Wavelength Dependence of Excimer Laser Irradiation Effects on Ethylene-Tetrafluoroethylene Copolymer
NASA Astrophysics Data System (ADS)
Hamada, Yuji; Kawanishi, Shunichi; Nishii, Masanobu; Sugimoto, Shun'ichi; Yamamoto, Tadashi
1994-08-01
Irradiation with an ArF laser at wavelength of 193 nm formed diene in a whole ethylene-tetrafluoroethylene copolymer (ETFE) film and irradiation with a KrF and a XeCl laser at 248 and 308 nm induced the carbonization of ETFE. ArF-laser radiation at 193 nm formed diene in the bulk of ETFE via the process of single-photon absorption, and in case of KrF and XeCl-laser irradiation multiphoton absorption brought about the carbonization of ETFE. The surface analysis by X-ray photoelectron spectroscopy showed that excimer laser-induced elimination of fluorine atoms depended on the laser wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razhev, A M; Kargapol'tsev, E S; Churkin, D S
Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an activemore » medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)« less
Laser effect on the 248 nm KrF transition using heavy ion beam pumping
NASA Astrophysics Data System (ADS)
Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.
2007-07-01
In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).
NASA Astrophysics Data System (ADS)
Bermundo, Juan Paolo S.; Ishikawa, Yasuaki; Fujii, Mami N.; Ikenoue, Hiroshi; Uraoka, Yukiharu
2017-03-01
We report the fabrication of high mobility amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) irradiated by a single shot of a 248 nm KrF excimer laser. Very high mobilities (μ) of up to 43.5 cm2/V s were obtained after the low temperature excimer laser annealing (ELA) process. ELA induces high temperatures primarily in the upper layers and maintains very low temperatures of less than 50 °C in the substrate region. Scanning Transmission Electron micrographs show no laser induced damage and clear interfaces after the laser irradiation. In addition, several characterization studies were performed to determine the μ improvement mechanism. The analysis of Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy suggests incorporation of H mainly from the hybrid passivation layer into the channel. Moreover, Energy-dispersive X-ray Spectroscopy results show that Au diffused into the channel after ELA. Both KrF ELA-induced H and Au diffusion contributed to the higher μ. These results demonstrate that ELA can greatly enhance the electrical properties of a-IGZO TFTs for promising applications in large area, transparent, and flexible electronics.
Zheng, Yulong; Bremer, Kort
2018-01-01
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing. PMID:29734734
Zheng, Yulong; Bremer, Kort; Roth, Bernhard
2018-05-05
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.
1980-03-01
6.1 Excimers and Exciplexes : Background 55 6.2 Rare Gas-Halide Lasers 58 6.3 Formation, Quenching and Absorption Processes for Rare Gas-Halides 60... exciplex such as KrF* and XeF* laser systems as well as in various types of gas discharges. They are also of fundamental significance in their own...collision processes contributing to the formation and quenching of the excited molecular states in exciplex (such as KrF ) and excimer (such as Xe2
NASA Astrophysics Data System (ADS)
Rácz, E.; Földes, I. B.; Ryć, L.
2006-01-01
Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5ṡ1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4μm Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.
Generation of high-power subpicosecond pulses at 155 nm.
Mossavi, K; Fricke, L; Liu, P; Wellegehausen, B
1995-06-15
Subpicosecond vacuum-ultraviolet radiation at 155 nm with pulse energies above 0.2 mJ has been obtained by near-resonant four-wave difference-frequency mixing in a Xe gas jet. Laser fields for the mixing process have been generated by a short-pulse KrF dye excimer laser system and a Raman converter. The process permits tuning in a broad vacuum-ultraviolet range and can be scaled up to higher output energies.
Visualization of corona discharge induced by UV (248 nm) pulses of a KrF excimer laser
NASA Astrophysics Data System (ADS)
Mizeraczyk, Jerzy; Ohkubo, Toshikazu; Kanazawa, Seiji; Nomoto, Yukiharu; Kawasaki, Toshiyuki; Kocik, Marek
2000-11-01
A KrF excimer laser (248 nm) was used to induce DC corona discharge streamers in air between the electrodes of a needle-to-plane geometry. The UV laser beam pulses were transformed into the form of a laser sheet (1.5 mm thick and 20 mm-wide) that was positioned along the axis directed from the needle electrode to the plane electrode. The laser pulses were time-synchronized with the exposure of an ICCD camera that record images of the corona streamers induced by the laser sheet. The laser pulse energy flux (75 MW/cm2) crossing the gap was high enough to induce corona streamers with a reliability of 100% even at relatively low operating voltages (e.g., 15 kV) at which self-sustained streamers could not occur. Due to the full synchronization of the corona streamer onset, induced by the laser pulse and the exposure of the ICCD camera, 2-D visualization of the corona streamer evolution with a time resolution of 10 ns was possible. The recorded images made possible determining such features of the corona discharge streamer as its velocity (2.5 105 m/s) and the diameters of the leader channel (200 micrometers ) and the leader streamers (100 micrometers ).
Choice of the laser wavelength for a herpetic keratitis treatment
NASA Astrophysics Data System (ADS)
Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.
2002-06-01
For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.
Development of a technology for fabricating low-cost parallel optical interconnects
NASA Astrophysics Data System (ADS)
Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter
2006-04-01
We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.
NASA Astrophysics Data System (ADS)
He, Rong; Ma, Hongliang; Zheng, Jiahui; Han, Yongmei; Lu, Yuming; Cai, Chuanbing
2016-08-01
Laser-induced periodic surface structures (LIPSS) were processed on the TiO2 bulk surface under the irradiation of 248 nm unpolarized KrF excimer laser pulses in air. Spatial LIPSS periods ranging from 2 to 3.5 μm are ascribed to the capillary wave. These microstructures were analyzed at different laser pulse numbers with the laser energy from 192 to 164 mJ. The scanning electron microscopy results indicated eventually stripes that have been disrupted as the increase in the laser pulse numbers, which is reasonably explained by the energy accumulating effect. In addition, investigations were concentrated on the surface modifications at pre-focal plane, focal plane and post-focal plane in the same defocusing amount. Compared with condition at pre-focal plane, in addition to the plasma produced at target, the air was also breakdown for the situation of post-focal plane. So it was reasonable that stripes appeared at pre-focal plane but not at post-focal plane.
Asano, Kosuke; Yokoyama, Satoshi; Kemmochi, Atsushi; Yatagai, Toyohiko
2014-05-01
A wire grid polarizer comprised of chromium oxide is designed for a micro-lithography system using an ArF excimer laser. Optical properties for some material candidates are calculated using a rigorous coupled-wave analysis. The chromium oxide wire grid polarizer with a 90 nm period is fabricated by a double-patterning technique using KrF lithography and dry etching. The extinction ratio of the grating is greater than 20 dB (100:1) at a wavelength of 193 nm. Differences between the calculated and experimental results are discussed.
Photochemical and Spectroscopic Effects Resulting from Excimer Laser Excitation.
NASA Astrophysics Data System (ADS)
Wang, Xuan Xiao
I. Photochemical production of ozone from pure oxygen using excimer lasers. Production of ozone was observed from experiments when oxygen was under a broadband pulsed KrF laser radiation. The production process was found to be autocatalytic. Mechanisms for the ozone formation were proposed. Experimental results over a range of oxygen pressure and laser pulse energy (irradiance) provided evidences in favor of the proposed mechanisms. Experiments were also numerically modeled. Good agreement between the experimental and the numerical results were observed, which provided further evidence to support the proposed mechanisms. Cross sections for some photochemical processes in the mechanisms were estimated. Production of ozone from pure oxygen under a ArF excimer laser radiation (193 nm) was also studied and numerically modeled. Effects of ambient water vapor on ozone production were investigated. Experimental results showed a fast ozone destruction when water vapor was present in the cell. However, numerical results obtained from the well-known OH and HO _2 chain ozone destruction mechanism predicted a slower ozone destruction. Possible reasons for the discrepancy are discussed. II. Resonance-enhanced multiphoton ionization of N_2 at 193 and 248 nm detected by N_sp{2}{+} fluorescence. Using a broadband excimer laser operating at 193 and 248 nm multiphoton ionization at high pressures in air and pure nitrogen has been detected by fluorescence from N_sp{2}{+} in the B-X firstnegative system. Measurements of the fluorescence intensity as a function of beam irradiance indicate resonance in N_2 at the energy of two 193 nm photons (2 + 1 REMPI) and three 248 nm photons (3 + 1 REMPI). Possible intermediate states are discussed. III. Excimer laser-induced fluorescence from some organic solvents. Fluorescence was observed from vapor phase benzene, toluene, p-xylene, benzyl chloride, methyl benzoate, acetic anhydride, ether, methanol, ethyl acetone, acetone, and 2-butanone using a broadband excimer laser operating at 248 nm and 308 nm as the source of excitation. Absolute fluorescence quantum yields for the substances under study were measured at 248 nm using toluene as the fluorescence standard. Fluorescence spectra from species produced from nonlinear photochemical processes were also studied.
NASA Astrophysics Data System (ADS)
Oh, Min-Suk
2018-04-01
We investigated the effect of KrF excimer laser surface treatment on Pt/Ti ohmic contacts to Ga-doped n-ZnO ( N d = 4.3 × 1017 cm-3). The treatment of the n-ZnO surfaces by laser irradiation greatly improved the electrical characteristics of the metal contacts. The Pt/Ti ohmic layer on the laser-irradiated n-ZnO showed specific contact resistances of 2.5 × 10-4 ˜ 4.8 × 10-4 Ω cm2 depending on the laser energy density and gas ambient, which were about two orders of magnitude lower than that of the as-grown sample, 8.4 × 10-2 Ω cm2. X-ray photoelectron spectroscopy and photoluminescence measurements showed that the KrF excimer laser treatments increased the electron concentration near the surface region of the Ga-doped n-ZnO due to the preferential evaporation of oxygen atoms from the ZnO surface by the laser-induced dissociation of Zn-O bonds.
Raman shifting of KrF laser radiation for tropospheric ozone measurements
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed
1991-01-01
The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.
Direct Observations of Reaction Zone Structure in Propagating Detonations
2003-02-08
with sufficient spatial resolution and signal-to-noise ratio were achieved by using a tunable KrF laser with a pulse energy of 450 mJ exciting the OH...self-sustaining waves within the test section. The detonation reaction zone has been visualized by exciting OH fluorescence at about 284 nm with a...in some tests. The UV light for excitation of the OH molecules is produced by frequency dou- bling the output of an excimer-pumped dye laser. The
Spectrally narrowed lasing of a self-injection KrF excimer laser
NASA Astrophysics Data System (ADS)
Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro
1990-08-01
Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.
NASA Astrophysics Data System (ADS)
Theodorakopoulos, C.; Zafiropulos, V.
2009-07-01
The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.
Excimer laser annealing of NiTi shape memory alloy thin film
NASA Astrophysics Data System (ADS)
Xie, Qiong; Huang, Weimin; Hong, Ming Hui; Song, Wendong; Chong, Tow Chong
2003-02-01
NiTi Shape Memory Alloy (SMA) is with great potential for actuation in microsystems. It is particularly suitable for medical applications due to its excellent biocompatibility. In MEMS, local annealing of SMA is required in the process of fabrication. In this paper, local annealing of Ni52Ti48 SMA with excimer laser is proposed for the first time. The Ni52Ti48 thin film in a thickness of 5 μm was deposited on Si (100) wafer by sputtering at room temperature. After that, the thin film was annealed by excimer laser (248nm KrF laser) for the first time. Field-Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) were used to characterize the surface profile of the deposited film after laser annealing. The phase transformation was measured by Differential Scanning Calorimeter (DSC) test. It is concluded that NiTi film sputtering on Si(100) substrate at room temperature possesses phase transformation after local laser annealing but with cracks.
Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser.
Yao, Liying; Liu, Baoan; Chen, Tao; Liu, Shibing; Zuo, Tiechuan
2005-09-01
As the third PCR technology, micro flow-through PCR chip can amplify DNA specifically in an exponential fashion in vitro. Nowadays many academies in the world have successfully amplified DNA using their own-made flow-through PCR chip. In this paper, the ablation principle of PMMA at 248 nm excimer laser was studied, then a PMMA based flow-through PCR chip with 20 cycles was fabricated by excimer laser at 19 kv and 18 mm/min. The chip was bonded together with another cover chip at 105( composite function)C, 160 N and 20 minutes. In the end, it was integrated with electrical thermal thin films and Pt 100 temperature sensors. The temperature controllers was built standard PID digital temperature controller, the temperature control precision was +/- 0.2( composite function)C. The temperature grads between the three temperature zones were 16.5 and 22.2( composite function)C respectively, the gaps between the temperature zones could realize heat insulation.
Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing
NASA Astrophysics Data System (ADS)
Sanza, F. J.; Laguna, M. F.; Casquel, R.; Holgado, M.; Barrios, C. A.; Ortega, F. J.; López-Romero, D.; García-Ballesteros, J. J.; Bañuls, M. J.; Maquieira, A.; Puchades, R.
2011-04-01
Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 μm in diameter, 15 μm of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field.
Photoinduced Changes in Ge-Doped Flame Hydrolysis Silica Glass Films
NASA Astrophysics Data System (ADS)
Zhang, Letian; Xie, Wenfa; Wang, Jian; Li, Aiwu; Xing, Hua; Zheng, Wei; Qian, Ying; Zhang, Jian; Zhang, Yushu
2003-12-01
The influence on the structural and optical properties of Ge-doped flame hydrolysis silica glass films of KrF excimer laser irradiation was investigated. A maximum refractive index change of about 3.41× 10-3 is obtained at approximately 1550 nm after 10 min irradiation. The irradiation process and roughness of the films were analyzed by atomic force microscopy (AFM). As irradiation time increased, the density of the films increased, resulting in decreases in the surface roughness and increases in the refractive index of the films.
Formation of short high-power laser radiation pulses in excimer mediums
NASA Astrophysics Data System (ADS)
Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.
2007-06-01
Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.
High-energy krypton fluoride lasers for inertial fusion.
Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max
2015-11-01
Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.
Analyses of surface coloration on TiO 2 film irradiated with excimer laser
NASA Astrophysics Data System (ADS)
Zheng, H. Y.; Qian, H. X.; Zhou, W.
2008-01-01
TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2. Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters.
Kersten, Hendrik; Lorenz, Matthias; Brockmann, Klaus J; Benter, Thorsten
2011-06-01
The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.5 cm(2), 3 MW/cm(2)). The DPSS laser, operating at 266 nm, provides higher power densities, however, on a two orders of magnitude smaller illuminated area (60 μJ/pulse, 1 ns pulse duration, beam waist area 2 × 10(-3) cm(2), 30 MW/cm(2)). In a common LC-APLI MS setup with direct infusion of a 10 nM pyrene solution, the DPSS laser yields a significantly smaller ion signal (0.9%) and signal to noise ratio (1.4%) compared with the excimer laser. With respect to the determined low detection limits (LODs) for PAHs of 0.1 fmol using an excimer laser, LODs in DPSS laser LC-APLI MS in the low pmol regime are expected. The advantages of the DPSS laser with respect to applicability (size, cost, simplicity) may render this light source the preferred one for APLI applications not focusing on ultimately high sensitivities. Furthermore, the impact of adjustable ion source parameters on the performance of both laser systems is discussed in terms of the spatial sensitivity distribution described by the distribution of ion acceptance (DIA) measurements. Perspectives concerning the impact on future APLI-MS applications are given.
NASA Astrophysics Data System (ADS)
Komlenok, M. S.; Lebedev, S. P.; Komandin, G. A.; Piqué, A.; Konov, V. I.
2018-03-01
A new approach to THz metamaterial structures is proposed and experimentally realized. It is based on metal-less conductive subwavelength structures on diamond surfaces generated by laser direct-write. 200 nm thick graphitized layers with DC conductivity of 730 Ω-1 cm-1 are formed on a chemical vapour deposited polycrystalline diamond surface after irradiation with an excimer KrF laser (τ l = 20 ns, λ = 248 nm). The optical properties of such layers are determined and simulated according to the Drude model. A polarizer with a graphitized subwavelength grating is fabricated and tested in the THz range (0.9-1.2 THz), and shows different transmission losses for orthogonal polarizations.
KrF laser pumping by electron beam discharge
NASA Astrophysics Data System (ADS)
Bonnet, J.; Fournier, G.; Pigache, D.
1981-09-01
The pumping of excimer lasers used in nuclear fusion and isotope separation is considered. Homogeneous ionization with an electron beam permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This result does not modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate.
NASA Astrophysics Data System (ADS)
Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu
2016-01-01
We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.
Raman scattering measurements in flames using a tunable KrF excimer laser
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.; Cheng, Tsarng-Sheng; Pitz, Robert W.
1992-01-01
A narrow-band tunable KrF excimer laser is used as a spontaneous vibrational Raman scattering source to demonstrate that single-pulse concentration and temperature measurements, with only minimal fluorescence interference, are possible for all major species (O2, N2, H2O, and H2) at all stoichiometries (fuel-lean to fuel rich) of H2-air flames. Photon-statistics-limited precisions in these instantaneous and spatially resolved single-pulse measurements are typically 5 percent, which are based on the relative standard deviations of single-pulse probability distributions. In addition to the single-pulse N2 Stokes/anti-Stokes ratio temperature measurement technique, a time-averaged temperature measurement technique is presented that matches the N2 Stokes Raman spectrum to theoretical spectra by using a single intermediate state frequency to account for near-resonance enhancement. Raman flame spectra in CH4-air flames are presented that have good signal-to-noise characteristics and show promise for single-pulse UV Raman measurements in hydrocarbon flames.
Excimer laser beam delivery systems for medical applications
NASA Astrophysics Data System (ADS)
Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki
1993-05-01
We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl
2017-09-01
The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.
NASA Astrophysics Data System (ADS)
Zakria Butt, Muhammad; Saher, Sobia; Waqas Khaliq, Muhammad; Siraj, Khurram
2016-11-01
Eight mirror-like polished p-type Si (111) wafers were irradiated with 100, 200, 300, 400, 800, 1200, 1600, and 2000 KrF excimer laser pulses in ambient environment of HCl fumes in air. The laser parameters were: wavelength = 248 nm, pulse width = 20 ns, pulse energy = 20 mJ, and repetition rate = 20 Hz. For each set of laser pulses, characterization of the rectangular etched patterns formed on target surface was done by optical/scanning electron microscopy, XRD, and EDX techniques. The average etched depth increased with the increase in number of laser pulses from 100 to 2000 in accord with Sigmoidal (Boltzmann) function, whereas the average etch rate followed an exponential decay with the increase in number of laser pulses. However, the etched area, maximum etched depth, and maximum etch rate were found to increase linearly with the number of laser pulses, but the rate of increase was faster for 100-400 laser pulses (region I) than that for 800-2000 laser pulses (region II). The elemental composition for each etched-pattern determined by EDX shows that both O and Cl contents increase progressively with the increase in the number of laser shots in region I. However, in region II both O and Cl contents attain saturation values of about 39.33 wt.% and 0.14 wt.%, respectively. Perforation of Si wafers was achieved on irradiation with 1200-2000 laser pulses. XRD analysis confirmed the formation of SiO2, SiCl2 and SiCl4 phases in Si (111) wafers due to chemical reaction of silicon with both HCl fumes and oxygen in air.
Fabrication of GaN doped ZnO nanocrystallines by laser ablation.
Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T
2008-08-01
Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.
Cost-effective MEMS piezoresistive cantilever-based sensor fabrication for gait movement analysis
NASA Astrophysics Data System (ADS)
Saadon, Salem; Anuar, A. F. M.; Wahab, Yufridin
2017-03-01
The conventional photolithography of crystalline silicon technique is limited to two-dimensional and structure scaling. It's also requiring a lot of time and chemical involves for the whole process. These problems can be overcome by using laser micromachining technique, that capable to produce three-dimensional structure and simultaneously avoiding the photo mask needs. In this paper, we reported on the RapidX-250 Excimer laser micromachining with 248 nm KrF to create in-time mask design and assisting in the fabrication process of piezo-resistive micro cantilever structures. Firstly, laser micromachining parameters have been investigated in order to fabricate the acceleration sensor to analyzing human gait movement. Preliminary result shows that the fabricated sensor able to define the movement difference of human motion regarding the electrical characteristic of piezo-resistor.
UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser
NASA Technical Reports Server (NTRS)
Shirley, John A.
1990-01-01
Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.
Evaluation of OH laser-induced fluorescence techniques for supersonic combustion diagnostics
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Krauss, R. H.; Mcdaniel, J. C., Jr.
1992-01-01
The limitations on application of dye laser and narrowband tunable KrF excimer laser systems to planar OH fluorescence measurements in supersonic combustion test facilities are examined. Included in the analysis are effects of collisional quenching, beam absorption, fluorescence trapping, and signal strengths on achievable measurement accuracy using several excitation and detection options for either of the two laser systems. Dye-based laser systems are found to be the method of choice for imaging OH concentrations less than 10 exp 15 per cu cm, while the KrF based systems provide significant reduction in measurement ambiguity for concentrations in excess of 10 exp 15 per cu cm.
UV Raman scattering measurements in a Mach 2 H2-air flame for assessment of CFD models
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
An UV narrowband tunable excimer laser is used for spontaneous Raman scattering measurements in hydrogen diffusion flames. The UV Raman system is characterized by a repetition rate of about 100 Hz, a temporal resolution of about 20 ns, and a spatial resolution of about 0.4 mm. It is concluded that a single KrF excimer laser based on spontaneous Raman scattering in conjunction with laser-induced predissociative fluorescence is capable of measuring instantaneously and simultaneously major species (H2, O2, N2, H2O), minor species (OH), and temperature.
High resolution imaging studies into the formation of laser-induced periodic surface structures.
Kerr, N C; Clark, S E; Emmony, D C
1989-09-01
We report the results of an investigation into the formation mechanism of laser-induced ripple structures based on obtaining direct images of a surface while the transient heating induced by a KrF excimer laser is still present. These images reveal transient but well-defined periodic heating patterns which, if enough subsequent excimer pulses are incident on the surface, become permanently induced ripple structures. It is evident from these transient images that the surface heating is confined to the induced structures, thus strongly supporting the idea that at low fluences the ripples are formed by localizing surface melting.
NASA Technical Reports Server (NTRS)
Boedeker, Laurence R.
1992-01-01
A 'tagging' approach in which the photolysis of H2O by an excimer laser creates a zone of enhanced OH concentration, while a second, pulsed-UV laser detects tagged-zone convection via time-delayed excitation of OH fluorescence, depends on the photodissociation process and the kinetics of OH decay (relative to velocity). For application to the fuel-rich, high supersonic Mach number exhaust flow of the SSME, the detection of OH is being accomplished with either a pulsed narrowband UV dye laser or a tunable XeCl excimer laser for excitation of an OH 0-0 band transition, while the two-photon photolysis of H2O is conducted by focusing an injection-locked KrF excimer laser into the flow.
NASA Astrophysics Data System (ADS)
El Khakani, My A.; Gat, E.; Beaudoin, Yves; Chaker, Mohamed; Monteil, C.; Guay, Daniel; Letourneau, G.; Pepin, Henri
1995-04-01
Laser ablation deposition technique was used to deposit silicon carbide thin films on both Si(100) and quartz substrates. The deposition was accomplished by ablating SiC sintered ceramic targets, using a KrF (248 nm) excimer laser. At a laser intensity of about 1 X 109 W/cm2, substrate temperatures in the (25-700) degree(s)C range were investigated. When the deposition temperature is varied from 27 to 650 degree(s)C, (i) the density of a-SiC films increases from 2.6 to 3.0 g cm-3, while their mean roughness value (for a film thickness of about 1 micrometers ) slightly changes from 0.44 to 0.5 nm; (ii) the optical transmission of a-SiC films is significantly improved (the absorption coefficient at 632.8 nm wavelength was reduced by a factor of about 5); and (iii) their Si-C bond density, as determined by FTIR spectroscopy, increases from (13.1 +/- 1.3) to (23.4 +/- 2.4) 1022 bond cm-3. The increased number of Si-C bonds is correlated to the increase of the optical transmission. Over all the investigated deposition temperature range, the a-SiC films were found to be under high compressive stress around a mean value of about 1.26 GPa. The control of the stress of a-SiC films was achieved by means of post- thermal annealings and the annealed a-SiC films were successfully used to fabricate x-ray membranes.
NASA Astrophysics Data System (ADS)
Hopp, Béla; Smausz, Tomi; Szabó, Gábor; Kolozsvári, Lajos; Kafetzopoulos, Dimitris; Fotakis, Costas; Nógrádi, Antal
2012-01-01
The applicability of a femtosecond KrF laser in absorbing film-assisted, laser-induced forward transfer of living cells was studied. The absorbing materials were 50-nm-thick metal films and biomaterials (gelatine, Matrigel, each 50 μm thick, and polyhydroxybutyrate, 2 μm). The used cell types were human neuroblastoma, chronic myeloid leukemia, and osteogenic sarcoma cell lines, and primary astroglial rat cells. Pulses of a 500-fs KrF excimer laser focused onto the absorbing layer in a 250-μm diameter spot with 225 mJ/cm2 fluence were used to transfer the cells to the acceptor plate placed at 0.6 mm distance, which was a glass slide either pure or covered with biomaterials. While the low-absorptivity biomaterial absorbing layers proved to be ineffective in transfer of cells, when applied on the surface of acceptor plate, the wet gelatine and Matrigel layers successfully ameliorated the impact of the cells, which otherwise did not survive the arrival onto a hard surface. The best short- and long-term survival rate was between 65% and 70% for neuroblastoma and astroglial cells. The long-term survival of the transferred osteosarcoma cells was low, while the myeloid leukemia cells did not tolerate the procedure under the applied experimental conditions.
Ochiai, S
1990-12-01
The possibilities of bone and soft tissue ablation without thermal damage by 248 nm KrF excimer laser irradiation were examined. A defect was made on the rat tongue by laser at pulse width: 15 nsec, power density: 12 W/cm2, pulse repetition rate: 20 Hz and irradiated time: 60 seconds. The same size defect was made by stainless steel surgical knife for control. The tongues were examined histopathologically at timed sequence from 1 hour to 7 days after operation. The rat femur was cut by laser at pulse width: 15 nsec, power density: 2.6 kW/cm2, pulse repetition rate: 30 Hz and irradiated time: 3 minutes. The femur was amputated by dental diamond disc for control. The femurs were examined histopathologically at timed sequence from 1 hour to 16 weeks after operation. The rat tongue was easily excised with little thermal injury by laser irradiation, and its healing process is almost the same as that of the control. The laser irradiation had no hemostatic effect. The femur could be amputated by laser irradiation but its wound healing was prolonged. The laser ablation stump showed massive necrosis probably due to the thermal injury and these necrotic bones likely disturbed the wound repair. The degree of the thermal injury by the excimer laser irradiation might depend on the irradiation condition because the condition of bone amputation was stronger than that of tongue excision.
Investigation Of Plasma Critical Surface Rippling By Harmonics Generation In Laser Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racz, E.; Foeldes, I. B.; Szatmari, S.
2006-01-15
Experiments were carried out by a tightly focused, prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). Intense 2{omega}, 3{omega} and near threshold 4{omega} were generated in laser plasmas on solid surfaces for p- and s-polarized 1.5{center_dot}1017 W/cm2 radiation intensity. Directionality and polarization properties were investigated depending on the laser intensity and polarization. The observations showed diffuse propagation of harmonics for intensities above 1016 W/cm2 and the polarization of harmonics was mixed for the highest intensities. The explanation of these results is surface rippling of the plasma critical surface because of the Rayleigh-Taylor instability, whichmore » is an intrinsic consequence of the unstable balance between light pressure and plasma expansion.« less
Infrared absorption of 2-hydroxyethyl (HOCH2CH2) in solid Ar
NASA Astrophysics Data System (ADS)
Kuo, Yu-Ping; Wann, Gwo-Huei; Lee, Yuan-Pern
1993-09-01
An argon matrix containing C2H4 and H2O2 was irradiated at 12 K with the 248 nm emission of a KrF excimer laser; IR spectra were recorded after various periods of photolysis. In addition to lines ascribed to ethylene oxide, acetaldehyde, and vinyl alcohol, absorptions at 2991.0, 2842.7, 1355.4, 1172.5, and 1040.1 cm-1 have been assigned to HOCH2CH2; weaker lines at 3625.8, 2922.4, and 873.9 cm-1 may also be due to HOCH2CH2. Corresponding lines at 2970.6, 2829.3, 1346.5, 1171.3, and 1020.5 (and probably 3625.8, 2915.1, and 860.7) cm-1 were observed for HO13CH2 13CH2. The results are consistent with ab initio calculations.
Support of validation of SAGE 2 data
NASA Technical Reports Server (NTRS)
Copeland, Gary E.
1986-01-01
An error analysis of differential absorption lidar (DIAL) measurements of stratospheric ozone from a Space Shuttle is discussed. A transmitter system consisting of a KrF excimer laser pumping gas cells of H2 or D2 producing output wavelengths in the near UV is shown to be useful for the measurement of ozone in an altitude range from 15 to 50 km.
Ozone Measurements with the US EPA UV-DIAL: Preliminary Results
NASA Technical Reports Server (NTRS)
Moosmueller, H.; Diebel, D.; Bundy, D. H.; Bristow, M. P.; Alvarez, R. J., II; Kovalev, V. A.; Edmonds, C. M.; Turner, R. M.; Mcelroy, J. L.
1992-01-01
A compact airborne down-looking lidar system was developed at the Environmental Protection Agency in Las Vegas. This differential absorption lidar (DIAL) was designed to simultaneously measure range-resolved concentrations of ozone (O3) and sulfur dioxide (SO2) in the lower troposphere, together with an indication of the aerosol distribution. The five laser wavelengths (i.e., lambda(sub 1) = 277 nm, lambda(sub 2) = 292 nm, lambda(sub 3) = 313 nm, lambda(sub4) = 319 nm, lambda(sub 5) = 369 nm) were generated via Raman conversion of a focused KrF excimer laser. The system is currently installed in a truck-based mobile laboratory. For the ground testing, an opening in the truck floor together with a folding mirror under the truck makes a horizontal, or upwardly inclined direction of measurement possible. Initial ground testing has been performed in the vicinity of a Desert Research Institute (DRI) ambient air monitoring site, located at Cottonwood Cove approximately 85 km south east of Las Vegas, Nevada. At this site O3 and SO2 concentrations are continuously monitored with an average accuracy better than +/- 10 percent. A temporary ozone measurement station with identical accuracy was set up at a distance to get a second point of comparison for the range-resolved DIAL measurements.
Generation of strongly coupled plasmas by high power excimer laser
NASA Astrophysics Data System (ADS)
Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng
2013-05-01
(ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.
Characterization of MAPLE deposited WO3 thin films for electrochromic applications
NASA Astrophysics Data System (ADS)
Boyadjiev, S. I.; Stefan, N.; Szilágyi, I. M.; Mihailescu, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Besleaga, C.; Iliev, M. T.; Gesheva, K. A.
2017-01-01
Tungsten trioxide (WO3) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζFWHM=25 ns) laser source was used in all experiments. The MAPLE deposited WO3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.
2013-08-01
We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.
Craciun, D.; Socol, G.; Lambers, E.; ...
2015-01-17
Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH 4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH 4 pressures exhibited slightly higher nanohardness and Young modulus values than filmsmore » deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.
2011-11-01
Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. <100> single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.
2011-09-01
Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.
Applications of the Excimer Laser: A Review.
Beggs, Sarah; Short, Jack; Rengifo-Pardo, Monica; Ehrlich, Alison
2015-11-01
The 308-nm excimer laser has been approved by the Food and Drug Administration for the treatment of psoriasis and vitiligo. Its ability to treat localized areas has led to many studies determining its potential in the treatment of focal diseases with inflammation or hypopigmentation. To review the different applications of the 308-nm excimer laser for treating dermatologic conditions. An extensive literature review was conducted by searching PubMed, MEDLINE, and ClinicalKey to find articles pertaining to dermatologic conditions treated with the 308-nm excimer laser. Articles published that contributed to new applications of the excimer laser were included, as well as initial studies utilizing the excimer laser. The outcomes and results were compiled for different dermatologic conditions treated with the excimer laser. The 308-nm excimer laser has a wide range of uses for focal inflammatory and hypopigmented conditions. Treatment is generally well tolerated, with few adverse reactions. Larger studies and studies evaluating the long-term effects of the 308-nm excimer laser are needed.
Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn
2018-03-01
Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.
INDEPENDENT EVALUATION OF THE GAM EX5ALN MINIATURE LINE-NARROWED KRF EXCIMER LASER
2017-06-01
software included the disabled tabs and buttons that clutter the panels. Information on these panels was not updated correctly (e.g., shots per fill and...total shots are not stored correctly and appear to contain random data, the lock function on the fill page does not update correctly, the time to...fill level after 7 M shots . .............................................................................. Error! Bookmark not defined. 7: Shelf-life
NASA Astrophysics Data System (ADS)
Autric, Michel L.
1999-09-01
Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.
Pelsoczi, Kovács István; Bereznai, Miklós; Tóth, Zsolt; Turzó, Kinga; Radnai, Márta; Bor, Zsolt; Fazekas, András
2004-12-01
The biointegration of dental and orthopaedic implants depends mainly on the morphology and physical-chemical properties of their surfaces. Accordingly, the development of the desired microstructure is a relevant requirement in the bulk manufacture. Besides the widely used sandblasting plus acid etching and plasma-spray coating techniques, the laser surface modification method offers a plausible alternative. In order to analyze the influence of the laser treatment, the surfaces of titanium samples were exposed to excimer laser irradiation. The aim of this study was to develop surfaces that provide optimal conditions for bone-implant contact, bone growth, formation and maintenance of gingival attachment. For this purpose, holes were ablated on the surface of samples by nanosecond (18 ns, ArF) and also sub-picosecond (0,5 ps, KrF) laser pulses. Using pulses of ns length, due to melt ejection, crown-like protrusions were formed at the border of the holes, which made them sensitive to mechanical effects. To avoid these undesirable crown-like structures ultrashort KrF excimer laser pulses were successfully applied. On the other hand, titanium samples were laser-polished in favour of formation and connection of healthy soft tissues. Irradiation by a series of nanosecond laser pulses resulted in an effective smoothening as detected by atomic force microscopy (AFM). By inhibiting plaque accumulation this favours formation of gingival attachment. X-ray photoelectron spectroscopy (XPS) studies showed that laser treatment, in addition to micro-structural and morphological modification, results in decreasing of surface contamination and thickening of the oxide layer. X-ray diffraction (XRD) analysis revealed that the original alpha-titanium crystalline structure of the laser-polished titanium surface was not altered by the irradiation.
Low resistance nonalloyed Ni/Au Ohmic contacts to p-GaN irradiated by KrF excimer laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Min-Suk; Hwang, Dae-Kue; Lim, Jae-Hong
2006-07-24
A specific contact resistance of 8.9x10{sup -5} {omega} cm{sup 2} was obtained for a Ni/Au Ohmic layer on the KrF laser-irradiated p-GaN. It was found that laser irradiation increases the hole concentration from 4.1x10{sup 17} to 9.7x10{sup 17} cm{sup -3} by removing hydrogen atoms from p-GaN layer. The native oxide was also removed as evidenced by the Ga 2p peak shift and the decrease in the intensity of O 1s peak in the x-ray photoelectron spectra. The formation of a low resistance is attributed to the increase in the hole concentration and the removal of native oxide from p-GaN bymore » laser irradiation.« less
Pulsed laser photolysis study of the reaction between O(3P) and HO2
NASA Technical Reports Server (NTRS)
Ravishankara, A. R.; Wine, P. H.; Nicovich, J. M.
1983-01-01
It is pointed out that bimolecular reactions involving two free radicals are of great interest because both reactants have unpaired electrons and hence could interact at distances longer than those typical of radical-molecule encounters. A method based on laser photolysis is being developed to produce selectively free radicals in the homogeneous gas phase. This is to be done in such a way as to isolate the reaction of interest and subsequently follow the course of the reaction using spectroscopic techniques. The present investigation is concerned with a study in which the rate coefficient for the reaction of O(3P) with HO2, has been measured at N2 pressures ranging from 10 to 500 torr, taking into account the reaction O(3P)+HO2 yields OH-O2. In the described study, O(3P) and HO2 were produced by cophotolysis of O3 and H2O2 in N2 at 248.5 nm using a KrF excimer laser.
NASA Astrophysics Data System (ADS)
Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.
2017-10-01
Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.
NASA Astrophysics Data System (ADS)
Nelea, Valentin D.; Ristoscu, Carmen; Colis, Silviu; Arens, Simona; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre
2001-04-01
Crystalline hydroxyapatite (HA) thin films grown on metallic substrates is the best choice for bone restoration. This is due to the good biological compatibility of the hydroxyapatite material combined with the good mechanical characteristics of the substrates. We deposit HA thin films by Pulsed Laser Deposition (PLD) in vacuum at room temperature using a KrF* excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). The depositions were performed directly on Ti-5Al-2.5Fe or on substrates previously coated with a TiN buffer layer. The HA deposited structures were characterized by complementary techniques: GIXRD, SEM, TEM, SAED, EDS and nanoindentation. Properties of the HA films grown with and without the TiN buffer were discussed in term of microstructure and mechanical behavior. The films with interlayer preserve the stoichiometry, are completely recrystallized and present better mechanical characteristics as compared with those without buffer.
NASA Astrophysics Data System (ADS)
Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.
2005-01-01
A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.
NASA Astrophysics Data System (ADS)
Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas
2018-04-01
Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.
Effect of a 308-nm excimer laser on atopic dermatitis-like skin lesions in NC/Nga mice.
Oh, Chang Taek; Kwon, Tae-Rin; Seok, Joon; Choi, Eun Ja; Kim, Soon Re; Jang, Yu-Jin; Mun, Seog Kyun; Kim, Chan Woong; Lee, Sungeun; Lee, Jongmin; Kim, Myeung Nam; Choi, Sun Young; Kim, Beom Joon
2016-08-01
Atopic dermatitis (AD) is a common inflammatory skin disease that can affect all age groups. It has a relapsing course, which dramatically affects the quality of life of patients. A 308-nm excimer laser has been reported to be a safe and effective treatment for inflammatory skin diseases, although the range of potential application has not been fully explored. The purpose of this study was to evaluate the therapeutic effects of a 308-nm laser on AD-like skin lesions in NC/Nga mice. Dermatophagoides farinae-exposed NC/Nga mice with a clinical score of 12 were treated with either a 308-nm excimer laser or narrowband-UVB (NB-UVB). The effects of the 308-nm excimer laser were evaluated by dermatitis scores, skin histology, skin barrier function, and immunological parameters, including IgE and Th2-mediated cytokines. The 308-nm excimer laser significantly reduced the severity of skin lesions and decreased the total serum levels of IgE and Th2-mediated cytokines. The excimer laser also significantly reduced the inflammatory cellular infiltrate into AD-induced skin lesions. Moreover, treatment with the 308-nm excimer laser led to recovery of skin barrier function in AD-induced skin lesions. The 308-nm excimer laser can be considered a valid and safe therapeutic option for the treatment of localized AD. Lasers Surg. Med. 48:629-637, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
In situ analysis of Titan's tholins by Laser 2 steps Desorption Ionisation
NASA Astrophysics Data System (ADS)
Benilan, Y.; Carrasco, N.; Cernogora, G.; Gazeau, M.; Mahjoub, A.; Szopa, C.; Schwell, M.
2013-12-01
The main objective of the whole project developed in collaboration (LISA/LATMOS) is to provide a better understanding of the chemical composition of Titan aerosols laboratory analogs, called tholins, and thereby of their formation pathways. The tholins are produced in the PAMPRE reactor (French acronyme for Aerosols Microgravity Production by Reactives Plasmas) developed at LATMOS. These tholins are generated in levitation (wall effects are thus limited) in a low pressure radiofrequency plasma. Up to now, the determination of the physical and chemical properties of these tholins was achieved after their collection and ex-situ analysis by several methods. Their bulk composition was then determined but their insoluble part is still unknown. Other studies were performed after the transfer of the soluble part of the aerosols to different analytical instruments. Therefore, possible artifacts could have influenced the results. We present the SMARD (a French acronym for Mass Spectrometry of Aerosols by InfraRed Laser Desorption) program. A challenging issue of our work is to perform the soluble and unsoluble parts of PAMPRE tholins' analysis in real time and in situ. The coupling of the PAMPRE reactor to a unique instrument (Single Particle Laser Ablation Mass Spectrometry) developed at LISA should allow determining in real time and in situ the characteristics (chemical composition together with granulometry) of the nanometric aerosols. The later are introduced in the analytical instrument using an aerodynamic lens device. Their detection and aerodynamic diameter are determined using two continuous diode lasers operating at λ = 403 nm. Then, the L2DI (Laser 2 steps Desorption Ionisation) technique is used in order to access to the chemical composition of individual particles: they are vaporized using a 10 μm CO2 pulsed laser and the gas produced is then ionized by a 248 nm KrF Excimer laser. Finally, the molecular ions are analyzed by a 1 m linear time-of-flight mass spectrometer. As a first step, tests have been realized using a model of aerosols particles [Dioctylphthalate, C6H4(COOC8H17)2, PM = 390] as well as tholins which have been solubilized in water. Both types of particles have been introduced in the system via a nebulizer placed at the entrance of the aerodynamic lens device. The results, that demonstrate the feasibility of the L2DI technique, will be presented. Aware that the KrF Excimer laser might induce dissociative ionization and only allow to detect aromatic molecular compounds, we plan to use a VUV (λ = 121.56 nm) laser. This would promote direct ionization (one photon process) of all kinds of species according to their respective threshold. The final step will be to directly analyze the tholins generated in the PAMPRE reactor.
Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.
Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki
2018-06-08
Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.
Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile
NASA Technical Reports Server (NTRS)
Moreau, G.; Robert, C.
1994-01-01
A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.
Radiation damage of all-silica fibers in the UV region
NASA Astrophysics Data System (ADS)
Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.
1999-04-01
Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.
Random noise can help to improve synchronization of excimer laser pulses.
Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János
2016-02-01
Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.
308nm Excimer Laser in Dermatology
Mehraban, Shadi
2014-01-01
308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333
NASA Astrophysics Data System (ADS)
Xie, Tianyan
1994-01-01
Photochemical study of the dechlorination of four model compounds, 4,5-dichloroguaiacol, 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol, and tetrachloroguaiacol in aqueous solutions under UV radiation was conducted using ArF (193 nm) and KrF (248 nm) excimer laser to explore the response of chlorinated phenolics present in the E_1 effluent from conventional chlorine bleaching of softwood kraft pulp towards photo-oxidation processes. Kinetic study show that the overall dechlorination reaction follow the first order rate law. The factors affecting the dechlorination were investigated. The quantum yield of chloride ion formation was found to be dependent on pH of the reaction mixture, and orignal chlorine content of the compounds. The effect of the substituents on the aromatic ring on the reactivity of the compounds was studied. The mechanism for the dechlorination was proposed involving homolytic photo-dissociation, heterolytic cleavage of carbon-chlorine bonds and substitution reactions of hydroxyl radicals. It was found that the dechlorination under formation to chloride is influenced by the amount of organically bound chlorine in the starting material. Dechlorination reaction favors high pH. Guaiacols more easily undergo dechlorination than phenols. Four fractions of high relative molecular-mass chloro-organics or polychlorinated oxylignin (PCOL) were isolated from an E_1 effluent by combination of ultrafiltration, and purified by repeated precipitation. The fractions were analysed by classical functional group analysis and spectrophotometric methods. The analytical data indicated that the major structural differences between PCOL fractions and kraft lignin preparations are with regard to the content of founctional groups such as carboxyl content, methoxyl and hydroxyl contents. In addition, IR, ^1H and ^{13 }C NMR spectral analyses revealed an almost complete absence of absorption attributable to aromatic structures in PCOLs. These results and others led to the conclusion that the PCOL fractions are comprised mainly of non-aromatic lignin oxidation products containing a considerable amount of organically bound chlorine as well as unsaturated aliphatic carbon bonded to either oxygen or chlorine. The PCOL fractions were subjected to 193 nm UV -Excimer laser photolysis in presence and absence of oxygen with and without hydrogen peroxide. Kinetic study showed that they readily undergo dechlorination and decolorization on UV ArF-excimer laser (193 nm) photolysis under both oxygen and nitrogen atmosphere. About 60% dechlorination could be achieved by 3 hours irradiation. However, the relative molecular-mass of the PCOL fractions were not changed during the photolysis. Addition of small amount (2-8% w/w) of hydrogen peroxide lead to a signifiant reduction of color and relative molecular-mass. Thus, hydrogen peroxide play very important role in degradation and decolorization of PCOLs. The possible reaction mechanism for the UV-Excimer laser photolysis of PCOLs are discussed on the basis of the observed results.
Treatment of alopecia areata with 308-nm excimer lamp.
Ohtsuki, Akiko; Hasegawa, Toshio; Ikeda, Shigaku
2010-12-01
Alopecia areata is considered to be a T-cell mediated autoimmune disorder. The 308-nm excimer lamp is thought to be capable of inducing T-cell apoptosis in vitro, suggesting that the lamp might be effective for the treatment of alopecia areata. We examined the effectiveness of the 308-nm excimer lamp for the treatment of alopecia areata. We recruited three patients with single alopecia areata lesions that were resistant to conventional treatment. The lesions were exposed to a 308-nm excimer lamp at 2-weekly intervals. Hair regrowth was observed in all three patients after approximately 10 treatment sessions. Our study showed that exposure to the 308-nm excimer lamp effectively induced hair regrowth in solitary alopecia areata lesions. Apart from erythema, there were no significant adverse effects. Therefore, we suggest that it may be considered as a treatment modality for recalcitrant alopecia areata. © 2010 Japanese Dermatological Association.
Development of very compact soft X-ray lasers
NASA Astrophysics Data System (ADS)
Korobkin, Dmitriy Vladlenovich
1999-10-01
A powerful subpicosecond laser system, based on solid state (Ti:Al 2O3) front end and gas excimer (KrF*) amplifiers, has been developed. It is capable of producing 40-50 mJ pulses at 248 nm (285 fs pulse duration) with 2 Hz repetition rate. That radiation can be focused to intensities greater than 1017 W/cm2 and cause the optical field ionization of lithium. The system was used in experiments on gain generation in hydrogen-like Li III. Lasing action in hydrogen-like Li III 2-1 transition to ground state (13.5 nm) has been demonstrated for the first time. Gain G = 11 cm-1 in 5-mm long plasma column, created in LiF microcapillary, was measured. The observed gain-length product was GL = 5.5. In another set of experiments an inversion population between levels n = 3 and n = 2 in hydrogen-like BV was created using a low-energy compact laser system at 1 Hz repetition rate. Gain G = 17 cm-1 at 26.2 nm was measured in 3 mm long B2O3 microcapillary, which corresponds to GL = 5.1. The entire experimental setup can be fit on a single medium size optical table. Also propagation of laser radiation through plasma, created in microcapillaries has been investigated at various experimental conditions. Real-time plasma probing with low intensity HeNe laser beam has been performed.
NASA Astrophysics Data System (ADS)
Molaei, R.; Bayati, R.; Nori, S.; Kumar, D.; Prater, J. T.; Narayan, J.
2013-12-01
VO2(010)/NiO(111) epitaxial heterostructures were integrated with Si(100) substrates using a cubic yttria-stabilized zirconia (c-YSZ) buffer. The epitaxial alignment across the interfaces was determined to be VO2(010)‖NiO(111)‖c-YSZ(001)‖Si(001) and VO2[100]‖NiO⟨110⟩‖c-YSZ⟨100⟩‖Si⟨100⟩. The samples were subsequently treated by a single shot of a nanosecond KrF excimer laser. Pristine as-deposited film showed diamagnetic behavior, while laser annealed sample exhibited ferromagnetic behavior. The population of majority charge carriers (e-) and electrical conductivity increased by about two orders of magnitude following laser annealing. These observations are attributed to the introduction of oxygen vacancies into the VO2 thin films and the formation of V3+ defects.
New 223-nm excimer laser surgical system for photorefractive keratectomy
NASA Astrophysics Data System (ADS)
Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.
1999-02-01
The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.
A new laboratory source of ozone and its potential atmospheric implications
NASA Astrophysics Data System (ADS)
Slanger, T. G.; Jusinski, L. E.; Black, G.; Gadd, G. E.
1988-08-01
Although 248-nm radiation falls 0.12 eV short of the energy needed to dissociate O2, large densities of ozone (O3) can be produced from unfocused 248-nm KrF excimer laser irradiation of pure O2. As soon as any O3 is present, it strongly absorbs the 248-nanometer radiation and dissociates to vibrationally excited ground state O2 (among other products), with a quantum yield of 0.1 to 0.15. During the laser pulse, a portion of these molecules absorb a photon and dissociate, which results in the production of three oxygen atoms for one O3 molecule destroyed. Recombination then converts these atoms to O3, and thus O3 production in the system is autocatalytic. A deficiency exists in current models of O3 photochemistry in the upper stratosphere and mesosphere, in that more O3 is found than can be explained. A detailed analysis of the system as it applies to the upper atmosphere is not yet possible, but with reasonable assumptions about O2 vibrational distributions resulting from O3 photodissociation and about relaxation rates of vibrationally excited O2, a case can be made for the importance of including this mechanism in the models.
Planar imaging of OH density distributions in a supersonic combustion tunnel
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Krauss, R. H.; Mcdaniel, J. C., Jr.
1993-01-01
Images of absolute OH number density were obtained using planar laser-induced fluorescence (PLIF) in a supersonic H2-air combustion tunnel. A tunable KrF excimer laser was used to excite the Q2(11) ro-vibronic line. Calibration of the PLIF images was obtained by referencing the signal measured in the flame to that obtained by the excitation of OH produced by thermal dissociation of H2O in an atmospheric furnace. Measurement errors due to uncertainty in internal furnace atmospheric conditions and image temperature correction are estimated.
Marshall, J; Trokel, S; Rothery, S; Krueger, R R
1986-01-01
This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283
Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.
2010-11-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.
NASA Astrophysics Data System (ADS)
Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf
2018-01-01
In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.
Zinc oxide nanostructured layers for gas sensing applications
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Cretí, A.; Luches, A.; Lomascolo, M.; Martino, M.; Rella, R.; Valerini, D.
2011-03-01
Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.
Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Reidy, Christopher; Tate, Janet
2011-10-01
Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.
Byun, Ji Won; Moon, Jong Hyuk; Bang, Chan Yl; Shin, Jeonghyun; Choi, Gwang Seong
2015-01-01
Some studies have reported the use of 308-nm excimer laser therapy for treating alopecia areata (AA); however, the effectiveness of this therapy on a theoretical basis has not yet been comparatively analyzed. To determine the therapeutic effect of excimer laser therapy on AA. One alopecic patch was divided into control and treated sides in 10 patients with AA. Then, 308-nm excimer laser therapy was administered twice a week for 12 weeks. Photograph and phototrichogram analyses were performed. Photographic assessments by both dermatologists and individuals of the general population showed objective improvements after excimer laser therapy. On the treated side, the hair count and hair diameter had statistically increased after treatment. However, only the hair diameter was found to be significantly high in the treated half when it was compared with the control side. The 308-nm excimer laser has a therapeutic effect on AA, which is proven by photograph and phototrichogram analysis by a side-by-side comparison. © 2015 S. Karger AG, Basel.
Average power scaling of UV excimer lasers drives flat panel display and lidar applications
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer
2012-03-01
Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.
Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik
2015-11-11
Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up to 3 m(2) with the same drying time for the same slurry height. The surface-structured ceramics display interesting wetting properties, for example, eicosane-coated mesoporous microstructured alumina shows superhydrophobic behavior. Additionally, ceramic bulk samples could be further used as second-generation very hard and low-wear molds for further microfabrication.
Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick
2014-03-01
Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.
Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films
NASA Astrophysics Data System (ADS)
Stock, Michael; Molian, Pal
2004-05-01
Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.
2013-02-01
The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.
NASA Astrophysics Data System (ADS)
Shafeev, Georgii A.; Pimenov, S. M.; Lubnin, Evgenii N.; Smolin, A. A.; Konov, Vitalii I.; Laptev, V. A.
1995-02-01
An experimental investigation was made of laser activation of diamond surfaces (single crystals and polycrystalline diamond films) prior to electroless before catalytic deposition of metals from solutions. The activation was carried out by a copper vapour laser or a KrF excimer laser in two ways: decomposition of a thin film of palladium acetylacetonate and local laser stimulated modification of the diamond surface by laser evaporation. An ohmic contact (Cu or Ni) with an adhesive strength of 3 N mm-2 was formed and the spatial resolution achieved was 10 μm.
Biomedical properties of laser prepared silver-doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Jelínek, M.; Weiserová, M.; Kocourek, T.; Zezulová, M.; Strnad, J.
2011-07-01
Thin films of hydroxyapatite (HA) and silver-doped HA were synthesized using KrF excimer laser deposition. Material was ablated from one target composed from silver and HA segments. Layers properties as silver content, structure, color, FTIR spectra and antibacterial properties (Gram-positive Bacillus subtilis) were measured. Silver concentration in HA layers of 0.06, 0.3, 1.2, 4.4, 8.3, and 13.7 at % was detected. The antibacterial efficacy changed with silver dopation from 71.0 to 99.9%. The focus is on investigation of minimum Ag concentration needed to reach a high antibacterial efficacy.
Dong, Jie; He, Yanling; Zhang, Xiuying; Wang, Yixuan; Tian, Yongjing; Wang, Jie
2012-06-01
To compare the clinical efficacy and safety of combining flumetasone ointment with 308-nm excimer laser therapy vs. 308-nm excimer laser monotherapy for the treatment of psoriasis vulgaris. Forty patients with psoriasis vulgaris were recruited; 20 were treated with flumetasone ointment plus 308-nm excimer laser therapy, and the other 20 received only excimer laser monotherapy. The flumetasone ointment was applied topically twice a day, and laser treatments were scheduled twice weekly for a total of 10 treatments. Clinical efficacy was evaluated in a blinded manner by two independent physicians using photographs taken before and after treatment. Of the 40 patients who received and completed the entire course of therapy, the psoriasis area and severity index score was improved by 82.51 ± 11.24% and 72.01 ± 20.94% in the combination group and laser group, respectively (P > 0.05), and the average cumulative dose was 5.06 ± 2.20 j/cm(2) in the combination group and 7.75 ± 2.25 j/cm(2) in the laser-only group, respectively (P < 0.05). The clinical data suggest that combination treatment using flumetasone ointment and a 308-nm excimer laser is superior to laser monotherapy for treatment of psoriasis vulgaris. The combination therapy can increase effectiveness and decrease the total laser dose, thus potentially reducing side effects. © 2012 John Wiley & Sons A/S.
308-nm excimer laser for the treatment of alopecia areata.
Al-Mutairi, Nawaf
2007-12-01
Alopecia areata is loss of hair from localized or diffuse areas of hair-bearing area of the skin. Recently there are reports of efficacy of the 308-nm excimer radiation for this condition. To study the effect of the 308-nm excimer laser in the treatment of alopecia areata. Eighteen patients with 42 recalcitrant patches (including 1 adult with alopecia totalis) were enrolled in this study. The lesions were treated with the 308-nm excimer laser twice a week for a period of 12 weeks; one lesion on each patient was left as a control for comparison. There were 7 males and 11 females in this study. Regrowth of hair was observed in 17 (41.5%) patches. Thirteen of the 18 lesions in scalp showed a complete regrowth of hair. The extremity regions failed to show a response. Atopic diatheses had an unfavorable effect on the outcome in our patients. The 308-nm excimer laser is an effective therapeutic option for patchy alopecia areata of the scalp and for some cases with patchy alopecia areata of the beard area. It does not work for patchy alopecia areata of the extremities.
Microprocessing of ITO and a-Si thin films using ns laser sources
NASA Astrophysics Data System (ADS)
Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.
2005-06-01
Selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using transparent conductive oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. Excimer (KrF, λ = 248 nm) and DPSS lasers (λ = 355 and λ = 1064 nm) with nanosecond pulse duration have been used for material patterning. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques have been applied for the characterization of the ablated grooves. Additionally, process parametric windows have been determined in order to assess this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well-defined ablation grooves having thicknesses in the order of 10 µm both in ITO and in a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.
NASA Astrophysics Data System (ADS)
Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi
1995-05-01
A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.
Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024
NASA Astrophysics Data System (ADS)
Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar
2014-02-01
Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.
2015-05-01
Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.
NASA Astrophysics Data System (ADS)
Nelea, V.; Pelletier, H.; Müller, D.; Broll, N.; Mille, P.; Ristoscu, C.; Mihailescu, I. N.
2002-01-01
Major problems in the hydroxyapatite (HA), Ca 5(PO 4) 3OH, thin films processing still keep the poor mechanical properties and the lack in density. We present a study on the feasibility of high energy ion-beam implantation technique to densify HA bioceramic films. Crystalline HA films were grown by pulsed laser deposition (PLD) method using an excimer KrF ∗ laser ( λ=248 nm, τ FWHM≥20 ns). The films were deposited on Ti-5Al-2.5Fe alloys substrates previously coated with a ceramic TiN buffer layer. After deposition the films were implanted with Ar + ions at high energy. Optical microscopy (OM), white light confocal microscopy (WLCM), grazing incidence X-ray diffraction (GIXRD) and Berkovich nanoindentation in normal and scratch options have been applied for the characterization of the obtained structures. We put into evidence an enhancement of the mechanical characteristics after implantation, while GIXRD measurements confirm that the crystalline structure of HA phase is preserved. The improvement in mechanical properties is an effect of a densification after ion treatment as a result of pores elimination and grains regrowth.
Treatment of oral lichen planus using 308-nm excimer laser.
Liu, Wei-Bing; Sun, Li-Wei; Yang, Hua; Wang, Yan-Fei
2017-09-01
Oral lichen planus (OLP) is a chronic inflammatory disease, has prolonged courses, repeated attacks and resistance to treatment. The traditional narrow spectrum UVB treatment has an established efficacy on skin lichen planus, and high safety. However, most of ultraviolet phototherapy devices have a huge volume, thereby cannot be used in the treatment of OLP. Lymphocytic infiltration is evident in the lesions of lichen planus, and the direct irradiation of 308-nm excimer laser can induce apoptosis of the T lymphocytes in skin lesions, thereby has a unique therapeutic effect on the diseases involving T lymphocytes. This study aims to investigate the efficacy of 308-nm excimer laser in the treatment of OLP. A total of six OLP patients were enrolled into this study, and further pathological diagnosis was conducted, then 308-nm excimer laser was used in the treatment. The efficacy of 308-nm excimer laser in the treatment of OLP was satisfactory. The clinical symptoms of five patients were significantly improved. In two patients, the erosion surface based on congestion and the surrounding white spots completely disappeared, and clinical recovery was achieved. Three patients achieved partial remission, that is, the erosion surface healed, congestion and white spot area shrunk by more than 1/2 of the primary skin lesions. In the remaining one patient, the erosion surface had not completely healed after treatment, and congestion and white spot area shrunk by less than 1/2 of the primary skin lesions. Only one patients had developed mild pain during the treatment, and this symptom alleviated by itself. The 308-nm excimer laser therapy can serve as a safe and effective treatment for OLP. © 2017 Wiley Periodicals, Inc.
Device and method for noresonantly Raman shifting ultraviolet radiation
Loree, Thomas R.; Barker, Dean L.
1979-01-01
A device and method for nonresonantly Raman shifting broad band uv excimer laser radiation, which enhances preselected Stokes signals by varying the pressure of the Raman scattering medium, the focal interaction length of the incident radiation within the Raman scattering medium and its power density level. Gaseous molecular H.sub.2, D.sub.2, CH.sub.4 (methane), HD and mixes thereof, and liquid N.sub.2 are used as the Raman scattering medium to frequency shift the outputs of high power KrF and ArF lasers. A cable fed discharge with an unstable resonant cavity configuration is utilized to produce the output laser power levels required for operation.
A review of protocols for 308 nm excimer laser phototherapy in psoriasis.
Mudigonda, Tejaswi; Dabade, Tushar S; Feldman, Steven R
2012-01-01
308 nm excimer laser phototherapy is efficacious in the treatment of localized psoriasis. Different approaches regarding dose fluency, number of treatments, and maintenance have been utilized, and there is yet to be a consensus on standard protocol. To characterize treatment parameters for 308 nm excimer laser phototherapy. We performed a PubMed search for studies describing excimer laser treatment protocol with particular attention to dosage determination, dose adjustment, dose fluency, number of treatments, and maintenance. Seven prospective studies were found describing the excimer efficacy for psoriasis. All studies determined the initial treatment dose using either the minimal erythema dose (MED) or induration. Fluency ranged from 0.5 MED (low) to 16 MED (high); one study demonstrated that medium to high fluencies yielded better improvement in fewer number of treatments. Fluency adjustments during the course of treatment were important to minimize phototherapy-associated side effects. The use of higher fluencies was reported to result in higher occurrences of blistering. One study implemented a maintenance tapering of dose-frequency phase to better manage psoriasis flare-ups. The 308 nm excimer laser is an effective therapy for psoriasis regardless of the method used to determine initial dosage, dose fluency, or number of treatments. As its usage as a targeted monotherapy increases, future trials should consider evaluating and modifying these parameters to determine the most optimal management of localized psoriasis. Based on our reviewed studies, there is no consensus for a single excimer laser therapy protocol and as a result, patient preferences should continue to be an important consideration for phototherapy regimen planning.
Excimer laser: a module of the alopecia areata common protocol.
McMichael, Amy J
2013-12-01
Alopecia areata (AA) is an autoimmune condition characterized by T cell-mediated attack of the hair follicle. The inciting antigenic stimulus is unknown. A dense perbulbar lymphocytic infiltrate and reproducible immunologic abnormalities are hallmark features of the condition. The cellular infiltrate primarily consists of activated T lymphocytes and antigen-presenting Langerhans cells. The xenon chloride excimer laser emits its total energy at the wavelength of 308 nm and therefore is regarded as a "super-narrowband" UVB light source. Excimer laser treatment is highly effective in psoriasis, another T cell-mediated disorder that shares many immunologic features with AA. The excimer laser is superior in inducing T cell apoptosis in vitro compared with narrowband UVB, with paralleled improved clinical efficacy. The excimer laser has been used successfully in patients with AA. In this context, evaluation of the potential benefit of 308-nm excimer laser therapy in the treatment of AA is clinically warranted. Herein, the use of a common treatment protocol with a specifically designed module to study the outcome of excimer laser treatment on moderate-to-severe scalp AA in adults is described.
Advances in 193 nm excimer lasers for mass spectrometry applications
NASA Astrophysics Data System (ADS)
Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido
2016-03-01
Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.
Cracking and Exfoliation of TiO2 Film Irradiated with Excimer Laser
NASA Astrophysics Data System (ADS)
Qian, H. X.; Zhou, W.; Zheng, H. Y.
TiO2 film deposited on glass was irradiated in air with single-shot KrF excimer laser pulse. The surface roughened as the result of the laser ablation. It is further noted that single-pulse irradiation with fluence ranging from 400 to 1200 mJ/cm2 gave rise to protrusion of the irradiated surface above the original surface, which is in contrast to usual expectation that irradiated surface is below the unirradiated surface. The surface protrusion is mainly attributed to the effect of surface tension. At the laser fluence of 1000 mJ/cm2, cracks were formed in the irradiated area and severe film exfoliation was observed at the periphery of the irradiated area due to the release of internal stress. With higher laser fluence above 1000 mJ/cm2, patches of film were observed to peel off within the irradiated areas. Hydrodynamic ablation is proposed to account for film exfoliation. The observed phenomenon is useful for further understanding how TiO2 film reacts to strong UV laser irradiation.
Effects of excimer laser illumination on microdrilling into an oblique polymer surface
NASA Astrophysics Data System (ADS)
Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang
2006-08-01
In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.
Fine pattern replication on 10 x 10-mm exposure area using ETS-1 laboratory tool in HIT
NASA Astrophysics Data System (ADS)
Hamamoto, K.; Watanabe, Takeo; Hada, Hideo; Komano, Hiroshi; Kishimura, Shinji; Okazaki, Shinji; Kinoshita, Hiroo
2002-07-01
Utilizing ETS-1 laboratory tool in Himeji Institute of Technology (HIT), as for the fine pattern replicated by using the Cr mask in static exposure, it is replicated in the exposure area of 10 mm by 2 mm in size that the line and space pattern width of 60 nm, the isolated line pattern width of 40 nm, and hole pattern width of 150 nm. According to the synchronous scanning of the mass and wafer with EUVL laboratory tool with reduction optical system which consisted of three-aspherical-mirror in the NewSUBARU facilities succeeded in the line of 60 nm and the space pattern formation in the exposure region of 10mm by 10mm. From the result of exposure characteristics for positive- tone resist for KrF and EB, KrF chemically amplified resist has better characteristics than EB chemically amplified resist.
Bubble formation during pulsed laser ablation: mechanism and implications
NASA Astrophysics Data System (ADS)
van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius
1993-07-01
Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.
Excimer laser for the treatment of psoriasis: safety, efficacy, and patient acceptability
Abrouk, Michael; Levin, Ethan; Brodsky, Merrick; Gandy, Jessica R; Nakamura, Mio; Zhu, Tian Hao; Farahnik, Benjamin; Koo, John; Bhutani, Tina
2016-01-01
Introduction The 308 nm excimer laser is a widely used device throughout the field of dermatology for many diseases including psoriasis. Although the laser has demonstrated clinical efficacy, there is a lack of literature outlining the safety, efficacy, and patient acceptability of the excimer laser. Methods A literature search on PubMed was used with combinations of the terms “excimer”, “excimer laser”, “308 nm”, “psoriasis”, “protocol”, “safety”, “efficacy”, acceptability”, “side effects”, and “dose”. The search results were included if they contained information pertaining to excimer laser and psoriasis treatment and description of the safety, efficacy, and patient acceptability of the treatment. Results The 308 nm excimer laser is generally safe and well tolerated with minimal side effects including erythema, blistering, and pigmentary changes. It has a range of efficacies depending on the protocol used with several different treatment protocols, including the induration protocol, the minimal erythema dose protocol, and the newer minimal blistering dose protocol. Conclusion Although the excimer laser is not a first-line treatment, it remains an excellent treatment option for psoriasis patients and has been demonstrated to be an effective treatment with little to no side effects. PMID:29387603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machida, Emi; Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472; Horita, Masahiro
2012-12-17
We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.
NASA Astrophysics Data System (ADS)
Bobkowski, Romuald; Fedosejevs, Robert; Broughton, James N.
1999-06-01
A process has been developed for the purpose of fabricating 0.1 micron linewidth interdigital electrode patterns based on proximity x-ray lithography using a laser-plasma source. Such patterns are required in the manufacture of surface acoustic wave devices. The x-ray lithography was carried out using emission form a Cu plasma produced by a 15Hz, 248nm KrF excimer laser. A temporally multiplexed 50ps duration seed pulse was used to extract the KrF laser energy producing a train of several 50ps pulses spaced approximately 2ns apart within each output pulse. Each short pulse within the train gave the high focal spot intensity required to achieve high efficiency emission of keV x-rays. The first stage of the overall process involves the fabrication of x-ray mask patterns on 1 micron thick Si3N4 membranes using 3-beam lithography followed by gold electroplating. The second stage involves x-ray exposure of a chemically amplified resist through the mask patterns to produce interdigital electrode patterns with 0.1 micron linewidth. Helium background gas and thin polycarbonate/aluminum filters are employed to prevent debris particles from the laser-plasma source form reaching the exposed sample. A computer control system fires the laser and monitors the x-ray flux from the laser-plasma source to insure the desired x-ray exposure is achieved at the resist. In order to reduce diffusion effects in the chemically amplified resist during the post exposure bake the temperature had to be reduced from that normally used. Good reproduction of 0.1 micron linewidth patterns into the x-ray resist was obtained once the exposure parameters and post exposure bake were optimized. A compact exposure station using flowing helium at atmospheric pressure has also been developed for the process, alleviating the need for a vacuum chamber. The details of the overall process and the compact exposure station will be presented.
NASA Astrophysics Data System (ADS)
Bagayev, Sergei N.; Chernikh, Valery V.; Razhev, Alexander M.; Zhupikov, Andrey A.
2000-06-01
The new surgical UV ophthalmic laser system Medilex based on the KrCl (223 nm) excimer laser for refractive surgery was created. The comparative analysis of using the UV ophthalmic laser systems Medilex based on the ArF (193 nm) and the KrCl (223 nm) excimer lasers for the correction of refractive errors was performed. The system with the radiation wavelength of 223 nanometer of the KrCl excimer laser for refractive surgery was shown to have several medical and technical advantages over the system with the traditionally used radiation wavelength of 193 nanometer of the ArF excimer laser. In addition the use of the wavelength of 223 nanometer extends functional features of the system, allowing to make not only standard for this type systems surgical and therapeutic procedures but also to treat such ocular diseases as the glaucoma and herpetic keratities. For the UV ophthalmic laser systems Medilex three variations of the beam delivery system including special rotating masks and different beam homogenize systems were developed. All created beam delivery systems are able to make the correction of myopia, hyperopia, astigmatism and myopic or hyperopic astigmatism and may be used for therapeutic procedures. The results of the initial treatments of refractive error corrections using the UV ophthalmic laser systems Medilex for both photorefractive keratectomy (PRK) and LASIK procedures are presented.
Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.
2011-10-01
The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.
Larsson, Kajsa; Johansson, Olof; Aldén, Marcus; Bood, Joakim
2014-01-01
A concept based on a combination of photofragmentation laser-induced fluorescence (PF-LIF) and two-photon laser-induced fluorescence (LIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H2O2) and water (H2O) vapor. Water detection is based on two-photon excitation by an injection-locked krypton fluoride (KrF) excimer laser (248.28 nm), which induces broadband fluorescence (400-500 nm) from water. The same laser simultaneously photodissociates H2O2, whereupon the generated OH fragments are probed by LIF after a time delay of typically 50 ns, by a frequency-doubled dye laser (281.91 nm). Experiments in six different H2O2/H2O mixtures of known compositions show that both signals are linearly dependent on respective species concentration. For the H2O2 detection there is a minor interfering signal contribution from OH fragments created by two-photon photodissociation of H2O. Since the PF-LIF signal yield from H2O2 is found to be at least ∼24,000 times higher than the PF-LIF signal yield from H2O at room temperature, this interference is negligible for most H2O/H2O2 mixtures of practical interest. Simultaneous single-shot imaging of both species was demonstrated in a slightly turbulent flow. For single-shot imaging the minimum detectable H2O2 and H2O concentration is 10 ppm and 0.5%, respectively. The proposed measurement concept could be a valuable asset in several areas, for example, in atmospheric and combustion science and research on vapor-phase H2O2 sterilization in the pharmaceutical and aseptic food-packaging industries.
Johnson, Timothy J; Ross, David; Locascio, Laurie E
2002-01-01
A preformed T-microchannel imprinted in polycarbonate was postmodified with a pulsed UV excimer laser (KrF, 248 nm) to create a series of slanted wells at the junction. The presence of the wells leads to a high degree of lateral transport within the channel and rapid mixing of two confluent streams undergoing electroosmotic flow. Several mixer designs were fabricated and investigated. All designs were relatively successful at low flow rates (0.06 cm/s, > or = 75% mixing), but had varying degrees of success at high flow rates (0.81 cm/s, 45-80% mixing). For example, one design operating at high flow rates was able to split an incoming fluorescent stream into two streams of varying concentrations depending on the number of slanted wells present. The final mixer design was able to overcome stream splitting at high flow rates, and it was shown that the two incoming streams were 80% mixed within 443 microm of the T-junction for a flow rate of 0.81 cm/s. Without the presence of the mixer and at the same high flow rate, a channel length of 2.3 cm would be required to achieve the same extent of mixing when relying upon molecular diffusion entirely, while 6.9 cm would be required for 99% mixing.
Dynamics of cells function on laser cell-chip system
NASA Astrophysics Data System (ADS)
Kushibiki, Toshihiro; Sano, Tomoko; Ishii, Katsunori; Yoshihashi-Suzuki, Sachiko; Awazu, Kunio
2006-02-01
A new type of cell-cultivation system based on laser processing has been developed for the on-chip cultivation of living cells. We introduce a "laser cell-chip", on which migration of cells, such as stem cells, tumor cells or immunocompetent cells, can be observed. A sheet prepared from epoxy resin was processed by KrF excimer laser (248 nm, 1.6 J/cm2) for preparation of microgrooved surfaces with various groove width, spacing, and depth. A laser cell-chip can make kinetic studies of cell migration depending on the concentration gradient of a chemoattractant. In this study, megakaryocytes were used for the migration on a groove of laser cell-chip by the concentration gradient of the stromal cell derived factor 1 (SDF-1/CXCL12). SDF-1/CXCL12 plays an important and unique role in the regulation of stem/progenitor cell trafficking. A megakaryocyte was migrated on a groove of laser cell-chip depending on the optical concentration gradient of SDF-1/CXCL12. Since SDF-1/CXCL12-induced migration of mature megakaryocyte was known to increase the platelet production in the bone marrow extravascular space, the diagnosis of cell migration on laser cell-chip could provide a new strategy to potentially reconstitute hematopoiesis and avoid life-threatening hemorrhage after myelosuppression or bone marrow failure.
NASA Astrophysics Data System (ADS)
Mukherjee, Devajyoti; Hyde, Robert; Mukherjee, Pritish; Srikanth, Hariharan; Witanachchi, Sarath
2012-03-01
Pb depletion in Pb(Zr0.52Ti0.48)O3 (PZT) thin films has remained as a major setback in the growth of defect-free PZT thin films by pulsed laser ablation techniques. At low excimer (KrF) laser fluences, the high volatility of Pb in PZT leads to non-congruent target ablation and, consequently, non-stoichiometric films, whereas, at high laser fluences, the inherent ejection of molten droplets from the target leads to particulate laden films, which is undesirable in heterostructure growth. To overcome these issues, a dual-laser ablation (PLDDL) process that combines an excimer (KrF) laser and CO2 laser pulses was used to grow epitaxial PZT films on SrTiO3 (100) and MgO (100) substrates. Intensified-charge-coupled-detector (ICCD) images and optical emission spectroscopy of the laser-ablated plumes in PLDDL revealed a broader angular expansion and enhanced excitation of the ablated species as compared to those for single-laser ablation (PLDSL). This led to the growth of particulate-free PZT films with higher Pb content, better crystallinity, and lower surface roughness as compared to those deposited using PLDSL. For FE measurements, PZT capacitors were fabricated in situ using the latticed-matched metallic oxide, La0.7Sr0.3MnO3, as the top and bottom electrodes. PZT films deposited using PLDDL exhibited enhanced polarization for all driving voltages as compared to those deposited using PLDSL. A highest remanent polarization (Pr) of ˜91 μC/cm2 and low coercive field of ˜40 kV/cm was recorded at 9 V driving voltage. Fatigue characterization revealed that PZT films deposited using PLDDL showed unchanging polarization, even after 109 switching cycles.
308-nm excimer laser for the treatment of alopecia areata in children.
Al-Mutairi, Nawaf
2009-01-01
Alopecia areata (AA) is a common skin disease which is characterized by nonscarring localized or diffused hair loss. In this study we assessed the efficacy of 308-nm Excimer laser in the treatment of alopecia areata in children. A total of 9 children with 30 recalcitrant patches alopecia areata and two children with alopecia areata totalis were enrolled in this study which included seven male and four female patients, aged between 4 and 14 years and the durations of their disease were between 7 and 25 months. All of these patients had more than one lesion of alopecia areata and at least one of them was left as a control for comparison. The lesions were treated with the 308-nm Excimer laser twice a week for a period of 12 weeks. Regrowth of hair was observed in 18 (60%) alopecia patches in the scalp, while there was no response in the control patches and over the extremities. Only four patients with scalp lesions showed a recurrence of alopecia after 6 months post laser therapy. So, 308-nm Excimer laser is considered an effective safe therapeutic option for patchy alopecia areata in children.
[The 308 nm Excimer laser for the treatment of psoriasis and inflammatory skin diseases].
Fritz, K; Salavastru, C
2018-01-01
Overall, the 308 nm Excimer laser enables not only a more effective and safer UVB therapy than classical UV phototherapy, but also targeted irradiation in higher doses with a lower cumulative load, which results in faster healing of mainly circumscribed skin changes. This also applies to therapy-resistant residual lesions which, despite systemic therapy, did not diminish. Combination therapies usually improve the result and enable the dose of UVB and systemic medication to be reduced. Excimer laser therapy can be used for an increasing number of skin diseases, especially those that respond to phototherapy or photochemotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.T.
Linear and nonlinear photochemistries of 1,4-diazabicyclo(2.2.2)octane (DABCO) are investigated at room temperature by using ArF (193 nm) and KrF (248 nm) lasers. With an unfocused beam geometry, DABCO vapor displays a strong fluorescence when excited at 248 nm, but it shows no detectable emission with 193-nm excitation. The linear photochemistry quantum yield for DABCO is determined as phi/sub p/(248nm) approx. 0.1 and phi/sub p/(193 nm) approx. 0.3. The main stable photochemical products are analyzed as C/sub 2/H/sub 4/ and C/sub 2/H/sub 2/ for 248- and 193-nm excitation, respectively. When focused beam excitation is used, both ArF and KrF lasers dissociatemore » DABCO molecules and give three strong radical emissions of CN*(B vector /sup 2/..sigma.. ..-->.. X vector /sup 2/ ..sigma../sup +/), CH*(A vector /sup 2/..delta.. ..-->.. X vector /sup 2/II), and C/sub 2/*(D vector /sup 3/II/sub g/ ..-->.. a vector /sup 3/II/sub u/). The time behavior, the laser power dependence, and the sample pressure dependence of these emissive radicals are examined. The possible mechanisms for the Rydberg state photochemistry of DABCO are discussed.« less
Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings
Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.
2008-01-01
The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207
Excimer laser produced plasmas in copper wire targets and water droplets
NASA Technical Reports Server (NTRS)
Song, Kyo-Dong; Alexander, D. R.
1994-01-01
Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.
308-nm excimer laser in endodontics
NASA Astrophysics Data System (ADS)
Liesenhoff, Tim
1992-06-01
Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.
Wong, Jillian W; Nguyen, Tien V; Bhutani, Tina; Koo, John Y M
2012-08-01
Psoriasis is a chronic inflammatory skin disease that is characterized by thickened red plaques covered with silvery scales. Excimer laser therapy is a cutting-edge advancement in UVB phototherapy. In contrast to traditional phototherapy, the 308 nm excimer laser only targets psoriasis plaques, while it spares uninvolved skin. It allows for treatment with a supra-erythmogenic dose of UVB irradiation. Targeted UVB therapy is a possible treatment especially for many who have failed topical treatments, systemic therapy, and traditional phototherapy. For safe and effective psoriasis treatment, a combination of therapies may be used, including a combination of laser treatment with topical medications. We present two cases demonstrating effective treatment with excimer laser in conjunction with clobetasol spray and calcitriol ointment for 12 weeks. Long-term near-clearance of psoriasis was sustained after 6 months and one-year follow up periods without further therapy.
Hung, Hao-Chih; Chang, Yung-Yu; Luo, Liyang; Hung, Chen-Hsiung; Diau, Eric Wei-Guang; Chung, Wen-Sheng
2014-02-01
25,27-Bis{1'-N-(1-pyrenyl)-aminocarbonylmethyl-1H-[1',2',3']tri-azolyl-4'-methoxy}-26,28-dihydroxycalix[4]arene, 4, is synthesized as a fluorescent chemosensor for the selective detection of both anions and ion pairs in MeCN. Sensor 4 uses bis-triazoles as ligands to bind a metal ion, bis-amides and bis-triazoles as the sites to recognize anions, and pyrenes as fluorophores. Among eight anions screened, chemosensor 4 showed a marked fluorescence change toward F(-), H2PO4(-) and AcO(-), but 4 responded to each anion in a distinct way. In the presence of F(-) at low concentrations, the dynamic excimer emission of compound 4 at λ(max) 482 nm was quenched, but an emission at λ(max) 472 nm appeared at large doses of F(-). A control compound 6 showed very similar red shifts in the UV-vis and excitation spectra as 4 did, and its 472 nm emission band grew as the fluoride doses increased. Thus, the growth of the 472 nm emission of 4 and 6 in the presence of excess F(-) may be because strong H-bonding interactions of amido protons with F(-) favoured the formation of pyrene dimers in the ground state with charge transfer characteristics. The addition of H2PO4(-), unlike F(-), to a solution of 4 showed an enhanced monomer emission but a decreased excimer emission (λ(max) 482 nm). Adding AcO(-) to 4 produced a systematic change from a dynamic excimer (λ(max) 482 nm) to λ(max) 472 nm but with very little change in the UV-vis spectrum. Time-resolved fluorescence measurements on compound 6 with F(-) and AcO(-) confirmed that the 472 nm emission band mainly came from static excimers for the former, but was partly from a dynamic excimer for the latter because it contained a growth component in the fluorescence decay traces. Without pre-treatment with an anion, chemosensor 4 showed recognition of only metal ions Cu(2+), Hg(2+) and Cr(3+), but it became sensitive to Ag(+) when it was pretreated with fluoride.
Gundogan, Cuneyt; Greve, Bärbel; Raulin, Christian
2004-01-01
Alopecia areata is a common disease of unknown etiology; it causes significant cosmetic and psycho-social distress for most of the people it affects. We report on an innovative form of treatment in two patients with typical alopecia areata on the capillitium. We successfully treated two patients whose alopecia areata had worsened progressively for 3 and 14 weeks. The treatment involved the use of a 308 nm xenon chloride excimer laser (dosage 300-2,300 mJ/cm(2) per session). After 11 and 12 sessions within a 9-week and 11-week period, the entire affected focus showed homogenous and thick regrowth. No relapse was observed during the follow-up period of 5 and 18 months. The use of the excimer laser is an effective, elegant, and safe means of treatment and has good tolerability. Analogous to topical treatment of alopecia areata, the immunosuppressive mechanism of the excimer laser can be interpreted as an induction of T-cell apoptosis. This new means of treatment has yet to be discussed in medical literature. Further studies with greater numbers are needed to assess its potential more precisely and evaluate the excimer laser in treating alopecia areata. Copyright 2004 Wiley-Liss, Inc.
Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.
1991-05-01
This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.
Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)
NASA Astrophysics Data System (ADS)
Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.
2004-09-01
We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.
Pulsed laser ablation of borax target in vacuum and hydrogen DC glow discharges
NASA Astrophysics Data System (ADS)
Kale, A. N.; Miotello, A.; Mosaner, P.
2006-09-01
The aim of our experiment was to produce a material with B sbnd H bonds for applications in hydrogen storage and generation. By using KrF excimer laser ( λ = 248 nm) ablation of borax (Na 2B 4O 7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm 2. Films were deposited under gas pressure of 1 × 10 -5 to 5 × 10 -2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of B sbnd O stretching and B sbnd O sbnd B bending bonds. Possible reasons for absence of B sbnd H bonds are attributed to binding enthalpy of the competing molecules.
Functionalised polyurethane for efficient laser micromachining
NASA Astrophysics Data System (ADS)
Brodie, G. W. J.; Kang, H.; MacMillan, F. J.; Jin, J.; Simpson, M. C.
2017-02-01
Pulsed laser ablation is a valuable tool that offers a much cleaner and more flexible etching process than conventional lithographic techniques. Although much research has been undertaken on commercially available polymers, many challenges still remain, including contamination by debris on the surface, a rough etched appearance and high ablation thresholds. Functionalizing polymers with a photosensitive group is a novel way and effective way to improve the efficiency of laser micromachining. In this study, several polyurethane films grafted with different concentrations of the chromophore anthracene have been synthesized which are specifically designed for 248 nm KrF excimer laser ablation. A series of lines etched with a changing number of pulses and fluences by the nanosecond laser were applied to each polyurethane film. The resultant ablation behaviours were studied through optical interference tomography and Scanning Electron Microscopy. The anthracene grafted polyurethanes showed a vast improvement in both edge quality and the presence of debris compared with the unmodified polyurethane. Under the same laser fluence and number of pulses the spots etched in the anthracene contained polyurethane show sharp depth profiles and smooth surfaces, whereas the spots etched in polyurethane without anthracene group grafted present rough cavities with debris according to the SEM images. The addition of a small amount of anthracene (1.47%) shows a reduction in ablation threshold from unmodified polyurethane showing that the desired effect can be achieved with very little modification to the polymer.
Development of compact excimer lasers for remote sensing
NASA Technical Reports Server (NTRS)
Laudenslager, J. B.; Mcdermid, I. S.; Pacala, T. J.
1983-01-01
The capabilities of excimer lasers for remote sensing applications are illustrated in a discussion of the development of a compact tunable XeCl excimer laser for the detection of atmospheric OH radicals. Following a brief review of the operating principles and advantages of excimer lasers, measurements of the wavelength dependence of the net small signal gain coefficient of a discharge excited XeCl laser are presented which demonstrate the overlap of several absorption lines of the A-X(0,0) transition of OH near 308 nm with the wavelengths of the XeCl laser. A range of continuous narrow bandwidth tunability of from 307.6 to 308.4 nm with only a 30 percent variation in output is reported for an XeCl laser used as a double-pass amplifier for a frequency-doubled dye laser, and measurements demonstrating the detection of laser-induced fluorescence from OH in a methane-oxygen flame are also noted. The design of an oscillator-amplifier excimer system comprising a corona-preionized, transverse-discharge oscillator and amplifier is then presented. Output energies of 12-15 mJ have been achieved in the regions where injection locking was established, with energies of 8-10 mJ elsewhere.
Enabling laser applications in microelectronics manufacturing
NASA Astrophysics Data System (ADS)
Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf
2016-02-01
In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.
NASA Astrophysics Data System (ADS)
Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi
2009-12-01
Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi
2013-03-01
The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.
Arakawa, Yukiyasu; Nomiyama, Tomoko; Katoh, Norito
2016-12-01
Three hundred and eight nanometer excimer light therapy has recently been reported to be effective against patchy alopecia areata (AA) in several clinical studies. However, these studies only included a few patients with severe forms of AA, and all of them exhibited poor outcomes. We further investigated the use of excimer light as a therapeutic option for cases of alopecia universalis (AU) that are resistant to other treatments. Eleven treatment-resistant AU patients were treated with a 308-nm excimer light at 2-week intervals for more than 16 sessions. Four patients achieved good responses and two patients exhibited poor responses. Three patients had Japanese skin type 1 and all of them achieved good responses. The radiation dose was increased until the patients exhibited marked erythema. The patients with Japanese skin type 3 who achieved good responses exhibited strong pigmentation at the irradiated sites. In conclusion, 308-nm excimer light therapy has significant effects on some AU patients who are resistant to other treatments and may be an alternative therapeutic option for AU. During the treatment of AU, high doses of radiation should be administrated until a strong inflammatory skin reaction is seen. © 2016 Japanese Dermatological Association.
NASA Astrophysics Data System (ADS)
Heinz, M.; Dubiel, M.; Meinertz, J.; Ihlemann, J.; Hoell, A.
2017-02-01
In this study, plasmonic Au and Au/Ag nanostructures in soda-lime-silicate glasses have been generated by means of ArF-excimer laser irradiation (193 nm) below the ablation threshold of the glass. For this purpose pure and silver/sodium ion-exchanged float glasses have been coated by gold and then irradiated by the laser. The formation of Au and Au/Ag nanoparticles could be verified by the surface plasmon resonances between 420 and 620 nm, which were obtained by optical spectroscopy. Both, pure Au and Ag particles as well as bimetallic Au/Ag nanoparticles, could be observed by means of small angle X-ray scattering experiments. These results demonstrate that such procedures enable the spaceselected generation of plasmonic nanostructures in glass surfaces by excimer laser irradiation.
Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)
2005-01-01
tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form
Hydroxyl Tagging Velocimetry in Cavity-Piloted Mach 2 Combustor (Postprint)
2006-01-01
combustor with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H...grid of OH tracked by planar laser -induced fluorescence to yield about 120 velocity vectors of the two-dimensional flow over a fixed time delay...with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H + OH to
Excimer-monomer switch: a reaction-based approach for selective detection of fluoride.
Song, Qiao; Bamesberger, Angela; Yang, Lingyun; Houtwed, Haley; Cao, Haishi
2014-07-21
A N-aryl-1,8-naphthalimide based sensor (ES-1) bearing a trimethylsilyl ether has been synthesized by a two-step reaction for quantitative detection of fluoride (F(-)). ES-1 exhibited monomer/excimer emissions at 410 and 524 nm respectively in CH2Cl2. In the presence of F(-), the desilylation of trimethylsilyl ether caused decay of the excimer emission as well as enhancement of the monomer emission to give a ratiometric signal. The fluoride-triggered desilylation showed a high reaction rate and high affinity to F(-) over nine other interfering anions. ES-1 provided a novel fluorescence assay based on excimer-monomer switch of N-aryl-1,8-naphthalimide to quantitatively measure F(-) with a detection limit of 0.133 ppm.
Visan, A; Stan, G E; Ristoscu, C; Popescu-Pelin, G; Sopronyi, M; Besleaga, C; Luculescu, C; Chifiriuc, M C; Hussien, M D; Marsan, O; Kergourlay, E; Grossin, D; Brouillet, F; Mihailescu, I N
2016-09-10
Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.
1996-05-01
A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.
Atomic force microscopy analysis of human cornea surface after UV (λ=266 nm) laser irradiation
NASA Astrophysics Data System (ADS)
Spyratou, E.; Makropoulou, M.; Moutsouris, K.; Bacharis, C.; Serafetinides, A. A.
2009-07-01
Efficient cornea reshaping by laser irradiation for correcting refractive errors is still a major issue of interest and study. Although the excimer laser wavelength of 193 nm is generally recognized as successful in ablating corneal tissue for myopia correction, complications in excimer refractive surgery leads to alternative laser sources and methods for efficient cornea treatment. In this work, ablation experiments of human donor cornea flaps were conducted with the 4th harmonic of an Nd:YAG laser, with different laser pulses. AFM analysis was performed for examination of the ablated cornea flap morphology and surface roughness.
Cleaning of optical surfaces by excimer laser radiation
NASA Astrophysics Data System (ADS)
Mann, K.; Wolff-Rottke, B.; Müller, F.
1996-04-01
The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubell, M.S.
1980-06-01
Motivated by the need for measurements of metastable depopulation mechanisms of Ar and Kr in the KrF rare-gas monohalide excimer laser, an ultra-high vacuum triple crossed-beams apparatus has been designed, fabricated, and assembled for the purpose of studying electron scattering from excited states of Ar and Kr atoms. A beam of metastable rare gas atoms, produced by near-resonant charge transfer of rare gas ions with alkali neutral atoms, is crossed by an electron beam and a far-red laser beam along mutually orthogonal axes. A hemispherical electron monochromator-spectrometer pair is used to measure the cross section for electron scattering from themore » 2p/sub 9/ excited state of the rare gas atom. Testing of parts of the assembled apparatus has been completed.« less
NASA Astrophysics Data System (ADS)
Ohnuma, Hidetoshi; Kawahira, Hiroichi
1998-09-01
An automatic alternative phase shift mask (PSM) pattern layout tool has been newly developed. This tool is dedicated for embedded DRAM in logic device to shrink gate line width with improving line width controllability in lithography process with a design rule below 0.18 micrometers by the KrF excimer laser exposure. The tool can crete Levenson type PSM used being coupled with a binary mask adopting a double exposure method for positive photo resist. By using graphs, this tool automatically creates alternative PSM patterns. Moreover, it does not give any phase conflicts. By adopting it to actual embedded DRAM in logic cells, we have provided 0.16 micrometers gate resist patterns at both random logic and DRAM areas. The patterns were fabricated using two masks with the double exposure method. Gate line width has been well controlled under a practical exposure-focus window.
Deposition of tantalum carbide coatings on graphite by laser interactions
NASA Technical Reports Server (NTRS)
Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.
1994-01-01
Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.
Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yue; Lu, Wu-yue; Wang, Tao
The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρ{sub c}) is 1.97 × 10{sup −3} Ω·cm{sup 2}, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA,more » which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.« less
Applications of the 308-nm excimer laser in dermatology
NASA Astrophysics Data System (ADS)
Farkas, A.; Kemeny, L.
2006-05-01
Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
Laser plasma instability experiments with KrF lasersa)
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Feldman, U.; Brown, C.; Karasik, M.; Serlin, V.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Lehmberg, R. H.; Schmitt, A. J.; Colombant, D.; Velikovich, A.
2007-05-01
Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I˜2×1015W/cm2). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of 3/2ωo and 1/2ωo harmonic emissions.
Excimer laser irradiation of metal surfaces
NASA Astrophysics Data System (ADS)
Kinsman, Grant
In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The increased absorption at 10.6 microns enables enhanced CO2 laser drilling and cutting rates in electrolytic Cu at incident intensities, I(0) of approximately 10(exp 6) W cm(exp -2). Data showing enhanced drilling rates in Al 1100-H14 is also presented. In these regimes the majority of material is removed in the liquid state. The amount of molten material formed can be directly attributed to the enhanced initial coupling of the excimer laser irradiated surface. Previously, to process Cu and Al it has been required to increase I(0) until material removal occurs through vaporization. This fundamental data and analysis provides a basic framework for further work in this new field of study.
Biomodulation of light on cells in laser surgery
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Li, Yan; Duan, Rui; Cai, Xiongwei
2002-04-01
In laser surgery, it has been observed pulsed 532-nm laser can avoid postoperative purpura, but pulsed 585-nm, 595-nm or 600-nm lasers nonetheless cause purpura when they were used to treat port-wine stains; the XeCl excimer laser (308 nm) can safely and effectively clear psoriasis; both XeCl excimer laser and Ho:YAG laser were used in coronary interventions, but only former was approved by the FDA; open channels after ultraviolet (UV) laser treatment and closed channels with infrared (IR) lasers for transmyocardial laser revascularization; and so on. In this paper, the biological information model of low intensity laser (BIML) is extended to include UVA biomodulation and is used to understand these phenomena. Although the central intensity of the laser beam is so intense that it destroys the tissue, the edge intensity is so low that it can induce biomodulation. Our investigation showed that biomodulation of light on cells might play an important role in the long-term effects of laser surgery.
NASA Astrophysics Data System (ADS)
Seiler, Theo
1991-11-01
Two laser types are going to find a place in refractive surgery of the cornea: the excimer laser (193 nm) and mid-infrared YAG lasers, such as Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ). Whereas the excimer laser used for photorefractive keratectomy (PRK) and phototherapeutic keratectomy (PTK) is currently studied in clinical trials, Ho:YAG and Er:YAG lasers are still in the state of preclinical evaluation. For myopic corrections excimer laser PRK has shown to be safe and effective in the range up to -7.0 D. The results compare favorably with conventional procedures such as radial keratotomy. Complications are rare. Hyperopic and astigmatic corrections using the Ho:YAG laser (HOT) are effective, but safety and stability has yet to be proven. Er:YAG laser photoablation yields a healing response in animal eyes similar to the excimer laser.
A review of monochromatic light devices for the treatment of alopecia areata.
Darwin, Evan; Arora, Harleen; Hirt, Penelope A; Wikramanayake, Tongyu Cao; Jimenez, Joaquin J
2018-02-01
There are many laser technologies that are being tested that claim to support hair regrowth for patients with alopecia areata (AA). In this paper, we will determine whether the body of evidence supports the use of devices using monochromatic light sources to treat AA. Articles were gathered from PubMed, Embase, and the Cochrane database using these keywords: lasers, excimer laser, low-level laser therapy (LLLT), low-level light therapy, alopecia, alopecia areata, and hair loss with a category modifier of English. Ten clinical trials and seven case reports/abstracts were assessed. Eight clinical trials and two case reports demonstrated hair regrowth with the 308-nm excimer laser/light in men, women, and children. One case report demonstrated hair regrowth with the ALBA 355® laser. One clinical trial and two case reports demonstrated hair regrowth with LLLT. While two case reports demonstrated hair regrowth with fractional laser therapy, one clinical trial showed no improvement. The 308-nm excimer laser is a safe and effective treatment for men, women, and children with refractory AA of the scalp and beard. Larger, double-blinded clinical trials should be conducted to compare excimer laser therapy to standard treatments. More data is needed to determine the efficacy of LLLT and fractional laser therapy in the treatment of AA.
Buonanno, Manuela; Stanislauskas, Milda; Ponnaiya, Brian; Bigelow, Alan W; Randers-Pehrson, Gerhard; Xu, Yanping; Shuryak, Igor; Smilenov, Lubomir; Owens, David M; Brenner, David J
2016-01-01
UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5-20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional germicidal UV lamps.
Buonanno, Manuela; Stanislauskas, Milda; Ponnaiya, Brian; Bigelow, Alan W.; Randers-Pehrson, Gerhard; Xu, Yanping; Shuryak, Igor; Smilenov, Lubomir; Owens, David M.; Brenner, David J.
2016-01-01
Background UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5–20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. Aims To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Methods Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. Results While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. Conclusions As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional germicidal UV lamps. PMID:27275949
Laser ablation of human atherosclerotic plaque without adjacent tissue injury
NASA Technical Reports Server (NTRS)
Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.
1985-01-01
Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.
Physical and optical limitations using ArF-excimer and Er:YAG lasers for PRK
NASA Astrophysics Data System (ADS)
Semchishen, Vladimir A.; Mrochen, Michael; Seiler, Theo
1998-06-01
The Erbium:YAG laser emitting at a wavelength of 2,94 micrometer have been promised as an alternative laser for the ArF-excimer laser (193 nm) in photorefractive keratectomy (PRK). This report discusses the limitations of laser parameters such as wavelength, energy density and pulse duration for the ablation of the cornea. In addition, the melting process during ablation on the corneal surface roughness may play a role.
Improved model for the angular dependence of excimer laser ablation rates in polymer materials
NASA Astrophysics Data System (ADS)
Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.
2009-10-01
Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.
Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana
2015-12-01
The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.
The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and themore » result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.« less
Growth of metal oxide thin films by laser-induced metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Tokita, Koji; Okada, Fumio
1996-12-01
The growth of metal oxide thin films by laser-induced metalorganic chemical vapor deposition was investigated by changing wavelength, power, repetition rate, and irradiation angle of the excimer laser. When O2 was used as an oxidizing gas with 193 or 248 nm irradiation, amorphous TiO2 and crystalline PbO films were obtained in the laser-irradiated area of Si substrates from the parent metalorganic compounds, Ti(O-iC3H7)4 and (C2H5)3PbOCH2C(CH3)3, respectively. In contrast, no ZrO2 film could be formed from Zr(O-tC4H9)4. One-photon formation of TiO2 films was confirmed from laser power dependence measurements. The maximum growth rate of 0.05 Å per laser pulse was compared with that estimated by a simple surface reaction model, according to which the slow growth rate is due to the small absorption cross section of Ti(O-iC3H7)4 and mild fluence of laser irradiation. In experiments of ozone gas excitation by KrF laser, a SiO2 film was obtained by gas-phase reactions of the oxygen radical, O(1D), with Si(O-C2H5)4. The direct patterning of TiO2 and PbO films as well as the possibility of producing patterned PbTiO3 film was demonstrated. The growth of the patterned SiO2 film was prevented by gas-phase diffusion of intermediates.
Nanostructuring and texturing of pulsed laser deposited hydroxyapatite thin films
NASA Astrophysics Data System (ADS)
Kim, Hyunbin; Catledge, Shane; Vohra, Yogesh; Camata, Renato; Lacefield, William
2003-03-01
Hydroxyapatite (HA) [Ca_10(PO_4)_6(OH)_2] is commonly deposited onto orthopedic and dental metallic implants to speed up bone formation around devices, allowing earlier stabilization in a patient. Pulsed laser deposition (PLD) is a suitable means of placing thin HA films on these implants because of its control over stoichiometry, crystallinity, and nanostructure. These characteristics determine the mechanical properties of the films that must be optimized to improve the performance of load-bearing implants and other devices that undergo bone insertion. We have used PLD to produce nanostructured and preferentially oriented HA films and evaluated their mechanical properties. Pure, highly crystalline HA films on Ti-6Al-4V substrates were obtained using a KrF excimer laser (248nm) with energy density of 4-8 J/cm^2 and deposition temperature of 500-700^rcC. Scanning electron and atomic force microscopies reveal that our careful manipulation of energy density and substrate temperature has led to films made up of HA grains in the nanometer scale. Broadening of x-ray diffraction peaks as a function of deposition temperature suggests it may be possible to control the film nanostructure to a great extent. X-ray diffraction also shows that as the laser energy density is increased in the 4-8 J/cm^2 range, the hexagonal HA films become preferentially oriented along the c-axis perpendicular to the substrate. Texture, nanostructure, and phase make-up all significantly influence the mechanical properties. We will discuss how each of these factors affects hardness and Young's modulus of the HA films as measured by nanoindentation.
Final Report for Contract N00014-86-C-0598 (Thermo Electron Technologies Corporation)
1989-12-28
At least 20 A/cm2 were observed at 193 nm. 248 nm (KrF) and 308 (XeCl). Beam brightness appears to be a minimum of 4 x 105 A/cm 2 -rad 2 at 248 nm...governed by the envelope equation3, d2r K b 0 dz (4) For a weakly relativistic beam. e J o r0 2 2 Co 0Mo (yac) 3 (5) where Jo is the beam current...correspond to laser wavotengths of the present study, preliminary measurement for ArF given by x .1 pattern ot spots on the phosphor screen for 248 nm
NASA Astrophysics Data System (ADS)
Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming
2005-01-01
Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.
ArF excimer laser debrides burns without destruction of viable tissue: A pilot study.
Prasad, Atulya; Sawicka, Katarzyna M; Pablo, Kelly B; Macri, Lauren K; Felsenstein, Jerome; Wynne, James J; Clark, Richard A F
2018-05-01
Recent evidence indicates that early removal of eschar by tangential debridement can promote healing. Laser debridement can be used for debridement of areas that prove challenging for debridement using tangential excision. In particular, irradiation with an ArF excimer laser ablates desiccated eschar and is self-terminating, preserving hydrated or viable tissue. Thermal burns were created on the flanks of two outbred, female Yorkshire pigs using aluminum bars heated to 70°C and applied for different lengths of time. Three days after injury, burns were debrided using an ArF excimer laser (193nm). Tissue was harvested immediately after debridement and 7days after debridement (10days after burn). Data from a pilot study demonstrates that ArF excimer laser irradiation removes burn eschar and promotes healing at 10days after burn. ArF excimer laser debridement is self-terminating and preserves underlying and adjacent perfused tissue. Potentially, this modality would be ideal for the complex curvilinear structures of the body. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.
1998-06-01
Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to the excimer. Such Infrared sources are, therefore, potentially attractive competitors to the excimer to perform PRK and LASIK.
Beke, S.; Anjum, F.; Tsushima, H.; Ceseracciu, L.; Chieregatti, E.; Diaspro, A.; Athanassiou, A.; Brandi, F.
2012-01-01
We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine. PMID:22696484
Interaction of 308-nm excimer laser light with temporomandibular joint related structures
NASA Astrophysics Data System (ADS)
Liesenhoff, Tim; Funk, Armin
1994-02-01
Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.
A comparative study of carbon plasma emission in methane and argon atmospheres
NASA Astrophysics Data System (ADS)
Yousfi, H.; Abdelli-Messaci, S.; Ouamerali, O.; Dekhira, A.
2018-04-01
The interaction between laser produced plasma (LPP) and an ambient gas is largely investigated by Optical Emission Spectroscopy (OES). The analysis of carbon plasma produced by an excimer KrF laser was performed under controlled atmospheres of methane and argon. For each ambient gas, the features of produced species have been highlighted. Using the time of flight (TOF) analysis, we have observed that the C and C2 exhibit a triple and a double peaks respectively in argon atmosphere in contrast to the methane atmosphere. The evolution of the first peaks of C and C2 follows the plasma expansion, whereas the second peaks move backward, undergoing reflected shocks. It was found that the translational temperature, obtained by Shifted Maxwell Boltzmann distribution function is strongly affected by the nature of ambient gas. The dissociation of CH4 by electronic impact presents the principal approach for explaining the emission of CH radical in reactive plasma. Some chemical reactions have been proposed in order to explain the formation process of molecular species.
NASA Astrophysics Data System (ADS)
Smith, James D.; Sick, Volker
2005-11-01
An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
Laser profiling of 3D microturbine blades
NASA Astrophysics Data System (ADS)
Holmes, Andrew S.; Heaton, Mark E.; Hong, Guodong; Pullen, Keith R.; Rumsby, Phil T.
2003-11-01
We have used KrF excimer laser ablation in the fabrication of a novel MEMS power conversion device based on an axial-flow turbine with an integral axial-flux electromagnetic generator. The device has a sandwich structure, comprising a pair of silicon stators either side of an SU8 polymer rotor. The curved turbine rotor blades were fabricated by projection ablation of SU8 parts performed by conventional UV lithography. A variable aperture mask, implemented by stepping a moving aperture in front of a fixed one, was used to achieve the desired spatial variation in the ablated depth. An automatic process was set up on a commercial laser workstation, with the laser firing and mask motion being controlled by computer. High quality SU8 rotor parts with diameters of 13 mm and depths of 1 mm were produced at a fluence of 0.7 J/cm2, corresponding to a material removal rate of approximately 0.3 μm per pulse. A similar approach was used to form SU8 guide vane inserts for the stators.
Smith, James D; Sick, Volker
2005-11-01
An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.
NASA Astrophysics Data System (ADS)
Ibnaouf, K. H.
2015-04-01
The spectral properties of a conjugated polymer poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in benzene have been studied intensively. The fluorescence spectra for MEH-PPV, under low concentrations, have shown two peaks around 560 nm and 600 nm, which could be attributed to the monomer and excimer states respectively. In our earlier communication, we had shown that MEH-PPV alone could produce amplified spontaneous emission (ASE) only in its excimeric state (600 nm). The spectral properties of 5 nm size of CdSe (core) quantum dots have been investigated. The fluorescence spectra of CdSe core in benzene showed only one band at 590 nm. Mixtures made of MEH-PPV and CdSe (core) quantum dots have been utilized for studying the amplified spontaneous emission characteristics (ASE) in an organic solution under laser excitation. When the mixture was pumped by the third harmonic of Nd:YAG (355 nm), we observed two ASE peaks; one at 575 nm and another at 595 nm. These ASE peaks could arise from the monomer and excimer states of MEH-PPV. This is perhaps the first report on the influence of quantum dots on the laser from the conjugated polymer MEH-PPV, in liquid solution.
NASA Astrophysics Data System (ADS)
Vaulin, V. A.; Slinko, V. N.; Sulakshin, S. S.
1990-12-01
An excimer laser (λ approx 308 nm) utilizing an Ne-Xe-HCl mixture was excited by microwave (ν0 = 3.07 GHz) pulses of 2.8-μs duration and ~ 0.9 MW power delivered by a commercial microwave oscillator. A peak laser radiation power of 130 W was obtained in pulses of 280 ns duration. Laser radiation from along the center of a laser tube was recorded in addition to that from the skin layer.
Evaluation results for the positive deep-UV resist AZ DX 46
NASA Astrophysics Data System (ADS)
Spiess, Walter; Lynch, Thomas J.; Le Cornec, Charles; Escher, Gary C.; Kinoshita, Yoshiaki; Kochan, John; Kudo, Takanori; Masuda, Seiya; Mourier, Thierry; Nozaki, Yuko; Olson, Setha G.; Okazaki, Hiroshi; Padmanaban, Munirathna; Pawlowski, Georg; Przybilla, Klaus J.; Roeschert, Horst; Suehiro, Natusmi; Vinet, Francoise; Wengenroth, Horst
1994-05-01
This contribution emphasizes resist application site by communicating lithographic results for AZ DX 46, obtained using the GCA XLS 7800/31 stepper, NA equals 0.53, equipped with krypton fluoride excimer laser ((lambda) equals 248 nm), model 4500 D, as exposure source, delivered by Cymer Laser Technologies. As far as delay time experiments are concerned ASM-L PAS 5500/70 stepper, NA equals 0.42, was used in combination with Lambda Physik excimer laser, model 248 L.
Excimer laser photorefractive surgery of the cornea
NASA Astrophysics Data System (ADS)
Gaster, Ronald N.
1998-09-01
The 193 nm argon fluoride (ArF) excimer laser can effectively be used to change the radius of curvature of the cornea and thus alter the refractive state of the eye. This change allows myopic (nearsighted) patients to see well with less dependence on glasses or contact lenses. The two major techniques of laser refractive surgery currently in effect in the United States are photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). This paper will discuss these refractive cornea surgical techniques.
High excimer-state emission of perylene bisimides and recognition of latent fingerprints.
Wang, Ke-Rang; Yang, Zi-Bo; Li, Xiao-Liu
2015-04-07
High excimer-state emission in the H-type aggregate of a novel asymmetric perylene bisimide derivative, 6, with triethyleneglycol chains and lactose functionalization was achieved in water. Furthermore, its application for enhancing the visualization of transfer latent fingerprints from glass slides to the poly(vinylidene fluoride) (PVDF) membrane was explored, which showed clear images of the latent fingerprint in daylight and under 365 nm ultraviolet illumination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orestes Kinetics Model for the Electra KrF Laser
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Kepple, P.; Lehmberg, R. H.; Myers, M. C.; Sethian, J. D.; Petrov, G.; Wolford, M.; Hegeler, F.
2003-10-01
Orestes is a first principles simulation code for the electron deposition, plasma chemistry, laser transport, and amplified spontaneous emission (ASE) in an e-beam pumped KrF laser. Orestes has been benchmarked against results from Nike at NRL and the Keio laser facility. The modeling tasks are to support ongoing oscillator experiments on the Electra laser ( 500 J), to predict performance of Electra as an amplifier, and to develop scaling relations for larger systems such as envisioned for an inertial fusion energy power plant. In Orestes the energy deposition of the primary beam electrons is assumed to be spatially uniform, but the excitation and ionization of the Ar/Kr/F2 target gas by the secondary electrons is determined from the energy distribution function as calculated by a Boltzmann code. The subsequent plasma kinetics of 23 species subject to over 100 reactions is followed with 1-D spatial resolution along the lasing axis. In addition, the vibrational relaxation among excited electronic states of the KrF molecule are included in the kinetics since lasing at 248 nm can occur from several vibrational lines of the B state. Transport of the lasing photons is solved by the method of characteristics. The time dependent ASE is calculated in 3-D using a ``local look-back'' scheme with discrete ordinates and includes specular reflection off the side walls and rear mirror. Gain narrowing is treated by multi-frequency transport of the ASE. Calculations for the gain, saturation intensity, extraction efficiency, and laser output from the Orestes model will be presented and compared with available data from Electra operated as an oscillator. Potential implications for the difference in optimal F2 concentration will be discussed along with the effects of window transmissivity at 248 nm.
Characterization of absorption and degradation on optical components for high power excimer lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, K.; Eva, E.; Granitza, B.
1996-12-31
At Laser-Laboratorium Goettingen, the performance of UV optical components for high power excimer lasers is characterized, aiming to employ testing procedures that meet industrial conditions, i.e. very high pulse numbers and repetition rates. Measurements include determination of single and multiple pulse damage thresholds, absorption loss and degradation of optical properties under long-term irradiation. Absorption of excimer laser pulses is investigated by a calorimetric technique which provides greatly enhanced sensitivity compared to transmissive measurements. Thus, it allows determining both single and two photon absorption coefficients at intensities of standard excimer lasers. Results of absorption measurements at 248nm are presented for baremore » substrates (CaF{sub 2}, BaF{sub 2}, z-cut quartz and fused silica). UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica. A separation of transient and cumulative effects as a function of intensity is achieved, giving insight into various loss mechanisms.« less
Jule, Eduardo; Yamamoto, Yuji; Thouvenin, Muriel; Nagasaki, Yukio; Kataoka, Kazunori
2004-07-07
Poly(ethylene glycol)--poly(D,L-lactide) (PEG-PDLLA) block copolymers were prepared by anionic ring-opening polymerization, resulting in block sizes effectively controlled by initial monomer/initiator ratios and low molecular weight distributions (<1.12). A pyrene derivative (1-pyrenyl carbonyl cyanide--Py) was conjugated to the end of the hydrophobic block (PDLLA) in a quantitative manner, with coupling efficiencies >95%. The so-obtained PEG-PDLLA-Py copolymers displayed fluorescent properties that were associated with the pyrene monomers, when placed in good solvents for both the hydrophilic and hydrophobic blocks. When placed in selective solvents, these copolymers self-assembled into micelles in the 30-nm range, also with low particle size distributions (<0.09), within which Py could be readily entrapped in the hydrophobic PDLLA core. Py entrapment resulted in the formation of excimers, as evident from fluorescence measurements. Observation of excimer formation/dissociation further conveyed information on the physicochemical properties of the core. Thermal characterization of these systems showed that an increase in the temperature resulted in changes in the properties of excimer fluorescence, an occurrence attributed to a higher mobility of the otherwise glassy PDLLA. This, in turn, greatly affected the inter-molecular distance between pyrene molecules, a crucial factor for excimer formation. The glass transition of the PDLLA block, approximately 38 degrees C, defined the onset for increasing chain mobility and whence excimer dissociation. Excimer fluorescence appeared to be time-dependent. Based on these observations, chain exchange processes were clearly evidenced through the time-dependent dissociation of excimers into unimers, a process that was influenced by changes in temperature.
Acute effects of pulsed-laser irradiation on the arterial wall
NASA Astrophysics Data System (ADS)
Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise
1992-08-01
Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p < 0.05). Laser irradiation with excimer or Ho:YAG laser of normal arteries results in localized mechanical vascular injury.
Chao, Xi-Juan; Wang, Kang-Nan; Sun, Li-Li; Cao, Qian; Ke, Zhuo-Feng; Cao, Du-Xia; Mao, Zong-Wan
2018-04-25
Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ 1 = 0.12%; Φ 2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.
NASA Astrophysics Data System (ADS)
Hyun, Yoon-Suk; Kim, Dong-Joo; Koh, Cha-Won; Park, Sung-Nam; Kwon, Won-Taik
2003-06-01
xAs the design rule of semiconductor device shrinks, the field CD uniformity gets more important. For mass production of 0.15 μm technology device using KrF stepper having 0.63NA, the improvement of field CD uniformity was one of key issues because field CD uniformity is directly related to device characteristics in some layers. We have experienced steppers that show poor illumination uniformity. With those steppers there was large CD difference of about 10nm between field center and field edges as shown in Figure 1. Although we were using verified reticles, we could not get an acceptable CD uniformity in a field with those steppers. The Field CD uniformity is dominantly dependent of the illumination uniformity of stepper and mask quality. With these optimization, we could control DICD difference between field center and edge to be less than 5nm. In this paper, we characterized the dependency of field CD uniformity according to illumination systems with stepper and scanner, annular illumination uniformity at various stigma, mask CD uniformity and the several types of novel gray filter specifically developed.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.
2011-10-01
Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.
LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*
NASA Astrophysics Data System (ADS)
Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.
2010-11-01
The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.
NASA Astrophysics Data System (ADS)
Beke, S.; Anjum, F.; Ceseracciu, L.; Romano, I.; Athanassiou, A.; Diaspro, A.; Brandi, F.
2013-03-01
High-resolution photocrosslinking of the biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF), using pulsed laser light at 248 and 308 nm is presented. The curing depth can be modulated between a few hundreds of nm and a few μm when using 248 nm and ten to a hundred μm when using 308 nm. By adjusting the total fluence (pulse numbers×laser fluence) dose and the weight ratios of PPF, DEF, and the photoinitiator in the photocrosslinkable mixtures, the height of polymerized structures can be precisely tuned. The lateral resolution is evaluated by projecting a pattern of a grid with a specified line width and line spacing. Young’s modulus of the cured parts is measured and found to be several GPa for both wavelengths, high enough to support bone formation. Several 2D and 2.5D microstructures, as well as porous 3D scaffolds fabricated by a layer-by-layer method, are presented. The results demonstrate that excimer laser-based photocuring is suitable for the fabrication of stiff and biocompatible structures with defined patterns of micrometer resolution in all three spatial dimensions.
[A new class of exciplex-formed probe detect of specific sequence DNA].
Li, Qing-Yong; Zu, Yuan-Gang; Lü, Hong-Yan; Wang, Li-Min
2009-07-01
The present research was to develop the exciplex-based fluorescence detection of DNA. A SNP-containing region of cytochrome P450 2C9 DNA systems was evaluated to define some of the structural and associated requirement of this new class of exciplex-formed probe, and a 24-base target was selected which contains single-nucleotide polymorphisms (SNP) in genes coding for cytochrome P450. The two probes were all 12-base to give coverage of a 24-base target region to ensure specificity within the human genome. Exciplex partners used in this study were prepared using analogous phosphoramide attachment to the 3'- or 5'-phosphate group of the appropriate oligonucleotide probes. The target effectively assembled its own detector by hybridization from components which were non-fluorescent at the detection wavelength, leading to the huge improvement in terms of decreased background. This research provides details of the effects of different partner, position of partners and different excitation wavelengths for the split-oligonucleotide probe system for exciplex-based fluorescence detection of DNA. This study demonstrates that the emission intensity of the excimer formed by new pyrene derivative is the highest in these excimer and exciplex, and the excimer is easy to be formed and not sensitive to the position of partners. However the exciplex formed by the new pyrene derivative and naphthalene emitted strongly at -505 nm with large Stokes shifts (120-130 nm), and the monomer emission at 390 and 410 nm is nearly zero. Excitation wavelength of 400 nm is the best for I(e505)/I(m410) (exciplex emission at 505 nm/monomer emission at 410 nm) of the exciplex. This method features lower background and high sensitivity. Moreover the exciplex is sensitive to the steric factor, different position of partners and microenvironment, so this exciplex system is promising and could be tried to identify the SNP genes.
NASA Astrophysics Data System (ADS)
Lazare, S.; Sionkowska, A.; Zaborowicz, M.; Planecka, A.; Lopez, J.; Dijoux, M.; Louména, C.; Hernandez, M.-C.
2012-01-01
Laser microprocessing of several biopolymers from renewable resources is studied. Three proteinic materials were either extracted from the extracellular matrix like Silk Fibroin/Sericin and collagen, or coming from a commercial source like gelatin. All can find future applications in biomedical experimentation, in particular for cell scaffolding. Films of ˜hundred of microns thick were made by aqueous solution drying and laser irradiation. Attention is paid to the properties making them processable with two laser sources: the ultraviolet and nanosecond (ns) KrF (248 nm) excimer and the infrared and femtosecond (fs) Yb:KGW laser. The UV radiation is absorbed in a one-photon resonant process to yield ablation and the surface foaming characteristics of a laser-induced pressure wave. To the contrary, resonant absorption of the IR photons of the fs laser is not possible and does not take place. However, the high field of the intense I>˜1012 W/cm2 femtosecond laser pulse ionizes the film by the multiphoton absorption followed by the electron impact mechanism, yielding a dense plasma capable to further absorb the incident radiation of the end of the pulse. The theoretical model of this absorption is described in detail, and used to discuss the presented experimental effects (cutting, ablation and foaming) of the fs laser. The ultraviolet laser was used to perform simultaneous multiple spots experiments in which energetic foaming yields melt ejection and filament spinning. Airborne nanosize filaments "horizontally suspended by both ends" (0.25 μm diameter and 10 μm length) of silk biopolymer were observed upon irradiation with large fluences.
Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings.
Floroian, Laura; Ristoscu, Carmen; Mihailescu, Natalia; Negut, Irina; Badea, Mihaela; Ursutiu, Doru; Chifiriuc, Mariana Carmen; Urzica, Iuliana; Dyia, Hussien Mohammed; Bleotu, Coralia; Mihailescu, Ion N
2016-06-09
In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns) excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release and possess increased biocompatibility and resistance to microbial colonization and biofilm growth.
Mihailescu, Natalia; Stan, G E; Duta, L; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M; Luculescu, C; Oktar, F N; Mihailescu, I N
2016-02-01
Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF2 (2wt.%) or MgO (5wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ=248nm, τFWHM≤25ns) excimer laser source was used. The deposited structures were characterized from a physical-chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
NASA Astrophysics Data System (ADS)
Davis, C. R.; Snyder, R. W.; Egitto, F. D.; D'Couto, G. C.; Babu, S. V.
1994-09-01
Single-photon excimer laser ablation of neat poly(tetrafluoroethylene) (PTFE) is not observed at emissions in the 'quartz' UV, i.e., from about 190-380 nm. However, it has been successfully demonstrated that, when the fluoropolymer is doped with small quantities of polyimide (PI), ablation in the quartz UV, e.g., at 248 and 308 nm and pulse widths of about 25 ns, is readily achieved. When PI-PTFE blends are exposed to subthreshold fluences, considerable changes in surface topography occur although clearly defined structures, e.g., pits, are not formed. Using photoacoustic infrared spectroscopy to evaluate surface and bulk chemical changes to blends exposed to subthreshold excimer laser fluences, is less than 100 mJ/sq cm, it is shown that PI (1) is distributed throughout the bulk and resides at the surface and (2) is selectively absorbing the high-energy photons and as a result being preferentially removed from the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuming; Liu Liang; Fan Shoushan
2005-02-07
Self-organized conical microstructures are fabricated by 308 nm XeCl excimer laser irradiation of cyanoacrylate-carbon nanotube composites in air. The morphology of the surface on the composite films is studied, varying the total number and fluence of the applied laser pulses. A simple mechanism of the fabrication based on the evaporation of cyanoacrylate and the burning of carbon nanotubes is proposed. The conical peak structures of cyanoacrylate-carbon nanotube composite films show good field-emission properties. Similar structures are also observed on carbon nanotube arrays.
Development of Electron Beam Pumped KrF Lasers for Fusion Energy
2008-01-01
Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include
80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers
NASA Astrophysics Data System (ADS)
Beloglazov, A.; Martino, M.; Nassisi, V.
1996-05-01
Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.
High Pressure Microwave Powered UV Light Sources
NASA Astrophysics Data System (ADS)
Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.
1997-10-01
Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.
Efficacy of the 308-nm excimer laser for treatment of psoriasis: results of a multicenter study.
Feldman, Steven R; Mellen, Beverly G; Housman, Tamara Salam; Fitzpatrick, Richard E; Geronemus, Roy G; Friedman, Paul M; Vasily, David B; Morison, Warwick L
2002-06-01
Our purpose was to demonstrate the efficacy of the 308-nm excimer laser for treatment of psoriasis. This study was a multicenter open trial from 5 dermatology practices (one university-based and 4 private practices). Up to 30 patients per center with stable mild to moderate plaque-type psoriasis constituted the study population. Patients received 308-nm ultraviolet B doses to affected areas. The initial dose was based on multiples of a predetermined minimal erythema dose. Subsequent doses were based on the response to treatment. Treatments were scheduled twice weekly for a total of 10 treatments. The main outcome measure was 75% clearing of the target plaque. Time to clearing was analyzed by Kaplan-Meier methods, accounting for truncated observations. One hundred twenty-four patients were enrolled in the study, and 80 completed the entire protocol. The most common reason for exiting from the study was noncompliance. Of the patients who met the protocol requirements of 10 treatments or clearing, 72% (66/92) achieved at least 75% clearing in an average of 6.2 treatments. Eighty-four percent of patients (95% confidence interval [CI], 79%-87%) reached improvement of 75% or better after 10 or fewer treatments. Fifty percent of patients (95% CI, 35%-61%) reached improvement of 90% or better after 10 or fewer treatments. Common side effects included erythema, blisters, hyperpigmentation, and erosions, but they were well tolerated. Monochromatic 308-nm excimer laser treatment appears to be effective and safe for psoriasis. It requires fewer patient visits than conventional phototherapy, and, unlike those treatments, the laser targets only the affected areas of the skin, sparing the surrounding uninvolved skin.
The Excimer Laser: Its Impact on Science and Industry
NASA Astrophysics Data System (ADS)
Basting, Dirk
2010-03-01
After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.
NASA Astrophysics Data System (ADS)
Maeda, Katsumi; Nakano, Kaichiro; Shirai, Masamitsu
2006-12-01
We designed a novel alicyclic fluoropolymer, poly[3-hydroxy-4-(hexafluoro-2-hydroxyisopropyl)tricyclodecene], as an ArF (193 nm) chemically amplified resist. This fluoropolymer has a hexafluoroisopropanol group as an alkaline soluble unit and a hydroxyl group for improving adhesion. This polymer also exhibited a high transparency of 93%/150 nm at 193 nm, high thermal stability (355 °C), and a good adhesion to a Si substrate compared with a poly(norbornene) with a hexafluoroisopropanol group. The etching rate of our developed fluoropolymer for CF4 gas was 1.29 times that of the KrF resist. Moreover, a chemically amplified positive resist comprising an ethoxymethyl-protected polymer and a photoacid generator achieved a 110 nm line-and-space pattern with an ArF exposure.
Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S
2001-03-07
Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition states converting the benzazirines to ketenimines were performed. The computational results are in good qualitative and quantitative agreement with the experimental findings.
Thin film type 248-nm bottom antireflective coatings
NASA Astrophysics Data System (ADS)
Enomoto, Tomoyuki; Nakayama, Keisuke; Mizusawa, Kenichi; Nakajima, Yasuyuki; Yoon, Sangwoong; Kim, Yong-Hoon; Kim, Young-Ho; Chung, Hoesik; Chon, Sang Mun
2003-06-01
A frequent problem encountered by photoresists during the manufacturing of semiconductor device is that activating radiation is reflected back into the photoresist by the substrate. So, it is necessary that the light reflection is reduced from the substrate. One approach to reduce the light reflection is the use of bottom anti-reflective coating (BARC) applied to the substrate beneath the photoresist layer. The BARC technology has been utilized for a few years to minimize the reflectivity. As the chip size is reduced to sub 0.13-micron, the photoresist thickness has to decrease with the aspect ratio being less than 3.0. Therefore, new Organic BARC is strongly required which has the minimum reflectivity with thinner BARC thickness and higher etch selectivity towards resist. SAMSUNG Electronics has developed the advanced Organic BARC with Nissan Chemical Industries, Ltd. and Brewer Science, Inc. for achieving the above purpose. As a result, the suitable high performance SNAC2002 series KrF Organic BARCs were developed. Using CF4 gas as etchant, the plasma etch rate of SNAC2002 series is about 1.4 times higher than that of conventional KrF resists and 1.25 times higher than the existing product. The SNAC2002 series can minimize the substrate reflectivity at below 40nm BARC thickness, shows excellent litho performance and coating properties.
NASA Astrophysics Data System (ADS)
Hopp, B.; Geretovszky, Zs.; Bertóti, I.; Boyd, I. W.
2002-01-01
Poly(tetrafluoroethylene) (PTFE) is notable for its non-adhesive and non-reactive properties. A number of technologies can potentially benefit from the application of PTFE, but these characteristics restrict the ability to structuring its surface. In this paper, we present results on two ultraviolet photon assisted treatments of PTFE. The originally poor adhesion was significantly improved by both 172 nm excimer lamp and 193 nm excimer laser assisted surface treatments. While Xe2∗ lamp irradiation, applied in a modest vacuum environment, was sufficient by itself to improve adhesion, the ArF laser process was only effective when the irradiated interface was in contact with 1,2-diaminoethane photoreagent. It was found that the tensile strength of an epoxy resin glued interface created on treated surfaces depended strongly on the applied number of laser pulses and lamp irradiation time. Laser treatment caused fast tensile strength increase during the first 50-500 pulses, while after this it saturates slowly at about 5.5 MPa in the 500-2500 pulse domain. The excimer lamp irradiation resulted in a maximum tensile strength of approximately 10 MPa after 2 min irradiation time which reduced to about 65% of the peak value at longer times.
193nm high power lasers for the wide bandgap material processing
NASA Astrophysics Data System (ADS)
Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru
2017-02-01
Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.
Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.
1991-01-01
Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
NASA Astrophysics Data System (ADS)
Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.
2015-03-01
Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).
Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster
NASA Technical Reports Server (NTRS)
Paul, Phillip H.; Clemens, N. T.; Makel, D. B.
1992-01-01
Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.
Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster
NASA Astrophysics Data System (ADS)
Paul, Phillip H.; Clemens, N. T.; Makel, D. B.
1992-09-01
Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.
Electrical and Structural Analysis on the Formation of n-type Junction in Germanium
NASA Astrophysics Data System (ADS)
Aziz, Umar Abdul; Nadhirah Mohamad Rashid, Nur; Rahmah Aid, Siti; Centeno, Anthony; Ikenoue, Hiroshi; Xie, Fang
2017-05-01
Germanium (Ge) has re-emerged as a potential candidate to replace silicon (Si) as a substrate, due to its higher carrier mobility properties that are the key point for the realization of devices high drive current. However, the fabrication process of Ge is confronted with many problems such as low dopant electrical activation and the utilization of heavy n-type dopant atoms during ion implantation. These problems result in more damage and defects that can affect dopant activation. This paper reports the electrical and structural analysis on the formation of n-type junction in Ge substrate by ion implantation, followed by excimer laser annealing (ELA) using KrF laser. ELA parameters such as laser fluences were varied from 100 - 2000 mJ/cm2 and shot number between 1 - 1000 to obtain the optimized parameter of ELA with a high degree of damage and defect removal. Low resistance with a high degree of crystallinity is obtained for the samples annealed with less than five shot number. Higher shot number with high laser fluence, shows a high degree of ablation damage.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.
2016-06-01
The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.
Alternative to classic annealing treatments for fractally patterned TiO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overschelde, O. van; Wautelet, M.; Guisbiers, G.
2008-11-15
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass and subsequently irradiated by UV radiation using a KrF excimer laser. The influence of the laser fluence (F) on the constitution and microstructure of the deposited films is studied for 0.05
Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge
NASA Astrophysics Data System (ADS)
Ono, Ryo; Oda, Tetsuji
2002-09-01
Hydroxyl radicals generated by a pulsed corona discharge are measured by laser-induced fluorescence (LIF) with a tunable KrF excimer laser. The discharge with 35 kV voltage and 100 ns pulse current occurs between needle and plate electrodes in H2O/O2/N2 mixture at atmospheric pressure. The density and decay profile of OH radicals are studied. OH radicals decay with time after the discharge with a time constant of about 30-60 µs. The OH density is estimated to be about 7×1014 cm-3 in H2O(2.4%)/N2 mixture 10 µs after the discharge. The OH density is approximately proportional to the energy dissipated in the discharge. The O2 content influences the OH production. When the O2 content is varied in H2O(2.4%)/O2/N2 mixture, the OH density is maximum at an O2 content of 2%. The spatial distribution of OH density shows that OH radicals are produced in the streamers under positive discharge.
Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications
Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger
2018-01-01
Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600
Triggering Excimer Lasers by Photoionization from Corona Discharges
NASA Astrophysics Data System (ADS)
Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark
2009-10-01
High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.
NASA Astrophysics Data System (ADS)
Csontos, J.; Toth, Z.; Pápa, Z.; Budai, J.; Kiss, B.; Börzsönyi, A.; Füle, M.
2016-06-01
In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium-sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs-200 ps) and a dye-KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78-80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.
The vacuum ultraviolet spectrum of krypton and xenon excimers excited in a cooled dc discharge
NASA Astrophysics Data System (ADS)
Gerasimov, G.; Krylov, B.; Loginov, A.; Zvereva, G.; Hallin, R.; Arnesen, A.; Heijkenskjöld, F.
1998-01-01
We present results of an experimental and theoretical study of the VUV spectra of krypton and xenon excimers excited by a dc discharge in a capillary tube cooled by liquid nitrogen. The studied spectral regions of 115-170 nm and 140-195 nm for krypton and xenon respectively correspond to transitions between the lowest excited dimer states 1u, 0u+ and the weakly bound ground state 0g+. A semiempirical method was suggested and applied to describe the experimental spectra and to estimate the temperature of the radiating plasma volume. Electron impact, transferring dimers from the ground state to the excited states, is shown to be an efficient excitation mechanism in the 100-850 hPa and the 10-50 mA pressure and discharge current ranges. The spectra obtained as well as the results of calculations corroborate the high rate of this mechanism.
Lohmann, C P; Fitzke, F W; O'Brart, D; Muir, M K; Marshall, J
1993-01-01
After photorefractive keratectomy (PRK) using excimer lasers (193 nm) many patients report the presence of halos around light sources at night. However, halos are not unique to PRK patients, as they are a common observation in myopic contact lens wearers. We present an objective measurement of the halos using a computerized technique. The patient fixated on a red cross within a white circle in the center of a video monitor which served as the halo source. The screen surrounding the circle was not illuminated. The operator controlled the movement of the white spot and moved the spot toward the halo source until the subject indicated when the cursor was at the outer parameter of the halo. Measurements were made at 30 degree intervals around the halo source and expressed as square degrees. The study found that spectacles, soft contact lenses, and excimer laser surgery were superior to hard contact lenses in terms of the size of the halo. A mean value of 2.51 square degrees was obtained for spectacles wearers compared with 3.18 square degrees for soft contact lenses, 3.14 square degrees for excimer laser patients with 4-millimeter ablation zone, 2.76 square degrees for excimer laser patients with a 5-millimeter ablation zone, and 89.5 square degrees for hard contact lenses. It appears that this device is very useful for measuring the halo size after excimer laser PRK. We concluded that halos were not a problem for our patients after excimer laser photorefractive keratectomy.
Inertial Fusion Target Physics Advantages with the Krypton Fluoride Laser
NASA Astrophysics Data System (ADS)
Obenschain, Stephen
2010-11-01
The krypton fluoride (KrF) laser's short wavelength, broad bandwidth and capability to provide extremely uniform target illumination are advantages towards obtaining high gain direct drive implosions. The short wavelength helps suppress deleterious laser-plasma instabilities, and allows one to employ higher ablation pressures. In addition, the KrF architecture allows one to zoom down the focal diameter to follow the size of the imploding pellet, thereby improving the coupling efficiency. The NRL researchers have been conducting theoretical and experimental studies to quantify the beneficial effects of utilizing KrF light. Experiments using the Nike facility have confirmed that KrF light significantly increases the threshold for laser-plasma instability. This presentation will discuss the observed target physics with KrF light and its effects towards facilitating the high gains needed for power production with inertial fusion. Simulations indicate that shock ignited designs can achieve gains above 200 with KrF energies as low a 1 megajoule. For fusion energy a laser driver must be capable of high repetition rates (5-10 Hz) along with adequate efficiency and durability. The Electra KrF 30-cm aperture electron-beam-pumped amplifier has demonstrated long duration continuous operation at high-repetition rates. This and other advances show that the KrF laser should be able to meet the requirements.
Unique capabilities for ICF and HEDP research with the KrF laser
NASA Astrophysics Data System (ADS)
Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew
2014-10-01
The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.
RN12 and RN30 Epidote anlayses
Andrew Fowler
2015-01-01
Results for laser ablation measurement of reare earth elments and electron microprobe analysis of major elments in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.
NASA Astrophysics Data System (ADS)
Maguen, Ezra I.; Salz, James J.; McDonald, Marguerite B.; Pettit, George H.; Papaioannou, Thanassis; Grundfest, Warren S.
2002-06-01
A study was undertaken to assess whether results of laser vision correction with the LADARVISION 193-nm excimer laser (Alcon-Autonomous technologies) can be improved with the use of wavefront analysis generated by a proprietary system including a Hartman-Schack sensor and expressed using Zernicke polynomials. A total of 82 eyes underwent LASIK in several centers with an improved algorithm, using the CustomCornea system. A subgroup of 48 eyes of 24 patients was randomized so that one eye undergoes conventional treatment and one eye undergoes treatment based on wavefront analysis. Treatment parameters were equal for each type of refractive error. 83% of all eyes had uncorrected vision of 20/20 or better and 95% were 20/25 or better. In all groups, uncorrected visual acuities did not improve significantly in eyes treated with wavefront analysis compared to conventional treatments. Higher order aberrations were consistently better corrected in eyes undergoing treatment based on wavefront analysis for LASIK at 6 months postop. In addition, the number of eyes with reduced RMS was significantly higher in the subset of eyes treated with a wavefront algorithm (38% vs. 5%). Wavefront technology may improve the outcomes of laser vision correction with the LADARVISION excimer laser. Further refinements of the technology and clinical trials will contribute to this goal.
KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Hollo, S. D.; Krauss, R. H.; Whitehurst, R. B., III; Mcdaniel, J. C., Jr.
1992-01-01
Planar fluorescence images of OH in a continuous-flow, electrical-resistively heated, high enthalpy, hydrogen-air combustion tunnel, induced by a tunable KrF laser, were recorded. These images were compared to previously recorded fluorescence images induced by a doubled-dye laser under similar conditions. Images induced by the doubled-dye laser system demonstrated a severe distortion caused by absorption and fluorescence trapping. By contrast, images of the fluorescence induced by the tunable KrF laser retained the symmetry properties of the flow. Based on signal-to-noise ratio measurements the yield of the fluorescence induced by the doubled-dye laser is larger than the fluorescence yield induced by the KrF laser. The measurements in the present facility of OH fluorescence induced by the KrF laser were limited by the photon-statistical noise. Based 2 on this result, doubled-dye laser systems are recommended for OH imaging in small and OH lean (less than 10 exp 15/cu cm) facilities. KrF lasers should be selected otherwise.
Excimer laser annealing to fabricate low cost solar cells
NASA Technical Reports Server (NTRS)
1984-01-01
The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.
Effects of XeCl excimer lasers and fluoride application on artificial caries-like lesions
NASA Astrophysics Data System (ADS)
Wilder-Smith, Petra B. B.; Phan, T.; Liaw, Lih-Huei L.; Berns, Michael W.
1994-09-01
In this study the affects of a pulsed excimer laser emitting at 308 nm (XeCl) on enamel susceptibility to artificial caries-like lesions were investigated. Additional effects of fluoride (F) application were also studied and SEC examinations performed. Sixty-four extracted human molar teeth were coated with acid resistant varnish leaving four windows, then sectioned, leaving one window on each tooth quarter. The windows were treated in one of the following ways: untreated (control), or lased, or exposed to 4 min. APF (1.23% F) before lasing, or exposed to 4 min. APF (1.23% F) after lasing. After lasing, microhardness profiles were obtained and SEM was performed. Caries resistance was generally increased at moderate fluences. F application combined with lasing enhanced caries resistance at some parameters. SEM showed effects ranging from minimal to localized effects to extended glazing. Pulsed excimer laser irradiation, especially combined with topical F application can inhibit development of artificial caries-like lesions.
Corneal reshaping using a pulsed UV solid-state laser
NASA Astrophysics Data System (ADS)
Ren, Qiushi; Simon, Gabriel; Parel, Jean-Marie A.; Shen, Jin-Hui; Takesue, Yoshiko
1993-06-01
Replacing the gas ArF (193 nm) excimer laser with a solid state laser source in the far-UV spectrum region would eliminate the hazards of a gas laser and would reduce its size which is desirable for photo-refractive keratectomy (PRK). In this study, we investigated corneal reshaping using a frequency-quintupled (213 nm) pulsed (10 ns) Nd:YAG laser coupled to a computer-controlled optical scanning delivery system. Corneal topographic measurements showed myopic corrections ranging from 2.3 to 6.1 diopters. Post-operative examination with the slit-lamp and operating microscope demonstrated a smoothly ablated surface without corneal haze. Histological results showed a smoothly sloping surface without recognizable steps. The surface quality and cellular effects were similar to that of previously described excimer PRK. Our study demonstrated that a UV solid state laser coupled to an optical scanning delivery system is capable of reshaping the corneal surface with the advantage of producing customized, aspheric corrections without corneal haze which may improve the quality of vision following PRK.
Pulsed UV laser technologies for ophthalmic surgery
NASA Astrophysics Data System (ADS)
Razhev, A. M.; Chernykh, V. V.; Bagayev, S. N.; Churkin, D. S.; Kargapol'tsev, E. S.; Iskakov, I. A.; Ermakova, O. V.
2017-01-01
The paper provides an overview of the results of multiyear joint researches of team of collaborators of Institute of Laser Physics SB RAS together with NF IRTC “Eye Microsurgery” for the period from 1988 to the present, in which were first proposed and experimentally realized laser medical technologies for correction of refractive errors of known today as LASIK, the treatment of ophthalmic herpes and open-angle glaucoma. It is proposed to carry out operations for the correction of refractive errors the use of UV excimer KrCl laser with a wavelength of 222 nm. The same laser emission is the most suitable for the treatment of ophthalmic herpes, because it has a high clinical effect, combined with many years of absence of recrudescence. A minimally invasive technique of glaucoma operations using excimer XeCl laser (λ=308 nm) is developed. Its wavelength allows perform all stages of glaucoma operations, while the laser head itself has high stability and lifetime, will significantly reduce operating costs, compared with other types of lasers.
Cleaning of copper traces on circuit boards with excimer laser radiation
NASA Astrophysics Data System (ADS)
Wesner, D. A.; Mertin, M.; Lupp, F.; Kreutz, E. W.
1996-04-01
Cleaning of Cu traces on circuit boards is studied using pulsed excimer laser radiation (pulse width ˜ 20 ns, wavelength 248 nm), with the goal of improving the properties of the Cu surface for soldering and bonding. Traces with well-defined oxide overlayers are cleaned by irradiation in air using ≤ 10 3 laser pulses at fluences per pulse of ≤ 2 J cm -2. After treatment the surface morphology is analyzed using optical microscopy, optical profilometry, and scanning electron microscopy, while the chemical state of the surface is investigated with X-ray photoelectron (XPS) spectroscopy. Ellipsometry is used to determine the oxide overlayer thickness. Prior to cleaning samples exhibit a contamination overlayer about 15-25 nm in thickness containing Cu 2O and C. Cleaning reduces the overlayer thickness to ≤ 10 nm by material removal. The process tends to be self-limiting, since the optical reflectivity of the oxidized Cu surface for laser radiation is smaller than that of the cleaned surface. Additionally, the interaction with the laser radiation results in surface segregation of a minor alloy component out of the bulk (e.g. Zn), which may help to passivate the surface for further chemical reactions.
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Herring, G. C.
2000-01-01
Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.
Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge
2009-01-01
Splendid isolation: Monomeric phosphazene F(2)PN ((1)A(1)) was prepared for the first time through irradiation of F(2)PN(3) in an argon matrix with an ArF excimer laser (lambda=193 nm). Upon subsequent irradiation with a high-pressure mercury arc lamp (lambda=255 nm), F(2)PN undergoes a 1,2-fluorine shift to give iminophosphane cis-FP=NF.
[Excimer laser therapy of alopecia areata--side-by-side evaluation of a representative area].
Raulin, Christian; Gündogan, Cüneyt; Greve, Bärbel; Gebert, Susanne
2005-07-01
We report for the first time on hair regrowth in alopecia areata of the scalp achieved with the 308-nm xenon-chloride excimer laser in a prospective side-by-side trial. The alopecia areata had shown progression over a period of three years, and various treatments had not been effective. Out of a number of affected areas, one representative lesion was chosen; one half of it was treated, the other half remained untreated. After 27 sessions (200 - 4000 mJ/cm2, cumulative dose 52.6 J/cm2) over 3 months, only the treated area showed hair growth; which suggests that this was most probably not a spontaneous remission.
Large eccentric laser angioplasty catheter
NASA Astrophysics Data System (ADS)
Taylor, Kevin D.; Reiser, Christopher
1997-05-01
In response to recent demand for increased debulking of large diameter coronary vascular segments, a large eccentric catheter for excimer laser coronary angioplasty has been developed. The outer tip diameter is 2.0 mm and incorporates approximately 300 fibers of 50 micron diameter in a monorail- type percutaneous catheter. The basic function of the device is to ablate a coronary atherosclerotic lesion with 308 nm excimer laser pulses, while passing the tip of the catheter through the lesion. By employing multiple passes through the lesion, rotating the catheter 90 degrees after each pass, we expect to create luminal diameters close to 3 mm with this device. Design characteristics, in-vitro testing, and initial clinical experience is presented.
Picosecond excimer laser-plasma x-ray source for microscopy, biochemistry, and lithography
NASA Astrophysics Data System (ADS)
Turcu, I. C. Edmond; Ross, Ian N.; Trenda, P.; Wharton, C. W.; Meldrum, R. A.; Daido, Hiroyuki; Schulz, M. S.; Fluck, P.; Michette, Alan G.; Juna, A. P.; Maldonado, Juan R.; Shields, Harry; Tallents, Gregory J.; Dwivedi, L.; Krishnan, J.; Stevens, D. L.; Jenner, T.; Batani, Dimitri; Goodson, H.
1994-02-01
At Rutherford Appleton Laboratory we developed a high repetition rate, picosecond, excimer laser system which generates a high temperature and density plasma source emitting approximately 200 mW (78 mW/sr) x ray average power at h(nu) approximately 1.2 KeV or 0.28 KeV < h(nu) < 0.53 KeV (the `water window'). At 3.37 nm wavelength the spectral brightness of the source is approximately 9 X 1011 photons/s/mm2/mrad2/0.1% bandwidth. The x-ray source serves a large user community for applications such as: scanning and holographic microscopy, the study of the biochemistry of DNA damage and repair, microlithography and spectroscopy.
Removal of dust particles from metal-mirror surfaces by excimer-laser radiation
NASA Astrophysics Data System (ADS)
Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.
1995-07-01
The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.
NASA Astrophysics Data System (ADS)
Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.
1999-02-01
Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.
NASA Astrophysics Data System (ADS)
Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki
2007-02-01
We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.
Zaragoza-Galán, Gerardo; Fowler, Michael A; Duhamel, Jean; Rein, Regis; Solladié, Nathalie; Rivera, Ernesto
2012-07-31
A novel series of pyrene dendronized porphyrins bearing two and four pyrenyl groups (Py(2)-TMEG1 and Py(4)-TMEG2) were successfully synthesized. First and second generation Fréchet type dendrons (Py(2)-G1OH and Py(4)-G2OH) were prepared from 1-pyrenylbutanol and 3,5-dihydroxybenzyl alcohol. These compounds were further linked to a trimesitylphenylporphyrin containing a butyric acid spacer via an esterification reaction to obtain the desired products. Dendrons and dendronized porphyrins were fully characterized by FTIR and (1)H NMR spectroscopy and their molecular weights were determined by matrix-assisted laser desorption ionization time of flight mass spectrometry. Their optical and photophysical properties were studied by absorption and fluorescence spectroscopies. The formation of dynamic excimers was detected in the pyrene-labeled dendrons, with more excimer being produced in the higher generation dendron. The fluorescence spectra of the pyrene dendronized porphyrins exhibited a significant decrease in the amount of pyrene monomer and excimer emission, jointly with the appearance of a new emission band at 661 nm characteristic of porphyrin emission, an indication that fluorescence resonance energy transfer (FRET) occurred from one of the excited pyrene species to the porphyrin. The FRET efficiency was found to be almost quantitative ranging between 97% and 99% depending on the construct. Model Free analysis of the fluorescence decays acquired with the pyrene monomer, excimer, and porphyrin core established that only residual pyrene excimer formation in the dendrons could occur before FRET from the excited pyrene monomer to the ground-state porphyrin core.
Precision drilling of fused silica with 157-nm excimer laser radiation
NASA Astrophysics Data System (ADS)
Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus
2003-07-01
μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.
NASA Astrophysics Data System (ADS)
Warner, J. D.; Meola, J. E.; Jenkins, K. A.; Bhasin, K. B.
1990-04-01
The development of high temperature superconducting YBa2Cu3O(7-x) thin films on substrates suitable for microwave applications is of great interest for evaluating their applications for space radar, communication, and sensor systems. Thin films of YBa2Cu3O(7-x) were formed on SrTiO3, ZrO2, MgO, and LaAlO3 substrates by laser ablation. The wavelength used was 248 nm from a KrF excimer laser. During deposition the films were heated to 600 C in a flowing oxygen environment, and required no post annealing. The low substrate temperature during deposition with no post annealing gave films which were smooth, which had their c-axis aligned to the substrates, and which had grains ranging from 0.2 to 0.5 microns in size. The films being c-axis aligned gave excellent surface resistance at 35 GHz which was lower than that of copper at 77 K. At present, LaAlO3 substrates with a dielectric constant of 22, appears suitable as a substrate for microwave and electronic applications. The films were characterized by resistance-temperature measurements, scanning electron microscopy, and x ray diffraction. The highest critical transition temperatures (T sub c) are above 89 K for films on SrTiO3 and LaAlO3, above 88 K for ZrO2, and above 86 K for MgO. The critical current density (J sub c) of the films on SrTiO3 is above 2 x 10(exp 6) amperes/sq cm at 77 K. The T(sub c) and J(sub c) are reported as a function of laser power, composition of the substrate, and temperature of the substrate during deposition.
Diode-pumped UV refractive surgery laser
NASA Astrophysics Data System (ADS)
Lin, Jui T.; Hwang, Ming-Yi; Huang, C. H.
1993-07-01
Ophthalmic applications of medical lasers have been extensively explored recently because of their market potential. Refractive surgical lasers represent one of the major development efforts due to the large population of eye disorders: about 160 million people in the USA and more than 2 billion worldwide. The first refractive laser developed was the ArF excimer laser at 193 nm in 1987 - 88 for a procedure called photorefractive keratectomy (PRK). More recently, solid state refractive lasers have also been explored for preliminary clinical trials. These lasers include Nd:YLF (picosecond at 1054 nm), doubled-Nd:YAG (nanosecond at 532 nm), Ho:YAG (microsecond at 2100 nm) and ultraviolet (UV) lasers generated from the harmonic of Ti:sapphire-laser (205 - 220 nm) and Nd:YAG (at 213 nm).
Manipulation by multiple filamentation of subpicosecond TW KrF laser beam
NASA Astrophysics Data System (ADS)
Zvorykin, V. D.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.
2018-05-01
A self-focusing of TW-level subpicosecond UV KrF laser pulses in ambient air produces a few 100 randomly distributed filaments over 100-m propagation distance. A control of multiple filamentation process by a number of methods was demonstrated in the present work envisaging applications for a HV discharge guiding, remote excitation of an atmospheric air laser, MW radiation transfer by virtual plasma waveguide, as well as filamentation suppression to improve short pulse parameters in direct amplification scheme. Under the laser beam focusing, a multitude of filaments coalesced into a superfilament with highly increased intensity and plasma conductivity. A superradiant forward lasing was obtained in the superfilament around 1.07-µm wavelength of atmospheric nitrogen. A regular 2D array of a 100 superfilaments was configured over 20-m distance by Fresnel diffraction on periodic amplitude masks. Effective Kerr defocusing and a subsequent filaments suppression over 50-m distance was demonstrated in Xe due to 2-photon resonance of laser radiation with 6p state being accompanied by a narrow-angle coherent conical emission at 828-nm wavelength.
Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser
NASA Astrophysics Data System (ADS)
Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.
2008-11-01
With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.
2010-11-01
With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.
High-power, highly stable KrF laser with a 4-kHz pulse repetition rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisov, V M; El'tsov, A V; Khristoforov, O B
2015-08-31
An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al{sub 2}O{sub 3} ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energymore » is 160 mJ pulse{sup -1}, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ ≤ 0.7%) is achieved using an all-solid-state pump system. (lasers)« less
NASA Astrophysics Data System (ADS)
Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.
2011-07-01
Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.
Huang, Jin; Zhu, Zhi; Bamrungsap, Suwussa; Zhu, Guizhi; You, Mingxu; He, Xiaoxiao; Wang, Kemin; Tan, Weihong
2010-01-01
Lysozyme (Lys) plays crucial roles in the innate immune system, and the detection of Lys in urine and serum has considerable clinical importance. Traditionally, the presence of Lys has been detected by immunoassays; however, these assays are limited by the availability of commercial antibodies and tedious protein modification, and prior sample purification. To address these limitations, we report here the design, synthesis and application of a competition-mediated pyrene-switching aptasensor for selective detection of Lys in buffer and human serum. The detection strategy is based on the attachment of pyrene molecules to both ends of a hairpin DNA strand, which becomes the partially complementary competitor to an anti-Lys aptamer. In the presence of target Lys, the aptamer hybridizes with part of the competitor, which opens the hairpin such that both pyrene molecules are spatially separated. In the presence of target Lys, however, the competitor is displaced from the aptamer by the target, subsequently forming an initial hairpin structure. This brings the two pyrene moieties into close proximity to generate an excimer, which, in turn, results in a shift of fluorescence emission from ca. 400 nm (pyrene monomer) to 495 nm (pyrene excimer). The proposed method for Lys detection showed sensitivity as low as 200 pM and high selectivity in buffer. When measured by steady-state fluorescence spectrum, the detection of Lys in human serum showed a strong fluorescent background, which obscured detection of the excimer signal. However, time-resolved emission measurement (TREM) supported the potential of the method in complex environments with background fluorescence by demonstrating the temporal separation of probe fluorescence emission decay from the intense background signal. We have also demonstrated that the same strategy can be applied to the detection of small biomolecules such as adenosine triphosphate (ATP), sowing the generality of our approach. Therefore, the competition-mediated pyrene-switching aptasensor is promising to have potential for clinical and forensic applications. PMID:21080638
Reshaping and Customization of SMILE-Derived Biological Lenticules for Intrastromal Implantation.
Damgaard, Iben Bach; Riau, Andri Kartasasmita; Liu, Yu-Chi; Tey, Min Li; Yam, Gary Hin-Fai; Mehta, Jodhbir Singh
2018-05-01
To evaluate the feasibility of excimer laser reshaping of biological lenticules available after small incision lenticule extraction (SMILE). Fresh and cryopreserved SMILE-derived human lenticules underwent excimer laser ablation for stromal reshaping. The treatment effects in the lasered group were compared with the nonlasered group with respect to changes in surface functional groups (by Fourier transform infrared spectroscopy [FTIR]) and surface morphology (by scanning electron microscopy [SEM] and atomic force microscopy [AFM]). Ten SMILE-derived porcine lenticules, five nonlasered (107-μm thick, -6 diopter [D] spherical power) and five excimer lasered (50% thickness reduction), were implanted into a 120-μm stromal pocket of 10 porcine eyes. Corneal thickness and topography were assessed before and after implantation. FTIR illustrated prominent changes in the lipid profile. The collagen structure was also affected by the laser treatment but to a lesser extent. SEM exhibited a more regular surface for the lasered lenticules, confirmed by the lower mean Rz value (290.1 ± 96.1 nm vs. 380.9 ± 92.6 nm, P = 0.045) on AFM. The lasered porcine lenticules were thinner than the nonlasered controls during overhydration (132 ± 26 μm vs. 233 ± 23 μm, P < 0.001) and after 5 hours in a moist chamber (46 ± 3 μm vs. 57 ± 3 μm, P < 0.001). After implantation, the nonlasered group showed a tendency toward a greater increase in axial keratometry (6.63 ± 2.17 D vs. 5.60 ± 3.79 D, P = 0.613) and elevation (18.6 ± 15.4 vs. 15.2 ± 5.5, P = 0.656) than the lasered group. Excimer laser ablation may be feasible for thinning and reshaping of SMILE-derived lenticules before reimplantation or allogenic transplantation. However, controlled lenticule dehydration before ablation is necessary in order to allow stromal thinning.
Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.
2009-07-01
This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.
Controlled study of excimer and pulsed dye lasers in the treatment of psoriasis.
Taibjee, S M; Cheung, S-T; Laube, S; Lanigan, S W
2005-11-01
The excimer laser delivers high energy monochromatic ultraviolet (UV) B at 308 nm. Advantages over conventional UV sources include targeting of lesional skin, reducing cumulative dose and inducing faster clearance. Studies of the pulsed dye laser (PDL) in psoriasis report between 57% and 82% response rates; remission may extend to 15 months. To our knowledge, this is the first study assessing both excimer and PDL in psoriasis. We conducted a within-patient controlled prospective trial of treatment of localized plaque psoriasis. Twenty-two adult patients, mean Psoriasis Area and Severity Index 7.1, were recruited. Fifteen patients completed the full treatment, of which 13 were followed up to 1 year. Two selected plaques were treated with excimer twice weekly and V Beam PDL, pretreated with salicylic acid (SA), every 4 weeks, respectively. Two additional plaques, treated with SA alone or untreated, served as controls. The primary outcome measures were: (i) changes in plaque-modified Psoriasis Activity and Severity Index (PSI) scores from baseline to end of treatment; (ii) clinical response to treatment (CR(T)), assessed by serial photographs; (iii) percentage of plaques clear at the end of treatment; and (iv) percentage of plaques clear at 1-year follow-up. The secondary outcome measures were: (i) number of laser treatments to clearance; (ii) time to relapse; (iii) frequency of side-effects; and (iv) qualitative observations with SIAscope. The mean improvement in PSI was 4.7 (SD 2.1) with excimer and 2.7 (SD 2.4) with PDL. PSI improvement was significantly greater in excimer than PDL (P = 0.003) or both control plaques (P < 0.001). CR(T) indicated 13 patients responded best with excimer, two patients best with PDL, and in seven patients there was no difference between the two lasers. CR(T) was significantly greater for excimer than PDL (P = 0.003) or both controls (P < 0.001). CR(T) was also significantly greater for PDL than SA alone (P = 0.004) or untreated control (P =0.002). Nine (41%) patients cleared with excimer, after mean 8.7, median 10 weeks treatment. Seven of these nine patients were followed up to 1 year; four remained clear, two relapsed at 1 month, and one at 6 months. Six (27%) patients cleared with PDL, after mean 3.3, median four treatments. All six patients were followed up to 1 year; four remained clear, one relapsed at 4 months and one at 9 months. Despite common side-effects including blistering and hyperpigmentation, patient satisfaction was high. Serial images obtained with the SIAscope during treatment indicated different mechanisms of action of the two lasers. Excimer and V Beam PDL are useful treatments for plaque psoriasis. Although the excimer appears to be on average more efficacious, a subset of patients may respond better to PDL. Long-term remission is achievable with both lasers.
Laser micromachining of optical devices
NASA Astrophysics Data System (ADS)
Kopitkovas, Giedrius; Lippert, Thomas; David, Christian; Sulcas, Rokas; Hobley, Jonathan; Wokaun, Alexander J.; Gobrecht, Jens
2004-10-01
The combination of a gray tone phase mask with a laser assisted wet etching process was applied to fabricate complex microstructures in UV transparent dielectric materials. This one-step method allows the generation of arrays of plano-convex and Fresnel micro-lenses using a conventional XeCl excimer laser and an absorbing liquid, which is in contact with the UV transparent material. An array of plano-convex micro-lenses was tested as beam homogenizer for a high power XeCl excimer and ps Nd:YAG laser. The roughness of the etched features varies from several μm to 10 nm, depending on the laser fluence and concentration of the dye in the organic liquid. The etching process can be divided into several etching mechanisms which vary with laser fluence.
Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume
2017-03-29
In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.
Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy
NASA Technical Reports Server (NTRS)
Mckenzie, Robert L.
1993-01-01
Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.
Calibration of a tunable excimer laser using the optogalvanic effect
NASA Technical Reports Server (NTRS)
Abbitt, John D.
1991-01-01
A device for the calibration of a tunable excimer laser is currently under development. The laser provides UV radiation at three principal wavelengths, 193, 248, and 308 nm and is tunable over a range of 1 nm at each of these wavelengths. The laser is used as a non-intrusive optical probe to excite electronic transitions, and thereby induce fluorescence, of the principle molecules or atoms of interest in supersonic flowfields, both reacting and nonreacting. The fluorescence resulting from the excitation is observed with an intensified camera. Over the range of tunability at the three wavelengths are a number of transitions that can be observed. The intensity of the fluorescence depends in part on the local temperature and density. The nature of this thermodynamic dependence is variable among transitions; thus, identification of the transition under observation is required. The specific transition excited corresponds directly to the wavelength of the radiation. The present technique used for transition identification consists of scanning the laser across the range of tunability and observing the fluorescence resulting from various molecular transitions.
Potential use of lasers for penetrating keratoplasty.
Thompson, K P; Barraquer, E; Parel, J M; Loertscher, H; Pflugfelder, S; Roussel, T; Holland, S; Hanna, K
1989-07-01
Experimental corneal trephination has been achieved with the 193 nm argon fluoride excimer and 2.9 microns hydrogen fluoride and Er:YAG laser systems. Compared with metal blades and other lasers, the 193 nm excimer laser creates the best quality corneal excision, but has a relatively slow etch rate through the stroma, and its use requires toxic gas. The mid-infrared laser systems trephine the cornea in less than 10 seconds, but cause a 10 microns to 15 microns zone of adjacent stromal damage and create wounds that are approximately 2.5 times larger than wounds made by metal scalpels. The wavelength and laser pulse duration influence the cutting characteristics of the laser. Optical delivery systems using an axicon lens, a rotating slit, and a computer controlled scanning optical system have been developed for penetrating keratoplasty. Selection of the optimal laser system for penetrating keratoplasty must await further experimental studies. Refinements of the laser cavity and delivery system are necessary before clinical studies can begin. A carefully controlled randomized clinical trial comparing laser trephination with conventional mechanical trephines will be necessary to determine the safety and efficacy of a laser trephination system.
Tsiklis, Nikolaos S; Kymionis, George D; Pallikaris, Aristofanis I; Diakonis, Vasilios F; Ginis, Harilaos S; Kounis, George A; Panagopoulou, Sophia I; Pallikaris, Ioannis G
2007-11-01
To evaluate whether photorefractive keratectomy (PRK) for moderate myopia using a solid-state laser with a wavelength of 213 nm alters the corneal endothelial cell density. University refractive surgery center. The corneal endothelium was analyzed preoperatively and 1, 6, and 12 months postoperatively using corneal confocal microscopy (modified HRT II with a Rostock Cornea Module, Heidelberg Engineering) in 60 eyes (30 patients). Patients were randomized to have myopic PRK using a 213 nm wavelength solid-state laser (study group) or a conventional 193 nm wavelength excimer laser (control group). Three endothelial images were acquired in each of 30 preoperative normal eyes to evaluate the repeatability of endothelial cell density measurements. Repeated-measures analysis of variance was used to compare the variations in endothelial cell density between the 2 lasers and the changes in endothelial cell density over time. There were no statistically significant differences in sex, age, corneal pachymetry, attempted correction, preoperative endothelial cell density, or postoperative refractive outcomes (uncorrected visual acuity, best spectacle-corrected visual acuity, and spherical equivalent refraction) between the 2 groups (P>.05). The coefficient of repeatability of endothelial cell density was 131 cells/mm(2). The measured endothelial cell count per 1.0 mm(2) did not significantly change up to 1 year postoperatively in either group (both P>.05). No statistically significant difference was found between the 2 groups in any postoperative interval (P>.05). Photorefractive keratectomy for moderate myopia using a 213 nm wavelength solid-state laser or a conventional 193 nm wavelength excimer laser did not significantly affect corneal endothelial density during the 1-year postoperative period.
Manufacturability of the X Architecture at the 90-nm technology node
NASA Astrophysics Data System (ADS)
Smayling, Michael C.; Sarma, Robin C.; Nagata, Toshiyuki; Arora, Narain; Duane, Michael P.; Oemardani, Shiany; Shah, Santosh
2004-05-01
In this paper, we discuss the results from a test chip that demonstrate the manufacturability and integration-worthiness of the X Architecture at the 90-nm technology node. We discuss how a collaborative effort between the design and chip making communities used the current generation of mask, lithography, wafer processing, inspection and metrology equipment to create 45 degree wires in typical metal pitches for the upper layers on a 90-nm device in a production environment. Cadence Design Systems created the test structure design and chip validation tools for the project. Canon"s KrF ES3 and ArF AS2 scanners were used for the lithography. Applied Materials used its interconnect fabrication technologies to produce the multilayer copper, low-k interconnect on 300-mm wafers. The results were confirmed for critical dimension and defect levels using Applied Materials" wafer inspection and metrology systems.
Alexiades-Armenakas, Macrene R; Bernstein, Leonard J; Friedman, Paul M; Geronemus, Roy G
2004-08-01
To assess the safety and efficacy of the 308-nm excimer laser in pigment correction of hypopigmented scars and striae alba. Institutional review board-approved randomized controlled trial. Private research center. Volunteer sample of 31 adult subjects with hypopigmented scars or striae alba distributed on the face, torso, or extremities. Lesions were randomized to receive treatment or not, with site-matched normal control areas. Treatments were initiated with a minimal erythema dose minus 50 mJ/cm(2) to affected areas. Subsequent treatments were performed biweekly until 50% to 75% pigment correction, then every 2 weeks thereafter until a maximum of 10 treatments, 75% increase in colorimetric measurements, or 100% visual pigment correction. Pigment correction by visual and colorimetric assessments compared with untreated control lesions and site-matched normal skin before each treatment and at 1-, 2-, 4-, and 6-month follow-up intervals. Occurrence of erythema, blistering, dyspigmentation, or other adverse effects was monitored. The percentage pigment correction by both assessments increased in direct proportion to the number of treatments. The mean percentage pigment correction by visual assessment relative to control of 61% (95% confidence interval [CI], 55%-67%) for scars and 68% (95% CI, 62%-74%) for striae was achieved after 9 treatments. The mean percentage pigmentation by colorimetric measurements relative to control of 101% (95% CI, 99%-103%) for scars and 102% (95% CI, 99%-104%) for striae was achieved after 9 treatments. Both sets of values gradually declined toward baseline levels during the 6-month follow-up. No blistering or dyspigmentation occurred. Therapy with the 308-nm excimer laser is safe and effective in pigment correction of hypopigmented scars and striae alba. Mean final pigment correction rates relative to control sites of approximately 60% to 70% by visual assessment and 100% by colorimetric analysis were observed after 9 treatments administered biweekly. Maintenance treatment every 1 to 4 months is required to sustain the cosmetic benefit.
Oppenländer, Thomas; Walddörfer, Carsten; Burgbacher, Jens; Kiermeier, Martin; Lachner, Klaus; Weinschrott, Helga
2005-07-01
Xenon excimer (Xe2*) lamps can be used for the oxidation and mineralization of organic compounds in aqueous solution. This vacuum-ultraviolet (VUV) photochemical method is mainly based on the photochemically initiated homolysis of water that produces hydrogen atoms and hydroxyl radicals. The efficiency of substrate oxidation and mineralization is limited markedly due to the high absorbance of water at the emission maximum of the Xe2* lamp (lambda(max)=172 nm). This photochemical condition generates an extreme heterogeneity between the irradiated volume V(irr) and the non-irradiated ("dark") bulk solution. During VUV-initiated photomineralization of organic substrates, the fast scavenging of hydrogen atoms and of carbon-centered radicals by dissolved molecular oxygen produces a permanent oxygen deficit within V(irr) and adjacent compartments. Hence, at a constant photon flux the concentration of dissolved molecular oxygen within the zones of photo and thermal radical reactions limits the rate of mineralization, i.e. the rate of TOC diminution. Thus, a simple and convenient technique is presented that overcomes this limitation by injection of molecular oxygen (or air) into the irradiated volume by use of a ceramic oxygenator (aerator). The tube oxygenator was centered axially within the xenon excimer flow-through lamp. Consequently, the oxygen or air bubbles enhanced the transfer of dissolved molecular oxygen into the VUV-irradiated volume leading to an increased rate of mineralization of organic model compounds, e.g. 1-heptanol, benzoic acid and potassium hydrogen phthalate.
Yoshimura, Kazuhiro; Nakano, Shunji; Tsuruta, Daisuke; Ohata, Chika; Hashimoto, Takashi
2013-06-01
Plasma cell cheilitis is a chronic inflammatory disease that presents with erythema, erosions, ulcers and occasional nodules within the mucosa, including the lips. It is histopathologically characterized by dense plasma cell infiltration in the lamina propria of the mucous membranes. Several treatments for plasma cell cheilitis have been reported, including topical steroids, topical antibiotics or topical tacrolimus. However, 308-nm monochromatic excimer light (MEL) has never been reported as a treatment option, while it was reported to be very effective in treating erosive oral lichen planus. We report a 62-year-old man who had chronic plasma cell cheilitis on the lower lip, which was refractory to topical and systemic corticosteroid. The lesion and severe pain were significantly improved by the treatment with nine sessions of 308-nm MEL twice per week with a total dose of 1120 mJ/cm(2). However, the lesion gradually worsened after treatment frequency was reduced to once per month. Subsequent tacrolimus 0.03% ointment cleared the lesion completely in a month and no recurrence was observed a year later. Refractory plasma cell cheilitis and concomitant severe pain quickly responded to 308-nm MEL when administrated twice per week. Because the long interval between each MEL treatment seemed ineffective to improve the lesion, appropriate frequency and adequate total dose of MEL treatment may be necessary for a successful treatment. © 2013 Japanese Dermatological Association.
Choy, D S; Altman, P A; Case, R B; Trokel, S L
1991-06-01
The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.
Excimer laser coronary angioplasty: relative risk analysis of clinical results
NASA Astrophysics Data System (ADS)
Bittl, John A.
1992-08-01
Reports of successful use of excimer laser coronary angioplasty for complex coronary artery disease abound, yet firm indications for its use have not been defined. We attempted to treat 858 coronary stenoses in 764 consecutive patients (mean age 61 years; range 32 - 91 years; 75% men; 76% with Class III or IV angina) with excimer laser angioplasty at 308 nm. Successful treatment was achieved in 86% of patients, as indicated by
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.
2013-01-01
JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.
Application Of The Excimer Laser To Area Recontouring Of The Cornea
NASA Astrophysics Data System (ADS)
Yoder, Paul R.; Telfair, William B.; Warner, John W.; Martin, Clifford A.; L'Esperance, Francis A.
1989-04-01
Excimer lasers operating at 193 nm are being used experimentally in a special type of materials processing wherein the central portion of the anterior surface of the human cornea is selectively ablated so as to change its refractive power and, hopefully, improve impaired vision. Research to date has demonstrated recontouring as a potential means for reducing myopia and hyperopia of cadaver eyes while studies of ablations on the corneas of living monkeys and of blind human volunteers show promise of prompt and successful healing. The procedure has also shown merit in removing superficial scars from the corneal surface. In this paper, we describe the electro-optical system used to deliver the UV laser beam in these experiments and report some preliminary results of the ablation studies.
Endothelial reaction to perforating and non-perforating excimer laser excisions in rabbits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, J.W.; Lang, G.K.; Naumann, G.O.
1991-05-01
With an ArF excimer laser (193 nm, 750 mJ/cm2, 20 Hz) and a special slit-mask system, perforating and non-perforating linear keratectomies were performed in 55 rabbit corneas with a follow-up from 1 hour to 6 months. Varying the pulse number according to ablation rate (0.8 micron/pulse) and corneal thickness, four linear radial excisions (3 mm length, 70 microns width) of increasing depth (70%, 80%, 90%, 100% perforation) were produced. The corneas were processed for light microscopy, scanning and transmission electron microscopy, and vital staining of the endothelium. Except for mild cell contact alterations and discrete single cell damage in themore » 90% deep excisions, no endothelial damage could be detected after non-perforating keratectomies. Minute (less than 20 microns) and small (20 to 100 microns maximal diameter) perforations induced cell enlargement, formation of pseudopodia, rosette-like figures, multi-nucleated giant cells, and ultimately uniform reformation of the cell pattern (1 hour to 7 days postoperatively). Larger excimer laser defects of Descemet's membrane (greater than 100 microns) were overgrown by dedifferentiated endothelial cells producing a new PAS-positive basement membrane. Vital staining revealed the complete and stable reorganization of the endothelium over these lesions within 6 months. The authors observations are similar to those reported on the endothelial repair process following other surgical manipulations (knife incisions, direct Nd:YAG-laser trauma) and support the applicability of excimer lasers for corneal trephination in patients.« less
Design of a new bottom antireflective coating composition for KrF resist
NASA Astrophysics Data System (ADS)
Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio
1999-06-01
A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.
LPI Experiments at the Nike Laser*
NASA Astrophysics Data System (ADS)
Weaver, J.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Brown, C.; Karasik, M.; Serlin, V.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Brown, D.; Schmitt, A.; Velikovich, A.; Feldman, U.; Holland, G.; Aglitskiy, Y.
2007-11-01
Advanced implosion designs under development at NRL for direct drive inertial confinement fusion incorporate high intensity pulses from a krypton-fluoride (KrF) laser to achieve significant gain with lower total laser energy (Etot˜500 kJ). These designs will be affected by the thresholds and magnitudes of laser plasma instabilities (LPI). The Nike laser can create short, high intensity pulses (t <0.4 ns; I>10^15 W/cm^2) to explore how LPI will be influenced by the deep UV (248 nm), broad bandwidth (2-3 THz), and induced spatial incoherence beam smoothing of the NRL KrF laser systems. Previous results demonstrated no visible/VUV signatures of two-plasmon decay (2φp) for overlapped intensities ˜2x10^15 W/cm^2. We have increased the laser intensity and expanded the range of targets and diagnostics. Single and double pulse experiments are being planned with solid, foam, and cryogenic targets. In addition to spectrometers to study SRS, 2φp, SBS, and the parametric decay instability, hard x-ray spectrometers (hν>2 keV) and a scintillator/photomultiplier array (hν>10 keV) have been deployed to examine hot electron generation. *Work supported by U. S. DoE.
NASA Astrophysics Data System (ADS)
Fernández-Pradas, J. M.; García-Cuenca, M. V.; Clèries, L.; Sardin, G.; Morenza, J. L.
2002-07-01
Hydroxyapatite (HA) coatings were deposited on Ti-6Al-4V substrates by laser ablation with a KrF excimer laser. Depositions were performed at 45 Pa of water vapour and at a substrate temperature of 575 °C. After 7 min of deposition, coatings were left at this temperature for different times before cooling down. The samples morphology and structure were characterised by scanning electron microscopy, X-ray diffractometry and Raman spectroscopy. The mechanical performance of the coatings was evaluated through the scratch-test technique. The coatings do not present important differences between them. However, there is an interface layer between the coating and the substrate that indeed presents an evolution with the heating time. This interface layer is constituted by two different species: titanium oxide and Ti-6Al-4V with oxygen diffused in its lattice. Its thickness increases during the first minutes of heating after deposition. An evolution of the titanium oxide phases with the time of heating has been detected by Raman spectroscopy. The samples fail at lower loads in the scratch-test as longer is the time that they remained at high temperature. The mode of failure of the samples suggests that failure occurs at the interface.
Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics
NASA Astrophysics Data System (ADS)
Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.
Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.
Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.
2012-09-01
Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.
Removal of dust particles from metal mirror surfaces by excimer laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, K.; Wolff-Rottke, B.; Mueller, F.
1995-12-31
The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope (VLT) mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence,more » being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.« less
Excimer Emission from Alkali Diatomic and Alkaline-Earth-Noble-Gas Molecules
1989-10-01
line at 792 nm is also shown as a solid line for 1.18 ami . respectively. The oven temperature and buffer gas comparison. The oven contained pure sodium...Hasselbrink, and G. Hillrichs. Chem. Phys. Lett. 30J. Huennekens, H. J. Park, T. Colbert , and S. C. McClain. 112,441 (1984). Phys. Rev. A 35, 2892 (1987). 15R
In-vitro ablation of fibrocartilage by XeCl excimer laser
NASA Astrophysics Data System (ADS)
Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.
1991-07-01
A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.
Pyrene functionalized molecular beacon with pH-sensitive i-motif in a loop.
Dembska, Anna; Juskowiak, Bernard
2015-01-01
In this work, we present a spectral characterization of pH-sensitive system, which combines the i-motif properties with the spatially sensitive fluorescence signal of pyrene molecules attached to hairpin ends. The excimer production (fluorescence max. ∼480 nm) by pyrene labels at the ends of the molecular beacon is driven by pH-dependent i-motif formation in the loop. To illustrate the performance and reversible work of our systems, we performed the experiments with repeatedly pH cycling between pH values of 7.5±0.3 and 6.5±0.3. The sensor gives analytical response in excimer-monomer switching mode in narrow pH range (1.5 pH units) and exhibits high pH resolution (0.1 pH unit). Copyright © 2015 Elsevier B.V. All rights reserved.
Pulsed Gas Lasers Pumped by a Runaway Electron Initiated Discharge
NASA Astrophysics Data System (ADS)
Panchenko, A. N.; Tarasenko, V. F.; Panchenko, N. A.
2017-12-01
The generation parameters are investigated in a runaway electron preionized diffuse discharge (REP DD). Laser generation is produced in different spectral bands from the IR to VUV range. New modes of the nitrogen laser operation are obtained. Ultimate efficiencies of N2- and nonchain HF(DF)-lasers are achieved. A possibility of increasing the pulse durations of XeF-, KrF-, ArF- and VUV F2- lasers (157 nm) in an oscillating REP DD is shown. The efficiencies of VUV- and UV-generation comparable with that of a laser pumped by a self-sustained volume discharge with preionization are gained.
Acceleration to High Velocities and Heating by Impact Using Nike KrF Laser
2010-01-01
Acceleration to high velocities and heating by impact using Nike KrF laser. Max Karasik,1, ∗ J. L. Weaver,1 Y. Aglitskiy,2 T. Watari,3 Y. Arikawa,3 T...Suita, Osaka 565-0871, Japan 4RSI, Lanham, MD 20706 The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Acceleration to high velocities and heating by impact using Nike KrF laser. 5a. CONTRACT
High-efficency stable 213-nm generation for LASIK application
NASA Astrophysics Data System (ADS)
Wang, Zhenglin; Alameh, Kamal; Zheng, Rong
2005-01-01
213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.
NASA Astrophysics Data System (ADS)
Uteza, O.; Tcheremiskine, V.; Clady, R.; Coustillier, G.; Sentis, M.; Spiga, Ph.; Mikheev, L. D.
2005-06-01
Cet article présente la conception d'une chaîne laser femtoseconde TW visible, associant (i) un oscillateur solide Ti:Sa opéré à 950 nm, (ii) un amplificateur optique à dérive de fréquence permettant l'amplification du signal à 950 nm au niveau de plusieurs dizaines de mJ, (iii) un système doubleur pour convertir le signal à 475 nm et l'injecter dans le milieu amplificateur XeF (C-A), (iv) un milieu gazeux excimères XeF (C-A) permettant l'amplification directe du signal à 475 nm à plusieurs centaines de mJ et ainsi l'obtention d'impulsions TW visibles à contraste élevé.
Capacitorless 1T-DRAM on crystallized poly-Si TFT.
Kim, Min Soo; Cho, Won Ju
2011-07-01
The single-transistor dynamic random-access memory (1T-DRAM) using a polycrystalline-silicon thin-film transistor (poly-Si TFT) was investigated. A 100-nm amorphous silicon thin film was deposited onto a 200-nm oxidized silicon wafer via low-pressure chemical vapor deposition (LPCVD), and the amorphous silicon layer was crystallized via eximer laser annealing (ELA) with a KrF source of 248 nm wavelength and 400 mJ/cm2 power. The fabricated capacitor less 1T-DRAM on the poly-Si TFT was evaluated via impact ionization and gate-induced drain leakage (GIDL) current programming. The device showed a clear memory margin between the "1" and "0" states, and as the channel length decreased, a floating body effect which induces a kink effect increases with high mobility. Furthermore, the GIDL current programming showed improved memory properties compared to the impact ionization method. Although the sensing margins and retention times in both program methods are commercially insufficient, it was confirmed the feasibility of the application of 1T-DRAM operation to TFTs.
Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2015-11-01
The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.
Collateral damage-free debridement using 193nm ArF laser
NASA Astrophysics Data System (ADS)
Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.
2011-03-01
Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.
Ristau, Detlev; Günster, Stefan; Bosch, Salvador; Duparré, Angela; Masetti, Enrico; Ferré-Borrull, Josep; Kiriakidis, George; Peiró, Francesca; Quesnel, Etienne; Tikhonravov, Alexander
2002-06-01
Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.
Rate Coefficients for O-Atom Three-Body Recombination in N2 at Temperatures in the Range 170--320 K
NASA Astrophysics Data System (ADS)
Pejakovic, D. A.; Kalogerakis, K. S.; Copeland, R. A.; Huestis, D. L.; Robertson, R. M.; Smith, G. P.
2005-12-01
Three-body recombination of O-atoms, O + O + M → O_2* + M is one of the most important reactions in the upper atmospheres of Earth, Venus, and Mars. It is the only source for O2 nightglow, and the resulting emissions of electronically excited O2 are key tracers for photochemical and wave activity near the mesopause. Thus, knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. However, there exists a large discrepancy in the published estimates for this rate coefficient. For M = N2, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value used in the combustion science community, and 5 × 10-33 cm6s-1, a value adopted in the atmospheric modeling community. We report measurements of the rate coefficient for O-atom recombination with N2 as the third body by two different experimental approaches. In the first experiment, we employ the pulsed output of a F2 laser at 157 nm to achieve high levels of photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the produced O-atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by observing fluorescence at 845 nm, induced by the output of a second laser near 226 nm. In the second experiment, the focused output of a KrF excimer laser at 248 nm is used to achieve complete photodissociation of measured amounts of ozone (0.2--0.9 Torr) in a background of ~500 Torr of N2, producing known initial concentrations of O-atoms. Their population decay is monitored by laser-induced fluorescence excited by the 226 nm radiation from a delayed frequency-doubled OPO system. The reaction cell can be cooled by dry ice or liquid nitrogen baths. The preliminary results of the O2 photolysis experiments give a room-temperature value for the rate coefficient of about 2.8 × 10-33 cm6s-1. The ozone photolysis experiments at 316 K (including effects of laser and kinetic heating of the gas) give a preliminary value of ~2.5 × 10-33 cm6s-1, in a good agreement with the O2 photolysis result. Preliminary results show faster recombination at lower temperatures: k(260 K) ~ 4.5 × 10-33 cm6s-1, and k(170 K) ~ 20 × 10-33 cm6s-1. The temperature dependence of k is in a good agreement with the recommendation of Baulch et al. [1], which has been adopted by the combustion modeling community. The O2 photolysis experiments were supported by the NASA Geospace Sciences Program under grant NAG5-12992. The F2 laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. The ozone photolysis experiments were supported by the NSF Grant ATM-0233523. [1] D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions Vol. 3 (Butterworths, London, 1976).
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
NASA Astrophysics Data System (ADS)
Langford, S. C.; Jensen, L. C.; Dickinson, J. T.; Pederson, L. R.
1990-10-01
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na2Oṡ3SiO2) with 248-nm excimer laser light at fluences on the order of 2 J/cm2 per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na+. Using combinations of E and B fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O-, Si-, NaO-, and perhaps NaSi-. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.
Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring.
Farkas, Balázs; Dante, Silvia; Brandi, Fernando
2017-01-20
Photoinitiator-free fabrication of poly(ethylene glycol) diacrylate (PEGDA) scaffolds is achieved using a novel three-dimensional (3D) printing method called mask projected excimer laser stereolithography (MPExSL). The spatial resolution of photoinitiator-free curing is suitable for 3D layer-by-layer fabrication with a single layer thickness well controllable at tens to hundreds of microns using 248 nm wavelength for the irradiation. The photoinitiator-free scaffolds are superior compared to their counterparts fabricated by using photoinitiator molecules, showing a higher level of biocompatibility. A release of toxic chemicals from the photoinitiator containing scaffolds is proven by cell proliferation tests. In contrast, no toxic release is found from the photoinitiator-free scaffolds, resulting in the very same level of cell proliferation as the control sample. The demonstration of photoinitiator-free PEGDA scaffolds enables the fabrication of 3D scaffolds with the highest level of biocompatibility for both in vitro and in vivo applications.
AlGaAs growth by OMCVD using an excimer laser
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.
1986-01-01
AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2013-10-01
Knowing spatial profiles of electron density (ne) in the underdense coronal region (n
In vitro analysis of laser meniscectomy.
Vangsness, C T; Akl, Y; Nelson, S J; Liaw, L H; Smith, C F; Marshall, G J
1995-01-01
Partial meniscectomies were performed on 32 fresh human meniscal autopsy specimens. The following laser systems were tested: carbon dioxide (CO2), neodymium:yttrium aluminum garnet (Nd:YAG), potassium titanyl phosphate (KTP), holmium:YAG (Ho:YAG), and excimer. Meniscectomies with these lasers were compared with scalpel, mechanical, and electrocautery meniscectomies. Lasers were applied to specimens in and out of normal saline. Routine hematoxylin and eosin and sirius red sections were prepared for each specimen, and the depths of thermal changes were analyzed. Scanning electron microscopy was used to visualize the meniscectomy interface. Among these specimens, the scalpel and mechanical meniscectomies showed the least extension of cellular changes (range, 10-15 nm). The excimer laser caused the least tissue changes of the lasers tested. Tissue changes were less extensive with the pulsed CO2 laser than with the holmium:YAG, neodymium:YAG, and KTP lasers. Scanning electron microscopy showed that use of the scalpel meniscectomy resulted in the smoothest meniscectomy edge, followed by use of the excimer, CO2, holmium:YAG, neodymium:YAG, and KTP lasers. The most surface disruption occurred with electrocautery. Meniscectomies under saline required more energy and took longer in each case, with the holmium:YAG, neodymium:YAG, and CO2 laser cutting the best. Saline meniscectomies showed less thermal change. The CO2 and KTP lasers cut best in air.
Tsuji, Masaharu; Kawahara, Masashi; Noda, Kenji; Senda, Makoto; Sako, Hiroshi; Kamo, Naohiro; Kawahara, Takashi; Kamarudin, Khairul Sozana Nor
2009-03-15
Photochemical removal of NO(2) in N(2) or air (5-20% O(2)) mixtures was studied by using 172-nm Xe(2) excimer lamps to develop a new simple photochemical aftertreatment technique of NO(2) in air at atmospheric pressure without using any catalysts. When a high power lamp (300 mW/cm(2)) was used, the conversion of NO(2) (200-1000 ppm) to N(2) and O(2) in N(2) was >93% after 1 min irradiation, whereas that to N(2)O(5), HNO(3), N(2), and O(2) in air (10% O(2)) was 100% after 5s irradiation in a batch system. In a flow system, about 92% of NO(2) (200 ppm) in N(2) was converted to N(2) and O(2), whereas NO(2) (200-400 ppm) in air (20% O(2)) could be completely converted to N(2)O(5), HNO(3), N(2), and O(2) at a flow rate of 1l/min. It was found that NO could also be decomposed to N(2) and O(2) under 172-nm irradiation, though the removal rate is slower than that of NO(2) by a factor of 3.8. A simple model analysis assuming a consecutive reaction NO(2)-->NO-->N+O indicated that 86% of NO(2) is decomposed directly into N+O(2) and the rest is dissociated into NO+O under 172-nm irradiation. These results led us to conclude that the present technique is a new promising catalyst-free photochemical aftertreatment method of NO(2) in N(2) and air in a flow system.
Excimer laser phototherapy for the dissolution of vascular obstruction
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1984-01-09
Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. 2 figures.
Interaction study of collagen and sericin in blending solution.
Duan, Lian; Yuan, Jingjie; Yang, Xiao; Cheng, Xinjian; Li, Jiao
2016-12-01
The interactions of collagen and sericin were studied by fluorescence spectra, ultraviolet spectra, FTIR spectra and dynamic light scattering. The fluorescence quenching in emission spectra and red-shift (283-330nm) in synchronous fluorescence spectra suggested the Tyr of collagen and sericin overlapped with a distance of 3Å, generating excimer. The overlapped Tyr of collagen and sericin decreased the hydrophobicity of collagen, which resulted in the red-shifts (233-240nm) in ultraviolet spectra. Moreover, the red-shifts of amide bands of collagen in FTIR spectra indicated the hydrogen bonds of collagen were weaken and it could also be explained by the overlapped Tyr. The results of 2D-FTIR spectra demonstrated the backbone of collagen molecule was varied and the most susceptible structure of collagen was the triple helix with the presence of sericin. Based on dynamic light scattering, we conjectured large pure collagen aggregates were replaced by hybrid aggregates of collagen and sericin particles after the addition of sericin. With ascending sericin ratio, the diameters of the hybrid aggregates increased and attained maximum with 60% ratio of sericin, which were on account of the increasing excimer number. The results of DSC demonstrated the presence of sericin enhanced the thermal stability of collagen. Copyright © 2016 Elsevier B.V. All rights reserved.
Modified polyhydroxystyrenes as matrix resins for dissolution inhibition type photoresists
NASA Astrophysics Data System (ADS)
Pawlowski, Georg; Sauer, Thomas P.; Dammel, Ralph R.; Gordon, Douglas J.; Hinsberg, William D.; McKean, Dennis R.; Lindley, Charlet R.; Merrem, Hans-Joachim; Roeschert, Heinz; Vicari, Richard; Willson, C. Grant
1990-06-01
It is generally accepted that the production of shrink versions of the 16 MB DRAM and the 64 MB DRAM generations will be patterned using deep UV radiation. This provides a new challenge to the photoresist suppliers, as the standard photoresist formulations are not suitable for this technology, mainly because the presently used novolak resins are highly opaque in the 200 - 300 nm region. This is especially true for the 248 nm wavelength of KrF eximer lasers. Poly 4- hydroxystyrene [PHS] has several advantages in transmission and thermal stability; however, its dissolution rate in commercial grade developers is unacceptably high. We report some recent results on modified, alkyl-substituted PHS derivatives. These polymers combine reduced alkaline solubiity with adequate optical and thermal properties, making them acceptable for future deep UV based production processes. Selected data of these new (co)polymers are discussed.
Yuan, Bo; Hu, Nan; Sun, Juan; Wang, Shi-An; Li, Fu-Li
2012-12-01
A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K (m) and V (max) values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1(T) displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1(T) was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1(T) = AS 2.4027(T) = CBS 11388(T)) is proposed.
NASA Astrophysics Data System (ADS)
Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.
2004-02-01
In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.
Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation
NASA Astrophysics Data System (ADS)
Bedekar, M. M.; Safari, A.; Wilber, W.
1992-11-01
Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.
Experimental investigation of a pulsed Rb-Ar excimer-pumped alkali laser
NASA Astrophysics Data System (ADS)
Cheng, Hongling; Wang, Zhimin; Zhang, Fengfeng; Wang, Mingqiang; Tian, Zhaoshuo; Peng, Qinjun; Cui, Dafu; Xu, Zuyan
2017-03-01
We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb-Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.
NASA Astrophysics Data System (ADS)
Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander
2002-06-01
Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.
Al-Gharabli, Samer; Engeßer, Patrick; Gera, Diana; Klein, Sandra; Oppenländer, Thomas
2016-02-01
Excilamps are mercury-free gas-discharge sources of non-coherent VUV or UV radiation with high radiant power and a long lifetime. The most efficient excilamp that is currently available on the market is a VUV xenon excilamp system (Xe2(*)-excimer lamp, λ(max) = 172 nm) with a stated radiant efficiency η of 40% at an electrical input power P(el) of 20 W, 50 W or 100 W. In this paper, the use of this highly efficient Xe2(*)-excilamp (P(el) = 20 W) for water treatment is demonstrated using a recirculating laboratory photoreactor system with negative radiation geometry. The efficiency in the 172 nm initiated bleaching of aqueous solutions of Rhodamine B is compared to that initiated by a common low-pressure mercury (LP-Hg) lamp (185 nm, TNN 15/32). The dependence of the pseudo zero order rate constant k´ of decolorization of RhB on the flow rate and on the initial concentration of RhB was investigated. Both lamps exhibited dependences of k´ on the initial concentration of RhB, which represents a typical saturation kinetical behavior. The saturation kinetics was very prominent in the case of the Xe2(*)-excilamp. Also, the Xe2(*)-excilamp treatment exhibited a significant influence on the flow rate of the RhB aqueous solution, which was not the case during the LP-Hg lamp initiated bleaching of RhB. The results of this paper demonstrate that Xe2(*)-excilamps can be used for VUV-initiated water purification. However, to reach the maximum efficacy of the Xe2(*)-excilamp for photo-initiated water purification further engineering optimization of the photoreactor concept is necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobkov, K K; Rybaltovsky, A A; Vel'miskin, V V
2014-12-31
We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicatemore » glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)« less
Progress and process improvements for multiple electron-beam direct write
NASA Astrophysics Data System (ADS)
Servin, Isabelle; Pourteau, Marie-Line; Pradelles, Jonathan; Essomba, Philippe; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco
2017-06-01
Massively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45 nm nodes. For 28 nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45 nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode.
NASA Astrophysics Data System (ADS)
Cacciani, Marco; di Sarra, Alcide; Fiocco, Giorgio; Amoruso, Antonella
1989-06-01
Absolute measurements of the ozone absorption coefficient in the Huggins bands at different temperatures have been carried out. Ozone is produced by an electrical discharge and stored cryogenically; differential absorption measurements are subsequently obtained in a slowly evolving mixture of ozone and molecular oxygen. High resolution (to 0.012 nm) measurements cover a spectral range (339-355 nm) where the ozone absorption shows a strong dependence on temperature. Results at 293 and 220 K are reported; they are particularly interesting in view of the utilization of this spectral region as a low-absorption reference channel for the observation of atmospheric ozone profiles by active probing techniques. Coherent radiation at two wavelengths, around 355 and 353 nm, respectively, can be obtained as third harmonic of the fundamental output of an Nd:YAG laser and by H2 Raman shifting of an XeCl excimer laser output.
NASA Astrophysics Data System (ADS)
Qian, Min; Niu, Yue Ping; Gong, Shang Qing
2018-01-01
Pulsed Nd:YAG (532 nm) and Excimer (248 nm) lasers were employed to produce freestanding, two-dimensional (2D), carbon nanosheets (CNSs) from naphthalene, through laser-induced exfoliation. The polymer-to-carbon transition was investigated in terms of laser wavelengths, fluences, as well as target preparations. Continuous and porous CNSs of several nanometers in thickness and micrometers in size were obtained from 532 and 248 nm pulsed laser exfoliation of spin-coated naphthalene films, respectively. The porous morphology is ascribed to the photon-induced dissociation of chemical bonds dominated in 248 nm laser interaction with ablated naphthalene. With the increase of laser fluences from 1 to 5 J cm-2, amorphous carbon and ultrathin CNS structures were obtained in sequence. This work revealed a general mechanism of producing 2D structured carbon materials from pulsed laser exfoliation.
KrF laser amplifier with phase-conjugate Brillouin retroreflectors.
Gower, M C
1982-09-01
We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.
Hayama, Tadashi; Katoh, Kenji; Aoki, Takayoshi; Itoyama, Miki; Todoroki, Kenichiro; Yoshida, Hideyuki; Yamaguchi, Masatoshi; Nohta, Hitoshi
2012-11-28
A method to measure the concentrations of microcystins (MCs) in water samples has been developed by incorporating pre-column fluorescence derivatization and liquid chromatography (LC). A solid-phase extraction for pretreatment was used to extract the MCs in water samples. The MCs were derivatized with excimer-forming 4-(1-pyrene)butanoic acid hydrazide (PBH). The MCs could then be detected by fluorescence after separation with a pentafluorophenyl (PFP)-modified superficially porous (core shell) particle LC column. The derivatization reactions of MCs with PBH proceeded easily in the presence of 4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium (DMT-MM) as a condensation reagent, and the resulting derivatives could be easily separated on the PFP column. The derivatives were selectively detected at excimer fluorescence wavelengths (440-540 nm). The instrument detection limit and the instrument quantification limit of the MCs standards were 0.4-1.2 μg L(-1) and 1.4-3.9 μg L(-1), respectively. The method was validated at 0.1 and 1.0 μg L(-1) levels in tap and pond water samples, and the recovery of MCs was between 67 and 101% with a relative standard deviation of 11%. The proposed method can be used to quantify trace amounts of MCs in water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huynh, T. T. D.; Semmar, N.
2017-09-01
The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2016-10-01
We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.
NASA Astrophysics Data System (ADS)
Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.
2009-11-01
With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2012-10-01
ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.
Bulk damage and absorption in fused silica due to high-power laser applications
NASA Astrophysics Data System (ADS)
Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.
2015-11-01
Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and consists of three different absorption bands centered at 165 nm (peroxy radicals), 215 nm (E'-center), and 265 nm (non-bridging oxygen hole center (NBOH)), which change the transmission behavior of material.
Characteristics of Laminating Transparent Conductive Films Aimed at Nursing Indium Ingredient
NASA Astrophysics Data System (ADS)
Ikuta, Kimihiro; Aoki, Takanori; Suzuki, Akio; Matsushita, Tatsuhiko; Okuda, Masahiro
By irradiating ArF excimer laser (λ=193 nm) with energies density 0.8 ∼ 1.4 J/cm2 on the targets of ITO and AZO (Al-doped zinc oxide) by turns, the laminated transparent conducting films composed of ITO (50 nm)/AZO (250 nm) with a total films thickness of 300 nm were fabricated at substrate temperature of 220°C. At laser energy density of 1.2 J/cm2, a sheet resistance of 6.12 Ω/_??_ was obtained under conditions of oxygen pressure of 0.5 Pa for ITO. In addition, electrical characteristics of the laminated transparent conducting composed of ITO/AZO was equal to or more than that of ITO (300 nm). As a result, about 80 percent consumption of ITO was reduced at its maximum. After having examined environmental load, the sheet resistance of the laminated ITO/AZO transparent conductive oxide films did not change and therefore, the durability to the environmental conditions was maintained.
A novel multiplex absorption spectrometer for time-resolved studies
NASA Astrophysics Data System (ADS)
Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.
2018-02-01
A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.
308-nm excimer laser ablation of human cartilage
NASA Astrophysics Data System (ADS)
Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.
1993-07-01
The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, S.C.; Jensen, L.C.; Dickinson, J.T.
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods,more » the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, J.H.; Gollamudi, S.; Green, W.R.
1991-08-01
A 193-nm excimer laser system was used to create deep stromal ablations in seven New Zealand white rabbits and shallow ablations in three. Eyes were randomized for treatment with topical mitomycin C, steroids, and erythromycin; topical steroids and erythromycin; or topical erythromycin only. All treatment regimens were instituted twice daily for 14 days. All eyes reepithelialized normally within 3 to 5 days. During 10 weeks of follow-up, all eyes developed moderate reticular subepithelial haze without significant differences among treatment groups. Results of light, fluorescence, and electron microscopic examination showed anterior stromal scarring and markedly reduced new subepithelial collagen formation inmore » the group treated with mitomycin C, corticosteroids, and erythromycin. Focal abnormalities of Descemet's membrane and endothelial abnormalities were present in all treatment groups. Combination therapy with topical steroids, mitomycin C, and erythromycin to control the corneal wound healing response after refractive laser surgery appears promising and warrants further study.« less
Density Measurements in Air by Optically Exciting the Cordes Bands of I2
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Exton, Reginald J.
2000-01-01
We describe an optical method based on laser-induced fluorescence for obtaining instantaneous measurements of density along a line in low-density air seeded with I2. The Cordes bands of I2 (D(sup 1)sigma(sup +, sub u)) left arrow X(sup 1)sigma(sup +, sub g)) are excited with a tunable ArF excimer laser. air densities in the range (0.1-6.5) x 10(exp 17) cm(exp -3) are measured over 295-583 K using the density-dependent emission ratio of two emission bands of I2; the 340 nm bands and the diffuse-structured McLennan bands near 320 nm.
NASA Astrophysics Data System (ADS)
Papazoglou, Theodore G.; Arakawa, Koh; Grundfest, Warren S.; Papaioannou, Thanassis; Fishbein, Michael C.; Litvack, Frank
1990-07-01
The goal ofihis sludy was o develop a reliable laser inducedfluorescence specira analysis system using the 308nm Excimer Laser as an ablaiion andfluorescence inducing source. During our analysis we also aflempled lo determine whether exogenous chloroeiracycline hydrocloride (CTC) increased the discrimination capacity of the LIFS system. We then assessed the ability of CTC to improve the detection of the boundary between atheroma and normal media.
Optical materials for use with excimer lasers
NASA Astrophysics Data System (ADS)
Sedlacek, Jan H. C.; Rothschild, Mordechai
1993-04-01
Synthetic UV-grade fused silica, crystalline fluorides, and dielectric coatings have been evaluated for transparency and durability at 193 nm. Most bulk materials eventually develop color centers, and fused silica also changes its density and index of refraction. However, the rate at which these changes occur and their magnitude vary strongly with material, grade, and other more subtle details. Careful selection and possibly pretesting are recommended, in order to ensure optimal matching between the intended application and the material properties.
Tunable Solid State Lasers Based on Molecular Ions
1992-01-01
02215 July 15, 1988 to September 30, 1991. N’ o ~...... 1 C~~ I -- ,t,’**, "> I : tt : o0.’. * On leave from Institute of Physics, Copernicus ...Physics, N. Copernicus University, ments provided the ratio (Jo- 81)/10, where l0 is the 87-100 Toruo, Poland. probe beam intensity after passing through...luminescence, following t 30 ns long excitation pulse (308 nm On leave from Institute of Physics, N. Copernicus University, line, excimer laser
Electron beam induced light emission
NASA Astrophysics Data System (ADS)
Ulrich, A.; Heindl, T.; Krücken, R.; Morozov, A.; Skrobol, C.; Wieser, J.
2009-08-01
Electron beams with a particle energy of typically 12keV are used for collisional excitation of dense gases. The electrons are sent through ceramic membranes of only 300nm thickness into gas targets. Excimer light emission from the pure rare gases and from gas mixtures are studied for the development of brilliant VUV and UV light sources. The application of the technology for gas kinetic studies is described and its potential for building very small electron beam pumped lasers is discussed.
NASA Astrophysics Data System (ADS)
El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.
2016-05-01
High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.
Excimer laser system Profile-500
NASA Astrophysics Data System (ADS)
Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.
1999-07-01
The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.
NASA Astrophysics Data System (ADS)
Baadj, S.; Harrache, Z.; Belasri, A.
2013-12-01
The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl2 percentage in the Xe/Cl2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.
NASA Technical Reports Server (NTRS)
Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.
1993-01-01
A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.
Plasma mirrors for short pulse KrF lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilicze, Barnabás; Szatmári, Sándor; Barna, Angéla
2016-08-15
It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested.
Pulsed lasers in dentistry: sense or nonsense?
NASA Astrophysics Data System (ADS)
Koort, Hans J.; Frentzen, Matthias
1991-05-01
The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser radiation the Er:YAG-laser radiation could also only be delivered via mirror systems, while the radiation of the Ho:YAG-Laser can be well transmitted through quartz fibers. The energy of the well known and in other medical disciplines often used Nd:YAG - laser (1,064 μm, pulse duration 150 us) laser can be transmitted through fiber systems without problems, but this laser has not the effectivity to work sufficient on healthy hard dental tissues due to the high transmission in mineralized dental tissues. The thermal injuries of this laser type are not tolerable. The short pulsed TEA-C02-laser (9,6 and 10,6 μm, pulse duration 200-300 ns), which has an excellent coupling not only to the hydrogeneous tissues but also to the mineralized tissues could be an alternative system to prepare dental tissues. The greatest disadvantage of this system is the noneffective delivery of the light energy through flexible fiber systems, which are still in development. Another good chance perhaps will have the q-switched Neodym, Erbium and Holmium:- YAG lasers with pulse durations of about some hundred ns. Both, possible thermal influences and possible disruptive effects should be small enough to let the adjacent tissues undamaged.
PRK by Er:YAG laser: in-vitro studies and first in-vivo experiences
NASA Astrophysics Data System (ADS)
Steiner, Rudolf W.; Leiacker, Richard; Russ, Detlef; Seiler, Theo
1996-01-01
Photorefractive keratectomy (PRK) is usually performed by an excimer laser at 193 nm wavelength. Ablatio of corneal tissue is, however, not only possible in the UV region of the optical spectrum but also in the IR where water is an excellent absorber. Therefore, an Er:YAG laser was used at 2.94 micrometer wavelength as an alternative laser light source to perform in vitro studies of corneal ablation and also first clinical experiments to correct myopia of patients with blind eyes.
Development of Mask Materials for EUVL
NASA Astrophysics Data System (ADS)
Heckle, Christine; Hrdina, Kenneth E.; Ackerman, Bradford G.; Navan, David W.
2002-12-01
Though the Semiconductor market is soft, the technology that drives it continues to march on. Corning has supplied the semiconductor market through two generations of lithography with KrF and ArF grade HPFS Glass; the established excellence will continue with the supply of CaF2 for 157nm and ULE Glass for 13nm. ULE Glass is a low expansion silicate glass that has historically been used for ground and spaced based telescope mirrors such as Gemini and Hubble. Industry experts have now identified ULE Glass as a material of choice for EUVL applications; but with new opportunities come new hurdles, and ULE Glass will need to be improved in order to meet the challenges of EUVL. The purpose of this presentation is to give the audience a general update of Corning's ULE Glass improvement effort for EUVL, with focus on EUV photomask requirements; it will include an overview of key ULE Glass properties, improvements that have been made, and a road map of work to be done.
Pulsed Laser Deposition of High Temperature Protonic Films
NASA Technical Reports Server (NTRS)
Dynys, Fred W.; Berger, M. H.; Sayir, Ali
2006-01-01
Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied
Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS
NASA Technical Reports Server (NTRS)
Dynys, F. W.; Sayir, A.
2006-01-01
Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.
Excimer laser calibration system.
Gottsch, J D; Rencs, E V; Cambier, J L; Hall, D; Azar, D T; Stark, W J
1996-01-01
Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation profiles. The calibration system correctly predicted central islands after excimer photoablation in a treated monkey cornea and in two treated human subjects. Detection of excimer-laser-beam ablation profiles may be useful for precise calibration of excimer lasers before human photorefractive and therapeutic surgery.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.
1976-01-01
A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.
Characterization of 193-nm resists for optical mask manufacturing
NASA Astrophysics Data System (ADS)
Fosshaug, Hans; Paulsson, Adisa; Berzinsh, Uldis; Magnusson, Helena
2004-12-01
The push for smaller linewidths and tighter critical dimension (CD) budgets forced manufacturers of optical pattern generators to move from traditional i-line to deep ultraviolet (DUV) resist processing. Entering the DUV area was not without pain. The process conditions, especially exposure times of a few hours, put very tough demands on the resist material itself. However, today 248nm laser writers are fully operating using a resist process that exhibits the requested resolution, CD uniformity and environmental stability. The continuous demands of CD performance made Micronic to investigate suitable resist candidate materials for the next generation optical writer using 193nm excimer laser exposure. This paper reports on resist benchmarking of one commercial as well as several newly developed resists. The resists were investigated using a wafer scanner. The data obtained illustrate the current performance of 193nm photoresists, and further demonstrate that despite good progress in resist formulation optimization, the status is still a bit from the required lithographic performance.
Bandgap engineering of InGaAsP/InP laser structure by photo-absorption-induced point defects
NASA Astrophysics Data System (ADS)
Kaleem, Mohammad; Nazir, Sajid; Saqib, Nazar Abbas
2016-03-01
Integration of photonic components on the same photonic wafer permits future optical communication systems to be dense and advanced performance. This enables very fast information handling between photonic active components interconnected through passive optical low loss channels. We demonstrate the UV-Laser based Quantum Well Intermixing (QWI) procedure to engineer the band-gap of compressively strained InGaAsP/InP Quantum Well (QW) laser material. We achieved around 135nm of blue-shift by simply applying excimer laser (λ= 248nm). The under observation laser processed material also exhibits higher photoluminescence (PL) intensity. Encouraging experimental results indicate that this simple technique has the potential to produce photonic integrated devices and circuits.
Light-scattering measurements of optical thin-film components at 157 and 193 nm
NASA Astrophysics Data System (ADS)
Gliech, Stefan; Steinert, Jorg; Duparre, Angela
2002-06-01
An instrument for total backscattering and forward-scattering measurements of optical coating components at 157 and 193 nm is described. The system is operated in both vacuum and nitrogen purge gas. An excimer laser as well as a deuterium lamp can be used as a radiation source. Suppression of the background signal level to 1 part in 106 permits measurements even of low-scatter samples such as superpolished substrates and antireflection coatings. Results of investigations of antireflective and highly reflective multilayers and CaF2 substrates reveal scattering from surface and interface roughness as well as from the volume of the substrate material. First steps to extend the instrument for angle-resolved scatter, transmittance, and reflectance measurements are described.
Pulse Width Dependence Of Pigment Cell Damage At 694 nm In Guinea Pig Skin
NASA Astrophysics Data System (ADS)
Dover, Jeffrey S.; Polla, Luigi L.; Margolis, Randall J.; Whitaker, Diana; Watanabe, Schinichi; Murphy, George F.; Parrish, John A.; Anderson, R. R.
1987-03-01
351 nm, 20-nsec XeF excimer laser irradiation has previously been shown to selectively target and damage melanosomes in human skin. In the following studies selective targeting with melanosomal photodisruption has been demonstrated in pigmented guinea pig skin with a Q-switched 40-nsec ruby laser, and a 750-nsec pulsed dye laser but not with a 400-usec pulsed dye laser. The pulse width dependence of melanosomal disruption, occurring only at pulsewidths shorter than the thermal relaxation time of the melanosome (0.5 - 1.0 usec), is in accordance with the theory of selective photothermolysis. Possible mechanisms of melanosomal photodisruption include development of sudden thermal gradients leading to cavitation or shock wave production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baadj, S.; Harrache, Z., E-mail: zharrache@yahoo.com; Belasri, A.
2013-12-15
The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionicmore » processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.« less
1987-06-22
with another difficult issue. KRF has invested considerable prestige in the discussion of the artificial insemination law. KRF is putting pressure on...immediately halt the widespread use of artificial fertilizer, which was seen as one of the main causes of groundwater pollution. This struck at the...the same side. 45 Insemination and Taxes In addition there were the many disagreements in last fall’s budget debate. The three must also deal
Matchette, L S; Grossman, L W; Hahn, D W; Cooney, C
1996-03-01
We compared the DNA damage produced by radiation from two UV laser wavelengths, 213 nm and 193 nm, with that produced by noncoherent 254 nm radiation. Following irradiation of Escherichia coli BR339, a bacteriophage lambda lysogen containing the lacZ gene, pro-phage induction was measured by assaying for beta-galactosidase. Because of the limited penetration by UV laser wavelengths an agar overlay of the lysogen was used as the irradiation target. Irradiation of 254 nm was performed in buffer suspension followed by transfer of 5 microL spots onto assay plants. Computer image analysis was used to monitor the rate of product formation, observed as an increase in optical density of the irradiated zones on assay plates. We found that the rate of product formation was a more reproducible unit of comparison than the optical density present at the end of the reaction. Although the rate of product formation was not linearly related to enzyme concentration, the data could be fit to a simple logarithmic function. Using this method, we concluded that the DNA damaging ability of 213 nm radiation was 10 times more efficient than 193 nm radiation and about 100 times less efficient than 254 nm noncoherent radiation.
NASA Astrophysics Data System (ADS)
Khan, T. M.; Pokle, A.; Lunney, J. G.
2018-04-01
Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.
Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less
NASA Astrophysics Data System (ADS)
Stepak, Bogusz D.; Antończak, Arkadiusz J.; Szustakiewicz, Konrad; Pezowicz, Celina; Abramski, Krzysztof M.
2016-03-01
The main advantage of laser processing is a non-contact character of material removal and high precision attainable thanks to low laser beam dimensions. This technique enables forming a complex, submillimeter geometrical shapes such as vascular stents which cannot be manufactured using traditional techniques e.g. injection moulding or mechanical treatment. In the domain of nanosecond laser sources, an ArF excimer laser appears as a good candidate for laser micromachining of bioresorbable polymers such as poly(L-lactide). Due to long pulse duration, however, there is a risk of heat diffusion and accumulation in the material. In addition, due to short wavelength (193 nm) photochemical process can modify the chemical composition of ablated surfaces. The motivation for this research was to evaluate the influence of laser micromachining on physicochemical properties of poly(L-lactide). We performed calorimetric analysis of laser machined samples by using differential scanning calorimetry (DSC). It allowed us to find the optimal process parameters for heat affected zone (HAZ) reduction. The chemical composition of the ablated surface was investigated by FTIR in attenuated total reflectance (ATR) mode.
Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.
Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher
2017-09-26
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.
The Nike KrF laser facility: Performance and initial target experiments
NASA Astrophysics Data System (ADS)
Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.
1996-05-01
Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.
Combination treatment with excimer laser and narrowband UVB light in vitiligo patients.
Shin, Sungsik; Hann, Seung-Kyung; Oh, Sang Ho
2016-01-01
For the treatment of vitiligo, narrowband UVB (NBUVB) light is considered the most effective for nonsegmental vitiligo, while excimer laser treatment is commonly used for localized vitiligo. However, treatment areas may potentially be missed with excimer laser treatment. We aimed to evaluate the effect of combinational treatment with NBUVB light and excimer laser on vitiligo. All patients were first treated with NBUVB; excimer laser was then applied in conjunction with NBUVB phototherapy due to a slow response or no further improvement with continuous NBUVB treatment alone. To minimize adverse effects, a fixed dose of NBUVB was administered, and the dose of excimer laser was increased based on patient response. Among 80 patients, 54 patients showed responses after combination with excimer laser; however, 26 patients (32.5%) showed no remarkable change after combination therapy. Of the 26 patients who showed no further response, 12 patients (46.1%) presented with vitiligo on the acral areas, which are known to the least responsive sites. Our study suggests that combined treatment of NBUVB and excimer laser in vitiligo may enhance the treatment response without remarkable side effects, therefore might also increase the compliance of the patients to the treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank
2016-07-27
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
Design and performance of a production-worthy excimer-laser-based stepper
NASA Astrophysics Data System (ADS)
Unger, Robert; Sparkes, Christopher; Disessa, Peter A.; Elliott, David J.
1992-06-01
Excimer-laser-based steppers have matured to a production-worthy state. Widefield high-NA lenses have been developed and characterized for imaging down to 0.35 micron and below. Excimer lasers have attained practical levels of performance capability and stability, reliability, safety, and operating cost. Excimer stepper system integration and control issues such as focus, exposure, and overlay stability have been addressed. Enabling support technologies -- resist systems, resist processing, metrology and conventional mask making -- continue to progress and are becoming available. This paper discusses specific excimer stepper design challenges, and presents characterization data from several field installations of XLSTM deep-UV steppers configured with an advanced lens design.
Studies in fiber guided excimer laser surgery for cutting and drilling bone and meniscus.
Dressel, M; Jahn, R; Neu, W; Jungbluth, K H
1991-01-01
Our experiments on transmitting high-power excimer laser pulses through optical fibers and our investigations on excimer laser ablation of hard tissue show the feasibility of using the excimer laser as an additional instrument in general and accident surgery involving minimal invasive surgery. By combining XeCl-excimer lasers and tapered fused silica fibers we obtained output fluences up to 32 J/cm2 and ablation rates of 3 microns/pulse of hard tissue. This enables us to cut bone and cartilage in a period of time which is suitable for clinical operations. Various experiments were carried out on cadavers in order to optimize the parameters of the excimer laser and fibers: e.g., wavelength, pulse duration, energy, repetition rate, fiber core diameter. The surfaces of the cut tissue are comparable to cuts with conventional instruments. No carbonisation was observed. The temperature increase is below 40 degrees C in the tissue surrounding the laser spot. The healing rate of an excimer laser cut is not slower than mechanical treatments; the quality is comparable.
Mini-excimer laser corneal reshaping using a scanning device
NASA Astrophysics Data System (ADS)
Lin, Jui T.
1994-07-01
In this paper we present an update on the Mini-Excimer photorefractive keratectomy (PRK) laser system with an emphasis on the scanning device. We also compare the systems of various manufacturers. This paper also presents PMMA ablation profiles and clinical results from China with over 100 cases of myopic corrections ranging from -2.5 D to -12 D. In contrast to the old technology which uses industrial-type high-power excimer lasers, the advanced Mini-Excimer system uses the most recent technology involving a compact, high repetition-rate excimer laser operated at a much smaller beam spot size of (0.8 - 1.2) mm in a scanning mode which requires a beam energy per pulse of only (0.9 - 1.2) mJ on the corneal surface to achieve the same range of fluence (or energy density) (160 - 200) mJ/cm2 as that of the high-power excimer lasers.
1975-08-01
and sample cylinder were repeatedly allowed to outgas at room temperature (under vacuum but valved off) and then cooled with liquid N_ snd pumped...i i I i | I I I I i I i i i | I I i i i i i l i | I l I I I 320 330 340 350 360 E7470 WAVELENGTH (nm) 2 2 Fig. 9 Densitometer Trace of XeF...2, Xs are within 10%. eFor Arl, Nel, NeBr, NeCl, and the helium halides the inert-gas ionization potential is so large that the Coulomb curve does
A fluorescence study of liposomes entrapped in sol-gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, S.A.; Singh, S.; Sasaki, D.Y.
1997-12-31
Liposomes of phosphatidylcholine lipids were successfully entrapped in silicates using the sol-gel method with complete retention of the molecular aggregates over long periods in aqueous solution. Fluorescent studies of the small unilamellar vesicles of 5% pyrene labeled lipid PSIDA with DSPC remobilized in the gel found significant lipid reorganization upon aging in aqueous solutions. Monitoring of pyrene excimer (470 nm) to monomer (375 nm) ratios in the bilayer reveals that the silicate matrix tends to disperse PSIDA lipid aggregates from that observed in free solution. On an interesting note, the liposomes in the gel at pH 7.5. The PSIDA/DSPC liposomes,more » sensitive to heavy metal ions in free solution, maintain similar sensitivity in the gel yet the sensor material can not be recycled.« less
Surface plasmon resonance sensing in gaseous media with optical fiber gratings.
González-Vila, Álvaro; Ioannou, Andreas; Loyez, Médéric; Debliquy, Marc; Lahem, Driss; Caucheteur, Christophe
2018-05-15
Surface plasmon resonance excitation with optical fiber gratings has been typically studied in aqueous solutions. This work describes the procedure to excite a plasmon wave in gaseous media and perform refractive index measurements in these environments. Grating photo-inscription with 193 nm excimer laser radiation allows us to obtain slightly tilted fiber Bragg gratings exhibiting a cladding mode resonance comb along several hundreds of nanometers. Their refractive index sensitive range extends from gases to liquids, so operation in both media is compared. We demonstrate that the thickness of the metal coating required for surface plasmon excitation in gases is roughly one third of the one usually used for liquids. The developed platforms exhibit a temperature insensitive response of 78 nm/RIU when tested with different gases.
High-pressure copolymerization of C 2H 4 and CO
NASA Astrophysics Data System (ADS)
Buback, M.; Tups, H.
1986-05-01
Kinetics of the free radical high-pressure copolymerization of ethylene and carbon monoxide using thermal, chemical, and laser-photochemical initiation have been investigated via quantitative infrared and near infrared spectroscopy up to 2300 bar and 513 K. The slow thermal copolymerization is influenced by the formation of metal carbonyls inside the stainless steel cell. With chemical initiation, using 120 ppm oxygen, ethylene and CO polymerize to polyketone without any indication of additional products. The photo-copolymerization induced by an exciplex laser working on the KrF line at 248 nm, has been studied between 486 K and 513 K up to 2300 bar and for CO mole fractions up to 3 percent. Overall quantum yields of about 2000 copolymerizing molecules per one absorbed laser photon are observed.
NASA Astrophysics Data System (ADS)
Anidjar, Maurice; Cussenot, Oliver; Avrillier, Sigrid; Ettori, Dominique; Teillac, Pierre; Le Duc, Alain
1996-04-01
We have designed a program using laser induced autofluorescence spectroscopy as a possible way to characterize urothelial tumors of the bladder. The autofluorescence spectra were compared between normal, suspicious and tumor areas of human bladder. Three different pulsed laser wavelengths were used for excitation: 308 nm (excimer), 337 nm (nitrogen) and 480 nm (dye laser). Excitation light was delivered by a specially devised multifiber catheter introduced through the working channel of a regular cystoscope under saline irrigation. The fluorescence light was focused into an optical multichannel analyzer detection system. The data was evaluated in 25 patients immediately before resection of a bladder tumor. Spectroscopic results were compared with histopathology. Upon 337 nm and 480 nm excitations, the overall intensity of the fluorescence spectra from bladder tumors was clearly reduced in comparison with normal urothelium, regardless of the stage and the grade of the tumor. upon 308 nm excitation, the shape of tumor fluorescence spectra, including carcinoma in situ, differed drastically from that of normal tissue. In this case, no absolute intensity measurements are needed and clear diagnosis can be achieved from fluorescence intensity ratio (360/440 nm). This spectroscopic study could be particularly useful for the design of a simplified autofluorescence imaging device for real-time routine detection of occult urothelial neoplastic lesions.
Laboratory Investigation of Relaxation Pathways for Vibrationally Excited OH
NASA Astrophysics Data System (ADS)
Kalogerakis, K. S.; Thiebaud, J.; Matsiev, D.; Copeland, R. A.
2012-04-01
The hydroxyl radical is a key species in the energy budget of the terrestrial atmospheres. In the Earth's upper atmosphere, vibrationally excited OH radicals (v ≤ 9) are formed by the H + O3 reaction. The non-thermal vibrational energy is either emitted as an infrared (IR) or visible photon, or converted into translational and internal energy via collisions with ambient gases. OH emission was recently reported for the first time in the nightglow of Venus [1]. Model calculations of the Mars airglow have also shown that the predicted intensity of the OH emission is extremely sensitive to the pathway of vibrational relaxation [2]. Accurate rate constant and mechanistic pathway information for the deactivation of the OH(v) states is essential in the modeling of both the atmospheric OH emission and the heating efficiency of the H + O3 reaction, as exemplified in our studies of vibrational relaxation for OH(v = 7, 9) by O, O2, N2, and CO2 [3,4]. We have initiated a research program to investigate the key pathways involved in OH(v) vibrational relaxation and their dependence on the collider species and temperature. In the laboratory experiments, we probe the fraction of collisions that lead to single-quantum relaxation of OH(v = 8) to OH(v = 7) for different atmospheric colliders. We developed a three-laser approach using the following steps: (1) generation of OH(v ≤ 4) by the O(1D) + H2 reaction following ozone photolysis at 248 nm by an KrF excimer laser in a mixture containing nitrogen and hydrogen; (2) infrared overtone excitation of the OH(v = 4) radicals to v = 7 at 938 nm using a pulsed optical parametric oscillator system triggered when the v = 4 population is near maximum and; (3) detection of the OH(v = 7) population by laser-induced fluorescence using the B - X (0,7) band at 213 nm with a pulsed tunable dye laser timed in order to scan the delay with respect to the IR pump laser. We will present the experimental methodology and measurements on the relaxation of OH(v = 8) to OH(v = 7) by O atoms and CO2. Our measurements to date indicate that different collider gases favor distinct relaxation pathways: the single-quantum cascade branching ratio for collisions with CO2 is approximately 3 times larger than that for collisions with O atoms. We will also discuss the atmospheric implications of our results based on the most current modeling calculations. Research supported by NASA Geospace Science grants NNX08AM47G and NNX12AD09G. [1] Piccioni, G. et al., Astron. Astrophys. 483, L29-L33 (2008). [2] García Muñoz, A. et al., Icarus 176, 75-95 (2005). [3] Thiebaud, J., Kalogerakis, K.S., and Copeland, R.A., Fall AGU Meeting, Abstract SA43A-1752 (2010). [4] Kalogerakis, K.S., G.P. Smith, and R.A. Copeland, J. Geophys. Res. 116, D20307, 2011JD015734 (2011).
Progress in the Science and Technology of Direct Drive Laser Fusion with the KrF Laser
2010-12-01
important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Indirect Drive (initial path for NIF ) Laser Beams x-rays Hohlraum...Pellet Direct Drive (IFE) Laser Beams Pellet .. • ID Ignition being explored on NIF • Providing high enough gain for pure fusion energy is...challenging. • DD Ignition physics can be explored on NIF . • More efficient use of laser light, and greater flexibility in applying drive provides potential for
2007-08-01
5] Our experiments on the 3 kJ Nike KrF laser at NRL [6] seek detailed understanding of laser plasma interactions and the physical processes...Research Laboratory (NRL). It has been first used in our ICF-related hydrodynamic experiments on the NRL’s Nike KrF laser [17], and later implemented...as implemented on Nike . In Section 3 we present some results of our hydrodynamic experiments, which have been made possible by this diagnostics. In
2007-06-01
the Naval Research Laboratory used to advance the technology towards a KrF laser driver for inertial fusion energy [1-7]. Electra consists of two e...krypton fluoride lasers for fusion energy ," Proc. IEEE, vol. 92, pp. 1043-1056, July 2004. [2] M. C. Myers, J. D. Sethian, J. L. Giuliani, R. Lehmberg...KrF lasers for inertial fusion energy ," Nucl. Fusion, vol. 44, pp. S247-S253, Nov. 2004. [3] J. D. Sethian, M. Friedman, R. H. Lehmberg, M. Myers
Electra: Repetitively Pulsed 700 J, 100 ns Electron Beam Pumped KrF Laser
2006-05-01
the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable...and S. Searles, "Electron beam pumped krypton fluoride lasers for fusion energy ," Proc. IEEE, vol. 92, pp. 1043-1056, July 2004. [2] M.C. Myers, J.D...34Repetitively pulsed, high energy KrF lasers for inertial fusion energy ," Nucl. Fusion, vol. 44, pp. S247-S253, November 2004. [3] J.D. Sethian, M
Thermal Loading of Thin Metal Foils Used as Electron Beam Windows for a KRF Laser
2005-06-01
the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. One of the challenging laser components is the pressure foil that...R. Welch, D. V. Rose, and S. Searles, "Electron beam pumped krypton fluoride lasers for fusion energy ," Proc. IEEE, vol. 92, pp. 1043-1056, July...D. Weidenheimer, and D. V. Rose, "Repetitively pulsed, high energy KrF lasers for inertial fusion energy ," Nucl. Fusion, vol. 44, pp. S247-S253
Green binary and phase shifting mask
NASA Astrophysics Data System (ADS)
Shy, S. L.; Hong, Chao-Sin; Wu, Cheng-San; Chen, S. J.; Wu, Hung-Yu; Ting, Yung-Chiang
2009-12-01
SixNy/Ni thin film green mask blanks were developed , and are now going to be used to replace general chromium film used for binary mask as well as to replace molydium silicide embedded material for AttPSM for I-line (365 nm), KrF (248 nm), ArF (193 nm) and Contact/Proximity lithography. A bilayer structure of a 1 nm thick opaque, conductive nickel layer and a SixNy layer is proposed for binary and phase-shifting mask. With the good controlling of plasma CVD of SixNy under silane (50 sccm), ammonia (5 sccm) and nitrogen (100 sccm), the pressure is 250 mTorr. and RF frequency 13.56 MHz and power 50 W. SixNy has enough deposition latitude to meet the requirements as an embedded layer for required phase shift 180 degree, and the T% in 193, 248 and 365 nm can be adjusted between 2% to 20% for binary and phase shifting mask usage. Ni can be deposited by E-gun, its sheet resistance Rs is less than 1.435 kΩ/square. Jeol e-beam system and I-line stepper are used to evaluate these thin film green mask blanks, feature size less than 200 nm half pitch pattern and 0.558 μm pitch contact hole can be printed. Transmission spectrums of various thickness of SixNy film are inspected by using UV spectrometer and FTIR. Optical constants of the SixNy film are measured by n & k meter and surface roughness is inspected by using Atomic Force Microscope (AFM).
Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N
2015-01-01
We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.
Advanced Raman water vapor lidar
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.
1992-01-01
Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for measurements below about 4.0 km, while the 95 percent detector provides the information above this level.
Measurements of Laser Imprint with High-Z Coated targets on Omega EP
NASA Astrophysics Data System (ADS)
Karasik, Max; Oh, J.; Stoeckl, C.; Aglitskiy, Y.; Schmitt, A. J.; Bates, J. W.; Obenschain, S. P.
2015-11-01
Previous experiments on Nike KrF laser (λ = 248nm) at NRL found that a thin (400-800 Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint and reducing ablative Richtmyer-Meshkov growth. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and driving the target at higher mass ablation rate. Implementation of this technique on the frequency-tripled Nd:glass (351 nm) NIF would enable a wider range direct drive experiments there. To this end, we are carrying out experiments using the NIF-like beams of Omega EP. Analogous to experiments on Nike, areal mass perturbations due to RT-amplified laser imprint are measured using curved crystal imaging coupled to a streak camera. High-Z coating dynamics and target trajectory are imaged side-on. First results indicate that imprint suppression is observed, albeit with thicker coatings. Work supported by the Department of Energy/NNSA.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.
1977-01-01
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.
Endothermic singlet fission is hindered by excimer formation
NASA Astrophysics Data System (ADS)
Dover, Cameron B.; Gallaher, Joseph K.; Frazer, Laszlo; Tapping, Patrick C.; Petty, Anthony J.; Crossley, Maxwell J.; Anthony, John E.; Kee, Tak W.; Schmidt, Timothy W.
2018-03-01
Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.
Endothermic singlet fission is hindered by excimer formation.
Dover, Cameron B; Gallaher, Joseph K; Frazer, Laszlo; Tapping, Patrick C; Petty, Anthony J; Crossley, Maxwell J; Anthony, John E; Kee, Tak W; Schmidt, Timothy W
2018-03-01
Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.
Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.
2009-11-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.
NASA Astrophysics Data System (ADS)
Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.
2011-02-01
Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.
NASA Astrophysics Data System (ADS)
Galy, Jean; Matar, Samir F.
2017-02-01
The stereochemistry of ns2np4 (n = 4, 5) lone pair LP characterizing noble gas Kr and Xe (labeled M*) in M*F2 difluorides is examined within coherent crystal chemistry and ab initio visualizations. M*2+ in such oxidation state brings three lone pairs (E) and difluorides are formulated M*F2E3. The analyses use electron localization function (ELF) obtained within density functional theory calculations showing the development of the LP triplets whirling {E3} quantified in the relevant chemical systems. Detailed ELF data analyses allowed showing that in α KrF2E3 and isostructural XeF2E3 difluorides the three E electronic clouds merge or hybridize into a torus and adopt a perfect gyration circle with an elliptical section, while in β KrF2 the network architecture deforms the whole torus into an ellipsoid shape. Original precise metrics are provided for the torus in the different compounds under study. In KrF2 the geometric changes upon β → α phase transition is schematized and mechanisms for the transformation with temperature or pressure are proposed. The results are further highlighted by electronic band structure calculations which show similar features of equal band gaps of 3 eV in both α and β KrF2 and a reorganization of frontier orbitals due to the different orientations of the F-Kr-F linear molecule in the two tetragonal structures.
NASA Technical Reports Server (NTRS)
Zhao, Z.; Stickel, R. E.; Wine, P. H.
1995-01-01
Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.
NASA Astrophysics Data System (ADS)
Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam
2015-09-01
The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
Excimer laser induced surface chemical modification of polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Révész, K.; Hopp, B.; Bor, Z.
1997-02-01
Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.
Irradiation planning for automated treatment of psoriasis with a high-power excimer laser
NASA Astrophysics Data System (ADS)
Klämpfl, Florian; Schmidt, Michael; Hagenah, Hinnerk; Görtler, Andreas; Wolfsgruber, Frank; Lampalzer, Ralf; Kaudewitz, Peter
2006-02-01
American and European statistics have shown that 1-2 per cent of the human population is affected by the skin disease psoriasis. Recent research reports promising treatment results when irradiating skin areas affected by psoriasis with high powered excimer lasers with a wavelength of 308 nm. In order to apply the necessary high energy dose without hurting healthy parts of the skin new approaches regarding the system technology must be considered. The aim of the current research project is the development of a sensor-based, automated laser treatment system for psoriasis. In this paper we present the algorithms used to cope with the diffculties of irradiating irregularly shaped areas on curved surfaces with a predefined energy level using a pulsed laser. Patients prefer the treatment to take as little time as possible. This also helps to reduce costs. Thus the distribution of laser pulses on the surface to achieve the given energy level on every point of the surface has to be calculated within a limited time frame. The remainder of the paper will describe in detail an efficient method to plan and optimize the laser pulse distribution. Towards the end, some first results will be presented.
Lasers for the treatment of psoriasis
NASA Astrophysics Data System (ADS)
Piruzian, A.; Korsunskaya, I.; Goldenkova, I.; Hertsen, A.; Sarkisova, M.; Egorenkova, L.
2005-08-01
Psoriasis is a chronic, genetically-determined disease, characterized by an immuno-mediated pathogenesis. Treatment of psoriasis is often complicated and remains a challenge. Along with the many new immunomodulatory approaches, various laser systems have been employed for chronic plaque psoriasis treatment. Recently, it has been demonstrated that the light produced by xenon-chloride excimers (generated by sophisticated devices with peak emission of 308 nm) is effective in the treatment of several psoriasis forms. We treated patients, ranging in age from 35 to 55 years, affected by plaque-type psoriasis vulgaris with monochromatic excimer light (MEL). We used MEL in a complex with basic treatment. Therapy was administered three times a week. At the end of the 3th week of treatment all patients showed an improvement, as evidenced by flattening of plaques, decreased scaling and erythema, and decreased vesicle and pustule formation. Unwanted side effects such as pain, blistering was not observed. Minimal erythema and a hyperpigmentation were noted in some patients. It was concluded that the MEL therapy may be a valuable option for treatment of plaque-type psoriasis vulgaris in shorter time compare with traditional NB UVB, with exposure to lower cumulative doses
Neutron detection by scintillation of noble-gas excimers
NASA Astrophysics Data System (ADS)
McComb, Jacob Collin
Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer scintillation yields from the 10B( n, alpha)7Li reaction are comparable to the yields of many liquid and solid neutron scintillators. Additionally, the observed slow triplet-state decay of neutron-capture-induced excimers may be used in a practical detector to discriminate neutron interactions from gamma-ray interactions. The results of these measurements and simulations will contribute to the development and optimization of a deployable neutron detector based on noble-gas excimer scintillation.
2009-05-01
transport, and thermonuclear burn. Using FAST, three classes of shock-ignited targets were designed that achieve one-dimensional fusion - energy gains in the...MJ) G a in Figure 1: Results of one-dimensional simulations showing the fusion energy gain as a function of KrF laser energy for three classes of...rises smoothly (according to a double power (a) Spike width: 160 ps (b) Spike power: 1530 TW Figure 4: Examples of fusion - energy gain contours for a shock
NASA Astrophysics Data System (ADS)
Komatsu, Shojiro; Kazami, Daisuke; Tanaka, Hironori; Shimizu, Yoshiki; Moriyoshi, Yusuke; Shiratani, Masaharu; Okada, Katsuyuki
2006-04-01
Boron nitride fibers were found to grow on polycrystalline nickel and Si (100) substrates by plasma-assisted laser chemical vapor deposition from B2H6+NH3 using an excimer laser at 193nm. Their diameter was typically a few hundreds of nanometers, while the length was a few tens of micrometers. They were stoichiometric or boron-rich BN in chemical composition. When the substrate was rotated during deposition, spiral fibers were found to grow. We conclude that they grew with the help of laser light by other than the vapor - liquid - solid mechanism.
Excimer laser phototherapy for the dissolution of abnormal growth
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1985-02-19
Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. The glass member may include a laser beam concentrator provided by a lens or cone at the tissue-treatment end to increase the beam energy per unit area and reduce the treatment area. 6 figs.
Excimer laser phototherapy for the dissolution of abnormal growth
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1987-01-01
Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290-400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. The glass member may include a laser beam concentrator provided by a lens or cone at the tissue-treatment end to increase the beam energy per unit area and reduce the treatment area.
A pyrene-based fluorescent sensor for Zn2+ ions: a molecular 'butterfly'.
Manandhar, Erendra; Broome, J Hugh; Myrick, Jalin; Lagrone, Whitney; Cragg, Peter J; Wallace, Karl J
2011-08-21
A simple pyrene-based triazole receptor has been synthesised and shown to self-assemble in the presence of ZnCl(2) in an exclusively 2:1 ratio, whereas a mixture of 2:1 and 1:1 ratios are observed for other Zn(2+) salts. The pyrene units are syn in orientation; this is supported by a strong excimer signal observed at 410 nm in the presence of ZnCl(2) in acetonitrile. DFT calculations and 2D NMR support the proposed structure. This journal is © The Royal Society of Chemistry 2011
Laser synthesis and spectroscopy of acetonitrile/silver nanoparticles
NASA Astrophysics Data System (ADS)
Akin, S. T.; Liu, X.; Duncan, M. A.
2015-11-01
Silver nanoparticles with acetonitrile ligands are produced in a laser ablation flow reactor. Excimer laser ablation produces gas phase metal clusters which are thermalized with helium or argon collisions in the flowtube, and reactions with acetonitrile vapor coordinate this ligand to the particle surface. The gaseous mixture is captured in a cryogenic trap; warming produces a solution of excess ligand and coated particles. TEM images reveal particle sizes of 10-30 nm diameter. UV-vis absorption and fluorescence spectra are compared to those of standard silver nanoparticles with surfactant coatings. Deep-UV ligand absorption is strongly enhanced by nanoparticle adsorption.
Does imiquimod pretreatment optimize 308-nm excimer laser (UVB) therapy in psoriasis patients?
Tacastacas, Joselin D; Oyetakin-White, Patricia; Soler, David C; Young, Andrew; Groft, Sarah; Honda, Kord; Cooper, Kevin D; McCormick, Thomas S
2017-07-01
Psoriasis continues to be a debilitating skin disease affecting 1-3% of the United States population. Although the effectiveness of several current biologic therapies have described this pathology as a IL-23, TNF-a and Th17-mediated disease, less invasive approaches are still in use and in need of refinement. One of these is the usage of narrow band-UVB (NB-UVB) therapy to deplete specifically intra-epidermal CD3+, CD4+ and CD8+ cells to clear psoriatic plaques. In order to improve NB-UVB therapy, we sought to determine whether skin pre-treatment with the TLR7 agonist imiquimod (IMQ) would help increase the efficiency of the former at resolving psoriatic plaques. Eucerin ® Original Moisturizing Lotion (topical vehicle) or Aldara ® (imiquimod 5% topical cream) were applied for 5 days once daily to a maximum contiguous area of 25 cm 2 (5 cm × 5 cm area). Patients were provided with sachets containing 12.5 mg of imiquimod each and were instructed to apply imiquimod (I) to two psoriasis plaques (5 sachets of imiquimod allotted to each plaque). A PHAROS excimer Laser EX-308 (Ra Medical Systems, Inc. Carlsbad, CA, USA) with an output of monochromatic 308-nm light and pulse width of 20-50 ns was used for all patients. Punch biopsies of psoriatic lesions (6 mm) were taken at 4 and 48 h after final application of topical treatment with or without excimer laser treatment. Real-time quantitative RT-PCR was performed according to manufacturer's instructions and Inmunohistochemistry was used as described before. Our results suggests that although IMQ seemed to activate the type I interferon pathway as previously described, its concomitant usage with NB-UVB for clearing psoriatic skin was ineffective. Although upregulation of genes MxA, GRAMD1A and DMXL2 suggested that IMQ treatment did induce skin changes in psoriasis patients, more optimal dosing of IMQ and NB-UVB might be necessary to achieve desired treatment responses. The observation that psoriasis involvement was not aggravated by usage of topical IMQ was encouraging. Additional observational studies might be necessary to further tailor the combination of IMQ with NB-UVB therapy to reliably improve the psoriatic pathology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Progress on CBET Platform at the Nike Laser
NASA Astrophysics Data System (ADS)
Weaver, J. L.; McKenty, P.; Oh, J.; Kehne, D.; Schmitt, A. J.; Obenschain, S.; Serlin, V.; Lehmberg, R.; Tsung, F.
2015-11-01
Cross-beam energy transport (CBET) studies are underway at the Nike krypton-fluoride (KrF) laser at NRL. This facility has unique characteristics that provide an excellent platform for CBET work - including short wavelength (248 nm), large bandwidth (1-3 THz), beam smoothing by induced spatial incoherence (ISI), and full aperture focal spot zooming. Nike's two beam arrays are widely separated (135° in azimuth) which facilitates CBET studies in a nearly opposing geometry, relevant to Polar Direct Drive implosions. Various target types are planned: planar slabs, cylindrical and spherical shells, and low-density targets. The solid targets will be used to examine gradient geometries and the latter will access larger volume, more uniform plasmas. The initial campaign is exploring changes observed by scattered light diagnostics for both beam arrays as the probe laser spectrum is modified. Work supported by DoE/NNSA.
Use of Multiple Fluorescent Labels in Biological Sensing
2006-05-01
resulting in labels that are brighter and have longer Stokes shifts than the current standard; (B) to make excimer- and exciplex -forming probes for...2) to make excimer- and exciplex -forming probes for repetitive DNA sequences such as telomeres and centromeres, and to demonstrate them both...between fluorophores, and characterized unusual interactions, including water-soluble excimers and exciplexes . We investigated multiple ways to
Excimer laser annealing for low-voltage power MOSFET
NASA Astrophysics Data System (ADS)
Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim
2016-08-01
Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.
Excimer-laser-induced shock wave and its dependence on atmospheric environment
NASA Astrophysics Data System (ADS)
Krueger, Ronald R.; Krasinski, Jerzy S.; Radzewicz, Czeslaw
1993-06-01
High speed shadow photography is performed on excimer laser ablated porcine corneas and rubber stoppers to capture the excimer laser induced shock waves at various time delays between 40 and 320 nanoseconds. The shock waves in air, nitrogen, and helium are recorded by tangentially illuminating the ablated surface with a tunable dye laser, the XeCl excimer laser pulse. The excimer laser ablates the specimen and excites the dye laser, which is then passed through an optical delay line before illuminating the specimen. The shadow of the shock wave produced during ablation is then cast on a screen and photographed with a CCD video camera. The system is pulsed at 30 times per second to allow a video recording of the shock wave at a fixed time delay. We conclude that high energy acoustic waves and gaseous particles are liberated during excimer laser corneal ablation, and dissipate on a submicrosecond time scale. The velocity of their dissipation is dependent on the atmospheric environment and can be increased two-fold when the ablation is performed in a helium atmosphere. Therefore, local temperature increases due to the liberation of high energy gases may be reduced by using helium during corneal photoablation.
Green, H A; Burd, E E; Nishioka, N S; Compton, C C
1993-08-01
Ablative lasers have been used for cutaneous surgery for greater than two decades since they can remove skin and skin lesions bloodlessly and efficiently. Because full-thickness skin wounds created after thermal laser ablation may require skin grafting in order to heal, we have examined the effect of the residual laser-induced thermal damage in the wound bed on subsequent skin graft take and healing. In a pig model, four different pulsed and continuous-wave lasers with varying wavelengths and radiant energy exposures were used to create uniform fascial graft bed thermal damage of approximately 25, 160, 470, and 1100 microns. Meshed split-thickness skin graft take and healing on the thermally damaged fascial graft beds were examined on a gross and microscopic level on days 3 and 7, and then weekly up to 42 days. Laser-induced thermal damage on the graft bed measuring greater than 160 +/- 60 microns in depth significantly decreased skin graft take. Other deleterious effects included delayed graft revascularization, increased inflammatory cell infiltrate at the graft-wound bed interface, and accelerated formation of hypertrophied fibrous tissue within the graft bed and underlying muscle. Ablative lasers developed for cutaneous surgery should create less than 160 +/- 60 microns of residual thermal damage to permit optimal skin graft take and healing. Pulsed carbon dioxide and 193-nm excimer lasers may be valuable instruments for the removal of full-thickness skin, skin lesions, and necrotic tissue, since they create wound beds with minimal thermal damage permitting graft take comparable to that achieved with standard surgical techniques.
Foil cooling for rep-rated electron beam pumped KrF lasers
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Hegeler, F.; Sethian, J. D.; Wolford, M. F.; Myers, M. C.; Abdel-Khalik, S.; Sadowski, D.; Schoonover, K.; Novak, V.
2006-06-01
In rep-rated electron beam pumped lasers the foil separating the vacuum diode from the laser gas is subject to repeated heating due to partial beam stopping. Three cooling methods are examined for the Electra KrF laser at the Naval Research Laboratory (NRL). Foil temperature measurements for convective cooling by the recirculating laser gas and by spray mist cooling are reported, along with estimates for thermal conductive foil cooling to the hibachi ribs. Issues on the application of each of these approaches to laser drivers in a fusion power plant are noted. Work supported by DOE/NNSA.
Laser nitriding of iron: Nitrogen profiles and phases
NASA Astrophysics Data System (ADS)
Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.
1995-07-01
Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitai, M S; Semchishen, A V; Semchishen, V A
The optical quality of the eye cornea surface after performing the laser vision correction essentially depends on the characteristic roughness scale (CRS) of the ablated surface, which is mainly determined by the absorption coefficient of the cornea at the laser wavelength. Thus, in the case of using an excimer ArF laser (λ = 193 nm) the absorption coefficient is equal to 39000 cm{sup -1}, the darkening by the dissociation products takes place, and the depth of the roughness relief can be as large as 0.23 mm. Under irradiation with the Er : YAG laser (λ = 2940 nm) the clearingmore » is observed due to the rupture of hydrogen bonds in water, and the relief depth exceeds 1 μm. It is shown that the process of reepithelization that occurs after performing the laser vision correction leads to the improvement of the optical quality of the cornea surface. (interaction of laser radiation with matter)« less
NASA Astrophysics Data System (ADS)
Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.
Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.
Two-photon equivalent weighting of spatial excimer laser beam profiles
NASA Astrophysics Data System (ADS)
Eva, Eric; Bauer, Harry H.; Metzger, K.; Pfeiffer, A.
2001-04-01
Damage in optical materials for semiconductor lithography applications caused by exposure to 248 or 193 nm light is usually two-photon driven, hence it is a nonlinear function of incident intensity. Materials should be tested with flat- topped temporal and spatial laser beam profiles to facilitate interpretation of data, but in reality this is hard to achieve. Sandstrom provided a formula that approximates any given temporal pulse shape with a two- photon equivalent rectangular pulse (Second Symposium on 193 nm Lithography, Colorado Springs 1997). Known as the integral-square pulse duration, this definition has been embraced as an industry standard. Originally faced with the problem of comparing results obtained with pseudo-Gaussian spatial profiles to literature data, we found that a general solution for arbitrarily inhomogeneous spatial beam profiles exists which results in a definition much similar to Sandstrom's. In addition, we proved the validity of our approach in experiments with intentionally altered beam profiles.
Soft X-Ray Optics by Pulsed Laser Deposition
NASA Technical Reports Server (NTRS)
Fernandez, Felix E.
1996-01-01
Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.
Dry etching technologies for the advanced binary film
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio
2011-11-01
ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.
Effect of wavelength on cutaneous pigment using pulsed irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, K.A.; Murray, S.; Kurban, A.K.
Several reports have been published over the last two decades describing the successful removal of benign cutaneous pigmented lesions such as lentigines, cafe au lait macules' nevi, nevus of Ota, and lentigo maligna by a variety of lasers such as the excimer (351 nm), argon (488,514 nm), ruby (694 nm), Nd:YAG (1060 nm), and CO/sub 2/ (10,600 nm). Laser treatment has been applied to lesions with a range of pigment depths from superficial lentigines in the epidermis to the nevus of Ota in the reticular dermis. Widely divergent laser parameters of wavelength, pulse duration, energy density, and spotsizes have beenmore » used, but the laser parameters used to treat this range of lesions have been arbitrary, with little effort focused on defining optimal laser parameters for removal of each type. In this study, miniature black pig skin was exposed to five wavelengths (504, 590, 694, 720, and 750 nm) covering the absorption spectrum of melanin. At each wavelength, a range of energy densities was examined. Skin biopsies taken from laser-exposed sites were examined histologically in an attempt to establish whether optimal laser parameters exist for destroying pigment cells in skin. Of the five wavelengths examined, 504 nm produced the most pigment specific injury; this specificity being maintained even at the highest energy density of 7.0 J/cm2. Thus, for the destruction of melanin-containing cells in the epidermal compartment, 504 nm wavelength appears optimal.« less
Laser plasma interaction at an early stage of laser ablation
NASA Astrophysics Data System (ADS)
Lu, Y. F.; Hong, M. H.; Low, T. S.
1999-03-01
Laser scattering and its interaction with plasma during KrF excimer laser ablation of silicon are investigated by ultrafast phototube detection. There are two peaks in an optical signal with the first peak attributed to laser scattering and the second one to plasma generation. For laser fluence above 5.8 J/cm2, the second peak rises earlier to overlap with the first one. The optical signal is fitted by a pulse distribution for the scattered laser light and a drifted Maxwell-Boltzmann distribution with a center-of-mass velocity for the plasma. Peak amplitude and its arrival time, full width at half maximum (FWHM), starting time, and termination time of the profiles are studied for different laser fluences and detection angles. Laser pulse is scattered from both the substrate and the plasma with the latter part as a dominant factor during the laser ablation. Peak amplitude of the scattered laser signal increases but its FWHM decreases with the laser fluence. Angular distribution of the peak amplitude can be fitted with cosn θ(n=4) while the detection angle has no obvious influence on the FWHM. In addition, FWHM and peak amplitude of plasma signal increase with the laser fluence. However, starting time and peak arrival time of plasma signal reduce with the laser fluence. The time interval between plasma starting and scattered laser pulse termination is proposed as a quantitative parameter to characterize laser plasma interaction. Threshold fluence for the interaction is estimated to be 3.5 J/cm2. For laser fluence above 12.6 J/cm2, the plasma and scattered laser pulse distributions tend to saturate.
Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer
NASA Astrophysics Data System (ADS)
Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi
1986-07-01
A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.
Overview on the high power excimer laser technology
NASA Astrophysics Data System (ADS)
Liu, Jingru
2013-05-01
High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.
Excimer laser photorefractive keratectomy for myopia: preliminary results at one year
NASA Astrophysics Data System (ADS)
Thompson, Keith P.; Waring, George O., III; Steinert, Roger; Durrie, Daniel S.; Gordon, Michael; Brint, Stephen F.
1992-08-01
Excimer laser photorefractive keratectomy (PRK) is presently under investigation for the correction of myopia. Two companies in the United States, Summit Technology (Waltham, Mass.) and VisX, Inc. (Sunnyvale, Calif.) have developed excimer laser delivery systems and are participating in an FDA study to determine the safety and efficacy of PRK. This is a preliminary report on the refractive and visual results of 51 of 100 eyes treated between October 10, 1990 and March 7, 1991 by the Summit Technology UV200LA excimer laser under the FDA Phase IIB FDA protocol one year after surgery. More detailed information on eight patients treated at Emory University Eye Center (Emory Subgroup) is also reported.
Topographic steep central islands following excimer laser photorefractive keratectomy
NASA Astrophysics Data System (ADS)
Krueger, Ronald R.; McDonnell, Peter J.
1994-06-01
The purpose of this study is to demonstrate that topographic irregularities in the form of central islands of higher refractive power can be seen following excimer laser refractive surgery. We reviewed the computerized corneal topographic maps of 35 patients undergoing excimer laser PRK for compound myopic astigmatism or anisometropia from 8/91 to 8/93 at the USC/Doheny Eye Institute. The topographic maps were generated by the Computed Anatomy Corneal Modeling System, and central islands were defined as topographic areas of steepening of at least 3 diopters and 3 mm in diameter. A grading system was developed based on the presence of central islands during the postoperative period. Visually significant topographic steep central islands may be seen in over 50% of patients at 1 month following excimer laser PRK, and persist at 3 months in up to 24% of patients without nitrogen gas blowing. Loss of best corrected visual acuity or ghosting is associated with island formation, and may prolong visual rehabilitation after excimer laser PRK.
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D.; Owens, David M.; Brenner, David J.
2017-01-01
We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200–222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200–222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure. PMID:28225654
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.
Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D; Owens, David M; Brenner, David J
2017-04-01
We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200-222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200-222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure.
NASA Astrophysics Data System (ADS)
Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu
2018-02-01
Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.
Oh, Kenneth J; Cash, Kevin J; Plaxco, Kevin W
2006-11-01
While protein-polypeptide and nucleic acid-polypeptide interactions are of significant experimental interest, quantitative methods for the characterization of such interactions are often cumbersome. Here we described a relatively simple means of optically monitoring such interactions using excimer-based peptide beacons (PBs). The design of PBs is based on the observation that, whereas short peptides are almost invariably unfolded and highly dynamic, they become rigid when complexed with macromolecular targets. Using this binding-induced folding to segregate two pyrene moieties and therefore inhibit excimer formation, we have produced PBs directed against both anti-HIV antibodies and the retroviral transactive response (TAR) RNA hairpin. For both polypeptides, target recognition is accompanied by a roughly 2-fold decrease in excimer emission, thus allowing the detection of their respective targets at concentrations of a few nanomolar. Because excimer emission requires the formation of a tight, precisely oriented pyrene dimer, even relatively trivial binding-induced segregation reduces fluorescence significantly. This suggests that the PB approach will be suitable for monitoring a wide range of peptide-macromolecule recognition events. Moreover, the synthesis of excimer-based PBs utilizes commercially available modified pyrenes in a simple and well-established protocol, making the approach well suited for routine laboratory applications.
Quantitative absorption data from thermally induced wavefront distortions on UV, Vis, and NIR optics
NASA Astrophysics Data System (ADS)
Mann, Klaus; Schäfer, Bernd; Leinhos, Uwe; Lübbecke, Maik
2017-11-01
A photothermal absorption measurement system was set up, deploying a Hartmann-Shack wavefront sensor with extreme sensitivity to accomplish spatially resolved monitoring of thermally induced wavefront distortions. Photothermal absorption measurements in the near-infrared and deep ultra-violet spectral range are performed for the characterization of optical materials, utilizing a Yb fiber laser (λ = 1070 nm) and an excimer laser (193nm, 248nm) to induce thermal load. Wavefront deformations as low as 50pm (rms) can be registered, allowing for a rapid assessment of material quality. Absolute calibration of the absorption data is achieved by comparison with a thermal calculation. The method accomplishes not only to measure absorptances of plane optical elements, but also wavefront deformations and focal shifts in lenses as well as in complex optical systems, such as e.g. F-Theta objectives used in industrial high power laser applications. Along with a description of the technique we present results from absorption measurements on coated and uncoated optics at various laser wavelengths ranging from deep UV to near IR.
Management of Oral Lichen Planus by 980 nm Diode Laser
Derikvand, Nahid; Ghasemi, Seyedeh Sara; Moharami, Mohammad; Shafiei, Ehsan; Chiniforush, Nasim
2017-01-01
Introduction: Oral lichen planus (OLP) is a mucocutaneous disease with uncertain etiology. As the etiology is unknown standard treatment modalities are not available. The traditional and common treatment relies on corticosteroids whether topical or systemic. In recent years, development of lasers made a proper path to use this instrument for treatment of the diseases which are refractory to conventional treatments. Previous studies in this field used CO2, ND:YAG, Excimer and some wavelength of diode lasers for the treatment of different types of lichen planus. Case Report: In this study, we present an OLP case which is treated using 980 nm diode laser. The result was measured by visual analogue scale (VAS) and clinical assessment; as a result, symptoms including pain and soreness started to decrease within a week, and by the end of a month completely subsided; the lesion disappeared totally as well. No recurrence was observed after a month and no side-effect was reported. Conclusion: 980 nm diode laser can be successfully used for treatment of patients with OLP PMID:29123636
Surface nanotexturing of tantalum by laser ablation in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A
2009-01-31
Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less
NASA Astrophysics Data System (ADS)
Mann, Klaus R.; Eva, Eric
1998-06-01
Absorption loss in DUV optics during 193 nm irradiation is investigated by employing a high-resolution calorimetric technique which allows determining both single and two photon absorption coefficients at energy densities of several 10 mJ/cm2, avoiding a significant thermal load on the samples. UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica or CaF2. A separation of transient and cumulative effects as a function of intensity can be achieved, giving insight into various loss mechanisms. Moreover, the influence of dielectric coatings on the absorption characteristics is discussed.
Excimer laser debridement of necrotic erosions of skin without collateral damage
NASA Astrophysics Data System (ADS)
Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.
2011-07-01
Pulsed ArF excimer laser radiation at 6.4 eV, at fluence exceeding the ablation threshold, will debride burn eschar and other dry necrotic erosions of the skin. Debridement will cease when sufficiently moist viable tissue is exposed, due to absorption by aqueous chloride ions (Cl-) through the non-thermal process of electron photodetachment, thereby inhibiting collateral damage to the viable tissue. ArF excimer laser radiation debrides/ablates ~1 micron of tissue with each pulse. While this provides great precision in controlling the depth of debridement, the process is relatively time-consuming. In contrast, XeCl excimer laser radiation debrides ~8 microns of tissue with each pulse. However the 4.0 eV photon energy of the XeCl excimer laser is insufficient to photodetach an electron from a Cl- ion, so blood or saline will not inhibit debridement. Consequently, a practical laser debridement system should incorporate both lasers, used in sequence. First, the XeCl excimer laser would be used for accelerated debridement. When the necrotic tissue is thinned to a predetermined thickness, the ArF excimer laser would be used for very precise and well-controlled debridement, removing ultra-thin layers of material with each pulse. Clearly, the use of the ArF laser is very desirable when debriding very close to the interface between necrotic tissue and viable tissue, where the overall speed of debridement need not be so rapid and collateral damage to viable tissue is undesirable. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.
Photodecomposition of Mo(CO)/sub 6/ adsorbed on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creighton, J.R.
1986-01-15
The photochemical properties of Mo(CO)/sub 6/ adsorbed on Si(100) were investigated using temperature programmed desorption (TPD) and Auger spectroscopy. TPD experiments indicate that Mo(CO)/sub 6/ physisorbs on silicon and desorbs at 210--230 K. At 150 K, KrF laser radiation (248 nm) partially decomposes the adsorbed Mo(CO)/sub 6/ releasing gas-phase CO in the process and TPD experiments after irradiation show that additional CO desorbs at 335 K. However, Auger analysis indicates that one CO molecule per molybdenum atom dissociates, leaving the molybdenum overlayer heavily contaminated with carbon and oxygen. The cross section for photodecomposition was measured to be 5 +- 3more » x 10/sup -17/ cm/sup 2/. Decomposition of the excited molecule must compete strongly with energy relaxation to account for the magnitude of this cross section.« less
Electrical and optical properties of ITO and ITO/Cr-doped ITO films
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.; Maruccio, G.; Valerini, D.; Catalano, M.; Cola, A.; Manera, M. G.; Lomascolo, M.; Taurino, A.; Rella, R.
2010-12-01
In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ˜4×10-4 Ω cm, an energy gap of ˜4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (˜0.4-0.5 nm) and resistivity (up to ˜8×10-4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W. R.; Bieri, R. L.; Monsler, M. J.
1992-03-01
This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.
NASA Astrophysics Data System (ADS)
Hariri, A.; Sarikhani, S.
2014-01-01
On the basis of a model of a geometrically dependent gain coefficient, the amplified spontaneous emission (ASE) spectral width was calculated analytically for the nearly resonant transition of ν ˜ ν0, and also numerically for a wide range of transition frequencies. For this purpose, the intensity rate equation was used under unsaturated and saturated conditions. For verifying the proposed model, reported measurements of the ASE energy versus the excitation length for a KrF laser were used. For the excitation length of l = 84 cm corresponding to single-path propagation, the ASE spectral width for the homogeneously broadened transition was calculated to be 6.28 Å, to be compared with the measured 4.1 Å spectral width reported for a KrF oscillator utilizing a two-mirror resonator. With the gain parameters obtained from the ASE energy measurements, the unsaturated and saturated gain coefficients for l = 84 cm were calculated to be 0.042 cm-1 and 0.014 cm-1, respectively. These values of the gain coefficient are comparable to but slightly lower than the measured gain coefficient for laser systems of 80-100 cm excitation lengths reported from different laboratories.
[Decolorization of skin and hair-derived melanin by three ligninolytic enzymes].
Miao, F; Lei, T C; Su, M Y; Yi, W J; Jiang, S; Xu, S Z
2017-11-21
Objective: To compare the decolorization efficiency of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase on eumelanin and pheomelanin, and to investigate the effect of topical administration of LiP solution on hyperpigmented guinea pigs skin induced by 308 nm excimer light. Methods: Pheomelanin-enriched specimens were prepared from human hair and cutaneous melanoma tissue using alkaline lysis method.Synthetic eumelanin was purchased from a commercial supplier.The same amount (0.02%) of melanin was incubated with the equal enzyme activity (0.2 U/ml) of ligninolytic enzymes for 3 h respectively.The absorbance at 475 nm ( A (475)) in the enzyme-catalyzed solution was measured using ELISA microplate reader.The experimental hyperpigmentation model was established in the dorsal skin of brownish guinea pigs using 308 nm excimer light radiation.LiP and heat-inactivated LiP solution were topically applied at each site.Meanwhile, 3% hydroquinone and vehicle cream were used as control.The skin color (L value) was recorded using a CR-10 Minolta chromameter.Corneocytes were collected using adhesive taping method.The amount and distribution of melanin in the corneocytes and skin tissues was visualized by Fontana-Masson staining. Results: All three ligninolytic enzymes showed various degree of eumelanin and pheomelanin decolorization activity.The decolorization activity of LiP, MnP and laccase was 40%-70%, 22%-42% and 9%-21%, respectively.The similar lightening was shown in the skin treated with LiP solution and 3% hydroquinone.The amount of melanin granules in the corneocytes was 199±11 by LiP, which was less than that in untreated control (923±12) and heat-inactive control (989±13). The amount of melanin was decreased in the whole epidermis treated with hydroquinone, the epidermis thickness was increased as well. In contrast, melanin of LiP group was decreased only in the superficial epidermis, the epidermis thickness seemed to be normal. Conclusion: LiP exerts a potent decolorization activity for hair- or skin-derived pheomelanin as well as eumelanin.It remains to be further investigated whether LiP serves as a substitute for hydroquinone in skin lightening products.
Dual Laser-Assisted Lamellar Anterior Keratoplasty with Tophat Graft: A Laboratory Study
Cleary, Catherine; Song, Jonathan C.; Tang, Maolong; Li, Yan; Liu, Ying; Yiu, Samuel; Huang, David
2011-01-01
Objectives To develop a dual laser-assisted lamellar anterior keratoplasty (LALAK) technique, using excimer and femtosecond lasers to perform surgery on eye-bank eyes. Methods First we compared corneal stromal surfaces produced by (1) deep excimer ablation, (2) femtosecond lamellar cuts, and (3) manual dissection, and evaluated the effect of excimer laser smoothing with fluid masking on each surface. Masked observers graded scanning electron microscopy (SEM) images on a 5-point roughness scale. Then we performed a 6-mm diameter excimer laser phototherapeutic keratectomy (PTK) ablation to a residual bed thickness of 200μm, followed by laser smoothing. We used the femtosecond laser to cut donors in a modified top-hat design with a thin tapered brim, which fitted into a manually dissected circumferential pocket at the base of the recipient bed. Fourier-domain optical coherence tomography (OCT) was used to measure corneal pachymetry and evaluate graft fit. Results Deep excimer ablation with smoothing (n=4) produced a significantly (p<0.05) smoother surface (grade=3.5) than deep excimer alone (n=4, grade=3.8) or manual dissection with (n=1, grade=3.8) and without smoothing (n=1, grade=4.8). Deep femtosecond cuts (n=2) produced macroscopic concentric ridges on the stromal surface. Experimental LALAK was performed on 4 recipients prepared by deep excimer ablation and 4 donors cut with the femtosecond laser. After suturing good peripheral graft-host match was observed on FD-OCT imaging. Conclusion These preliminary studies show that the LALAK technique permits improved interface smoothness and graft edge matching. Clinical trials are needed to determine whether these improvements can translate to better vision. PMID:22378114
Spadea, Leopoldo
2012-01-01
To report the results of corneal collagen crosslinking (CXL) in a patient with corneal ectasia developed after excimer laser-assisted lamellar keratoplasty for keratoconus and a secondary photorefractive keratectomy (PRK) for residual refractive error. A 33-year-old woman, who had originally been treated for keratoconus in the right eye by excimer laser-assisted lamellar keratoplasty, subsequently had her residual ametropia treated by topographically guided, transepithelial excimer laser PRK. Five years after PRK, the patient developed corneal ectasia showing concomitant visual changes of best spectacle-corrected visual acuity (BSCVA) reduced to 20/33 with a refraction of -6.00 +6.00 × 30. The minimum corneal thickness at the ectasia apex was 406 µm. A treatment of riboflavin-UVA-induced corneal CXL was performed on the right eye. Two years after the CXL treatment, the right eye improved to 20/20 BSCVA with a refraction of plano +1.00 × 50 while exhibiting a clear lamellar graft. Corneal CXL provided safe and effective management of ectasia developed after excimer laser-assisted lamellar keratoplasty and PRK.
Changing profile of excimer laser coronary angioplasty: refinements in catheters
NASA Astrophysics Data System (ADS)
Bittl, John A.
1994-07-01
During more than five years of investigation with excimer laser angioplasty, several changes have been made in patient selection and laser catheters. It is unclear, however, whether these changes have improved the outcome of excimer laser angioplasty. A total of 2041 patients underwent treatment with excimer laser coronary angioplasty for 2324 lesions with clinical success in 89%, ischemic complications in 7.5%, and vessel perforation in 2.1%. When the entire 5-year period of investigation was divided into four discrete phases, as defined by the successive release of improved laser catheters (prototype, flexible, extremely flexible, and eccentric), clinical success was seen to improve from 86% to 95% (p<0.001) despite the increased incidence of advanced age (pequals0.01) and unstable angina (p<0.001). Multivariable analysis identified improved laser catheters, saphenous vein graft lesions, and unclarified stenoses as predictors of favorable outcome. Operator experience was associated with decreased complications. Reduced catheter size relative to vessel size was associated with decreased risk of vessel perforation. Thus, refinements in patient selection and in laser technique have been associated with enhanced safety and efficacy of excimer laser angioplasty.
Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi
2017-09-26
Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.
NASA Astrophysics Data System (ADS)
Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.
2002-06-01
The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.
Excimer laser processing of backside-illuminated CCDS
NASA Technical Reports Server (NTRS)
Russell, S. D.
1993-01-01
An excimer laser is used to activate previously implanted dopants on the backside of a backside-illuminated CCD. The controlled ion implantation of the backside and subsequent thin layer heating and recrystallization by the short wavelength pulsed excimer laser simultaneously activates the dopant and anneals out implant damage. This improves the dark current response, repairs defective pixels and improves spectral response. This process heats a very thin layer of the material to high temperatures on a nanosecond time scale while the bulk of the delicate CCD substrate remains at low temperature. Excimer laser processing backside-illuminated CCD's enables salvage and utilization of otherwise nonfunctional components by bringing their dark current response to within an acceptable range. This process is particularly useful for solid state imaging detectors used in commercial, scientific and government applications requiring a wide spectral response and low light level detection.
High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber.
Guan, Bai-Ou; Zhang, Yang; Wang, Hong-Jun; Chen, Da; Tam, Hwa-Yaw
2008-03-03
We present a high-temperature-resistant distributed Bragg reflector fiber laser photowritten in Er/Yb codoped phosphosilicate fiber that is capable of long-term operation at 500 degrees C. Highly saturated Bragg gratings are directly inscribed into the Er/Yb fiber without hydrogen loading by using a 193 nm excimer laser and phase mask method. After annealing at elevated temperature, the remained gratings are strong enough for laser oscillation. The laser operates in robust single mode with output power more than 1 dBm and signal-to-noise ratio better than 70 dB over the entire temperature range from room temperature to 500 degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craciun, Valentin; Socol, Gabriel; Craciun, Doina, E-mail: doina.craciun@inflpr.ro
LaB{sub 6} thin films were deposited at a temperature of 500 °C under vacuum or Ar atmosphere by the pulsed laser deposition technique on (100) Si substrates using a KrF laser. Grazing incidence x-ray diffraction investigations found that films were nanocrystalline, with grain size dimensions from 86 to 102 nm and exhibited microstrain values around 1.1%. Simulations of the x-ray reflectivity curves acquired from the deposited films showed that films had a density around 4.55 g/cm{sup 3}, and were very smooth, with a surface roughness root-mean-square of 1.5 nm, which was also confirmed by scanning electron and atomic force microscopy measurements. All films weremore » covered by a ∼2 nm thick contamination layer that formed when samples were exposed to the ambient. Auger electron spectroscopy investigations found very low oxygen impurity levels below 1.5 at. % once the contamination surface layer was removed by Ar ion sputtering. Four point probe measurements showed that films were conductive, with a resistivity value around 200 μΩ cm for those deposited under Ar atmosphere and slightly higher for those deposited under vacuum. Nanoindentation and scratch investigations showed that films were rather hard, H ∼ 16 GPa, E ∼ 165 GPa, and adherent to the substrate. Thermionic emission measurements indicated a work function value of 2.66 eV, very similar to other reported values for LaB{sub 6}.« less
Excimer laser therapy and narrowband ultraviolet B therapy for exfoliative cheilitis.
Bhatia, Bhavnit K; Bahr, Brooks A; Murase, Jenny E
2015-06-01
Exfoliative cheilitis is a condition of unknown etiology characterized by hyperkeratosis and scaling of vermilion epithelium with cyclic desquamation. It remains largely refractory to treatment, including corticosteroid therapy, antibiotics, antifungals, and immunosuppressants. We sought to evaluate the safety and efficacy of excimer laser therapy and narrowband ultraviolet B therapy in female patients with refractory exfoliative cheilitis. We reviewed the medical records of two female patients who had been treated unsuccessfully for exfoliative cheilitis. We implemented excimer laser therapy, followed by hand-held narrowband UVB treatments for maintenance therapy, and followed them for clinical improvement and adverse effects. Both patients experienced significant clinical improvement with minimal adverse effects with excimer laser therapy 600-700 mJ/cm 2 twice weekly for several months. The most common adverse effects were bleeding and burning, which occurred at higher doses. The hand-held narrowband UVB unit was also an effective maintenance tool. Limitations include small sample size and lack of standardization of starting dose and dose increments. Excimer laser therapy is a well-tolerated and effective treatment for refractory exfoliative cheilitis with twice weekly laser treatments of up to 700 mJ/cm 2 . Transitioning to the hand-held narrowband UVB device was also an effective maintenance strategy.
Fundamental Scaling of Microplasmas and Tunable UV Light Generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.
2016-11-01
The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deepmore » UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.« less
NASA Astrophysics Data System (ADS)
Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.
1990-04-01
Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.
Off-normal deposition of PTFE thin films during 157-nm irradiation
NASA Astrophysics Data System (ADS)
George, Sharon R.; Langford, Stephen C.; Dickinson, J. Thomas
2010-03-01
Polytetrafluoroethylene (PTFE) is valued for its chemical stability, low surface energy, and insulating properties. The ablation of PTFE by F2 excimer lasers (157 nm photons) involves photochemical scission of C-C bonds along the polymer chain. Depending on the fluence, the fragment masses can range from 50 to 2000 amu. Gaussian beam profiles allow for the production of spatially non-uniform distributions of fragment masses, with the lighter fragments concentrated in the center of the laser spot. The resulting trajectories for the light fragments can be strongly forward directed, while the heavy fragments are directed more to the side, well away from the surface normal. We present experimental evidence for these angular distributions, and numerically simulate this behavior with a simple, two-component hydrodynamic model. Under the conditions of our work, most of the ablated mass appears as heavier fragments and can be collected on substrates mounted to the sides or above and below the laser spot. This geometry may have advantages in some applications of pulsed laser deposition.
Fluorescence from polystyrene - Photochemical processes in polymeric systems, 7
NASA Technical Reports Server (NTRS)
Gupta, M. C.; Gupta, A.
1983-01-01
Results are presented for measurements of the fluorescence spectra of polystyrene in dilute solution and in pure solid films. It is determined that a major potential source of experimental error is the concurrent photooxidative degradation in air which may obscure fluorescence emission from monomeric sites in solid films at 25 C. The fluorescence spectra of oriented films are evaluated in terms of the monomer to excimer fluorescence intensity ratio and the excimer 'red shift'. The monomer to excimer fluorescence intensity ratio is determined to be significantly higher in fluid solution than in solid film.
Difluorophosphoryl nitrene F2P(O)N: matrix isolation and unexpected rearrangement to F2PNO.
Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram
2009-12-14
Triplet difluorophosphoryl nitrene F(2)P(O)N (X(3)A'') was generated on ArF excimer laser irradiation (lambda=193 nm) of F(2)P(O)N(3) in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS-QB3 calculations. On visible light irradiation (lambda>420 nm) at 16 K F(2)P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (lambda=255 nm) of F(2)P(O)N (X(3)A'') induced a Curtius-type rearrangement, but instead of a 1,3-fluorine shift, nitrogen migration to give F(2)PON is proposed to be the first step of the photoisomerization of F(2)P(O)N into F(2)PNO (difluoronitrosophosphine). Formation of novel F(2)PNO was confirmed with (15)N- and (18)O-enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P-N bond of 1.922 A [B3LYP/6-311+G(3df)] and low bond-dissociation energy of 76.3 kJ mol(-1) (CBS-QB3) for F(2)PNO.
UV fatigue investigations with non-destructive tools in silica
NASA Astrophysics Data System (ADS)
Natoli, Jean-Yves; Beaudier, Alexandre; Wagner, Frank R.
2017-08-01
A fatigue effect is often observed under multiple laser irradiations, overall in UV. This decrease of LIDT, is a critical parameter for laser sources with high repetition rates and with a need of long-term life, as in spatial applications at 355nm. A challenge is also to replace excimer lasers by solid laser sources, this challenge requires to improve drastically the lifetime of optical materials at 266nm. Main applications of these sources are devoted to material surface nanostructuration, spectroscopy and medical surgeries. In this work we focus on the understanding of the laser matter interaction at 266nm in silica in order to predict the lifetime of components and study parameters links to these lifetimes to give keys of improvement for material suppliers. In order to study the mechanism involved in the case of multiple irradiations, an interesting approach is to involve the evolution of fluorescence, in order to observe the first stages of material changes just before breakdown. We will show that it is sometime possible to estimate the lifetime of component only with the fluorescence measurement, saving time and materials. Moreover, the data from the diagnostics give relevant informations to highlight "defects" induced by multiple laser irradiations.
NASA Astrophysics Data System (ADS)
Mis'kevich, A. I.; Guo, J.; Dyuzhov, Yu A.
2013-11-01
The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe - CCl4 and Ar - Xe - CCl4 gas mixtures with a low CCl4 content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction 235U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm-3. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm-1 and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 - 50 kW sr-1 and a base ASE pulse duration of ~200 ms.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
High-Z Coating Experiments on Omega EP
NASA Astrophysics Data System (ADS)
Karasik, Max; Oh, J.; Stoeckl, C.; Schmitt, A. J.; Aglitskiy, Y.; Obenschain, S. P.
2016-10-01
Previous experiments on Nike KrF laser (λ=248nm) at NRL found that a thin (400-800 Å) high-Z (Au or Pd) overcoat on the target is effective in suppressing broadband imprint. Implementation of this technique on the tripled Nd:glass (351nm) NIF would enable higher uniformity direct-drive experiments there. To this end, we are carrying out experiments using the NIF-like beams of Omega EP. On Nike, a low-intensity, highly smooth prepulse heats and pre-expands the low thermal mass metallic coating to 100 um scale length. This likely improves imprint reduction for longer spatial scales because of increased distance between laser absorption and the ablation surface. The 3 ω beams of Omega EP do not have this feature due to nonlinear harmonic conversion. We introduced a means of pre-expanding the high-Z coating to similar length scale on Omega EP using a soft x-ray prepulse, generated by irradiating an auxiliary Au foil 1cm in front of the main target tens of ns prior to the main target drive. Coating dynamics are measured using side-on radiography. The effectiveness of pre-expansion on imprint reduction will be assessed by measurements of the RT-amplified imprint using monochromatic curved crystal radiography. Work supported by the Department of Energy/NNSA.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Kikuchi, Koji; Ohnuma, Hidetoshi; Kawahira, Hiroichi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a dual-trench type for KrF exposure, with programmed quartz defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM100 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topography of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated defect identified by the alt-PSM of a single-trench type for ArF exposure are 240 nm in bottom diameter and 50 degrees in height (phase) for the cylindrical shape and 240 nm in bottom diameter and 90 degrees in height (phase) for the rotating trapezoidal shape, where the CD error limit is +/- 5%.
NASA Astrophysics Data System (ADS)
Mizeraczyk, Jerzy; Ohkubo, Toshikazu; Kanazawa, Seiji; Kocik, Marek
2003-10-01
Laser-induced fluorescence (LIF) technique aided by intensified CCD light signal detection and fast digital image processing is demonstrated to be a useful diagnostic method for in-situ observation of the discharge-induced plasma-chemistry processes responsible for NOx(NO + NO2) decomposition occurring in non-thermal plasma reactors. In this paper a method and results of the LIF measurement of two-dimensional distribution of the ground-state NO molecule density inside a DC positive streamer corona reactor during NO removal from a flue gas simulator [air/NO(up to 300 ppm)] are presented. Either a needle-to-plate or nozzle-to-plate electrode system, having an electrode gap of 30-50 mm was used for generating the corona discharge in the reactor. The LIF monitoring of NO molecules was carried out under the steady-state DC corona discharge condition. The laser-induced fluorescence on the transition NO X2Π(v"=0)<--A2Σ+(v'=0) at λ=226nm was chosen for monitoring ground-state NO molecules in the reactor. This transition was induced by irradiation of the NO molecules with UV laser pulses generated by a laser system consisted of a XeF excimer laser, dye laser and BBO crystal. The laser pulses from the XeF excimer laser (Lambda Physik, Complex 150, λ=351 nm) pumped the dye laser (Lambda Physik, Scanmate) with Coumarin 47 as a dye, which generated the laser beam of a wavelength turned around λ=450 nm. Then, the tuned dye laser beam pumped the BBO crystal in which the second harmonic radiation of a wavelength correspondingly tuned around λ=226 nm was generated. The 226-nm UV laser pulses of energy of 0.8-2 mJ and duration of about 20 ns were transformed into the form of the so-called laser sheet (width of 1 mm, height of 30-50 mm) which passed between the electrodes through the operating gas. The obtained results, presented in the form of images, which illustrated the two-dimensional distributions of NO molecule concentration in the non-thermal reactor, showed that the corona discharge-induced removal of NO molecules occurred not only in the vicinity of the plasma region formed by the corona discharge-induced removal of NO molecules occurred not only in the vicinity of the plasma region formed by the corona streamers and in the downstream region of the reactor but also in the upstream region of the reactor, i.e. before the flue gas simulator has entered the plasma region. This information obtained owing to the LIF technique, is important for the understanding of the plasma-chemistry processes responsible for NOx decomposition in non-thermal plasma reactors and for optimising their performance.
NASA Astrophysics Data System (ADS)
Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho
2016-05-01
Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.
We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.
(E)-5-[2-(methoxycarbonyl)ethenyl]cytidine as a chemical actinometer for germicidal UV radiation.
Shen, Chengyue; Fang, Shiyue; Bergstrom, Donald E; Blatchley, Ernest R
2005-05-15
(E)-5-[2-(Methoxycarbonyl)ethenyl]cytidine (S) was examined for use as a chemical actinometer for germicidal UV radiation. Its photoproduct, 3-beta-D-ribofuranosyl-2,7-dioxopyrido[2,3-d]pyrimidine (P), is strongly fluorescent with excitation and emission maxima at 330 and 385 nm, respectively. Experiments were conducted to characterize the dynamic behavior of aqueous solutions of S and P when subjected to UV radiation. UV sources used for these experiments included a low-pressure mercury lamp, a XeBr excimer lamp, and a KrCI excimer lamp; all three sources were mounted in collimating devices to provide incident beams that could be easily and accurately characterized by radiometry. These three sources each yielded essentially monochromatic outputwith characteristic wavelengths of 254, 282, and 222 nm, respectively. At practical concentrations, it was found that the absorbance of the actinometer solution was neither high enough to make the actinometer solutions optically opaque nor low enough to be optically transparent to UV. In addition, the photoproduct displayed a molar absorption coefficient that was similar in magnitude to that of the parent compound, thereby resulting in competitive absorption of UV energy between Sand Pduring irradiation. For purposes of evaluation of the results of irradiation, a mathematical model was developed to accountforthe nonideal optical characteristics of the system. The model is based on a description of local photochemical kinetics; predictions of overall reactor performance were developed by spatial and temporal integration of model results. The model was used to analyze the dynamic behavior of actinometer solutions during UV irradiation and to estimate the quantum yield for photoproduction of Pfrom S. This modeling approach is potentially applicable to other photochemical processes in which multiple compounds are present that absorb photoactive radiation; however, general application of this modeling approach to photochemical reactor systems will require inclusion of othertermsto describe relevanttransport behavior within the system.
NASA Astrophysics Data System (ADS)
Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.
1989-06-01
Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.
Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.
Yadav, Anita; Pandey, Siddharth
2017-12-07
Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py to be diffusion-controlled and to depend on the viscosity of the ionic liquid irrespective of the identity of the cation. The dependence of ionic liquid structure on cyclization dynamics to form intramolecular excimer is amply highlighted.
Resonant third harmonic generation of KrF laser in Ar gas.
Rakowski, R; Barna, A; Suta, T; Bohus, J; Földes, I B; Szatmári, S; Mikołajczyk, J; Bartnik, A; Fiedorowicz, H; Verona, C; Verona Rinati, G; Margarone, D; Nowak, T; Rosiński, M; Ryć, L
2014-12-01
Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.
Chen, James X; Montgomery, Jennifer; McLennan, Gordon; Stavropoulos, S William
2018-06-01
The recognition of inferior vena cava filter related complications has motivated increased attentiveness in clinical follow-up of patients with inferior vena cava filters and has led to development of multiple approaches for retrieving filters that are challenging or impossible to remove using conventional techniques. Endobronchial forceps and excimer lasers are tools for designed to aid in complex inferior vena cava filter removals. This article discusses endobronchial forceps-assisted and excimer laser-assisted inferior vena cava filter retrievals. Copyright © 2018 Elsevier Inc. All rights reserved.
Bragg reflector based gate stack architecture for process integration of excimer laser annealing
NASA Astrophysics Data System (ADS)
Fortunato, G.; Mariucci, L.; Cuscunà, M.; Privitera, V.; La Magna, A.; Spinella, C.; Magrı, A.; Camalleri, M.; Salinas, D.; Simon, F.; Svensson, B.; Monakhov, E.
2006-12-01
An advanced gate stack structure, which incorporates a Bragg reflector, has been developed for the integration of excimer laser annealing into the power metal-oxide semiconductor (MOS) transistor fabrication process. This advanced gate structure effectively protects the gate stack from melting, thus solving the problem related to protrusion formation. By using this gate stack configuration, power MOS transistors were fabricated with improved electrical characteristics. The Bragg reflector based gate stack architecture can be applied to other device structures, such as scaled MOS transistors, thus extending the possibilities of process integration of excimer laser annealing.
Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji
2014-12-01
Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage.
Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.
2005-01-01
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.
NASA Astrophysics Data System (ADS)
McLean, E. A.; Deniz, A. V.; Schmitt, A. J.; Stamper, J. A.; Obenschain, S. P.; Lehecka, T.; Mostovych, A. N.; Seely, J.
1999-08-01
The Nike KrF laser, with its very uniform focal distributions, has been used at intensities near 10 14 W/cm 2 to launch shock waves in polystyrene targets. The rear surface visible light emission differed between clear polystyrene (CH) targets and targets with a thin (125 nm) Al coating on the rear side. The uncoated CH targets showed a relatively slowly rising emission followed by a sudden fall when the shock emerges, while the Al-coated targets showed a rapid rise in emission when the shock emerges followed by a slower fall, allowing an unambiguous determination of the time the shock arrived at the rear surface. A half-aluminized target allowed us to observe this difference in a single shot. The brightness temperature of both the aluminized targets and the non-aluminized targets was slightly below but close to rear surface temperature predictions of a hydrodynamic code. A discussion of preheat effects is given.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.
2015-08-01
A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.
Laser-Plasma Interactions on NIKE and the Fusion Test Facility
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, James
2008-11-01
Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.
Simulations of Foils Irradiated by Finite Laser Spots
NASA Astrophysics Data System (ADS)
Phillips, Lee
2006-10-01
Recent proposed designs (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities with lower laser energies combined with higher irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser is expected to minimize LPI, and this is being studied by experiments on NRL's NIKE laser. Here we report on simulations aimed at designing and interpreting these experiments. The 2d simulations employ a modification of the FAST code to ablate plasma from CH and DT foils using laser pulses with arbitrary spatial and temporal profiles. These include the customary hypergaussian NIKE profile, gaussian profiles, and combinations of these. The simulations model the structure of the ablating plasma and the absorption of the laser light, providing parameters for design of the experiment and indicating where the relevant LPI (two-plasmon, Raman) may be observed.
Oxidation of laser-induced plasma species in different background conditions
NASA Astrophysics Data System (ADS)
Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander
2013-08-01
The evolution of Lu and LuO species in a laser ablation plasma from different targets has been investigated by simultaneously performing mass spectrometry and plasma imaging. Ablation was achieved with a 248 nm KrF laser from a Lu, a Lu2O5 and a LuMnO3 target under different background gas conditions. Mass spectrometry measurements show very similar intensities and ratios for the respective species for all three targets under the same ablation conditions. This indicates only a small influence of the target on the final Lu and LuO contents in the plasma, with the major influence coming from collisions with the background gas. Furthermore, spatially, timely and spectrally resolved plasma imaging was utilized to clearly identify the shockwave at the plasma front as the main region for Lu oxidation. A strong decrease of Lu intensities together with a directly correlated increase of LuO was observed toward the outer regions of the plasma.
NASA Astrophysics Data System (ADS)
Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich
We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.
Forming n/p Junctions With An Excimer Laser
NASA Technical Reports Server (NTRS)
Alexander, Paul, Jr.; Campbell, Robert B.; Wong, David C.; Bottenberg, William L.; Byron, Stanley
1988-01-01
Compact equipment yields high-quality solar cells. Computer controls pulses of excimer laser and movement of silcon wafer. Mirrors direct laser beam to wafer. Lenses focus beam to small spot on surface. Process suitable for silicon made by dendritic-web-growth process.
Arba-Mosquera, Samuel; Klinner, Thomas
2014-03-01
To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, H. K.; Krüger, O.; Külberg, A.; Rass, J.; Zeimer, U.; Kolbe, T.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.
2017-12-01
We report on a chip design which allows the laser lift-off (LLO) of the sapphire substrate sustaining the epitaxial film of flip-chip mounted deep ultraviolet light emitting diodes. A nanosecond pulsed excimer laser with a wavelength of 248 nm was used for the LLO. A mechanically stable chip design was found to be the key to prevent crack formation in the epitaxial layers and material chipping during the LLO process. Stabilization was achieved by introducing a Ti/Au leveling layer that mechanically supports the fragile epitaxial film. The electrical and optical characterization of devices before and after the LLO process shows that the device performance did not degrade by the LLO.
NASA Astrophysics Data System (ADS)
Boichenko, Aleksandr M.; Yakovlenko, Sergei I.
2006-12-01
It was shown earlier that the ionisation propagation in a gas at about the atmospheric pressure may proceed due to the multiplication of the existing electrons with a low background density rather than the transfer of electrons or photons. We consider the feasibility of using the plasma produced in the afterglow of this background-electron multiplication wave for pumping plasma lasers (in particular, Xe2* xenon excimer lasers) as well as excilamps. Simulations show that it is possible to achieve the laser effect at λapprox172 nm as well as to substantially improve the peak specific power of the spontaneous radiation of xenon lamps.
Effect of laser UV radiation on the eye scleral tissue in patients with open-angle glaucoma
NASA Astrophysics Data System (ADS)
Razhev, A. M.; Iskakov, I. A.; Churkin, D. S.; Orishich, A. M.; Maslov, N. A.; Tsibul'skaya, E. O.; Lomzov, A. A.; Ermakova, O. V.; Trunov, A. N.; Chernykh, V. V.
2018-05-01
We report the results of an experimental study of the effect of short-pulse laser UV radiation on the eye scleral tissue. As samples, we used isolated flaps of the eye scleral tissue from the patients with open-angle glaucoma of the second and third stages. The impact was implemented using the radiation of an excimer XeCl laser with a wavelength of 308 nm and a laser with a wavelength tunable within from 210 to 355 nm. Depending on the problem to be solved, the energy density on the surface of the irradiated tissue varied from a fraction of mJ cm-2 to 15 J cm-2. For the first time we studied the optical properties of the intraocular fluid in the UV and blue spectral range. The study of the ablation process under the action of radiation with a wavelength of 308 nm showed that the rate of material evaporation can vary within 24%–30% at an energy density above 7 J cm-2, depending on the glaucoma stage and the individual features of a patient. The excitation–emission matrices of laser-induced fluorescence (LIF) of the eye scleral tissue were studied experimentally using a laser with a wavelength tuned in the range 210–355 nm. We found the differences in the LIF spectra caused by the excitation wavelength and the openangle glaucoma stage.
The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide
NASA Astrophysics Data System (ADS)
Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.
2009-12-01
Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.
Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation
NASA Technical Reports Server (NTRS)
Williams, Richard M.; Leone, Stephen R.
1994-01-01
Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.
Effects of wavelength and water quality on photodegradation of N-Nitrosodimethylamine (NDMA).
Sakai, Hiroshi; Takamatsu, Tatsuro; Kosaka, Koji; Kamiko, Naoyuki; Takizawa, Satoshi
2012-10-01
N-Nitrosodimethylamine (NDMA) is a potent carcinogen that yields a cancer risk of 10(-6) at concentrations as low as 0.7 ng L(-1). Tentative guideline values are set at 3 ng L(-1) in California, USA; 9 ng L(-1) in Ontario, Canada; 40 ng L(-1) nationwide in Canada; and 100 ng L(-1) by the World Health Organization. NDMA is a great concern in treating reclaimed water as well as drinking water. UV degradation can be considered effective degradation method. A 1-log reduction of NDMA is achieved by 1000 mJ cm(-2) of a 254-nm low pressure (LP) mercury UV lamp. However, a higher degradation efficiency than that provided by LP lamps is desired in practical treatment. In this study, the effects of wavelength and water quality were investigated to achieve higher degradation efficiency. The effects of wavelength were examined by comparing three UV lamps: a 222-nm Kr Cl Excimer UV lamp, a 254-nm LP mercury UV lamp, and a 230- to 270-nm filtered medium pressure (FMP) mercury UV lamp. The 222-nm lamp and FMP lamp achieved 4 times and 2.8 times higher degradation efficiency, respectively, than the conventional 254-nm LP lamp. Effects on water quality were also simulated by using absorption spectrum data of nitrate solutions and process water from a drinking-water treatment plant. In the simulation, the 222-nm lamp was affected by UV-absorbing compounds in the water, whereas the FMP lamp showed more stable degradation efficiency. Appropriate use of these three types of lamps could enhance the efficiency of degradation of NDMA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Laser-driven hydrothermal process studied with excimer laser pulses
NASA Astrophysics Data System (ADS)
Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.
2017-08-01
Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.
Myopic keratomileusis by excimer laser on a lathe.
Ganem, S; Aron-Rosa, D; Gross, M; Rosolen, S
1994-01-01
We designed an excimer laser keratomileusis delivery system to increase the regularity of the refractive cut surface and allow greater precision in the level and shape of the ablated zone. A parallel faced corneal disc was produced by microkeratectomy from six human eyes and surgical keratectomy in 12 beagle corneas. A 193-nanometer excimer laser that was used to project an oval beam onto the corneal disc was rotated on a flat surface to ensure overlapping of the ovally ablated areas between pulses. Electron microscopy of eye bank lenticules demonstrated a circular smooth regularly concave ablation zone. Histological examination of nine clear corneas confirmed thinning of the stroma without fibroblastic reaction and no epithelial hypertrophy. Mean preoperative corneal power of 43.15 +/- 2.18 decreased postoperatively to 33.61 +/- 2.34. The new technique of excimer laser keratomileusis has the advantage of a cut surface smoother and the clear zone is devoid of the stepwise concavity and irregularity seen in diaphragm based photoablation delivery systems.
Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.
Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E
2015-11-11
Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the PDI excimer excited state manifold.
Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W; Trivedi, Sheetal; Lowy, Franklin D; Spotnitz, Henry M; Hammer, Scott M; Brenner, David J
2013-01-01
0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ~200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. The aim of this work was to test the biophysically-based hypothesis that ~200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin.
Mauck, Catherine M; Hartnett, Patrick E; Margulies, Eric A; Ma, Lin; Miller, Claire E; Schatz, George C; Marks, Tobin J; Wasielewski, Michael R
2016-09-14
Singlet fission (SF) in polycrystalline thin films of four 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) chromophores with methyl (Me), n-hexyl (C6), triethylene glycol (TEG), and 2-ethylhexyl (EH) substituents at the 2,5-positions is found to involve an intermediate excimer-like state. The four different substituents yield four distinct intermolecular packing geometries, resulting in variable intermolecular charge transfer (CT) interactions in the solid. SF from the excimer state of Me, C6, TEG, and EH takes place in τSF = 22, 336, 195, and 1200 ps, respectively, to give triplet yields of 200%, 110%, 110%, and 70%, respectively. The transient spectra of the excimer-like state and its energetic proximity to the lowest excited singlet state in these derivatives suggests that this state may be the multiexciton (1)(T1T1) state that precedes formation of the uncorrelated triplet excitons. The excimer decay rates correlate well with the SF efficiencies and the degree of intermolecular donor-acceptor interactions resulting from π-stacking of the thiophene donor of one molecule with the DPP core acceptor in another molecule as observed in the crystal structures. Such interactions are found to also increase with the SF coupling energies, as calculated for each derivative. These structural and spectroscopic studies afford a better understanding of the electronic interactions that enhance SF in chromophores having strong intra- and intermolecular CT character.
Liu, Neng; Moumanis, Khalid; Dubowski, Jan J.
2015-01-01
The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm2, respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer’s surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm2 and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si–(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals. PMID:26575362
Liu, Neng; Moumanis, Khalid; Dubowski, Jan J
2015-11-09
The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.
Calcified lesion modeling for excimer laser ablation
NASA Astrophysics Data System (ADS)
Scott, Holly A.; Archuleta, Andrew; Splinter, Robert
2009-06-01
Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.
An Experimental Characterization System for Deep Ultra-Violet (UV) Photoresists
NASA Astrophysics Data System (ADS)
Drako, Dean M.; Partlo, William N.; Oldham, William G.; Neureuther, Andrew R.
1989-08-01
A versatile system designed specifically for experimental automated photoresist characterization has been constructed utilizing an excimer laser source for exposure at 248nm. The system was assembled, as much as possible, from commercially available components in order to facilitate its replication. The software and hardware are completely documented in a University of California-Berkeley Engineering Research Lab Memo. An IBM PC-AT compatible computer controls an excimer laser, operates a Fourier Transform Infrared (FTIR) Spectrometer, measures and records the energy of each laser pulse (incident, reflected, and transmitted), opens and closes shutters, and operates two linear stages for sample movement. All operations (except FTIR data reduction) are managed by a control program written in the "C" language. The system is capable of measuring total exposure dose, performing bleaching measurements, creating and recording exposure pulse sequences, and generating exposure patterns suitable for multiple channel monitoring of the development. The total exposure energy, energy per pulse, and pulse rate are selectable over a wide range. The system contains an in-situ Fourier Transform Infrared Spectrometer for qualitative and quantitative analysis of the photoresist baking and exposure processes (baking is not done in-situ). FIIR may be performed in transmission or reflection. The FTIR data will form the basis of comprehensive multi-state resist models. The system's versatility facilitates the development of new automated and repeatable experiments. Simple controlling software, utilizing the provided interface sub-routines, can be written to control new experiments and collect data.
Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J
2014-01-08
We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.
NASA Astrophysics Data System (ADS)
Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Salman Ahmed, Qazi
2017-11-01
The variation in surface morphology and hardness of human deciduous teeth samples has been investigated after laser irradiation at different wavelengths and energies. Nd:YAG was employed as a source of irradiation for IR (1064 nm) and visible (532 nm) radiation, whereas an excimer laser was used as the source of UV (248 nm) radiation. Scanning electron microscope (SEM) analysis was carried out to reveal the surface morphological evolution of teeth samples. Vickers microhardness tester was employed to investigate the modifications in the hardness of the laser-treated samples. It is observed from SEM analysis that IR wavelength is responsible for ablation of collagen matrix and intertubular dentine. For visible radiation, the ablation of collagen along with hydroxypatite is observed. With UV radiation, the ablation of peritubular dentine is dominant and is responsible for the sealing of tubules. The decrease in hardness at lower energy for both wavelengths is due to the evaporation of carbon content. With increasing energy, evaporation of water along with carbon content, and resolidification and re-organization of inorganic content causes the increase in hardness of the treated dentine. SEM as well as microhardness analyses reveal that laser wavelengths and energy of laser radiation significantly influence the surface morphology and hardness of samples.
NASA Astrophysics Data System (ADS)
El-Daly, S. A.; Gaber, M.; El-Sayed, Y. S.
2009-09-01
The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser ( λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460-590 nm. The laser parameters such as the tuning range, gain coefficient ( α), emission cross section ( σ e) and half-life energy ( E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.
Bound-bound transitions in the emission spectra of Ba+-He excimer
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Kono, K.
2016-05-01
We present an experimental and theoretical study of the emission and absorption spectra of the Ba+ ions and Ba+*He excimer quasimolecules in the cryogenic Ba-He plasma. We observe several spectral features in the emission spectrum, which we assign to the electronic transitions between bound states of the excimer correlating to the 6 2P3 /2 and 5 2D3 /2 ,5 /2 states of Ba+. The resulting Ba+(5 2DJ) He is a metastable electronically excited complex with orbital angular momentum L =2 , thus expanding the family of known metal-helium quasimolecules. It might be suitable for high-resolution spectroscopic studies and for the search for new polyatomic exciplex structures.
0.35-μm excimer DUV photolithography process
NASA Astrophysics Data System (ADS)
Arugu, Donald O.; Green, Kent G.; Nunan, Peter D.; Terbeek, Marcel; Crank, Sue E.; Ta, Lam; Capsuto, Elliott S.; Sethi, Satyendra S.
1993-08-01
It is becoming increasingly clear that DUV excimer laser based imaging will be one of the technologies for printing sub-half micron devices. This paper reports the investigation of 0.35 micrometers photolithography process using chemically amplified DUV resists on organic anti- reflective coating (ARC). Production data from the GCA XLS excimer DUV tools with nominal gate width of 0.35 micrometers lines, 0.45 micrometers spaces was studied to demonstrate device production worthiness. This data included electrical yield information for device characterization. Exposure overlay was done by mixing and matching DUV and I-line GCA steppers for critical and non critical levels respectively. Working isolated transistors down to 0.2 micrometers have been demonstrated.
Ablation algorithms and corneal asphericity in myopic correction with excimer lasers
NASA Astrophysics Data System (ADS)
Iroshnikov, Nikita G.; Larichev, Andrey V.; Yablokov, Michail G.
2007-06-01
The purpose of this work is studying a corneal asphericity change after a myopic refractive correction by mean of excimer lasers. As the ablation profile shape plays a key role in the post-op corneal asphericity, ablation profiles of recent lasers should be studied. The other task of this research was to analyze operation (LASIK) outcomes of one of the lasers with generic spherical ablation profile and to compare an asphericity change with theoretical predictions. The several correction methods, like custom generated aspherical profiles, may be utilized for mitigation of unwanted effects of asphericity change. Here we also present preliminary results of such correction for one of the excimer lasers.
Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States.
Dubinets, N O; Safonov, A A; Bagaturyants, A A
2016-05-05
Possible structures of the naphthalene dimer corresponding to local energy minima in the ground and excited (excimer) electronic states are comprehensively investigated using DFT-D and TDDFT-D methods with a special accent on the excimer structures. The corresponding binding and electronic transition energies are calculated, and the nature of the electronic states in different structures is analyzed. Several parallel (stacked) and T-shaped structures were found in both the ground and excited (excimer) states in a rather narrow energy range. The T-shaped structure with the lowest energy in the excited state exhibits a marked charge transfer from the upright molecule to the base one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivyakin, G. K.; Volodin, V. A., E-mail: volodin@isp.nsc.ru; Kochubei, S. A.
Silicon nanocrystals are formed in the i layers of p–i–n structures based on a-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm{sup 2} (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR)more » range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.« less
Circularly polarized luminescence of helically assembled pyrene π-stacks on RNA and DNA duplexes.
Nakamura, Mitsunobu; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige
2018-05-01
In this report, we describe the circularly polarized luminescence (CPL) of the RNA duplexes having one to four 2'-O-pyrene modified uridines (Upy) and the DNA duplexes having two, four, and six pyrene modified non-nucleosidic linkers (Py). Both the pyrene π-stack arrays formed on the RNA and DNA double helical structures exhibited pyrene excimer fluorescence. In the pyrene-modified RNA systems, the RNA duplex having four Upys gives CPL emission with g lum value of <0.01 at 480 nm. The structure of pyrene stacks on the RNA duplex may be rigidly regulated with increase in the Upy domains, which resulted in the CPL emission. In the DNA systems, the pyrene-modified duplexes containing two and four Pys exhibited CPL emission with g lum values of <0.001 at 505 nm. The pyrene π-stack arrays presented here show CPL emission. However, the g lum values are relatively small when compared with our previous system consisting of the pyrene-zipper arrays on RNA. © 2018 Wiley Periodicals, Inc.
Gianfaldoni, Serena; Tchernev, Georgi; Wollina, Uwe; Lotti, Torello
2017-07-25
Barber's palmoplantar pustulosis (PPP) is a form of localised pustular psoriasis, affecting the palmar and plantar surfaces. It is a chronic disease, with a deep impact on the patients' quality of life. The Authors discuss a case of Baber Psoriasis successfully treated with monochromatic excimer light.
Gianfaldoni, Serena; Tchernev, Georgi; Wollina, Uwe; Lotti, Torello
2017-01-01
Barber’s palmoplantar pustulosis (PPP) is a form of localised pustular psoriasis, affecting the palmar and plantar surfaces. It is a chronic disease, with a deep impact on the patients’ quality of life. The Authors discuss a case of Baber Psoriasis successfully treated with monochromatic excimer light. PMID:28785333
NASA Astrophysics Data System (ADS)
Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali
2018-01-01
Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.
Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shwartz, J; Kulkarny, V A; Ausherman, D A
1980-01-01
Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional,more » low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.« less
Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.
1993-01-01
Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.
Synthesis and crystal structure of novel fluorescent 1,3,4-oxadiazole-containing carboxylate ligands
NASA Astrophysics Data System (ADS)
Mikhailov, Igor E.; Popov, Leonid D.; Tkachev, Valery V.; Aldoshin, Sergey M.; Dushenko, Galina A.; Revinskii, Yurii V.; Minkin, Vladimir I.
2018-04-01
Novel chelating ligands, 3-(5-aryl-1,3,4-oxadiazol-2-yl)acrylic acids and their zinc complexes were synthesized and their spectral and luminescent properties studied. The compounds intensively (quantum efficiencies φ = 0.18-0.76) luminesce in nonpolar solvents in the blue-green region (λmaxPL = 458-504 nm) of the spectrum. Molecular and crystal structures of 3-[5-(4-dimethylaminophenyl)-1,3,4-oxadiazol-2-yl]acrylic acid were established using X-ray crystallography. In crystal, the infinite chains of the molecules lie in the parallel planes and are arranged by the "head to tail" type to provide for strong π-π stacking interactions between the layers facilitating appearance of high electron transport properties and formation of excimers.
NASA Astrophysics Data System (ADS)
Shams El-Din, M. A.
2018-04-01
The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.
3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires
NASA Astrophysics Data System (ADS)
Gontad, F.; Caricato, A. P.; Manera, M. G.; Colombelli, A.; Resta, V.; Taurino, A.; Cesaria, M.; Leo, C.; Convertino, A.; Klini, A.; Perrone, A.; Rella, R.; Martino, M.
2016-05-01
Silica two-dimensional substrates and nanowires (NWs) forests have been successfully decorated with Au nanoparticles (NPs) through laser ablation by using a pulsed ArF excimer laser, for sensor applications. A uniform coverage of both substrate surfaces with NPs has been achieved controlling the number of laser pulses. The annealing of the as-deposited particles resulted in a uniform well-defined distribution of spherical NPs with an increased average diameter up to 25 nm. The deposited samples on silica NWs forest present a very good plasmonic resonance which resulted to be very sensitive to the changes of the environment (ethanol/water solutions with increasing concentration of ethanol) allowing the detection of changes on the second decimal digit of the refractive index, demonstrating its potentiality for further biosensing functionalities.
NASA Technical Reports Server (NTRS)
Mckenzie, Robert L.
1988-01-01
An analytical study and its experimental verification are described which show the performance capabilities and the hardware requirements of a method for measuring atmospheric density along the Space Shuttle flightpath during entry. Using onboard instrumentation, the technique relies on Rayleigh scattering of light from a pulsed ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing density measurements with an uncertainty of less than 1 percent and with a spatial resolution along the flightpath of 1 km, over an altitude range from 50 to 90 km. Experimental verification of the signal linearity and the expected signal-to-noise ratios is demonstrated in a simulation facility at conditions that duplicate the signal levels of the flight environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dijkkamp, D.; Venkatesan, T.; Wu, X.D.
We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO/sub 3/ and Al/sub 2/O/sub 3/ substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the usemore » of ultrahigh vacuum techniques.« less
A study of angular dependence in the ablation rate of polymers by nanosecond pulses
NASA Astrophysics Data System (ADS)
Pedder, James E. A.; Holmes, Andrew S.
2006-02-01
Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.
Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing
NASA Astrophysics Data System (ADS)
Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.
2017-11-01
High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8 × 1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1 × 1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.
NASA Astrophysics Data System (ADS)
Li, Tiejun; Lou, Qihong; Dong, Jingxing; Wei, Yunrong; Liu, Jingru
2001-03-01
Surface ablation of cobalt cemented tungsten carbide hardmetal has been carried out in this work using a 308 nm, 30 ns XeCl excimer laser. The surface phase transformation on different pulse number of laser shots has been investigated by means of XRD and microphotography as well as AES at laser fluence of 2.5 J/cm 2. The experimental results showed that the phase structure of irradiated area has partly transformed from original WC to β-WC 1- x, then to α-W 2C and CW 3, and finally to W crystal. It is suggested that the formation of non-stoichiometric tungsten carbide should result from the escaping of carbon element due to accumulated heating of surface by pulsed laser irradiation.
Pulsed laser-induced formation of silica nanogrids
2014-01-01
Silica grids with micron to sub-micron mesh sizes and wire diameters of 50 nm are fabricated on fused silica substrates. They are formed by single-pulse structured excimer laser irradiation of a UV-absorbing silicon suboxide (SiO x ) coating through the transparent substrate. A polydimethylsiloxane (PDMS) superstrate (cover layer) coated on top of the SiO x film prior to laser exposure serves as confinement for controlled laser-induced structure formation. At sufficiently high laser fluence, this process leads to grids consisting of a periodic loop network connected to the substrate at regular positions. By an additional high-temperature annealing, the residual SiO x is oxidized, and a pure SiO2 grid is obtained. PACS 81.07.-b; 81.07.Gf; 81.65.Cf PMID:24581305
The interhalogens IF and ICI as visible oscillators or amplifiers
NASA Technical Reports Server (NTRS)
Eden, J. G.; Dlabal, M. L.; Hutchison, S. B.
1981-01-01
The kinetic and spectroscopic properties of the interhalogens are reviewed, with emphasis on the iodine-monochloride (ICl) and iodine-monofluoride (IF) systems; the latter having produced 140 kW, 30 nsec FWHM pulses at 491 and 485 nm and may be scaled to the tens of millijoules per pulse level. Gain in excess of 1.0%/cm was observed across the entire IF blue-green band, demonstrating potentially wide tunability. Although ICl has not yet lased, its peak small-signal gain of 1.3%/cm and negligible background absorption in discharge plasmas make it an attractive candidate for a violet amplifier. The formation kinetics of IF- and ICl-excimer lasers in electron beam or discharge-produced plasmas, and the potential and limitations of these molecules as visible lasers or amplifiers are also discussed.
Vacuum barrier for excimer lasers
Shurter, Roger P.
1992-01-01
A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.
Ramirez, Alexies; Gentlesk, Philip J; Peele, Mark E; Eckart, Robert E
2012-07-01
Device therapy is becoming common in those patients with renal insufficiency. Coexisting need for arteriovenous (AV) fistula placement is often contemplated relative to device placement. We describe the excimer laser lead extraction of a malfunctioning chronic atrial pacemaker lead ipsilateral to an AV fistula.
Laser- and Particle-Beam Chemical Processes on Surfaces. Volume 129
1989-12-26
explosive decomposition of organometallic compounds with single pulse laser irradiation . This new... ultrashort , meaning ultra high intensity , excimer laser pulses , two-photon absorption becomes important and limits the penetration depth of the laser ...requires a higher photon load before suffering damage to its chemical structure. With extremely high light intensities , ultrashort excimer laser pulses
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markosyan, Aram H.
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
Cameron, J A; Antonios, S R; Badr, I A
1995-01-01
Shield-shaped corneal ulcers and corneal plaques in vernal keratoconjunctivitis are associated with delayed epithelial healing, as well as the risks of infectious keratitis and sterile stromal ulceration. Significant visual impairment due to scarring and irregular astigmatism may result from central corneal lesions. Three eyes with central corneal lesions resulting from vernal keratoconjunctivitis were treated by excimer laser after active vernal keratoconjunctivitis was controlled and inflammatory plaque overlying the shield ulcers was removed. All three eyes showed rapid reepithelialization within 1 week. Spectacle-corrected visual acuity of 20/30 or better was obtained in each eye. In selected patients, excimer laser phototherapeutic keratectomy may be a useful adjunct in the treatment of shield-shaped corneal ulcers and plaques in vernal keratoconjunctivitis.
High efficiency and stable white OLED using a single emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian
2016-01-18
The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-basedmore » white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.« less
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
Markosyan, Aram H.
2018-01-05
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Pulsed excimer laser processing
NASA Technical Reports Server (NTRS)
Wong, D.
1985-01-01
The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.