithm will be compared. Cloud brightness for all latitudes agrees to within 1 percent over the season. In addition, a coincidence analysis of CIPS and all three operational SBUV/2 instruments for the summer 2007 season will be shown.
NASA Technical Reports Server (NTRS)
Parish, H. F.; Gladstone, G. R.; Chakrabarti, S.
1994-01-01
The University of California, Berkeley, extreme ultraviolet spectrometer aboard the U.S. Air Force STP 78-1 satellite measured emission features in the Earth's dayglow due to neutral and ionized species in the atmosphere, in the 35 to 140-nm range. The spectrometer was operating between March 1979 and March 1980, including the period of the magnetic storm on March 22, 1979. Some of these measurements are interpreted using the predictions of the three-dimensional time-dependent coupled ionosphere-thermosphere model developed at University College, London. The observations show a reduction in the atomic oxygen 130.4-nm airglow emission at high northern latitudes following the storm. Model simulations show that this reduction in 130.4-nm emission is associated with an increase in the O2/O ratio. Analysis of model results using electron transport and radiative transport codes show that the brightness of 130.4-nm emission at high latitudes due to resonantly scattered sunlight is approximately twice that due to photoelectron impact excitation. However, the observed decrease in the brightness at high northern latitudes is mainly due to a change in the photoelectron impact source, which contributes approximately 75% of the total, as well as its multiple scattering component; for the photoelectron impact source at 70 deg latitude and 200 km altitude, the reduction in multiple scattering is 1.5 times greater than the reduction in the initial excitation. The reduction in the airglow emission is visible only in the norther n hemisphere because the south pole was not sunlit over the storm period. The comparison of model results with observations suggests that 130.4-nm emission may be useful as a tracer for global changes in the concentration of atomic energy.
Design and construction of a DC high-brightness laser driven electron gun
NASA Astrophysics Data System (ADS)
Zhao, K.; Geng, R. L.; Wang, L. F.; Zhang, B. C.; Yu, J.; Wang, T.; Wu, G. F.; Song, J. H.; Chen, J. E.
1996-02-01
A DC high-brightness laser driven photoemissive electron gun is being developed at Peking University, in order to produce 50-100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathodes, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. The laser system is a mode-locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelengths (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is also discussed in this paper.
Characterization of an 800 nm SASE FEL at Saturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
2002-11-13
VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.
100-W 105-μm 0.15NA fiber coupled laser diode module
NASA Astrophysics Data System (ADS)
Karlsen, Scott R.; Price, R. Kirk; Reynolds, Mitch; Brown, Aaron; Mehl, Ron; Patterson, Steve; Martinsen, Robert J.
2009-02-01
We report on the development of a high brightness laser diode module capable of coupling over 100W of optical power into a 105 μm 0.15 NA fiber at 976 nm. This module, based on nLIGHT's Pearl product architecture, utilizes hard soldered single emitters packaged into a compact and passively-cooled package. In this system each diode is individually collimated in the fast and slow axes and free-space coupled into a single fiber. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has an electrical to optical efficiency greater than 40%. Additionally, this module is compatible with high power 7:1 fused fiber combiners, and initial experiments demonstrated 500W coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for higher brightness diode lasers for pumping fiber lasers and direct material processing.
PEP as a synchrotron radiation source (invited)
NASA Astrophysics Data System (ADS)
Bienenstock, A.; Brown, G.; Wiedemann, H.; Winick, H.
1989-07-01
The 16-GeV storage ring PEP has characteristics which enable it to operate in modes with very low emittance and to accommodate very long undulators, producing synchrotron radiation at x-ray wavelengths with extremely high brightness and coherent power. Two beamlines, each illuminated by a 2-m long, 77-mm period undulator magnet, are now operational and others are planned. In parasitic operation during colliding-beam runs at 14.5 GeV, these beamlines provide photons above 10 keV with a peak brightness of about 1016 photons/(s mm2 mrad2 ) within a 0.1% bandwidth. In low-emittance tests at 7.1 GeV, horizontal emittances of about 5 nm rad were measured, which is about the same as that planned for the new third-generation x-ray sources. With a current of 15 mA at 7.1 GeV, the present undulators deliver photon beams from 2.7 to 14 keV with a peak brightness of about 1017 . Higher performance levels are expected with the implementation of longer undulators and shorter period undulators. In the longer term, because of its large circumference and long straight sections, PEP could be further developed to achieve even higher performance levels with an emittance below 1 nm rad, very long undulators and picosecond bunches, resulting in one to two orders of magnitude higher brightness and coherent power.
Spiking suppression of high power QCW pulse 1319 nm Nd:YAG laser with different intracavity doublers
NASA Astrophysics Data System (ADS)
Bian, Qi; Zuo, Jun-Wei; Guo, Chuan; Xu, Chang; Shen, Yu; Zong, Nan; Bo, Yong; Peng, Qin-Jun; Chen, Hong-Bin; Cui, Da-Fu; Xu, Zu-Yan
2016-09-01
We describe the results of our efforts in suppressing spiking of a high power, high beam quality 1319 nm Nd:YAG microsecond-pulse laser with three different intracavity frequency doublers. The 1319 nm laser is generated by a quasi-continuous-wave diode-pumped Nd:YAG ring laser system. One potassium titanyl phosphate (KTP), two KTPs and one lithium triborate (LBO) as frequency doublers are installed in the ring resonator and tested, respectively. At 800 Hz repetition rate, with a pulse width of 100 µs, performances of spiking suppression for each case are observed. The average output power are 23.6 W, 22.7 W and 23.4 W with beam quality factors of M 2 = 2.21, 1.28 and 1.25 for one KTP, two KTPs and one LBO, respectively. The corresponding brightness are 270 MW/(cm2·sr), 780 MW/(cm2·sr) and 860 MW/(cm2·sr). With better beam quality, higher brightness, and easier maintainability, the LBO is the best option of the three. A laser rate equation model including the insertion loss of the doubler is applied for theoretical analysis of the output temporal pulse shape and power, and the simulated results agree well with the experimental data.
On the Long-Term Variability of Jupiter's Winds and Brightness as Observed from Hubble
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Gierasch, Peter J.
2010-01-01
Hubble Space Telescope Wide Field Planetary Camera 2 imaging data of Jupiter were combined with wind profiles from Voyager and Cassini data to study long-term variability in Jupiter's winds and cloud brightness. Searches for evidence of wind velocity periodicity yielded a few latitudes with potential variability; the most significant periods were found nearly symmetrically about the equator at 0 deg., 10-12 deg. N, and 14-18 deg. S planetographic latitude. The low to mid-latitude signals have components consistent with the measured stratospheric temperature Quasi-Quadrennial Oscillation (QQO) period of-5 years, while the equatorial signal is approximately seasonal and could be tied to mesoscale wave formation, robustness tests indicate that a constant or continuously varying periodic signal near 4.5 years would appear with high significance in the data periodograms as long as uncertainties or noise in the data are not of greater magnitude. However, the lack of a consistent signal over many latitudes makes it difficult to interpret as a QQO-related change. In addition, further analyses of calibrated 410-nm and 953-nm brightness scans found few corresponding changes in troposphere haze and cloud structure on QQO timescales. However, stratospheric haze reflectance at 255-nm did appear to vary on seasonal timescales, though the data do not have enough temporal coverage or photometric accuracy to be conclusive. Sufficient temporal coverage and spacing, as well as data quality, are critical to this type of search.
Das, Dipjyoti; Gopikrishna, Peddaboodi; Singh, Ashish; Dey, Anamika; Iyer, Parameswar Krishnan
2016-03-14
Fabrication of efficient blue and white polymer light-emitting diodes (PLEDs) using a well charge balanced, core modified polyfluorene derivative, poly[2,7-(9,9'-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)] (PFONPN01), is presented. The excellent film forming properties as observed from the morphological study and the enhanced electron transport properties due to the inclusion of the NPN unit in the PFO main chain resulted in improved device properties. Bright blue light was observed from single layer PLEDs with PFONPN01 as an emissive layer (EML) as well as from double layer PLEDs using tris-(8-hydroxyquinoline) aluminum (Alq3) as an electron transporting layer (ETL) and LiF/Al as a cathode. The effect of ETL thickness on the device performance was studied by varying the Alq3 thickness (5 nm, 10 nm and 20 nm) and the device with an ETL thickness of 20 nm was found to exhibit the maximum brightness value of 11 662 cd m(-2) with a maximum luminous efficiency of 4.87 cd A(-1). Further, by using this highly electroluminescent blue PFONPN01 as a host and a narrow band gap, yellow emitting small molecule, dithiophene benzothiadiazole (DBT), as a guest at three different concentrations (0.2%, 0.4% and 0.6%), WPLEDs with the ITO/PEDOT:PSS/emissive layer/Alq3(20 nm)/LiF/Al configuration were fabricated and maximum brightness values of 8025 cd m(-2), 9565 cd m(-2) and 10 180 cd m(-2) were achieved respectively. 0.4% DBT in PFONPN01 was found to give white light with Commission International de l'Echairage (CIE) coordinates of (0.31, 0.38), a maximum luminous efficiency of 6.54 cd A(-1) and a color-rendering index (CRI) value of 70.
Chromospheric heating during flux emergence in the solar atmosphere
NASA Astrophysics Data System (ADS)
Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime; Danilovic, Sanja; Scharmer, Göran; Carlsson, Mats
2018-04-01
Context. The radiative losses in the solar chromosphere vary from 4 kW m-2 in the quiet Sun, to 20 kW m-2 in active regions. The mechanisms that transport non-thermal energy to and deposit it in the chromosphere are still not understood. Aim. We aim to investigate the atmospheric structure and heating of the solar chromosphere in an emerging flux region. Methods: We have used observations taken with the CHROMIS and CRISP instruments on the Swedish 1-m Solar Telescope in the Ca II K , Ca II 854.2 nm, Hα, and Fe I 630.1 nm and 630.2 nm lines. We analysed the various line profiles and in addition perform multi-line, multi-species, non-local thermodynamic equilibrium (non-LTE) inversions to estimate the spatial and temporal variation of the chromospheric structure. Results: We investigate which spectral features of Ca II K contribute to the frequency-integrated Ca II K brightness, which we use as a tracer of chromospheric radiative losses. The majority of the radiative losses are not associated with localised high-Ca II K-brightness events, but instead with a more gentle, spatially extended, and persistent heating. The frequency-integrated Ca II K brightness correlates strongly with the total linear polarization in the Ca II 854.2 nm, while the Ca II K profile shapes indicate that the bulk of the radiative losses occur in the lower chromosphere. Non-LTE inversions indicate a transition from heating concentrated around photospheric magnetic elements below log τ500 = -3 to a more space-filling and time-persistent heating above log τ500 = -4. The inferred gas temperature at log τ500 = -3.8 correlates strongly with the total linear polarization in the Ca II 854.2 nm line, suggesting that that the heating rate correlates with the strength of the horizontal magnetic field in the low chromosphere. Movies attached to Figs. 1 and 4 are available at http://https://www.aanda.org/
Formation of a Bright Polar Hood over the Summer North Pole of Saturn in 2016
NASA Astrophysics Data System (ADS)
Sayanagi, Kunio M.; Blalock, John J.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn P.
2016-10-01
We report that a bright polar hood has formed over the north pole of Saturn, seen first in images captured by the Cassini ISS camera in 2016. When the north pole was observed during the previous period of Cassini spacecraft's high-inclination orbits in 2012-2013, the concentration of light-scattering aerosols within 2-degree latitude of the north pole appeared to be less than that of the surrounding region, and appeared as a dark hole in all ISS filters, in particular in the shorter wavelength filters BL1 (460 nm), and VIO (420 nm). The north pole's appearance in 2012 was in contrast to that of the south pole in 2007, when the south pole had a bright polar hood in those short wavelengths; the south pole appeared dark in all other ISS filters in 2007. The difference between the south pole in 2007 and the north pole in 2012 was interpreted to be seasonal; in 2007, Saturn was approaching the equinox of 2009 and the south pole had been continuously illuminated since the previous equinox in 1995. In 2012, the north pole had been illuminated for only ~3 years after the long winter polar night. The bright hood over the summer south pole in 2007 was hypothesized to consist of aerosols produced by ultraviolet photodissociation of hydrocarbon molecules. Fletcher et al (2015) predicted that a similar bright hood should form over the north pole as Saturn approaches the 2017 solstice. In 2016, the Cassini spacecraft raised its orbital inclination again in preparation for its Grande Finale phase of the mission, from where it has a good view of the north pole. New images captured in 2016 show that the north pole has developed a bright polar hood. We present new images of the north polar region captured in 2016 that show the north pole, and other seasonally evolving high-latitude features including the northern hexagon. Our research has been supported by the Cassini Project, NASA grants OPR NNX11AM45G, CDAPS NNX15AD33G PATM NNX14AK07G, and NSF grant AAG 1212216.
Individual Differences in Chromatic Brightness Matching.
1984-10-03
very unreliable..." More recently, Boynton (15) has written, "Consider... a 555-nm green light on one side of a bi-partite field with a 4 6 5-nm blue...field immediately adjacent to it... We ask an observer to adjust the intensity of the blue field until it looks ’equally bright’ as the green one. This...clearly being blue, blue- green , green , yellow- green , yellow, and red. Their spectral transmittance curves are shown in Fig. 2. All were broad-band filters
INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FRIGOLA,P.; MUROKH,A.; ET AL
2000-08-13
The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.
NASA Astrophysics Data System (ADS)
Zink, Christof; Maaβdorf, André; Fricke, Jörg; Ressel, Peter; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther
2018-02-01
High brightness diode lasers with a spectrally narrowband emission, several watts of output power with an almost diffraction limited beam quality are requested light sources for several applications. In this work, a monolithic master oscillator power amplifier will be presented. The resonator of the master oscillator is formed by a high-reflection DBR grating on the rear side and an internal DBR mirror. Its power is amplified in a ridge waveguide followed by a tapered section. The monolithic MOPA provides over 7 W at 1064 nm with a narrow spectral emission width below 20 pm and an almost diffraction limited beam.
NASA Astrophysics Data System (ADS)
Wang, Nianfang; Koh, Sungjun; Jeong, Byeong Guk; Lee, Dongkyu; Kim, Whi Dong; Park, Kyoungwon; Nam, Min Ki; Lee, Kangha; Kim, Yewon; Lee, Baek-Hee; Lee, Kangtaek; Bae, Wan Ki; Lee, Doh C.
2017-05-01
We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.
Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.
Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei
2018-03-01
Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.
"Calibration" system for spectral measurements and its experimental results
NASA Astrophysics Data System (ADS)
Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.
2017-04-01
"Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained will be also included in a database of spectral samples created in the Institute of Geography of Russian Academy of Sciences.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Bian, Qi; Bo, Yong; Zuo, Junwei; Li, Min; Dong, Ruoxi; Deng, Keran; Zhang, Dingwen; He, Liping; Zong, Qingshuang; Cui, Dafu; Peng, Qinjun; Chen, Hongbin; Xu, Zuyan
2018-06-15
The brightness of the artificial beacon is one critical performance parameter for adaptive optics. Here, a 40-watt level narrow-linewidth microsecond pulsed yellow laser is produced at 589 nm with a high repetition frequency of 600 Hz and a pulse duration of 120 μs. An experiment to project the pulse beam up to the sky and measure the fluorescence photon returns of the Na atoms has been held on the 1.8-meter telescope in Lijiang observatory. During the sky test, a laser guide star (LGS) spot is firstly observed with Rayleigh scattering elimination by means of a gateable pulse format. And, the central wavelength of the laser could be accurately locked to be 589.1584 nm with a linewidth of ~0.34 GHz to match that of sodium-D 2a line. Optical pumping with circularly polarized light has also been used to increase the brightness of sodium LGS. In order to maximize the return flux, sodium D 2b repumping option is done by an electro-optic modulator with the optimum D 2a -D 2b frequency offset. As a result, a bright sodium LGS with the return flux of 1610 photons/cm 2 /s is achieved, corresponding to ~47 photons/cm 2 /s/W of emitted laser power, which represents a significant improvement in terms of brightness reported ever.
Near white light emission of silicon nanocrystals
NASA Astrophysics Data System (ADS)
Lee, Soojin; Han, Il-Ki; Cho, Woon-Jo
2003-11-01
Silicon nanoparticles in the range from 2 nm to 5 nm was prepared from Zintl salt, soldium silicide (NaSi) by sonochemical method. This synthesis permits the reaction completed as fast as in a few hours and the easy alkyl-modification of nanocrystals surface at room temperature and ambient pressure. The average size of nanoparticles measured by the dynamic light scattering analysis was 2.7 nm. The high-resolution transmission electron micrograph cofirmed the material identity of nanoparticles as crystalline silicon. FT-IR spectra are consistent with the surface states of nanocrystals that is chlorine- or butyl-capped. The emission peak center moved to longer wavelength (up to 430 nm) with the reaction time, under a 325 nm excitation. The luminescence of silicon colloids looks bright bluish-white under excitation using a commercial low-intensity UV lamp.
Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa
2015-01-01
Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).
Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles
NASA Astrophysics Data System (ADS)
Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir
2000-08-01
We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of ˜1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H2O2. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness, capped Si particles have superior biocompatability, an important property for biosensing applications.
High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range
NASA Astrophysics Data System (ADS)
Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram
2011-06-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
NASA Astrophysics Data System (ADS)
Ham, Boo-Hyun; Kim, Il-Hwan; Park, Sung-Sik; Yeo, Sun-Young; Kim, Sang-Jin; Park, Dong-Woon; Park, Joon-Soo; Ryu, Chang-Hoon; Son, Bo-Kyeong; Hwang, Kyung-Bae; Shin, Jae-Min; Shin, Jangho; Park, Ki-Yeop; Park, Sean; Liu, Lei; Tien, Ming-Chun; Nachtwein, Angelique; Jochemsen, Marinus; Yan, Philip; Hu, Vincent; Jones, Christopher
2017-03-01
As critical dimensions for advanced two dimensional (2D) DUV patterning continue to shrink, the exact process window becomes increasingly difficult to determine. The defect size criteria shrink with the patterning critical dimensions and are well below the resolution of current optical inspection tools. As a result, it is more challenging for traditional bright field inspection tools to accurately discover the hotspots that define the process window. In this study, we use a novel computational inspection method to identify the depth-of-focus limiting features of a 10 nm node mask with 2D metal structures (single exposure) and compare the results to those obtained with a traditional process windows qualification (PWQ) method based on utilizing a focus modulated wafer and bright field inspection (BFI) to detect hotspot defects. The method is extended to litho-etch litho-etch (LELE) on a different test vehicle to show that overlay related bridging hotspots also can be identified.
Gregor, M. C.; Boni, R.; Sorce, A.; ...
2016-11-29
Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregor, M. C.; Boni, R.; Sorce, A.
Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less
ZTF Bright Transient Survey classifications
NASA Astrophysics Data System (ADS)
Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.
2018-06-01
The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Wen, Xiangping; Zhang, Guomei; Yang, Jun; Dong, Chuan; Shuang, Shaomin
2015-04-28
We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation.
NASA Technical Reports Server (NTRS)
Katsukawa, Yukio; Ishikawa, Ryoko; Kano, Ryohei; Kubo, Masahito; Noriyuki, Narukage; Kisei, Bando; Hara, Hirohisa; Yoshiho, Suematsu; Goto, Motouji; Ishikawa, Shinnosuke;
2017-01-01
The CLASP (Chromospheric Lyman-Alpha Spectro- Polarimeter) rocket experiment, in addition to the ultraviolet region of the Ly alpha emission line (121.57 nm), emission lines of Si III (120.65 nm) and OV (121.83 nm) is can be observed. These are optically thin line compared to a Ly alpha line, if Rarere captured its polarization, there is a possibility that dripping even a new physical diagnosis chromosphere-transition layer. In particular, OV bright light is a release from the transition layer, further, three P one to one S(sub 0) is a forbidden line (cross-triplet transition between lines), it was not quite know whether to polarization.
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
High-brightness tapered laser diodes with photonic crystal structures
NASA Astrophysics Data System (ADS)
Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun
2018-02-01
Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.
A complex multi-notch astronomical filter to suppress the bright infrared sky.
Bland-Hawthorn, J; Ellis, S C; Leon-Saval, S G; Haynes, R; Roth, M M; Löhmannsröben, H-G; Horton, A J; Cuby, J-G; Birks, T A; Lawrence, J S; Gillingham, P; Ryder, S D; Trinh, C
2011-12-06
A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.
Possible Cause of Extremely Bright Aurora Witnessed in East Asia on 17 September 1770
NASA Astrophysics Data System (ADS)
Ebihara, Yusuke; Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Kawamura, Akito Davis; Isobe, Hiroaki
2017-10-01
Extremely bright aurora was witnessed in East Asia on 17 September 1770, according to historical documents. The aurora was described as "as bright as a night with full moon" at magnetic latitude of 25°. The aurora was dominated by red color extending from near the horizon up beyond the polar star (corresponding to elevation angle of 35°). We performed a two-stream electron transport code to calculate the volume emission rates at 557.7 nm (OI) and 630.0 nm (OI). Two types of distribution of precipitating electrons were assumed. The first one is based on the unusually intense electron flux measured by the DMSP satellite in the March 1989 storm. The distribution consists of hot (peaking at 3 keV) and cold (peaking at 71 eV) components. The second one is the same as the first one, but the hot component is removed. We call this high-intensity low-energy electrons (HILEEs). The first spectrum results in an auroral display with a bright, lower green border. The second one results in red-dominated aurora extending up to the elevation angle of 35° when the equatorward boundary of the electron precipitation is located at 32° invariant latitude. The poleward boundary of the precipitation would be 42° invariant latitude or greater to explain the auroral display extending from near the horizon. The origin of the HILEEs is probably the plasma sheet or the plasmasphere that is transported earthward to L 1.39 due to enhanced magnetospheric convection. Local heating or acceleration is also plausible.
Technological Challenges to X-Ray FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1999-09-16
There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less
Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.
Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu
2018-05-01
Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ZTF Bright Transient Survey classifications
NASA Astrophysics Data System (ADS)
Fremling, C.; Sharma, Y.; Skulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J. D.; Miller, A. A.; Taggart, K.; Perley, D. A.; Goobar, A.; Graham, M. L.
2018-06-01
The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.
Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less
Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes
Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; ...
2017-01-26
Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less
Data From the Precision Solar Photometric Telescope (Pspt) in Hawaii From March 1998 to March 1999
NASA Astrophysics Data System (ADS)
White, Oran R.; Fox, Peter A.; Meisner, Randy; Rast, Mark P.; Yasukawa, Eric; Koon, Darryl; Rice, Crystal; Lin, Haosheng; Kuhn, Jeff; Coulter, Roy
2000-11-01
Two Precision Solar Photometric Telescopes (PSPT) designed and built at the U.S. National Solar Observatory (NSO) are in operation in Rome and Hawaii. A third PSPT is now in operation the NSO at Sunspot, NM. The PSPT system records full disk solar images at three wavelengths: K line at 393.3 nm and two continua at 409 nm and 607 nm throughout the observing day. We currently study properties of limb darkening, sunspots, and network in these images with particular emphasis on data taken in July and September 1998. During this period, the number of observations per month was high enough to show directional properties of the radiation field surrounding sunspots. We show examples of our PSPT images and describe our study of bright rings around sunspots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir
We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of {approx}1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H{sub 2}O{sub 2}. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness,more » capped Si particles have superior biocompatability, an important property for biosensing applications. (c) 2000 American Institute of Physics.« less
Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J.; Nötzel, Richard; Notomi, Masaya
2012-01-01
High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres. PMID:22432053
Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J; Nötzel, Richard; Notomi, Masaya
2012-01-01
High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.
Chen, Yungting; Shih, Hanyu; Wang, Chunhsiung; Hsieh, Chunyi; Chen, Chihwei; Chen, Yangfang; Lin, Taiyuan
2011-05-09
Based on hybrid inorganic/organic n-ZnO nanorods/p-GaN thin film/poly(3-hexylthiophene)(P3HT) dual heterojunctions, the light emitting diode (LED) emits ultraviolet (UV) radiation (370 nm - 400 nm) and the whole visible light (400 nm -700 nm) at the low injection current density. Meanwhile, under the high injection current density, the UV radiation overwhelmingly dominates the room-temperature electroluminescence spectra, exponentially increases with the injection current density and possesses a narrow full width at half maximum less than 16 nm. Comparing electroluminescence with photoluminescence spectra, an enormously enhanced transition probability of the UV luminescence in the electroluminescence spectra was found. The P3HT layer plays an essential role in helping the UV emission from p-GaN material because of its hole-conductive characteristic as well as the band alignment with respect to p-GaN. With our new finding, the result shown here may pave a new route for the development of high brightness LEDs derived from hybrid inorganic/organic heterojuctions.
Yang, Jun; Zhang, Cuimiao; Peng, Chong; Li, Chunxia; Wang, Lili; Chai, Ruitao; Lin, Jun
2009-01-01
Light fantastic! Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals with controllable red, green, blue (RGB) and bright white upconversion luminescence by a single laser excitation of 980 nm have been successfully synthesized (see picture). Due to abundant UC PL colors, it can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu(2)O(3):Yb(3+), Tm(3+) nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-->(3)H(6) transition of Tm(3+). The bright green UC emissions of Lu(2)O(3):Er(3+) nanocrystals appeared near 540 and 565 nm were observed and assigned to the (2)H(11/2)-->(4)I(15/2) and (4)S(3/2)-->(4)I(15/2) transitions, respectively, of Er(3+). The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb(3+) in Lu(2)O(3):Er(3+) nanocrystals. In sufficient quantities of Yb(3+) with resprct to Er(3+), the bright red UC emission of Lu(2)O(3):Yb(3+)/Er(3+) centered at 662 nm was predominant, due to the (4)F(9/2)-->(4)I(15/2) transition of Er(3+). Based on the generation of red, green, and blue emissions in the different doped Lu(2)O(3):RE(3+) nanocrystals, it is possible to produce the luminescence with a wide spectrum of colors, including white, by the appropriate doping of Yb(3+), Tm(3+), and Er(3+) in the present Lu(2)O(3) nanocrystals. Namely, Lu(2)O(3):3 %Yb(3+)/0.2 %Tm(3+)/0.4 %Er(3+) nanocrystals show suitable intensities of blue, green, and red (RGB) emission, resulting in the production of perfect and bright white light with CIE-x=0.3456 and CIE-y=0.3179, which is very close to the standard equal energy white light illuminate (x=0.33, y=0.33). Because of abundant luminescent colors from RGB to white in Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals under 980 nm laser diode (LD) excitation, they can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.
Highly modular high-brightness diode laser system design for a wide application range
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang
2015-03-01
For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). Further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and results in about 500 W launched into a 100 μm fiber with 0.15 NA. Subsequently those building blocks can be stacked also by the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.
Time-resolved brightness measurements by streaking
NASA Astrophysics Data System (ADS)
Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.
2018-03-01
Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.
High-power broad-area diode lasers optimized for fiber laser pumping
NASA Astrophysics Data System (ADS)
Gilly, J.; Friedmann, P.; Kissel, H.; Biesenbach, J.; Kelemen, M. T.
2012-03-01
In diode laser applications for fibre laser pumping and materials processing high brightness becomes more and more important. At the moment fibre coupled modules benefit from continuous improvement of Broad-Area (BA) lasers on the chip level regarding output power, efficiency and far-field characteristics. To achieve high brightness not only the output power must be increased, but also the far field angles have to be maintained or even decreased because brightness is proportional to output power divided by beam quality. Typically fast axis far fields show mostly a current independent behaviour, for broad-area lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness. These limitations can be overcomed by carefully optimizing epitaxy-design and processing and also thermal management of the mounted device. The easiest way to achieve a good thermal management of BA-Lasers is to increase the resonator length while simultaneously decreasing internal losses of the epitaxy structure. To fulfill these issues, we have realized MBE grown InGaAs/AlGaAs broad-area with resonator lengths between 4mm and 6mm emitting at 976nm. To evaluate the brightness of these broad-area lasers single emitters have been mounted p-side down. Near- and far-fields have been carefully investigated. For a 4mm long broad-area laser with around 100μm emission width a beam parameter product of less than 3.5 mm x mrad has been achieved at 10W with a slope efficiency of more than 1.1W/A and a maximum wall-plug efficiency of more than 67%. For a device with 6mm resonator length we have reached a BPP of less than 3.5mm x mrad at 14W in slow axis direction which results in a brightness around 130MW/cm2 sr, which is to our knowledge the highest brightness reported so far for BA-lasers.
Saturation Measurements of a Visible SASE FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Roger
2002-08-14
VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.
Kilin, Vasyl N; Anton, Halina; Anton, Nicolas; Steed, Emily; Vermot, Julien; Vandamme, Thierry F; Mely, Yves; Klymchenko, Andrey S
2014-06-01
Superior brightness of fluorescent nanoparticles places them far ahead of the classical fluorescent dyes in the field of biological imaging. However, for in vivo applications, inorganic nanoparticles, such as quantum dots, are limited due to the lack of biodegradability. Nano-emulsions encapsulating high concentrations of organic dyes are an attractive alternative, but classical fluorescent dyes are inconvenient due to their poor solubility in the oil and their tendency to form non-fluorescent aggregates. This problem was solved here for a cationic cyanine dye (DiI) by substituting its perchlorate counterion for a bulky and hydrophobic tetraphenylborate. This new dye salt, due to its exceptional oil solubility, could be loaded at 8 wt% concentration into nano-droplets of controlled size in the range 30-90 nm. Our 90 nm droplets, which contained >10,000 cyanine molecules, were >100-fold brighter than quantum dots. This extreme brightness allowed, for the first time, single-particle tracking in the blood flow of live zebrafish embryo, revealing both the slow and fast phases of the cardiac cycle. These nano-droplets showed minimal cytotoxicity in cell culture and in the zebrafish embryo. The concept of counterion-based dye loading provides a new effective route to ultra-bright lipid nanoparticles, which enables tracking single particles in live animals, a new dimension of in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Near-infrared fluorescence imaging using organic dye nanoparticles.
Yu, Jia; Zhang, Xiujuan; Hao, Xiaojun; Zhang, Xiaohong; Zhou, Mengjiao; Lee, Chun-Sing; Chen, Xianfeng
2014-03-01
Near-infrared (NIR) fluorescence imaging in the 700-1000 nm wavelength range has been very attractive for early detection of cancers. Conventional NIR dyes often suffer from limitation of low brightness due to self-quenching, insufficient photo- and bioenvironmental stability, and small Stokes shift. Herein, we present a strategy of using small-molecule organic dye nanoparticles (ONPs) to encapsulate NIR dyes to enable efficient fluorescence resonance energy transfer to obtain NIR probes with remarkably enhanced performance for in vitro and in vivo imaging. In our design, host ONPs are used as not only carriers to trap and stabilize NIR dyes, but also light-harvesting agent to transfer energy to NIR dyes to enhance their brightness. In comparison with pure NIR dyes, our organic dye nanoparticles possess almost 50-fold increased brightness, large Stokes shifts (∼250 nm) and dramatically enhanced photostability. With surface modification, these NIR-emissive organic nanoparticles have water-dispersity and size- and fluorescence- stability over pH values from 2 to 10 for almost 60 days. With these superior advantages, these NIR-emissive organic nanoparticles can be used for highly efficient folic-acid aided specific targeting in vivo and ex vivo cellular imaging. Finally, during in vivo imaging, the nanoparticles show negligible toxicity. Overall, the results clearly display a potential application of using the NIR-emissive organic nanoparticles for in vitro and in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Strongly luminescent InP/ZnS core-shell nanoparticles.
Haubold, S; Haase, M; Kornowski, A; Weller, H
2001-05-18
The wide-bandgap semiconducting material, zinc sulfide, has been coated on indium phosphide nanoclusters to a 1-2-Å thickness. The resulting InP-ZnS core-shell particle (as shown in the TEM image; scale 1 cm=5 nm) exhibits bright luminescence at room temperature with quantum efficiencies as high as 23 %. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
NASA Astrophysics Data System (ADS)
Haffouz, Sofiane; Zeuner, Katharina D.; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D.; Zwiller, Valery; Williams, Robin L.
2018-05-01
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
A Zn-porphyrin complex contributes to bright red color in Parma ham.
Wakamatsu, J; Nishimura, T; Hattori, A
2004-05-01
The Italian traditional dry-cured ham (Parma ham) shows a stable bright red color that is achieved without the use of nitrite and/or nitrate. In this study we examined the pigment spectroscopically, fluoroscopically and by using HPLC and ESI-HR-MASS analysis. Porphyrin derivative other than acid hematin were contained in the HCl-containing acetone extract from Parma ham. A strong fluorescence peak at 588 nm and a weak fluorescence peak at 641 nm were observed. By HPLC analysis the acetone extract of Parma ham was observed at the single peak, which eluted at the same time as Zn-protoporphyrin IX and emitted fluorescence. The results of ESI-HR-MS analysis showed both agreement with the molecular weight of Zn-protoporphyrin IX and the characteristic isotope pattern caused by Zn isotopes. These results suggest that the bright red color in Parma ham is caused by Zn-protoporphyrin IX.
Silicon coupled with plasmon nanocavities generates bright visible hot luminescence
NASA Astrophysics Data System (ADS)
Cho, Chang-Hee; Aspetti, Carlos O.; Park, Joohee; Agarwal, Ritesh
2013-04-01
To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated, there are difficulties in integrating quantum structures with conventional electronics. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in `bulk-sized' silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.
NASA Astrophysics Data System (ADS)
Rajendran, Kalimuthu; Rajendiran, Nagappan
2018-02-01
A simple, economical, and green method for the preparation of water soluble, high fluorescent carbon quantum dots (CQDs) has been prepared via hydrothermal process using jackfruit (Artocarpus heterophyllus) as a carbon source. The optical properties of synthesized CQDs were characterized by UV- visible and fluorescence spectroscopy. Fourier transform infrared spectroscopy (FT-IR), x-ray Diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) techniques were used to study the composition and size of the CQDs. The prepared CQDs were spherical in shape with an average size of 2.5 nm along with uniform distribution and showed bright bluish green emission properties, without any further surface modification. The prepared CQDs were exhibit high stability at neutral pH and showed high photo-stability under UV light irradiation at 365 nm. The obtained CQDs were effectively utilized as fluorescent probe for highly selective and sensitive detection of Hg2+ and Cr6+ ions in environmental samples with a limit of detection of about 8 and 10 nM respectively.
Three-color Sagnac source of polarization-entangled photon pairs.
Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton
2009-12-07
We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.
The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars
NASA Astrophysics Data System (ADS)
Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia
2017-01-01
The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (<0.01mTorr) with precisely controlled temperature (~1 mK), TOU has delivered ~ 0.5 m/s (RMS) long-term instrument stability, which is a factor of two times more stable than any of existing Doppler instruments to our best knowledge. DPS aims at reaching better than 0.5 m/s (a goal of 0.2 m/s) Doppler measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.
Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L
2018-05-09
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
Femtosecond time-resolved MeV electron diffraction
Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...
2015-06-02
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less
Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q
2013-07-05
The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.
High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, En -Ping; Yang, Zhanlue; Meng, Lei
Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less
High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites
Yao, En -Ping; Yang, Zhanlue; Meng, Lei; ...
2017-04-10
Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less
Evaluation of the airborne imaging spectrometer for remote sensing of forest stand conditions
NASA Technical Reports Server (NTRS)
Olson, Charles E., Jr.
1986-01-01
Five pairs of plots were established in forest stands with one of each pair trenched and covered to prevent precipitation from reaching the tree roots. High winds and falling limbs destroyed the covers on three of the plots. The two remaining plots were in a red pine plantation and in a natural stand of sugar maple. Trees in both plots developed levels of moisture stress more than nine bars higher than control trees on the dates of overflights with the Airborne Imaging Spectrometer (AIS) and the Collins' Airborne Spectroradiometer (CAS). Hemispherical reflectance from stressed and control trees was measured with a Beckman DK2A spectrophotometer. On the day of the AIS overflight, stressed maple foliage was less reflective than the control from 1000 to 1300 nm, but more reflective at wavelengths longer than 1300 nm. Pine foliage was less reflective than the control from 1000 to 1600 nm, but the difference was small at wavelengths longer than 1350 nm. AIS data collected showed brightness values for both maple and pine to be lower than for the controls from 1000 to 1300 nm. CAS data were used to determine the gain in species identification accuracy obtainable with high spectral resolution data.
Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing.
Chen, Xiaohu; Jin, Xiaoying; Tan, Junjun; Li, Wei; Chen, Minfang; Yao, Lan; Yang, Haitao
2016-04-15
Luminescent hydroxyapatite nanoparticles, which have excellent biocompatibility, excellent photostability, and strong fluorescence, have received increasing attention as bioprobes in cell imaging. However, they are also excellent candidates for use in ink-jet security printing. Successful products for related applications usually require highly crystalline, mono-dispersible hydroxyapatite nanorods with good colloidal stability and high fluorescence in aqueous media. These requirements are hard to simultaneously satisfy using most synthetic methods. In this paper, we report a simple and versatile hydrothermal method that incorporates the use of sodium citrate to prepare water-dispersible Eu(3+)-doped hydroxyapatite nanorods. The hydroxyapatite nanorods obtained using this method are highly crystalline rod-shaped particles with an average length of 50-80 nm and an average diameter of 15-30 nm. Dispersions of these hydroxyapatite nanorods, which are transparent with a slightly milky color under natural light and a bright red color when excited with 241 nm UV light, display zeta potentials of -35 mV and hydrodynamic diameters of 120 nm. These dispersions remain colloidally stable for a few months. Dispersions with these properties could be easily applied to security printing for confidential information storage and anti-counterfeiting technologies. Copyright © 2016 Elsevier Inc. All rights reserved.
The impact of bottom brightness on spectral reflectance of suspended sediments
Tolk, Brian L.; Han, L.; Rundquist, D. C.
2000-01-01
Two experiments were conducted outdoors to investigate how bottom brightness impacts the spectral response of a water column under varied suspended sediment concentrations. A white aluminum panel placed at the bottom of the tank was used as the bright bottom, and a flat-black tank liner served as the dark bottom. Sixteen levels of suspended sediment from 25 to 400 mg litre -1 were used in each experiment. Spectral data were collected using a Spectron SE-590 spectroradiometer. The major findings include the following: the bright bottom had the greatest impact at visible wavelengths; when suspended sediment concentrations exceeded 100 mg litre -1, the bright bottom response was found to be negligible; and, substrate brightness has minimal impact between 740 and 900 nm, suggesting that these wavelengths are best for measuring suspended sediment concentrations by means of remote sensing.
Wavelength stabilized multi-kW diode laser systems
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens
2015-03-01
We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.
Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Anderson, S G; Barty, C P J
2003-05-28
The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less
FerriBRIGHT: a rationally designed fluorescent probe for redox active metals.
Kennedy, Daniel P; Kormos, Chad M; Burdette, Shawn C
2009-06-24
The novel catechol-BODIPY dyad, 8-(3,4-dihydroxyphenyl)-2,6-bis(ethoxycarbonyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (FerriBRIGHT) was rationally designed with the aid of computational methods. FerriBRIGHT could be prepared by standard one-pot synthesis of BODIPY fluorophores from 3,4-bis(benzyloxy)benzaldehyde (1) and 3,5-dimethyl-4-(ethoxycarbonyl)pyrrole (3); however, isolating the dipyrrin intermediate 8-[3,4-bis(benzyloxy)phenyl]-2,6-bis(ethoxycarbonyl)-1,3,5,7-tetramethyl-4,4-diaza-s-indacene (7) prior to reaction with excess BF(3).OEt(2) led to marked improvements in the isolated overall yield of the desired compound. In addition to these improvements in fluorophore synthesis, microwave-assisted palladium-catalyzed hydrogenolysis of benzyl ethers was used to reduce reaction times and catalyst loading in preparation of the desired compound. When FerriBRIGHT is exposed to excess FeCl(3), CuCl(2), [Co(NH(3))(5)Cl]Cl(2), 2,3-dichloro-5,6-dicyanobenzoquinone, or ceric ammonium nitrate in methanol, a significant enhancement of fluorescence is observed. FerriBRIGHT-Q, the product resulting from the oxidation of the pendant catechol to the corresponding quinone, was found to be the emissive species. FerriBRIGHT-Q was synthesized independently, isolated, and fully characterized to allow for direct comparison with the spectroscopic data acquired in solution. Biologically relevant reactive oxygen species, such as H(2)O(2), (*)OH, (1)O(2), O(2)(*-), and bleach (NaOCl), failed to cause any changes in the emission intensity of FerriBRIGHT. In accordance with the quantum mechanical calculations, the quantum yield of fluorescence for FerriBRIGHT (Phi(fl) approximately 0) and FerriBRIGHT-Q (Phi(fl) = 0.026, lambda(ex)/lambda(em) = 490 nm/510 nm) suggests that photoinduced electron transfer between the catechol and the BODIPY dye is attenuated upon oxidation, which results in fluorescence enhancement. Binding studies of FerriBRIGHT with Ga(NO(3))(3), a redox-inactive analogue of Fe(III), provided conditional binding constant log beta(12)' = 13.3 +/- 0.2 for a [Ga(FerriBRIGHT)(2)](-) complex. A 2.8-fold enhancement of fluorescence intensity upon addition of Ga(III) to FerriBRIGHT suggests the possibility of metal ion sensing with this new class of compounds.
Hot and dense plasma probing by soft X-ray lasers
NASA Astrophysics Data System (ADS)
Krůs, M.; Kozlová, M.; Nejdl, J.; Rus, B.
2018-01-01
Soft X-ray lasers, due to their short wavelength, its brightness, and good spatial coherence, are excellent sources for the diagnostics of dense plasmas (up to 1025 cm-3) which are relevant to e.g. inertial fusion. Several techniques and experimental results, which are obtained at the quasi-steady state scheme being collisionally pumped 21.2 nm neon-like zinc laser installed at PALS Research Center, are presented here; among them the plasma density measurement by a double Lloyd mirror interferometer, deflectometer based on Talbot effect measuring plasma density gradients itself, with a following ray tracing postprocessing. Moreover, the high spatial resolution (nm scale) plasma images can be obtained when soft X-ray lasers are used.
The 67P nucleus composition and temporal variations observed by the OSIRIS cameras onboard Rosetta
NASA Astrophysics Data System (ADS)
Fornasier, Sonia; Barucci, Maria Antonietta; Feller, Clement; Deshapriya, Prasanna J. D.; Pommerol, Antoine; Lara, Luisa; Oklay, Nilda; A'Hearn, Mike; Davidsson, Bjorn; Perna, Davide; Sierks, Holger
2015-11-01
Since August 2014, the comet 67P/Churyumov-Gerasimenko has been mapped by the NAC and WAC cameras of the OSIRIS imaging system in the 250-1000 nm wavelength range. OSIRIS got the most detailed maps at the highest spatial resolution of a comet nucleus surface. Here we report on the colors and spectrophotometry of the whole 67P nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the comet perihelion passage. Globally, the nucleus shows a red spectral behavior and it has spectrophotometric properties similar to those of bare cometary nuclei, of primitive D-type asteroids such us Jupiter Trojans, and of the moderately red Transneptunians. No clear absorption bands have been identified yet in the UV-VIS-NIR range, except for a potential absorption centered at 290 nm, possibly due to SO2 ice. The nucleus shows an important phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3-54° phase angle range. On the basis of the spectral slope, we identified three different groups of regions, characterized by a low, medium, and high spectral slope, respectively. The three groups are distributed everywhere on the nucleus, with no evident distinction between the two lobes of the comet. The comet southern hemisphere, that has been observed by Rosetta since April 2015, shows a lack of spectrally red regions associated to the absence of wide spread smooth or dust covered terrains. Several local bright and spectrally blue patches have been identified on the nucleus and attributed to exposed water ice on the surface. In particular we observed big (> 1500 m2) bright ice rich areas in the southern hemisphere which completely sublimated in a few weeks. We see evidence of very bright patches in the NUV-blue region close to the morning shadows that are compatible with the presence of frosts/ices. These patches disappear when fully illuminated by the Sun indicating that important processes of sublimation and recondensation of volatiles are taking place on the nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.; Houser, Kevin W.
An experiment was conducted to examine the effect of tuning optical radiation on brightness perception for younger (18-25 years of age) and older (50 years of age or older) observers. Participants made forced-choice evaluations of the brightness of a full factorial of stimulus pairs selected from two groups of four metameric stimuli. The large-field stimuli were created by systematically varying either the red or the blue primary of an RGB LED mixture. The results indicate that light stimuli of equal illuminance and chromaticity do not appear equally bright to either younger or older subjects. The rank-order of brightness is notmore » predicted by any current model of human vision or theory of brightness perception including Scotopic to Photopic or Cirtopic to Photopic ratio theory, prime color theory, correlated color temperature, V(λ)-based photometry, color quality metrics, linear brightness models, or color appearance models. Age may affect brightness perception when short-wavelength primaries are used, especially those with a peak wavelength shorter than 450 nm. The results suggest further development of metrics to predict brightness perception is warranted, and that including age as a variable in predictive models may be valuable.« less
Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices
NASA Astrophysics Data System (ADS)
Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J.
2012-06-01
In this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.
Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA
Woehrstein, Johannes B.; Strauss, Maximilian T.; Ong, Luvena L.; Wei, Bryan; Zhang, David Y.; Jungmann, Ralf; Yin, Peng
2017-01-01
Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target. PMID:28691083
Fabrication of the polarization independent spectral beam combining grating
NASA Astrophysics Data System (ADS)
Liu, Quan; Jin, Yunxia; Wu, Jianhong; Guo, Peiliang
2016-03-01
Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions to achieve high-power high-brightness fiber laser output. The spectral beam combining (SBC) is a promising method to achieve high average power output without influencing the beam quality. A polarization independent spectral beam combining grating is one of the key elements in the SBC. In this paper the diffraction efficiency of the grating is investigated by rigorous coupled-wave analysis (RCWA). The theoretical -1st order diffraction efficiency of the grating is more than 95% from 1010nm to 1080nm for both TE and TM polarizations. The fabrication tolerance is analyzed. The polarization independent spectral beam combining grating with the period of 1.04μm has been fabricated by holographic lithography - ion beam etching, which are within the fabrication tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn
Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less
Space grating optical structure of the retina and RGB-color vision.
Lauinger, Norbert
2017-02-01
Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.
Robust and brilliant Raman tags based on core-satellite assemblies for brain tumor cell imaging
NASA Astrophysics Data System (ADS)
Chang, Yung-Ching; Huang, Li-Ching; Sun, Wei-Lun; Chuang, Shih Yi; Lin, Tien-Hsin; Wu, Yi-Syuan; Sze, Chun-I.; Chen, Shiuan-Yeh
2018-02-01
GBM (Glioblastoma Multiforme), a fatal brain tumor, is highly infiltrative and difficult to be completely removed by the surgery. In this work, the Raman tags based on the plasmonic core-satellite assemblies with 1 nm internal gap accompanied by extremely high gap field have been fabricated and applied to GBM cell labeling. The brightness of the Raman tags is comparable to the fluorophores. The GBM cells with overexpression of EGFR are labeled with these Raman tags and can be distinguished from the normal cells through Raman imaging.
Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters
NASA Astrophysics Data System (ADS)
Tran, Toan Trong; Kianinia, Mehran; Bray, Kerem; Kim, Sejeong; Xu, Zai-Quan; Gentle, Angus; Sontheimer, Bernd; Bradac, Carlo; Aharonovich, Igor
2017-11-01
Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ˜780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Roger
The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.
NASA Astrophysics Data System (ADS)
Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.
2014-05-01
Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of < 0.5 nm and a wavelength stability of better than 250 MHz over one hour. Dense spectral combination with dichroic mirrors and narrow channel spacing allows us to combine multiple wavelength channels, resulting in a 2 kW laser module with a BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.
Design of a Day/Night Star Camera System
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Swift, Wesley; Ghosh, Kajal; Ramsey, Brian
1999-01-01
This paper describes the design of a camera system capable of acquiring stars during both the day and night cycles of a high altitude balloon flight (35-42 km). The camera system will be filtered to operate in the R band (590-810 nm). Simulations have been run using MODTRAN atmospheric code to determine the worse case sky brightness at 35 km. With a daytime sky brightness of 2(exp -05) W/sq cm/str/um in the R band, the sensitivity of the camera system will allow acquisition of at least 1-2 stars/sq degree at star magnitude limits of 8.25-9.00. The system will have an F2.8, 64.3 mm diameter lens and a 1340X1037 CCD array digitized to 12 bits. The CCD array is comprised of 6.8 X 6.8 micron pixels with a well depth of 45,000 electrons and a quantum efficiency of 0.525 at 700 nm. The camera's field of view will be 6.33 sq degree and provide attitude knowledge to 8 arcsec or better. A test flight of the system is scheduled for fall 1999.
Yuan, Xi; Ma, Ruixin; Zhang, Wenjin; Hua, Jie; Meng, Xiangdong; Zhong, Xinhua; Zhang, Jiahua; Zhao, Jialong; Li, Haibo
2015-04-29
Novel white light emitting diodes (LEDs) with environmentally friendly dual emissive quantum dots (QDs) as single color-converters are one of the most promising high-quality solid-state lighting sources for meeting the growing global demand for resource sustainability. A facile method was developed for the synthesis of the bright green-red-emitting Mn and Cu codoped Zn-In-S QDs with an absorption bangdgap of 2.56 eV (485 nm), a large Stokes shift of 150 nm, and high emission quantum yield up to 75%, which were suitable for warm white LEDs based on blue GaN chips. The wide photoluminescence (PL) spectra composed of Cu-related green and Mn-related red emissions in the codoped QDs could be controlled by varying the doping concentrations of Mn and Cu ions. The energy transfer processes in Mn and Cu codoped QDs were proposed on the basis of the changes in PL intensity and lifetime measured by means of steady-state and time-resolved PL spectra. By integrating these bicolor QDs with commercial GaN-based blue LEDs, the as-fabricated tricolor white LEDs showed bright natural white light with a color rendering index of 95, luminous efficacy of 73.2 lm/W, and color temperature of 5092 K. These results indicated that (Mn,Cu):Zn-In-S/ZnS QDs could be used as a single color-converting material for the next generation of solid-state lighting.
A high brightness source for nano-probe secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.
2008-12-01
The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.
Modeling Illumination Conditions on the Moon: Applications to LRO-LAMP
NASA Astrophysics Data System (ADS)
Byron, B. D.; Mazarico, E. M.; Retherford, K. D.; Mandt, K. E.; Greathouse, T.; Gladstone, R.
2017-12-01
LRO-LAMP is a UV spectrograph which uses illumination from Lyman-α sky glow along with UV light from bright stars to image the dark, permanently shadowed regions (PSRs) of the lunar surface. Accurate modeling of this UV illumination is essential to creating albedo maps of the lunar surface, which can shed light on lunar regolith processes and help to constrain the distribution of water ice in polar PSRs. In this study, the variation in reflected intensity received by the LAMP detector was modeled for South Pole crater Amundsen using the illumination program IllumNG. Amundsen was chosen for study due to the PSR in its Northern side and its highly illuminated equator-facing slopes on the Southern wall. The model works by tracing a ray from each LAMP detector pixel along its boresight until the point where it intersects the lunar surface, and calculating the percentage of the total source flux visible above the horizon. In this study, the three main illumination sources used are the Sun, Interplanetary Lyman-α sky glow, and bright UV starlight in the On Band (130-155 nm) and Off Band (155-190 nm) wavelength ranges. The model also has the capability to calculate incident flux received at the surface, as well as intensity reflected from the surface and received by the LAMP detector along each boresight. The study found a noticeable variation in received intensity between six month stretches for the year of 2010. Over the period of January through July, about 6% more IPM Lyman-α flux was reflected from the surface of Amundsen than for July through December. For stellar flux in the On Band, a 13% difference in flux was reflected between the six month periods. In comparing the monthly intensity maps created by the model with LAMP measured monthly brightness maps, similar crater features are apparent. Though the model brightness is generally higher than the LAMP brightness, after accounting for albedo ( 0.05 for the South Pole region) the values are in closer agreement. In the future, inclusion of the model results during pipeline processing could enable better calibration and analysis of LAMP data.
McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon
2013-01-01
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm2. Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes. PMID:23592185
McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan
2013-06-07
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm(2). Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes.
Rastogi, R P; Madamwar, D; Incharoensakdi, A
2015-09-01
To investigate the occurrence of UV sunscreening biomolecules and their role in photoprotection in cyanobacterial biofilms growing in brightly lit habitats with high UV fluxes. High performance liquid chromatography with photodiode-array and mass spectrometry revealed the presence of mycosporine-like amino acids (MAAs) shinorine (λ(max) 334 nm, m/z 333), porphyra-334 (λ(max) 334 nm, m/z 347), mycosporine-glycine (λ(max) 310 nm, m/z 246) and palythinol (λ(max) 332 nm, m/z 303). Two unknown MAAs with λ(max) at 320 (m/z 289) and 329 nm (m/z 318) were also found. Biosynthesis of MAAs was found to increase with increase in exposure time under UV radiation. The MAAs from biofilms showed efficient radical scavenging activity as well as photoprotective potential on the survival of UV-treated Escherichia coli cells. Biosynthesis of photoprotectants is an important mechanism to prevent photodamage in Cyanobacteria. UV-induction and photoprotective function of MAAs may facilitate them to perform important ecological functions under harsh environmental conditions. There are very few reports on qualitative and quantitative characterization of different MAAs in cyanobacterial biofilms. Due to strong UV absorption and photoprotective function, MAAs may be used as an active ingredient in cosmetic and other pharmaceutical industries. © 2015 The Society for Applied Microbiology.
Hickey, William J; Shetty, Ameesha R; Massey, Randall J; Toso, Daniel B; Austin, Jotham
2017-01-01
Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright-field scanning transmission electron microscopy (BF-STEM) and in the present report BF-STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon-degrading soil bacterium, Delftia acidovorans Cs1-4. Dual-axis BF-STEM enabled high-resolution 3-D tomographic recontructions (6-10 nm) visualization of thick (1250 and 1500 nm) sections. The 3-D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF-STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual-axis BF-STEM tomography to obtain high-resolution 3-D images of novel nanostructures in bacterial biofilms. Future work with dual-axis BF-STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Fluorescent nanodiamonds embedded in biocompatible translucent shells.
Rehor, Ivan; Slegerova, Jitka; Kucka, Jan; Proks, Vladimir; Petrakova, Vladimira; Adam, Marie-Pierre; Treussart, François; Turner, Stuart; Bals, Sara; Sacha, Pavel; Ledvina, Miroslav; Wen, Amy M; Steinmetz, Nicole F; Cigler, Petr
2014-03-26
High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10-20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells
Rehor, Ivan; Slegerova, Jitka; Kucka, Jan; Proks, Vladimir; Petrakova, Vladimira; Adam, Marie-Pierre; Treussart, François; Turner, Stuart; Bals, Sara; Sacha, Pavel; Ledvina, Miroslav; Wen, Amy M.; Steinmetz, Nicole F.; Cigler, Petr
2016-01-01
High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10–20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells. PMID:24500945
NASA Astrophysics Data System (ADS)
Taniguchi, Masahiko; Hu, Gongfang; Liu, Rui; Du, Hai; Lindsey, Jonathan S.
2018-02-01
Demands in flow cytometry for increased multiplexing (for detection of multiple antigens) and brightness (for detection of rare entities) require new fluorophores (i.e., "colors") with spectrally distinct fluorescence outside the relatively congested visible spectral region. Flow cytometry fluorophores typically must function in aqueous solution upon bioconjugation and ideally should exhibit a host of photophysical features: (i) strong absorption, (ii) sizable Stokes shift, (iii) modest if not strong fluorescence, and (iv) narrow fluorescence band. Tandem dyes have long been pursued to achieve a large effective Stokes shift, increased brightness, and better control over the excitation and emission wavelengths. Here, the attractive photophysical features of chlorophylls and bacteriochlorophylls - Nature's chosen photoactive pigments for photosynthesis - are described with regards to use in flow cytometry. A chlorophyll (or bacteriochlorophyll) constitutes an intrinsic tandem dye given the red (or near-infrared) fluorescence upon excitation in the higher energy ultraviolet (UV) or visible absorption bands (due to rapid internal conversion to the lowest energy state). Synthetic (bacterio)chlorins are available with strong absorption (near-UV molar absorption coefficient ɛ(λexc) 105 M-1cm-1), modest fluorescence quantum yield (Φf = 0.05-0.30), and narrow fluorescence band (10-25 nm) tunable from 600-900 nm depending on synthetic design. The "relative practical brightness" is given by intrinsic brightness [ɛ(λexc) x Φf] times ηf, the fraction of the fluorescence band that is captured by an emission filter in a multicolor experiment. The spectroscopic features of (bacterio)chlorins are evaluated quantitatively to illustrate practical brightness for this novel class of fluorophores in a prospective 8-color panel.
NASA Astrophysics Data System (ADS)
Wang, Chunxia; Zhang, Xiong; Guo, Hao; Chen, Hongjun; Wang, Shuchang; Yang, Hongquan; Cui, Yiping
2013-10-01
GaN-based light-emitting diodes (LEDs) with specially designed electron blocking layers (EBLs) between the multiple quantum wells (MQWs) and the top p-GaN layer have been developed. The EBLs consist of Mg-doped p-AlGaN/GaN superlattice (SL) with the layer thickness of p-AlGaN varied from 1 to 10 nm and the layer thickness of p-GaN fixed at 1 nm in this study. It was found that under a 2000 V reverse bias voltage condition, the electro-static discharge (ESD) yield increased from 61.98 to 99.51% as the thickness of p-AlGaN in the EBLs was increased from 1 to 10 nm. Since the ESD yield was 97.80%, and maximum value for LEDs' light output power (LOP) and minimum value for the forward voltage (Vf) were achieved when the thickness of p-AlGaN in the EBLs was 9 nm with a 20 mA injection current, it was concluded that the p-AlGaN/GaN SL EBLs with the combination of 9-nm-thick p-AlGaN and 1-nm-thick p-GaN would be beneficial to the fabrication of the GaN-based LEDs with high brightness, high ESD endurance, and low Vf.
Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng
2016-08-19
Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.
Synthesis and luminescence properties of Ca3Ga2Si3O12:RE3+ (RE = Eu/Tb) powder phosphors.
Reddy, M Bhushana; Sailaja, S; Raju, K Vemasevana; Raju, C Nageswara; Giridhar, P; Rao, B Vengala; Reddy, B Sudhakar
2011-01-01
Rare earth ions (Eu(3+) or Tb(3+) )-activated Ca(3) Ga(2) Si(3) O(12) (CaGaSi) phosphors were synthesized by using a sol-gel method. Photoluminescence spectra of Eu(3+):CaGaSi phosphors exhibited five emission bands at 578, 592, 612, 652 and 701 nm, which were assigned to the transitions ((5)D(0) → (7)F(0), (7)F(1,)(7)F(2), (7)F(3) and (7)F(4)), respectively, with an excitation wavelength of λ(exci) = 392 nm. Among these, the transition (5) D(0) → (7) F(2) (612 nm) displayed bright red emission. In the case of Tb(3+):CaGaSi phosphors, four emission bands were observed at 488 ((5)D(4) → (7)F(6)), 543 ((5)D(4) → (7)F(5)), 584 ((5)D(4) → (7)F(4)) and 614 nm ((5)D(4) → (7) F(3) ) from the measurement of PL spectra with λ(exci) = 376 nm. Among these, the transition (5)D(4) → (7) F(5) at 543 nm displayed bright green emission. The structure and morphology of the phosphors were studied from the measurements of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDAX) results. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Almatroushi, H. R.; Lootah, F. H.; Deighan, J.; Fillingim, M. O.; Jain, S.; Bougher, S. W.; England, S.; Schneider, N. M.
2017-12-01
This research focuses on developing empirical and theoretical models for OI 135.6 nm and CO 4PG band system FUV dayglow emissions in the Martian thermosphere as predicted to be seen from the Emirates Mars Ultraviolet Spectrometer (EMUS), one of the three scientific instruments aboard the Emirates Mars Mission (EMM) to be launched in 2020. These models will aid in simulating accurate disk radiances which will be utilized as an input to an EMUS instrument simulator. The developed zonally averaged empirical models are based on FUV data from the IUVS instrument onboard the MAVEN mission, while the theoretical models are based on a basic Chapman profile. The models calculate the brightness (B) of those emissions taking into consideration observation geometry parameters such as emission angle (EA), solar zenith angle (SZA) and planet distance from the sun (Ds). Specifically, the empirical models takes a general form of Bn=A*cos(SZA)n/cos(EA)m , where Bn is the normalized brightness value of an emission feature, and A, n, and m are positive constant values. The model form shows that the brightness has a positive correlation with EA and a negative correlation with SZA. A comparison of both models are explained in this research while examining full Mars and half Mars disk images generated using geometry code specially developed for the EMUS instrument. Sensitivity analyses have also been conducted for the theoretical modeling to observe the contributions of electron impact on atomic oxygen and CO2 to the brightness of OI 135.6nm, in addition to the effect of electron temperature on the CO2± dissociative recombination contribution to the CO 4PG band system.
Design of 6 kw fiber-coupled system for semiconductor laser
NASA Astrophysics Data System (ADS)
Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yunfei; Ding, Lushuang; Zhao, Pengfei; Zou, Yonggang; Xu, Li; Lin, Xuechun
2016-10-01
In this paper, we present the design of a 6 kW fiber-coupled laser diode system by using ZEMAX, and power scaling and fiber coupling techniques for high-power laser diode stacks were introduced in detail. Beams emitted from eight laser diode stacks comprised of four 960 W stacks with center wavelength of 938 nm and four 960 W stacks with center wavelength of 976 nm are combined and coupled into a standard fiber with a core diameter of 800 μm and numerical aperture of 0.22. Simulative result shows that the final power came out of the fiber could reach 6283.9 W, the fiber-coupling efficiency is 87%, and the brightness is 8.2 MW/ (cm2·sr).
Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce
2015-06-01
Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm.
Development of suspended core soft glass fibers for far-detuned parametric conversion
NASA Astrophysics Data System (ADS)
Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz
2018-04-01
Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.
High-brightness line generators and fiber-coupled sources based on low-smile laser diode arrays
NASA Astrophysics Data System (ADS)
Watson, J.; Schleuning, D.; Lavikko, P.; Alander, T.; Lee, D.; Lovato, P.; Winhold, H.; Griffin, M.; Tolman, S.; Liang, P.; Hasenberg, T.; Reed, M.
2008-02-01
We describe the performance of diode laser bars mounted on conductive and water cooled platforms using low smile processes. Total smile of <1μm is readily achieved on both In and AuSn based platforms. Combined with environmentally robust lensing, these mounts form the basis of multiple, high-brightness products. Free-space-coupled devices utilizing conductively-cooled bars delivering 100W from a 200μm, 0.22NA fiber at 976nm have been developed for pumping fiber lasers, as well as for materials processing. Additionally, line generators for graphics and materials processing applications have been produced. Starting from single bars mounted on water-cooled packages that do not require de-ionized or pH-controlled water, these line generators deliver over 80W of power into a line with an aspect ratio of 600:1, and have a BPP of <2mm-mrad in the direction orthogonal to the line.
Electron-phonon interaction in efficient perovskite blue emitters
NASA Astrophysics Data System (ADS)
Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.
2018-06-01
Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.
NASA Astrophysics Data System (ADS)
Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.
2018-02-01
Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.
MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.
Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo
2012-10-08
We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.
Nanoscopy reveals surface-metallic black phosphorus
Abate, Yohannes; Gamage, Sampath; Li, Zhen; ...
2016-10-21
Black phosphorus (BP) is an emerging two-dimensional material with intriguing physical properties. It is highly anisotropic and highly tunable by means of both the number of monolayers and surface doping. Here, we experimentally investigate and theoretically interpret the near-field properties of a-few-atomic-monolayer nanoflakes of BP. We discover near-field patterns of bright outside fringes and a high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared frequencies <1176 cm -1. We conclude that these fringes are caused by the formation of a highly polarizable layer at the BP surface. This layer has a thickness of ~1 nmmore » and exhibits plasmonic behavior. We estimate that it contains free carriers in a concentration of n≈1.1 × 10 20 cm -3. Surface plasmonic behavior is observed for 10–40 nm BP thicknesses but absent for a 4-nm BP thickness. This discovery opens up a new field of research and potential applications in nanoelectronics, plasmonics and optoelectronics.« less
High spectral purity silicon ring resonator photon-pair source
NASA Astrophysics Data System (ADS)
Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.
2015-05-01
Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.
Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser.
Vainrub, Arnold; Pustovyy, Oleg; Vodyanoy, Vitaly
2006-10-01
Resolution of 90 nm was achieved with a research microscope simply by replacing the standard bright-field condenser with a homebuilt illumination system with a cardioid annular condenser. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects were clearly visible on a calibrated microscope test slide. The resolution increase results from a known narrower diffraction pattern in coherent illumination for the annular aperture compared with the circular aperture. This explanation is supported by an excellent accord of calculated and measured diffraction patterns for a 50 nm radius disk.
Occhipinti, Andrea; Maffei, Massimo E
2013-10-01
Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.
Vertical cavity surface-emitting semiconductor lasers with injection laser pumping
NASA Astrophysics Data System (ADS)
McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.
1990-05-01
Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
NASA Astrophysics Data System (ADS)
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-07-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.
Yang, Tianshe; Sun, Yun; Liu, Qian; Feng, Wei; Yang, Pengyuan; Li, Fuyou
2012-05-01
A new upconversion luminescence (UCL) nanophosphors based on host matrix of cubic NaLuF(4) with bright luminescence have been synthesized by a solvothermal method, facilitate the nanocrystals potential candidates for imaging in vivo, especially large-animals. The sub-20 nm NaLuF(4) co-doped Yb(3+) and Er(3+) (Tm(3+)) showed about 10-fold stronger UCL emission than that of corresponding hexagonal NaYF(4)-based nanocrystals with a 20 nm diameter. Near-infrared to near-infrared (NIR-to-NIR) UCL emission of PAA-coated NaLuF(4):20%Yb,1%Tm (PAA-Lu(Tm)) can penetrate >1.5 cm tissue of pork with high contrast. Based on super-strong UCL emission and deep penetration, PAA-Lu(Tm) as optical bioprobe has been demonstrated by in vivo UCL imaging of a normal black mouse, even rabbit with excellent signal-to-noise ratio. Furthermore, such cubic NaLuF(4)-based nanophosphor was applied in lymph node imaging of live Kunming mouse with rich white fur. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.
2018-03-01
Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.
NASA Astrophysics Data System (ADS)
Sun, Xiangcheng; Brückner, Christian; Lei, Yu
2015-10-01
Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k
Spatial variations of brightness, colour and polarization of dust in comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Rosenbush, Vera K.; Ivanova, Oleksandra V.; Kiselev, Nikolai N.; Kolokolova, Ludmilla O.; Afanasiev, Viktor L.
2017-07-01
We present post-perihelion photometric and polarimetric observations of comet 67P/Churyumov-Gerasimenko performed at the 6-m telescope of the SAO RAS in the g-sdss (465/65 nm), r-sdss (620/60 nm) and R filters. Observations in November and December 2015 and April 2016 covered the range of heliocentric distance 1.62-2.72 au and phase angle 33.2°-10.4°. The comet was very active. Two persistent jets and long dust tail were observed during the whole observing period; one more jet was detected only in December. The radial profiles of surface brightness, colour and polarization significantly differed for the coma, jets and tail, and changed with increasing heliocentric distance. The dust production Afρ decreased from 162 cm at r = 1.62 au to 51 cm at r = 2.72 au. The dust colour (g-r) gradually changed from 0.8 mag in the innermost coma to about 0.4 mag in the outer coma. The spectral slope was 8.2 ± 1.7 per cent/100 nm in the 465 to 620 nm wavelength domain. In November and December, the polarization in the near-nucleus area was about 8 per cent, dropped sharply to 2 per cent at the distance above 5000 km and then gradually increased with distance from the nucleus, reaching ˜8 per cent at 40 000 km. In April, at a phase angle 10.4°, the polarization varied between -0.6 per cent in the near-nucleus area and -4 per cent in the outer coma. Circular polarization was not detected in the comet. The spatial variations of brightness, colour and polarization in different structural features suggest some evolution of particle properties, most likely decreasing the size of dust particles.
Sky brightness and twilight measurements at Jogyakarta city, Indonesia
NASA Astrophysics Data System (ADS)
Herdiwijaya, Dhani
2016-11-01
The sky brightness measurements were performed using a portable photometer. A pocket-sized and low-cost photometer has 20 degree area measurement, and spectral ranges between 320-720 nm with output directly in magnitudes per arc second square (mass) unit. The sky brightness with 3 seconds temporal resolutions was recorded at Jogyakarta city (110° 25’ E; 70° 52’ S; elevation 100 m) within 136 days in years from 2014 to 2016. The darkest night could reach 22.61 mpass only in several seconds, with mean value 18.8±0.7 mpass and temperature variation 23.1±1.2 C. The difference of mean sky brightness between before and after midnight was about -0.76 mpass or 2.0 times brighter. Moreover, the sky brightness and temperature fluctuations were more stable in after midnight than in before midnight. It is suggested that city light pollution affects those variations, and subsequently duration of twilight. By comparing twilight brightness for several places, we also suggest a 17° solar dip or about 66 minutes before sunrise for new time of Fajr prayer.
Ultrahigh 6D-brightness electron beams for the light sources of the next generation
NASA Astrophysics Data System (ADS)
Habib, Fahim; Manahan, Grace G.; Scherkl, Paul; Heinemann, Thomas; Sheng, Z. M.; Bruhwiler, D. L.; Cary, J. R.; Rosenzweig, J. B.; Hidding, Bernhard
2017-10-01
The plasma photocathode mechanism (aka Trojan Horse) enables a path towards electron beams with nm-level normalized emittance and kA range peak currents, hence ultrahigh 5D-brightness. This ultrahigh 5D-brightness beams hold great prospects to realize laboratory scale free-electron-lasers. However, the GV/m-accelerating gradient in plasma accelerators leads to substantial energy chirp and spread. The large energy spread is a major show-stopper towards key application such as the free-electron-laser. Here we present a novel method for energy chirp compensation which takes advantage of tailored beam loading due to a second ``escort'' bunch released via plasma photocathode. The escort bunch reverses the accelerating field locally at the trapping position of the ultrahigh 5D-brightness beam. This induces a counter-clockwise rotation within the longitudinal phase space and allows to compensate the chirp completely. Analytical scaling predicts energy spread values below 0.01 percentage level. Ultrahigh 5D-brightness combined with minimized energy spread opens a path towards witness beams with unprecedented ultrahigh 6D-brightness.
Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus
2016-02-01
We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.
Patel, Binay; Watanabe, Masashi
2014-02-01
Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.
High blood pressure and visual sensitivity
NASA Astrophysics Data System (ADS)
Eisner, Alvin; Samples, John R.
2003-09-01
The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.
Compact gain saturated plasma based X-ray lasers down to 6.9nm
NASA Astrophysics Data System (ADS)
Rocca, Jorge; Wang, Y.; Wang, S.; Rockwood, A.; Berrill, M.; Shlyaptsev, V.
2017-10-01
Plasma based soft x-ray amplifiers allow many experiments requiring bright, high energy soft x-ray laser pulses to be conducted in compact facilities. We have extended the wavelength of compact gain saturated x-ray lasers to 6.89 nm in a Ni-like Gd plasma generated by a Ti:Sa laser. Gain saturated laser operation was also obtained at 7.36 nm in Ni-like Sm. Isolectronic scaling and optimization of laser pre-pulse duration allowed us to also observe strong lasing at 6.6 nm and 6.1 nm in Ni-like Tb, and amplification at 6.4 nm and 5.89 nm in Ni-like Dy. The results were obtained by transient laser heating of solid targets with traveling wave excitation at progressively increased gracing incidence angles. We show that the optimum pump angle of incidence for collisional Ni-like lasers increases linearly with atomic number from Z =42 to Z =66, reaching 43 degrees for Ni-like Dy, in good agreement with hydrodynamic/atomic physics simulations. These results will enable single-shot nano-scale imaging and other application of sub-7 nm lasers to be performed at compact facilities. Work supported by Grant DE-FG02-4ER15592 of the Department of Energy, Office of Science, and by the National Science Foundation Grant ECCS 1509925.
NASA Astrophysics Data System (ADS)
Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng
2018-02-01
A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patankar, S.; Gumbrell, E. T.; Robinson, T. S.
Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less
NASA Astrophysics Data System (ADS)
Zemp, Roger J.; Paproski, Robert J.
2017-03-01
For emerging tissue-engineering applications, transplants, and cell-based therapies it is important to assess cell viability and function in vivo in deep tissues. Bioluminescence and fluorescence methods are poorly suited to deep monitoring applications with high resolution and require genetically-engineered reporters which are not always feasible. We report on a method for imaging cell viability using deep, high-resolution photoacoustic imaging. We use an exogenous dye, Resazurin, itself weakly fluorescent until it is reduced from blue to a pink color with bright red fluorescence. Upon cell death fluorescence is lost and an absorption shift is observed. The irreversible reaction of resazurin to resorufin is proportional to aerobic respiration. We detect colorimetric absorption shifts using multispectral photoacoustic imaging and quantify the fraction of viable cells. SKOV-3 cells with and without ±80oC heat treatment were imaged after Resazurin treatment. High 575nm:620nm ratiometric absorption and photoacoustic signals in viable cells were observed with a much lower ratio in low-viability populations.
Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar
2017-04-26
The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.
Polymer nanoimprinting using an anodized aluminum mold for structural coloration
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.
2015-06-01
Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Atomic oxygen in the Martian thermosphere
NASA Technical Reports Server (NTRS)
Stewart, A. I. F.; Alexander, M. J.; Meier, R. R.; Paxton, L. J.; Bougher, S. W.; Fesen, C. G.
1992-01-01
The Mariner 9 Ultraviolet Spectrometer (UVS) made extensive observations of air-glow emissions from the thermosphere of Mars throughout the nominal mission (November 1971 - February 1972), during late summer in the southern hemisphere. Limb and disc measurements of the 130 nm triplet emission from thermospheric atomic oxygen were modelled by Strickland et al. Recently, the thermospheric general circulation models (TGCMs) developed for the Earth and Venus have been applied to Mars; we refer to it as the MTGCM. Our analysis shows that the oxygen mixing ratio is the fundamental unknown controlling the 130 nm brightness. Our radiative transport calculation shows that the emergent intensity at 130 nm is not very sensitive to variations in thermospheric temperature. The pattern of diurnal variation derived from our analysis is roughly the same as Strickland et al. although with somewhat lower values for the O mixing ratio. The main reasons for this difference are the more important role played by the photoelectron source in our model, and the somewhat larger 130 nm solar flux; thus, we require less oxygen to match the observed brightnesses. Strickland et al. also found that the OI 130 nm emission on Mars is correlated with solar activity. We find that the correlation is virtually non-existent during the early orbits when the planet was covered with a thick global dust storm, but later orbits, during the clearing of the storm, show a persistent correlation.
Saturn Auroras Seen In Visible And Near-IR By Cassini ISS
NASA Astrophysics Data System (ADS)
Wellington, Danika; Dyudina, U.; Ewald, S.; Ingersoll, A.
2010-10-01
New data from the Cassini ISS narrow-angle camera allows us to make measurements of Saturn's night-side auroras in both the northern and southern hemispheres. The aurora was detected in hydrogen alpha (652-661 nm), red (574-724 nm), and broad-band infrared (668-833 nm) wavelengths, and also faintly in blue (405-505 nm) and green (507-632 nm) wavelengths. The brightness in each filter appears to agree with predicted spectra for Saturnian auroras (Aguilar, 2008). Along with the spectra and brightness measurements, we will present two 400+ frame movies taken in the clear filter, one showing aurora in the northern hemisphere from October 5-9, 2009, with a timestep of approximately three minutes, and the other showing the aurora in the southern hemisphere, from June 26, 2010, with a timestep of approximately one minute. These movies show the aurora varying dramatically with both time and longitude. Near the limb the height of the aurora above its base can be measured; this height can reach more than 1200 km. The main auroral oval in the southern hemisphere appears near -72° latitude, with smaller instances of auroral activity near -75° and -77°. Aguilar, A., J. M. Ajello, R. S. Mangina, G. K. James, H. Abgrall, and E. Roueff, "The electron-excited middle UV to near IR spectrum of H2 : Cross-sections and transition probabilities", Astrophys. J. Supp. Ser., 177 (2008).
Decker, Matthew; Kresak, Jesse; Yachnis, Anthony; Bova, Frank; Rahman, Maryam
2014-01-01
OBJECTIVES: To determine whether the use of IV fluorescein during surgery for malignant glioma can reliably be used to differentiate between infiltrative tumor and normal brain tissue. BACKGROUND: Fluorescein sodium is a molecular compound with fluorescent capabilities between light wavelengths of 520-530nm, appearing yellow-green (1). Neurosurgical application of fluorescein has been studied primarily for increasing intra-operative visibility of malignant gliomas (1). The mechanism of action has been hypothesized to involve disruption of the blood brain barrier (BBB) (2). Cells in areas with disrupted BBB take up fluorescein with a sensitivity of 94% and specificity of 89% for high-grade gliomas (2). We performed histopathologic analysis on tissue obtained during fluorescein-guided tumor resections to evaluate the differences between fluorescent and non-fluorescent tissue. METHODS: Two adult patients with suspected high-grade gliomas underwent surgical resection. Prior to opening of the dura 3mg/kg of IV fluorescein was given. A Zeiss OPMI Pentero microscope (Carl Zeiss Meditech Inc.) with a yellow 560nm filter was used to visualize the tumor. At the tumor margins, tissue was identified as "bright" and "dark" and sent as separate specimens for histopathological analysis. RESULTS: Histological sections of specimens labeled "bright" contained infiltrating glioma with focal microvascular proliferation. Histological sections of specimens labeled "dark" contained gray matter and focal subcortical white matter with no high-grade glioma identified. Final grading for both patients was WHO Grade IV, glioblastoma. CONCLUSION: Intra-operative use of fluorescein in surgical resection of malignant gliomas can help to distinguish between infiltrating tumor and normal brain tissue based on histopathological analysis. Further evaluation of the utility of flurorescein during high and low-grade glioma surgery is necessary.
Lightcurves of the Chelyabinsk bolide derived from a dashboard camera movie
NASA Astrophysics Data System (ADS)
Yanagisawa, M.
2014-07-01
The bolide explosion on Feb. 15, 2013 over Chelyabinsk, Russia was the next most violent after the probable bolide explosion in Tunguska, Siberia in 1908. It has been estimated that a meteoroid about 20 m in diameter entered the atmosphere at about 19 km/s [1] with an impact angle measured from the horizon of about 19 degrees. It was recorded by many dashboard movie cameras, and the movies are released on the Internet. To obtain the lightcurves of the bolide, we analyzed a movie uploaded by Aleksandr Ivanov [2]. The event was recorded when his car stopped at an intersection in the city of Kamensk-Uralsky, Russia, located about 140 km north of Chelyabinsk. The geographic coordinates of the intersection and the field of view of the camera were obtained with the help of the Google Maps. We corrected each frame of the movie for the non-linearity between the input light and output of the camera, and for the temporal variations of the camera gains. Because the bolide images were severely saturated, we measured the light isotropically scattered by a snow-covered region. Brightness of the blue sky at 650, 550, and 450-nm wavelengths, calculated by using a model, was used as brightness standards for the R (red), G (green), and B (blue) bands of the camera. The distance and the air mass between the bolide and the intersection were calculated for the bolide trajectory [3], and the source luminosities of the bolide were calculated for the three bands. The temporal variations of the luminosities thus obtained are shown in the figure with the bolide altitudes calculated on its trajectory [3]. It should be noted that the times in the figure are adjusted so that the maximum luminosity would occur at 3h20m32.2s (UT) [4]. A procedure has been used to estimate the impact energies from the US satellite observations in which the bolides are assumed to be 6000 K blackbodies [5]. We supposed that the spectral response of the satellite sensor would be close to the R band, and obtained the impact energy of 400 kton (1 kton = 4.2 x 10^{12} J) according to the procedure. It agrees with the results reported thus far [1, 4]. The bolide was not so bright in the R band relative to the G and B bands until 29.3 s (47 km in altitude). The R band brightness became comparable to or larger than the G and B brightnesses after that. Assuming the bolide to be a blackbody, and approximating the luminosity ratios in the three colors, G/B, R/G, and R/B, to be B_T(550 nm)/B_T(450 nm), B_T(650 nm)/B_T(550 nm), and B_T(650 nm)/B_T(450 nm), respectively, where B_T (λ) is the Planck function for the temperature T, we calculated temperatures for each ratio as shown in the figure. The temperatures for the G/B, R/G, and R/B ratios are not in agreement with each other before 29.3 s (above 47 km in bolide altitude). The disagreement suggests that the radiation would have been dominated by line spectra. On the other hand, the three temperatures agree with each other at about 3500 K, when the bolide was below 38 km and very bright. If the bolide was a 3500 K blackbody, the area which was necessary for the maximum luminosity at 32.2 s was about 120 km^2. The radiating region could be, for example, a sphere of 3 km in radius, or a cylinder of 1 km in radius and 20 km in length. However, the possibility that the agreement of the three temperatures could be a coincidence cannot be discarded.
Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric
NASA Astrophysics Data System (ADS)
Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya
2018-02-01
Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.
Reliability study of high-brightness multiple single emitter diode lasers
NASA Astrophysics Data System (ADS)
Zhu, Jing; Yang, Thomas; Zhang, Cuipeng; Lang, Chao; Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Guo, Weirong; Jiang, Yuhua; Liu, Yang; Zhang, Luyan; Chen, Louisa
2015-03-01
In this study the chip bonding processes for various chips from various chip suppliers around the world have been optimized to achieve reliable chip on sub-mount for high performance. These chip on sub-mounts, for examples, includes three types of bonding, 8xx nm-1.2W/10.0W Indium bonded lasers, 9xx nm 10W-20W AuSn bonded lasers and 1470 nm 6W Indium bonded lasers will be reported below. The MTTF@25 of 9xx nm chip on sub-mount (COS) is calculated to be more than 203,896 hours. These chips from various chip suppliers are packaged into many multiple single emitter laser modules, using similar packaging techniques from 2 emitters per module to up to 7 emitters per module. A reliability study including aging test is performed on those multiple single emitter laser modules. With research team's 12 years' experienced packaging design and techniques, precise optical and fiber alignment processes and superior chip bonding capability, we have achieved a total MTTF exceeding 177,710 hours of life time with 60% confidence level for those multiple single emitter laser modules. Furthermore, a separated reliability study on wavelength stabilized laser modules have shown this wavelength stabilized module packaging process is reliable as well.
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Yashiro, Seiji; Reginald, Nelson; Thakur, Neeharika; Thompson, Barbara J.; Gong, Qian
2018-01-01
We present preliminary results obtained by observing the solar corona during the 2017 August 21 total solar eclipse using a polarization camera mounted on an eight-inch Schmidt-Cassegrain telescope. The observations were made from Madras Oregon during 17:19 to 17:21 UT. Total and polarized brightness images were obtained at four wavelengths (385, 398.5, 410, and 423 nm). The polarization camera had a polarization mask mounted on a 2048x2048 pixel CCD with a pixel size of 7.4 microns. The resulting images had a size of 975x975 pixels because four neighboring pixels were summed to yield the polarization and total brightness images. The ratio of 410 and 385 nm images is a measure of the coronal temperature, while that at 423 and 398.5 nm images is a measure of the coronal flow speed. We compared the temperature map from the eclipse observations with that obtained from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly images at six EUV wavelengths, yielding consistent temperature information of the corona.
Noctilucent cloud studies with Envisat/SCIAMACHY: Observations of the 5-day wave
NASA Astrophysics Data System (ADS)
von Savigny, C.; Bovensmann, H.; Burrows, J. P.; Schwartz, M. J.; Wu, D. L.
SCIAMACHY Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY measures scattered solar radiation in limb viewing geometry from the troposphere up to the mesopause covering the spectral range from 220 nm to 2380 nm It is therefore well suited to study the geographical distribution of NLCs their temporal evolution and also allows the retrieval of NLC particle sizes This presentation will give an overview of the NLC results obtained so far from SCIAMACHY limb scatter measurements A special focus will be on the first identification of the westward propagating wavenumber-1 5-day wave in collocated satellite measurements of NLC characteristics - NLC occurence rate brightness and radii - and mesopause temperature The temperature measurements were made with the Microwave Limb Sounder MLS on Aura The 5-day wave was recently identified in SNOE NLC brightness measurements Merkel et al 2003 The 5-day wave signature has a severe impact on the geographical distribution of NLCs as well as their particle radii Long-term changes in global middle atmospheric wind patterns affecting the vertical propagation of planetary wave signatures may be an important driver for long-term variations in NLC occurrence rates and NLC brightness
Wiltschko, Wolfgang; Munro, Ursula; Ford, Hugh; Wiltschko, Roswitha
2003-10-22
Migratory Australian silvereyes (Zosterops lateralis) were tested under monochromatic light at wavelengths of 424 nm blue and 565 nm green. At a low light level of 7 x 10(15) quanta m(-2) s(-1) in the local geomagnetic field, the birds preferred their seasonally appropriate southern migratory direction under both wavelengths. Their reversal of headings when the vertical component of the magnetic field was inverted indicated normal use of the avian inclination compass. A higher light intensity of 43 x 10(15) quanta m(-2) s(-1), however, caused a fundamental change in behaviour: under bright blue, the silvereyes showed an axial tendency along the east-west axis; under bright green, they showed a unimodal preference of a west-northwesterly direction that followed a shift in magnetic north, but was not reversed by inverting the vertical component of the magnetic field. Hence it is not based on the inclination compass. The change in behaviour at higher light intensities suggests a complex interaction between at least two receptors. The polar nature of the response under bright green cannot be explained by the current models of light-dependent magnetoreception and will lead to new considerations on these receptive processes.
Contrast in the Photoelectric Effect of Organic and Biochemical Surfaces
Birrell, G. B.; Burke, C.; Dehlinger, P.; Griffith, O. H.
1973-01-01
The photoelectric effect can provide the physical basis for a new method of mapping organic and biological surfaces. The technique, photoelectron microscopy, is similar to fluorescence microscopy using incident ultraviolet light except that photoejected electrons form the image of the specimen surface. In this work the minimum wavelengths of incident light required to produce an image were determined for the molecules 3,6-bis(dimethylamino)acridine (acridine orange) (I), benzo[a]pyrene (II), N,N,N′,N′-tetraphenylbenzidine (III), and copper phthalocyanine (IV). The photoelectron image thresholds for these compounds are 220 (I), 215 (II), 220 (III), and 240 nm (IV), all ±5 nm. Contrast of I-IV with respect to typical protein, lipid, nucleic acid, and polysaccharide surfaces was examined over the wavelength range 240-180 nm. The low magnification micrographs exhibited bright areas corresponding to I-IV but dark regions for the biochemical surfaces. The high contrast suggests the feasibility of performing extrinsic photoelectron microscopy experiments through selective labeling of sites on biological surfaces. ImagesFIGURE 3 PMID:4704486
Pierangelo, Angelo; Manhas, Sandeep; Benali, Abdelali; Fallet, Clément; Antonelli, Maria-Rosaria; Novikova, Tatiana; Gayet, Brice; Validire, Pierre; De Martino, Antonello
2012-06-01
Healthy human colon samples were analyzed ex vivo with a multispectral imaging Mueller polarimeter operating from 500 to 700 nm in a backscattering configuration with diffuse light illumination impinging on the innermost tissue layer, the mucosa. The intensity and polarimetric responses were taken on whole tissues first and after progressive exfoliation of the outer layers afterwards. Moreover, these measurements were carried out with two different substrates (one bright and the other dark) successively placed beneath each sample, allowing a reasonably accurate evaluation of the contributions to the overall backscattered light by the various layers. For the shorter investigated wavelengths (500 to 550 nm) the major contribution comes from mucosa and submucosa, while for the longer wavelengths (650 to 700 nm) muscular tissue and fat also contribute significantly. The depolarization has also been studied and is found to be stronger in the red part of the spectrum, mainly due to the highly depolarizing power of the muscular and fat layers.
Final Report for Contract N00014-86-C-0598 (Thermo Electron Technologies Corporation)
1989-12-28
At least 20 A/cm2 were observed at 193 nm. 248 nm (KrF) and 308 (XeCl). Beam brightness appears to be a minimum of 4 x 105 A/cm 2 -rad 2 at 248 nm...governed by the envelope equation3, d2r K b 0 dz (4) For a weakly relativistic beam. e J o r0 2 2 Co 0Mo (yac) 3 (5) where Jo is the beam current...correspond to laser wavotengths of the present study, preliminary measurement for ArF given by x .1 pattern ot spots on the phosphor screen for 248 nm
NASA Astrophysics Data System (ADS)
Reginald, Nelson Leslie; Gopalswamy, Natchimuthuk; Guhathakurta, Madhulika; Yashiro, Seiji
2016-05-01
Experiments that require polarized brightness measurements, traditionally have done so by taking three successive images through a polarizer that is rotated through three well-defined angles. With the advent of the polarization camera, the polarized brightness can be measured from a single image. This also eliminates the need for a polarizer and the associated rotator mechanisms and can contribute towards less weight, size, less power requirements, and importantly higher temporal resolution. We intend to demonstrate the capabilities of the polarization camera by conducting a field experiment in conjunction with the total solar eclipse of 21 August 2017 using the Imaging Spectrograph of Coronal Electrons (ISCORE) instrument (Reginald et. al., solar physics, 2009, 260, 347-361). In this instrumental concept four K-coronal images of the corona through four filters centered at 385.0, 398.7, 410.0, 423.3 nm with a bandpass of 4 nm are expected to allow us to determine the coronal electron temperature and electron speed all around the corona. In order to determine the K-coronal brightness through each filter, we would have to take three images by rotating a polarizer through three angles for each of the filters, and it is not feasible owing to the short durations of total solar eclipses. Therefore, in the past we have assumed the total brightness (F + K) measured by each of the four filters to represent K-coronal brightness, which is true in low solar corona. However, with the advent of the polarization camera we can now measure the Stokes Polarization Parameters on a pixel by pixel basis for every image taken by the polarization camera. This allows us to independently quantify the total brightness (K+F) and polarized brightness (K). Also in addition to the four filter images that allow us to measure the electron temperature and electron speed, taking an additional image without a filter will give us enough information to determine the electron density. This instrumental concept was first tried in conjunction with the total solar eclipse of 9 March 2016 in Maba, Indonesia, but was unfortunately clouded out.
PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.
2007-06-25
NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.
High brightness KW-class direct diode laser
NASA Astrophysics Data System (ADS)
Xu, Dan; Guo, Zhijie; Ma, Di; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Xu, Ray; Chen, Xiaohua
2018-02-01
With certain emitter beam quality and BPP allowed by fiber, we have derived a spatial beam combination structure that approaches the BPP limit of the fiber. Using the spatial beam combination structure and polarization beam combination, BWT has achieved 1.1KW output from a fiber (one end coated) with NA 0.22 and core diameter of 200μm. The electro- optical efficiency is nearly 47%. Multiple emitters with wavelength of 976nm are packaged in a module with size of 600 ×350×80mm3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gisler, Galen R.; Haines, T. J.; Hoffman, C. M.
2001-01-01
The Milagro gamma-ray observatory, located near Los Alamos, NM, employs a water-Cherenkov technique to continuously monitor the northern sky for astrophysical gamma-ray emission near 1 TeV. Milagro's high duty-cycle (-95%) and wide aperture (-2 sr) allows for the detection of flaring behavior associated with TeV AGN, even during daytime transits. Results are presented from a search of the Milagro 2000-2001 data set for 'rev emission from selected AGN, including the bright fare of Mrk421 in early 2001.
Femtosecond Laser Eyewear Protection: Measurements and Precautions
Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.
2018-01-01
Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984
Femtosecond Laser Eyewear Protection: Measurements and Precautions.
Stromberg, Christopher J; Hadler, Joshua A; Alberding, Brian G; Heilweil, Edwin J
2017-11-01
Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti +3 :Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jinbo; Wu, Lili; Zhang, Chuanjiang
2017-01-01
Highly efficient saturation up-conversion (UC) luminescent Y2O3:Er3+ microspheres have been successfully prepared via a hydrothermal-homogeneous precipitation method. Bright visible luminescence can be clearly seen with a 1.55 mu m laser diode excitation power as low as similar to 0.03 W cm(-2). The up-conversion (UC) emission spectra indicate that the strongest red emission with a peak situated at similar to 660 nm originated from the I-4(9/2) -> I-4(15/2) transition of Er3+. The peaks situated at similar to 520 and 550 nm can be assigned to the transition from H-2(11/2)/S-4(3/2) state to the ground state of Er3+. The high efficient saturation up-conversionmore » emission is related to the highly crystalline structure. These results indicate a new way to enhance UC radiation in rare-earth ion-doped materials prepared using a hydrothermal-homogeneous precipitation method.« less
Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph
2012-06-08
Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.
NASA Technical Reports Server (NTRS)
Szentgyorgyi, Andrew; Raymond, John; Franco, Jose; Villaver, Eva; Lopez-Martin, Luis
2003-01-01
We have imaged the planetary nebula (PN) NGC 246 in the near-ultraviolet wavelengths [Ne v] 342.6 nm, the Bowen fluorescence line of 0 111 at 344.4 nm, and a nearby line-free region centered on 338.6 nm, as well as H(alpha), [O III] 500.7 nm, and [S II] 673.0 and 671.5 nm. Imaging in the 344.4 nm line is necessary to deconvolve contamination of the [Ne v] images by O III 342.9 nm. The emission from the shell and inner parts of the nebula is detected in [Ne v]. The radial profiles of the [Ne v] brightness decrease with radius from the exciting star, indicating that the bulk of the emission from this ion is due to the hard UV stellar radiation field, with a (probably) marginal contribution from collisional ionization in a shock between the PN shell and the interstellar medium (ISM). In contrast, the radial profiles of the emission in H(alpha), [0 III] 500.7 nm, and [S II] are flatter and peak at the location of the shell. The emission of [S II] probably traces the interaction of the PN with the ambient ISM. We also present two-dimensional numerical simulations for this PN-ISM interaction. The simulations consider the stellar motion with respect to the ambient ISM, with a velocity of 85 km/s , and include the time evolution of the wind parameters and UV radiation field from the progenitor star.
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Delcroix, Marc; Baranec, Christoph; Sánchez-Lavega, Agustín; María Gómez-Forrellad, Josep; Félix Rojas, Jose; Luszcz-Cook, Statia; de Pater, Imke; de Kleer, Katherine; Colas, François; Guarro, Joan; Goczynski, Peter; Jones, Paul; Kivits, Willem; Maxson, Paul; Phillips, Michael; Sussenbach, John; Wesley, Anthony; Hammel, Heidi B.; Pérez-Hoyos, Santiago; Mendikoa, Iñigo; Riddle, Reed; Law, Nicholas M.; Sayanagi, Kunio
2015-11-01
Observations of Neptune over the last few years obtained with small telescopes (30-50 cm) have resulted in several detections of bright features on the planet. In 2013, 2014 and 2015, different observers have repeatedly observed features of high contrast at Neptune’s mid-latitudes using long-pass red filters. This success at observing Neptune clouds with such small telescopes is due to the presence of strong methane absorption bands in Neptune’s spectra at red and near infrared wavelengths; these bands provide good contrast for elevated cloud structures. In each case, the atmospheric features identified in the images survived at least a few weeks, but were essentially much more variable and apparently shorter-lived, than the large convective system recently reported on Uranus [de Pater et al. 2015]. The latest and brightest spot on Neptune was first detected on July 13th 2015 with the 2.2m telescope at Calar Alto observatory with the PlanetCam UPV/EHU instrument. The range of wavelengths covered by PlanetCam (from 350 nm to the H band including narrow-band and wide-band filters in and out of methane bands) allows the study of the vertical cloud structure of this bright spot. In particular, the spot is particularly well contrasted at the H band where it accounted to a 40% of the total planet brightness. Observations obtained with small telescopes a few days later provide a good comparison that can be used to scale similar structures in 2013 and 2014 that were observed with 30-50 cm telescopes and the Robo-AO instrument at Palomar observatory. Further high-resolution observations of the 2015 event were obtained in July 25th with the NIRC2 camera in the Keck 2 10-m telescope. These images show the bright spot as a compact bright feature in H band with a longitudinal size of 8,300 km and a latitudinal extension of 5,300 km, well separated from a nearby bright band. The ensemble of observations locate the structure at -41º latitude drifting at about +24.27º/day or -92.3 m/s consistently with the zonal winds. This work demonstrates excellent opportunities for pro-am collaboration in the study of Neptune and the value of nearly continuous monitoring of the planet by a broad network of amateur collaborators.
Temple, P A; Lowdermilk, W H; Milam, D
1982-09-15
Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.
NASA Astrophysics Data System (ADS)
Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.
2018-04-01
This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.
Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics
Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas
2016-01-01
A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu3+ doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu3+ phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour. PMID:27180941
Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu(3+) phosphors and ceramics.
Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas
2016-05-16
A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.
Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik
2015-01-01
Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-01-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole–Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays. PMID:26178323
First light results from the Hermes spectrograph at the AAT
NASA Astrophysics Data System (ADS)
Sheinis, Andrew; Barden, Sam; Birchall, Michael; Carollo, Daniela; Bland-Hawthorn, Joss; Brzeski, Jurek; Case, Scott; Cannon, Russell; Churilov, Vladimir; Couch, Warrick; Dean, Robert; De Silva, Gayandhi; D'Orazi, Valentina; Farrell, Tony; Fiegert, Kristin; Freeman, Kenneth; Frost, Gabriella; Gers, Luke; Goodwin, Michael; Gray, Doug; Heald, Ron; Heijmans, Jeroen; Jones, Damien; Keller, Stephan; Klauser, Urs; Kondrat, Yuriy; Lawrence, Jon; Lee, Steve; Mali, Slavko; Martell, Sarah; Mathews, Darren; Mayfield, Don; Miziarski, Stan; Muller, Rolf; Pai, Naveen; Patterson, Robert; Penny, Ed; Orr, David; Shortridge, Keith; Simpson, Jeffrey; Smedley, Scott; Smith, Greg; Stafford, Darren; Staszak, Nicholas; Vuong, Minh; Waller, Lewis; Wylie de Boer, Elizabeth; Xavier, Pascal; Zheng, Jessica; Zhelem, Ross; Zucker, Daniel
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we present the first-light results from the commissioning run and the beginning of the GALAH Survey, including performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance calculations from the pilot survey to those in the literature.
Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A
2017-02-02
This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.
Bhamore, Jigna R; Jha, Sanjay; Singhal, Rakesh Kumar; Kailasa, Suresh Kumar
2017-01-01
In this work, water dispersible fluorescent carbon nanocrystals (NCs) were synthesized by a simple, green and low cost hydrothermal method using Syzygium cumini (jamun) as a carbon source at 180 °C for 6 h. The average size of carbon NCs was found to be 2.1 ± 0.5 nm and shown bright blue fluorescence when excited at 365 nm under UV lamp. The carbon NCs were characterized by spectroscopic (UV-visible and fluorescence, Fourier transform infrared and dynamic light scattering) and high resolution transmission electron microscopic techniques. The quantum yield of carbon NCs was found to be ~5.9 % at 438 nm emission wavelength when excited at 360 nm. It was noticed that none of the metal ions quenched the fluorescence intensity of carbon NCs at 438 nm except for Fe 3+ , indicating the formation of Fe 3+ ion-carbon NCs complexes. The linear range was observed in the concentration range of 0.01-100 μM with the corresponding detection limits of 0.001 μM, respectively. Furthermore, the carbon NCs were used as probes for imaging of fungal (Fusarium avenaceum) cells.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji
2016-03-01
Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.
Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletneva, Nadya V.; Pletnev, Vladimir Z.; Shemiakina, Irina I.
The wild type red fluorescent protein eqFP578 (from sea anemone Entacmaea quadricolor, {lambda}{sub ex} = 552 nm, {lambda}{sub em} = 578 nm) and its bright far-red fluorescent variant Katushka ({lambda}{sub ex} = 588 nm, {lambda}{sub em} = 635 nm) are characterized by the pronounced pH dependence of their fluorescence. The crystal structures of eqFP578f (eqFP578 with two point mutations improving the protein folding) and Katushka have been determined at the resolution ranging from 1.15 to 1.85 {angstrom} at two pH values, corresponding to low and high level of fluorescence. The observed extinguishing of fluorescence upon reducing pH in eqFP578f andmore » Katushka has been shown to be accompanied by the opposite trans-cis and cis-trans chromophore isomerization, respectively. Asn143, Ser158, His197 and Ser143, Leu174, and Arg197 have been shown to stabilize the respective trans and cis fluorescent states of the chromophores in eqFP578f and Katushka at higher pH. The cis state has been suggested as being primarily responsible for the observed far-red shift of the emission maximum of Katushka relative to that of eqFP578f.« less
Green, yellow and bright red (In,Ga,Al)P-GaP diode lasers grown on high-index GaAs substrates
NASA Astrophysics Data System (ADS)
Ledentsov, N. N.; Shchukin, V. A.; Shernyakov, Yu. M.; Kulagina, M. M.; Payusov, A. S.; Gordeev, N. Yu.; Maximov, M. V.; Cherkashin, N. A.
2017-02-01
Low threshold current density (<400 A/cm2) injection lasing in (AlxGa1-x)0.5In0.5P-GaAs-based diodes down to the green spectral range (<570 nm) is obtained. The epitaxial structures are grown on high-index (611)A and (211)A GaAs substrates by metal-organic vapor phase epitaxy and contain tensile-strained GaP-enriched insertions aimed at preventing escape of the injected nonequilibrium electrons from the active region. Extended waveguide concept results in a vertical beam divergence with a full width at half maximum of 15o for (611)A substrates. The lasing at 569 nm is realized at 85 K. In the orange-red laser diode structure low threshold current density (200 A/cm2) in the orange spectral range (598 nm) is realized at 85 K. The latter devices demonstrate room temperature lasing at 628 nm at 2 kA/cm2 and a total power above 3W. The red laser diodes grown on (211)A substrates demonstrate vertically multimode lasing far field pattern indicating a lower optical confinement factor for the fundamental mode as compared to the devices grown on (611)A. However the temperature stability of the threshold current and the wavelength stability are significantly higher for (211)A-grown structures in agreement with the conduction band modeling data.
Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V
2015-06-10
Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
NASA Astrophysics Data System (ADS)
Sinha, H. S. S.; Raizada, S.
2000-08-01
An all sky optical imaging system was operated from Sriharikota rocket range (SHAR) (14° N, 80° E, 5.5° N dip latitude) during January-March, 1993 to observe ionospheric plasma depletions through 630 nm and 777.4 nm night glow emissions. Strong plasma depletions were observed only on four nights viz., 14, 17, 19 and 21 February, 1993. Except the 17 February, which was a magnetically disturbed day, all the other nights pertained to magnetically quiet period. A number of plasma depletion parameters such as, degree of depletion, east-west extent, tilt with respect to the geomagnetic field, inter-depletion distance, drift velocity and plasma enhancements or brightness patterns were estimated. Some of the important results are: (a) It was found that the east-west extent of plasma depletions varied with the degree of depletion; for the 630 nm images the degree of depletion ranged between 6-9% per 100 km east-west extent and for 777.4 nm images it was 3% per 100 km east-west extent, (b) The average inter-depletion distance (IDD) was in the range of 1500±100 km during the magnetically disturbed period and 740±60 km during quiet periods. This is suggestive of gravity wave modulation of the bottom side of the F-region. While the large scale gravity waves (1500±100 km) of auroral origin could be responsible during magnetically disturbed period, smaller scale gravity waves (740±60 km) having their origin in the lower atmosphere could produce initial perturbation in the bottom side of the F-region, (c) Plasma depletions are observed to have an eastward tilt in the range of 10-15° with respect to the geomagnetic field. It has been suggested here that these tilts are associated with the variation of plasma drift with altitude, (d) plasma depletions are observed to be moving eastwards with drift velocities in the range of 40-190 ms-1, and (e) Strong plasma enhancements or brightness patterns were observed on three nights. The degree of enhancement was by a factor of 1.4-3.8. These enhancements lasted for more than 15 minutes. Although, prima facie, these observations look similar to the transient brightness wave reported by Mendillo et al. (1997a), the high degree of enhancement and an extended duration of more than 15 minutes, observed in the present case, need to be understood.
NASA Astrophysics Data System (ADS)
Ge, Jian; Ma, Bo; Muterspaugh, Matthew W.; Singer, Michael; Varosi, Frank; Powell, Scott; Williamson, Michael W.; Sithajan, Sirinrat; Grieves, Nolan; Zhao, Bo; Schofield, Sidney; Liu, Jian; Cassette, Anthony; Carlson, Kevin; Klanot, Khaya; Jeram, Sarik; Barnes, Rory
2016-01-01
The Dharma Planet Survey (DPS) is to monitor ~100 nearby very bright FGKM dwarfs (most of them brighter than V=8) during 2014-2018 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the 2m Automatic Spectroscopy Telescope at Fairborn Observatory initially (2014-2015) and at the dedicated 50-inch Robotic Telescope (2016-2018) on Mt. Lemmon after the telescope is installed in the fall of 2015. Operated in high vacuum (<0.01mTorr) with precisely controlled temperature (~1-2 mK), TOU has delivered ~ 1 m/s (RMS) instrument stability after the hardware upgrade in September 2015. DPS aims at reaching better than 0.5 m/s Doppler measurement precision for bright survey targets after the instrument tiny drift is carefully calibrated with Thorium-Argon and Sine reference sources. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Early scientific results from the DPS pilot survey of 25 FGKM dwarfs will be presented.
Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates
NASA Astrophysics Data System (ADS)
Taylor, E.; Fang, F.; Oehler, F.; Edwards, P. R.; Kappers, M. J.; Lorenz, K.; Alves, E.; McAleese, C.; Humphreys, C. J.; Martin, R. W.
2013-06-01
Indium gallium nitride (InxGa1 - xN) is a technologically important material for many optoelectronic devices, including LEDs and solar cells, but it remains a challenge to incorporate high levels of InN into the alloy while maintaining sample quality. A series of InGaN epilayers was grown with different hydrogen flow rates (0-200 sccm) and growth temperatures (680-750 °C) to obtain various InN fractions and bright emission in the range 390-480 nm. These 160-nm thick epilayers were characterized through several compositional techniques (wavelength dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectrometry) and cathodoluminescence hyperspectral imaging. The compositional analysis with the different techniques shows good agreement when taking into account compositional gradients evidenced in these layers. The addition of small amounts of hydrogen to the gas flow at lower growth temperatures is shown to maintain a high surface quality and luminescence homogeneity. This allowed InN fractions of up to ˜16% to be incorporated with minimal peak energy variations over a mapped area while keeping a high material quality.
Yuan, Che; Li, Hui-Zhen; Tang, Kun; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong
2016-04-01
The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1994-10-01
In photopic vision, two physical variables (luminance and wavelength) are transformed into three psychological variables (brightness, hue, and saturation). Following on from 3D grating optical explanations of aperture effects (Stiles-Crawford effects SCE I and II), all three variables can be explained via a single 3D chip effect. The 3D grating optical calculations are carried out using the classical von Laue equation and demonstrated using the example of two experimentally confirmed observations in human vision: saturation effects for monochromatic test lights between 485 and 510 nm in the SCE II and the fact that many test lights reverse their hue shift in the SCE II when changing from moderate to high luminances compared with that on changing from low to medium luminances. At the same time, information is obtained on the transition from the trichromatic color system in the retina to the opponent color system.
A dual-colored bio-marker made of doped ZnO nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.
2008-08-01
Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.
Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...
2017-08-17
Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less
Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO
NASA Astrophysics Data System (ADS)
Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam
2016-05-01
The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02572b
High-power fiber-coupled 100W visible spectrum diode lasers for display applications
NASA Astrophysics Data System (ADS)
Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens
2013-02-01
Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.
NASA Technical Reports Server (NTRS)
Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.;
2010-01-01
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.
The role of colour in signalling and male choice in the agamid lizard Ctenophorus ornatus.
LeBas, N R; Marshall, N J
2000-01-01
Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females. PMID:10737400
Picosecond excimer laser-plasma x-ray source for microscopy, biochemistry, and lithography
NASA Astrophysics Data System (ADS)
Turcu, I. C. Edmond; Ross, Ian N.; Trenda, P.; Wharton, C. W.; Meldrum, R. A.; Daido, Hiroyuki; Schulz, M. S.; Fluck, P.; Michette, Alan G.; Juna, A. P.; Maldonado, Juan R.; Shields, Harry; Tallents, Gregory J.; Dwivedi, L.; Krishnan, J.; Stevens, D. L.; Jenner, T.; Batani, Dimitri; Goodson, H.
1994-02-01
At Rutherford Appleton Laboratory we developed a high repetition rate, picosecond, excimer laser system which generates a high temperature and density plasma source emitting approximately 200 mW (78 mW/sr) x ray average power at h(nu) approximately 1.2 KeV or 0.28 KeV < h(nu) < 0.53 KeV (the `water window'). At 3.37 nm wavelength the spectral brightness of the source is approximately 9 X 1011 photons/s/mm2/mrad2/0.1% bandwidth. The x-ray source serves a large user community for applications such as: scanning and holographic microscopy, the study of the biochemistry of DNA damage and repair, microlithography and spectroscopy.
Ultraviolet absorption cross-sections of hot carbon dioxide
NASA Astrophysics Data System (ADS)
Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.
2004-12-01
The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.
Simultaneous Luminescence Pressure and Temperature Measurement System for Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1995-01-01
Surface pressures and temperatures are determined from visible emission brightness and green-to-red color ratioing of induced luminescence from a ceramic surface with an organic dye coating. A ceramic-dye matrix of porous silica ceramic with an adsorbed dye is developed for high-temperature pressure sensitivity and stability (up to 150 C). Induced luminescence may be excited using a broad range of incident radiation from visible blue light (488-nm wavelength) to the near ultraviolet (365 nm). Ceramic research models and test samples are fabricated using net-form slip-casting and sintering techniques. Methods of preparation and effects of adsorption film thickness on measurement sensitivity are discussed. With the present 8-bit imaging system a 10% pressure measurement uncertainty from 50 to 760 torr is estimated, with an improvement to 5% from 3 to 1500 torr with a 12-bit imaging system.
Spectroscopic investigation and luminescent properties of Schiff base metal complex for OLED
NASA Astrophysics Data System (ADS)
Gondia, N. K.; Priya, J.; Sharma, S. K.
2018-05-01
Organic light emitting diode (OLED) display technology has demonstrated high efficiency and brightness, is leading to a strong commercial interest. One of the remaining problems with the OLED technology is efficiency and colour saturation. The efficiency of OLED devices can be improved by doping the host organic layer with a suitable phosphorescent material in the emissive layer. We have synthesized a Schiff base zinc metal complex for OLEDs applications. Metal complex was characterized by FTIR, HNMR technique. PL emission spectra were recorded by keeping excitation wavelength fixed at 240 nm. A strong intense emission peak was observed at 410 nm. CIE chromaticity colour coordinates were observed at x =0.239 & y = 0.159. HOMO/LUMO energy gap were found to be -0.223 and -0.067 respectively for prepared zinc metal complex. It could be considered as a good light emitting phosphor material for possible application as emissive layer in OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S., E-mail: alastair.moore@physics.org; Ahmed, M. F.; Soufli, R.
A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features inmore » the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.« less
Ultraviolet observations of the Saturnian north aurora and polar haze distribution with the HST-FOC
NASA Technical Reports Server (NTRS)
Gerard, J. C.; Dols, V.; Grodent, D.; Waite, J. H.; Gladstone, G. R.; Prange, R.
1995-01-01
Near simultaneous observations of the Saturnian H2 north ultraviolet aurora and the polar haze were made at 153 nm and 210 nm respectively with the Faint Object Camera on board the Hubble Space Telescope. The auroral observations cover a complete rotation of the planet and, when co-added, reveal the presence of an auroral emission near 80 deg N with a peak brightness of about 150 kR of total H2 emission. The maximum optical depth of the polar haze layer is found to be located approximately 5 deg equatorward of the auroral emission zone. The haze particles are presumably formed by hydrocarbon aerosols initiated by H2+ auroral production. In this case, the observed haze optical depth requires an efficiency of aerosol formation of about 6 percent, indicating that auroral production of hydrocarbon aerosols is a viable source of high-latitude haze.
Palomar 60-inch SEDM classification of optical transients
NASA Astrophysics Data System (ADS)
Fremling, Christoffer; Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018).
Artificial Aurora Generated by HAARP (Invited)
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Kendall, E. A.
2013-12-01
We present results from the ionospheric heating experiment conducted on March 12, 2013 at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. During the experiment HAARP transmitted X-mode 4.57 MHz waves modulated with the frequency 0.9 mHz and pointed in the direction of the magnetic zenith. The beam was focused to ~20 km spot at the altitude 100 km. The heating produces two effects: First, it generates magnetic field-aligned currents producing D and H components of the magnetic field with frequency 0.9 mHz detected by fluxgate magnetometer in Gakona. Second, the heating produced bright luminous structures in the heated region detected with the SRI telescope in 427.8 nm, 557.7 nm, 630.0 nm wavelengths. We emphasize, that for the best of our knowledge, this is the first experiment where the heating of the ionosphere with X-mode produces luminous structures in the ionosphere. We classify this luminosity as an 'artificial aurora', because it correlate with the intensity of the magnetic field-aligned currents, and such correlation is constantly seen in the natural aurora.
Emittance and lifetime measurement with damping wigglers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.
National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less
Spectral Modeling of Ground Ices Exposed by Trenching at the Phoenix Mars Landing Site
NASA Astrophysics Data System (ADS)
Cull, S.; Arvidson, R. E.; Blaney, D.; Morris, R. V.
2008-12-01
The Phoenix Lander, which landed on the northern plains of Mars on 25 May 2008, used its Robotic Arm (RA) to dig six trenches during its nominal 90-sol mission: Dodo-Goldilocks, Snow White, Cupboard, Neverland, Burn Alive, and Stone Soup. During excavation of the first five of these, the RA encountered hard material interpreted to be the ice table, and the Stereo Surface Imager (SSI) imaged the exposed materials using 15 filters spanning a wavelength range from 445 to 1001 nm. Materials exposed in the Dodo- Goldilocks and Snow White trenches are spectroscopically dissimilar: Dodo-Goldilocks hard material is brighter relative to the surrounding soil, and has a distinct downturn around 800 nm resulting from a dusty ice with low soil-to-ice ratio. Snow White hard stuff varies in brightness and spectral shape depending on the phase angle, with low-phase angle images showing dark material and higher phase angles showing more soil-like material. The Snow White material does not have the strong 800-nm downturn seen in Dodo- Goldilocks, because the soil-to-ice ratio is high as inferred by the rapid development of a sublimation lag; however, the albedo variation with phase angle could be due to strong forward-scattering at low phase angles, consistent with icy material. A modified Hapke model is used to estimate the relative abundances of water ice and dust in the Dodo- Goldilocks and Snow White materials, with dehydrated palagonite as an analogue for dust . The ice exposed at Dodo-Goldilocks must be relatively dust-free, since only a small amount of dust is needed to obscure water ice absorptions. In our modeling, we find that as little as 5 wt% 20-um dust is enough to completely mask the 1001 nm absorption in 1-mm grain size water ice. Dodo-Goldilocks spectra can have up to a 20% drop in reflectance from 800 nm to 1001 nm, which is best-matched in our Hapke model by water ice with path lengths on the order of 2-3 mm. The Snow White dark materials typically have a small downturn at approximately 900 nm, with a depth on the order of a few percent. This could be the result of finer-grained ice or a higher dust:ice ratio. Further modeling is needed to understand the behavior of the dark and bright material at the Snow White trench.
Neptune's New Dark Vortex: Imaging with HST/WFC3
NASA Astrophysics Data System (ADS)
Wong, M. H.; Tollefson, J.; De Pater, I.; de Kleer, K.; Hammel, H. B.; Luszcz-Cook, S.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Delcroix, M.; Sromovsky, L. A.; Fry, P. M.; Orton, G. S.; Baranec, C.
2016-12-01
A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015 (Hueso et al. 2015, DPS 400.02). This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2: Smith et al. 1989, Science 246, 1422). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for "southern dark spot discovered in 2015" (Wong et al. 2016, CBET 4278). Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We will present imaging observations of SDS-2015 obtained with the WFC3/UVIS camera on the Hubble Space Telescope, covering the discovery of the vortex in September 2015 and follow-up observations in May 2016. No significant latitudinal drift was seen over this time span. We will compare size estimates, which are complicated by the continual presence of companion clouds, and by the low contrast between the vortex and its surroundings. The 2015 observations included 7 filters spanning 467-845 nm, weighted toward longer wavelengths to study general cloud motions and vertical distributions. The 2016 observations included 7 filters spanning 336-763 nm, weighted toward shorter wavelengths where the dark spot itself can be detected. A companion abstract (Tollefson et al., this meeting) will present results from radiative transfer modeling of the multispectral data. [This conference abstract is based on observations made with the NASA/ESA Hubble Space Telescope, associated with programs GO-13937 ("OPAL") and GO-14492.
NASA Astrophysics Data System (ADS)
Lakshminarayana, G.; Dao, T. D.; Chen, K.; Sharma, Manoj; Takeda, T.; Brik, M. G.; Kityk, I. V.; Singh, Sarabjot; Nagao, T.
2015-01-01
In this paper we report on the Ce3+ and Tb3+ ions co-doped bismuth phosphate (BiPO4) nanostructures that were synthesized by a simple precipitation method using different surfactants such as glycerol/H2O, glycerol/ethylene glycol, oleic acid, and ethylene glycol. The structural (X-ray diffraction, scanning electron microscopy, tunneling electron microscopy), functional groups analysis (Fourier transform infrared and Raman spectroscopy), thermal (thermogravimetry and differential thermal analysis), and optical (photoluminescence, photoluminescence-excitation) properties were investigated. The structural and morphological analysis confirms the pure hexagonal crystal structure of the synthesized nanostructures. From the measured Fourier transform infrared (FTIR) and Raman spectra various functional groups such as υ3 stretching vibration of the PO4 group, and δ(O-P-O) and υ4 (PO4) vibrations including the υ2 and υ1 bending modes of the PO4 units are identified. Based on the thermal analysis, for all the studied samples an exothermic peak between 680 °C and 700 °C was observed due to phase transition from hexagonal to high temperature monoclinic. The Ce3+and Tb3+ codoped samples show spectrally broad 5d → 4f luminescence in the blue (centered at 459 nm) wavelength region under the direct optical excitation of Ce3+ at 417 nm. Similarly, Tb3+ has revealed four main emission bands (5D4 → 7F6, 5, 4 and 3) at 490 nm, 545 nm, 585 nm and 621 nm with 378 nm (7F6 → 5G6) as the excitation wavelength, including three more weak emission bands at 647 nm, 669 nm, and 681 nm which could be assigned to 5D4 → 7F2, 1, 0 emission transitions. Among them, 545 nm (5D4 → 7F5) has shown bright green emission. The Ce3+ and Tb3+ codoped sample synthesized with pure oleic acid have shown relatively high green emission intensity for Tb3+, and relatively weak blue emission intensity for Ce3+ under their respective optical excitation wavelengths.
Palomar 60-inch SEDM classification of optical transients
NASA Astrophysics Data System (ADS)
Fremling, Christoffer; Blagorodnova, Nadejda; Kupfer, Thomas; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-04-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
Palomar 60-inch SEDM classification of optical transients
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Fremling, Christoffer; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
Zhou, Nonglin; Wang, Shirong; Xiao, Yin; Li, Xianggao
2018-01-04
Aryl-substituted phenanthroimidazoles (PIs) have attracted tremendous attention in the field of organic light-emitting diodes (OLEDs), because they are simple to synthesize and have excellent thermal properties, high photoluminescence quantum yields (PLQYs), and bipolar properties. Herein, a novel blue-green emitting material, (E)-2-{4'-[2-(anthracen-9-yl)vinyl]-[1,1'-biphenyl]-4-yl}-1-phenyl-1H-phenanthro[9,10-d]imidazole (APE-PPI), containing a t-APE [1-(9-anthryl)-2-phenylethene] core and a PI moiety was designed and synthesized. Owing to the PI skeleton, APE-PPI possesses high thermal stability and a high PLQY, and the compound exhibits bipolar transporting characteristics, which were identified by single-carrier devices. Nondoped blue-green OLEDs with APE-PPI as the emitting layer show emission at λ=508 nm, a full width at half maximum of 82 nm, a maximum brightness of 9042 cd m -2 , a maximum current efficiency of 2.14 cd A -1 , and Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.55). Furthermore, a white OLED (WOLED) was fabricated by employing APE-PPI as the blue-green emitting layer and 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped in tris-(8-hydroxyquinolinato)aluminum (Alq 3 ) as the red-green emitting layer. This WOLED exhibited a maximum brightness of 10029 cd m -2 , a maximum current efficiency of 16.05 cd A -1 , CIE coordinates of (0.47, 0.47), and a color rendering index (CRI) of 85. The high performance of APE-PPI-based devices suggests that the t-APE and PI combination can potentially be used to synthesize efficient electroluminescent materials for WOLEDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumbach, S., E-mail: baumbach@rheinahrcampus.de; Wilhein, T.; Kanngießer, B.
2015-08-15
This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detectormore » limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.« less
Baumbach, S; Kanngießer, B; Malzer, W; Stiel, H; Wilhein, T
2015-08-01
This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.
Twilight sky brightness measurements as a useful tool for stratospheric aerosol investigations
NASA Astrophysics Data System (ADS)
Mateshvili, Nina; Fussen, Didier; Vanhellemont, Filip; Bingen, Christine; KyröLä, Erkki; Mateshvili, Iuri; Mateshvili, Giuli
2005-05-01
In this paper we demonstrate how twilight sky brightness measurements can be used to obtain information about stratospheric aerosols. Beside this, the measurements of the distribution and the variability of the twilight sky brightness may help to understand how the stratospheric aerosols affect the radiation field, which is important for correct calculations of photodissociation rates. Multispectral measurements of twilight sky brightness were carried out in Abastumani Observatory (41.8°N, 42.8°E), Georgia, South Caucasus, during the period (1991-1993) when the level of stratospheric aerosols was substantially enhanced after the 1991 Mount Pinatubo eruption. The twilight sky brightness was measured at 9 wavelengths (422, 474, 496, 542, 610, 642, 678, 713, and 820 nm) for solar zenith angles from 89° to 107°. There are clear indications of a growth of the stratospheric aerosol layer after the eruption of Mount Pinatubo that manifests itself by "humps" in twilight sky brightness dependences versus solar zenith angle. Similar features were obtained using a radiative transfer code constrained by the SAGE II aerosol optical thicknesses. It is shown how an enhancement of stratospheric aerosol loading perturbs the twilight sky brightness due to light scattering and absorption in the aerosol layer. The influence of ozone variations and background stratospheric aerosols on twilight sky brightness has also been analyzed. The optical thicknesses of the stratospheric aerosol layer obtained from the twilight measurements of 1990-1993 show a good agreement with SAGE II results. The spectral variations of the stratospheric aerosol extinction for pre-Pinatubo and post-Pinatubo measurements reflect the aerosol growth after the eruption. Finally, the utilization of twilight sky brightness measurements for validation of satellite-based measurements of the stratospheric aerosol is proposed.
Li, Huiyu; Xu, Yuan; Ding, Jie; Zhao, Li; Zhou, Tianyu; Ding, Hong; Chen, Yanhua; Ding, Lan
2018-01-10
Uniform N- and S-co-doped carbon dots (NSCDs) with fluorescence quantum yields of up to 64% were synthesized via a one-step microwave-assisted method. Ammonium citrate and L-cysteine act as precursors, and synthesis is completed in 2.5 min using a 750 W microwave oven to give a 62% yield. The NSCDs show bright blue fluorescence (with excitation/emission peaks at 353/426 nm) and have narrow size distribution. On exposure to levofloxacin (LEV), the emission maximum shifts to 499 nm. This effect was used to design ratiometric (2-wavelength) assays for LEV. The fluorometric method (based on measurement of the fluorescence intensity ratio at 499 and 426 nm) has a detection limit of 5.1 μg·L -1 (3σ/k) and a linear range that extends from 0.01 to 70 mg·L -1 . The method was applied to the determination of LEV in three kinds of spiked water samples and has recoveries in the range from 98.6 to 106.8%. The fluorescent probe described here is highly selective and sensitive. Graphical Abstract Highly luminescent N- and S-co-doped carbon dots were synthesized using AC (ammonium citrate) and Cys (L-cysteine) by microwave-assisted method, and were applied to the visual and ratiometric fluorescence determination of LEV (levofloxacin).
All-Dielectric Full-Color Printing with TiO2 Metasurfaces.
Sun, Shang; Zhou, Zhenxing; Zhang, Chen; Gao, Yisheng; Duan, Zonghui; Xiao, Shumin; Song, Qinghai
2017-05-23
Recently, color generation in resonant nanostructures have been intensively studied. Despite of their exciting progresses, the structural colors are usually generated by the plasmonic resonances of metallic nanoparticles. Due to the inherent plasmon damping, such plasmonic nanostructures are usually hard to create very distinct color impressions. Here we utilize the concept of metasurfaces to produce all-dielectric, low-loss, and high-resolution structural colors. We have fabricated TiO 2 metasurfaces with electron-beam lithography and a very simple lift-off process. The optical characterizations showed that the TiO 2 metasurfaces with different unit sizes could generate high reflection peaks at designed wavelengths. The maximal reflectance was as high as 64% with full width at half-maximum (fwhm) around 30 nm. Consequently, distinct colors have been observed in bright field and the generated colors covered the entire visible spectral range. The detailed numerical analysis shows that the distinct colors were generated by the electric resonance and magnetic resonances in TiO 2 metasurfaces. Based on the unique properties of magnetic resonances, distinct colors have been observed in bright field when the metasurfaces were reduced to a 4 × 4 array, giving a spatial resolution around 16000 dpi. Considering the cost, stability, and CMOS-compatibility, this research will be important for the structural colors to reach real-world industrial applications.
NASA Astrophysics Data System (ADS)
Decker, J.; Crump, P.; Fricke, J.; Wenzel, H.; Maaβdorf, A.; Erbert, G.; Tränkle, G.
2014-03-01
Laser systems based on spectral beam combining (SBC) of broad-area (BA) diode lasers are promising tools for material processing applications. However, the system brightness is limited by the in-plane beam param- eter product, BPP, of the BA lasers, which operate with a BPP of < 3mm-mrad. The EU project BRIDLE (www.bridle.eu) is developing novel diode laser sources for such systems, and several technological advances are sought. For increased system brightness and optimal ber-coupling the diode lasers should operate with reduced BPP and vertical far eld angle (95% power content), μV 95. The resulting diode lasers are fabricated as mini- bars for reduced assembly costs. Gratings are integrated into the mini-bar, with each laser stripe emitting at a different wavelength. In this way, each emitter can be directed into a single bre via low-cost dielectric filters. Distributed-feedback narrow-stripe broad-area (DFB-NBA) lasers are promising candidates for these SBC sys- tems. We review here the design process and performance achieved, showing that DFB-NBA lasers with stripe width, W = 30 μm, successfully cut of higher-order lateral modes, improving BPP. Uniform, surface-etched, 80th-order Bragg gratings are used, with weak gratings essential for high e ciency. To date, such DFB-NBA sources operate with < 50% effciency at output power, Pout < 6 W, with BPP < 1.8 mm-mrad and offV 95 36 . The emission wavelength is about 970 nm and the spectral width is < 0.7 nm (95% power). The BPP is half that of a DFB-BA lasers with W = 90 um. We conclude with a review of options for further performance improvements.
NASA Astrophysics Data System (ADS)
John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan
2017-05-01
Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.
Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser
NASA Astrophysics Data System (ADS)
O'Donnell, Callum; Chaitanya Kumar, S.; Zawilski, Kevin T.; Schunemann, Peter G.; Ebrahim-Zadeh, Majid
2018-02-01
We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654-8373 nm (1194-1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140-180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127-1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of 260-320 fs, with corresponding time-bandwidth product of ΔυΔτ 1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of 6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.
Falqui, Andrea; Corrias, Anna; Wang, Peng; Snoeck, Etienne; Mountjoy, Gavin
2010-04-01
Magnetic nanocomposite materials consisting of 5 and 10 wt% CoFe2O4 nanoparticles in a silica aerogel matrix have been synthesized by the sol-gel method. For the CoFe2O4-10wt% sample, bright-field scanning transmission electron microscopy (BF STEM) and high-resolution transmission electron microscopy (HREM) images showed distinct, rounded CoFe2O4 nanoparticles, with typical diameters of roughly 8 nm. For the CoFe2O4-5wt% sample, BF STEM images and energy dispersive X-ray (EDX) measurements showed CoFe2O4 nanoparticles with diameters of roughly 3 +/- 1 nm. EDX measurements indicate that all nanoparticles consist of stoichiometric CoFe2O4, and electron energy-loss spectroscopy measurements from lines crossing nanoparticles in the CoFe2O4-10wt% sample show a uniform composition within nanoparticles, with a precision of at best than +/-0.5 nm in analysis position. BF STEM images obtained for the CoFe2O4-10wt% sample showed many "needle-like" nanostructures that typically have a length of 10 nm and a width of 1 nm, and frequently appear to be attached to nanoparticles. These needle-like nanostructures are observed to contain layers with interlayer spacing 0.33 +/- 0.1 nm, which could be consistent with Co silicate hydroxide, a known precursor phase in these nanocomposite materials.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Jupiter's Equatorial Region in a Methane band (Time set 1)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.
North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoJupiter's Equatorial Region in a Methane band (Time set 4)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.
North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoNASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-02-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.
2014-12-01
A midnight brightness wave (MBW) is the phenomenon that the OI (630-nm) airglow enhancement propagates poleward once at local midnight. In this study, we first conducted geomagnetically conjugate observations of 630nm airglow for an MBW at conjugate stations. An airglow enhancement which is considered to be an MBW was observed in the 630-nm airglow images at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0S) at around local midnight from 1540 to 1730 UT (from 2240 to 2430 LT) on 7 February 2011. This MBW was propagating south-southwestward, which is geomagnetically poleward, with a velocity of 290 m/s. However, similar wave was not observed in the 630-nm airglow images at Chiang Mai, Thailand (MLAT: 8.9N), which is close to being conjugate point of Kototabang. This result indicates that the MBW does not have geomagnetic conjugacy. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the MBW was observed. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai simultaneously with the MBW passage. In the presentation, we discuss the MBW generation by the observed poleward neutral winds at Kototabang, and the cause of the coinciding small height increase at Chiang Mai by the polarization electric field inside the observed MBW at Kototabang.
Spectroscopic classification of SN2018afm and SN2018aik
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Fremling, Christoffer; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
Highly efficient 400 W near-fundamental-mode green thin-disk laser.
Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou
2016-01-01
We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.
Johnson, Alex D; Cheng, Fei; Tsai, Yutsung; Shih, Chih-Kang
2017-07-12
We have investigated how the photoluminescence (PL) of WSe 2 is modified when coupled to Ag plasmonic structures at low temperature. Chemical vapor deposition (CVD) grown monolayer WSe 2 flakes were transferred onto a Ag film and a Ag nanotriangle array that had a 1.5 nm Al 2 O 3 capping layer. Using low-temperature (7.5 K) micro-PL mapping, we simultaneously observed enhancement of the defect-bound exciton emission and quenching of the band edge exciton emission when the WSe 2 was on a plasmonic structure. The enhancement of the defect-bound exciton emission was significant with enhancement factors of up to ∼200 for WSe 2 on the nanotriangle array when compared to WSe 2 on a 1.5 nm Al 2 O 3 capped Si substrate with a 300 nm SiO 2 layer. The giant enhancement of the luminescence from the defect-bound excitons is understood in terms of the Purcell effect and increased light absorption. In contrast, the surprising result of luminescence quenching of the bright exciton state on the same plasmonic nanostructure is due to a rather unique electronic structure of WSe 2 : the existence of a dark state below the bright exciton state.
NASA Astrophysics Data System (ADS)
Ledentsov, N. N.; Shchukin, V. A.; Shernyakov, Yu M.; Kulagina, M. M.; Payusov, A. S.; Gordeev, N. Yu; Maximov, M. V.; Cherkashin, N. A.
2017-02-01
We report on low threshold current density (<400 A cm-2) injection lasing in (Al x Ga1-x )0.5In0.5P-GaAs-based diodes down to the green spectral range (<570 nm). The epitaxial structures are grown on high-index (611)A and (211)A GaAs substrates by metal-organic vapor phase epitaxy and contain tensile-strained GaP-enriched insertions aimed at reflection of the injected nonequilibrium electrons preventing their escape from the active region. Extended waveguide concept results in a vertical beam divergence with a full width at half maximum of 15° for (611)A substrates. The lasing at the wavelength of 569 nm is realized at 85 K. In an orange-red laser diode structure low threshold current density (190 A cm-2) in the orange spectral range (598 nm) is realized at 85 K. The latter devices demonstrated room temperature lasing at 628 nm at ˜2 kA cm-2 and a total power above 3 W. The red laser diodes grown on (211)A substrates demonstrated a far field characteristic for vertically multimode lasing indicating a lower optical confinement factor for the fundamental mode as compared to the devices grown on (611)A. However, as expected from previous research, the temperature stability of the threshold current and the wavelength stability were significantly higher for (211)A-grown structures.
Source of the dayside cusp aurora.
Mende, S B; Frey, H U; Angelopoulos, V
2016-08-01
Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko-96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N 2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N 2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave-accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard-electron precipitation zone originating inside the magnetosphere.
Source of the dayside cusp aurora
Frey, H. U.; Angelopoulos, V.
2016-01-01
Abstract Monochromatic all‐sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko‐96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave‐accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard‐electron precipitation zone originating inside the magnetosphere. PMID:27867797
NASA Astrophysics Data System (ADS)
Kataria, V.; Mehta, D. S.
2018-04-01
Erbium (Er3+)-ytterbium (Yb3+) doped gadolinium oxysulphide (Gd2O2S) phosphor has been developed via a facile method of solid-state flux fusion, and offers two-fold spectrum modification with highly intense Stokes and anti-Stokes shift. The effect of the firing cycle on the photoluminescent response and morphology of Gd2O2S:Er,Yb is scrutinized, wherein the firing temperature was varied (1000 °C-1250 °C), keeping firing time and all other parameters constant. Interestingly, the nanostructures fired below 1150 °C showed nanorods of diameter ~200 nm and length ~1-2 µm, whereas firing at 1150 °C and above rendered nanospheres with small diameter, ~350 nm. Highly bright upconversion (UC) emission was achieved even under an extremely low excitation power density of 800 µW cm-2 from a 980 nm laser, and was comfortably visible to the naked eye. The incident power dependent studies disclosed increase in UC-emission intensity with increasing excitation power and a quasi-linear dependence on excitation power density. Intense characteristic UC-emission of Er3+ excited states at 525 nm, 556 nm and 668 nm were observed, and the green emission band was found to be dominant over the red band in intensity. Concurrently, downconversion (DC) emission at 556 nm and 669 nm was also exhibited under ultraviolet excitation (285 nm and 380 nm), with the red band being more powerful than the green, unlike UC-emission. Firing temperature dependent studies divulged the dependence of luminescence intensity on the firing cycle of the luminophore and formation of the respective luminescent phase. The UC-emission intensity was found to be maximum for samples fired at 1150 °C, whereas samples fired at 1000 °C showed the highest DC-emission intensity. The excitation and emission profile of single Gd2O2S:Er,Yb phosphor lying in the desired spectral region and as a dual spectral converter marks its possible application for enhanced harvesting of sunlight.
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
NASA Astrophysics Data System (ADS)
Méndez-Ramos, J.; Yanes, A. C.; Santana-Alonso, A.; del-Castillo, J.
2013-01-01
Transparent nano-glass-ceramics comprising Yb3+, Er3+ and Tm3+ co-doped KYF4 nanocrystals have been developed from sol-gel method. A structural analysis by means of X-ray diffraction confirmed the precipitation of cubic KYF4 nanocrystals into a silica matrix. Visible luminescence has been analyzed as function of treatment temperature of precursor sol-gel glasses. Highly efficient up-conversion emissions have been obtained under 980 nm excitation and studied by varying the doping level, processing temperature and pump power. Color tuneability has been quantified in terms of CIE diagram and in particular, a white-balanced overall emission has been achieved for a certain doping level and thermal treatment.
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
Backus, Sterling; Durfee, Charles; Lemons, Randy; ...
2017-02-10
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Durfee, Charles; Lemons, Randy
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
First results from the Citizen CATE Experiment 2017
NASA Astrophysics Data System (ADS)
Penn, M. J.
2017-12-01
The Citizen Continental-America Telescopic Eclipse (CATE) Experiment will monitor the corona using a network of 68 identical telescopes positioned along the path of totality on 21 August 2017. The individual high quality images taken during the 2 minutes of totality at each site will be combined to create a uninterrupted 93 minute sequence of the inner solar corona. CATE data will image the inner corona in white light using wavelengths between 480nm and 680nm. With 1.5 arcsec pixels, the transverse velocity sensitivity will be roughly from 1-150 km/s. Sites will collect a sequence of 8 exposures from 0.4 msec up to 1.3 sec duration, and these exposures will be used to produce one high-dynamic range image every 2.1 seconds. The expected signal to noise ratio in the data should allow brightness fluctuations of about 5% to be detected. The initial science goal is to measure the solar wind velocity and acceleration in polar plumes as the plasma accelerates from 1 to 100 km/s in the CATE field-of-view.
Instense red phosphors for UV light emitting diode devices.
Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi
2010-03-01
Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.
Next generation high-brightness diode lasers offer new industrial applications
NASA Astrophysics Data System (ADS)
Timmermann, Andre; Meinschien, Jens; Bruns, Peter; Burke, Colin; Bartoschewski, Daniel
2008-02-01
So far, diode laser systems could not compete against CO II-lasers or DPSSL in industrial applications like marking or cutting due to their lower brightness. Recent developments in high-brightness diode laser bars and beam forming systems with micro-optics have led to new direct diode laser applications. LIMO presents 400W output from a 200μm core fibre with an NA of 0.22 at one wavelength. This is achieved via the combination of newly designed laser diode bars on passive heat sinks coupled with optimized micro-optical beam shaping. The laser is water cooled with a housing size of 375mm x 265mm x 70mm. The applications for such diode laser modules are mainly in direct marking, cutting and welding of metals and other materials, but improved pumping of fibre lasers and amplifiers is also possible. The small spot size leads to extremely high intensities and therefore high welding speeds in cw operation. For comparison: The M2 of the fibre output is 70, which gives a comparable beam parameter product (22mm*mrad) to that of a CO II laser with a M2 of 7 because of the wavelength difference. Many metals have a good absorption within the wavelength range of the laser diodes (NIR, 808nm to 980nm), which permits the cutting of thin sheets of aluminium or steel with a 200W version of this laser. First welding tests show reduced splatters and pores owing to the optimized process behaviour in cw operation with short wavelengths. The availability of a top-hat profile proves itself to be advantageous compared to the traditional Gaussian beam profiles of fibre, solid-state and gas lasers in that the laser energy is evenly distributed over the working area. For the future, we can announce an increase of the output power up to 1200W out of a 200μm fibre (0.22 NA). This will be achieved by further sophistication and optimisation of the coupling technique and the coupling of three wavelengths. The beam parameter product will then remain at 22mm*mrad with a power density of 3.8 MW/cm2 if focussed to a 200µm spot. This leads to excellent laser cutting results with extremely small cutting kerfs down to 200μm and very plane cutting edges. Process speeds rise up to more than 10m/min i.e. for thin sheets of stainless steel or titanium.
Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system
NASA Astrophysics Data System (ADS)
Vítek, S.
2017-07-01
The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.
Contrast agent free detection of bowel perforation using chlorophyll derivatives from food plants
NASA Astrophysics Data System (ADS)
Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Lee, Jee-Bum; Kim, Yong-Chul; Kang, Hoonsoo; Hwang, In-Wook
2016-01-01
Chlorophylls occur abundantly in food plants and show bright emission bands at long-wavelength regions (∼675 and ∼720 nm) compared to the autofluorescence of animal organs and peritoneal fluids. The use of these emissions as biomarkers for monitoring bowel perforation with a modality that does not involve synthetic contrast agents seems promising. To validate this, we measured the fluorescence spectra of rat organs, human peritoneal and intestinal fluids, and human intestinal fluids diluted with physiological saline. The developed technique showed a high detection sensitivity (∼50 ppm) under irrigation for abdominal surgery, highlighting the potential of this tool in the surgical setting.
Yin, Ke; Zhu, Rongzhen; Zhang, Bin; Jiang, Tian; Chen, Shengping; Hou, Jing
2016-09-05
Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.
Auroral excitation of the N2 2P(0,0) and VK(0,9) bands
NASA Technical Reports Server (NTRS)
Solomon, Stanley C.
1989-01-01
The low-energy secondary electron flux caused by auroral electron precipitation is examined using data from the Atmosphere Explorer C satellite. An energetic electron transport algorithm is used to compute the differential electron flux produced by measured primaries. Emissions of N2 in the 2P(0,0) band at 337 nm and the VK(0,9) band at 335 nm predicted by the model are compared with photometric observation of their combined volume emission rate altitude profile made by the visible airglow experiment. Reasonable correspondence between model and measurement is obtained. Ratios of emissions at 337 nm and 630 nm to the N2(+) 1N(0,0) band at 428 nm are also studied. It is concluded that the 337/428 nm ratio responds to changes in the characteristic energy of primary auroral electrons only insofar as part of the 337 nm brightness is due to N2 VK(0,9) emission. The 630/428 nm ratio, which is strongly dependent on characteristic energy, also varies significantly with changes in atomic oxygen density.
Surface brightness profiles of 10 comets
NASA Astrophysics Data System (ADS)
Jewitt, D. C.; Meech, K. J.
1987-06-01
CCD photometric observations of the comae of 10 comets, obtained at the 4-m and 2.1-m telescopes at KPNO during 1985-1986 using filters centered at 700.5, 650.0, or 546.0 nm, are reported. The data are presented in extensive tables and graphs and characterized in detail. The radial surface brightness profiles are shown to be steeper than predicted by an idealized spherically symmetric steady-state comet model, the steepness increasing with the projected distance from the nucleus. These profiles are attributed, on the basis of Monte Carlo simulations, to imperfect coupling between the sublimated gas and the optically dominant grains of the coma.
Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao
2015-11-10
For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.
VizieR Online Data Catalog: Abundances of solar twins from Keck/HIRES (Bedell+, 2017)
NASA Astrophysics Data System (ADS)
Bedell, M.; Bean, J. L.; Melendez, J.; Mills, S. M.; Fabrycky, D. C.; Freitas, F. C.; Ramirez, I.; Asplund, M.; Liu, F.; Yong, D.
2017-11-01
Over the course of two consecutive nights (2015 July 26-27), we made 22 exposures of Kepler-11 of 1200s each for a coadded result of S/N~260 per pixel in the continuum near 600nm. For these observations, HIRES was used with a resolution R~67000 and wavelength coverage between 390 and 830nm. We also observed the solar spectrum (via reflection from Ceres) and nine bright potential Kepler-11 twins with the same instrumental setup and similar S/N. (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence
2014-05-01
Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less
NASA Astrophysics Data System (ADS)
Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang
2016-03-01
The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). In the next steps, further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with about 500 W launched into a 100 μm fiber with 0.15 NA. Higher power levels can be achieved by stacking those building blocks using the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific applications, materials processing such as cutting and welding of copper aluminum or steel and also medical application. Typical operating at wavelengths in the 9XX nm range, these systems are designed for and mainly used in cutting and welding applications, but adapted wavelength ranges such as 793 nm and 1530 nm are also offered. Around 15XX nm the diodes are already successfully used for resonant pumping of Erbium lasers [1]. Furthermore, the fully integrated electronic concept allows addressing further applications, as due to short lead lengths it is capable of generating very short μs pulses up to cw mode operation by simple software commands.
A dedicated H-beta meridian scanning photometer for proton aurora measurement
NASA Astrophysics Data System (ADS)
Unick, Craig W.; Donovan, Eric; Connors, Martin; Jackel, Brian
2017-01-01
An instrument designed to measure the location and brightness of auroral emissions from energetic proton precipitation is described. This photometer scans from the north to south horizon with a stepper motor and mirror. The scans are configured in software for a 30 s cadence with equally spaced samples along a meridian at constant altitude. Broadband light is separated into two channels with a novel optical splitter. This splitter uses a filter that has high transmission for the signal channel and high reflection on both the long- and short-wavelength sides to reflect the combined background passbands, directing each channel to its respective detector. The half-cone angle and angle of incidence of this splitter filter allow for an overall compact optical design that also provides superior sensitivity in both signal and background channels. The signal channel is 3 nm wide full width at half maximum (FWHM) at 486.1 nm, and the background channel comprises two 3 nm wide FWHM passbands at 480 nm and 495 nm created by a single filter. Both of these channels are measured with photomultiplier tubes in photon-counting mode. Calibrations indicate a response of around 1000 c/s per rayleigh. Data are currently acquired in 5 ms bins with a Nyquist frequency of 100 Hz. The first system (Forty-Eight Sixty-One (FESO)-1) has been operating at Athabasca University since February 2014, and the second system (FESO-2) was deployed at Lucky Lake, Saskatchewan, in October 2015. The improved sensitivity over legacy instruments and the simultaneous measurement of signal and background enable operation during intervals with dynamic electron aurora and scattered moonlight.
Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi.
Barykina, Natalia V; Subach, Oksana M; Piatkevich, Kiryl D; Jung, Erica E; Malyshev, Aleksey Y; Smirnov, Ivan V; Bogorodskiy, Andrey O; Borshchevskiy, Valentin I; Varizhuk, Anna M; Pozmogova, Galina E; Boyden, Edward S; Anokhin, Konstantin V; Enikolopov, Grigori N; Subach, Fedor V
2017-01-01
Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCaMP in vivo to perform structural and functional imaging of zebrafish using wide-field, confocal, and light-sheet microscopy.
Six-color solid state illuminator for cinema projector
NASA Astrophysics Data System (ADS)
Huang, Junejei; Wang, Yuchang
2014-09-01
Light source for cinema projector requires reliability, high brightness, good color and 3D for without silver screens. To meet these requirements, a laser-phosphor based solid state illuminator with 6 primary colors is proposed. The six primary colors are divided into two groups and include colors of R1, R2, G1, G2, B1 and B2. Colors of B1, B2 and R2 come from lasers of wavelengths 440 nm, 465 nm and 639 nm. Color of G1 comes from G-phosphor pumped by B2 laser. Colors of G2 and R1 come from Y-phosphor pumped by B1 laser. Two groups of colors are combined by a multiband filter and working by alternately switching B1 and B2 lasers. The combined two sequences of three colors are sent to the 3-chip cinema projector and synchronized with frame rate of 120Hz. In 2D mode, the resulting 6 primary colors provide a very wide color gamut. In 3D mode, two groups of red, green and blue primary colors provide two groups of images that received by left and right eyes.
Rare earth niobate coordination polymers
NASA Astrophysics Data System (ADS)
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May
2018-03-01
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.
NASA Astrophysics Data System (ADS)
Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich
2013-12-01
Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.
Singh, Shailendra P; Sinha, Rajeshwar P; Klisch, Manfred; Häder, Donat-P
2008-12-01
The mycosporine-like amino acid (MAA) profile of a rice-field cyanobacterium, Anabaena doliolum, was studied under PAR and PAR + UVR conditions. The high-performance liquid chromatographic analysis of water-soluble compounds reveals the biosynthesis of three MAAs, mycosporine-glycine (lambda (max) = 310 nm), porphyra-334 (lambda (max) = 334 nm) and shinorine (lambda (max) = 334 nm), with retention times of 4.1, 3.5 and 2.3 min, respectively. This is the first report for the occurrence of mycosporine-glycine and porphyra-334 in addition to shinorine in Anabaena strains studied so far. The results indicate that mycosporine-glycine (monosubstituted) acts as a precursor for the biosynthesis of the bisubstituted MAAs shinorine and porphyra-334. Mycosporine-glycine was under constitutive control while porphyra-334 and shinorine were induced by UV-B radiation, indicating the involvement of UV-regulated enzymes in the biotransformation of MAAs. It seems that A. doliolum is able to protect its cell machinery from UVR by synthesizing a complex set of MAAs and thus is able to survive successfully during the summer in its natural brightly lit habitats.
Grigorjevaite, Julija; Katelnikovas, Arturas
2016-11-23
A very good light emitting diode (LED) phosphor must have strong absorption, high quantum efficiency, high color purity, and high quenching temperature. Our synthesized K 2 Bi(PO 4 )(MoO 4 ):Eu 3+ phosphors possess all of the mentioned properties. The excitation of these phosphors with the near-UV or blue radiation results in a bright red luminescence dominated by the 5 D 0 → 7 F 2 transition at ∼615 nm. Color coordinates are very stable when changing Eu 3+ concentration or temperature in the range of 77-500 K. Furthermore, samples doped with 50% and 75% Eu 3+ showed quantum efficiencies close to 100% which is a huge benefit for practical application. Temperature dependent luminescence measurements showed that phosphor performance increases with increasing Eu 3+ concentration. K 2 Eu(PO 4 )(MoO 4 ) sample at 400 K lost only 20% of the initial intensity at 77 K and would lose half of the intensity only at 578 K. Besides, the ceramic disks with thicknesses of 0.33 and 0.89 mm were prepared from K 2 Eu(PO 4 )(MoO 4 ) powder, and it turned out that they efficiently converted the radiation of 375 nm LED to the red light. The conversion of 400 nm LED radiation to the red light was not complete; thus, the light sources with various tints of purple color were obtained. The combination of ceramic disks with 455 nm LED yielded the light sources with tints of blue color due to the low absorption of ceramic disk in this spectral range. In addition, these phosphors possess a very unique emission spectra; thus, they could also be applied in luminescent security pigments.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
Silicon-nitride/oxynitride wavelength demultiplexer and resonators for quantum photonics
NASA Astrophysics Data System (ADS)
Lim, Soon Thor; Gandhi, Alagappan; Ong, Jun Rong; Ang, Thomas; Png, Ching Eng; Lu, Ding; Ang, Norman Soo Seng; Teo, Ee Jin; Teng, Jinghua
2018-02-01
SiOxNy shows promises for bright emitters of single photons. We successfully fabricated ultra-low-loss SiOxNy waveguide and AWG with low insertion loss <1dB and <3dB total loss (<2dB on-chip loss and <1dB coupling loss) at 1310nm.
Spectroscopic Classification of ASASSN-15rm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Halevi, G.; Shivvers, I.; Yuk, H.; Filippenko, A. V.
2015-10-01
We report that inspection of a CCD spectrum (range 350-1050 nm) of ASASSN-15rm (ATel #8192), obtained on Oct. 20.50 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.
NASA Astrophysics Data System (ADS)
Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Seo, Kwangil; Kwon, Kevin; Kung, Patrick; Kim, Seongsin M.
2010-02-01
Green-emissive textured Zn2SiO4:Mn2+ phosphor film was fabricated by a thermal diffusion of ZnO:Mn on quartz glass. The characterization has been performed in terms of Mn2+ ions concentration (Mn/Zn=1~9 mol %). As an increase of Mn2+ ions concentration in the Zn2SiO4:Mn2+ phosphor film, the emission peak was red shifted from 519 nm to 526 nm, and the decay time to 10% of the maximum intensity was shorter from 20 ms to 0.5 ms. All annealed Zn2SiO4:Mn2+ phosphor films became textured along some hexagonal directions on the amorphous quartz glass. The brightest Zn2SiO4:Mn2+ film at optimal Mn2+ concentration of 5 % showed the photoluminescence brightness of 65 % and the shortened decay time of 4.4 ms in comparison with a commercially Zn2SiO4: Mn2+ powder phosphor screen. The excellencies can be attributed to a unique textured structure.
NASA Astrophysics Data System (ADS)
Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun
2018-02-01
A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.
Design, synthesis and luminescence properties of Ba2 YB2 O6 Cl- and Ba2 YB2 O6 F-based phosphors.
Chen, Wanping; Yang, Xin; Liu, Yan; Dai, Xiaoyan
2015-05-01
Using a high-temperature solid-state reaction, the chlorine in Ba2 YB2 O6 Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2 YB2 O6 F and two phosphors doped with Ce(3+) and Eu(3+) , respectively, are obtained. X-Ray diffraction and photoluminescence spectroscopy are used to characterize the as-synthesized samples. The as-synthesized Ba2 YB2 O6 Cl exhibits bright blue emission in the spectral range ~ 330-410 nm with a maximum around 363 nm under X-ray or UV excitation. Ba2 YB2 O6 F:0.01Ce(3+) exhibits blue emission in the range ~ 340-570 nm with a maximum around 383 nm. Ba2 YB2 O6 F:0.01Eu(3+) exhibits a predominantly (5) D0 -(7) F2 emission (~610 nm) and the relative intensities of the (5) D0 -(7) F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce(3+) and Eu(3+) , respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hebbar, Vidyashree; Bhajantri, R. F.; Naik, Jagadish; Rathod, Sunil G.
2016-07-01
In this paper, we report the microstructural, optical and fluorescence properties of poly(vinyl alcohol) (PVA)/Thiazole Yellow G (TY) dye composite prepared by solvent casting. The formation of change-transfer complex as a result of the interaction between the dye molecules and polymer chain is confirmed in FTIR, FT-Raman, XRD and DSC studies. SEM studies present the morphology of the samples. The UV-visible absorption spectra possess characteristic peaks of the TY dye corresponding to n-π* transition along with a characteristic peak of PVA. The composites exhibit the decreasing energy gap and increasing refractive index with an increase in wt.% of the TY dye. The fluorescence-quenching phenomena are observed in emission wavelength range of 391-406 nm upon excitation in the vicinity of absorption maxima (335 nm) with the quantum yield of 0.72 for lowest concentration of dye. The prepared composites bear high brightness, and improved thermal stability, which make them a promising material for sensors and optoelectronic applications.
Faint Luminescent Ring over Saturn’s Polar Hexagon
NASA Astrophysics Data System (ADS)
Adriani, Alberto; Moriconi, Maria Luisa; D'Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico
2015-07-01
Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610-3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.
Nanometric depth resolution from multi-focal images in microscopy.
Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H
2011-07-06
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.
Nanometric depth resolution from multi-focal images in microscopy
Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.
2011-01-01
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948
Negatively charged excitons and photoluminescence in asymmetric quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlufarska, Izabela; Wojs, Arkadiusz; Quinn, John J.
2001-02-15
We study photoluminescence (PL) of charged excitons (X{sup -}) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all X{sup -} states strongly depends on the separation {delta} of electron and hole layers. The most sensitive is the ''bright'' singlet, whose binding energy decreases quickly with increasing {delta} even at relatively small B. As a result, the value of B at which the singlet-triplet crossing occurs in the X{sup -} spectrum also depends on {delta}, and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for {delta}=0.5 nm. Since the criticalmore » values of {delta} at which different X{sup -} states unbind are surprisingly small compared to the well width, the observation of strongly bound X{sup -} states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of X{sup -} recombination.« less
Spectral characterization of Dictyostelium autofluorescence.
Engel, Ruchira; Van Haastert, Peter J M; Visser, Antonie J W G
2006-03-01
Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis. In recent years, an increasing number of studies of Dictyostelium chemotaxis have made use of fluorescence-based techniques. One of the major factors that can interfere with the application of these techniques in cells is the cellular autofluorescence. In this study, the spectral properties of Dictyostelium autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that Dictyostelium autofluorescence covers a wavelength range from approximately 500 to 650 nm with a maximum at approximately 510 nm, and thus, potentially interferes with measurements of green fluorescent protein (GFP) fusion proteins with fluorescence microscopy techniques. Further characterization of the spatial distribution, intensity, and brightness of the autofluorescence was performed with fluorescence confocal microscopy and fluorescence fluctuation spectroscopy (FFS). The autofluorescence in both chemotaxing and nonchemotaxing cells is localized in discrete areas. The high intensity seen in cells incubated in the growth medium HG5 reduces by around 50% when incubated in buffer, and can be further reduced by around 85% by photobleaching cells for 5-7 s. The average intensity and spatial distribution of the autofluorescence do not change with long incubations in the buffer. The cellular autofluorescence has a seven times lower molecular brightness than eGFP. The influence of autofluorescence in FFS measurements can be minimized by incubating cells in buffer during the measurements, pre-bleaching, and making use of low excitation intensities. The results obtained in this study thus offer guidelines to the design of future fluorescence studies of Dictyostelium. Microsc. Res. Tech. 69:168-174, 2006. (c) 2006 Wiley-Liss, Inc.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
ESCAPE : a first step to high resolution solar coronagraphy in Antarctica
NASA Astrophysics Data System (ADS)
Damé, L.; Abe, L.; Faurobert, M.; Fineschi, S.; Kuzin, S.; Lamy, P.; Meftah, M.; Vives, S.
2012-06-01
The Dome C high plateau is unique for coronagraphic observations: sky brightness is reduced, water vapour is low, seeing is excellent and continuity of observations on several weeks is possible. ESCAPE (the Extreme Solar Coronagraphy Antarctic Program Experiment) will perform 2-dimensional spectroscopy of the forbidden line of FeXIV at 530.285 nm: precise line profile analysis will allow the diagnostic of the nature of waves by simultaneous measurements of velocities and intensities in the corona. ESCAPE is proposed to Institut Paul-Emile Victor (IPEV) for a campaign in 2012-2013 at Dome C/Concordia since all subsystems are available in particular thanks to an ESA STARTIGER 2010 R&D "Toward a New Generation of Formation Flying Coronagraph". Using state-of-the-art technologies developed for Space missions (a Three Mirrors Anastigmat telescope, the TMA, a 4 stages Liquid Crystal Tunable-filter Polarimeter, the LCTP) allows us to propose an automated Coronal Green Line full-field Polarimeter for unique observations (waves nature and intensity to address coronal heating) with the best possible performances on Earth and for preparing and testing the technologies for the next steps in Space. No other site would allow such coronagraphic performances (the sky brightness is a factor 2 to 4 better than in Hawaï) and with high spatial resolution (better than an arcsec is possible).
Bright long-lived luminescence of silicon nanocrystals sensitized by two-photon absorbing antenna
Ravotto, Luca; Chen, Qi; Ma, Yuguo; Vinogradov, Sergei A.; Locritani, Mirko; Bergamini, Giacomo; Negri, Fabrizia; Yu, Yixuan; Korgel, Brian A.; Ceroni, Paola
2017-01-01
Summary Silicon nanocrystals of the average diameter of 5 nm, functionalized with 4,7-di(2-thienyl)-2,1,3-benzothiadiazole chromophores (TBT) and dodecyl chains, exhibit near-infrared emission upon one-photon (1P) excitation at 515 nm and two-photon (2P) excitation at 960 nm. By using TBT chromophores as an antenna we were able to enhance both 1P and 2P absorption cross-sections of the silicon nanocrystals to more efficiently excite their long-lived luminescence. These results chart a path to two-photon-excitable imaging probes with long-lived oxygen-independent luminescence - a rare combination of properties that should allow for a substantial increase in imaging contrast. PMID:28966989
Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.
Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang
2016-02-01
Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Scheuerlein, R.; Wayne, R.; Roux, S. J.
1988-01-01
A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.
NASA Astrophysics Data System (ADS)
Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon
2015-11-01
Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.
Synthesis and characterization of luminescent aluminium selenide nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitskii, O.A., E-mail: balitskii@electronics.wups.lviv.ua; Demchenko, P.Yu.; Mijowska, E.
Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuningmore » their spectral characteristics to higher energy solar photons.« less
Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel
Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming
2016-01-01
Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934
Improvement of sub-20nm pattern quality with dose modulation technique for NIL template production
NASA Astrophysics Data System (ADS)
Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kanamitsu, Shingo; Motokawa, Takeharu; Hagihara, Kazuki; Arisawa, Yukiyasu; Kobayashi, Sachiko; Saito, Masato; Ito, Masamitsu
2016-04-01
Nanoimprint lithography (NIL) technology is in the spotlight as a next-generation semiconductor manufacturing technique for integrated circuits at 22 nm and beyond. NIL is the unmagnified lithography technique using template which is replicated from master templates. On the other hand, master templates are currently fabricated by electron-beam (EB) lithography[1]. In near future, finer patterns less than 15nm will be required on master template and EB data volume increases exponentially. So, we confront with a difficult challenge. A higher resolution EB mask writer and a high performance fabrication process will be required. In our previous study, we investigated a potential of photomask fabrication process for finer patterning and achieved 15.5nm line and space (L/S) pattern on template by using VSB (Variable Shaped Beam) type EB mask writer and chemically amplified resist. In contrast, we found that a contrast loss by backscattering decreases the performance of finer patterning. For semiconductor devices manufacturing, we must fabricate complicated patterns which includes high and low density simultaneously except for consecutive L/S pattern. Then it's quite important to develop a technique to make various size or coverage patterns all at once. In this study, a small feature pattern was experimentally formed on master template with dose modulation technique. This technique makes it possible to apply the appropriate exposure dose for each pattern size. As a result, we succeed to improve the performance of finer patterning in bright field area. These results show that the performance of current EB lithography process have a potential to fabricate NIL template.
NASA Astrophysics Data System (ADS)
Adavallan, K.; Krishnakumar, N.
2014-06-01
Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.
Gain measurements and spatial coherence in neon-like x-ray lasers
NASA Astrophysics Data System (ADS)
Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.
1995-05-01
Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.
NASA Astrophysics Data System (ADS)
Cai, Duanjun; Wang, Huachun; Huang, Youyang; Wu, Chenping; Chen, Xiaohong; Gao, Na; Wei, Tongbo T.; Wang, Junxi; Li, Shuping; Kang, Junyong
2016-09-01
Metal nanowire networks hold a great promise, which have been supposed the only alternative to ITO as transparent electrodes for their excellent performance in touch screen, LED and solar cell. It is well known that the difficulty in making transparent ohmic electrode to p-type high-Al-content AlGaN conducting layer has highly constrained the further development of UV LEDs. On the IWN-2014, we reported the ohmic contact to n, p-GaN with direct graphene 3D-coated Cu nanosilk network and the fabrication of complete blue LED. On the ICNS-2015, we reported the ohmic contact to n-type AlGaN conducting layer with Cu@alloy nanosilk network. Here, we further demonstrate the latest results that a novel technique is proposed for fabricating transparent ohmic electrode to high-Al-content AlGaN p-type conducting layer in UV LEDs using Cu@alloy core-shell nanosilk network. The superfine copper nanowires (16 nm) was synthesized for coating various metals such as Ni, Zn, V or Ti with different work functions. The transmittance showed a high transparency (> 90%) over a broad wavelength range from 200 to 3000 nm. By thermal annealing, ohmic contact was achieved on p-type Al0.5Ga0.5N layer with Cu@Ni nanosilk network, showing clearly linear I-V curve. By skipping the p-type GaN cladding layer, complete UV LED chip was fabricated and successfully lit with bright emission at 276 nm.
Tang, Rui; Xue, Jianpeng; Xu, Baogang; Shen, Duanwen; Sudlow, Gail P; Achilefu, Samuel
2015-01-27
The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from 500 to 1200 nm and a QD core diameter between 1.5 and 9 nm. Conjugation of a tumor-avid cyclic pentapeptide (Arg-Gly-Asp-DPhe-Lys) resulted in monodisperse, water-soluble QDs (hydrodynamic diameter < 10 nm) without loss of the peptide's high binding affinity to tumor-associated integrins (KI = 1.8 nM/peptide). Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and noncytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.
NASA Astrophysics Data System (ADS)
Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan
2011-03-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al, Hui-wang; Henderson, J. Nathan; Remington, S. James
The arsenal of engineered variants of the GFP [green FP (fluorescent protein)] from Aequorea jellyfish provides researchers with a powerful set of tools for use in biochemical and cell biology research. The recent discovery of diverse FPs in Anthozoa coral species has provided protein engineers with an abundance of alternative progenitor FPs from which improved variants that complement or supersede existing Aequorea GFP variants could be derived. Here, we report the engineering of the first monomeric version of the tetrameric CFP (cyan FP) cFP484 from Clavularia coral. Starting from a designed synthetic gene library with mammalian codon preferences, we identifiedmore » dimeric cFP484 variants with fluorescent brightness significantly greater than the wild-type protein. Following incorporation of dimer-breaking mutations and extensive directed evolution with selection for blue-shifted emission, high fluorescent brightness and photostability, we arrived at an optimized variant that we have named mTFP1 [monomeric TFP1 (teal FP 1)]. The new mTFP1 is one of the brightest and most photostable FPs reported to date. In addition, the fluorescence is insensitive to physiologically relevant pH changes and the fluorescence lifetime decay is best fitted as a single exponential. The 1.19 {angstrom} crystal structure (1 {angstrom}=0.1 nm) of mTFP1 confirms the monomeric structure and reveals an unusually distorted chromophore conformation. As we experimentally demonstrate, the high quantum yield of mTFP1 (0.85) makes it particularly suitable as a replacement for ECFP (enhanced CFP) or Cerulean as a FRET (fluorescence resonance energy transfer) donor to either a yellow or orange FP acceptor.« less
Small-scale swirl events in the quiet Sun chromosphere
NASA Astrophysics Data System (ADS)
Wedemeyer-Böhm, S.; Rouppe van der Voort, L.
2009-11-01
Context: Recent progress in instrumentation enables solar observations with high resolution simultaneously in the spatial, temporal, and spectral domains. Aims: We use such high-resolution observations to study small-scale structures and dynamics in the chromosphere of the quiet Sun. Methods: We analyse time series of spectral scans through the Ca ii 854.2 nm spectral line obtained with the CRISP instrument at the Swedish 1-m Solar Telescope. The targets are quiet Sun regions inside coronal holes close to disc-centre. Results: The line core maps exhibit relatively few fibrils compared to what is normally observed in quiet Sun regions outside coronal holes. The time series show a chaotic and dynamic scene that includes spatially confined “swirl” events. These events feature dark and bright rotating patches, which can consist of arcs, spiral arms, rings or ring fragments. The width of the fragments typically appears to be of the order of only 0.2 arcsec, which is close to the effective spatial resolution. They exhibit Doppler shifts of -2 to -4 km s-1 but sometimes up to -7 km s-1, indicating fast upflows. The diameter of a swirl is usually of the order of 2´´. At the location of these swirls, the line wing and wide-band maps show close groups of photospheric bright points that move with respect to each other. Conclusions: A likely explanation is that the relative motion of the bright points twists the associated magnetic field in the chromosphere above. Plasma or propagating waves may then spiral upwards guided by the magnetic flux structure, thereby producing the observed intensity signature of Doppler-shifted ring fragments. The movie is only available in electronic form at http://www.aanda.org Marie Curie Intra-European Fellow of the European Commission.
Mitronova, Gyuzel Yu.; Sidenstein, Sven C.; Klocke, Jessica L.; Kamin, Dirk; Meineke, Dirk N. H.; D'Este, Elisa; Kraemer, Philip‐Tobias; Danzl, Johann G.
2016-01-01
Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm. PMID:26844929
Generation of polarization squeezed light with an optical parametric amplifier at 795 nm
NASA Astrophysics Data System (ADS)
Han, Yashuai; Wen, Xin; Liu, Jinyu; He, Jun; Wang, Junmin
2018-06-01
We report the experimental demonstration of polarization squeezed beam at 795 nm by combining a quadrature amplitude squeezed beam with an in-phase bright coherent beam. The quadrature amplitude squeezed beam is generated by a degenerate optical parametric amplifier based on a PPKTP crystal. Stokes operators Sˆ2 squeezing of -3.8 dB and Sˆ3 anti-squeezing of +5.0 dB have been observed. This polarization squeezed beam resonant to rubidium D1 line has potential applications in quantum information networks and precision measurement beyond the shot noise limit.
Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho
2017-01-01
Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021
NASA Astrophysics Data System (ADS)
Park, Bong Je; Hong, A.-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho
2017-04-01
Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.
Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.; Yashchuk, Valeriy
2007-12-01
What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of newmore » light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all dire: several leading groups are blazing a trail forward, and the recognition of this issue is increasing. The workshop featured eleven invited talks whose presenters came from Japan, Europe, and the US.« less
Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon
2013-05-01
A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.
The MESSIER surveyor: unveiling the ultra-low surface brightness universe
NASA Astrophysics Data System (ADS)
Valls-Gabaud, David; MESSIER Collaboration
2017-03-01
The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.
DNA Encapsulation of Ten Silver Atoms Produces a Bright, Modulatable, Near Infrared-Emitting Cluster
Petty, Jeffrey T.; Fan, Chaoyang; Story, Sandra P.; Sengupta, Bidisha; Iyer, Ashlee St. John; Prudowsky, Zachary; Dickson, Robert M.
2010-01-01
Photostability, inherent fluorescence brightness, and optical modulation of fluorescence are key attributes distinguishing silver nanoclusters as fluorophores. DNA plays a central role both by protecting the clusters in aqueous environments and by directing their formation. Herein, we characterize a new near infrared-emitting cluster with excitation and emission maxima at 750 and 810 nm, respectively that is stabilized within C3AC3AC3TC3A. Following chromatographic resolution of the near infrared species, a stoichiometry of 10 Ag/oligonucleotide was determined. Combined with excellent photostability, the cluster’s 30% fluorescence quantum yield and 180,000 M−1cm−1 extinction coefficient give it a fluorescence brightness that significantly improves on that of the organic dye Cy7. Fluorescence correlation analysis shows an optically accessible dark state that can be directly depopulated with longer wavelength co-illumination. The coupled increase in total fluorescence demonstrates that enhanced sensitivity can be realized through Synchronously Amplified Fluorescence Image Recovery (SAFIRe), which further differentiates this new fluorophore. PMID:21116486
NASA Astrophysics Data System (ADS)
Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K.; Tamil Selvan, Subramanian; Tan, Timothy Thatt Yang
2014-10-01
The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01717j
Jupiter's Equatorial Region in a Methane band (Time set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.
North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoZhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng
2017-09-26
Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.
Rapid microscopy measurement of very large spectral images.
Lindner, Moshe; Shotan, Zav; Garini, Yuval
2016-05-02
The spectral content of a sample provides important information that cannot be detected by the human eye or by using an ordinary RGB camera. The spectrum is typically a fingerprint of the chemical compound, its environmental conditions, phase and geometry. Thus measuring the spectrum at each point of a sample is important for a large range of applications from art preservation through forensics to pathological analysis of a tissue section. To date, however, there is no system that can measure the spectral image of a large sample in a reasonable time. Here we present a novel method for scanning very large spectral images of microscopy samples even if they cannot be viewed in a single field of view of the camera. The system is based on capturing information while the sample is being scanned continuously 'on the fly'. Spectral separation implements Fourier spectroscopy by using an interferometer mounted along the optical axis. High spectral resolution of ~5 nm at 500 nm could be achieved with a diffraction-limited spatial resolution. The acquisition time is fairly high and takes 6-8 minutes for a sample size of 10mm x 10mm measured under a bright-field microscope using a 20X magnification.
NASA Astrophysics Data System (ADS)
Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling
2016-03-01
Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (<114nm), high two-photon absorption cross sections (up to 2,800 GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.
NASA Astrophysics Data System (ADS)
Wang, Hanyu; Zhou, Jie; Wang, Xu; Lu, Zhiyun; Yu, Junsheng
2014-08-01
A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-{3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy}-2-(4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 1011 Jones at -3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm2, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m2. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.
Resonant cavity light-emitting diodes based on dielectric passive cavity structures
NASA Astrophysics Data System (ADS)
Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.
2017-02-01
A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5°. Consequently high efficiency high brightness arrays of micro-LEDs becomes possible. For single emitters the approach is particularly interesting for oscillator strength engineering allowing high speed data transmission and for single photonics applying single quantum dot (QD) emitters and allowing >90% coupling of the emission into single mode fiber. We also note that for longer wavelength ( 1300nm) QDs the thickness of the layers and surface patterns significantly increase allowing greatly reduced processing tolerances and applying further simplifications due to the possibility of using high contrast GaAs-AlOx DBRs.
McBride, E L; Rao, A; Zhang, G; Hoyne, J D; Calco, G N; Kuo, B C; He, Q; Prince, A A; Pokrovskaya, I D; Storrie, B; Sousa, A A; Aronova, M A; Leapman, R D
2018-06-01
Microscopies based on focused electron probes allow the cell biologist to image the 3D ultrastructure of eukaryotic cells and tissues extending over large volumes, thus providing new insight into the relationship between cellular architecture and function of organelles. Here we compare two such techniques: electron tomography in conjunction with axial bright-field scanning transmission electron microscopy (BF-STEM), and serial block face scanning electron microscopy (SBF-SEM). The advantages and limitations of each technique are illustrated by their application to determining the 3D ultrastructure of human blood platelets, by considering specimen geometry, specimen preparation, beam damage and image processing methods. Many features of the complex membranes composing the platelet organelles can be determined from both approaches, although STEM tomography offers a higher ∼3 nm isotropic pixel size, compared with ∼5 nm for SBF-SEM in the plane of the block face and ∼30 nm in the perpendicular direction. In this regard, we demonstrate that STEM tomography is advantageous for visualizing the platelet canalicular system, which consists of an interconnected network of narrow (∼50-100 nm) membranous cisternae. In contrast, SBF-SEM enables visualization of complete platelets, each of which extends ∼2 µm in minimum dimension, whereas BF-STEM tomography can typically only visualize approximately half of the platelet volume due to a rapid non-linear loss of signal in specimens of thickness greater than ∼1.5 µm. We also show that the limitations of each approach can be ameliorated by combining 3D and 2D measurements using a stereological approach. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.
2017-08-01
We conducted geomagnetically conjugate observations of 630-nm airglow for a midnight brightness wave (MBW) at Kototabang, Indonesia [geomagnetic latitude (MLAT): 10.0°S], and Chiang Mai, Thailand (MLAT: 8.9°N), which are geomagnetically conjugate points at low latitudes. An airglow enhancement that was considered to be an MBW was observed in OI (630-nm) airglow images at Kototabang around local midnight from 2240 to 2430 LT on February 7, 2011. This MBW propagated south-southwestward, which is geomagnetically poleward, at a velocity of 290 m/s. However, a similar wave was not observed in the 630-nm airglow images at Chiang Mai. This is the first evidence of an MBW that does not have geomagnetic conjugacy, which also implies generation of MBW only in one side of the hemisphere from the equator. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the wave was observed. This indicates that the observed MBW was generated by the poleward winds which push ionospheric plasma down along geomagnetic field lines, thereby increasing the 630-nm airglow intensity. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai. We suggest that the polarization electric field inside the observed MBW is projected to the northern hemisphere, causing the small height increase observed at Chiang Mai. This implies that electromagnetic coupling between hemispheres can occur even though the original disturbance is caused purely by the neutral wind.[Figure not available: see fulltext.
Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia
2014-01-01
We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286
Multi-wavelength observations of the solar atmosphere from the August 21, 2017 total solar eclipse
NASA Astrophysics Data System (ADS)
Tomczyk, S.; Boll, A.; Bryans, P.; Burkepile, J.; Casini, R.; DeLuca, E.; Gibson, K. L.; Judge, P. G.; McIntosh, S. W.; Samra, J.; Sewell, S. D.
2017-12-01
We will conduct three experiments at the August 21, 2017 total solar eclipse that we call the Rosetta Stone experiments. First, we will obtain narrow-bandpass images at infrared wavelengths of the magnetically sensitive coronal emission lines of Fe IX 2855 nm, Mg VIII 3028 nm and Si IX 3935 nm with a FLIR thermal imager. Information on the brightness of these lines is important for identifying the optimal lines for coronal magnetometry. These images will also serve as context images for the airborne AirSpec IR coronal spectroscopy experiment (Samra et al). Second, we will obtain linear polarization images of the visible emission lines of Fe X 637 nm and Fe XI 789 nm as well as the continuum polarization near 735 nm. These will be obtained with a novel detector with an integral array of linear micro-polarizers oriented at four different angles that enable polarization images without the need for liquid crystals or rotating elements. These measurements will provide information on the orientation of magnetic fields in the corona and serve to demonstrate the new detector technology. Lastly, we will obtain high cadence spectra as the moon covers and uncovers the chromosphere immediately after 2nd contact and before third contact. This so-called flash spectrum will be used to obtain information about chromospheric structure at a spatial resolution higher than is possible by other means. In this talk, we will describe the instrumentation used in these experiments and present initial results obtained with them. This work is supported by a grant from NASA, through NSF base funding of HAO/NCAR and by generous loans of equipment from our corporate partners, FLIR, 4D Technologies and Avantes.
Zhang, Jingpu; Li, Chao; Zhi, Xiao; Ramón, Gabriel Alfranca; Liu, Yanlei; Zhang, Chunlei; Pan, Fei; Cui, Daxiang
2016-01-19
MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.
Near-infrared imaging of water in human hair.
Egawa, Mariko; Hagihara, Motofumi; Yanai, Motohiro
2013-02-01
The water content of hair can be evaluated by weighing, the Karl Fischer method, and from electrical properties. However, these methods cannot be used to study the distribution of water in the hair. Imaging techniques are required for this purpose. In this study, a highly sensitive near-infrared (NIR) imaging system was developed for evaluating water in human hair. The results obtained from NIR imaging and conventional methods were compared. An extended indium-gallium-arsenide NIR camera (detection range: 1100-2200 nm) and diffuse illumination unit developed in our laboratory were used to obtain a NIR image of hair. A water image was obtained using a 1950-nm interference filter and polarization filter. Changes in the hair water content with relative humidity (20-95% RH) and after immersion in a 7% (w/w) sorbitol solution were measured using the NIR camera and an insulation resistance tester. The changes in the water content after treatment with two types of commercially available shampoo were also measured using the NIR camera. As the water content increased with changes in the relative humidity, the brightness of the water image decreased and the insulation resistance decreased. The brightness in the NIR image of hair treated with sorbitol solution was lower than that in the image of hair treated with water. This shows the sorbitol-treated hair contains more water than water-treated hair. The sorbitol-treated hair had a lower resistance after treatment than before, which also shows that sorbitol treatment increases the water content. With this system, we could detect a difference in the moisturizing effect between two commercially available shampoos. The highly sensitive imaging system could be used to study water in human hair. Changes in the water content of hair depended on the relative humidity and treatment with moisturizer. The results obtained using the NIR imaging system were similar to those obtained using a conventional method. Our system could detect differences in the moisturizing effects of two commercially available shampoos. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Ansari, Ghizal F.; Mahajan, S. K.
2012-02-01
The bright white upconversion emission ( tri-colour UC) is generated in Er/Tm/Yb tri -doped oxy-fluoride lithium tungsten tellurite (TWLOF)glass ceramics containing crystalline phase LiYbF4 under the excitation of 980nm laser diode. The most appropriate combination of rare-earth ions (2mol% YbF3 1mol% ErF3 and 1mol%TmF3 )of glass ceramic sample has been determined to tune the primary colour (RGB and generate white light emission. By varying the pump power, intense and weak blue (487nm, 437nm), green (525nm and 545nm) and red (662nm) emission are simultaneously observed at room temperature. The dependence of upconversion emission intensity suggest that a theephoton process is responsible for the blue emission of Tm3+ ions and red emission due to both Tm3+ and Er3+ ions , while green emission originated from two photon processes in Er3+ ions. Also tri colour upconvesion and energy transfer in this glass ceramics sample were studied under 808nm laser diode excitation. The Upconversion mechanisms and Tm3+ ions plays role of both emitter and activator (transfer energy to Er) were discussed.
NASA Astrophysics Data System (ADS)
Visart de Bocarmé, Thierry; Chau, Thoi-Dai; Kruse, Norbert
2006-09-01
The dynamic interaction of pure gold nanocrystals ("tips") with H 2O/CO gas mixtures was studied by means of video-field ion microscopy (FIM). While imaging with nano-scale resolution selected areas of the equivalent of ˜200 atomic Au sites were analysed for their chemical composition using short field pulses and injecting respective ions into a time-of-flight mass spectrometer (pulsed field desorption mass spectrometry, PFDMS). At room temperature the exposure of a clean Au sample to water gas at 10 -4 Pa, in the presence of an electric field of ˜10 V/nm, led to water adsorption and formation of bright patterns in FIM. Additional exposure to CO gas at 5 × 10 -3 Pa led to the removal of the water layer. This was associated with the occurrence of bright wave fronts which ignited simultaneously in several regions of the Au surface with no preference for a certain crystallographic surface plane. In some cases wave fronts were seen to collide resulting in more complicated patterns such as concentric rings. Surface areas free of water appeared with low brightness. The phenomena were completely reversible. PFDMS demonstrated water ions to be responsible for image formation. Surface hydroxyl was also detected mass spectrometrically and respective ion intensities decreased during the titration with CO. The results suggest that gold nanocrystals, in the absence of oxidic support materials, may be active in the reaction between water and CO at temperatures as low as 300 K and in the presence of an electric field of ˜10 V/nm.
Saturn's aurora observed by the Cassini camera at visible wavelengths
NASA Astrophysics Data System (ADS)
Dyudina, Ulyana A.; Ingersoll, Andrew P.; Ewald, Shawn P.; Wellington, Danika
2016-01-01
The first observations of Saturn's visible-wavelength aurora were made by the Cassini camera. The aurora was observed between 2006 and 2013 in the northern and southern hemispheres. The color of the aurora changes from pink at a few hundred km above the horizon to purple at 1000-1500 km above the horizon. The spectrum observed in 9 filters spanning wavelengths from 250 nm to 1000 nm has a prominent H-alpha line and roughly agrees with laboratory simulated auroras. Auroras in both hemispheres vary dramatically with longitude. Auroras form bright arcs between 70° and 80° latitude north and between 65° and 80° latitude south, which sometimes spiral around the pole, and sometimes form double arcs. A large 10,000-km-scale longitudinal brightness structure persists for more than 100 h. This structure rotates approximately together with Saturn. On top of the large steady structure, the auroras brighten suddenly on the timescales of a few minutes. These brightenings repeat with a period of ∼1 h. Smaller, 1000-km-scale structures may move faster or lag behind Saturn's rotation on timescales of tens of minutes. The persistence of nearly-corotating large bright longitudinal structure in the auroral oval seen in two movies spanning 8 and 11 rotations gives an estimate on the period of 10.65 ± 0.15 h for 2009 in the northern oval and 10.8 ± 0.1 h for 2012 in the southern oval. The 2009 north aurora period is close to the north branch of Saturn Kilometric Radiation (SKR) detected at that time.
1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system
NASA Astrophysics Data System (ADS)
Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.
2017-02-01
Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.
Subwavelength resolution Fourier ptychography with hemispherical digital condensers
NASA Astrophysics Data System (ADS)
Pan, An; Zhang, Yan; Li, Maosen; Zhou, Meiling; Lei, Ming; Yao, Baoli
2018-02-01
Fourier ptychography (FP) is a promising computational imaging technique that overcomes the physical space-bandwidth product (SBP) limit of a conventional microscope by applying angular diversity illuminations. However, to date, the effective imaging numerical aperture (NA) achievable with a commercial LED board is still limited to the range of 0.3-0.7 with a 4×/0.1NA objective due to the constraint of planar geometry with weak illumination brightness and attenuated signal-to-noise ratio (SNR). Thus the highest achievable half-pitch resolution is usually constrained between 500-1000 nm, which cannot fulfill some needs of high-resolution biomedical imaging applications. Although it is possible to improve the resolution by using a higher magnification objective with larger NA instead of enlarging the illumination NA, the SBP is suppressed to some extent, making the FP technique less appealing, since the reduction of field-of-view (FOV) is much larger than the improvement of resolution in this FP platform. Herein, in this paper, we initially present a subwavelength resolution Fourier ptychography (SRFP) platform with a hemispherical digital condenser to provide high-angle programmable plane-wave illuminations of 0.95NA, attaining a 4×/0.1NA objective with the final effective imaging performance of 1.05NA at a half-pitch resolution of 244 nm with a wavelength of 465 nm across a wide FOV of 14.60 mm2 , corresponding to an SBP of 245 megapixels. Our work provides an essential step of FP towards high-NA imaging applications without scarfing the FOV, making it more practical and appealing.
Study and optimisation of SIMS performed with He+ and Ne+ bombardment
NASA Astrophysics Data System (ADS)
Pillatsch, L.; Vanhove, N.; Dowsett, D.; Sijbrandij, S.; Notte, J.; Wirtz, T.
2013-10-01
The combination of the high-brightness He+/Ne+ atomic level ion source with the detection capabilities of secondary ion mass spectrometry (SIMS) opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope (HIM). A feasibility study with He+ and Ne+ ion bombardment is presented in order to determine the performance of SIMS analyses using the HIM. Therefore, the sputtering yields, useful yields and detection limits obtained for metallic (Al, Ni and W) as well as semiconductor samples (Si, Ge, GaAs and InP) were investigated. All the experiments were performed on a Cameca IMS4f SIMS instrument which was equipped with a caesium evaporator and oxygen flooding system. For most of the elements, useful yields in the range of 10-4 to 3 × 10-2 were measured with either O2 or Cs flooding. SIMS experiments performed directly on the ORION with a prototype secondary ion extraction and detection system lead to results that are consistent with those obtained on the IMS4f. Taking into account the obtained useful yields and the analytical conditions, such as the ion current and typical dwell time on the ORION HIM, detection limits in the at% range and better can be obtained during SIMS imaging at 10 nm lateral resolution with Ne+ bombardment and down to the ppm level when a lateral resolution of 100 nm is chosen. Performing SIMS on the HIM with a good detection limit while maintaining an excellent lateral resolution (<50 nm) is therefore very promising.
White random lasing in mixture of ZnSe, CdS and CdSSe micropowders
NASA Astrophysics Data System (ADS)
Alyamani, A. Y.; Leanenia, M. S.; Alanazi, L. M.; Aljohani, M. M.; Aljariwi, A. A.; Rzheutski, M. V.; Lutsenko, E. V.; Yablonskii, G. P.
2016-03-01
Room temperature random lasing with white light emission in a mixture of AIIBVI semiconductor powders was achieved for the first time. The scattering gain media was formed by the mixture of closely packed active micron sized crystallites of ZnSe, CdS, CdSSe semiconductors. The micropowders were produced by grinding bulk crystals of each compound. Optical excitation was performed by 10-nanosecond pulses of tuned Ti:Al2O3-laser at 390 nm. The lasing in the mixture of semiconductor powders was achieved simultaneously at four wavelengths in blue, green, yellow and red spectral regions after exceeding the threshold excitation power density. A drastic integral intensity increase, spectrum narrowing and appearance of mode structure accompanied the laser action. ZnSe crystallites produce the laser light at about 460 nm while CdS particles - at about 520 nm. Two types of CdSSe semiconductor micropowders with different sulfur content lase at 580 nm and 660 nm. The threshold excitation power densities for all laser lines in the emission spectrum are approximately the same of about 0.9 MW/cm2. The sum of the emission spectrum of the mixture of the micropowders forms white light with high brightness. Lasing is due to an appearance of random feedback for amplified radiation in the active medium of closely packed light scattering crystallites. The presented results may find their applications for visualization systems, lighting technology, data transmission, medicine as biosensors and in identification systems. The key feature of random lasers is low cost of its production and possibility to be deposited on any type of surface.
Wu, Wenbo; Mao, Duo; Hu, Fang; Xu, Shidang; Chen, Chao; Zhang, Chong-Jing; Cheng, Xiamin; Yuan, Youyong; Ding, Dan; Kong, Deling; Liu, Bin
2017-09-01
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image-guided PDT. However, simultaneously achieving effective 1 O 2 generation, long wavelength absorption, and stable near-infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1 O 2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation-induced NIR emission and very effective 1 O 2 generation in aggregate state. The yielded nanoparticles show very effective 1 O 2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image-guided photodynamic anticancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Blue organic light-emitting diodes based on terpyridine-substituted triphenylamine chromophores
NASA Astrophysics Data System (ADS)
Fan, Congbin; Wang, Xiaomei; Luo, Jianfang
2017-02-01
Two terpyridine-substituted triphenylamine chromophores, namely 4-[4-(2,2‧:6‧,2″-terpyridinyl)]phenyltriphenylamine (chromophore I) and 4-[4-(2,2‧:6‧,2″-terpyridinyl)] styryltriphenylamine (chromophore II), have been designed and applied as emitters in organic light-emitting diodes (OLED). Chromophore I and II exhibit high thermal stability with decomposition temperatures higher than 334 °C. And these chromophores show significantly different luminescent performance due to the role of different rigid phenyl/flexible styryl unit interlinking terpyridine and triphenylamine units which have different lowest unoccupied molecular orbital (LUMO) levels. The fluorescence lifetime of chromophore I is 3-fold longer than that of chromophore II and the maximum brightness of device used chromophore I as an emitting-layer in OLED is 28-fold larger than that of chromophore II in OLED. Chromophore I as an emitter in OLED exhibits blue electroluminescence peak at 460 nm (Commission Internationale de L'Eclairage (CIE) x = 0.19, y = 0.22). By using chromophore I as an emitter in a four layers device, an efficient blue emission with the maximum brightness 3000 cd/m2 and maximum luminescence efficiency 3.6 cd/A is obtained.
TEM characterization of nanodiamond thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, L.-C.; Zhou, D.; Krauss, A. R.
The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found inmore » PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.« less
Rare earth niobate coordination polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less
Rare earth niobate coordination polymers
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; ...
2018-01-03
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less
Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals
Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.
2017-01-31
Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.
Spectroscopic Classification of MASTER OT J110707.62-052244.0 as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Kim, M.; Shivvers, I.; Yuk, H.; Filippenko, A. V.
2015-11-01
We report that inspection of a CCD spectrum (range 350-1050 nm) of MASTER OT J110707.62-052244.0 (ATel #8236), obtained on Nov. 11.57 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.
Spectroscopic Classification of PSN J07051005+2102327: a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Shivvers, I.; Yuk, H.; Filippenko, A. V.; U, V.
2015-11-01
We report that inspection of a low signal-to-noise ratio CCD spectrum (range 350-1050 nm) of PSN J07051005+2102327 (CBAT TOCP), obtained on Nov. 17.46 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova within a few days of maximum brightness.
NASA Astrophysics Data System (ADS)
Cao, Duojun; Qian, Ying
2016-07-01
A novel pyridyltriphenylamine-rhodamine dye PTRh and a pyridyltriphenylamine derivative PTO were synthesized and characterized by 1H NMR and HRMS-MALDI-TOF. PTRh performed typical fluorescence resonance energy transfer (FRET) signal from pyridyltriphenylamine to rhodamine along with notable color change from green to rose when interacting with Hg2+ in EtOH/H2O. And PTRh as a ratiometric probe for Hg2+ based on FRET could achieve a very low detection limit of 32 nM and energy transfer efficiency of 83.7% in aqueous organic system. On the other hand, spectra properties of PTO in its aggregates, THF/H2O mixed solution and silica nanoparticles (Si-NPs) dispersed in water were investigated. And the results indicated PTO exhibited bright green fluorescence in solid state, and PTO was successfully encapsulated in silica matrix (30-40 nm), emitting bright blue fluorescence with 11.7% quantum yield. Additionally, living cell imaging experiments demonstrated that PTRh could effectively response to intracellular Hg2+ and PTO-doped Si-NPs were well uptaken by MCF-7 breast cancer cells. It could be concluded that the chromophores are promising materials used as biosensors.
Near Infrared Emission from Defects in Few-Layer Phosphorene
NASA Astrophysics Data System (ADS)
Aghaeimeibodi, Shahriar; Kim, Je-Hyung; Waks, Edo
Atomically thin films of black phosphorus have recently received significant attention as low dimensional optical materials with a direct exciton emission whose wavelength is tunable by controlling the number of layers. In addition to this excitonic emission, recent work has revealed emission from defect states and reported new methods to manipulate them. Monolayer phosphorene exhibits emission from localized defect states at wavelengths near 920 nm. Increasing the number of layers should shift defect emission to longer wavelengths, enabling the material to span a broader spectral range. But defect emission from few-layer phosphorene has not yet been reported. Here, we demonstrate a new class of near infrared defects in few layer phosphorene. Photoluminescence measurement shows a bright emission around 1240 nm with a sublinear growth of emission intensity with linear increase of excitation intensity, confirming the defect nature of this emission. From time-resolved lifetime measurements we determine an emission lifetime of 1.2 ns, in contrast to exciton and trion lifetimes from few layer phosphorene previously reported to be in the range of a few hundred picoseconds. This work highlights the potential of bright defects of phosphorene for near infrared optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anju, E-mail: singh-nk24@yahoo.com; Vishwakarma, H. L., E-mail: horilal5@yahoo.com
2015-07-31
In this work, ZnO nanorods were achieved by a simple chemical precipitation method in the presence of capping agent Poly Vinyl Pyrrolidone (PVP) at room temperature. X-Ray Diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have wurtzite hexagonal structure without any impurities. It has been seen that the growth orientation of the prepared ZnO nanorods were (101). XRD analysis revealed that the nanorods having the crystallite size 49 nm. The Scanning Electron Microscopy (SEM) image confirmed the size and shape of these nanorods. The diameter of nanorods has been found that 1.52 µm to 1.61 µm and the lengthmore » of about 4.89 µm. It has also been found that at room temperature Ultra Violet Visible (UV-VIS) absorption band is around 355 nm (blue shifted as compared to bulk). Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.« less
Spatial and Temporal Stability of Airglow Measured in the Meinel Band Window at 1191.3 nm
NASA Astrophysics Data System (ADS)
Nguyen, Hien T.; Zemcov, Michael; Battle, John; Bock, James J.; Hristov, Viktor; Korngut, Phillip; Meek, Andrew
2016-09-01
We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using a λ/Δλ = 320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. At low airmasses, the absolute sky brightness at this wavelength is found to be 5330 ± 30 nW m-2 sr-1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ˜100 s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-infrared line intensity mapping may be feasible from ground-based sites.
NASA Astrophysics Data System (ADS)
Mandt, Kathleen; Mazarico, Erwan; Greathouse, Thomas K.; Byron, Ben; Retherford, Kurt D.; Gladstone, Randy; Liu, Yang; Hendrix, Amanda R.; Hurley, Dana; Stickle, Angela; Wes Patterson, G.; Cahill, Joshua; Williams, Jean-Pierre
2017-10-01
The south pole of the Moon is an area of great interest for exploration and scientific research because many low-lying regions are permanently shaded and are likely to trap volatiles for extended periods of time, while adjacent topographic highs can experience extended periods of sunlight. One of the goals of the Lunar Reconnaissance Orbiter (LRO) mission is to characterize the temporal variability of illumination of the lunar polar regions for the benefit of future exploration efforts. We use far ultraviolet (FUV) observations made by the Lyman Alpha Mapping Project (LAMP) to evaluate illumination at the lunar south pole (within 5° of the pole).LAMP observations are made through passive remote sensing in the FUV wavelength range of 57-196 nm using reflected sunlight during daytime observations and reflected light from the IPM and UV-bright stars during nighttime observations. In this study we focused on the region within 5° of the pole, and produced maps using nighttime data taken between September 2009 and February 2014. Summing over long time periods is necessary to obtain sufficient signal to noise. Many of the maps produced for this study show excess brightness in the “Off Band”, or 155-190 nm, because sunlight scattered into the PSRs is most evident in this wavelength range.LAMP observes the highest rate of scattered sunlight in two large PSRs during nighttime observations: Haworth and Shoemaker. We focus on these craters for comparisons with an illumination model and other LRO datasets. We find that the observations of scattered sunlight do not agree with model predictions. However, preliminary results comparing LAMP maps with other LRO datasets show a correlation between LAMP observations of scattered sunlight and Diviner measurements for maximum temperature.
Exoplanet Transits of Stellar Active Regions
NASA Astrophysics Data System (ADS)
Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano
2018-01-01
We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.
An experimental apparatus for diffraction-limited soft x-ray nano-focusing
NASA Astrophysics Data System (ADS)
Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard
2011-09-01
Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.
Monitoring solar-type stars for luminosity variations
NASA Technical Reports Server (NTRS)
Lockwood, G. W.; Skiff, B. A.
1988-01-01
Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.
Sub-100 nm resolution microscopy based on proximity projection grating scheme
Hu, Feng; Somekh, Michael G.; Albutt, Darren J.; Webb, Kevin; Moradi, Emilia; See, Chung W.
2015-01-01
Structured illumination microscopy (SIM) has been widely used in life science imaging applications. The maximum resolution improvement of SIM, compared to conventional bright field system is a factor of 2. Here we present an approach to structured illumination microscopy using the proximity projection grating scheme (PPGS), which has the ability to further enhance the SIM resolution without invoking any nonlinearity response from the sample. With the PPGS-based SIM, sub-100 nm resolution has been obtained experimentally, and results corresponding to 2.4 times resolution improvement are presented. Furthermore, it will be shown that an improvement of greater than 3 times can be achieved. PMID:25715953
New Optical Sensing Materials for Application in Marine Research
NASA Astrophysics Data System (ADS)
Borisov, S.; Klimant, I.
2012-04-01
Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes distribution are also realized. To enable versatility of applications we also obtained a range of nano- and microparticles suitable for intra- and extracellular imaging of the above analytes. Bright ratiometric 2-photon-excitable probes were also developed. Magnetic microparticles are demonstrated to be very promising tools for imaging of oxygen, temperature and other parameters in biofilms, corals etc. since they combine the sensing function with the possibility of external manipulation.
Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John
2005-10-01
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.
Development Of HUD Combiner For Automotive Windshield Application
NASA Astrophysics Data System (ADS)
Hattori, Akimasa; Makita, Kensuke; Okabayashi, Shigeru
1989-12-01
The head-up display system (HUM) has been developed for the windshield of Nissan Motor's passenger car, '88 model of Silvia (240SX) and '89 model of Maxima. HUD consists of a projector with high brightness VFT and a combiner which is a light-selective reflective film applied on the surface of ' e windshield. The system provides nice display legibility of speed in a three-digit reap at the position more than one meter far from driver's eye even under the bright sunlight. In this report, we present the optical properties and manufacturing process of the advanced combiner. The combiner has to have high transmittance as well as high reflectance so that a driver can see both foreground object and display reading at the same time. The optical design for the combiner is based on the concepts: (a) Visible light transmittance has to be 70% or more in accordance with a legal requirement, and (b) taking both peak wavelengths of Vim' and sensitivity characteristics of human eyes into consideration, 530nm of wave length is chosen as a reflective light. The combiner consists of a dielectric thin layer of Ti02-Si02 system. Its basic structure is decided by simulation with matrix method of the resultant waves. The coating film is applied on the restricted area of the forth surface of laminated windshield by newly developed solgel printing process using a metal alkoxide solution with a relatively long storage life.
High duty cycle hard soldered kilowatt laser diode arrays
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom
2010-02-01
High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.
Thin film studies toward improving the performance of accelerator electron sources
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al
Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(+/-0.05) x 10--13 Torr L s--1 cm--2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(+/-0.05) x 10--13 Torr L s--1 cm--2 following an initial 90 °C bake and 2(+/-20) x 10--16 Torr L s --1 cm--2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high current electron beam applications. The best performing TiN-coated aluminum electrode demonstrated less than 15 pA of field emission current at --175 kV for a 10 mm cathode/anode gap, which corresponds to a field strength of 22.5 MV/m. Third, the effect of antimony thickness on the performance of bialkali-antimonide photocathodes was studied. The high-capacity effusion source enabled us to successfully manufacture photocathodes having a maximum QE around 10% and extended low voltage 1/e lifetime (> 90 days) at 532 nm via the co-deposition method, with relatively thick layers of antimony (≥ 300 nm). We speculate that alkali co-deposition provides optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali. In summary, this research examined the effectiveness of thin films applied on photogun chamber components to achieve an extremely high vacuum, to eliminate high voltage induced field emission from electrodes, and to generate photocurrent with high quantum yield with an extended operational lifetime. Simultaneous implementation of these findings can meet the challenges of future ultra-bright photoguns.
Thin film studies toward improving the performance of accelerator electron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, Md Abdullah
Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identicalmore » 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10- 13 Torr L s -1 cm -2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10 -13 Torr L s -1 cm -2 following an initial 90 °C bake and 2(±20) x 10 -16 Torr L s -1 cm -2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high current electron beam applications. The best performing TiN-coated aluminum electrode demonstrated less than 15 pA of field emission current at -- 175 kV for a 10 mm cathode/anode gap, which corresponds to a field strength of 22.5 MV/m. Third, the effect of antimony thickness on the performance of bialkali-antimonide photocathodes was studied. The high-capacity effusion source enabled us to successfully manufacture photocathodes having a maximum QE around 10% and extended low voltage 1/e lifetime (> 90 days) at 532 nm via the co-deposition method, with relatively thick layers of antimony (≥ 300 nm). We speculate that alkali co-deposition provides optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali. In summary, this research examined the effectiveness of thin films applied on photogun chamber components to achieve an extremely high vacuum, to eliminate high voltage induced field emission from electrodes, and to generate photocurrent with high quantum yield with an extended operational lifetime. Simultaneous implementation of these findings can meet the challenges of future ultra-bright photoguns.« less
Sexton, Kristian J.; Zhao, Yan; Davis, Scott C.; Jiang, Shudong; Pogue, Brian W.
2017-01-01
The design of fluorescence imaging instruments for surgical guidance is rapidly evolving, and a key issue is to efficiently capture signals with high ambient room lighting. Here, we introduce a novel time-gated approach to fluorescence imaging synchronizing acquisition to the 120 Hz light of the room, with pulsed LED excitation and gated ICCD detection. It is shown that under bright ambient room light this technique allows for the detection of physiologically relevant nanomolar fluorophore concentrations, and in particular reduces the light fluctuations present from the room lights, making low concentration measurements more reliable. This is particularly relevant for the light bands near 700nm that are more dominated by ambient lights. PMID:28663895
Bhamore, Jigna R; Jha, Sanjay; Basu, Hirakendu; Singhal, Rakesh Kumar; Murthy, Z V P; Kailasa, Suresh Kumar
2018-04-01
Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I 0 /I at 648 nm are proportional to the concentrations of Hg 2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg 2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg 2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg 2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.
Marciniak, Lukasz; Pilch, Aleksandra; Arabasz, Sebastian; Jin, Dayong; Bednarkiewicz, Artur
2017-06-22
The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd 3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (S R > 0.1% K -1 ) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λ exc ∼ 800 nm, λ emi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF 4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF 4 :1%Nd 3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF 4 , is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.
Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets
NASA Technical Reports Server (NTRS)
Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis
2011-01-01
The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.
Rao, Ying-Li; Schoenmakers, Dylan; Chang, Yi-Lu; Lu, Jia-Sheng; Lu, Zheng-Hong; Kang, Youngjin; Wang, Suning
2012-09-03
New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2))-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50 nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10 nm whereas a fluoro substituent blue-shifts the emission energy by about 6 nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475 nm and Φ(PL)=0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485 nm and Φ(PL)=0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100 cd m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4%, respectively, have been achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Invisible Trojan-horse attack.
Sajeed, Shihan; Minshull, Carter; Jain, Nitin; Makarov, Vadim
2017-08-21
We demonstrate the experimental feasibility of a Trojan-horse attack that remains nearly invisible to the single-photon detectors employed in practical quantum key distribution (QKD) systems, such as Clavis2 from ID Quantique. We perform a detailed numerical comparison of the attack performance against Scarani-Ac´ın-Ribordy-Gisin (SARG04) QKD protocol at 1924 nm versus that at 1536 nm. The attack strategy was proposed earlier but found to be unsuccessful at the latter wavelength, as reported in N. Jain et al., New J. Phys. 16, 123030 (2014). However at 1924 nm, we show experimentally that the noise response of the detectors to bright pulses is greatly reduced, and show by modeling that the same attack will succeed. The invisible nature of the attack poses a threat to the security of practical QKD if proper countermeasures are not adopted.
NASA Astrophysics Data System (ADS)
Ay, Burak; Karaca, Serkan; Yildiz, Emel; Lopez, Valerie; Nanao, Max H.; Zubieta, Jon
2016-01-01
Four novel metal-organic frameworks,[Cu2Cl2(pyrz)]n (1) and (H2pip)n[Ln2(pydc)4(H2O)2]n (Ln=Ce (2), Pr (3) and Eu (4), H2pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H2pydc=2,6-pyridinedicarboxylic acid, H2pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln-O-Ln chains. All the complexes show high thermal stability. The complexes 1-3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Reddy, P. Sreedhara
2014-03-01
In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Bhatt, A.
2017-12-01
The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.
NASA Astrophysics Data System (ADS)
Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.
2017-09-01
We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.
Coherent beam combining architectures for high power tapered laser arrays
NASA Astrophysics Data System (ADS)
Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.
2017-02-01
Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.
Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A
2014-01-31
We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.
Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging
Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.
2011-01-01
We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646
A photoswitchable orange-to-far-red fluorescent protein, PSmOrange.
Subach, Oksana M; Patterson, George H; Ting, Li-Min; Wang, Yarong; Condeelis, John S; Verkhusha, Vladislav V
2011-07-31
We report a photoswitchable monomeric Orange (PSmOrange) protein that is initially orange (excitation, 548 nm; emission, 565 nm) but becomes far-red (excitation, 636 nm; emission, 662 nm) after irradiation with blue-green light. Compared to its parental orange proteins, PSmOrange has greater brightness, faster maturation, higher photoconversion contrast and better photostability. The red-shifted spectra of both forms of PSmOrange enable its simultaneous use with cyan-to-green photoswitchable proteins to study four intracellular populations. Photoconverted PSmOrange has, to our knowledge, the most far-red excitation peak of all GFP-like fluorescent proteins, provides diffraction-limited and super-resolution imaging in the far-red light range, is optimally excited with common red lasers, and can be photoconverted subcutaneously in a mouse. PSmOrange photoswitching occurs via a two-step photo-oxidation process, which causes cleavage of the polypeptide backbone. The far-red fluorescence of photoconverted PSmOrange results from a new chromophore containing N-acylimine with a co-planar carbon-oxygen double bond.
Analysis of TIMED/GUVI Dayglow Utraviolet Oxygen Images
NASA Astrophysics Data System (ADS)
Christensen, A. B.; Crowley, G.; Meier, R.
2016-12-01
Analysis of the atomic oxygen resonance transition at 130.4 nm and the inter-combination transition at 135.6 nm measured by the TIMED/GUVI mission demonstrates the state of knowledge of these important dayglow emission features and the degree to which current models can simulate their global properties. The complete modeling framework comprises several models, including the Thermosphere ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM), Assimilative Mapping of Ionospheric Electrodynamics (AMIE), a partial frequency redistribution resonance scattering model usually called REDISTER needed to compute the optically thick radiative transfer of the 130.4 nm emission, airglow emission models, GLOW and AURIC and other procedures. Observations for four different days, collected under different geophysical conditions of magnetic activity and solar cycle, show very good agreement with the calculated emission brightness and geographic distribution for both emissions. The differences between the airglow codes for the 135.6 nm emission will be discussed in connection to the photoelectron energy loss cross sections, as well as the excitation cross sections used in the various models.
Nanostructural evolution during emission of CsI-coated carbon fiber cathodes
NASA Astrophysics Data System (ADS)
Drummy, Lawrence F.; Apt, Scott; Shiffler, Don; Golby, Ken; LaCour, Matt; Maruyama, Benji; Vaia, Richard A.
2010-06-01
Carbon-based nanofiber and microfiber cathodes exhibit very low voltages for the onset of electron emission, and thus provide exciting opportunities for applications ranging from high power microwave sources to field emission displays. CsI coatings have been experimentally shown to lower the work function for emission from the fiber tips, although little is known about the microstructure of the fibers themselves in their as-received state, after coating with CsI, or after being subjected to high voltage cycling. Longitudinal cross sections of the original, unused CsI-coated fibers produced by focused ion beam lift-out revealed a nanostructured graphitic core surrounded by an amorphous carbon shell with submicron sized islands of crystalline CsI on the outer surface. Aberration-corrected high resolution electron microscopy (HREM) of the fiber core achieved 0.10 nm resolution, with the graphite (200) clearly visible in digital fast Fourier transformations of the 2-4 nm highly ordered graphitic domains. As the cathode fibers are cycled at high voltage, HREM demonstrates that the graphitic ordering of the core increases with the number of cycles, however the structure and thickness of the amorphous carbon layer remains unchanged. These results are consistent with micro-Raman measurements of the fiber disordered/graphitic (D/G) band ratios. After high voltage cycling, a uniform ˜100 nm film at the fiber tip was evident in both bright field transmission electron microscopy (TEM) and high angle annular dark field scanning TEM (STEM). Low-dose electron diffraction techniques confirmed the amorphous nature of this film, and STEM with elemental mapping via x-ray energy dispersive spectroscopy indicates this layer is composed of CsIO. The oxidative evolution of tip composition and morphology due to impurities in the chamber, along with increased graphitization of the fiber core, contributes to changes in emission behavior with cycling.
NASA Astrophysics Data System (ADS)
Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia
2017-05-01
In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.
Overview on new diode lasers for defense applications
NASA Astrophysics Data System (ADS)
Neukum, Joerg
2012-11-01
Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.
2012-05-01
mixed vegetation): 0.007 (0.017) For materials tested, • The albedo levels of old grass, dead grass, burnt grass, and maple leaf at 300 nm were...as 0.016-0.017 over vegetation, 0.04-0.05 over bare fertile soil, and 0.07-0.10 over concrete (autobahn, Germany). The albedo over dry bright sand
Synthetic Biomimetic Fluorophores for Micro/Nanosensor
2006-11-01
as a companion protein to aequorin, the famous chemiluminescent protein from the brightly luminescent Aequorea jellyfish , with glowing points...peaked near 470 nm, which was close to one of the excitation peaks of GFP. Aequorin, isolated from the jellyfish Aequorea victoria, is a complex of...partially homologous to green fluorescent protein (GFP) (Matz et al. 1999, Dove et al. 2000), first found in the luminescent jellyfish Aequorea and used
Thomas C. Pesacreta; Leslie H. Groom; Timothy G. Rials
2005-01-01
Sapwood and juvenile wood of Sapium sebiferum (Euphorbiacea) was collected during 2000-2002. In air-dried vessel elements, the surface of pit membranes (PMs) in the outermost growth ring was coated with plaque-like or interstitial material that was 2-5 nm thick. This coating was phase dark and overlaid a phase bright layer of globules and...
Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai
2015-05-01
A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.
Visualizing individual microtubules by bright field microscopy
NASA Astrophysics Data System (ADS)
Gutiérrez-Medina, Braulio; Block, Steven M.
2010-11-01
Microtubules are slender (˜25 nm diameter), filamentous polymers involved in cellular structure and organization. Individual microtubules have been visualized via fluorescence imaging of dye-labeled tubulin subunits and by video-enhanced, differential interference-contrast microscopy of unlabeled polymers using sensitive CCD cameras. We demonstrate the imaging of unstained microtubules using a microscope with conventional bright field optics in conjunction with a webcam-type camera and a light-emitting diode illuminator. The light scattered by microtubules is image-processed to remove the background, reduce noise, and enhance contrast. The setup is based on a commercial microscope with a minimal set of inexpensive components, suitable for implementation in a student laboratory. We show how this approach can be used in a demonstration motility assay, tracking the gliding motions of microtubules driven by the motor protein kinesin.
New Horizons Alice sky Lyman-α at Pluto encounter: Importance for photochemistry
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Gladstone, R.; Stern, S. A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Cheng, A. F.; Greathouse, T.; Kammer, J.; Linscott, I.; Parker, A. H.; Parker, J. W.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Strobel, D. F.; Summers, M. E.; Tsang, C.; Tyler, G. L.; Versteeg, M.; Woods, W. W.; Ennico Smith, K.; Hinson, D. P.; Pryor, W. R.; Cunningham, N. J.; Curdt, W.
2015-12-01
The third zone of our solar system, including the Pluto system, has a unique illumination environment at UV wavelengths. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of illumination by Interplanetary Medium (IPM) Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al. 2015). The Pluto-Alice UV imaging spectrograph on New Horizons conducted several dedicated sky scans to measure the IPM Lyman-α both en route to and while at Pluto. These scans provide 6° by 360° great-circle swaths while spinning the spacecraft. Three sets of scans conducted en route are reported in Gladstone et al. (2012). During the Pluto encounter, sets of scans with six such swaths evenly spaced ~30° apart for all-sky coverage were obtained just before closest approach and again just after. These measurements agree well with brightness variations expected for IPM brightnesses peaking in the sunward direction and interspersed with detections of UV bright stars and other sky features. Previous studies estimated contributions of ~2/3rds direct solar Lyα and 1/3rd IPM Lyα. Our early results suggest that these model predictions need revision. These findings have important implications for determining the rates of photochemical reactions within Pluto's atmosphere that are driven by UV photons at 121.6 nm. Similarly, new constraints are provided to the rates of photolysis on Charon's polar winter nightside. These constraints are useful for understanding the volatile transport and long-term stability of the dark red region near Charon's pole discovered by New Horizons.
Lei, Chengmin; Gu, Yanran; Chen, Zilun; Wang, Zengfeng; Zhou, Pu; Ma, Yanxing; Xiao, Hu; Leng, Jinyong; Wang, Xiaolin; Hou, Jing; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin
2018-04-16
We demonstrate an all-fiber 7 × 1 signal combiner with an output core diameter of 50 μm for high power incoherent beam combining of seven self-made Yb-doped single-mode fiber lasers around a wavelength of 1080 nm and output power of 2 kW. 14.1 kW combined output power is achieved with a total transmission efficiency of higher than 98.5% and a beam quality of M 2 = 5.37, which is close to the theoretical results based on finite-difference beam propagation technique. To the best of our knowledge, this is the highest output power ever reported for all-fiber structure beam combining generation, which indicates the feasibility and potential of >10 kW high brightness incoherent beam combining based on an all-fiber signal combiner.
Dye-doped silica-based nanoparticles for bioapplications
NASA Astrophysics Data System (ADS)
Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong
2013-12-01
This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.
Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian
2017-06-10
High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.
Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S G; Barty, C P J; Betts, S M
2003-07-01
We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.
Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; ...
2015-08-20
We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.
We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, R.; Kubo, M.; Kano, R.
The Chromospheric Lyman-Alpha Spectro-Polarimeter is a sounding rocket experiment that has provided the first successful measurement of the linear polarization produced by scattering processes in the hydrogen Ly α line (121.57 nm) radiation of the solar disk. In this paper, we report that the Si iii line at 120.65 nm also shows scattering polarization and we compare the scattering polarization signals observed in the Ly α and Si iii lines in order to search for observational signatures of the Hanle effect. We focus on four selected bright structures and investigate how the U / I spatial variations vary between themore » Ly α wing, the Ly α core, and the Si iii line as a function of the total unsigned photospheric magnetic flux estimated from Solar Dynamics Observatory /Helioseismic and Magnetic Imager observations. In an internetwork region, the Ly α core shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si iii line, the spatial variation of U / I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. A plausible explanation of this difference is the operation of the Hanle effect. We argue that diagnostic techniques based on the scattering polarization observed simultaneously in two spectral lines with very different sensitivities to the Hanle effect, like Ly α and Si iii, are of great potential interest for exploring the magnetism of the upper solar chromosphere and transition region.« less
Mao, Hsiaoyin C.; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana
2010-01-01
Human CD56bright natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-γ (IFN-γ) production, but little cytotoxicity. CD56dim NK cells have high KIR expression, produce little IFN-γ, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56bright to a CD56dim phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94highCD56dim NK cells express CD62L, CD2, and KIR at levels between CD56bright and CD94lowCD56dim NK cells. CD94highCD56dim NK cells produce less monokine-induced IFN-γ than CD56bright NK cells but much more than CD94lowCD56dim NK cells because of differential interleukin-12–mediated STAT4 phosphorylation. CD94highCD56dim NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56bright NK cells but lower than CD94lowCD56dim NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56dim NK cells identifies a functional and likely developmental intermediary between CD56bright and CD94lowCD56dim NK cells. This supports the notion that, in vivo, human CD56bright NK cells progress through a continuum of differentiation that ends with a CD94lowCD56dim phenotype. PMID:19897577
Yu, Jianhua; Mao, Hsiaoyin C; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana; Caligiuri, Michael A
2010-01-14
Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
Current development and patents on high-brightness white LED for illumination.
Pang, Wen-Yuan; Lo, Ikai; Hsieh, Chia-Ho; Hsu, Yu-Chi; Chou, Ming-Chi; Shih, Cheng-Hung
2010-01-01
In this paper, we reviewed the current development and patents for the application of high-brightness and high-efficiency white light-emitting diode (LED). The high-efficiency GaN nanostructures, such as disk, pyramid, and rod were grown on LiAlO(2) substrate by plasma-assisted molecular-beam epitaxy, and a model was developed to demonstrate the growth of the GaN nanostructures. Based on the results, the GaN disk p-n junction was designed for the application of high brightness and high efficiency white LED.
Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes
Gaowei, M.; Ding, Z.; Schubert, S.; ...
2017-11-10
Advanced photoinjectors, which are critical to many next generation accelerators, open the door to new ways of material probing, both as injectors for free electron lasers and for ultra-fast electron diffraction. For these applications, the nonuniformity of the electric field near the cathode caused by surface roughness can be the dominant source of beam emittance. Therefore, improving the photocathode roughness while maintaining quantum efficiency is essential to the improvement of beam brightness. Here in this article, we report the demonstration of a bi-alkali antimonide photocathode with an order of magnitude improved roughness by sputter deposition from a K 2CsSb sputtermore » target, using in situ and operando X-ray characterizations. We found that a surface roughness of 0.5 nm for a sputtered photocathode with a final thickness of 42 nm can be achieved while still yielding a quantum efficiency of 3.3% at 530 nm wavelength.« less
Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaowei, M.; Ding, Z.; Schubert, S.
Advanced photoinjectors, which are critical to many next generation accelerators, open the door to new ways of material probing, both as injectors for free electron lasers and for ultra-fast electron diffraction. For these applications, the nonuniformity of the electric field near the cathode caused by surface roughness can be the dominant source of beam emittance. Therefore, improving the photocathode roughness while maintaining quantum efficiency is essential to the improvement of beam brightness. Here in this article, we report the demonstration of a bi-alkali antimonide photocathode with an order of magnitude improved roughness by sputter deposition from a K 2CsSb sputtermore » target, using in situ and operando X-ray characterizations. We found that a surface roughness of 0.5 nm for a sputtered photocathode with a final thickness of 42 nm can be achieved while still yielding a quantum efficiency of 3.3% at 530 nm wavelength.« less
Synthesis and properties of SrAl2O4:Eu2+, Dy3+ nanowires
NASA Astrophysics Data System (ADS)
Li, Zhi-jie; Zhang, Yu-feng; Wu, Xiao; Qin, Chu-yang; Shi, Gui-mei
2017-10-01
The SrAl2O4:Eu2+, Dy3+ nanowire was successfully synthesized by means of catalyst-assisted thermal chemical vapor deposition method. Their morphology, structure, composition, luminescent properties are explored in way of SEM, TEM, XRD and PL analysis. The nanowires diameter is uniform distributed in 50∼80 nm, but orientation distribution is irregular, with the length varying from 4 μm to 20 μm. When heated up to the temperature of 1200 °C for three hours, the optimum synthesis is achieved with the alumina substrate covered by Al nanoparticles. The emission peak reaches to 517 nm with 365 nm light excitation and the luminous intensity was down to 1/10 of the initial brightness in 20 mins. The dielectric property was investigated at the room temperature, which show stronger dielectric loss ability.
NASA Astrophysics Data System (ADS)
Saghafi, S.; Penjweini, R.; Becker, K.; Kratky, K. W.; Dodt, H.-U.
2010-09-01
When moulds are illuminated by visible electromagnetic-EM radiations, several effects on nucleus materials and nucleotides can be detected. These effects have a significant influence on mould generation or destruction. This paper presents the effects and implications of a red diode laser beam (660 nm), a second-harmonics of a Nd:YAG laser emitting green beam (532 nm), or the combination of both, on the eradication of Pistachio mould fungus. Incident doses (ID) of both beams are kept identical throughout the experiment. The absorption spectrums of irradiated mouldy samples and the bright-greenish-yellow-fluorescence (BGYF) of fungus occurring in mould texture due to electronic excitation are investigated. We found that a combination of a green and a red laser beam with an ID of 0.5 J/cm2 provides the optimal effects on Pistachio mould fungus eradication.
Effect of K3PO4 addition as sintering inhibitor during calcination of Y2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Soga, K.; Okumura, Y.; Tsuji, K.; Venkatachalam, N.
2009-11-01
Erbium-doped yttrium oxide nanoparticle is one of the most important for fluorescence bioimaging under near infrared excitation. Particle size of it below 100 nm is an important requirement for a cellular bioimaging. However, the synthesis with such small particles is difficult at the calcination temperature above 1200 °C due to the sintering and crystal growth of the particles. In this study, yttrium oxide nanoparticles with average size of 30 nm were successfully synthesized by using K3PO4 as a sintering inhibitor during the calcination. A single phase of cubic Y2O3 as the resultant material was confirmed by XRD, which was also confirmed to emit a bright upconversion emission under 980-nm excitation. Improvement of chemical durability due to the introduction of phosphate group on the surface of the Y2O3 particles is also reported.
3D super-resolution imaging with blinking quantum dots
Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.
2013-01-01
Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439
Electro-optical and physic-mechanical properties of colored alicyclic polyimide
NASA Astrophysics Data System (ADS)
Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.
2016-09-01
Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.
Polarimetric imaging of retinal disease by polarization sensitive SLO
NASA Astrophysics Data System (ADS)
Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi
2015-03-01
Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.
Jupiter Equatorial Region in a Methane Band Time Set 1
1998-03-06
Mosaic of an equatorial "hotspot" on Jupiter at 889 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 889 nm is strongly absorbed by atmospheric methane. This image shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. The dark region near the center of the mosaic is an equatorial "hotspot" similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA01200
Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S
2016-01-11
Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.
THE UBIQUITOUS PRESENCE OF LOOPLIKE FINE STRUCTURE INSIDE SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil
Although most of the solar surface outside active regions (ARs) is pervaded by small-scale fields of mixed polarity, this magnetic “carpet” or “junkyard” is thought to be largely absent inside AR plages and strong network. However, using extreme-ultraviolet images and line-of-sight magnetograms from the Solar Dynamics Observatory, we find that unipolar flux concentrations, both inside and outside ARs, often have small, loop-shaped Fe ix 17.1 and Fe xii 19.3 nm features embedded within them, even though no minority-polarity flux is visible in the corresponding magnetograms. Such looplike structures, characterized by horizontal sizes of ∼3–5 Mm and varying on timescales ofmore » minutes or less, are seen inside bright 17.1 nm moss, as well as in fainter moss-like regions associated with weaker network outside ARs. We also note a tendency for bright coronal loops to show compact, looplike features at their footpoints. Based on these observations, we suggest that present-day magnetograms may be substantially underrepresenting the amount of minority-polarity flux inside plages and strong network, and that reconnection between small bipoles and the overlying large-scale field could be a major source of coronal heating both in ARs and in the quiet Sun.« less
Neptune Long-Lived Atmospheric Features in 2013 - 2015 from Small (28-cm) to Large (10-m) Telescopes
NASA Technical Reports Server (NTRS)
Hueso, R.; de Pater, I.; Simon, A.; Sanchez-Lavega, A.; Delcroix, M.; Wong, M. H.; Tollefson, J. W.; Baranec, C.; de Kleer, K.; Luszcz-Cook, S. H.;
2017-01-01
Since 2013, observations of Neptune with small telescopes (28-50 cm) have resulted in several detections of long-lived bright atmospheric features that have also been observed by large telescopes such as Keck II or Hubble. The combination of both types of images allows the study of the long-term evolution of major cloud systems in the planet. In 2013 and 2014 two bright features were present on the planet at southern mid-latitudes. These may have merged in late 2014, possibly leading to the formation of a single bright feature observed during 2015 at the same latitude. This cloud system was first observed in January 2015 and nearly continuously from July to December 2015 in observations with telescopes in the 2-10-m class and in images from amateur astronomers. These images show the bright spot as a compact feature at -40.1 +/- 1.6 deg planetographic latitude well resolved from a nearby bright zonal band that extended from -42 deg to -20 deg. The size of this system depends on wavelength and varies from a longitudinal extension of 8000 +/- 900 km and latitudinal extension of 6500 +/- 900 km in Keck II images in H and Ks bands to 5100 +/- 1400 km in longitude and 4500 +/- 1400 km in latitude in HST images in 657 nm. Over July to September 2015 the structure drifted westward in longitude at a rate of 24.48 +/- 0.03 deg/day or -94 +/- 3 m/s. This is about 30 m/s slower than the zonal winds measured at the time of the Voyager 2 flyby. Tracking its motion from July to November 2015 suggests a longitudinal oscillation of 16 deg in amplitude with a 90-day period, typical of dark spots on Neptune and similar to the Great Red Spot oscillation in Jupiter. The limited time covered by high-resolution observations only covers one full oscillation and other interpretations of the changing motions could be possible. HST images in September 2015 show the presence of a dark spot at short wavelengths located in the southern flank (planetographic latitude -47.0 deg) of the bright compact cloud observed throughout 2015. The drift rate of the bright cloud and dark spot translates to a zonal speed of -87.0 +/- 2.0 m/s, which matches the Voyager 2 zonal speeds at the latitude of the dark spot. Identification of a few other features in 2015 enabled the extraction of some limited wind information over this period. This work demonstrates the need of frequently monitoring Neptune to understand its atmospheric dynamics and shows excellent opportunities for professional and amateur collaborations.
Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability.
Jha, Shrawan; Qian, Jin-Cheng; Kutsay, Oleksandr; Kovac, Jaroslav; Luan, Chun-Yan; Zapien, Juan Antonio; Zhang, Wenjun; Lee, Shuit-Tong; Bello, Igor
2011-06-17
In this paper, we report a fabrication, characterization and stability study of p-GaN/n-ZnO nanorod heterojunction light-emitting devices (LEDs). The LEDs were assembled from arrays of n-ZnO vertical nanorods epitaxially grown on p-GaN. LEDs showed bright electroluminescence in blue (440 nm), although weaker violet (372 nm) and green-yellow (550 nm) spectral components were also observed. The device characteristics are generally stable and reproducible. The LEDs have a low turn-on voltage (∼5 V). The electroluminescence (EL) is intense enough to be noticed by the naked eye, at an injection current as low as ∼ 40 µA (2.1 × 10(-2) A cm(-2) at 7 V bias). Analysis of the materials, electrical and EL investigations point to the role of a high quality of p-n nano-heterojunction which facilitates a large rectification ratio (320) and a stable reverse current of 2.8 µA (1.4 × 10(-3) A cm(-2) at 5 V). Stability of EL characteristics was investigated in detail. EL intensity showed systematic degradation over a short duration when the LED was bias-stressed at 30 V. At smaller bias (<20 V) LEDs tend to show a stable and repeatable EL characteristic. Thus a simple low temperature solution growth method was successfully exploited to realize nanorod/film heterojunction LED devices with predictable characteristics.
Ultraviolet aurorae and dayglow in the upper atmospheres of terrestrial planets
NASA Astrophysics Data System (ADS)
Gerard, Jean-Claude; Hubert, Benoit; Gustin, J.; Cox, Cedric
Since its discovery in 2005 with the SPICAM spectrograph on board Mars Express, the Mars aurora has been further investigated. It is caused by sporadic soft electron precipitation whose signature is clearly observed in the FUV nightglow spectrum. The characteristics of the auroral electrons have been documented with parallel observations. Dayglow UV spectra have been collected with SPICAM over several seasons. The dependence of the intensity and peak altitude of the CO Cameron bands and CO2 + doublet emissions on latitude, local time and solar activity level have been investigated and compared with the results of a FUV Mars dayglow model. Far and Extreme ultraviolet spectra have been collected with the UVIS instrument during the flyby of Venus by Cassini, in a period a high solar activity. Their analysis shows the presence of OI, OII, NI, CI, CO and CO2 + emissions, some of them not previously identified in the Venus spectrum. The intensities will be compared with those observed with the HUT spectrograph during a period of low solar activity. The excitation processes of the observed features will be discussed. Scans of the intensity variation of several EUV bright emissions such as OII 83.4 nm, OI 98.9 nm and NI 120.0 nm multiplets across the sunlit disc will be compared with the calculations of a Venus dayglow model, including multiple scattering of optically thick transitions.
Vanadium Transitions in the Spectrum of Arcturus
NASA Astrophysics Data System (ADS)
Wood, M. P.; Sneden, C.; Lawler, J. E.; Den Hartog, E. A.; Cowan, J. J.; Nave, G.
2018-02-01
We derive a new abundance for vanadium in the bright, mildly metal-poor red giant Arcturus. This star has an excellent high-resolution spectral atlas and well-understood atmospheric parameters, and it displays a rich set of neutral vanadium lines that are available for abundance extraction. We employ a newly recorded set of laboratory FTS spectra to investigate any potential discrepancies in previously reported V I log(gf) values near 900 nm. These new spectra support our earlier laboratory transition data and the calibration method utilized in that study. We then perform a synthetic spectrum analysis of weak V I features in Arcturus, deriving log ε(V) = 3.54 ± 0.01 (σ = 0.04) from 55 lines. There are no significant abundance trends with wavelength, line strength, or lower excitation energy.
2016-01-01
Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial–mesenchymal transition (EMT), which is the major obstacle for CTC analysis via “liquid biopsy”. This article reports the development of a new class of multifunctional fluorescent–magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells. PMID:27255574
Compact and highly stable quantum dots through optimized aqueous phase transfer
NASA Astrophysics Data System (ADS)
Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter
2011-03-01
A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.
Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S
2012-03-26
A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.
LLE Review Quarterly Report (October-December 2001). Volume 89
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, William R.
2001-12-01
This volume of the LLE Review, covering October-December 2001, features “Time-Integrated Light Images of OMEGA Implosions” by P. Morley and W. Seka (p. 1). E. Kowaluk initiated this project for aesthetic rather than scientific reasons when he began taking visible light photographs of imploding OMEGA targets. These beautiful images are used to communicate LLE’s mission to the general public. A closer examination of the images revealed a one-to-one correspondence between the bright spots in the image and each of the 60 laser beams. The intensity of the bright spots has been related to refraction and absorption in the plasma surroundingmore » the imploding target. These photographs are now proving to be the basis of a new laser-plasma interaction diagnostic. Other articles in this volume are titled the following: Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers; A High-Pass Phase Plate Design for OMEGA and the NIF; Advanced Tritium Recovery System; Establishing Links Between Single Gold Nanoparticles Buried Inside SiO 2 Thin Film and 351-nm Pulsed-Laser-Damage Morphology; Resistive Switching Dynamics in Current-Biased Y-Ba-Cu-O Microbridges Excited by Nanosecond Electrical Pulses; and, Properties of Amorphous Carbon Films.« less
Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo
2010-04-01
High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.
High power narrow-band fiber-based ASE source.
Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A
2011-02-28
In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.
100W high-brightness multi-emitter laser pump
NASA Astrophysics Data System (ADS)
Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.
2011-03-01
We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.
NASA Astrophysics Data System (ADS)
Dima, G. I.; Kuhn, J. R.; Berdyugina, S.
2017-12-01
Measurements of the coronal magnetic field are difficult because of the intrinsically faint emission of coronal plasma and the large spurious background due to the bright solar disk. This work addresses the problem of resolving the confusion of the line-of-sight (LOS) integration through the optically-thin corona being observed. Work on developing new measuring techniques based on single-point inversions using the Hanle effect has already been described (Dima et al. 2016). It is important to develop a technique to assess when the LOS confusion makes comparing models and observations problematic. Using forward integration of synthetic emission through magnetohydrodynamic (MHD) models together with simultaneous linearly polarized observations of the FeXIII 1075nm and SiX 1430nm emission lines allows us to assess LOS confusion. Since the lines are both in the Hanle saturated regime their polarization angles are expected to be aligned as long as the gas is sampling the same magnetic field. If significant contributions to the emission is taking place from different regions along the LOS due to the additive nature of the polarized brightness the measured linear polarization between the two lines will be offset. The size of the resolution element is important for this determination since observing larger coronal regions will confuse the variation along the LOS with that in the plane-of-sky. We also present comparisons between synthetic linearly polarized emission through a global MHD model and observations of the same regions obtained using the 0.5m Scatter-free Observatory for Limb Active Regions and Coronae (SOLARC) telescope located on Haleakala, Maui. This work is being done in preparation for the type of observations that will become possible when the next generation 4m DKIST telescope comes online in 2020.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.
Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Organic light-emitting diodes using novel embedded al gird transparent electrodes
NASA Astrophysics Data System (ADS)
Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin
2017-03-01
This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.
Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C
2017-11-28
Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.
Relative effects of plumage coloration and vegetation density on nest success
Miller, M.W.
1999-01-01
Many passerine species are highly dichromatic with brightly-colored males and cryptically-colored females. Bright plumage in males is commonly thought to arise as a result of sexual selection by females such that males with bright coloration possess high fitness. However, bright plumage potentially could expose males to increased predation risk. Consistent with this idea, males of many highly dichromatic passerine species do not incubate. I tested whether brightly-colored males avoid incubation to reduce the probability of visual predators locating their nest. This hypothesis predicts greater hatching success for clutches incubated by cryptically-colored individuals than by brightly-colored individuals. The Northern Cardinal (Cardinalis cardinalis) is a common dichromatic species that breeds throughout the eastern U.S. I placed two button-quail (Turnix st).) eggs in each of 203 simulated cardinal nests. Dull brown cardboard, simulating a female cardinal, was placed over about half of all clutches. Bright red cardboard, simulating a male cardinal, was placed over the other clutches. Nest success was highest for well-concealed nests (87%) and lowest for nests in open habitat (54%). Nests containing red cardboard did not have significantly lower success than nests with brown cardboard, nor did I detect a significant color X vegetation-density interaction. My analysis may have had insufficient power to detect an effect of color on nest success; alternatively, brightly-colored males that do not incubate may achieve benefits unrelated to predation risk.
Teradiode's high brightness semiconductor lasers
NASA Astrophysics Data System (ADS)
Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz
2016-03-01
TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, <0.08 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. Our TeraBlade industrial platform achieves world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.
Wu, Jun-Yi; Chen, Show-An
2018-02-07
We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.
Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James
2018-03-14
High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.
Exploding conducting film laser pumping apparatus
Ware, K.D.; Jones, C.R.
1984-04-27
The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.
NASA Astrophysics Data System (ADS)
Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi
2010-09-01
This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ficek, Mateusz, E-mail: rbogdan@eti.pg.gda.pl; Institute for Materials Research; Sankaran, Kamatchi J.
2016-06-13
The influence of N{sub 2} concentration (1%–8%) in CH{sub 4}/H{sub 2}/N{sub 2} plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS–NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 ± 0.25 at 550 nm) and extinction coefficient (0.05 ± 0.02 at 550 nm) with a transmittance of 60%. The optical investigation was supported by the molecular and atomic data delivered by Raman studies, bright field transmission electron microscopy imaging, and X-ray photoelectron spectroscopy diagnostics. Those results revealed that whilemore » the films grown in CH{sub 4}/H{sub 2} plasma contained micron-sized diamond grains, the films grown using CH{sub 4}/H{sub 2}/(4%)N{sub 2} plasma exhibited ultranano-sized diamond grains along with n-diamond and i-carbon clusters, which were surrounded by amorphous carbon grain boundaries.« less
Thermal Lens Measurement in Diode-Pumped Nd:YAG Zig-Zag Slab
NASA Technical Reports Server (NTRS)
Smoak, M. C.; Kay, R. B.; Coyle, D. B.; Hopf, D.
1998-01-01
A major advantage that solid state zig-zag slab lasers have over conventional rod-based designs is that a much weaker thermal lens is produced in the slab when side-pumped with Quasi-CW laser diode arrays, particularly if the pump radiation is kept well away from the Brewster-cut ends. This paper reports on a rather strong thermal lens produced when diode pump radiation is collimated into a narrow portion of the zig-zag slab. The collimation of multi-bar pump packages to increase brightness and improve overlap is a direct consequence of designs which seek to maximize performance and efficiency. Our slab design employed a 8.1 cm x 2.5 mm x 5 mm slab with opposing Brewster end faces. It was pumped through the 2.5 mm direction by seven laser diode array packages, each housing four 6OW diode bars, 1 cm in width. The pump face, anti-reflection (AR) coated at 809 nm, was 6.8 cm in width and the 8.1 cm opposing side, high-reflection (HR) coated at 809 nm, reflected the unabsorbed pump beam for a second pass through the slab.
Longitudinal Ionospheric Variability Observed by LITES on the ISS
NASA Astrophysics Data System (ADS)
Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.
Scanning transmission electron microscopy through-focal tilt-series on biological specimens.
Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio
2015-10-01
Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; ...
2015-02-09
Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shellmore » retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.« less
Spectral sensitivity of the circadian system
NASA Astrophysics Data System (ADS)
Figueiro, Mariana G.; Bullough, John D.; Rea, Mark S.
2004-01-01
Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer"s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.
NASA Astrophysics Data System (ADS)
Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor
2011-07-01
Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.
NASA Technical Reports Server (NTRS)
Sliney, David H.
1994-01-01
The eye is protected against bright light by the natural aversion response to viewing bright light sources. The aversion response normally protects the eye against injury from viewing bright light sources such as the sun, arc lamps and welding arcs, since this aversion limits the duration of exposure to a fraction of a second (about 0.25 s). The principal retinal hazard resulting from viewing bright light sources is photoretinitis, e.g., solar retinitis with an accompanying scotoma which results from staring at the sun. Solar retinitis was once referred to as 'eclipse blindness' and associated 'retinal burn'. Only in recent years has it become clear that photoretinitis results from a photochemical injury mechanism following exposure of the retina to shorter wavelengths in the visible spectrum, i.e., violet and blue light. Prior to conclusive animal experiments at that time, it was thought to be a thermal injury mechanism. However, it has been shown conclusively that an intense exposure to short-wavelength light (hereafter referred to as 'blue light') can cause retinal injury. The product of the dose-rate and the exposure duration always must result in the same exposure dose (in joules-per-square centimeter at the retina) to produce a threshold injury. Blue-light retinal injury (photoretinitis) can result from viewing either an extremely bright light for a short time, or a less bright light for longer exposure periods. This characteristic of photochemical injury mechanisms is termed reciprocity and helps to distinguish these effects from thermal burns, where heat conduction requires a very intense exposure within seconds to cause a retinal coagulation otherwise, surrounding tissue conducts the heat away from the retinal image. Injury thresholds for acute injury in experimental animals for both corneal and retinal effects have been corroborated for the human eye from accident data. Occupational safety limits for exposure to UVR and bright light are based upon this knowledge. As with any photochemical injury mechanism must consider the action spectrum, which describes the relative effectiveness of different wavelengths in causing a photobiological effect. The action spectrum for photochemical retinal injury peaks at approximately 440 nm.
Transport of a high brightness proton beam through the Munich tandem accelerator
NASA Astrophysics Data System (ADS)
Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.
2015-04-01
Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.
Wang, L Y; Song, E H; Deng, T T; Zhou, Y Y; Liao, Z F; Zhao, W R; Zhou, B; Zhang, Q Y
2017-08-14
Herein, a Mn 4+ ion doped complex ternary-alkaline fluoride red phosphor K 2 NaAlF 6 :Mn 4+ has been synthesized through a facile two-step co-precipitation method at room temperature. The crystal structure, morphological properties and influence of the dopant concentration, temperature and humidity on luminescence properties as well as the performance of the as-synthesized phosphor used in white light emitting diodes (WLEDs) were investigated carefully. Intense absorption in the blue region (∼460 nm) and bright narrow-band red emission (∼630 nm) with high color purity were observed from this resultant powder. Temperature-dependent investigation and reliability examination in a HTHH environment (85 °C high temperature and 85% high humidity) indicate that the obtained ternary-alkaline fluoride phosphor K 2 NaAlF 6 :Mn 4+ presents more exceptional thermal quenching behavior and longevity compared to some other binary-alkaline fluorides. Moreover, using K 2 NaAlF 6 :Mn 4+ as a red light component, a warm WLED with a preferable color rendering index (R a = 85.5) and luminous efficacy (LE = 91.2 lm W -1 ) as well as a low corresponding color temperature (CCT = 3650 K) is easily achieved, further revealing the great potential of the as-prepared ternary-alkaline fluoride red phosphor K 2 NaAlF 6 :Mn 4+ for WLED applications.
High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.
2017-04-01
We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are alsomore » obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.« less
Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong
2016-02-10
Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter
2016-03-01
Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2<=17. Because of the feedback the lateral (multimodal) spatial and angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.
HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED
NASA Technical Reports Server (NTRS)
2002-01-01
BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of Astronomy, Cambridge, UK) Credits for ground-based picture: N.A. Sharp (Association of Universities for Research in Astronomy, National Optical Astronomy Observatories, National Science Foundation)
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.
2015-01-01
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C
2015-10-19
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems.
Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Wang, Shoujun; Oliva, E
2014-01-01
Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less
Zhang, Jinfeng; Chen, Rui; Zhu, Zelin; Adachi, Chihaya; Zhang, Xiaohong; Lee, Chun-Sing
2015-12-02
Fluorescent organic nanoparticles based on small molecules have been regarded as promising candidates for bioimaging in recent years. In this study, we report a highly stable near-infrared (NIR) fluorescent organic nanoprobes based on nanoparticles of an anthraquinone derivate with strong aggregation-induced emission (AIE) characteristics and a large Stokes shift (>175 nm). These endow the nanoprobe with high fluorescent brightness and high signal-to-noise ratio. On the other hand, the nanoprobe also shows low cytotoxicity, good stability over a wide pH range, superior resistance against photodegradation and photobleaching comparing to typical commercial fluorescent organic dyes such as fluorescein sodium. Endowed with such merits in term of optical performance, biocompatibility, and stability, the nanoprobe is demonstrated to be an ideal fluorescent probe for noninvasive long-term cellular tracing and imaging applications. As an example, it is shown that strong red fluorescence from the nanoprobe can still be clearly observed in A549 human lung cancer cells after incubation for six generations over 15 days.
Hydrogen emission in meteors as a potential marker for the exogenous delivery of organics and water
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Mandell, Avram M.
2004-01-01
We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected <20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.
Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...
2017-04-03
We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less
Localized emission from laser-irradiated defects in 2D hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Hou, Songyan; Danang Birowosuto, Muhammad; Umar, Saleem; Ange Anicet, Maurice; Yingjie Tay, Roland; Coquet, Philippe; Tay, Beng Kang; Wang, Hong; Teo, Edwin Hang Tong
2018-01-01
Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for photonics device due to its large bandgap and flexibility in nanophotonic circuits. Here, we report bright and localized luminescent centres can be engineered in hBN monolayers and flakes using laser irradiation. The transition from hBN to cBN emerges in laser irradiated hBN large monolayers while is absent in processed hBN flakes. Remarkably, the colour centres in hBN flakes exhibit room temperature cleaner single photon emissions with g 2(0) ranging from 0.20 to 0.42, a narrower line width of 1.4 nm and higher brightness compared with monolayers. Our results pave the way to engineering deterministic defects in hBN induced by laser pulse and show great prospect for application of defects in hBN used as nano-size light source in photonics.
RESPONSE OF GRANULATION TO SMALL-SCALE BRIGHT FEATURES IN THE QUIET SUN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andic, A.; Chae, J.; Goode, P. R.
2011-04-10
We detected 2.8 bright points (BPs) per Mm{sup 2} in the quiet Sun with the New Solar Telescope at Big Bear Solar Observatory, using the TiO 705.68 nm spectral line at an angular resolution {approx}0.''1 to obtain a 30 minute data sequence. Some BPs formed knots that were stable in time and influenced the properties of the granulation pattern around them. The observed granulation pattern within {approx}3'' of knots presents smaller granules than those observed in a normal granulation pattern, i.e., around the knots a suppressed convection is detected. Observed BPs covered {approx}5% of the solar surface and were notmore » homogeneously distributed. BPs had an average size of 0.''22, they were detectable for 4.28 minutes on average, and had an averaged contrast of 0.1% in the deep red TiO spectral line.« less
First light results from the HERMES spectrograph at the AAT
NASA Astrophysics Data System (ADS)
Sheinis, Andrew I.
2016-08-01
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is a facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the Galactic Archeology with Hermes (GALAH) survey is to reconstruct the mass assembly history of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2- degree field of view. Hermes was commissioned in late 2013, with the GALAH Pilot starting in parallel with the commissioning. The GALAH survey started in early 2014 is currently about 33% complete. We present a description of the motivating science; an overview the instrument; and a status report on GALAH Survey.
Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph
2017-05-01
Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.
Pressure Study of Photoluminescence in GaN/InGaN/ AlGaN Quantum Wells
NASA Astrophysics Data System (ADS)
Perlin, Piotr; Iota, V.; Weinstein, B. A.; Wisniewski, P.; Osinski, M.; Eliseev, P. G.
1997-03-01
We have studied the photoluminescence (PL) from two commercial high brightness single quantum well light emitting diodes (Nichia Chem. Industs.) with In_xGa_1-x N (x=0.45 and 0.2) as the active layers under hydrostatic pressures up to 7 GPa. These diodes are the best existing light emitters at short wavelengths, having the emission wavelengths of 430 nm and 530 nm depending on the content of indium in the 30 Åthick quantum wells. Although these devices show a remarkable quality and efficiency (luminosity as high as 12 cd), the mechanism of recombination remains obscure. We discovered that the pressure coefficient for each of the observed PL peaks is dramatically (2-3 times) lower than that of the energy gap of its InGaN active layer. These observations, in conjunction with the fact that the observed emission occurs below the energy gap of the quantum well material, and also considering the anomalous temperature behavior of the emission (peak energy increasing with temperature) suggest the involvement of localized states and exclude a simple band-to-band recombination picture. These localized states may be tentatively attributed to the presence of band tails in the gap which stem from composition fluctuations in the InGaN alloy. (figures)
Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, E.; Ben-Zvi, I.; Kewisch, J.
2010-05-23
RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in themore » preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected to improve further. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper.« less
PEPSI deep spectra. II. Gaia benchmark stars and other M-K standards
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Ilyin, I.; Weber, M.
2018-04-01
Context. High-resolution échelle spectra confine many essential stellar parameters once the data reach a quality appropriate to constrain the various physical processes that form these spectra. Aim. We provide a homogeneous library of high-resolution, high-S/N spectra for 48 bright AFGKM stars, some of them approaching the quality of solar-flux spectra. Our sample includes the northern Gaia benchmark stars, some solar analogs, and some other bright Morgan-Keenan (M-K) spectral standards. Methods: Well-exposed deep spectra were created by average-combining individual exposures. The data-reduction process relies on adaptive selection of parameters by using statistical inference and robust estimators. We employed spectrum synthesis techniques and statistics tools in order to characterize the spectra and give a first quick look at some of the science cases possible. Results: With an average spectral resolution of R ≈ 220 000 (1.36 km s-1), a continuous wavelength coverage from 383 nm to 912 nm, and S/N of between 70:1 for the faintest star in the extreme blue and 6000:1 for the brightest star in the red, these spectra are now made public for further data mining and analysis. Preliminary results include new stellar parameters for 70 Vir and α Tau, the detection of the rare-earth element dysprosium and the heavy elements uranium, thorium and neodymium in several RGB stars, and the use of the 12C to 13C isotope ratio for age-related determinations. We also found Arcturus to exhibit few-percent Ca II H&K and Hα residual profile changes with respect to the KPNO atlas taken in 1999. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT) and the Vatican Advanced Technology Telescope (VATT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Leibniz-Institute for Astrophysics Potsdam (AIP), and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.
NASA Technical Reports Server (NTRS)
Cardelli, Jason A.; Clayton, Geoffrey C.
1991-01-01
The range of validity of the average absolute extinction law (AAEL) proposed by Cardelli et al. (1988 and 1989) is investigated, combining published visible and NIR data with IUE UV observations for three lines of sight through dense dark cloud environments with high values of total-to-selective extinction. The characteristics of the data sets and the reduction and parameterization methods applied are described in detail, and the results are presented in extensive tables and graphs. Good agreement with the AAEL is demonstrated for wavelengths from 3.4 microns to 250 nm, but significant deviations are found at shorter wavelengths (where previous studies of lines of sight through bright nebulosity found good agreement with the AAEL). These differences are attributed to the effects of coatings on small-bump and FUV grains.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2015-08-01
Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.
NASA Astrophysics Data System (ADS)
Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka
2018-01-01
Trivalent cerium is an important luminescent center giving light emission in short wavelength region depending on host materials. Sol-gel formed silica glass is an ideal matrix due to its high transparency, robustness, and low-temperature processability, but the emission from cerium in silica matrix is often mixed up with that from defects in the matrix, making it difficult to obtain well-determined characteristics. Bright emission from Ce ions peaking at about 400 nm was observed in sol-gel silica glasses synthesized with aluminum co-dopant. From luminescence decay time, the origin was confirmed to be d-f transition in trivalent Ce. From dependence of emission characteristics and UV absorbance on aluminum concentration, it was found that the co-dopant plays an important role to convert the optically inactive tetravalent ions to emissive trivalent state.
Laser ion source for high brightness heavy ion beam
Okamura, M.
2016-09-01
A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less
Progress of OLED devices with high efficiency at high luminance
NASA Astrophysics Data System (ADS)
Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong
2014-03-01
Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.
Fan, Chaoyang; Story, Sandra P.; Sengupta, Bidisha; Sartin, Matthew; Hsiang, Jung-Cheng; Perry, Joseph W.
2011-01-01
Few-atom silver clusters harbored by DNA are promising fluorophores due to their high molecular brightness along with their long- and short-term photostability. Furthermore, their emission rate can be enhanced when co-illuminated with low-energy light that optically depopulates the fluorescence-limiting dark state. The photophysical basis for this effect is evaluated for two near infrared-emitting clusters. Clusters emitting at ~800 nm form with C3AC3AC3TC3A and C3AC3AC3GC3A and both exhibit a trap state with λmax ~ 840 nm and an absorption cross section of 5–6 × 10−16 cm2/molec that can be optically depopulated. Transient absorption spectra, complemented by fluorescence correlation spectroscopy studies, show that the dark state has an inherent lifetime of 3–4 μs and that absorption from this state is accompanied by photoinduced crossover back to the emissive manifold of states with an action cross section of ~2 × 10−18 cm2/molec. Relative to C3AC3AC3TC3A, C3AC3AC3GC3A produces a longer-lived trap state and permits more facile passage back to the emissive manifold. With the C3AC3AC3AC3G template, a spectrally distinct cluster forms having emission at ~900 nm and its trap state has a ~four-fold shorter lifetime. These studies of optically-gated fluorescence bolster the critical role of the nucleobases on both the formation and excited state dynamics of these highly emissive metallic clusters. PMID:21568292
Assembly of Functional Porous Solids in Complex Hybrid Composites
2004-03-19
synthesis … 30 7.1.2 Grafting … 34 7.2 Surface functionalization of 3DOM oxide supports with polyelectrolytes and nanoparticles of another oxide … 34...incorporating hydrothermally prepared rutile/anatase nanoparticles ( nm) within the walls of 3DOM silica, varying the titania content from ca. 0.5-20 wt... nanoparticles showing the bright colors that can be obtained and varied through synthesis parameters. 5.7 Effects of 3DOM particle sizes on optical
Titan: Evidence for seasonal change - A comparison of Hubble Space Telescope and Voyager images
NASA Technical Reports Server (NTRS)
Caldwell, John; Cunningham, Cindy C.; Anthony, David; White, H. P.; Groth, E. J.; Hasan, H.; Noll, K.; Smith, P. H.; Tomasko, M. G.; Weaver, H. A.
1992-01-01
A comparison of images of Titan obtained by the HST in August, 1990 with Voyager 1 and 2 images respectively obtained 10 and 9 years earlier has indicated a reversal of the seasonal hemispheric brightness asymmetry near 440 and 550 nm wavelengths; the northern hemisphere is in the more recent observations the brighter of the two, by about 10 percent. Titan's albedo pattern is therefore adequately explained by a seasonal model.
Laser induced white lighting of tungsten filament
NASA Astrophysics Data System (ADS)
Strek, W.; Tomala, R.; Lukaszewicz, M.
2018-04-01
The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.
NASA Astrophysics Data System (ADS)
Duenkel, Lothar; Eichler, Juergen; Ackermann, Gerhard; Schneeweiss, Claudia
2004-06-01
Holography is the most fascinating technology for three-dimensional imaging. But despite of many decades of research, the seek for an ideal recording material has never been given up. From all ultra-fine materials, silver bromide emulsions with very small grain sizes have the highest sensitivity. In recent years however, many traditional manufacturers discontinued their production. Meanwhile, newcomers succeeded in manufacturing emulsions which are very suitable for holography, concerning extremely high resolution, brigthness and sensitivity1. But two problems may still linger: First, the deficient market situation for production and application on this field. Second, the reputation of the system of being extremely complicated for laboratory preparation. In such a crucial situation, the authors have succeeded in presenting a laboratory procedure for making do-it-yourself materials available to any expert who is well versed in holography, and who disposes of normal darkroom equipment2. The methodology is based on precipitation using the traditional double-jet method according to Thiry and predecessors3. But sensitization is carried out by a diffusion process according to the procedure as proposed by Blyth et al.4 Thus, precipitation and coating on one side and sensitization on the other one are separated strictly from one another. Efficient desaltation is an important process too, warranting the high opto-mechanical quality of the layer. The material has been sensitzed for HeNe-Laser radiation (632,8 nm) only up to now. The mean diameter of the silver bromide grains is about 15 nm, as determined by transmission electron microscopy (TEM). Phillips-Bjelkhagen Ultimate (PBU) or Fe3+ rehalogenation bleach are applied successfully5-6. In final result, a new generation of holograms with ultra-high resolution, proper contrast, excellent sharpness and light brightness has been obtained. Holography belongs to an advancing technology where the search for an ideal recording material is still going on. Of these materials, the ultrafine grain silver bromide emulsions are unsurpassed in sensitivity. But in recent years many traditional manufacturers discontinued their production. In such a critical situation, the authors have succeeded in developing a new technology to make do-it-yourself materials of very high quality. The procedure involves elements of two different methods: The traditional double-jet method by pouring silver nitrate and potassium bromide into a vigorously stirred gelatin solution, and a diffusion process to sensitize the coated layer efficiently. The material has been sensitized for He/Ne-laser radiation by 632.8 nm. Denisyuk holograms of real 3D-objects were obtained in ultrahigh resolution, excellent brightness and clarity with CW-C2 developer and PBU rehalogenation bleach according to Bjelkhagen et al. The material is characterized by TEM, reflexion spectroscopy, and other methods. The new results have been involved in university education already with great success. The fundamental principles of the methodology as well as new results by application in intellectual and hybrid systems were reported.
Design of a high-power, high-brightness Nd:YAG solar laser.
Liang, Dawei; Almeida, Joana; Garcia, Dário
2014-03-20
A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24 W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.
Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films
NASA Astrophysics Data System (ADS)
Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.
2015-09-01
We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.
Metal-enhanced fluorescence of dye-doped silica nano particles.
Gunawardana, Kalani B; Green, Nathaniel S; Bumm, Lloyd A; Halterman, Ronald L
2015-03-01
Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.
NASA Astrophysics Data System (ADS)
Mungmode, C. D.; Gahane, D. H.; Moharil, S. V.
2018-05-01
A simple wet chemical synthesis of Eu2+ activated Ca5(PO4)3Br and Ca5(PO4)3I phosphors and their photoluminescence is reported. Formation of Ca5(PO4)3Br is confirmed by X-ray diffraction (XRD). Synthesized phosphors are analyzed for photoluminescence (PL) spectrum. A bright blue emission is observed when phosphors are excited by near Ultra Violet (nUV) radiations. Photoluminescence emission spectrum for (Ca0.985Eu0.015)5(PO4)3Br is centered at 457 nm and for (Ca0.985Eu0.015)5(PO4)3 I it peaks at 455 nm when excited by 365 nm near UV radiation. Eu2+ luminescence in Ca5(PO4)3Br is reported for the first time. The phosphors can be efficiently excited by nUV radiations. This shows that phosphors may be used as blue phosphor in pcLED for Solid State Lighting.
NASA Astrophysics Data System (ADS)
Wang, Niansheng; Wang, Renjie; Tu, Yayi; Pu, Shouzhi; Liu, Gang
2018-05-01
A novel photochromic diarylethene with a triazole-containing 2-(2‧-phenoxymethyl)-benzothiazole group has been synthesized via "click" reaction. The diarylethene exhibited good photochromism and photoswitchable fluorescence. Its fluorescence emission intensity was enhanced 7-fold by acids, accompanied by the red-shift of emission peak from 526 nm to 566 nm and the concomitant color change from dark to bright flavogreen. The diarylethene selectively formed a 1:1 metal complex with Al3+, resulting in a "turn-on" fluorescence signal. The complexation - reaction between Al3+ and the diarylethene is reversible with the binding constant of 2.73 × 103 L mol-1. The limit of detection (LOD) of Al3+ was determined to be 5.94 × 10-8 mol L-1. Based on this unimolecular platform, a logic circuit was fabricated using the fluorescence emission intensity at 572 nm as the output and the combined stimuli of Al3+/EDTA and UV/Vis as the inputs.
Upconversion luminescence of CsScF4 crystals doped with erbium and ytterbium
NASA Astrophysics Data System (ADS)
Ikonnikov, D. A.; Voronov, V. N.; Molokeev, M. S.; Aleksandrovsky, A. S.
2016-10-01
Tetragonal CsScF4 crystals doped with (5 at.%) Er and Er/Yb (0.5 at.%/5 at.%) are grown and their crystal structure is determined to belong to Pmmn space group. Er and Yb ions are shown to occupy distorted octahedral Sc sites with the center of inversion. Bright visible upconversion luminescence was observed under 970-980 nm pumping with red (4F9/2), yellow (4S3/2) and green (2H11/2) bands of comparable intensity. UCL tuning curves maximize at 972 nm (CSF:Er) and at 969.7 nm (CSF:Er,Yb) pumping wavelengths. Different ratios between yellow-green and red luminescence intensities in CSF:Er and CSF:Er, Yb are explained by contribution of cross-relaxation in CSF:Er UCL. UC in CSF:Er is a three stage process while UC in CSF:Er, Yb is a two stage process. The peculiarities of power dependences are explained by the power-dependent repopulation between starting levels of UC.
Photoluminescence properties of a new orange-red-emitting Sm(3+)-La3SbO7 phosphor.
Li, Zeng-Mei; Deng, Li-Gang; Zhao, Shan-Cang; Zhang, Shu-Qiu; Guo, Chang-Ying; Liang, Jing-Yun; Yue, Hui; Wan, Chun-Yan
2016-03-01
The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange-red-emitting antimonate-based phosphors La3SbO7:xSm(3+) (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm(3+) at 568, 608, 654 and 716 nm, which correspond to the transitions from (4)G5/2 to (6)H5/2, (6)H7/2, (6)H9/2 and (6)H11/2 of Sm(3+), respectively. The strongest emission was located at 608 nm due to the (4)G5/2→(6)H7/2 transition of Sm(3+), generating bright orange-red light. The critical quenching concentration of Sm(3+) in La3SbO7:Sm(3+) phosphor was determined as 10% and the energy transfer between Sm(3+) was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm(3+) phosphors are located in the orange-red region. The La3SbO7:Sm(3+) phosphors may be potentially used as red phosphors for white light-emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.
Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni
2015-01-07
In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.
Richardson, C; Cain, N; Bartel, K; Micic, G; Maddock, B; Gradisar, M
2018-05-01
A randomised controlled trial evaluated bright light therapy and morning activity for the treatment of Delayed Sleep-Wake Phase Disorder (DSWPD) in young people. 60 adolescents and young adults (range = 13-24 years, mean = 15.9 ± 2.2 y, 63% f) diagnosed with DSWPD were randomised to receive three weeks of post-awakening Green Bright Light Therapy (∼507 nm) and Sedentary Activity (sitting, watching TV), Green Bright Light Therapy and Morning Activity (standing, playing motion-sensing videogame), Red Light Therapy (∼643 nm) and Sedentary Activity or Red Light Therapy and Morning Activity. Sleep (ie sleep onset time, wake up time, sleep onset latency, total sleep time) and daytime functioning (ie morning alertness, daytime sleepiness, fatigue, functional impairment) were measured pre-treatment, post-treatment and at one and three month follow-up. Contrary to predictions, there were no significant differences in outcomes between treatment groups; and interaction effects between treatment group and time for all outcome variables were not statistically significant. However, adolescents and young adults in morning activity conditions did not meaningfully increase their objective activity (ie movement frequency). Overall, adolescents reported significantly improved sleep timing (d = 0.30-0.46), sleep onset latency (d = 0.32) and daytime functioning (d = 0.45-0.87) post-treatment. Improvements in sleep timing (d = 0.53-0.61), sleep onset latency (d = 0.57), total sleep time (d = 0.51), and daytime functioning (d = 0.52-1.02) were maintained, or improved upon, at the three month follow-up. However, relapse of symptomology was common and 38% of adolescents and young adults requested further treatment in addition to the three weeks of light therapy. Although there is convincing evidence for the short-term efficacy of chronobiological treatments for DSWPD, long-term treatment outcomes can be improved. To address this gap in our current knowledge, avenues for future research are discussed. Australian & New Zealand Clinical Trials Registry, https://www.anzctr.org.au, ACTRN12614000308695. Copyright © 2018 Elsevier B.V. All rights reserved.
Copper Nanowires as Fully Transparent Conductive Electrodes
Guo, Huizhang; Lin, Na; Chen, Yuanzhi; Wang, Zhenwei; Xie, Qingshui; Zheng, Tongchang; Gao, Na; Li, Shuping; Kang, Junyong; Cai, Duanjun; Peng, Dong-Liang
2013-01-01
In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency. PMID:23900572
Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes.
Lee, Seungjin; Park, Jong Hyun; Nam, Yun Seok; Lee, Bo Ram; Zhao, Baodan; Di Nuzzo, Daniele; Jung, Eui Dae; Jeon, Hansol; Kim, Ju-Young; Jeong, Hu Young; Friend, Richard H; Song, Myoung Hoon
2018-04-24
Organic-inorganic hybrid perovskites are emerging as promising emitting materials due to their narrow full-width at half-maximum emissions, color tunability, and high photoluminescence quantum yields (PLQYs). However, the thermal generation of free charges at room temperature results in a low radiative recombination rate and an excitation-intensity-dependent PLQY, which is associated with the trap density. Here, we report perovskite films composed of uniform nanosized single crystals (average diameter = 31.7 nm) produced by introducing bulky amine ligands and performing the growth at a lower temperature. By effectively controlling the crystal growth, we maximized the radiative bimolecular recombination yield by reducing the trap density and spatially confining the charges. Finally, highly bright and efficient green emissive perovskite light-emitting diodes that do not suffer from electroluminescence blinking were achieved with a luminance of up to 55 400 cd m -2 , current efficiency of 55.2 cd A -1 , and external quantum efficiency of 12.1%.
Nano-assembly of nanodiamonds by conjugation to actin filaments.
Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J
2016-03-01
Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase transformations of 4,4'-biphenyldicarboxylic acid on Cu(001)
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene
2012-06-01
The growth and structure of 4,4'-biphenyldicarboxylic-acid (BDA) on Cu(001) at temperatures between 300 and 400 K was studied by low energy electron microscopy and μ-LEED. First, the adsorbed BDA molecules form a disordered dilute phase. Once this phase reaches a sufficiently high density, a crystalline phase nucleates, in which the molecules form a hydrogen-bonded two-dimensional (2D) supramolecular c(8×8) network. By a careful analysis of the bright-field image intensity, we can measure the density in the dilute phase, which is up to 30% of that in the crystalline phase. From the respective equilibrium densities at different temperatures, we determine the 2D phase diagram and extract a cohesive energy of 0.35 eV. We also analyze the island decay behavior and estimate the BDA molecule diffusion constants. Steps are found to be highly transparent for diffusing BDA molecules. In the temperature range of 362-400 K, we find chemical diffusion constants between 850-1700nm2s-1.
Development of an EMCCD for LIDAR applications
NASA Astrophysics Data System (ADS)
De Monte, B.; Bell, R. T.
2017-11-01
A novel detector, incorporating e2v's EMCCD (L3VisionTM) [1] technology for use in LIDAR (Light Detection And Ranging) applications has been designed, manufactured and characterised. The most critical performance aspect was the requirement to collect charge from a 120μm square detection area for a 667ns temporal sampling window, with low crosstalk between successive samples, followed by signal readout with sub-electron effective noise. Additional requirements included low dark signal, high quantum efficiency at the 355nm laser wavelength and the ability to handle bright laser echoes, without corruption of the much fainter useful signals. The detector architecture used high speed charge binning to combine signal from each sampling window into a single charge packet. This was then passed through a multiplication register (EMCCD) operating with a typical gain of 100X to a conventional charge detection circuit. The detector achieved a typical quantum efficiency of 80% and a total noise in darkness of < 0.5 electrons rms. Development of the detector was supported by ESA.
PUCHEROS: a cost-effective solution for high-resolution spectroscopy with small telescopes
NASA Astrophysics Data System (ADS)
Vanzi, L.; Chacon, J.; Helminiak, K. G.; Baffico, M.; Rivinius, T.; Štefl, S.; Baade, D.; Avila, G.; Guirao, C.
2012-08-01
We present PUCHEROS, the high-resolution echelle spectrograph, developed at the Center of Astro-Engineering of Pontificia Universidad Catolica de Chile to provide an effective tool for research and teaching of astronomy. The instrument is fed by a single-channel optical fibre and it covers the visible range from 390 to 730 nm in one shot, reaching a spectral resolution of about 20 000. In the era of extremely large telescopes our instrument aims to exploit the capabilities offered by small telescopes in a cost-effective way, covering the observing needs of a community of astronomers, in Chile and elsewhere, which do not necessarily need large collecting areas for their research. In particular the instrument is well suited for long-term spectroscopic monitoring of bright variable and transient targets down to a V magnitude of about 10. We describe the instrument and present a number of text case examples of observations obtained during commissioning and early science.
NASA Astrophysics Data System (ADS)
Reginald, Nelson; St. Cyr, Orville; Davila, Joseph; Rastaetter, Lutz; Török, Tibor
2018-05-01
Obtaining reliable measurements of plasma parameters in the Sun's corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.