NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing
2018-02-01
Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at Δτ >= 174 ns. That path the way for the high speed ultra-fast nanostructuring of dielectric surfaces by self-organizing processes. The different surface structures were analyzed by scanning electron microscopy (SEM) and white light interferometry (WLI).
Rabbit electroretinograms evoked by 632.8nm laser flash stimuli
NASA Astrophysics Data System (ADS)
Yang, Zai-Fu; Chen, Hong-Xia; Wang, Jia-Rui; Guan, Bo-Lin; Yu, Guang-Yuan; Zhang, Xiao-Na; Zhang, Wen-Yuan; Yang, Jing-Geng
2012-12-01
The flash electroretinography is a standard electrophysiological method and widely employed in basic research and ophthalmology clinics, of which the stimulus is usually white flash from dome stimulator. However, little is known about the electroretinograms (ERGs) evoked by monochromatic laser flash stimuli. The goal of this research effort is to quantify the ERGs of dark-adapted New Zealand rabbits elicited by He-Ne laser flash with wavelength 632.8 nm. The flash field was a Maxwellian viewing disc with angular subtense of 8.5°, 13.3° or 20.2°. The stimulus duration was 12 ms, 22 ms, 70 ms or 220 ms. The laser flash power incident on the cornea varied from 2.2 nW through 22 mW. Under the condition of 20 ms stimulus duration and 20.2° flash field, the ERG of New Zealand rabbit was compared with that of Chinchilla gray rabbit. Results showed that for the ERG b-wave, with the increase of laser energy, the amplitude first increased, then met a trough and finally increased again, the implicit time decreased first and then met a platform. While for the ERG a-wave, the amplitude increased and the implicit time decreased monotonically. Longer stimulus duration led to lower b-wave amplitude under equal flash power level. The flash field size showed limited effect on the ERG, especially on the low energy end. As compared with the pigmented rabbit, the albino rabbit was more sensitive and the threshold energy for b-wave excitation was about 10 times lower.
FLASH2: Operation, beamlines, and photon diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion
2016-07-27
FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less
Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu
2015-05-01
A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.
The examination of berberine excited state by laser flash photolysis
NASA Astrophysics Data System (ADS)
Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong
2009-07-01
The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.
Simulation of medical Q-switch flash-pumped Er:YAG laser
NASA Astrophysics Data System (ADS)
-Yan-lin, Wang; Huang-Chuyun; Yao-Yucheng; Xiaolin, Zou
2011-01-01
Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm-1. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.
Photonic Modulation Using Bi-Directional Diamond Shaped Ring Lasers at 1550 NM
2007-04-01
modes for (a) 1% of the relaxation running oscillation frequency and (b) just below free running relaxation oscillation frequency ... List of Tables Table 1. Power requirements needed for a ring laser based flash architecture. Table 2. Achievable bits using 10 mW and
Hartmann wavefront sensors and their application at FLASH.
Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus
2016-01-01
Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.
NASA Astrophysics Data System (ADS)
Karadimitriou, N.; Klinkenberg, B.; Papadopoulos, D. N.; Serafetinides, A. A.
2007-07-01
Laser ablation for the formation of apodized patterns on intraocular lenses, as an alternative of the conventional injection molding, has been proved to be a very promising new technique. For the precise lenses ablation, the use of suitable laser wavelength and pulse duration, resulting in a small optical penetration depth in the lens and in confinement of the energy deposition in a small volume, as well as the reduced thermal damage to the surrounding tissue, is essential. Mid-infrared laser wavelengths, at which the organic biological simulators absorption coefficient is large, meet well the above conditions. Towards the complete understanding of the intraocular lens ablation procedure and therefore the choice of the optimum laser beam characteristics for the most accurate, efficient and safe surgical application, the comparative study of various mid-infrared laser sources is of great interest. In this work we investigate the potential of the development of three different mid-infrared laser sources, namely the Yb:YAG, the Cr:Tm:Ho:YAG and the Er:Tm:Ho:YLF laser, operating at 1029 nm, 2060 nm and 2080 nm respectively and their ability in forming patterns on biomaterials. Pumping was achieved with conventional Xe flash lamps in a double elliptical pump chamber. A properly designed Pulse-Forming- Network capable of delivering energy up to 800 J, in variable lamp illumination durations is used. Several hundreds of mJoules were achieved from the Yb:YAG laser oscillator and several Joules from the Ho:YAG and Ho:YLF laser oscillators. Free running and Q-switched laser operation studies and preliminary experiments on laser and biomaterials (biopolymers and animal tissues) interactions will be reported.
Laser emission from flash ignition of Zr/Al nanoparticles.
Yang, Fan; Kang, Xiaoli; Luo, Jiangshan; Sun, Laixi; Xia, Handing; Yi, Zao; Tang, Yongjian
2017-10-02
We report the first laser emission from flash ignition of Zr/Al nanoparticles with the addition of strong oxidizer KClO 4 using Nd: YAG as a laser medium. The mixture Zr/Al/Kp-45 (mass ratio = 33%Zr: 33%Al: 34%KClO 4 ) has the highest brightness temperature Tb = 4615 K and the adiabatic flame temperature Tf = 4194 K with the duration of 20 ms. At 1064 nm we measured a maximum output energy of 702.5 mJ with the duration of nearly 10 ms by using only 100 mg mixture with an output coupler (transmission T = 10%). Further optimizing the concentration cavity and increasing the mixture content will yield much higher efficiency and output energy.
Observation of nanosecond laser induced fluorescence of in vitro seawater phytoplankton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bensky, Thomas J.; Clemo, Lisa; Gilbert, Chris
2008-08-01
Seawater has been irradiated using a train of 70 ns flashes from a 440 nm laser source. This wavelength is on resonance with the blue absorption peak of Chlorophyll pigment associated with the photosystem of in vitro phytoplankton. The resulting fluorescence at 685 nm is instantaneously recorded during each laser pulse using a streak camera. Delayed fluorescence is observed, yielding clues about initiation of the photosynthetic process on a nanosecond time scale. Further data processing allows for determination of the functional absorption cross section, found to be 0.0095 ?{sup 2}, which is the first reporting of this number for inmore » vitro phytoplankton. Unlike other flash-pump studies of Chlorophyll, using a LED or flashlamp-based sources, the short laser pulse used here does not reveal any pulse-to-pulse hysteresis (i.e., variable fluorescence), indicating that the laser pulses used here are not able to drive the photosynthetic process to completion. This is attributed to competition from a back reaction between the photoexcited photosystem II and the intermediate electron acceptor. The significance of this work as a new type of deployable ocean fluorimeter is discussed, and it is believed the apparatus will have applications in thin-layer phytoplankton research.« less
Semiconductor cylinder fiber laser
NASA Astrophysics Data System (ADS)
Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp
2015-12-01
We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.
NASA Astrophysics Data System (ADS)
Cheng, Ling-Li; Wang, Mei; Zhu, Hui; Li, Kun; Zhu, Rong-Rong; Sun, Xiao-Yu; Yao, Si-De; Wu, Qing-Sheng; Wang, Shi-Long
2009-09-01
Using 266 nm laser flash photolysis it has been demonstrated that Berberine (BBR) in aqueous solution is ionized via a mono-photonic process giving a hydrated electron, anion radical that formed by hydrated electron react with steady state of BBR, and neutral radical that formed from rapid deprotonation of the radical cation of BBR. The quantum yield of photoionization is determined to be 0.03 at room temperature with KI solution used as a reference. Furthermore utilizing pH changing method and the SO 4rad - radical oxidation method, the assignment of radical cation of BBR was further confirmed, the p Ka value of it was calculated, and the related set up rate constant was also determined.
Nanosecond laser photolysis studies of vitamin K 3 in aqueous solution
NASA Astrophysics Data System (ADS)
Chen, J. F.; Ge, X. W.; Chu, G. S.; Zhang, Z. C.; Zhang, M. W.; Yao, S. D.; Lin, N. Y.
1999-06-01
Vitamin K 3 in aqueous solution was investigated by 248 nm laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments by Mn 2+ and O 2. In neutral solutions, the intermediates recorded were assigned to excited triplet states and dehydrogenated radicals of vitamin K 3. In comparison with the results of pulse radiolytical experiment, vitamin K 3 not only has strong electron affinity but could also could be photoionized by UV laser light. All this shows that vitamin K 3 acts as an effective electron carrier and electron transfer agent.
Novel short-pulse laser diode source for high-resolution 3D flash lidar
NASA Astrophysics Data System (ADS)
Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier
2017-06-01
Imaging based on laser illumination is present in various fields of applications such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified the recent years. Among the various technologies currently studied, automotive lidars are a fast-growing one due to their accuracy to detect a wide range of objects at distances up to a few hundreds of meters in various weather conditions. First commercialized devices for ADAS were laser scanners. Since then, new architectures have recently appeared such as solid-state lidar and flash lidar that offer a higher compactness, robustness and a cost reduction. Flash lidars are based on time-of-flight measurements, with the particularity that they do not require beam scanners because only one short laser pulse with a large divergence is used to enlighten the whole scene. Depth of encountered objects can then be recovered from measurement of echoed light at once, hence enabling real-time 3D mapping of the environment. This paper will bring into the picture a cutting edge laser diode source that can deliver millijoule pulses as short as 12 ns, which makes them highly suitable for integration in flash lidars. They provide a 100-kW peak power highly divergent beam in a footprint of 4x5 cm2 (including both the laser diode and driver) and with a 30-% electrical-to-optical efficiency, making them suitable for integration in environments in which compactness and power consumption are a priority. Their emission in the range of 800-1000 nm is considered to be eye safe when taking into account the high divergence of the output beam. An overview of architecture of these state-of-the-art pulsed laser diode sources will be given together with some solutions for their integration in 3D mapping systems. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.
High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.
Bagnoud, Vincent; Guardalben, Mark J; Puth, Jason; Zuegel, Jonathan D; Mooney, Ted; Dumas, Paul
2005-01-10
A high-energy, high-average-power laser system, optimized to efficiently pump a high-performance optical parametric chirped-pulse amplifier at 527 nm, has been demonstrated. The crystal large-aperture ring amplifier employs two flash-lamp-pumped, 25.4-mm-diameter Nd:YLF rods. The transmitted wave front of these rods is corrected by magnetorheological finishing to achieve nearly diffraction-limited output performance with frequency-doubled pulse energies up to 1.8 J at 5 Hz.
Temporal characterization of the wave-breaking flash in a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Miao, Bo; Feder, Linus; Goers, Andrew; Hine, George; Salehi, Fatholah; Wahlstrand, Jared; Woodbury, Daniel; Milchberg, Howard
2017-10-01
Wave-breaking injection of electrons into a relativistic plasma wake generated in near-critical density plasma by sub-terawatt laser pulses generates an intense ( 1 μJ) and ultra-broadband (Δλ 300 nm) radiation flash. In this work we demonstrate the spectral coherence of this radiation and measure its temporal width using single-shot supercontinuum spectral interferometry (SSSI). The measured temporal width is limited by measurement resolution to 50 fs. Spectral coherence is corroborated by PIC simulations which show that the spatial extent of the acceleration trajectory at the trapping region is small compared to the radiation center wavelength. To our knowledge, this is the first temporal and coherence characterization of wave-breaking radiation. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
Research on the liquid coolant applied in the high repetition rate slab amplifier
NASA Astrophysics Data System (ADS)
Wang, Bingyan; Li, Yangshuai; Zhang, Panzheng; Wang, Li; Zhang, Yanli; Feng, Tao; Zhou, Qiong; Liu, Qiang; Li, Haiyuan; Zhang, Xu; Zhou, Shenlei; Ma, Weixin; Zhu, Jian; Zhu, Jianqiang
2018-03-01
High repetition rate slab amplifier (HRRSA) is extraordinarily indispensable for the future fusion power plant, ultra-short laser, laser weapon, and so on. Thermal controlling is the decisive factor for the repetition rate and the output energy of the slab amplifier. For larger clear aperture HRRSA, flash-lamp pumped slab amplifier based on neodymium phosphate glass (Nd:glass) is chosen with the liquid cooling. The liquid coolant circulates across the Nd:glass and takes off the thermal induced in the pumping process. A novel liquid coolant (Series A) whose refractive index is the same with Nd:glass is proposed to alleviate the wavefront distortion induced by thermal. The chemical stability of the liquid coolant under high energy flash-lamp irradiation with 200 shots and under the irradiation of a 1053nm laser with 19 hours and 37 hours are experimented. The results show that the chemical stability of the liquid coolant is stable under irradiation.
Tsao, Meng-Lin; Gritsan, Nina; James, Tammi R; Platz, Matthew S; Hrovat, David A; Borden, Weston Thatcher
2003-08-06
The photochemistry of ortho-biphenyl azide (1a) has been studied by laser flash photolysis (LFP), with UV-vis and IR detection of the transient intermediates formed. LFP (266 nm) of 1a in glassy 3-methylpentane at 77 K releases singlet ortho-biphenylnitrene (1b) (lambda(max) = 410 nm, tau = 59 +/- 6 ns), which under these conditions decays cleanly to the lower energy triplet state. In fluid solution at 298 K, 1b rapidly (tau < 10 ns) partitions between formation of isocarbazole (4) (lambda(max) = 430 nm, tau = 70 ns) and benzazirine (1e) (lambda(max) = 305 nm, tau = 12 ns). Isocarbazole 4 undergoes a 1,5-hydrogen shift, with k(H)/k(D) = 3.4 at 298 K to form carbazole 9 and smaller amounts of two other isocarbazoles (7 and 8). Benzazirine 1e ring-opens reversibly to azacycloheptatetraene (1f), which serves as a reservoir for singlet nitrene 1b. Azacycloheptatetraene 1f ultimately forms carbazole 9 on the millisecond time scale by the pathway 1f --> 1e --> 1b --> 4 --> 9. The energies of the transient intermediates and of the transition structures connecting them were successfully predicted by CASPT2/6-31G calculations. The electronic and vibrational spectra of the intermediates, computed by density functional theory, support the assignment of the transient spectra, observed in the formation of 9 from 1a.
Recent Progress Made in the Development of High-Energy UV Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.
2007-01-01
In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.
Laser head for simultaneous optical pumping of several dye lasers. [with single flash lamp
NASA Technical Reports Server (NTRS)
Mumola, P. B.; Mcalexander, B. T. (Inventor)
1975-01-01
The invention is a laser head for simultaneous pumping several dye lasers with a single flash lamp. The laser head includes primarily a multi-elliptical cylinder cavity with a single flash lamp placed along the common focal axis of the cavity and with capillary tube dye cells placed along each of the other focal axes of the cavity. The inside surface of the cavity is polished. Hence, the single flash lamp supplies the energy to the several dye cells.
NASA Astrophysics Data System (ADS)
Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.
2010-10-01
The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.
Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, L F; Uschmann, I; Forster, E
2006-09-25
Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...
2018-02-05
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
High power diode lasers for solid-state laser pumps
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Mcdonnell, Patrick N.
1994-01-01
The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.
Investigating the interaction of x-ray free electron laser radiation with grating structure.
Gaudin, Jérôme; Ozkan, Cigdem; Chalupský, Jaromír; Bajt, Saša; Burian, Tomáš; Vyšín, Ludek; Coppola, Nicola; Farahani, Shafagh Dastjani; Chapman, Henry N; Galasso, Germano; Hájková, Vera; Harmand, Marion; Juha, Libor; Jurek, Marek; Loch, Rolf A; Möller, Stefan; Nagasono, Mitsuru; Störmer, Michael; Sinn, Harald; Saksl, Karel; Sobierajski, Ryszard; Schulz, Joachim; Sovak, Pavol; Toleikis, Sven; Tiedtke, Kai; Tschentscher, Thomas; Krzywinski, Jacek
2012-08-01
The interaction of free electron laser pulses with grating structure is investigated using 4.6±0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7±8.7 mJ/cm2, the interaction triggers a damage process starting at the edge of the grating structure as evidenced by optical and atomic force microscopy. Simulations based on solution of the Helmholtz equation demonstrate an enhancement of the electric field intensity distribution at the edge of the grating structure. A procedure is finally deduced to evaluate damage threshold.
Clements, Andrew F; Haley, Joy E; Urbas, Augustine M; Kost, Alan; Rauh, R David; Bertone, Jane F; Wang, Fei; Wiers, Brian M; Gao, De; Stefanik, Todd S; Mott, Andrew G; Mackie, David M
2009-06-11
We examine the photophysics of a colloidal suspension of C(60) particles in a micellar solution of Triton X-100 and water, prepared via a new synthesis which allows high-concentration suspensions. The particle sizes are characterized by transmission electron microscopy and dynamic light scattering and found to be somewhat polydisperse in the range of 10-100 nm. The suspension is characterized optically by UV-vis spectroscopy, femtosecond transient absorption spectroscopy, laser flash photolysis, and z-scan. The ground-state absorbance spectrum shows a broad absorbance feature centered near 450 nm which is indicative of colloidal C(60). The transient absorption dynamics, presented for the first time with femtosecond resolution, are very similar to that of thin films of C(60) and indicate a strong quenching of the singlet excited state on short time scales and evidence of little intersystem crossing to a triplet excited state. Laser flash photolysis reveals that a triplet excited-state absorption spectrum, which is essentially identical in shape to that of molecular C(60) solutions, does indeed arise, but with much lower magnitude and somewhat shorter lifetime. Z-scan analysis confirms that the optical response of this material is dominated by nonlinear scattering.
NASA Technical Reports Server (NTRS)
Zhao, Z.; Stickel, R. E.; Wine, P. H.
1995-01-01
Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.
All-Solid-State UV Transmitter Development for Ozone Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.
2009-01-01
In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.
Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)
NASA Astrophysics Data System (ADS)
Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf
2007-07-01
Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.
Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, L F; Uschmann, I; Forster, E
2008-04-30
Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less
Bubble formation during pulsed laser ablation: mechanism and implications
NASA Astrophysics Data System (ADS)
van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius
1993-07-01
Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.
Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering
NASA Astrophysics Data System (ADS)
Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald
2017-10-01
Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.
Novel approach to real-time flash photolysis and confocal [Ca2+] imaging
Sobie, Eric A.; Kao, Joseph P.Y.; Lederer, W. J.
2008-01-01
Flash photolysis of “caged” compounds using ultraviolet light is a powerful experimental technique for producing rapid changes in concentrations of bioactive signaling molecules. Studies that employ this technique have used diverse strategies for controlling the spatial and temporal application of light to the specimen. Here we describe a new system for flash photolysis that delivers light from a pulsed, adjustable intensity laser through an optical fiber coupled into the epifluorescence port of a commercial confocal microscope. Photolysis is achieved with extremely brief (5 ns) pulses of ultraviolet light (355 nm) that can be synchronized with respect to confocal laser scanning. The system described also localizes the UV intensity spatially so that uncaging only occurs in defined sub-cellular regions; moreover, since the microscope optics are used in localization, the photolysis volume can be easily adjusted. Experiments performed on rat ventricular myocytes loaded with the Ca2+ indicator fluo-3 and the Ca2+ cage NP-EGTA demonstrate the system's capabilities. Localized intracellular increases in [Ca2+] can trigger sarcoplasmic reticular Ca2+ release events such as Ca2+ sparks and, under certain conditions, regenerative Ca2+ waves. This relatively simple and inexpensive system is therefore a useful tool for examining local signaling in heart and other tissues. PMID:17323075
Ayitou, Anoklase J-L; Flynn, Kristen; Jockusch, Steffen; Khan, Saeed I; Garcia-Garibay, Miguel A
2016-03-02
Aqueous suspensions of nanocrystals in the 200-500 nm size range of isostructural α-(ortho-tolyl)-acetophenone (1a) and α-(ortho-tolyl)-para-methylacetophenone (1b) displayed good absorption characteristics for flash photolysis experiments in a flow system, with transient spectra and decay kinetics with a quality that is similar to that recorded in solution. In contrast to solution measurements, reactions in the solid state were characterized by a rate limiting hydrogen transfer reaction from the triplet excited state and a very short-lived biradical intermediate, which does not accumulate. Notably, the rate for δ-hydrogen atom transfer of 1a (2.7 × 10(7) s(-1)) in the crystalline phase is 18-fold larger than that of 1b (1.5 × 10(6) s(-1)). With nearly identical molecular and crystal structures, this decrease in the rate of δ-hydrogen abstraction can be assigned unambiguously to an electronic effect by the para-methyl group in 1b, which increases the contribution of the (3)π,π* configuration relative to the reactive (3)n,π* configuration in the lowest triplet excited state. These results highlight the potential of relating single crystal X-ray structural data with absolute kinetics from laser flash photolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, A.; Fessenden, R.W.
1989-07-27
The triplet state of acenaphthylene has been examined by nanosecond laser flash photolysis using sensitization and heavy atom perturbation techniques. Although acenaphthylene does not form any observable triplet upon direct flash excitation, a transient with microsecond lifetime ({lambda}{sub max} = 315 nm) is observable when a solution of the sample is excited by sensitizers (benzophenone, thioxanthone, benzil). This transient is ascribed to the triplet of acenaphthylene on the basis of its quenching behavior toward oxygen, ferrocene, azulene, and {beta}-carotene. Quantitative data concerning the triplet-triplet absorption and quenching constants are presented. The triplet energy is estimated to lie between 46 andmore » 47 kcal/mol. The triplet can also be produced by direct excitation in solvents containing heavy atoms (ethyl bromide, ethyl iodide). The triplet yield is found to increase with an increase of the amount of the heavy atom containing solvent. No saturation limit is obtained. These facts together with the effect of heavy atoms on the T{sub 1} {yields} S{sub 0} process allow the differing behavior of ethyl bromide and ethyl iodide on the photodimerization process of acenaphthylene to be explained. Triplet-state parameters (extinction coefficient and triplet yield) have been estimated in these solvents by the energy-transfer technique and actinometry.« less
Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostedt, C.; Thomas, H.; Hoener, M.
The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less
A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O
NASA Technical Reports Server (NTRS)
Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.
1981-01-01
Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraliya, J. D.
2016-05-23
Manganese substituted Cobalt ferrites of composition with nominal formula Co{sub (1−x)}Mn{sub (x)}Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) prepared by the Flash Combustion Method(FCM). The single phase spinel formation of nano ferrites was confirmed by X-ray diffraction techniques and micro - Raman spectroscopy. The particle size calculated from the Scherrer formula varied within 13 to 17 nm. Lattice parameter, nano particle size, and cation distribution were quantified as a function of the Mn-content in the range x = 0.0 to 1.0. Micro-Raman spectroscopic studies yielded convincing evidence for a transformation of the structure.
[Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyring, E.M.
1992-01-01
The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd[sup 3+] + L(ligand), [RuL[sub 5]H[sub 2]O][sup 2+], laser flash photolysis of Mo(CO)[sub 6] + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd[sup 3+] ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO)[sub 6]-2,2'-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.
[Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyring, E.M.
1992-10-01
The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd{sup 3+} + L(ligand), [RuL{sub 5}H{sub 2}O]{sup 2+}, laser flash photolysis of Mo(CO){sub 6} + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd{sup 3+} ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO){sub 6}-2,2`-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.
Beam shaping for cosmetic hair removal
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.; Tuttle, Tracie
2007-09-01
Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.
NASA Astrophysics Data System (ADS)
Thorn, Robert Peyton
A laser flash photolysis - long path absorption - technique has been employed to study the kinetics of the reaction BrO+NO2+M(k(sub 16)) yields products as a function of temperature (248-346 K), pressure (16-800 Torr), and buffer gas identity (N2, CF4). 351 nm photolysis of NO2/Br2/N2 mixtures generated BrO. The BrO decay in the presence of excess NO2 was followed by UV absorption at 338.3 nm. The reaction is in the falloff regime between third and second order over the entire range of conditions investigated. This is the first study where temperature dependent measurements of k(sub 16)(P,T) have been reported at pressures greater than 12 Torr; hence, these results help constrain choices of k(sub 16)(P,T) for use in modeling stratospheric BrO(x) chemistry. The kinetics of the important stratospheric reaction BrO+O(P-3)(k(sub 14)) yields Br+O2 in N2 buffer gas have been studied as a function of temperature (233-328 K) and pressure (25-150 Torr) using a novel dual laser flash photolysis/long path absorption/resonance fluorescence technique. 248 nm pulsed laser photolysis of Br2/O3/N2 mixtures produces O atoms in excess over Br2. After a delay sufficient for BrO to be generated, a 532 nm laser pulse photolysis a small fraction of the O3 to generate O(P-3). The decay of O(P-3) in the presence of an excess, known concentration of BrO, as determined by UV absorption at 338.3 nm and by numerical simulation, is then followed by time-resoved atomic resonance fluorescence spectroscopy. The experimental results have shown the reaction kinetics to be independent of pressure, to increase with decreasing temperature, and to be faster than suggested by the only previous (indirect) measurement. The resulting Anhenius expression for k(sub 14)(T) is k(sub 14)(T) = 1.64 x 10(exp -11) exp(263/T) cm(exp 3) molecule(exp-1)s(exp -1). The absolute accuracy of k(sub 14)(T) at any temperature within the range studied is estimated to be +/- 25%. Possible kinetic interferences from production of vibrationally or electronically excited O2 are discussed. The effect of the faster reaction rate coefficients that are reported for the BrO + NO2 + M and BrO + O(P-3) reactions upon bromine partitioning and ozone depletion in the stratosphere is discussed.
NASA Astrophysics Data System (ADS)
Thorn, Robert Peyton, Jr.
A laser flash photolysis - long path absorption technique has been employed to study the kinetics of the reaction rm BrO + NO_2 + M{k _{16}atopto} products as a function of temperature (248-346 K), pressure (16 -800 Torr), and buffer gas identity (rm N _2,CF_4). 351 nm photolysis of rm NO_2/Br_2/N_2 mixtures generated BrO. The BrO decay in the presence of excess NO_2 was followed by UV absorption at 338.3 nm. The reaction is in the falloff regime between third and second order over the entire range of conditions investigated. This is the first study where temperature dependent measurements of k_{16} (P,T) have been reported at pressures greater than 12 Torr; hence, these results help constrain choices of k_{16}(P,T) for use in modeling stratospheric BrO_{rm x} chemistry. The kinetics of the important stratospheric reaction rm BrO+O(^3P)_sp{to }{k_{14}}Br+O_2 in N_2 buffer gas have been studied as a function of temperature (233-328 K) and pressure (25 -150 Torr) using a novel dual laser flash photolysis/long path absorption/resonance fluorescence technique. 248 nm pulsed laser photolysis of rm Br_2/O _3/N_2 mixtures produces O atoms in excess over Br_2. After a delay sufficient for BrO to be generated, a 532 nm laser pulse photolyses a small fraction of the O_3 to generate O(^3P). The decay of O(^3P) in the presence of an excess, known concentration of BrO, as determined by UV absorption at 338.3 nm and by numerical simulation, is then followed by time-resolved atomic resonance fluorescence spectroscopy. The experimental results have shown the reaction kinetics to be independent of pressure, to increase with decreasing temperature, and to be faster than suggested by the only previous (indirect) measurement. The resulting Anhenius expression for k_{14}(T) is given below.rm k_{14 }(T) = 1.64times 10^{-11} exp (263/T) cm^3 molecule ^{-1} s^{-1} The absolute accuracy of k_{14 }(T) at any temperature within the range studied is estimated to be +/-25%. Possible kinetic interferences from production of vibrationally or electronically excited O_2 are discussed. The effect of the faster reaction rate coefficients that are reported for the rm BrO + NO_2 + M and BrO + O(^3P) reactions upon bromine partitioning and ozone depletion in the stratosphere is discussed.
Photochemistry and photooxidation of tetraphenyl-p-dioxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, M.V.; Kumar, C.V.; Scaiano, J.C.
1979-09-20
Laser flash photolysis studies of tetraphenyl-p-dioxin have led to the characterization of its triplet state. The T-T absorption spectra shows maxima at 350 and 545 nm; the triplet has a lifetime of 535 ns in methanol and can be quenched by di-tert-butyl nitroxide, paraquat dications, oxygen, and di-tert-butyl selenoketone. The interaction of the triplet with oxygen leads to the formation of singlet oxygen which in turn reacts with the title compound to yield benzil.
Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut
2018-01-01
The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755
Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut
2018-01-01
The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.
Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging
NASA Astrophysics Data System (ADS)
Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang
2018-01-01
Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.
NASA Astrophysics Data System (ADS)
Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Kaymak, V.; Pukhov, A.; Capeluto, M. G.; Wang, Y.; Wang, S.; Rockwood, A.; Curtis, A.; Rocca, J. J.
2016-10-01
Recent experiments at Colorado State University have shown that the effective trapping of clean, Joule-level fs laser pulses of relativistic intensity in arrays of high aspect ratio aligned nanowire creates multi-kev, near solid density, large scale (>4um deep) plasmas. The drastically decreased radiative life time and increased hydrodynamic cooling time from these plasmas increases the x-ray conversion efficiency. We measured a record conversion efficiency of 10% into hv>1KeV photons (2pi steradians), and of 0.3% for hv>6KeV. The experiments used Au and Ni nanowires of 55nm, 80nm and 100nm in diameter with 12% of solid density irradiated by high contrast (>1012) pulses of 60fs FWHM duration from a frequency doubled Ti:Sa laser at intensities of I =5x1019Wcm-2. We also present preliminary results on x-ray emission from Rhodium nanowires in the 19-22KeV range and demonstrate the potential of this picosecond X-ray source in flash radiography. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079.
NASA Astrophysics Data System (ADS)
Miyaji, Kousuke; Hung, Chinglin; Takeuchi, Ken
2012-04-01
The scaling trends and limitation in sub-20 nm a bulk and silicon-on-insulator (SOI) NAND flash memory is studied by the three-dimensional (3D) device simulation focusing on short channel effects (SCE), channel boost leakage and channel voltage boosting characteristics during the program-inhibit operation. Although increasing punch-through stopper doping concentration is effective for suppressing SCE in bulk NAND cells, the generation of junction leakage becomes serious. On the other hand, SCE can be suppressed by thinning the buried oxide (BOX) in SOI NAND cells. However, the boosted channel voltage decreases by the higher BOX capacitance. It is concluded that the scaling limitation is dominated by the junction leakage and channel boosting capability for bulk and SOI NAND flash cells, respectively, and the scaling limit is decreased to 9 nm using SOI NAND flash memory cells from 13 nm in bulk NAND flash memory cells.
Laser flash photolysis of ozone - O/1D/ quantum yields in the fall-off region 297-325 nm
NASA Technical Reports Server (NTRS)
Brock, J. C.; Watson, R. T.
1980-01-01
The wavelength dependence of the quantum yield for O(1D) production from ozone photolysis has been determined between 297.5 nm and 325 nm in order to resolve serious discrepancies among previous studies. The results of this investigation are compared to earlier work by calculating atmospheric production rate constants for O(1D). It is found that for the purpose of calculating this rate constant, there is now good agreement among three studies at 298 K. Furthermore, it appears that previous data on the temperature dependence of the O(1D) quantum yield fall-off is adequate for determining the vertical profile of the O(1D) production rate constant. Several experimental difficulties associated with using NO2(asterisk) chemiluminescence to monitor O(1D) have been identified.
Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.
Makunina, Maria P; Pozdnyakov, Ivan P; Chen, Yong; Grivin, Vyacheslav P; Bazhin, Nikolay M; Plyusnin, Victor F
2015-01-01
Laser flash (355 nm) and stationary (365 nm) photolysis were used to study the mechanisms of propranolol photolysis in the presence of fulvic acid in aqueous solutions. The FA-assisted photodegradation of propranolol was observed using UV-A irradiation (where propranolol is stable). Direct evidence indicated that the photodegradation resulted from the static quenching of the FA triplet state by propranolol via the electron transfer mechanism. The triplet state yield (ϕT≈0.6%) and the T-T absorption coefficient (ɛT(620 nm)≈5×10(4) M(-1) cm(-1)) were estimated for the first time by modeling the yields of the FA triplet state in the presence of propranolol. Thus, fulvic acid is a promising agent for accelerating propranolol photodegradation in aqueous solutions under UV-A light irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Improving the Dynamic Emissivity Measurement Above 1000 K by Extending the Spectral Range
NASA Astrophysics Data System (ADS)
Urban, D.; Krenek, S.; Anhalt, K.; Taubert, D. R.
2018-01-01
To improve the dynamic emissivity measurement, which is based on the laser-flash method, an array spectrometer is characterized regarding its spectral radiance responsivity for a spectrally resolved emissivity measurement above 1000 K in the wavelength range between 550 nm and 1100 nm. Influences like dark signals, the nonlinearity of the detector, the size-of-source effect, wavelength calibration and the spectral radiance responsivity of the system are investigated to obtain an uncertainty budget for the spectral radiance and emissivity measurements. Uncertainties for the spectral radiance of lower than a relative 2 % are achieved for wavelengths longer than 550 nm. Finally, the spectral emissivity of a graphite sample was determined in the temperature range between 1000 K and 1700 K, and the experimental data show a good repeatability and agreement with literature data.
Flash LIDAR Systems for Planetary Exploration
NASA Astrophysics Data System (ADS)
Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.
2009-01-01
Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.
Connally, Russell; Veal, Duncan; Piper, James
2004-01-01
The ubiquity of naturally fluorescing components (autofluorophores) encountered in most biological samples hinders the detection and identification of labeled targets through fluorescence-based techniques. Time-resolved fluorescence (TRF) is a technique by which the effects of autofluorescence are reduced by using specific fluorescent labels with long fluorescence lifetimes (compared with autofluorophores) in conjunction with time-gated detection. A time-resolved fluorescence microscope (TRFM) is described that is based on a standard epifluorescence microscope modified by the addition of a pulsed excitation source and an image-intensified time-gateable CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flash lamp with rapid discharge characteristics was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, the flash output decayed with an approximate lifetime of 18 micros and the TRFM required a long-lived lanthanide chelate label to ensure that probe fluorescence was visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the waterborne parasite Giardia lamblia. For a 600-nm bandpass filter set and a gate delay of 60 micros, the TRFM provided an 11.3-fold improvement in the signal-to-noise ratio (S/N) of labeled Giardia over background. A smaller gain in an SNR of 9.69-fold was achieved with a 420-nm longpass filter set; however, the final contrast ratio between labeled cyst and background was higher (11.3 versus 8.5). Despite the decay characteristics of the light pulse, flash lamps have many practical advantages compared with optical chopper wheels and modulated lasers for applications in TRFM.
Ocular dynamics and visual tracking performance after Q-switched laser exposure
NASA Astrophysics Data System (ADS)
Zwick, Harry; Stuck, Bruce E.; Lund, David J.; Nawim, Maqsood
2001-05-01
In previous investigations of q-switched laser retinal exposure in awake task oriented non-human primates (NHPs), the threshold for retinal damage occurred well below that of the threshold for permanent visual function loss. Visual function measures used in these studies involved measures of visual acuity and contrast sensitivity. In the present study, we examine the same relationship for q-switched laser exposure using a visual performance task, where task dependency involves more parafoveal than foveal retina. NHPs were trained on a visual pursuit motor tracking performance task that required maintaining a small HeNe laser spot (0.3 degrees) centered in a slowly moving (0.5deg/sec) annulus. When NHPs reliably produced visual target tracking efficiencies > 80%, single q-switched laser exposures (7 nsec) were made coaxially with the line of sight of the moving target. An infrared camera imaged the pupil during exposure to obtain the pupillary response to the laser flash. Retinal images were obtained with a scanning laser ophthalmoscope 3 days post exposure under ketamine and nembutol anesthesia. Q-switched visible laser exposures at twice the damage threshold produced small (about 50mm) retinal lesions temporal to the fovea; deficits in NHP visual pursuit tracking were transient, demonstrating full recovery to baseline within a single tracking session. Post exposure analysis of the pupillary response demonstrated that the exposure flash entered the pupil, followed by 90 msec refractory period and than a 12 % pupillary contraction within 1.5 sec from the onset of laser exposure. At 6 times the morphological threshold damage level for 532 nm q-switched exposure, longer term losses in NHP pursuit tracking performance were observed. In summary, q-switched laser exposure appears to have a higher threshold for permanent visual performance loss than the corresponding threshold to produce retinal threshold injury. Mechanisms of neural plasticity within the retina and at higher visual brain centers may mediat
Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence
NASA Astrophysics Data System (ADS)
Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang
2008-07-01
Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.
Developing a portable, autonomous aerosol backscatter lidar for network or remote operations
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2013-03-01
Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.
Developing a portable, autonomous aerosol backscatter lidar for network or remote operations
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2012-11-01
Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.
NASA Astrophysics Data System (ADS)
Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.
2005-11-01
Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.
Frequency upconversion in Er3+ doped tungsten tellurite glass containing Ag nanoparticles
NASA Astrophysics Data System (ADS)
Mahajan, S. K.; Parashar, J.
2018-05-01
The frequency upconversion emission in Er3+ doped TeO2-WO3-Li2O containing Ag nanoparticle (TWLEOAG) glasses at 980nm excitation is reported. The absorption spectra reveal not only the peaks due to Er3+ ions, but also the surface plasmon resonance band of silver NPs located around 525nm and 650 nm. The spherical AgNPs with average size ˜38 nm in the glassy matrix is evidenced from the TEM measurement. Under 980nm laser excitation upconversion emission spectra show two major emission at 550nm and 638nm originating from 4S3/2 and 4F9/2 energy levels of the Er3+ ions, respectively was observed. Upconversion emission enhancement factor 7 fold has been measured for sample heat treated during 40h. However for 18h heat treated TWLEOAG sample under 980 nm flash lamp excitation produced Intense green compare to red emission. Since the 980nm frequency is far from the AgNPs surface plasmon resonance frequency, visible emission ehancement is attributed to local field increase in proximity of the Ag NPs and not energy tranfer from NPs to emitters. Possible energy transfer upconversion mechanism has been also discussed.
Parker, I; Callamaras, N; Wier, W G
1997-06-01
We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.
Rate constant for the reaction NH2 + NO from 216 to 480 K
NASA Technical Reports Server (NTRS)
Stief, L. J.; Brobst, W. D.; Nava, D. F.; Borkowski, R. P.; Michael, J. V.
1982-01-01
The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically.
Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S
2001-03-07
Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition states converting the benzazirines to ketenimines were performed. The computational results are in good qualitative and quantitative agreement with the experimental findings.
Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification
NASA Astrophysics Data System (ADS)
Kawanaka, J.; Tsubakimoto, K.; Yoshida, H.; Fujioka, K.; Fujimoto, Y.; Tokita, S.; Jitsuno, T.; Miyanaga, N.; Gekko-EXA Design Team
2016-03-01
A 50 PW ultrahigh-peak-power laser has been conceptually designed, which is based on optical parametric chirped pulse amplification (OPCPA). A 250 J DPSSL and a flash- lamp-pumped kJ laser are adopted as new repeatable pump source. The existed LFEX-laser with more than ten kilo joules are used in the final amplifier stage and the OPCPA with the 2x2 tiled pump beams in random phase has been proposed with several ten centimeter aperture. A pulse duration of amplified pulses is set at less than 10 fs. A broadband OPCPA with ∼500 nm of the gain spectral width near 1 μm is required. A partially deuterated KDP (p-DKDP) crystal is one of the most promising nonlinear crystals and our numerical calculation ensured such ultra-broad gain width. p-DKDP crystals with several deuteration ratio have been successfully grown.
Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures
NASA Technical Reports Server (NTRS)
Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.
2002-01-01
Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and they appear to be the first suggested photochemical mechanism that is capable of explaining the altitude dependence of the observed mass -independent isotopic signature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yifan; Zhang, Liancheng; Zhu, Xinlei
2015-11-02
This letter presents an experimental observation of luminescence flash at the collapse phase of an oscillating bubble produced by a pulsed discharge in water. According to the high speed records, the flash lasts around tens of microseconds, which is much longer than the lifetime of laser and ultrasound induced luminescence flashes in nanoseconds and picoseconds, respectively. The pulse width of temperature waveform and minimum radius calculated at the collapse phase also show that the thermodynamic and dynamic signatures of the bubbles in this work are much larger than those of ultrasound and laser induced bubbles both in time and spacemore » scales. However, the peak temperature at the point of collapse is close to the results of ultrasound and laser induced bubbles. This result provides another possibility for accurate emission spectrum measurement other than amplification of the emitted light, such as increasing laser energy or sound energy or substituting water with sulphuric acid.« less
The photochemistry in Photosystem II at 5 K is different in visible and far-red light.
Mokvist, Fredrik; Sjöholm, Johannes; Mamedov, Fikret; Styring, Stenbjörn
2014-07-08
We have earlier shown that all electron transfer reactions in Photosystem II are operational up to 800 nm at room temperature [Thapper, A., et al. (2009) Plant Cell 21, 2391-2401]. This led us to suggest an alternative charge separation pathway for far-red excitation. Here we extend these studies to a very low temperature (5 K). Illumination of Photosystem II (PS II) with visible light at 5 K is known to result in oxidation of almost similar amounts of YZ and the Cyt b559/ChlZ/CarD2 pathway. This is reproduced here using laser flashes at 532 nm, and we find the partition ratio between the two pathways to be 1:0.8 at 5 K [the partition ratio is here defined as (yield of YZ/CaMn4 oxidation):(yield of Cyt b559/ChlZ/CarD2 oxidation)]. The result using far-red laser flashes is very different. We find partition ratios of 1.8 at 730 nm, 2.7 at 740 nm, and >2.7 at 750 nm. No photochemistry involving these pathways is observed above 750 nm at this temperature. Thus, far-red illumination preferentially oxidizes YZ, while the Cyt b559/ChlZ/CarD2 pathway is hardly touched. We propose that the difference in the partition ratio between visible and far-red light at 5 K reflects the formation of a different first stable charge pair. In visible light, the first stable charge pair is considered to be PD1+QA-. In contrast, we propose that the electron hole is residing on the ChlD1 molecule after illumination by far-red light at 5 K, resulting in the first stable charge pair being ChlD1+QA-. ChlD1 is much closer to YZ (11.3 Å) than to any component in the Cyt b559/ChlZ/CarD2 pathway (shortest ChlD1-CarD2 distance of 28.8 Å). This would then explain that far-red illumination preferentially drives efficient electron transfer from YZ. We also discuss mechanisms for accounting for the absorption of the far-red light and the existence of hitherto unobserved charge transfer states. The involvement of two or more of the porphyrin molecules in the core of the Photosystem II reaction center is proposed.
The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Ogwa, Mitsue; Baba, Tetsuya; Mizuno, Mineo
Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.
Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G
2008-05-12
In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.
FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.
Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan
2018-01-01
The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.
Flash photolysis and pulse radiolysis studies on collagen Type I in acetic acid solution.
Sionkowska, Alina
2006-07-03
An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).
Naumann, Robert; Kerzig, Christoph; Goez, Martin
2017-11-01
The ruthenium-tris-bipyridyl dication as catalyst combined with the ascorbate dianion as bioavailable sacrificial donor provides the first regenerative source of hydrated electrons for chemical syntheses on millimolar scales. This electron generator is operated simply by illumination with a frequency-doubled Nd:YAG laser (532 nm) running at its normal repetition rate. Much more detailed information than by product studies alone was obtained by photokinetical characterization from submicroseconds (time-resolved laser flash photolysis) up to one hour (preparative photolysis). The experiments on short timescales established a reaction mechanism more complex than previously thought, and proved the catalytic action by unchanged concentration traces of the key transients over a number of flashes so large that the accumulated electron total surpassed the catalyst concentration many times. Preparative photolyses revealed that the sacrificial donor greatly enhances the catalyst stability through quenching the initial metal-to-ligand charge-transfer state before destructive dd states can be populated from it, such that the efficiency of this electron generator is no longer limited by catalyst decomposition but by electron scavenging by the accumulating oxidation products of the ascorbate. Applications covered dechlorinations of selected aliphatic and aromatic chlorides and the reduction of a model ketone. All these substrates are impervious to photoredox catalysts exhibiting lower reducing power than the hydrated electron, but the combination of an extremely negative standard potential and a long unquenched life allowed turnover numbers up to 1400 with our method.
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Shiroto, T.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Nagatomo, H.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Renger, G; Wolff, C
1975-01-01
The field indicating electrochromic 515 nm absorption change has been measured under different excitation conditions in DCMU poisoned chloroplasts in the presence of benzylviologen as electron acceptor. It has been found: 1. The amplitude of the 515 nm absorption change is nearly completely suppressed under repetitive single turnover flash excitation conditions which kinetically block the back reaction around system II (P. Bennoun, Biochim. Biophys. Acta 216, 357 [1970]). 2. The amplitude of the 515 nm absorption change measured under repetitive single turnover flash excitation conditions which allow the completion of the back reaction during the dark time between the flashes (measuring light beam switched off) amounts in the presence of 2 mum DCMU nearly 50% of the electrochromic 515 nm amplitude obtained in the absence of DCMU. In DCMU poisoned chloroplasts this amplitude is significantly decreased by hydroxylaminhydrochloride, but nearly doubled in the presence of CDIP+ascorbate. 3. The dependence of the 515 nm amplitude on the time td between the flashes kinetically resembles the back reaction around system ?II. The time course of the back reaction can be fairly described either by a second order reaction or by a two phase exponential kinetics. 4. 1,3-dinitrobenzene (DNE) or alpha-bromo-alpha-benzylmalodinitril (BBMD) reduce the 515 nm amplitude in DCMU poisoned chloroplasts, but seem to influecne only slightly the kinetics of the back reaction. 5. The dependence of the 515 nm amplitude on the flash light intensity (the amplitude normalized to 1 at 100% flash light intensity) is not changed by DNB. Based on these experimental data it has been concluded that in DCMU poisoned chloroplasts the amplitude of the 515 nm absorption change reflects the functional state of photosystem II centers (designated as photoelectric dipole generators II) under suitable excitation conditions. Furthermore, it is inferred that in DCMU poisoned chlorplasts the photoelectric dipole generators II either cooperate (probably as twin-pairs) or exist in two functionally different forms. With respect to BBMD and DNB it is assumed that these agents transform the phtooelectric dipole generators II into powerful nonphotochemical quenchers, which significantly reduce the variable fluorescence in DCMU-poisoned chloroplasts.
A z-pinch photo-pumped pulsed atomic iodine laser
NASA Astrophysics Data System (ADS)
Stone, D. H.; Saunders, D. P.; Clark, M. C.
1984-03-01
A pulsed atomic iodine laser (CF3I) was designed and constructed using a coaxial xenon flash lamp as a pump source. The flash lamp was operated at low pressure to obtain pulse compression via xenon self-pinch. Electrical and optical diagnostics were performed for various xenon and CF3I pressures. Calorimeter data and burn patterns were obtained for the laser. Time-resolved spectroscopic data were taken throughout the CF3I pump band.
NASA Astrophysics Data System (ADS)
Kuz'min, V. V.; Salmin, V. V.; Salmina, A. B.; Provorov, A. S.
2008-07-01
The general properties of photodissociation of carboxyhemoglobin (HbCO) in buffer solutions of whole human blood are studied by the flash photolysis method on a setup with intersecting beams. It is shown that the efficiency of photoinduced dissociation of the HbCO complex virtually linearly depends on the photolytic irradiation intensity for the average power density not exceeding 45 mW cm-2. The general dissociation of the HbCO complex in native conditions occurs in a narrower range of values of the saturation degree than in model experiments with the hemoglobin solution. The dependence of the pulse photolysis efficiency of HbCO on the photolytic radiation wavelength in the range from 550 to 585 nm has a broad bell shape. The efficiency maximum corresponds to the electronic Q transition (porphyrin π—π* absorption) in HbCO at a wavelength of 570 nm. No dissociation of the complex was observed under given experimental conditions upon irradiation of solutions by photolytic radiation at wavelengths above 585 nm.
Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser
Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; ...
2017-04-10
In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less
Plasma spectrum peak extraction algorithm of laser film damage
NASA Astrophysics Data System (ADS)
Zhao, Dan; Su, Jun-hong; Xu, Jun-qi
2012-10-01
The plasma spectrometry is an emerging method to distinguish the thin-film laser damage. Laser irradiation film surface occurrence of flash, using the spectrometer receives the flash spectrum, extracting the spectral peak, and by means of the spectra of the thin-film materials and the atmosphere has determine the difference, as a standard to determine the film damage. Plasma spectrometry can eliminate the miscarriage of justice which caused by atmospheric flashes, and distinguish high accuracy. Plasma spectra extraction algorithm is the key technology of Plasma spectrometry. Firstly, data de noising and smoothing filter is introduced in this paper, and then during the peak is detecting, the data packet is proposed, and this method can increase the stability and accuracy of the spectral peak recognition. Such algorithm makes simultaneous measurement of Plasma spectrometry to detect thin film laser damage, and greatly improves work efficiency.
The European XFEL Free Electron Laser at DESY
Weise, Hans [Deutsches Elektronen-Synchrotron, Germany
2017-12-09
The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.
Analysis of induced effects in matter during pulsed Nd:YAG laser welding by flash radiography
NASA Astrophysics Data System (ADS)
Pascal, G.; Noré, D.; Girard, K.; Perret, O.; Naudy, P.
2000-05-01
Tantalum and TA6V (titanium alloy) are respectively used in corrosive chemical product containers and in aircraft and aerospace industries. The objective of this study was to analyze the dynamic behavior of the matter during deep laser spot welding of these materials. The obtained images should allow a better understanding of laser-matter interaction and should validate a model developed for porosities formation. Because of the afterglow of detectors, classical video x-ray systems are not suitable for the analysis of short dynamic effects during and after the laser pulse. An experimental device, based on a flash x-ray generator EUROPULSE 600 kV and a QUANTEL pulsed Nd:YAG laser, has been used. The flash x-ray generator is triggered, after a programmed delay, by the laser shot. The x-ray pulse duration is 30 ns. Welding parameters (pulse duration and energy) yield molten zones of 2 mm depth. Both materials, tantalum and TA6V, have been tested. Radiological films BIOMAX coupled with radioluminescent screens and direct exposure film (DEF) were respectively used for tantalum and TA6V samples. A fine collimation was studied to avoid the scattering effect in the material and in the radioluminescent screen. Radiological test samples, made of tantalum and TA6V, were performed to estimate the images qualities obtained by flash radiography. About 270 laser/x-rays shots were performed. The radiographic images have been digitalized and processed. The results show a deep and narrow capillary hole called "keyhole" which appears a few milliseconds after the beginning of the interaction. The "keyhole" hollows until the end of the laser pulse. After the end of the laser pulse, the molten bath collapses in less than 1 ms, trapping cavities.
The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long
2011-06-01
As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.
NASA Astrophysics Data System (ADS)
Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng
2016-12-01
This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.
NASA Astrophysics Data System (ADS)
Montoya, Joseph; Kennerly, Stephen; Rede, Edward
2010-04-01
Utilization of Near-Infrared (NIR) spectral features in a muzzle flash will allow for small arms detection using low cost silicon (Si)-based imagers. Detection of a small arms muzzle flash in a particular wavelength region is dependent on the intensity of that emission, the efficiency of source emission transmission through the atmosphere, and the relative intensity of the background scene. The NIR muzzle flash signature exists in the relatively large Si spectral response wavelength region of 300 nm-1100 nm, which allows for use of commercial-off-the-shelf (COTS) Si-based detectors. The alkali metal origin of the NIR spectral features in the 7.62 × 39-mm round muzzle flash is discussed, and the basis for the spectral bandwidth is examined, using a calculated Voigt profile. This report will introduce a model of the 7.62 × 39-mm NIR muzzle flash signature based on predicted source characteristics. Atmospheric limitations based on NIR spectral regions are investigated in relation to the NIR muzzle flash signature. A simple signal-to-clutter ratio (SCR) metric is used to predict sensor performance based on a model of radiance for the source and solar background and pixel registered image subtraction.
All-solid-state single longitudinal mode MOPA laser system
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Gu, Haidong; Hu, Wenhua; Ren, Shilong
2018-03-01
Side diode pumped electro-optical Q Switching Nd: YAG is demonstrated as master oscillator. F-P etalon and twisted-mode cavity combined configuration is introduced to select longitudinal modes. The seed light experiences a round trip through the two flash pump amplifiers, in this device, the 4f image transmission system and SBS phase conjugate mirror is adopted in order to improved beam quality, by compensating the heat depolarization effect and eliminate wave-front distortion. In the condition of 1 or 5 repetitions of the wavelength at 1064nm, it produces the pulse energy of 300mJ, pulse width of 12ns, and energy instability (RMS) below 3% in single longitudinal mode operation. With a type two-phase matched KTP crystal, 532nm green light is yielded, at 1 Hz repetition rate, the pulse energy of green light is more than 150mJ.
High-order harmonic generation enhanced by XUV light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buth, Christian; Kohler, Markus C.; Ullrich, Joachim
2012-03-19
The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d {yields} 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10{sup 14} Wcm{sup 2}more » and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10{sup 13}-10{sup 16} Wcm{sup 2}. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.« less
NASA Astrophysics Data System (ADS)
Scopatz, A.; Fatenejad, M.; Flocke, N.; Gregori, G.; Koenig, M.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Ravasio, A.; Tzeferacos, P.; Weide, K.; Yurchak, R.
2013-03-01
We report the results of FLASH hydrodynamic simulations of the experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation de Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. The simulations show that the result of the laser illuminating the target is a series of complex hydrodynamic phenomena.
Gun muzzle flash detection using a CMOS single photon avalanche diode
NASA Astrophysics Data System (ADS)
Merhav, Tomer; Savuskan, Vitali; Nemirovsky, Yael
2013-10-01
Si based sensors, in particular CMOS Image sensors, have revolutionized low cost imaging systems but to date have hardly been considered as possible candidates for gun muzzle flash detection, due to performance limitations, and low SNR in the visible spectrum. In this study, a CMOS Single Photon Avalanche Diode (SPAD) module is used to record and sample muzzle flash events in the visible spectrum, from representative weapons, common on the modern battlefield. SPADs possess two crucial properties for muzzle flash imaging - Namely, very high photon detection sensitivity, coupled with a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. This enables high sampling frequencies in the kilohertz range without SNR degradation, in contrast to regular CMOS image sensors. To date, the SPAD has not been utilized for flash detection in an uncontrolled environment, such as gun muzzle flash detection. Gun propellant manufacturers use alkali salts to suppress secondary flashes ignited during the muzzle flash event. Common alkali salts are compounds based on Potassium or Sodium, with spectral emission lines around 769nm and 589nm, respectively. A narrow band filter around the Potassium emission doublet is used in this study to favor the muzzle flash signal over solar radiation. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength under the specified imaging conditions. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics.
Blitz, Mark A; Salter, Robert J; Heard, Dwayne E; Seakins, Paul W
2017-05-04
The kinetics of the reaction OH/OD + SO 2 were studied using a laser flash photolysis/laser-induced fluorescence technique. Evidence for two-photon photolysis of SO 2 at 248 nm is presented and quantified, and which appears to have been evident to some extent in most previous photolysis studies, potentially leading to values for the rate coefficient k 1 that are too large. The kinetics of the reaction OH(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) were measured under conditions where SO 2 photolysis was taken into account. These results, together with literature data, were modeled using a master equation analysis. This analysis highlighted problems with the literature data: the rate coefficients derived from flash photolysis data were generally too high and from the flow tube data too low. Our best estimate of the high-pressure limiting rate coefficient k 1 ∞ was obtained from selected data and gives a value of (7.8 ± 2.2) × 10 -13 cm 3 molecule -1 s -1 , which is lower than that recommended in the literature. A parametrized form of k 1 ([N 2 ],T) is provided. The OD(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) data are reported for the first time, and master equation analysis reinforces our assignment of k 1 ∞ .
Soncin, M; Busetti, A; Fusi, F; Jori, G; Rodgers, M A
1999-06-01
Cu(II)-hematoporphyrin (CuHp) was efficiently accumulated by B78H1 amelanotic melanoma cells upon incubation with porphyrin concentrations up to 52 microM. When the cells incubated for 18 h with 13 microM CuHp were irradiated with 532 nm light from a Q-switched Nd: YAG laser operated in a pulsed mode (10 ns pulses, 10 Hz) a significant decrease in cell survival was observed. The cell photoinactivation was not the consequence of a photodynamic process, as CuHp gave no detectable triplet signal upon laser flash photolysis excitation and no decrease in cell survival was observed upon continuous wave irradiation. Thus, it is likely that CuHp sensitization takes place by photothermal pathways. The efficiency of the photoprocess was modulated by different parameters; thus, while varying the amount of added CuHp in the 3.25-26 microM range had little effect, pulse energies larger than 50 mJ and irradiation times of at least 120 s were necessary to induce a cell inactivation of about 50%. The porphyrin-cell incubation time prior to irradiation had a major influence on cell survival, suggesting that the nature of the CuHp microenvironment can control the efficiency of photothermal sensitization.
Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio
2011-11-01
Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.
Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.
2011-01-01
The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection
All-digital full waveform recording photon counting flash lidar
NASA Astrophysics Data System (ADS)
Grund, Christian J.; Harwit, Alex
2010-08-01
Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.
Trusov, K K
1994-02-20
A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; Durvasula, P. S. L. Kameswari; S, Sai Shiva; Acrhem, University Of Hyderabad Team
2017-06-01
A two dimensional comparative study of Laser Ablative Shock Wave into the Aluminum target in the presence of Helium gas at different ambient pressures over a range of 690 - 105 Pa performed using FLASH hydrodynamic codes will be presented. The irradiation of Aluminum target (thickness 2 mm and radius 3 mm) with a 7 ns laser pulse of energy 175 mJ, spot size of 150 µm on the target surface at a wavelength of 532 nm at normal incidence is simulated. Helium gas enclosed in a chamber of height 3 mm and width 3 mm. The electron-ion inverse bremsstrahlung absorption coefficient is considered in the laser energy deposition process. The simulation was performed over a duration of 1 μs. It was observed that an ablative shock is launched into the Helium gas for the pressures of 0.5 atm and above. However, for pressure less than the 0.5 atm the plasma expanded into the He gas upto 12ns and after which due to pressure equilibration with the surroundings and plume splitting shock wave is launched in to Al. Authors acknowledge funding from DRDO, India.
Development of a fluorimeter using laser-induced single-shot fluorescence lifetime spectroscopy
NASA Astrophysics Data System (ADS)
Eisum, Niels H.; Lynggaard-Jensen, Anders
1990-08-01
The developed laboratory prototype fluorimeter is the first step to a new in-situ instrument, and is based on a pulsed nitrogen laser (pumping a color dye laser and the laserbeam passing through a frequency doubler) with a pulse width less than 1 nsec. With such a short excitation pulse it is possible to measure the exponential decay of the fluorescence from the aromatic compounds and thus determine the fluorescence lifetime-curves, which are typically in the region of 5-40 nsec. The emitted fluorescence is collected simultaneously in 35 channels in the wavelength region 250-600 nm. If the fluorescence falls within the transmission areas of the interference filters in each channel the light will be collected by a plastic light guide (doped PMMA) in the actual channel and transmitted to the channels photo multiplier tube (PMT). (The use of the plastic light guide improves the sensitivity). The signal from the PMT is passed on to a 200 MHz 8-bit flash AID-converter connected to a local memory. From this local memory the digital lifetime curves from each channel are transmitted to a computer for presentation of the 3-dimensional spectrum. This spectrum has been obtained with a single laser shot.
NASA Astrophysics Data System (ADS)
Düsterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; Frühling, U.; Gerasimova, N.; Gerken, N.; Gerth, C.; Golz, T.; Grebentsov, A.; Hass, E.; Honkavaara, K.; Kocharian, V.; Kurka, M.; Limberg, Th.; Mitzner, R.; Moshammer, R.; Plönjes, E.; Richter, M.; Rönsch-Schulenburg, J.; Rudenko, A.; Schlarb, H.; Schmidt, B.; Senftleben, A.; Schneidmiller, E. A.; Siemer, B.; Sorgenfrei, F.; Sorokin, A. A.; Stojanovic, N.; Tiedtke, K.; Treusch, R.; Vogt, M.; Wieland, M.; Wurth, W.; Wesch, S.; Yan, M.; Yurkov, M. V.; Zacharias, H.; Schreiber, S.
2014-12-01
One of the most challenging tasks for extreme ultraviolet, soft and hard x-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. Nine different methods, able to determine such ultrashort photon pulse durations, were compared experimentally at FLASH, the self-amplified spontaneous emission free-electron laser at DESY in Hamburg, in order to identify advantages and disadvantages of different methods. Radiation pulses at a wavelength of 13.5 and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations, and energy modulations of the electron bunch and also by direct methods like autocorrelation techniques, terahertz streaking, or reflectivity changes of solid state samples. In this paper, we present a comprehensive overview of the various techniques and a comparison of the individual experimental results. The information gained is of utmost importance for the future development of reliable pulse duration monitors indispensable for successful experiments with ultrashort extreme ultraviolet pulses.
Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.
Grutter, T; Goeldner, M; Kotzyba-Hibert, F
1999-06-08
The molecular structure of Torpedo marmorata acetylcholine binding sites has been investigated previously by photoaffinity labeling. However, besides the nicotine molecule [Middleton et al. (1991) Biochemistry 30, 6987-6997], all other photosensitive probes used for this purpose interacted only with closed receptor states. In the perspective of mapping the functional activated state, we synthesized and developed a new photoactivatable agonist of nAChR capable of alkylation of the acetylcholine (ACh) binding sites, as reported previously [Kotzyba-Hibert et al. (1997) Bioconjugate Chem. 8, 472-480]. Here, we describe the setup of experimental conditions that were made in order to optimize the photolabeling reaction and in particular its specificity. We found that subsequent addition of the oxidant ceric ion (CeIV) and reduced glutathione before the photolabeling step lowered considerably nonspecific labeling (over 90% protection with d-tubocurarine) without affecting the binding properties of the ACh binding sites. As a consequence, irradiation at 360 nm for 20 min in these new conditions gave satisfactory coupling yields (7.5%). A general mechanism was proposed to explain the successive reactions occurring and their drastic effect on the specificity of the labeling reaction. Last, these incubation conditions can be extended to nanosecond pulsed laser photolysis leading to the same specific photoincorporation as for usual irradiations (8.5% coupling yield of ACh binding sites, 77% protection with carbamylcholine). Laser flash photocoupling of a diazocyclohexadienoyl probe on nAChR was achieved for the first time. Taken together, these data indicate that future investigation of the molecular dynamics of allosteric transitions occurring at the activated ACh binding sites should be possible.
Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy
Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.
2015-01-01
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096
Bína, David; Litvín, Radek; Vácha, Frantisek; Siffel, Pavel
2006-06-01
A multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam and differential optics has been constructed for measurements of light-induced absorbance and fluorescence yield changes in isolated chlorophyll-proteins, thylakoids and intact cells including algae and photosynthetic bacteria. The measuring beam, provided by a short (2 micros) pulse from a xenon flash lamp, is divided into a sample and reference channel by a broad band beam splitter. The spectrum in each channel is analyzed separately by a photodiode array. The use of flash measuring beam and differential detection yields high signal-to-noise ratio (noise level of 2 x 10(-4) in absorbance units per single flash) with negligible actinic effect. The instrument covers a spectral range between 300 and 1050 nm with a spectral resolution of 2.1, 6.4 or 12.8 nm dependent on the type of grating used. The optical design of the instrument enables measuring of the difference spectra during an actinic irradiation of samples with continuous light and/or saturation flashes. The time resolution of the spectrophotometer is limited by the length of Xe flash lamp pulses to 2 micros.
Flash/crazing effects on simulator pursuit tracking performance
NASA Astrophysics Data System (ADS)
Stamper, D. A.; Lund, D. J.; Levine, R. R.; Molchany, J. W.; Best, P.
1986-03-01
Day sights which are purposefully or inadvertently irradiated with laser radiation may become nonfunctional due to cracking or crazing of the optical glass. The degree of performance degradation may be related to the amount of damage to the glass and possible flash blindness from reradiation. Thirty-two male enlisted men and officers tracked a scale model tank through a constant arc at a simulated distance of 1 km, using a laboratory constructed viscous-damped tracking device. There were four crazing groups (4 men/group) under bright and dim ambient light conditions for a total of eight groups. Each man tracked the target during three flash/crazing and three crazing only trials, which were randomly presented during 30 trials. The simulated countermeasure which included the flash and crazing had dramatic effects on tracking performance, even under daylight conditions. Under the most severe degree of crazing, tracking performance was not possible under either ambient light condition. The relatively small amounts of laser radiation used to craze the BK-7 glass used in this study, which lead to significant performance decrements, demonstrates the potential impact of flash/crazing effects on operators of day sights.
Investigation of Current Spike Phenomena During Heavy Ion Irradiation of NAND Flash Memories
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; Berg, Melanie; Friendlich, Mark; Wilcox, Ted; Seidleck, Christina; LaBel, Kenneth A.; Irom, Farokh; Buchner, Steven P.; McMorrow, Dale; Mavis, David G.;
2011-01-01
A series of heavy ion and laser irradiations were performed to investigate previously reported current spikes in flash memories. High current events were observed, however, none matches the previously reported spikes. Plausible mechanisms are discussed.
NASA Astrophysics Data System (ADS)
Okamoto, Shin-ichi; Maekawa, Kei-ichi; Kawashima, Yoshiyuki; Shiba, Kazutoshi; Sugiyama, Hideki; Inoue, Masao; Nishida, Akio
2015-04-01
High quality static random access memory (SRAM) for 40-nm embedded MONOS flash memory with split gate (SG-MONOS) was developed. Marginal failure, which results in threshold voltage/drain current tailing and outliers of SRAM transistors, occurs when using a conventional SRAM structure. These phenomena can be explained by not only gate depletion but also partial depletion and percolation path formation in the MOS channel. A stacked poly-Si gate structure can suppress these phenomena and achieve high quality SRAM without any defects in the 6σ level and with high affinity to the 40-nm SG-MONOS process was developed.
Analysis of multibunch free electron laser operation
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Decking, Winfried; Branlard, Julien
2017-09-01
At the SASE-FEL user facilities FLASH and European XFEL, superconducting TESLA type cavities are used for acceleration of the driving electron bunches. The high achievable duty cycle allows for operating with long bunch trains, hence considerably increasing the efficiency of the machine. However, multibunch free electron lasers (FEL) operation requires longitudinal and transverse stability within the bunch train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and European XFEL. Key relationships of superconducting rf cavity operation and the resulting impact on the intrabunch-train trajectory variation are described. The observed trajectory variation during multibunch user runs at FLASH is analyzed and related to both, intrabunch-train variations of the rf and the following impact on the multibunch FEL performance.
Acoustic transient generation in pulsed holmium laser ablation under water
NASA Astrophysics Data System (ADS)
Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.
1994-08-01
In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.
A multimodal spectroscopy system for real-time disease diagnosis
NASA Astrophysics Data System (ADS)
Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.
2009-04-01
The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.
NASA Astrophysics Data System (ADS)
Kozhevnikov, I. V.; Buzmakov, A. V.; Siewert, F.; Tiedtke, K.; Störmer, M.; Samoylova, L.; Sinn, H.
2017-05-01
Simple analytic equation is deduced to explain new physical phenomenon detected experimentally: growth of nano-dots (40-55 nm diameter, 8-13 nm height, 9.4 dots/μm2 surface density) on the grazing incidence mirror surface under the three years irradiation by the free electron laser FLASH (5-45 nm wavelength, 3 degrees grazing incidence angle). The growth model is based on the assumption that the growth of nano-dots is caused by polymerization of incoming hydrocarbon molecules under the action of incident photons directly or photoelectrons knocked out from a mirror surface. The key feature of our approach consists in that we take into account the radiation intensity variation nearby a mirror surface in an explicit form, because the polymerization probability is proportional to it. We demonstrate that the simple analytic approach allows to explain all phenomena observed in experiment and to predict new effects. In particular, we show that the nano-dots growth depends crucially on the grazing angle of incoming beam and its intensity: growth of nano-dots is observed in the limited from above and below intervals of the grazing angle and the radiation intensity. Decrease in the grazing angle by 1 degree only (from 3 to 2 degree) may result in a strong suppression of nanodots growth and their total disappearing. Similarly, decrease in the radiation intensity by several times (replacement of free electron laser by synchrotron) results also in disappearing of nano-dots growth.
Calibration of Sudbury Neutrino Observatory for the detection of boron-8 neutrinos
NASA Astrophysics Data System (ADS)
Ford, Richard James
1999-08-01
The Sudbury Neutrino Observatory (SNO) is a second generation water Čerenkov detector using 1000 tonnes of heavy water to study neutrino astrophysics. Using deuterium neutrino reactions, SNO will measure the flux and energy spectrum of solar electron neutrinos, and will measure the flavour-blind flux of neutrinos. A nitrogen/multi-dye laser diffuser ball has been designed and installed in SNO for calibration of the electronics, photomultiplier tubes (PMTs) and optical parameters. The laser provides pulsed radiation at 337.1 nm with a 600 psec width and pulse rate up to 50 Hz. The laser can be used directly or as a pump for one of four dye laser resonators, which provides five wavelength selections from 337-500 nm. The light is delivered to a pseudo-isotropic diffuser ball (the laserball) by a 100 μm UV-VIS fibre bundle with less than 1 nsec dispersion at 337 nm. The laserball can be deployed throughout the detector with the rope manipulator system. The laserball output is adjustable from 0.01 to 1000 photo-electrons (PE) and has a pulsewidth of 0.90 nsec at 386 nm and 1.18 nsec at 337.1 nm. A method has been developed for measuring the optical attenuation and scattering in SNO using the laserball and single photo-electron (SPE) PMT time histograms. At SPE intensity the nanosecond PMT timing can be used to separate direct and scattered light, and the extinction coefficients determined using varying path lengths from the source. A calibration function has been developed that accounts for the position and direction dependence of the response for electrons and gamma rays. The calibration function uses simplified or parameterized distributions for the Čerenkov output and detector geometry. The function is fast enough to be built in to neutrino spectrum analysis and can be used to evaluate the uncertainties in the position response. The laserball system has been tested and used to provide a PMT and electronics calibration of the detector for analysis of the airfill commissioning runs. The electronics channels were calibrated for charge pedestals and slopes, time offsets and slopes and discriminator walk (slewing). The PMT occupancies were measured and a method was developed for measuring the mean SPE gain. Finally, event reconstruction was studied for the airfill data, and a time biased reconstruction algorithm was created for cutting flashing PMT events.
... grow. The flash-lamp pulse dye, pump dye, diode, and sclero-laser are the primary lasers used ... go through several trials of dosing-tapering. The current protocol is to put them on the initial ...
NASA Technical Reports Server (NTRS)
Kim, Kyong H.; Choi, Young S.; Barnes, Norman P.; Hess, Robert V.; Bair, Clayton H.; Brockman, Philip
1993-01-01
Flash-lamp-pumped normal-mode and Q-switched 2.1-micron laser operations of Ho:Tm:Cr:YAG crystals have been evaluated under a wide variety of experimental conditions in order to determine an optimum lasing condition and to characterize the laser outputs. Q-switched laser-output energies equal to, or in some cases exceeding the normal-mode laser energies, were obtained in the form of a strong single spike through an optimization of the opening time of a lithium niobate Q switch. The increase of the normal-mode laser slope efficiency was observed with the increase of the Tm concentration from 2.5 to 4.5 at. pct at operating temperatures from 120 K to near room temperature. Laser transitions were observed only at 2.098 and 2.091 microns under various conditions. The 2.091-micron laser transition appeared to be dominant at high-temperature operations with low-reflective-output couplers.
Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter
2010-01-01
A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (< or =50-microm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences < or =3 J/cm(2). Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenly, J.E.; Seka. W.; Rechmann, P.
A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180more » iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a morehomogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (<=50-mm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (>= 2 J/cm^2); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences <=3 J/cm^2. Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm^2 are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.« less
NASA Astrophysics Data System (ADS)
Laune, Jordan; Tzeferacos, Petros; Feister, Scott; Fatenejad, Milad; Yurchak, Roman; Flocke, Norbert; Weide, Klaus; Lamb, Donald
2017-10-01
Thermodynamic and opacity properties of materials are necessary to accurately simulate laser-driven laboratory experiments. Such data are compiled in tabular format since the thermodynamic range that needs to be covered cannot be described with one single theoretical model. Moreover, tabulated data can be made available prior to runtime, reducing both compute cost and code complexity. This approach is employed by the FLASH code. Equation of state (EoS) and opacity data comes in various formats, matrix-layouts, and file-structures. We discuss recent developments on opacplot2, an open-source Python module that manipulates tabulated EoS and opacity data. We present software that builds upon opacplot2 and enables easy-to-use conversion of different table formats into the IONMIX format, the native tabular input used by FLASH. Our work enables FLASH users to take advantage of a wider range of accurate EoS and opacity tables in simulating HELP experiments at the National Laser User Facilities.
NASA Astrophysics Data System (ADS)
Klett, Karl K., Jr.
2010-04-01
An analysis was performed, using MODTRAN, to determine the best filters to use for detecting the muzzle flash of an AK-47 in daylight conditions in the desert. Filters with bandwidths of 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 nanometers (nm) were analyzed to understand how the optical bandwidth affects the signal-to-solar clutter ratio. These filters were evaluated near the potassium D1 and D2 doublet emission lines that occur at 769.89 and 766.49 nm respectively that are observed where projectile propellants are used. The maximum spectral radiance, from the AK-47 muzzle flash, is 1.88 x 10-2 W/cm2 str micron, and is approximately equal to the daytime atmospheric spectral radiance. The increased emission, due to the potassium doublet lines, and decreased atmospheric transmission, due to oxygen absorption, combine to create a condition where the signal-to-solar clutter ratio is greater than 1. The 3 nm filter, has a signal-to-solar clutter ratio of 2.09 when centered at 765.37 nm and provides the best combination of both cost and signal sensitivity.
Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu
2017-09-04
We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.
Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang
2017-12-01
At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.
NASA Astrophysics Data System (ADS)
Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration
2017-10-01
Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.
Generation of cavitation luminescence by laser-induced exothermic chemical reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung Park, Han; Diebold, Gerald J.
2013-08-14
Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less
High-Fidelity Flash Lidar Model Development
NASA Technical Reports Server (NTRS)
Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin
2014-01-01
NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.
Femtosecond laser lithotripsy: feasibility and ablation mechanism.
Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E
2010-01-01
Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.
2012-12-03
NASA Mercury Laser Altimeter MLA is shown ranging to Mercury surface from orbit. In this animation, yellow flashes represent near-infrared laser pulses that can reflect off terrain in shadow as well as in sunlight.
European X-Ray Free Electron Laser (EXFEL): local implications
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.
Pozdnyakov, Ivan; Sherin, Peter; Grivin, Vjacheslav; Plyusnin, Victor
2016-03-01
In the present work the Fe(III)-assisted photodegradation of the herbicide 2,4-dichlorophenoxybutanoic acid (2,4-DB) has been studied by means of stationary (308 nm) and laser flash (355 nm) photolysis. The initial quantum yield of 2,4-DB photodegradation in [FeOH](2+) and [Fe(Ox)3](3-) systems was evaluated to be 0.11 and 0.17 upon 308 nm exposure, respectively. The prolonged photolysis of [FeOH](2+) and [Fe(Ox)3](3-) systems results in the complete degradation of 2,4-DB with almost complete mineralization of herbicide and its aromatic products in the case of [FeOH](2+) photolysis and the accumulation of some persistent aromatic products in the case of [Fe(Ox)3](3-) photolysis. For both systems the main primary products of 2,4-DB photolysis determined by liquid chromatography - mass spectrometry are products of the hydroxylation, the substitution of chlorine atom to OH group, the loss of aliphatic tail and the opening of benzene ring. The obtained results indicate ROS species (mainly OH radical) to be responsible for the herbicide photodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidharan, S.; Ferraudi, G.; Schmatz, K.
1982-08-01
Rh(ph)(CH/sub 3/OH)X, X = Cl, Br, or I, has been prepared and characterized. Continuous-wave irradiations of these phthalocyanines in the ultraviolet region of the spectrum, in acetonitrile and acetonitrile-isopropyl alcohol mixtures, result in the redox-induced substitution of the axially coordinated halide ions by the solvent. Even though the overall reaction was photosubstitution, the intermediates observed by conventional and laser flash photolysis were found to be rhodium(II) phthalocyanine and rhodium(III) phthalocyanine ligand radicals. The photoredox processes were attributed to the population of (n..pi..*) ligand-centered excited states that involve the lone electron pair from the bridge nitrogens of the phthalocyanine ligand. 9more » figures, 3 tables.« less
Disturbance of visual functions as a result of temporary blinding from low power lasers
NASA Astrophysics Data System (ADS)
Reidenbach, Hans-Dieter
2010-04-01
Although it is well-known that dazzle, flash-blindness and afterimages may be caused by bright optical radiation, only sparse quantitative data are available with regard to the effects arising from low power laser products. Indirect effects like temporary blinding might result in serious incidents or even accidents due to the alteration of visual functions like visual acuity, contrast sensitivity and color discrimination. In order to determine the degree and duration of impairment resulting from dazzle, flash-blindness and afterimages, caused by a laser beam, an investigation has been performed with the goal to improve the current knowledge as far as especially the visual acuity recovery duration is concerned. Two different test set-ups were designed and applied in order to determine the afterimage duration and the recovery time for visual acuity after temporary blinding from a laser, respectively. In order to get the desired information a helium-neon laser was mounted on a movable assembly where the respective beam position and direction could be set up on a semicircle. In addition the mount could be inclined in a vertical plane in order to increase the variability of feasible settings. The power was adjusted in several steps in order to investigate the respective dependence of the afterimage. The investigations were relatively time consuming, since re-adaptation of about half an hour was necessary after every exposure in order not to falsify the results. The trials have been done with several volunteers in the laboratory. After the experimental mapping of the local afterimage duration for the various sites on the retina the foveal afterimage duration taf,fv produced by a red laser beam was determined. The investigations have shown a strong dependence on the angle between the line of sight and the beam direction. Besides a maximum of 300 s the dose relationship taf,fv/s ~ 50.6•ln[(P•texp)/μJ] - 13.4 for laser output powers P between 10 μW and 30 μW with exposure durations texp from 0.25 s up to 10 s was found. The inability to read due to the disturbance produced by afterimages lasts for about 20 s even if the exposure is not more than 0.25 s from a laser with about 0.8 mW optical output power. In addition to the physiological effects of temporary blinding the psychological glare was determined as a function of the angle between line of sight and beam direction. It was found that already at output powers below 30 μW of a He-Nelaser the subjects reported intense glare effects and felt uncomfortable due to the high brightness. Instead of the standard visual acuity measurement used by eye care professionals, a reading test on a computer monitor was applied after laser irradiation. In this case two different lasers were used as a dazzling light source, one with a wavelength of 632.8 nm and the other with 532 nm. The maximum applied optical power in a 7-mm aperture, which is equivalent to the pupil diameter of a dark adapted eye, was 0.783 mW. The exposure durations were chosen as 0.25 s, 0.5 s, 1 s, 5 s, and 20 s.
Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology
NASA Astrophysics Data System (ADS)
Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael
2015-05-01
In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.
A kinetics investigation of several reactions involving chlorine containing compounds
NASA Technical Reports Server (NTRS)
Davis, D. D.
1978-01-01
The technique of flash photolysis-resonance fluorescence was utilized to study nine reactions of stratospheric importance. The tropospheric degradation reactions of seven halogenated hydrocarbons were studied to assess their possible influx into the stratosphere. There are reactions of either Cl, OH, or O(3P) species with hydrogenated species, O3 or chlorinated compounds. Apart from the kinetic measurements, the quantum yield for the production of O(1D) from O3 in the crucial wavelength region of 293 to 316.5 nm was studied by utilizing a narrow wavelength laser as the photolysis source. The product formation was monitored by measuring the fluorescence of NO2 formed through O(1D) reaction with N2O followed by NO reaction with O3 to give NO2.
Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)
NASA Astrophysics Data System (ADS)
Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin
2013-06-01
The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.
Dóka, Éva; Lente, Gábor
2017-04-13
This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.
NASA Technical Reports Server (NTRS)
Jackson, W. M.
1977-01-01
A tunable vacuum ultraviolet flash lamp was constructed. This unique flash lamp was coupled with a tunable dye laser detector and permits the experimenter to measure the production rates of ground state radicals as a function of wavelength. A new technique for producing fluorescent radicals was discovered. This technique called multiphoton ultraviolet photodissociation is currently being applied to several problems of both cometary and stratospheric interest. It was demonstrated that NO2 will dissociate to produce an excited fragment and the radiation can possibly be used for remote detection of this species.
Thermal diffusivity of UO2 up to the melting point
NASA Astrophysics Data System (ADS)
Vlahovic, L.; Staicu, D.; Küst, A.; Konings, R. J. M.
2018-02-01
The thermal diffusivity of uranium dioxide was measured from 500 to 3060 K with two different set-ups, both based on the laser-flash technique. Above 1600 K the measurements were performed with an advanced laser-flash technique, which was slightly improved in comparison with a former work. In the temperature range 500-2000 K the thermal diffusivity is decreasing, then relatively constant up to 2700 K, and tends to increase by approaching the melting point. The measurements of the thermal diffusivity in the vicinity of the melting point are possible under certain conditions, and are discussed in this paper.
Transient spectra study on photo-dynamics of curcumin
NASA Astrophysics Data System (ADS)
Qian, Tingting; Wang, Mei; Wang, Jiao; Zhu, Rongrong; He, Xiaolie; Sun, Xiaoyu; Sun, Dongmei; Wang, Qingxiu; Wang, ShiLong
2016-09-01
A novel mechanism of DNA damage induced by photosensitized curcumin (Cur) was explored using laser flash photolysis, pulse radiolysis and gel electrophoresis. Cur neutral radical (Currad) was confirmed as an identical product in photo-sensitization of Cur by laser flash photolysis and pulse radiolysis. A series of reaction rate constants between Currad and nucleic acid bases/nucleotides were determined by pulse radiolysis. Gel electrophoresis was carried out to investigate damage induced by photosensitized Cur to biologically active DNA. The results indicate that the damage to DNA may be caused by Currad produced from the photosensitization of Cur.
Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W
2015-01-01
Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.
Shock compression and flash-heating of molecular adsorbates on the picosecond time scale
NASA Astrophysics Data System (ADS)
Berg, Christopher Michael
An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock initiation or first bond-breaking reactions in molecular explosives such as delta-HMX: a necessary study for the development of safer and more effective energetic materials.
Time-diagnostics for improved dynamics experiments at XUV FELs
NASA Astrophysics Data System (ADS)
Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek
2010-10-01
Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.
Porosity Measurement in Laminated Composites by Thermography and FEA
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.
Choy, D S; Altman, P A; Case, R B; Trokel, S L
1991-06-01
The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.
Small SWAP 3D imaging flash ladar for small tactical unmanned air systems
NASA Astrophysics Data System (ADS)
Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.
2015-05-01
The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
NASA Astrophysics Data System (ADS)
Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.
2016-06-01
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
Interactions between Brief Flashed Lines at Threshold.
1987-12-11
ORAIAIN 6 OFC ’PO 4 4M FMNTRIGOGNZTO lol in AFI, C 203 2- 44 . NAME OF PFN IG PORAIION lbOFFICE SYMBOL 7il PRO4MEN MINTRUNT INCNIATON NM ,.. .oAFOSR...Cass, P. C. (1986) Facilitatory interactionE between flashed lines. Perceptinn. jj,443-460. omith, P.A. and Cass, P C. (1967) Aliasing in the
[Physical treatment methods for acne. Light, laser, photodynamic therapy and peeling].
Borelli, C; Korting, H C
2010-02-01
The medical treatment of acne is generally sufficient to meet the expectations of acne patients. However, in a number of situations additional therapeutic approaches may be advisable. There are a wide variety of useful physical methods. They range from electromagnetic waves, usually light, to peeling and manual therapy. Phototherapy of acne includes not just visible light but also laser and flash lamp therapy. The present review provides an overview on the evidence. Visible light, in particular blue light, provides an effective option for treatment of inflammatory acne. Photodynamic therapy also is efficacious; however, it should not be used because of an unfavorable risk-benefit ratio. UV treatment of acne is obsolete. Newer studies on the use of a variety of laser systems and flash lamps have demonstrated in part rewarding results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric
In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less
NASA Technical Reports Server (NTRS)
Zhu, Shen; Li, C.; Su, Ching-Hua; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devices. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed.
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Li, C.; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devises. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed in the presentation.
Comparative laser-tissue interaction effects at 1.96 and 2.01 um of Cr; Tm:YAG laser
NASA Astrophysics Data System (ADS)
Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Pinto, Joseph F.; Esterowitz, Dina; Aretz, H. Thomas
1992-08-01
A pulsed spiking and nonspiking Cr; thulium (Tm):YAG flash lamp pumped laser operating at 1.96 and 2.01 μm was investigated in vitro in the clinically relevant power range for its basic laser-tissue interaction with soft, cartilaginous, and bone tissues. Some explanations of the differences and possible medical applications are discussed.
Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi
2015-07-01
To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Samita; Bose, Adity; Dey, Debarati
2008-04-24
Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.
NASA Astrophysics Data System (ADS)
Basu, Samita; Bose, Adity; Dey, Debarati
2008-04-01
Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.
Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism
NASA Astrophysics Data System (ADS)
Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team
2011-10-01
The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.
NASA Astrophysics Data System (ADS)
Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian
2017-02-01
In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay
2017-02-01
In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.
LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.
2015-01-01
We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294
Spark Generated by ChemCam Laser During Tests
2010-09-21
The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.
NASA Astrophysics Data System (ADS)
Nakano, M.; Kondo, H.; Yamashita, A.; Yanai, T.; Itakura, M.; Fukunaga, H.
2018-05-01
PLD (Pulsed Laser Deposition) method with high laser energy density (LED) above 10 J/cm2 followed by a flash annealing enabled us to obtain isotropic nano-composite thick-film magnets with (BH)max ≧ 80 kJ/m3 on polycrystalline Ta substrates. We also have demonstrated that a dispersed structure composed of α-Fe together with Nd2Fe14B phases with the average grain diameter of approximately 20 nm could be formed on the Ta substrates. In this study, we tried to enhance the (BH)max value by controlling the microstructure due to the usage of different metal based substrates with each high melting point such as Ti, Nb, and W. Although it was difficult to vary the microstructure and to improve the magnetic properties of the films deposited on the substrates, we confirmed that isotropic thick-film magnets with (BH)max ≧ 80 kJ/m3 based on the nano-dispersed α-Fe and Nd2Fe14B phases could be obtained on various metal substrates with totally different polycrystalline structure. On the other hand, the use of a glass substrate lead to the deterioration of magnetic properties of a film prepared using the same preparation process.
NASA Astrophysics Data System (ADS)
Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil
2006-12-01
Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \
Primary photophysical properties of moxifloxacin--a fluoroquinolone antibiotic.
Lorenzo, Fernando; Navaratnam, Suppiah; Edge, Ruth; Allen, Norman S
2008-01-01
The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44,000 and 17,000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.
Knapp, C; Lecomte, J P; Mesmaeker, A K; Orellana, G
1996-10-01
Fluorescent DNA-binding N,N'-dialkyl 6-(2-pyridinium)phenanthridinium dications (where dialkyl stands for -(CH2)2-or-(CH2)3-, abbreviated dq2pyp and dq3pyp, respectively) associate with GMP (guanosine-5'-monophosphate) in 0.1-mol l-1, pH 3.5-5.5, phosphate buffer solution to yield 1:1 and 1:2 non-emissive complexes, the formation constants of which range from 197-63 and 19-11 l mol-1, respectively. In addition to the strong static quenching, dynamic deactivation of their excited state occurs at diffusion-controlled rate ki = 5.2 x 10(9) l mol-1 s-1). Illumination of the GMP-containing solutions of the dyes with a 355 nm laser pulse produces a transient, with strong absorbance at 510 and 720 nm for dq2pyp, and 420 and 560 nm for dq3pyp. An identical transient is produced in the presence of ascorbic acid instead of the mononucleotide. By comparison to the electrochemically generated absorption spectra of the monoreduced dyes, the photogenerated transients have been assigned unequivocally to their corresponding radical-cations, formed by electron transfer to the anglet excited state. The back redox reaction between the oxidized quencher and dq2pyp+ proceeds at a rate of 1-2 x 10(9) l mol-1 s-1. The same transient has been observed also for the DNA intercalated viologens; this result, together with the little ability of these dyes to sensitize the formation of singlet dioxygen or to produce superoxide anion, demonstrate that their DNA photocleavaging activity is initiated by an efficient light-induced electron transfer from the nucleobases.
Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm
NASA Astrophysics Data System (ADS)
Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei
2015-10-01
The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.
Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime
NASA Astrophysics Data System (ADS)
Gong, Z.; Hu, R. H.; Lu, H. Y.; Yu, J. Q.; Wang, D. H.; Fu, E. G.; Chen, C. E.; He, X. T.; Yan, X. Q.
2018-04-01
An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ˜ 1023 W cm-2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s-1 mm-2 mrad-2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.
NASA Astrophysics Data System (ADS)
2011-03-01
WE RECOMMEND Requiem for a Species This book delivers a sober message about climate change Laser Sound System Sound kit is useful for laser demonstrations EasySense VISION Data Harvest produces another easy-to-use data logger UV Flash Kit Useful equipment captures shadows on film The Demon-Haunted World World-famous astronomer attacks pseudoscience in this book Nonsense on Stilts A thought-provoking analysis of hard and soft sciences How to Think about Weird Things This book explores the credibility of astrologers and their ilk WORTH A LOOK Chameleon Nano Flakes Product lacks good instructions and guidelines WEB WATCH Amateur scientists help out researchers with a variety of online projects
Caged vanilloid ligands for activation of TRPV1 receptors by 1- and 2-photon excitation†
Zhao, Jun; Gover, Tony D.; Muralidharan, Sukumaran; Auston, Darryl A.; Weinreich, Daniel; Kao, Joseph P. Y.
2008-01-01
Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a non-selective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids—biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in ∼40 μs and ∼125 μs, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca2+ concentration ([Ca2+]i) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca2+ indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca2+-free extracellular medium, photoreleased vanilloid can still elevate [Ca2+]i, which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca2+ release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in < 4 msec at 22°C. In combination with 1- or 2-photon excitation, caged vanilloids are a powerful tool for probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision. PMID:16605259
NASA Astrophysics Data System (ADS)
Xu, Bin; Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Huiying; Cai, Zhiping; Moncorgé, Richard
2016-07-01
Calibrated room temperature polarized emission spectra recorded between 850 and 1400 nm and nearly free from any reabsorption effect are presented for the first time. A laser output power of 2.35 W is obtained at 1063.45 nm with a laser slope efficiency of about 56% by pumping an uncoated Nd:LaF3 single crystal with a fiber-coupled laser diode at 790 nm inside a standard two-mirror linear laser cavity. True dual-wavelength laser operation on two orthogonally polarized laser lines around 1040 and 1065 nm as well as continuous laser wavelength tuning around 1040 nm, 1048 nm and 1064 nm are also achieved for the first time by using either an intracavity etalon or a birefringent filter. Laser operation is finally obtained around 1330.73 nm with a maximum output power of 0.18 W and a laser slope efficiency of about 4% and simultaneous dual-wavelength laser operation at 1329.04 and 1359.67 nm is demonstrated by using a glass etalon.
Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
Zaleski-Larsen, Lisa A; Jones, Isabela T; Guiha, Isabella; Wu, Douglas C; Goldman, Mitchel P
2018-05-09
Few effective treatments exist for striae alba, which are the mature stage of stretch marks. To evaluate the efficacy of the nonablative fractional 1,565-nm Er:glass and the picosecond fractional 1,064/532-nm Nd:YAG lasers in the treatment of striae alba. Twenty subjects with striae alba on the bilateral abdomen were treated with either the nonablative fractional 1565-nm Er:glass or the picosecond fractional 1,064/532-nm Nd:YAG laser, with a total of 3 treatments 3 weeks apart. A 31% (1.25/4) texture improvement was noted for both the fractional 1,565-nm Er:glass laser and the picosecond fractional 1,064/532-nm Nd:YAG laser. The degree of atrophy was improved by 30% (1.19/4) with the 1,565-nm Er:glass laser and 35% (1.38/4) with the picosecond 1,064/532-nm Nd:YAG laser. A 48% (1.9/4) subject overall assessment of improvement was noted with the fractional 1565-nm Er:glass laser and 45% (1.8/4) improvement with the picosecond fractional 1,064/532-nm Nd:YAG laser. There was no significant change in striae density with either laser. The picosecond laser was rated as less painful during all 3 sessions (p = .002) and had a shorter healing time (p = .035). The nonablative fractional 1,565-nm Er:glass and the picosecond fractional 1,064/532-nm Nd:YAG lasers were equally efficacious in improving striae alba.
Viewing Spark Generated by ChemCam Laser for Mars Rover
2010-09-21
The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.
High-Accuracy Multisensor Geolocation Technology to Support Geophysical Data Collection at MEC Sites
2012-12-01
image with intensity data in a single step. Flash LiDAR can use both basic solutions to emit laser , either a single pulse with large aperture will...45 6. LASER SENSOR DEVELOPMENTS...and a terrestrial laser scanner (TLS). State-of-the-art GPS navigation allows for cm- accurate positioning in open areas where a sufficient number
NASA Astrophysics Data System (ADS)
Tomita, Toshihiro; Miyaji, Kousuke
2015-04-01
The dependence of spatial and statistical distribution of random telegraph noise (RTN) in a 30 nm NAND flash memory on channel doping concentration NA and cell program state Vth is comprehensively investigated using three-dimensional Monte Carlo device simulation considering random dopant fluctuation (RDF). It is found that single trap RTN amplitude ΔVth is larger at the center of the channel region in the NAND flash memory, which is closer to the jellium (uniform) doping results since NA is relatively low to suppress junction leakage current. In addition, ΔVth peak at the center of the channel decreases in the higher Vth state due to the current concentration at the shallow trench isolation (STI) edges induced by the high vertical electrical field through the fringing capacitance between the channel and control gate. In such cases, ΔVth distribution slope λ cannot be determined by only considering RDF and single trap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."
Ogura, Makoto; Sato, Shunichi; Ishihara, Miya; Kawauchi, Satoko; Arai, Tunenori; Matsui, Takemi; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru
2002-01-01
We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed. Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope. The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold. We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At laser intensities of > 2.4 GW/cm(2), a photodisruption process may also contribute to the tissue removal, in addition to a photothermal process. With regard to the ablation rates, the 1,064-nm laser was more suitable for TMLR than the 532-nm laser. We concluded that the 1,064-nm Q-switched Nd:YAG laser would be a potential candidate for a laser source for TMLR because of possible fiber-based beam delivery, its compact structure, cost effectiveness, and easy maintenance. Animal trials, however, have to be carried out to evaluate the influence of the tissue damage. Copyright 2002 Wiley-Liss, Inc.
Non-invasive online wavelength measurements at FLASH2 and present benchmark
Braune, Markus; Buck, Jens; Kuhlmann, Marion; Grunewald, Sören; Düsterer, Stefan; Viefhaus, Jens; Tiedtke, Kai
2018-01-01
At FLASH2, the free-electron laser radiation wavelength is routinely measured by an online spectrometer based on photoionization of gas targets. Photoelectrons are detected with time-of-flight spectrometers and the wavelength is determined by means of well known binding energies of the target species. The wavelength measurement is non-invasive and transparent with respect to running user experiments due to the low gas pressure applied. Sophisticated controls for setting the OPIS operation parameters have been created and integrated into the distributed object-oriented control system at FLASH2. Raw and processed data can be stored on request in the FLASH data acquisition system for later correlation with data from user experiments or re-analysis. In this paper, the commissioning of the instrument at FLASH2 and the challenges of space charge effects on wavelength determination are reported. Furthermore, strategies for fast data reduction and online data processing are presented. PMID:29271744
Radiation measurement in the environment of FLASH using passive dosimeters
NASA Astrophysics Data System (ADS)
Mukherjee, B.; Rybka, D.; Makowski, D.; Lipka, T.; Simrock, S.
2007-08-01
Sophisticated electronic devices comprising sensitive microelectronic components have been installed in the close proximity of the 720 MeV superconducting electron linear accelerator (linac) driving the FLASH (Free Electron Laser in Hamburg), presently in operation at DESY in Hamburg. Microelectronic chips are inherently vulnerable to ionizing radiation, usually generated during routine operation of high-energy particle accelerator facilities like the FLASH. Hence, in order to assess the radiation effect on microelectronic chips and to develop suitable mitigation strategy, it becomes imperative to characterize the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy (spectra) and dose distributions at critical locations in the FLASH tunnel using superheated emulsion (bubble) detectors, GaAs light emitting diodes (LED), LiF-thermoluminescence dosimeters (TLD) and radiochromic (Gafchromic EBT) films. This paper highlights the application of passive dosimeters for an accurate analysis of the radiation field produced by high-energy electron linear accelerators.
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
Faatz, B.; Plönjes, E.; Ackermann, S.; ...
2016-06-20
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less
Diode-pumped UV refractive surgery laser
NASA Astrophysics Data System (ADS)
Lin, Jui T.; Hwang, Ming-Yi; Huang, C. H.
1993-07-01
Ophthalmic applications of medical lasers have been extensively explored recently because of their market potential. Refractive surgical lasers represent one of the major development efforts due to the large population of eye disorders: about 160 million people in the USA and more than 2 billion worldwide. The first refractive laser developed was the ArF excimer laser at 193 nm in 1987 - 88 for a procedure called photorefractive keratectomy (PRK). More recently, solid state refractive lasers have also been explored for preliminary clinical trials. These lasers include Nd:YLF (picosecond at 1054 nm), doubled-Nd:YAG (nanosecond at 532 nm), Ho:YAG (microsecond at 2100 nm) and ultraviolet (UV) lasers generated from the harmonic of Ti:sapphire-laser (205 - 220 nm) and Nd:YAG (at 213 nm).
Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.
Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean
2007-01-01
The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd:YAG laser.
The flash memory battle: How low can we go?
NASA Astrophysics Data System (ADS)
van Setten, Eelco; Wismans, Onno; Grim, Kees; Finders, Jo; Dusa, Mircea; Birkner, Robert; Richter, Rigo; Scherübl, Thomas
2008-03-01
With the introduction of the TWINSCAN XT:1900Gi the limit of the water based hyper-NA immersion lithography has been reached in terms of resolution. With a numerical aperture of 1.35 a single expose resolution of 36.5nm half pitch has been demonstrated. However the practical resolution limit in production will be closer to 40nm half pitch, without having to go to double patterning alike strategies. In the relentless Flash memory market the performance of the exposure tool is stretched to the limit for a competitive advantage and cost-effective product. In this paper we will present the results of an experimental study of the resolution limit of the NAND-Flash Memory Gate layer for a production-worthy process on the TWINSCAN XT:1900Gi. The entire gate layer will be qualified in terms of full wafer CD uniformity, aberration sensitivities for the different wordlines and feature-center placement errors for 38, 39, 40 and 43nm half pitch design rule. In this study we will also compare the performance of a binary intensity mask to a 6% attenuated phase shift mask and look at strategies to maximize Depth of Focus, and to desensitize the gate layer for lens aberrations and placement errors. The mask is one of the dominant contributors to the CD uniformity budget of the flash gate layer. Therefore the wafer measurements are compared to aerial image measurements of the mask using AIMSTM 45-193i to separate the mask contribution from the scanner contribution to the final imaging performance.
NASA Astrophysics Data System (ADS)
von Korff Schmising, Clemens; Weder, David; Noll, Tino; Pfau, Bastian; Hennecke, Martin; Strüber, Christian; Radu, Ilie; Schneider, Michael; Staeck, Steffen; Günther, Christian M.; Lüning, Jan; Merhe, Alaa el dine; Buck, Jens; Hartmann, Gregor; Viefhaus, Jens; Treusch, Rolf; Eisebitt, Stefan
2017-05-01
A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.
Temperature dependence of the NO3 absorption spectrum
NASA Technical Reports Server (NTRS)
Sander, Stanley P.
1986-01-01
The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.
Endoluminal laser delivery mode and wavelength effects on varicose veins in an ex vivo model.
Massaki, Ane B M N; Kiripolsky, Monika G; Detwiler, Susan P; Goldman, Mitchel P
2013-02-01
Endovenous laser ablation (EVLA) has been shown to be effective for the elimination of saphenous veins and associated reflux. Mechanism is known to be heat related, but precise way in which heat causes vein ablation is not completely known. This study aimed to determine the effects of various endovenous laser wavelengths and delivery modes on ex vivo human vein both macroscopically and microscopically. We also evaluated whether protected-tip fibers, consisting of prototype silica fibers with a metal tube over the distal end, reduced vein wall perforations compared with non-protected-tip fibers. An ex vivo EVLA model with human veins harvested during ambulatory phlebectomy procedures was used. Six laser fiber combinations were tested: 810 nm continuous wave (CW) diode laser with a flat tip fiber, 810 CW diode laser with a protected tip fiber, 1,320 nm pulsed Nd:YAG laser, 1,310 nm CW diode laser, 1,470 nm CW diode laser, and 2,100 nm pulsed Ho:YAG laser. Perforation or full thickness necrosis of a portion of the vein wall was observed in 5/11 (45%), 0/11 (0%), 3/22 (14%), 7/11 (64%), 4/6 (67%), and 5/10 (50%) of cross-sections of veins treated with the 810 nm CW diode laser with a flat tip fiber, the 810 CW diode laser with a protected tip fiber, the 1,320 nm pulsed Nd:YAG laser, the 1,310 nm CW diode laser, the 1,470 nm CW diode laser, and the 2,100 nm pulsed Ho:YAG laser, respectively. Our results have shown that the delivery mode, pulsed Nd:YAG versus CW, may be just as important as the wavelength. Therefore, the 1,310 nm CW laser may not be equivalent to the 1,320 nm pulsed laser. In addition, protected 810 nm fibers may be less likely to yield wall perforations than their non-protected counterparts. Copyright © 2012 Wiley Periodicals, Inc.
Ultraviolet 320 nm laser excitation for flow cytometry.
Telford, William; Stickland, Lynn; Koschorreck, Marco
2017-04-01
Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Corneal tissue welding with infrared laser irradiation after clear corneal incision.
Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat
2010-09-01
The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.
Liu, Jukun; Jia, Tianqing; Zhou, Kan; Feng, Donghai; Zhang, Shian; Zhang, Hongxin; Jia, Xin; Sun, Zhenrong; Qiu, Jianrong
2014-12-29
We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.
Noh, Tai Kyung; Chung, Bo Young; Yeo, Un Cheol; Chang, SeoYoun; Lee, Mi Woo; Chang, Sung Eun
2015-12-01
Q-switched (QS) 532-nm lasers are widely used to treat solar lentigines. To compare the efficacy and safety of 660-nm and 532-nm QS neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers in the treatment for lentigines in Asians. The halves of each face (randomly chosen) of 8 Korean Fitzpatrick Skin Type III-IV women with facial solar lentigines were treated with either 660-nm or 532-nm lasers. Pigmentation was measured objectively using a profilometric skin analysis tool and subjectively using the pigmentation area and severity index (PSI) score, global assessment of the aesthetic improvement scale (GAIS), and a patient satisfaction score at Weeks 4 and 8. Seven patients completed the study. No significant differences were found in the PSI, GAIS, patient satisfaction score, and melanin average score between the lasers. The melanin average level was significantly reduced by the 660-nm laser but not the 532-nm laser at Week 8 compared with the baseline. Both 660-nm and 532-nm QS Nd:YAG lasers effectively reduce pigmentation for up to 8 weeks with high patient satisfaction. The new 660-nm laser therefore increases the treatment options for lentigines in Asian skin.
NASA Astrophysics Data System (ADS)
Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy
The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The hygrometer was installed at the nose of a small GPS-controlled glider, which was lifted by a meteorological balloon into the stratosphere and released by a remote command. GPS-based flight control guides and lands the UAV at the launch point thereby allowing multiple usage of its payload. Another sounding platform allowing for multiple usage of the FLASH instrument is a GPS-guided paraglide. The results of measurements acquired in the test flights using different types of balloon-lifted UAVs are presented.
Laser shocking of materials: Toward the national ignition facility
Meyers, M. A.; Remington, B. A.; Maddox, B.; ...
2010-01-16
In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. In this paper, this technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 10 7–10 8 s -1 and resolving details of themore » kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Finally, other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.« less
NASA Astrophysics Data System (ADS)
Yuren, Wang; Fang, Shao; Weiping, Sun; Xioujuan, Li; Suning, Tian; Hongyan, Li
1989-06-01
When a heavy-calibre gun is fired and a projectite is flying near the gun muzzle, velocity of the projectile is very high and firing process is accompanying with strong muzzle flash. So taking the picture of the attitudes of flying projectile at the gun muzzle is very difficult. "YDS speed Photography System" developed by our group can take the framing pictures of the attitudes of the projectile and prevent them from flash confusing at the muzzle. Since framing depends on sequential pulse of the laser and the width of the putse is very narrow, therefore the exposure time is very short and photos of high-velocity flying body taken are very clear. This paper Introduces configuration and operation principle of "YDS laser High-speed Photography System" and the fuctions of the devices in this system In addition, some experimental results are briefly introduced.
In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory.
Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong
2018-04-01
The programming characteristics of charge trap flash memory device adopting amorphous In 2 Ga 2 ZnO 7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO 2 (blocking oxide)/p ++ -Si (control gate) substrate, where 3 nm thick atomic layer deposited Al 2 O 3 (tunneling oxide) and 5 nm thick low-pressure CVD Si 3 N 4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F ) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.
In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory
NASA Astrophysics Data System (ADS)
Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong
2018-04-01
The programming characteristics of charge trap flash memory device adopting amorphous In2Ga2ZnO7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO2 (blocking oxide)/p++-Si (control gate) substrate, where 3 nm thick atomic layer deposited Al2O3 (tunneling oxide) and 5 nm thick low-pressure CVD Si3N4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.
Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.
Lancaster, D G; Gross, S; Withford, M J; Monro, T M
2014-10-20
We report widely tunable (≈ 260 nm) Tm(3+) and Ho(3+) doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M(2) ≈ 1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm(3+)-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm(3+)-sensitized Tm(3+):Ho(3+) chip laser displays tuning across both ions evidenced by a red enhanced tuning range of 1810 to 2053 nm. We also demonstrate a compact 790 nm diode laser pumped Tm(3+)-doped chip laser which tunes from 1750 nm to 1998 nm at a 14% incident slope efficiency, and a beam quality of M(2) ≈ 1.2 for a large mode-area waveguide with 70 µm core diameter.
Gün, Teoman; Metz, Philip; Huber, Günter
2011-03-15
We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.
[Comparative investigation of underwater-LIBS using 532 and 1 064 nm lasers].
Song, Jiao-Jian; Tian, Ye; Lu, Yuan; Li, Ying; Zheng, Rong-Er
2014-11-01
With the hope of applying laser induced breakdown spectroscopy (LIBS) to the ocean applications, the laser energy at 532 and 1 064 nm wavelength with 3 and 40 mj respectively was used, which was near their breakdown threshold. Extensive experimental investigations of LIBS from CaCl2 water solution were carried out in this paper using different laser wavelengths of 532 and 1 064 nm. The obtained results show that compared with the 532 nm laser, the 1 064 nm laser can induce the plasma in water with higher emission intensity and longer lifetime, while the reproducibility of LIBS signal under 1 064 nm laser is poorer. On the other hand, due to the different attenuation ratios of 532 and 1 064 nm laser energies in water, the LIBS signal of 1 064 nm laser decreases a lot within the transmission distance range 2-5 cm, while LIBS signal of 532 nm remains the same, because that the wavelength of 532 nm lies in the "transmission window" of the water solution. This study will provide valuable design considerations for the development of LIBS-sea system in near future.
Compact X-ray sources: X-rays from self-reflection
NASA Astrophysics Data System (ADS)
Mangles, Stuart P. D.
2012-05-01
Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.
High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications
NASA Astrophysics Data System (ADS)
Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao
2012-03-01
Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.
TID and SEE Response of an Advanced Samsung 4G NAND Flash Memory
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; Friendlich, M.; Howard, J. W.; Berg, M. D.; Kim, H. S.; Irwin, T. L.; LaBel, K. A.
2007-01-01
Initial total ionizing dose (TID) and single event heavy ion test results are presented for an unhardened commercial flash memory, fabricated with 63 nm technology. Results are that the parts survive to a TID of nearly 200 krad (SiO2), with a tractable soft error rate of about 10(exp -l2) errors/bit-day, for the Adams Ten Percent Worst Case Environment.
Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)
NASA Astrophysics Data System (ADS)
Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat
2009-07-01
The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.
Lidar Measurements of the Stratosphere and Mesosphere at the Biejing Observatory
NASA Astrophysics Data System (ADS)
Du, Lifang; Yang, Guotao; Cheng, Xuewu; Wang, Jihong
With the high precision and high spatial and temporal resolution, the lidar has become a powerful weapon of near space environment monitoring. This paper describes the development of the solid-state 532nm and 589nm laser radar, which were used to detect the wind field of Beijing stratosphere and mesopause field. The injection seeding technique and atomic absorption saturation bubble frequency stabilization method was used to obtain narrow linewidth of 532nm lidar, Wherein the laser pulse energy of 800mJ, repetition rate of 30Hz. The 589nm yellow laser achieved by extra-cavity sum-frequency mixing 1064nm and 1319nm pulse laser with KTP crystal. The base frequency of 1064nm and 1319nm laser adopted injection seeding technique and YAG laser amplification for high energy pulse laser. Ultimately, the laser pulse of 150mJ and the linewidth of 130MHz of 589nm laser was obtain. And after AOM crystal frequency shift, Doppler frequency discriminator free methods achieved of the measuring of high-altitude wind. Both of 532nm and 589nm lidar system for engineering design of solid-state lidar provides a basis, and also provide a solid foundation for the development of all-solid-state wind lidar.
Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser
NASA Astrophysics Data System (ADS)
Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong
2003-10-01
Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.
Orange fiber laser for ophthalmology
NASA Astrophysics Data System (ADS)
Adachi, M.; Kojima, K.; Hayashi, K.
2007-02-01
For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.
Improving Range Estimation of a 3-Dimensional Flash Ladar via Blind Deconvolution
2010-09-01
12 2.1.4 Optical Imaging as a Linear and Nonlinear System 15 2.1.5 Coherence Theory and Laser Light Statistics . . . 16 2.2 Deconvolution...rather than deconvolution. 2.1.5 Coherence Theory and Laser Light Statistics. Using [24] and [25], this section serves as background on coherence theory...the laser light incident on the detector surface. The image intensity related to different types of coherence is governed by the laser light’s spatial
Gruen, Dieter M.
2000-01-01
A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.
Barikbin, Behrooz; Khodamrdi, Zeinab; Kholoosi, Leila; Akhgri, Mohammad Reza; Haj Abbasi, Majid; Hajabbasi, Mojgan; Razzaghi, Zahra; Akbarpour, Samaneh
2017-05-17
This study aimed to evaluate the effectiveness of a combined set of low level diode laser scanner (665 nm and 808nm) on hair growth, and assessment of safety and effectiveness of a new laser scanner on hair growth treatment procedure in androgenic alopecia. 90 patients (18 to 70 years) with androgenic alopecia were randomized into three groups. The first group (n=30) received 655 nm red light using laser hat, the second group (n=30) received 655 nm red laser plus 808 nm infrared laser using a laser scanner of hair growth device (with the patent number: 77733) and the third group (n=30) received no laser as the control group. Patients in laser scanner group had better results and showed a higher increase in terminal hair density compared with laser hat group (mean of 9.61 versus 9.16 per cm 2 ). We found significant decrease in terminal hair density from baseline in control group (mean -1.8 per cm 2 , p<0.0001). Results showed a statistically significant improvement in the laser scanner of the hair growth group compared with laser hat and the control group. The study showed that treatment with new laser devise had a promising result without any observable adverse effects.
NASA Astrophysics Data System (ADS)
Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao
2018-04-01
Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.
NASA Astrophysics Data System (ADS)
Lynam, Jeff R.
2001-09-01
A more highly integrated, electro-optical sensor suite using Laser Illuminated Viewing and Ranging (LIVAR) techniques is being developed under the Army Advanced Concept Technology- II (ACT-II) program for enhanced manportable target surveillance and identification. The ManPortable LIVAR system currently in development employs a wide-array of sensor technologies that provides the foot-bound soldier and UGV significant advantages and capabilities in lightweight, fieldable, target location, ranging and imaging systems. The unit incorporates a wide field-of-view, 5DEG x 3DEG, uncooled LWIR passive sensor for primary target location. Laser range finding and active illumination is done with a triggered, flash-lamp pumped, eyesafe micro-laser operating in the 1.5 micron region, and is used in conjunction with a range-gated, electron-bombarded CCD digital camera to then image the target objective in a more- narrow, 0.3$DEG, field-of-view. Target range determination is acquired using the integrated LRF and a target position is calculated using data from other onboard devices providing GPS coordinates, tilt, bank and corrected magnetic azimuth. Range gate timing and coordinated receiver optics focus control allow for target imaging operations to be optimized. The onboard control electronics provide power efficient, system operations for extended field use periods from the internal, rechargeable battery packs. Image data storage, transmission, and processing performance capabilities are also being incorporated to provide the best all-around support, for the electronic battlefield, in this type of system. The paper will describe flash laser illumination technology, EBCCD camera technology with flash laser detection system, and image resolution improvement through frame averaging.
Blood absorption during 970 and 1470 nm laser radiation in vitro.
Shaydakov, E; Ilyukhin, E; Rosukhovskiy, D
2015-10-01
Soon after introduction of water lasers in medical practice for EVLA, less power and energy line density have been used. However, there are no experimental grounds for different energy modes and there is no clear evidence for a difference in the effect of the two wavelengths dealt with in this study. The goal of this study was to evaluate the temperature profile of various laser action modes with testing devices. Three experimental testing devices consisted of cylinders filled with whole donor blood and a set of temperature sensors installed in different positions. We have determined the range of temperatures around the fiber tip of 970 and 1470 nm lasers. The average temperature of 970 nm laser at 1 mm distance along the axis from the fiber tip substantially differed from that of 1470 nm laser, power being equal. Statistically substantial differences were found in endovenous laser ablation simulation in vitro for the 970 nm and 1470 nm laser radiation. Similar temperatures can be reached with 970 nm lasers if power is increased.
Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel
2010-04-01
Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P < 0.05). A calculated 'output power efficiency per watt' revealed that the 1,318-nm laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P < 0.0001). All three diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P < 0.01). The extend of morphological tissue necrosis was 4.62 mm (1,318 nm), 1.30 mm (1,470 nm), 4.18 mm (980 nm) and 0.84 mm (GreenLight HPS laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.
Variation of a Lightning NOx Indicator for National Climate Assessment
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.
2014-01-01
In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).
2017-08-01
accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line
Vibrational Spectroscopy of Laser Cooled CaH
2015-10-28
about 1 mW 369 nm laser with a bandpass filter ( Semrock 395/20 nm) that reflects the 21 399 nm laser and transmits the 369 nm laser, which are sent along...and the back mirror is a flat broadband 67 ( Semrock MaxMirror) mirror that has over 99% reflectivity over a wide range as shown in Fig. 28. The lasers
A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source
NASA Astrophysics Data System (ADS)
Chen, Xiuyan; Jiang, Huawei
2016-12-01
A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.
Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton
We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less
Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements
Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton
2017-08-01
We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less
Electron Transfer Activity of a de Novo Designed Copper Center in a Three-Helix Bundle Fold
Plegaria, Jefferson S.; Herrero, Christian; Quaranta, Annamaria; Pecoraro, Vincent L.
2017-01-01
In this work, we characterized the intermolecular ET property of a de novo designed metallopeptide using laser-flash photolysis. α3D-CH3 is three-helix bundle peptide that was designed to contain a copper ET site found in the β-barrel fold of native cupredoxins. The ET activity of Cuα3D-CH3 was determined using five different photosensitizers. By exhibiting a complete depletion of the photo-oxidant and the successive formation of a Cu(II) species at 400 nm, the transient and generated spectra demonstrated an ET transfer reaction between the photo-oxidant and Cu(I)α3D-CH3. This observation illustrated our success in integrating an ET center within a de novo designed scaffold. From the kinetic traces at 400 nm, first-order and bimolecular rate constants of 105 s−1 and 108 M−1 s−1 were derived. Moreover, a Marcus equation analysis on the rate versus driving force study produced a reorganization energy of 1.1 eV, demonstrating that the helical fold of α3D requires further structural optimization to efficiently perform ET. PMID:26427552
Wafer-scale micro-optics fabrication
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard
2012-07-01
Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.
40nm tunable multi-wavelength fiber laser
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin
2014-12-01
A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.
Disruptive laser diode source for embedded LIDAR sensors
NASA Astrophysics Data System (ADS)
Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier
2017-02-01
Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources will be given. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.
Saydjari, Yves; Kuypers, Thorsten; Gutknecht, Norbert
2016-01-01
Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment.
Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming
2017-02-01
Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.
Kuypers, Thorsten; Gutknecht, Norbert
2016-01-01
Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611
NASA Technical Reports Server (NTRS)
Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.
1993-01-01
Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.
Yamaji, Minoru; Horimoto, Ami; Marciniak, Bronislaw
2017-07-14
We have prepared three types of carbonyl compounds, benzoylethynylmethyl phenyl sulfide (2@SPh), (p-benzoyl)phenylethynylmethyl phenyl sulfide (3@SPh) and p-(benzoylethynyl)benzyl phenyl sulfide (4@SPh) with benzoyl and phenylthiylmethyl groups, which are interconnected with a C-C triple bond and a phenyl ring. Laser flash photolysis of 3@SPh and 4@SPh in acetonitrile provided the transient absorption spectra of the corresponding triplet states where no chemical reactions were recognized. Upon laser flash photolysis of 2@SPh, the absorption band due to the phenylthiyl radical (PTR) was obtained, indicating that the C-S bond cleaved in the excited state. Triplet sensitization of these carbonyl compounds using acetone and xanthone was conducted using laser photolysis techniques. The formation of triplet 3@SPh was seen in the transient absorption, whereas the PTR formation was observed for 2@SPh and 4@SPh, indicating that the triplet states were reactive for the C-S bond dissociation. The C-S bond dissociation mechanism for 4@SPh upon triplet sensitization is discussed in comparison with those for 2@SPh and 3@SPh.
Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.
Kaufmann, R; Hartmann, A; Hibst, R
1994-02-01
Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.
Lasers, extreme UV and soft X-ray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsen, Joseph
2015-09-20
Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less
Pressure Studies of Protein Dynamics
1989-02-26
infrared flash photolysis system with the monitoring light produced by a Spectra-Physics/ Laser Analytics tunable- diode laser and detected by a liquid...refrigerator. Time range extends from about 100 ms to 100 s. The diode laser current is modulated at 10 kHz and the signal is amplified with a PAR 5101...Photolysis is obtained with a Phase-R D 121OOC dye laser using rhodamine 6G (pulse 4 width 500 ns, 0.3 J). Kinetic spectra are obtained from about 10
Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei
2013-04-08
We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.
Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.
2014-01-01
The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F′ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II. PMID:25006873
NASA Astrophysics Data System (ADS)
Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.
2014-07-01
The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F’ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.
Bright half-cycle optical radiation from relativistic wavebreaking
NASA Astrophysics Data System (ADS)
Miao, Bo; Goers, Andy; Hine, George; Feder, Linus; Salehi, Fatholah; Wahlstrand, Jared; Milchberg, Howard
2015-11-01
Wavebreaking injection of electrons into relativistic plasma wakes generated in near-critical density hydrogen plasmas by sub-terawatt laser pulses is observed to generate an extremely energetic and ultra-broadband radiation flash. The flash is coherent, with a bandwidth of Δλ / λ ~ 0 . 7 consistent with half-cycle optical emission of duration ~ 1 fs from violent unidirectional acceleration of electrons to light speed from rest over a distance much less than the radiated wavelength. We studied the temporal duration and coherence of the flash by interfering it in the frequency domain with a well-characterized Xe supercontinuum pulse. Fringes across the full flash spectrum were observed with high visibility, and the extracted flash spectral phase supports it being a nearly transform-limited pulse. To our knowledge, this is the first evidence of bright half-cycle optical emission. This research is supported by the Defense Threat Reduction Agency, the US Department of Energy, and the Air Force Office of Scientific Research.
Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Xie, Zhaoxin; Shi, Wei; Sheng, Quan; Fu, Shijie; Fang, Qiang; Zhang, Haiwei; Bai, Xiaolei; Shi, Guannan; Yao, Jianquan
2017-03-01
1018nm short wavelength Yb3+-doped fiber laser can be widely used for tandem-pumped fiber laser system in 1 μm regime because of its high brightness and low quantum defect (QD). In order to achieve 1018nm short wavelength Yb3+-doped fiber laser with high output power, a steady-state rate equations considering the amplified spontaneous emission (ASE) and Stimulated Raman Scattering (SRS) has been established. We theoretically analyzed the ASE and SRS effects in 1018nm short wavelength Yb3+-doped fiber laser and the simulation results show that the ASE is the main restriction rather than SRS for high power 1018nm short wavelength Yb3+-doped fiber laser, besides the high temperature of fiber is also the restriction for high output power. We use numerical solution of steady-state rate equations to discuss how to suppress ASE in 1018nm short wavelength fiber laser and how to achieve high power 1018nm short-wavelength fiber laser.
Biomodulation of light on cells in laser surgery
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Li, Yan; Duan, Rui; Cai, Xiongwei
2002-04-01
In laser surgery, it has been observed pulsed 532-nm laser can avoid postoperative purpura, but pulsed 585-nm, 595-nm or 600-nm lasers nonetheless cause purpura when they were used to treat port-wine stains; the XeCl excimer laser (308 nm) can safely and effectively clear psoriasis; both XeCl excimer laser and Ho:YAG laser were used in coronary interventions, but only former was approved by the FDA; open channels after ultraviolet (UV) laser treatment and closed channels with infrared (IR) lasers for transmyocardial laser revascularization; and so on. In this paper, the biological information model of low intensity laser (BIML) is extended to include UVA biomodulation and is used to understand these phenomena. Although the central intensity of the laser beam is so intense that it destroys the tissue, the edge intensity is so low that it can induce biomodulation. Our investigation showed that biomodulation of light on cells might play an important role in the long-term effects of laser surgery.
Al-Karadaghi, Tamara S; Al-Saedi, Asmaa A; Al-Maliky, Mohammed A; Mahmood, Ali S
2016-12-01
This in vitro study aimed to investigate the whitening efficacy of 940 nm and 980 nm diode laser photoactivation in tooth bleaching by analysing pulp chamber temperature, as well as the change in tooth colour. Root canals of thirty extracted human lower premolars were prepared. Laserwhite* 20 bleaching agent containing 38% of hydrogen peroxide was photoactivated with 7 W output power of 940 nm and 980 nm diode lasers for 120 s. Bleaching gel reduced 27-29% of the temperature from reaching the pulp chamber. For shade assessment, only the groups photoactivated using diode lasers showed statistically significant differences from control group P < 0.001. Within the studied parameters, both 940 nm and 980 nm diode lasers produced a safe pulp temperature increase. Diode laser photoactivation of bleaching gel resulted in more efficient teeth whitening. Photoactivation with 940 nm diode laser yielded the highest change in colour with only minor increase in pulp chamber temperature. © 2016 Australian Society of Endodontology Inc.
All-fibre ytterbium laser tunable within 45 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullina, S R; Babin, S A; Vlasov, A A
2007-12-31
A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)
Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension.
Alexander, Vinay V; Shi, Zhennan; Iftekher, Fariha; Welsh, Michael J; Gurm, Hitinder S; Rising, Gail; Yanovich, Amber; Walacavage, Kim; Islam, Mohammed N
2014-11-01
Renal denervation has recently become of great interest as a potential treatment for resistant hypertension. Denervation techniques using radio frequency (RF) or ultrasound energy sources have already been explored in literature. In this study, we investigate the use of lasers as a potential energy source for renal denervation. In vitro studies are performed in porcine/ovine renal arteries with focused laser beams at 980 nm, 1210 nm, and 1700 nm to study the ability to damage renal nerves without causing injury to non-target tissue structures like the endothelium. Then, a 980 nm laser catheter prototype is built and used to demonstrate in vivo renal denervation in ovine renal arteries. This study utilizes fiber coupled infrared lasers at 980 nm, 1210 nm, and 1700 nm. In vitro laser denervation studies at 980 nm are performed in both porcine and ovine renal arteries to study the ability of focused laser beams to damage renal nerves without injuring the endothelium. In vitro studies using lasers close to the lipid absorption lines at 1210 nm and 1700 nm are also performed in porcine renal arteries to study the possibility of selectively damaging the renal nerves by targeting the lipid myelin sheaths surrounding the nerves. Then, a laser catheter prototype is designed and built for in vivo renal denervation in ovine renal arteries using the 980 nm laser (powers ranging from 2 to 4 W, 5 seconds per exposure). Histochemical evaluations of the frozen sections are performed using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Histochemical analysis of in vitro laser treatments at 980 nm in porcine and ovine renal arteries show clear evidence of laser-induced renal nerve damage without injury to the endothelium and part of the media. No evidence of selective nerve damage is observed using the 1210 nm and 1700 nm lasers with the current treatment parameters. Histochemical analysis of in vivo laser treatments in ovine renal arteries using a focused 980 nm laser show clear evidence of renal nerve damage with depths of damage extending > 1.5 mm from the artery wall. Sections with laser-induced damage to the media/adventitia at depths of > 1 mm without injury to the endothelium are also observed. We demonstrate the use of focused lasers as an attractive energy source for causing renal nerve damage without injury to the artery wall and thus, may have potential therapeutic applications for conditions such as resistant hypertension, where renal denervation has been shown to be a promising form of treatment. © 2014 Wiley Periodicals, Inc.
Bargiela-Pérez, Patricia; González-Merchán, Jorge; Díaz-Sánchez, Rosa; Serrera-Figallo, Maria-Angeles; Volland, Gerd; Joergens, Martin; Gutiérrez-Pérez, Jose-Luis
2018-01-01
Background The aim of this study is to evaluate the resection of hyperplastic lesions on the buccal mucosa comparing the 532nm laser (KTP), versus diode 980nm laser, considering pain, scarring, inflammation and drug consumption that occurred postoperatively with each lasers. Material and Methods A prospective study of consecutive series of 20 patients in two groups that presents hyperplastic lesions on the buccal mucosa. The choice of the KTP laser or diode 980nm laser for the surgery was made randomly. The power used was 1.5W in both groups in a continuous wave mode with a 320 μm optical fiber. Parameters of pain, scarring, inflammation and consumption of drugs were recorded by a Numerical Rating Scale and evaluated postoperatively. These recordings were made the day of the surgery, 24 hours after, 14 and 28 days after. Results Pain and inflammation was light - moderate. The consumption of paracetamol was somewhat higher in the diode 980nm laser versus the KTP laser after 24 hours, although data was not statistically significant; significant differences were found after 28 days in regards to pain (p = 0.023) and inflammation (p = 0.023), but always in the absence parameter so we find no pain in both lasers. Scarring in the two types of laser showed no differences along the visits, with not detected scar retractable. Conclusions Although there is a slight histological difference regarding the KTP laser in the oral soft tissues for clinical use, both wavelengths are very suitable for excision of oral fibroma. Key words:Laser surgery, Laser therapy, oral surgery, soft tissue, 980 nm diode laser, 532 nm KTP laser. PMID:29274158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahoon, Erica M.; Almirall, Jose R.
Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and themore » mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.« less
Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser
NASA Astrophysics Data System (ADS)
Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan
2018-03-01
Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.
NASA Astrophysics Data System (ADS)
Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi
2018-03-01
We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.
Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald
2014-08-01
The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation following laser surgery as assessed clinically on endonasal endoscopy was significantly reduced on 1,470 nm treated site compared to 940 nm diode laser treated site. Diode laser system (1,470 nm) induces efficient tissue effects compared to 940 nm diode laser system as shown in the tissue model experiment. From the clinical point of view, the healing process following non-contact diode laser application revealed to be improved using 1,470 nm diode laser compared to our standard diode laser practise with 940 nm. © 2014 Wiley Periodicals, Inc.
Discrete multi-wavelength tuning of a continuous wave diode-pumped Nd:GdVO4 laser
NASA Astrophysics Data System (ADS)
Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady
2018-05-01
Discrete multi-wavelength operation of a diode-pumped Nd:GdVO4 laser at four different wavelengths was demonstrated using a single birefringent filter plate. The laser achieved maximum output powers of 5.92 W, 5.66 W, 5.56 W and 3.98 W at 1063.2 nm, 1070.8 nm, 1082.5 nm and 1086.2 nm wavelengths, respectively. To the best of our knowledge, apart from achieving the maximum output powers at ~1071 nm and ~1086 nm and best efficiencies at ~1071 nm, ~1083 nm and ~1086 nm wavelengths for a Nd:GdVO4 laser, this is also the largest number of wavelengths from the 4F3/2 → 4I11/2 transition that was ever obtained in a controlled manner from a single laser setup based on any of the Nd-doped laser crystals.
NASA Technical Reports Server (NTRS)
Nash-Stevenson, S. K.; Reddy, B. R.; Venkateswarlu, P.
1994-01-01
A summary is presented of the spectroscopic study of three systems: LaF3:Ho(3+), LaF3:Er(3+) and CaF2:Nd(3+). When the D levels of Ho(3+) in LaF3 were resonantly excited with a laser beam of 640 nm, upconverted emissions were detected from J (416 nm), F (485 nm), and E (546 nm) levels. Energy upconverted emissions were also observed from F and E levels of Ho(3+) when the material was excited with an 800 nm near infrared laser. When the D levels of Er(3+) in LaF3 were resonantly excited with a laser beam of 637 nm, upconverted emissions were detected from the E (540 nm) and P (320, 400, and 468 nm) levels. Energy upconverted emissions were also observed from F, E, and D levels of Er(3+) when the material was resonantly excited with an 804 nm near infrared laser. When the D levels of Nd(3+) in CaF2 were resonantly excited with a laser beam of 577 nm, upconverted emissions were detected from the L (360 and 382 nm), K (418 nm), and I (432 nm) levels. Very weak upconverted emissions were detected when this system was irradiated with a near infrared laser. The numbers in parentheses are the wavelengths of the emissions.
NASA Astrophysics Data System (ADS)
Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo
2014-01-01
The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.
NASA Astrophysics Data System (ADS)
Bugge, F.; Bege, R.; Blume, G.; Feise, D.; Sumpf, B.; Werner, N.; Zeimer, U.; Paschke, K.; Weyers, M.
2018-06-01
Highly strained InxGa1-xAs QWs are commonly used for laser diodes in the wavelength range beyond 1100 nm, but they suffer from strain induced formation of defects. The effect of different laser structures and different laser layouts on the aging behavior was investigated. If grown and processed under optimized conditions, laser diodes emitting at 1120 nm, 1156 nm and 1180 nm have lifetimes of several 1000 h up to more than 20,000 h in dependence on structure or indium content. Laser diodes with three different emission wavelength were mounted in a microoptical bench with a second harmonic generation crystal. From these benches laser emission in the green-yellow spectral range with more than 800 mW output power was obtained.
Laser action in chromium-activated forsterite for near infrared excitation
NASA Technical Reports Server (NTRS)
Petricevic, V.; Gayen, S. K.; Alfano, R. R.
1988-01-01
This paper reports on laser action in chromium-doped forsterite (Cr:Mg2SiO4) for 1064-nm excitation of the crystal's double-hump absorption band spanning the 850-1200-nm wavelength range. The cavity arrangement used for obtaining laser action in Cr:Mg2SiO2 was similar to that described by Petricevic et al. (1988). The fundamental and second harmonic emissions from a Q-switched Nd:YAG laser operating at a 10-Hz repetition rate were used for excitation of the NIR and visible bands, respectively. Pulsed laser action was readily observed for both the 1064-nm and 532-nm pumping at or above the respective thresholds. The laser parameters of the 532-nm and 1064-nm excitations were similar, indicating that the IR band is responsible for laser action for both excitations.
Asnaashari, Mohamad; Ebad, Leila Tahmasebi; Shojaeian, Shiva
2016-10-01
Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load.
Asnaashari, Mohamad; Ebad, Leila Tahmasebi
2016-01-01
Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load. PMID:27853346
Jet and flash imprint defectivity: assessment and reduction for semiconductor applications
NASA Astrophysics Data System (ADS)
Malloy, Matt; Litt, Lloyd C.; Johnson, Steve; Resnick, Douglas J.; Lovell, David
2011-04-01
Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1X lithography and the shortage in end-user generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm.
Compact Ozone Differential Absorption Lidar (DIAL) Transmitter Using Solid-State Dye Polymers
NASA Technical Reports Server (NTRS)
Jones, Alton L., Jr.; DeYoung, Russell J.; Elsayid-Ele, Hani
2001-01-01
A new potential DIAL laser transmitter is described that uses solid-state dye laser materials to make a simpler, more compact, lower mass laser system. Two solid-state dye laser materials were tested to evaluate their performance in a laser oscillator cavity end pumped by a pulsed Nd:YAG laser at 532 nm. The polymer host polymethyl-methacrylate was injected with a pyrromethene laser dye, PM 580, or PM 597. A narrowband laser oscillator cavity was constructed to produce visible wavelengths of 578 and 600 nm which were frequency doubled into the UV region (299 or 300 nm) by using a BBO crystal, resulting in a maximum energy of 11 mJ at a wavelength of 578 nm when pumped by the Nd:YAG laser at an energy of 100 mJ (532 nm). A maximum output energy of 378 microJ was achieved in the UV region at a wavelength of 289 nm but lasted only 2000 laser shots at a repetition rate of 10 Hz. The results are promising and show that a solid-state dye laser based ozone DIAL system is possible with improvements in the design of the laser transmitter.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.
Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei
2012-04-01
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1996-01-01
Melting and degassing of interplanetary dust particle L2005B22 at approx. 1200 C was due to flash heating during atmospheric entry. Preservation of the porous particle texture supports rapid quenching from the peak heating temperature whereby olivine and pyroxene nanocrystals (3 nm-26 nm) show partial devitrification of the quenched melt at T approx. = 450 C - 740 C. The implied ultrahigh cooling rates are calculated at approx. 105 C/h-106 C/h, which is consistent with quench rates inferred from the temperature-time profiles based on atmospheric entry heating models. A vesicular rim on a nonstoichiometric relic forsterite grain in this particle represents either evaporative magnesium loss during flash heating or thermally annealed ion implantation texture.
NASA Astrophysics Data System (ADS)
Sroka, Ronald; Havel, Miriam; Leunig, Andreas; Betz, Christian S.
2012-02-01
Introduction: So far various laser systems have been used for volume reduction of hyperplastic nasal turbinates. In case of endonasal application, fiber controlled diode lasers are preferred due to reasons of cost and practicability. The aim of this clinical study was to compare the coagulative tissue effects using either λ=1470nm vs. λ=940nm emitting lasers in treatment of hyperplastic inferior nasal turbinates in an intraindividual manner. Patients and methods: This prospective, randomized, double-blind, clinical feasibility trial included 20 patients suffering from hyperplastic inferior nasal turbinates. In each case, one nasal cavity was treated using 1470nm laser at 4- 5W, the other one with 940nm laser at 12W. Treatment was performed endoscopically controlled in non-contact mode. Clinical presentation and patients symptoms were documented preoperatively and on day 1, 3, 7, 14 and 21 postoperatively using rhinomanometry, standardized questionnaires including SNOT 20 GAV (German adapted version), and separate endoscopic examination respectively. Results: None of the patients showed infections, hemorrhages or other complications occurred intra- or postoperatively. The mean operation time was significantly shorter using the 1470nm diode laser as compared to the 940nm laser, thus lower energy was applied. There was a significant reduction of nasal obstruction on day 21 postoperatively compared to the preoperative condition on both sides regardless of the laser system used. Evaluation of the SNOT-Scores as assessed before and three weeks after surgery showed significant subjective improvements. Conclusion: Compared with standard application of 940nm diode laser, 1470nm diode laser application provides an equivalent tissue reduction in shorter operation time using less total energy and a comparable relief of nasal obstruction postoperatively.
NASA Technical Reports Server (NTRS)
Bosco, S. R.
1982-01-01
The photochemistry of the reactions of NH2 was investigated in an attempt to explain the existence of an abundance of ammonia in the Jovian atmosphere. The production of ammonia reservoirs from the coupling of ammonia with other atmospheric constituents was considered. The rate constants for the reactions of NH2 radicals with phosphine, acetylene, and ethylene were measured. Flash photolysis was used for the production of NH2 radicals and laser induced fluorescence was employed for radical detection. It was determined that the rates of the reactions were too slow to be significant as a source of ammonia reservoirs in the Jovian atmosphere.
Shushakov, Anton A; Pozdnyakov, Ivan P; Grivin, Vjacheslav P; Plyusnin, Victor F; Vasilchenko, Danila B; Zadesenets, Andrei V; Melnikov, Alexei A; Chekalin, Sergey V; Glebov, Evgeni M
2017-07-25
Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] and trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser
Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-01
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.
Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-30
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.
Efficiency of soft tissue incision with a novel 445-nm semiconductor laser.
Braun, Andreas; Kettner, Moritz; Berthold, Michael; Wenzler, Johannes-Simon; Heymann, Paul Günther Baptist; Frankenberger, Roland
2018-01-01
Using a 445-nm semiconductor laser for tissue incision, an effective cut is expected due to the special absorption properties of blue laser light in soft tissues. The aim of the present study was the histological evaluation of tissue samples after incision with a 445-nm diode laser. Forty soft tissue specimens were obtained from pork oral mucosa and mounted on a motorized linear translation stage. The handpiece of a high-frequency surgery device, a 970-nm semiconductor laser, and a 445-nm semiconductor laser were connected to the slide, allowing a constant linear movement (2 mm/s) and the same distance of the working tip to the soft tissue's surface. Four incisions were made each: (I) 970-nm laser with conditioned fiber tip, contact mode at 3-W cw; (II-III): 445-nm laser with non-conditioned fiber tip, contact mode at 2-W cw, and non-contact mode (1 mm) at 2 W; and (IV): high-frequency surgery device with straight working tip, 90° angulation, contact mode at 50 W. Histological analysis was performed after H&E staining of the embedded specimens at 35-fold magnification. The comparison of the incision depths showed a significant difference depending on the laser wavelength and the selected laser parameters. The highest incision depth was achieved with the 445-nm laser contact mode (median depth 0.61 mm, min 0.26, max 1.17, interquartile range 0.58) (p < 0.05) with the lowest amount of soft tissue denaturation (p < 0.05). The lowest incision depth was measured for the high-frequency surgical device (median depth 0.36 mm, min 0.12, max 1.12, interquartile range 0.23) (p < 0.05). Using a 445-nm semiconductor laser, a higher cutting efficiency can be expected when compared with a 970-nm diode laser and high-frequency surgery. Even the 445-nm laser application in non-contact mode shows clinically acceptable incision depths without signs of extensive soft tissue denaturation.
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging
NASA Astrophysics Data System (ADS)
Palla-Papavlu, A.; Shaw-Stewart, J.; Mattle, T.; Dinca, V.; Lippert, T.; Wokaun, A.; Dinescu, M.
2013-08-01
Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.
Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael
2018-01-01
Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.
NASA Astrophysics Data System (ADS)
Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin
2018-02-01
Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and their combination may provide an alternative to conventional Ho:YAG and KTP lasers for applications in urology and other surgical fields.
NASA Technical Reports Server (NTRS)
Irom, Farokh; Allen, Gregory R.
2012-01-01
The space radiation environment poses a certain risk to all electronic components on Earth-orbiting and planetary mission spacecraft. In recent years, there has been increased interest in the use of high-density, commercial, nonvolatile flash memories in space because of ever-increasing data volumes and strict power requirements. They are used in a wide variety of spacecraft subsystems. At one end of the spectrum, flash memories are used to store small amounts of mission-critical data such as boot code or configuration files and, at the other end, they are used to construct multi-gigabyte data recorders that record mission science data. This report examines single-event effect (SEE) and total ionizing dose (TID) response in single-level cell (SLC) 32-Gb, multi-level cell (MLC) 64-Gb, and Triple-level (TLC) 64-Gb NAND flash memories manufactured by Micron Technology with feature size of 25 nm.
Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.
Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R
2013-05-06
A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.
Nonlinear excitation fluorescence microscopy: source considerations for biological applications
NASA Astrophysics Data System (ADS)
Wokosin, David L.
2008-02-01
Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.
Optical design of f-theta lens for dual wavelength selective laser melting
NASA Astrophysics Data System (ADS)
Feng, Lianhua; Cao, Hongzhong; Zhang, Ning; Xu, Xiping; Duan, Xuanming
2016-10-01
F-theta lens is an important unit for selective laser melting (SLM) manufacture. The dual wavelength f-theta lens has not been used in SLM manufacture. Here, we present the design of the f-theta lens which satisfies SLM manufacture with coaxial 532 nm and 1030 nm 1080 nm laser beams. It is composed of three pieces of spherical lenses. The focal spots for 532 nm laser and 1030 nm 1080 nm laser are smaller than 35 μm and 70 μm, respectively. The results meet the demands of high precision SLM. The chromatic aberration could cause separation between two laser focal spots in the scanning plane, so chromatic aberration correction is very important to our design. The lateral color of the designed f-theta lens is less than 11 μm within the scan area of 150 mm x 150 mm, which meet the application requirements of dual wavelength selective laser melting.
NASA Astrophysics Data System (ADS)
Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai
1999-09-01
The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.
High power diode lasers emitting from 639 nm to 690 nm
NASA Astrophysics Data System (ADS)
Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.
2014-03-01
There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.
Blood oxygenation and flow measurements using a single 720-nm tunable V-cavity laser.
Feng, Yafei; Deng, Haoyu; Chen, Xin; He, Jian-Jun
2017-08-01
We propose and demonstrate a single-laser-based sensing method for measuring both blood oxygenation and microvascular blood flow. Based on the optimal wavelength range found from theoretical analysis on differential absorption based blood oxygenation measurement, we designed and fabricated a 720-nm-band wavelength tunable V-cavity laser. Without any grating or bandgap engineering, the laser has a wavelength tuning range of 14.1 nm. By using the laser emitting at 710.3 nm and 724.4 nm to measure the oxygenation and blood flow, we experimentally demonstrate the proposed method.
Al-Dhalimi, Muhsin A; Al-Janabi, Murtadha H
2016-11-01
Lasers have been the treatment of choice for Port-wine stain (PWS). However, only one type of laser is not a panacea for all PWS malformations. This is may be due to the great heterogeneity of phenotypic presentation of this congenital anomaly as color, depth, and the site of the lesion. For the treatment of PWS, flash lamp-pumped pulsed dye laser, carbon dioxide, argon, krypton, copper bromide, frequency-doubled neodymium:yttrium-aluminum-garnet (Nd:YAG), and also intense pulsed light sources can be used. To assess and compare the effectiveness of wavelength 532 and 1,064 nanometers (nm) long pulse Nd:YAG laser in the treatment of facial port-wine stain. This was a comparative therapeutic study for the treatment of facial port-wine stain. We divided the lesion into two halves, medial and lateral, and then each half was treated by 532 or 1,064 nm Nd:YAG. The sessions were done every 4 weeks for six sessions and follow-up after 3 months, then assess the response before and after the sessions and at the end follow-up period objectively (degree of improvement, Photo comparison) and subjectively (Patient satisfaction). Fourteen out of nineteen patients completed all sessions of the treatment, and the other five patients were defaulted from the study due to different causes, including marriage, poor compliance for treatment, and for unknown causes. They were 13 (92.85%) females and 1 (7.15%) male. The mean age of patients was 22.07 ± 9.003 years (range 8-44 years). Three patients (21.4%) were Fitzpatrick's skin type III and four patients (78.6%) were typed IV. There was no hypertrophy in any of the lesions. All facial PWSs lie along the distribution of the trigeminal nerve. Four patients (28.6%) have V1 (ophthalmic), 12 patients (85.7%) have V2 (maxillary), and 9 (64.3%) have V3 (mandibular). The color of PWSs was pink-red in eight patients (57.1%), dark-red in four patients (28.6%), and purple-dark two patients (14.3%). The improvement score for the halves of the PWS treated with long pulsed Nd:YAG 532 nm were: failure = 0%, mild = 14.3%, moderate = 28.6%, good = 28.6%, excellent = 28.6%, while the score for long pulsed Nd:YAG 1,064 nm were: failure = 7.1%, mild = 85.7%, moderate = 7.1%, good = 0%, excellent = 0%. There are highly significant differences between the two parameters (P-value = <0.001). The visual analog scale regarding the halves of PWS treated by long pulsed Nd:YAG 532 nm before the treatment was 5.00 ± 0.96 and after treatment was 2.28 ± 1.43. There is a highly significant difference between the two scores (P-value <0.001). The visual analog scale for the halves of PWS before the use of long pulsed Nd:YAG 1,064 nm was 5.14 ± 0.77 and after treatment was 3.71 ± 0.82. There is a highly significant difference between the two scores (P-value <0.001). At the end of follow-up period, mean score ± SD for 532 nm was 2.28 ± 1.43 and for 1,064 nm was 3.71 ± 0.82. There is a highly significant difference in both wavelengths, when compared with scores for each before the treatment. In comparison, between 532 and 1,064 nm, the difference in the visual analog scale for 532 nm before and at the end of the follow-up period was 2.7143 ± 1.069, while for 1,064 nm was 1.4286 ± 0.513. There is a highly significant difference between the two wavelengths (P-value <0.001). The mean score for the satisfaction of long pulsed Nd:YAG 532 nm was 76 ± 23, while for 1,064 nm was 33 ± 8, so there is a highly significant difference between the two parameters (P-value = <0.001). None of the patients showed recurrence, scar, or hyperpigmentation after 3 months of the last treatment session. One patient developed hyperpigmentation that resolved with hydroquinone cream 4% and no scarring was seen at the end of follow-up period. The long pulsed Nd:YAG laser 532 nm is more effective in the treatment of superficial bright red facial PWSs than the long pulse Nd:YAG 1,064 nm. More treatment sessions may lead to better clearance of the lesions. The use of non-invasive imaging technique such as dermoscopy, skin analyzer likes spatial frequency domain imaging (SFDI) device, or confocal microscopy to assess the level of malformations and the changes before and after the treatment with each type can give a clearer view of tissue response to laser irradiation. Lasers Surg. Med. 48:852-858, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources
NASA Astrophysics Data System (ADS)
Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy
2015-02-01
Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.
Tanghetti Md, Emil; Jennings, John
2018-01-01
This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hubing, Kimberly A.; Wingo, Jonathan E.; Brothers, R. Matthew; Coso, Juan Del; Low, David A.; Crandall, Craig G.
2010-01-01
Objective The purpose of this study was to test the hypothesis that local inhibition of nitric oxide and prostaglandin synthesis attenuates cutaneous vasodilator responses during post-menopausal hot flashes. Methods Four microdialysis membranes were inserted into forearm skin (dorsal surface) of 8 post-menopausal women (mean ± SD, 51±7 y). Ringers solution (control), 10mM Ketorolac (Keto) to inhibit prostaglandin synthesis, 10mM NG-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase, and a combination of 10mM Keto + 10mM L-NAME were each infused at the separate sites. Skin blood flow at each site was indexed using laser-Doppler flowmetry. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial blood pressure and was expressed as a percentage of the maximal calculated CVC (CVCmax) obtained following infusion of 50mM sodium nitropruside at all sites at the end of the study. Data from 13 hot flashes were analyzed. Results At the control site, the mean ± SD peak increase in CVC was 15.5±6% CVCmax units. This value was not different relative to the peak increase in CVC at the Keto site (13.0±5 % CVCmax units, P = 0.09). However, the peak increase in CVC during the flash was attenuated at the L-NAME and L-NAME + Keto sites (7.4±4 % CVCmax units and 8.7±7 % CVCmax units, respectively) relative to both the control and the Keto sites (P<0.05 for both comparisons). There were no significant differences in the peak increases in sweat rate between any of the sites (P = 0.24). Conclusions These data demonstrate that cutaneous vasodilation during a hot flash has a nitric oxide component. Increases in CVC despite the inhibition of prostaglandin synthesis suggest prostaglandins do not contribute to cutaneous vasodilation during a hot flash. PMID:20505548
885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System
NASA Technical Reports Server (NTRS)
Yu, Anthony
2012-01-01
The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (
Soft x-ray free-electron laser induced damage to inorganic scintillators
Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; ...
2015-01-07
An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determinedmore » by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.« less
NASA Astrophysics Data System (ADS)
Rus, M. Odín Soler; Cabrera-Granado, E.; Guerra Pérez, J. M.
2013-07-01
We report on the origin of an acousto-optic Raman-Nath self-modulation found in a broad-area Nd:YAG single-shot laser. Operating the laser device under vacuum conditions suppresses the spectral splitting associated with acousto-optic modulation by the shock waves produced by the discharge of the pumping flash lamps. This splitting is reproduced by a general class B laser model that takes into account the dynamical density grating generated by a stationary acoustic radial wave.
Three color laser fluorometer for studies of phytoplankton fluorescence
NASA Technical Reports Server (NTRS)
Phinney, David A.; Yentsch, C. S.; Rohrer, J.
1988-01-01
A three-color laser fluorometer has been developed for field work operations. Using two tunable dye lasers (excitation wavelengths at 440 nm and 530 nm), broadband wavelength optical filters were selected to obtain maximum fluorescence sensitivity at wavelengths greater than 675 nm (chlorophyll) and 575 + or - 15 nm (phycoerythrin). The laser fluorometer permits the measurement of phytoplankton pigments under static or flowing conditions and more closely resembles the time scales (ns) and energy levels (mW) of other laser-induced fluorescence instruments.
Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm.
Wu, Bo; Jiang, Peipei; Yang, Dingzhong; Chen, Tao; Kong, Jian; Shen, Yonghang
2009-04-13
We report a compact diode-laser pumped Nd:GdVO(4) laser with stable dual-wavelength output at 1063 nm and 1065 nm simultaneously. Two types of resonant cavity configurations were presented to support the stable dual-wavelength operation of the laser. Using a polarization beam splitter(PBS) included T-shaped cavity, we obtained a total power output over 5 W in two orthogonal polarized beam directions with 4 W in sigma polarization (1065.5 nm) and 1 W in pi polarization (1063.1 nm). By combining a half-wave-plate with the PBS in the laser cavity, a new configuration favoring one beam direction dual-wavelength output with same polarization direction was realized. A phenomenon of further line splitting was observed in both 1065 nm and 1063 nm.
Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.
Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2013-08-01
We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.
NASA Technical Reports Server (NTRS)
Li, Yue (Inventor); Bruck, Jehoshua (Inventor)
2018-01-01
A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.
Combine Flash-Based FPGA TID and Long-Term Retention Reliabilities Through VT Shift
NASA Astrophysics Data System (ADS)
Wang, Jih-Jong; Rezzak, Nadia; Dsilva, Durwyn; Xue, Fengliang; Samiee, Salim; Singaraju, Pavan; Jia, James; Nguyen, Victor; Hawley, Frank; Hamdy, Esmat
2016-08-01
Reliability test results of data retention and total ionizing dose (TID) in 65 nm Flash-based field programmable gate array (FPGA) are presented. Long-chain inverter design is recommended for reliability evaluation because it is the worst case design for both effects. Based on preliminary test data, both issues are unified and modeled by one natural decay equation. The relative contributions of TID induced threshold-voltage shift and retention mechanisms are evaluated by analyzing test data.
Efficient blue emission of ytterbium-doped Sr5(PO4)3F under quasi-three-level intracavity pumping
NASA Astrophysics Data System (ADS)
Yang, Y.; Cao, G. H.
2012-02-01
We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.
Formation of surface nanolayers in chalcogenide crystals using coherent laser beams
NASA Astrophysics Data System (ADS)
Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.
2018-03-01
We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.
Flash melting of tantalum in a diamond cell to 85 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karandikar, Amol; Boehler, Reinhard
2016-02-09
Here, we demonstrate a new level of precision in measuring melting temperatures at high pressure using laser flash-heating followed by Scanning Electron Microscopy and Focused Ion Beam Milling. Furthermore, the new measurements on tantalum put unprecedented constraints on its highly debated melting slope, calling for a reevaluation of theoretical, shock compression and diamond cell approaches to determine melting at high pressure. X-ray analysis of the recovered samples confirmed the absence of chemical reactions, which likely played a significant role in previous experiments.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.
2000-01-01
A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.
NASA Astrophysics Data System (ADS)
Chen, Shih-Yang; He, Yulu; Hsieh, Cheng-Che; Hua, Wei-Hsiang; Low, Meng Chun; Tsai, Meng-Tsan; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
The use of a high-resolution optical coherence tomography (OCT) system with the operation wavelength around 800 nm to scan SCC4 cancer cells under different laser illumination conditions is demonstrated. The cancer cells are incubated with Au nanorings (NRIs), which are linked with photosensitizer, AlPcS, for them to be up-taken by the cells. Two Au NRI samples of different geometries for inducing localized surface plasmon (LSP) resonance around 1310 and 1064 nm are used. Four different lasers are utilized for illuminating the cells under OCT scanning, including 1310-nm continuous (cw) laser, 1064-nm cw laser, 1064-nm femtosecond (fs) laser, and 660-nm cw laser. The 1310- and 1064-nm cw lasers mainly produce the photothermal effect through the LSP resonance of Au NRIs for damaging the observed cells. Besides the photothermal effect, the 1064-nm fs laser can produce strong two-photon absorption through the assistance of the LSP resonance of Au NRI for exciting AlPcS to effectively generate singlet oxygen and damage the observed cells. The 660-nm laser can excite AlPcS through single-photon absorption for generating singlet oxygen and damaging the observed cells. With the photothermal effect, the observed cells can be killed through the process of necrosis. Through the generation of singlet oxygen, the cell membrane can be preserved and the interior substances are solidified to become a hard body of strong scattering. In this situation, the cells are killed through the apoptosis process. Illuminated by the 660-nm cw laser, a process of interior substance escape is observed through high-speed OCT scanning.
Geibel, Sven; Lörinczi, Èva; Bamberg, Ernst; Friedrich, Thomas
2013-01-01
The light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum is tightly regulated by the [H+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L) or stabilized (D96N, D96G) M intermediate in response to green light (to probe H+ pumping) and blue laser flashes (to probe accumulation/decay of M). These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri) shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating that Schiff base deprotonation in BR-tri exists in the dark, in line with previous spectroscopic investigations. Thus, M-stabilizing mutations, including the triple mutation, drastically interfere with electrochemical H+ gradient generation. PMID:24019918
Miniature solid-state lasers for pointing, illumination, and warning devices
NASA Astrophysics Data System (ADS)
Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.
2008-04-01
In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.
High-efficient Nd:YAG microchip laser for optical surface scanning
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav
2017-12-01
A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.
Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry
Telford, William G.; Babin, Sergey A.; Khorev, Serge V.; Rowe, Stephen H.
2009-01-01
Green and yellow diode-pumped solid state (DPSS) lasers (532 and 561 nm) have become common fixtures on flow cytometers, due to their efficient excitation of phycoerythrin (PE) and its tandems, and their ability to excite an expanding array of expressible red fluorescent proteins. Nevertheless, they have some disadvantages. DPSS 532 nm lasers emit very close to the fluorescein bandwidth, necessitating optical modifications to permit detection of fluorescein and GFP. DPSS 561 nm lasers likewise emit very close to the PE detection bandwidth, and also cause unwanted excitation of APC and its tandems, requiring high levels of crossbeam compensation to reduce spectral overlap into the PE tandems. In this paper, we report the development of a new generation of green fiber lasers that can be engineered to emit in the range between 532 and 561 nm. A 550 nm green fiber laser was integrated into both a BD LSR II™ cuvette and FACSVantage DiVa™ jet-in-air cell sorter. This laser wavelength avoided both the fluorescein and PE bandwidths, and provided better excitation of PE and the red fluorescent proteins DsRed and dTomato than a power-matched 532 nm source. Excitation at 550 nm also caused less incidental excitation of APC and its tandems, reducing the need for crossbeam compensation. Excitation in the 550 nm range therefore proved to be a good compromise between 532 and 561 nm sources. Fiber laser technology is therefore providing the flexibility necessary for precisely matching laser wavelengths to our flow cytometry applications. PMID:19777600
Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm
NASA Astrophysics Data System (ADS)
von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.
2016-08-01
Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2 → 4I13/2 transition in Nd3+-doped materials.
Compact gain saturated plasma based X-ray lasers down to 6.9nm
NASA Astrophysics Data System (ADS)
Rocca, Jorge; Wang, Y.; Wang, S.; Rockwood, A.; Berrill, M.; Shlyaptsev, V.
2017-10-01
Plasma based soft x-ray amplifiers allow many experiments requiring bright, high energy soft x-ray laser pulses to be conducted in compact facilities. We have extended the wavelength of compact gain saturated x-ray lasers to 6.89 nm in a Ni-like Gd plasma generated by a Ti:Sa laser. Gain saturated laser operation was also obtained at 7.36 nm in Ni-like Sm. Isolectronic scaling and optimization of laser pre-pulse duration allowed us to also observe strong lasing at 6.6 nm and 6.1 nm in Ni-like Tb, and amplification at 6.4 nm and 5.89 nm in Ni-like Dy. The results were obtained by transient laser heating of solid targets with traveling wave excitation at progressively increased gracing incidence angles. We show that the optimum pump angle of incidence for collisional Ni-like lasers increases linearly with atomic number from Z =42 to Z =66, reaching 43 degrees for Ni-like Dy, in good agreement with hydrodynamic/atomic physics simulations. These results will enable single-shot nano-scale imaging and other application of sub-7 nm lasers to be performed at compact facilities. Work supported by Grant DE-FG02-4ER15592 of the Department of Energy, Office of Science, and by the National Science Foundation Grant ECCS 1509925.
Effect of a 308-nm excimer laser on atopic dermatitis-like skin lesions in NC/Nga mice.
Oh, Chang Taek; Kwon, Tae-Rin; Seok, Joon; Choi, Eun Ja; Kim, Soon Re; Jang, Yu-Jin; Mun, Seog Kyun; Kim, Chan Woong; Lee, Sungeun; Lee, Jongmin; Kim, Myeung Nam; Choi, Sun Young; Kim, Beom Joon
2016-08-01
Atopic dermatitis (AD) is a common inflammatory skin disease that can affect all age groups. It has a relapsing course, which dramatically affects the quality of life of patients. A 308-nm excimer laser has been reported to be a safe and effective treatment for inflammatory skin diseases, although the range of potential application has not been fully explored. The purpose of this study was to evaluate the therapeutic effects of a 308-nm laser on AD-like skin lesions in NC/Nga mice. Dermatophagoides farinae-exposed NC/Nga mice with a clinical score of 12 were treated with either a 308-nm excimer laser or narrowband-UVB (NB-UVB). The effects of the 308-nm excimer laser were evaluated by dermatitis scores, skin histology, skin barrier function, and immunological parameters, including IgE and Th2-mediated cytokines. The 308-nm excimer laser significantly reduced the severity of skin lesions and decreased the total serum levels of IgE and Th2-mediated cytokines. The excimer laser also significantly reduced the inflammatory cellular infiltrate into AD-induced skin lesions. Moreover, treatment with the 308-nm excimer laser led to recovery of skin barrier function in AD-induced skin lesions. The 308-nm excimer laser can be considered a valid and safe therapeutic option for the treatment of localized AD. Lasers Surg. Med. 48:629-637, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser
NASA Astrophysics Data System (ADS)
Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai
2016-10-01
Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.
Diode-pumped Nd:GAGG-LBO laser at 531 nm
NASA Astrophysics Data System (ADS)
Zou, J.; Chu, H.; Wang, L. R.
2012-03-01
We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.
DOE R&D Accomplishments Database
Curl, R. F.; Glass, G. P.
1995-06-01
This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.
Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.
2001-01-01
The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.
Wang, Xiaojie; Wang, Xiaolei; Zheng, Zhifen; Qiao, Xihao; Dong, Jun
2018-04-20
A synchronous pulsed, dual-wavelength Raman laser at 1164.4 nm and 1174.7 nm has been demonstrated in a Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 passively Q-switched Raman microchip laser (PQSRML). The 1164.4 nm and 1174.7 nm dual-wavelength first-order Stokes laser oscillation is attributed to the conversion of the 1063.2 nm and 1063.43 nm two-longitudinal-mode fundamental lasers with Raman frequency shifts of 816 cm -1 and 890 cm -1 , respectively. Stable dual-wavelength Raman laser pulses with nearly equal spectral intensities have been achieved independent of the pump power. A pulse repetition rate as high as 139.4 kHz has been achieved with T 0 =85%, and the pulse width has been shortened to 825 ps with T 0 =70%. A dual-wavelength Raman laser with sub-nanosecond pulse width and peak power of over 1 kW has been achieved in the Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 PQSRML.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Christian, Hugh J.; Rust, W. David
1988-01-01
The optical-pulse characteristics of intracloud (IC) and cloud-to-ground (CG) lightning flashes were investigated. The time-resolved optical waveforms at 777.4 nm and electric-field changes produced by lightning flashes were measured aboard a U2 aircraft flying above clouds at the same time that ground-based lightning measurements were carried out. The pulse shapes and intensities of IC and CG flashes, as viewed from above cloud, were found to exhibit remarkably similar waveshapes, radiances, and radiant energy densities. The median radiance at cloud top was found to be about 0.007 W/sq m per sr, and the median energy density about 0.000003 J/sq m per sr.
Large laser projection displays utilizing all-solid-state RGB lasers
NASA Astrophysics Data System (ADS)
Xu, Zuyan; Bi, Yong
2005-01-01
RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.
Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei
2015-04-20
A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
Havel, Miriam; Sroka, Ronald; Englert, Elsa; Stelter, Klaus; Leunig, Andreas; Betz, Christian S
2012-09-01
The need for reduction of post-tonsillectomy hemorrhage has led to promotion of tonsillotomy techniques for tonsil tissue reduction in obstructive tonsillar hypertrophy. This trial compares ablative tissue effects using 1,470 nm diode laser and carbon dioxide laser for tonsillotomy in an intraindividual design. 21 children aged 3-13 years (mean age 6.3 years) underwent laser tonsillotomy for obstructive tonsillar hypertrophy in this double blind, prospective, randomized, clinical feasibility trial. In each of the blinded patients, tonsillotomy was performed using fiber guided 1,470 nm diode laser (contact mode, 15 W power) on the one side and carbon dioxide laser (12 W power) on the other side. An independent, blinded physician documented clinical presentation and patients' symptoms preoperatively and on Days 1, 3, 7, 14, and 21 post-operatively using standardized questionnaire including VAS for each side separately. The mean duration of operative treatment was 2.7 min using 1,470 nm laser and 4.9 min using carbon dioxide laser respectively. Intraoperative bleeding and the frequency of bipolar forceps use for intraoperative bleeding control was significantly less using 1,470 nm diode laser system. There was no difference in post-operative pain scores between the carbon dioxide laser treated and the 1,470 nm fiber guided diode laser treated side. No infections, hemorrhages or other complications occurred in the course of the 3 weeks post-operative period. A fiber-guided 1,470 nm diode laser system offers an efficient and safe method for tonsillotomy as treatment of obstructive tonsillar hypertrophy. Compared to our standard practice (carbon dioxide laser), 1,470 nm laser application provides comparable tissue ablation effects with less intraoperative bleeding and shorter operation time. Copyright © 2012 Wiley Periodicals, Inc.
Intense excitation source of blue-green laser
NASA Astrophysics Data System (ADS)
Han, Kwang S.
1986-10-01
An intense and efficient source for blue green laser useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, the hypocycloidal pinch plasma (HCP), and the dense plasma focus (DPF) can produce intense uv photons (200 to 400nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400nm). As a result of optimization of the DPF light at 355nm, the blue green dye (LD490) laser output exceeding 4mJ was obtained at the best cavity tunning of the laser system. With the HCP pumped system a significant enhancement of the blue green laser outputs with dye LD490 and coumarin 503 has been achieved through the spectrum conversion of the pumping light by mixing a converter dye BBQ. The maximum increase of laser output with the dye mixture of LD490+BBQ and coumarin 503+BBQ was greater than 80%. In addition, the untunned near UV lasers were also obtained. The near UV laser output energy of P-terphenyl dye was 0.5mJ at lambda sub C=337nm with the bandwidth of 3n m for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2microsec.
NASA Technical Reports Server (NTRS)
Miller, George E.
1992-01-01
Differential absorption of laser radiation by various molecular species represents both a selective and a sensitive method of measuring specific atmospheric constituents. DIAL measurements can be carried out via two different means. Both involve using two laser pulses with slightly different wavelengths (lambda), (one lambda at a strong absorption line of the molecule of interest, the other detuned into the wing of the line), and comparing the attenuation of the pulses. One approach relies on scattering of the radiation from some conveniently located topographical target. In the other technique elastic scattering from atmospheric aerosols and particulates is used to return the radiation to the lidar receiver system. This case is referred to as the differential absorption and scattering technique, and is the technique we are interested in to measure water vapor at 940 nm. The 940 nm wavelength is extremely desirable to atmospheric scientist interested in accurate DIAL measurements of H2O in the upper and lower troposphere. Simulated measurements using approximately 940 nm and 815 nm lasers at a range of altitudes and experimental conditions are shown. By offering access to larger absorption cross-sections, injected seeded, 940 nm DIAL laser transmitters would allow for more accurate water profile measurements at altitudes from 6 to 16 km than is currently possible with 730 nm and 815 nm DIAL laser transmitters. We have demonstrated the operation of an injected seeded titanium-sapphire (TS) laser operating at approximately 940 nm with an energy of more than 90 mJ per pulse. The TS laser is pumped by a commercial, 600 mJ, 532 nm, 10 Hz Nd:YAG laser. The slope efficiency of the laser using a flat 50 percent R output coupler and a 10 m end-mirror is shown. The laser was injected seeded with a CW, AlGaAs, semiconductor diode laser which had an output of 83 mW. The CW diode seed beam was introduced into the TS laser cavity through a HR end-mirror. When the diode beam is aligned to the TS resonator, it controls the TS laser output wavelength and its spectral line width with the required resolution for DIAL applications. This work supports the need for the development of 940 nm, titanium-sapphire DIAL transmitters.
Applications of the Excimer Laser: A Review.
Beggs, Sarah; Short, Jack; Rengifo-Pardo, Monica; Ehrlich, Alison
2015-11-01
The 308-nm excimer laser has been approved by the Food and Drug Administration for the treatment of psoriasis and vitiligo. Its ability to treat localized areas has led to many studies determining its potential in the treatment of focal diseases with inflammation or hypopigmentation. To review the different applications of the 308-nm excimer laser for treating dermatologic conditions. An extensive literature review was conducted by searching PubMed, MEDLINE, and ClinicalKey to find articles pertaining to dermatologic conditions treated with the 308-nm excimer laser. Articles published that contributed to new applications of the excimer laser were included, as well as initial studies utilizing the excimer laser. The outcomes and results were compiled for different dermatologic conditions treated with the excimer laser. The 308-nm excimer laser has a wide range of uses for focal inflammatory and hypopigmented conditions. Treatment is generally well tolerated, with few adverse reactions. Larger studies and studies evaluating the long-term effects of the 308-nm excimer laser are needed.
The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides.
Haker, Andrea; Hendriks, Johnny; van Stokkum, Ivo H M; Heberle, Joachim; Hellingwerf, Klaas J; Crielaard, Wim; Gensch, Thomas
2003-03-07
The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.
New 223-nm excimer laser surgical system for photorefractive keratectomy
NASA Astrophysics Data System (ADS)
Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.
1999-02-01
The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.
Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng
2015-05-15
Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200 mW with a slope efficiency of 33.4%.
340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.
Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian
2016-09-19
We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.
Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture
NASA Technical Reports Server (NTRS)
Dunkin, James A.
1991-01-01
Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-03-03
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, after laser-flash photolysis of caged calcium. Immediately before laser-flash activation, almost all of the myosin heads in the fiber are in the state M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force, and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemomechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-01-01
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, following laser flash photolysis of caged calcium. Immediately before laser flash activation, almost all of the myosin heads in the fiber are in the state, M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition, and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemo-mechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Combined hostile fire and optics detection
NASA Astrophysics Data System (ADS)
Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars
2013-10-01
Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.
White light velocity interferometer
Erskine, D.J.
1999-06-08
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
White light velocity interferometer
Erskine, David J.
1997-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, David J.
1999-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, D.J.
1997-06-24
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
Levin, Melissa Kanchanapoomi; Ng, Elise; Bae, Yoon-Soo Cindy; Brauer, Jeremy A; Geronemus, Roy G
2016-02-01
Laser procedures in skin of color (SOC) patients are challenging due to the increased risk of dyspigmentation and scarring. A novel 755 nm alexandrite picosecond laser has demonstrated effectiveness for tattoo removal and treatment of acne scars. No studies to date have evaluated its applications in pigmentary disorders. The purpose of this retrospective study was to evaluate the safety profile and efficacy of the picosecond alexandrite laser compared to the current standard treatment, Q-switched ruby and neodynium (Nd):YAG nanosecond lasers, for pigmentary disorders in SOC patients. A retrospective photographic and chart evaluation of seventy 755 nm alexandrite picosecond, ninety-two Q-switched frequency doubled 532 nm and 1,064 nm Nd:YAG nanosecond, and forty-seven Q-switched 694 nm ruby nanosecond laser treatments, in forty-two subjects of Fitzpatrick skin types III-VI was conducted in a single laser specialty center. The picosecond laser was a research prototype device. Treatment efficacy was assessed by two blinded physician evaluators, using a visual analog scale for percentage of pigmentary clearance in standard photographs. Subject assessment of efficacy, satisfaction, and adverse events was performed using a questionnaire survey. The most common pigmentary disorder treated was Nevus of Ota (38.1%), followed by solar lentigines (23.8%). Other pigmentary disorders included post-inflammatory hyperpigmentation, congenital nevus, café au lait macule, dermal melanocytosis, Nevus of Ito, and Becker's nevus. Clinical efficacy of the Q-switched nanosecond lasers and picosecond laser treatments were comparable for lesions treated on the face with a mean visual analog score of 2.57 and 2.44, respectively, corresponding to approximately 50% pigmentary clearance. Subject questionnaires were completed in 58.8% of the picosecond subjects and 52.0% of the Q-switched subjects. Eighty four percent of subjects receiving Q-switched nanosecond laser treatments and 50% of the subjects receiving alexandrite 755 nm picosecond laser treatments felt satisfied to completely satisfied. Side effects observed in subjects treated with the alexandrite 755 nm picosecond laser were similar to those commonly observed and reported with the nanosecond Q-switched technology. All side effects were temporary, resolving within one month, and no long-term complications were noted. All patients who were very satisfied with their picosecond laser treatment for Nevus of Ota noted a delayed improvement only after 3 months. The 755 nm alexandrite picosecond, 694 nm ruby, 532 nm, and 1064 nm neodynium:YAG nanosecond lasers appear to be safe and effective modalities for removal of pigmentary disorders in skin of color patients with no long-term complications if used appropriately. This study demonstrates the potential of the 755 nm alexandrite picosecond laser in further clinical applications beyond tattoo removal. While the Q-switched lasers were effective, promising results were also observed using an early version of the novel picosecond laser for the removal of pigmentary lesions in SOC patients. As we continue to improve our understanding of the 755 nm picosecond laser, this device may prove to be a safe and effective alternative to the Q-switched lasers for the treatment of facial pigmented lesions in patients with skin of color. © 2016 Wiley Periodicals, Inc.
Vanaman Wilson, Monique J; Jones, Isabela T; Bolton, Joanna; Larsen, Lisa; Wu, Douglas C; Goldman, Mitchel P
2018-01-01
Infraorbital dark circles result from a combination of factors. The fractionated picosecond 755 nm alexandrite laser and dual wavelength picosecond Nd:YAG laser have not been examined as a method of addressing infraorbital hyperpigmentation. To determine the efficacy and safety of treatment of infraorbital dark circles using fractionated picosecond 755 nm and dual wavelength picosecond Nd:YAG laser. These trials did not utilize a comparative design; rather, these were separate, prospective, open-label, evaluator-blinded trials utilizing two treatment regimens: (i) 19 adult subjects were treated in a single session with the dual wavelengths of 532 nm and 1,064 nm in consecutive passes using the fractionated lens; (ii) 10 adult subjects were treated using the picosecond 755 nm laser via the fractionated lens in three treatment sessions at 3 week intervals. Subjects in both studies were followed-up for blinded-investigator assessment of infraorbital hyperpigmentation, adverse events, and improvement compared to baseline. The dual wavelength picosecond Nd:YAG laser, blinded-investigator assessment did not demonstrate a significant improvement in infraorbital hyperpigmentation at day 60 (P = 0.16). The picosecond 755 nm alexandrite laser significantly improved infraorbital hyperpigmentation by day 42, with improvement maintained through day 132 (P = 0.07 and 0.00001, respectively). Adverse events were mild and temporary. A single treatment with the fractionated picosecond 1,064/532 nm lasers did not produce a significant improvement in infraorbital hyperpigmentation. A series of three treatments with the fractionated picosecond 755 nm laser resulted in significant improvement in hyperpigmentation. Lasers Surg. Med. 50:45-50, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Three Hundred Patients Treated with Ultrapulsed 980 nm Diode Laser for Skin Disorders
Wollina, Uwe
2016-01-01
The use of lasers in skin diseases is quite common. In contrast to other laser types, medical literature about 980 nm ultrapulsed diode laser is sparse in dermatology. Herein, we report the use of ultrapulsed diode 980 nm laser in 300 patients with vascular lesions, cysts and pseudocysts, infectious disease, and malignant tumors. This laser is a versatile tool with excellent safety and efficacy in the hands of the experienced user. PMID:27688445
Optical countermeasures against CLOS weapon systems
NASA Astrophysics Data System (ADS)
Toet, Alexander; Benoist, Koen W.; van Lingen, Joost N. J.; Schleijpen, H. Ric M. A.
2013-10-01
There are many weapon systems in which a human operator acquires a target, tracks it and designates it. Optical countermeasures against this type of systems deny the operator the possibility to fulfill this visual task. We describe the different effects that result from stimulation of the human visual system with high intensity (visible) light, and the associated potential operational impact. Of practical use are flash blindness, where an intense flash of light produces a temporary "blind-spot" in (part of) the visual field, flicker distraction, where strong intensity and/or color changes at a discomfortable frequency are produced, and disability glare where a source of light leads to contrast reduction. Hence there are three possibilities to disrupt the visual task of an operator with optical countermeasures such as flares or lasers or a combination of these; namely, by an intense flash of light, by an annoying light flicker or by a glare source. A variety of flares for this purpose is now available or under development: high intensity flash flares, continuous burning flares or strobe flares which have an oscillating intensity. The use of flare arrays seems particularly promising as an optical countermeasure. Lasers are particularly suited to interfere with human vision, because they can easily be varied in intensity, color and size, but they have to be directed at the (human) target, and issues like pointing and eye-safety have to be taken into account. Here we discuss the design issues and the operational impact of optical countermeasures against human operators.
20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.
Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T
2013-08-15
We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.
Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.;
2015-01-01
A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.
Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber
NASA Astrophysics Data System (ADS)
Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.
2011-05-01
A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.
2018-02-01
We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
Lasers for tattoo removal: a review.
Choudhary, Sonal; Elsaie, Mohamed L; Leiva, Angel; Nouri, Keyvan
2010-09-01
Tattoos have existed and have been used as an expression of art by man for ages-and so have the techniques to remove them. Lasers based on the principle of selective photothermolysis are now being used to remove black as well as colorful tattoos with varying successes. The commonly used lasers for tattoo removal are the Q-switched 694-nm ruby laser, the Q-switched 755-nm alexandrite laser, the 1,064-nm Nd:YAG laser, and the 532-nm Nd:YAG laser. Newer techniques and methods are evolving in tattoo removal with lasers. Choosing the right laser for the right tattoo color is necessary for a successful outcome. Our review aims to understand the principles of laser tattoo removal and their applications for different types and colors of tattoos. The review also highlights the complications that can occur such as dyspigmentation, allergic reactions, epidermal debris, ink darkening, and so on, in this process and how to prevent them.
NASA Astrophysics Data System (ADS)
Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.
2018-05-01
We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.
Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon; Kim, Sung Min
2014-07-01
The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser.
Extending solid state laser performance
NASA Astrophysics Data System (ADS)
Miesak, Ed
2017-02-01
Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.
Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser
NASA Astrophysics Data System (ADS)
Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying
2005-04-01
Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraher, Jack M.; Bakac, Andreja
Laser flash photolysis of 4-benzoylpyridine N-oxide (BPyO) at 308 nm in aqueous solutions generates a triplet excited state 3BPyO* that absorbs strongly in the visible, λ max 490 and 380 nm. 3BPyO* decays with the rate law k decay/s -1 = (3.3 ± 0.9) × 10 4 + (1.5 ± 0.2) × 10 9 [BPyO] to generate a mixture of isomeric hydroxylated benzoylpyridines, BPy(OH), in addition to small amounts of oxygen atoms, O( 3P). Molecular oxygen quenches 3BPyO*, k Q = 1.4 × 10 9 M -1 s -1, but the yields of O( 3P) increase in O 2-saturated solutionsmore » to 36%. Other triplet quenchers have a similar effect, which rules out the observed 3BPyO* as a source of O( 3P). It is concluded that O( 3P) is produced from either 1BPyO* or a short-lived, unobserved, higher energy triplet generated directly from 1BPyO*. 3BPyO* is reduced by Fe 2+ and by ABTS 2- to the radical anion BPyO .- which exhibits a maximum at 510 nm, ε = 2200 M -1 cm -1. The anion engages in back electron transfer with ABTS .- with k = 1.7 × 109 M -1 s -1. The same species can be generated by reducing ground state BPyO with .C(CH 3) 2OH. The photochemistry of BPyO in acetonitrile is similar to that in aqueous solutions.« less
Walgrave, Susan; Zelickson, Brian; Childs, James; Altshuler, Gregory; Erofeev, Andrei; Yaroslavsky, Ilya; Kist, David; Counters, Jeff
2008-11-01
Yucatan Black pig skin was treated with a 1,540-nm erbium (Er):glass laser (Lux1540, 15 and 30 mJ) and two 1,550-nm Er-doped fiber lasers (Fraxel SR750 and SR1500, 8, 10, and 12 mJ). Histologic sections were examined to determine the depth of damage and to correlate subjects' clinical response. Concurrently, six subjects with photodamaged skin received three split-face and ipsilateral dorsal hand treatments with the 1,540-nm Er:glass laser on one side and one of the 1,550-nm Er-doped lasers (Fraxel SR750) on the other. The 1,550-nm Er-doped lasers, using lower fluences and higher densities, produced shallower micro-columns than the 1,540-nm Er:glass device at higher fluences and lower densities (mean depths 250-275 microm vs 425-525 microm, respectively). Blinded assessors found greater overall improvement in pigmentation with the 1,550-nm Er-doped laser and better overall improvement in texture with the 1,540-nm Er:glass laser. Greater densities of shallower damage columns at lower energies may better improve pigmentation, whereas deeper injuries, using higher energies and moderate densities, may better improve texture. This pilot study did not compare similar fluences and histologic damage between the two systems, and newer available systems allow for greater depth of penetration.
NASA Astrophysics Data System (ADS)
Thompson, Kristopher M.; Gao, Yide; Marshall, Paul; Wang, Han; Zhou, Linsen; Li, Yongle; Guo, Hua
2017-10-01
The gas-phase kinetics of S(3P) atoms with H2 and D2 have been studied via the laser flash photolysis—resonance fluorescence technique. S atoms were generated by pulsed photolysis of CS2 at 193 nm and monitored by time-resolved fluorescence at 181 nm. The rate coefficients for H2 (k1) and D2 (k2), respectively, are summarized as k1(600-1110 K) = 3.0 × 10-9 exp(-1.317/×105-2.703 ×107K /T 8.314 T /K ) cm3 molecule-1 s-1 and k2(770-1110 K) = 2.2 × 10-14 (T/298 K)3.55 exp(-5420 K/T) cm3 molecule-1 s-1. Error limits are discussed in the text. The rate coefficients for formation of SH(SD) + H(D) on a newly developed triplet potential energy surface were characterized via ring polymer molecular dynamics and canonical variational transition-state theory. There is excellent agreement above about 1000 K between theory and experiment. At lower temperatures, the experimental rate coefficient is substantially larger than the results computed for the adiabatic reaction, suggesting a significant role for intersystem crossing to the singlet potential energy surface at lower temperatures.
Non-invasive timing of gas gun projectiles with light detection and ranging
NASA Astrophysics Data System (ADS)
Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.
2014-05-01
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.
New counter-countermeasure techniques for laser anti-dazzling spectacles
NASA Astrophysics Data System (ADS)
Donval, Ariela; Partouche, Eran; Lipman, Ofir; Gross, Noam; Fisher, Tali; Oron, Moshe
2016-05-01
Aviation, commercial and military, is new area in optics that is suffering from laser threats in the last years. Dazzling and damage to pilot's eyes by laser pointers is a common threat lately. Under certain conditions, laser light, directed at aircraft can be hazardous. The most likely scenario is when bright visible laser light causes distraction and/or temporary flash blindness to the pilot, during a critical phase of flight like landing or takeoff. It is also possible, that a visible or invisible beam could cause permanent damage to a pilot's eyes. This paper presents a novel technology for protection of the human eye against laser threats in the visible range.
Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun
2016-04-04
This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.
Min, Seong U K; Choi, Yu Sung; Lee, Dong Hun; Yoon, Mi Young; Suh, Dae Hun
2009-11-01
Nonablative laser is gaining popularity because of the low risk of complications, especially in patients with darker skin. To compare the efficacy and safety of a long-pulse neodymium-doped yttrium aluminium garnet (Nd:YAG) laser and a combined 585/1,064-nm laser for the treatment of acne scars. Nineteen patients with mild to moderate atrophic acne scars received four long-pulse Nd:YAG laser or combined 585/1,064-nm laser treatment sessions at fortnightly intervals. Treatments were administered randomly in a split-face manner. Acne scars showed mild to moderate improvement, with significant Echelle d'évaluation clinique des cicatrices d'acné (ECCA) score reductions, after both treatments. Although intermodality differences were not significant, combined 585/1,064-nm laser was more effective for deep boxcar scars. In patients with combined 585/1,064-nm laser-treated sides that improved more than long-pulse Nd:YAG laser-treated sides, ECCA scores were significantly lower for combined 585/1,064-nm laser treatment. Histologic evaluations revealed significantly greater collagen deposition, although there was no significant difference between the two modalities. Patient satisfaction scores concurred with physicians' evaluations. Both lasers ameliorated acne scarring with minimal downtime. In light of this finding, optimal outcomes might be achieved when laser treatment types are chosen after considering individual scar type and response.
NASA Astrophysics Data System (ADS)
Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.
2014-06-01
Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.
Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2014-01-10
Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.
UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar
NASA Technical Reports Server (NTRS)
Storm, Mark E.; Marsh, Waverly; Barnes, James C.
1998-01-01
Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.
NASA Astrophysics Data System (ADS)
Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian
2016-06-01
A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.
Cr:ZnSe laser pumped with Tm:YAP microchip laser
NASA Astrophysics Data System (ADS)
Koranda, Petr; Sulc, Jan; Doroshenko, Maxim; Jelinková, Helena; Basiev, Tasoltan T.; Osiko, Vjatcheslav; Badikov, V. V.; Badikov, D.
2010-02-01
Cr:ZnSe laser coherently longitudinally pumped with Tm:YAP microchip laser was realised. The pumping laser consisted of Tm:YAP crystal (3x3 mm) with resonator mirrors deposited directly on its faces (on rear face the dielectric layer with high reflectance for 1998 nm wavelength and high transmittance for 790 nm pumping radiation wavelength; on output face the dielectric layer with reflectance 97% at 1998 nm wavelength). The maximal output power was 5.5 W and the generated radiation wavelength was 1998 nm. The main advantage of this pumping was stable and still output without relaxation spikes (non-spiking). The Tm:YAP laser radiation was collimated and focused by the set of two CaF2 lenses. The pumping beam spot diameter inside the Cr:ZnSe crystal was 300 μm. The Cr:ZnSe laser resonator consisted of flat rear mirror (HT at 1998 nm and HR at 2100 - 2900 nm) and curved output coupler (r = -150 mm, R = 95% at 2100 - 2700 nm). The maximal output energy of stable radiation was 4 mJ (pulse duration 10 ms, repetition rate 10 Hz). For wavelength tuning the Lyott filter (quartz plate under Brewster angle) was placed between the Cr:ZnSe crystal and output coupler. The generated radiation wavelength was continuously tunable from 2246 - 2650 nm.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Stahl, Charlotte S. D.; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-03-01
Successful identification of the cavernous nerves (CN's) during radical prostatectomy requires detection of the CN's through a thin layer of overlying fascia. This study explores the 1490 nm infrared (IR) diode laser wavelength for rapid and deep subsurface CN stimulation in a rat model, in vivo. A 150-mW, 1490-nm diode laser providing an optical penetration depth of 520 μm was used to stimulate the CN's in 8 rats through a single mode fiber optic probe with 1-mm-diameter spot and 15 s irradiation time. Successful ONS was judged by an intracavernous pressure response (ICP) in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 and 1550 nm IR diode laser wavelengths. ONS was observed through fascia layers up to 380 μm thick using an incident laser power of 50 mW. ICP response times as short as 4.6 +/- 0.2 s were recorded using higher laser powers bust still below the nerve damage threshold. The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper optical penetration than 1455 nm and more rapid and efficient nerve stimulation than 1550 nm.
Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.
Schulze, Philipp; Ludwig, Martin; Belder, Detlev
2008-12-01
A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.
Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca
2018-01-01
Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.
NASA Astrophysics Data System (ADS)
Csontos, J.; Toth, Z.; Pápa, Z.; Budai, J.; Kiss, B.; Börzsönyi, A.; Füle, M.
2016-06-01
In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium-sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs-200 ps) and a dye-KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78-80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.
Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges
NASA Astrophysics Data System (ADS)
Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.
2013-04-01
The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.
Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Yu O; Lobintsov, A A; Shramenko, M V
2015-08-31
We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)
Photonic Breast Tomography and Tumor Aggressiveness Assessment
2012-07-01
c) Raw Image 11 The entrance face of the slab sample (source plane) was illuminated by a 100-mW 790-nm diode laser beam. The multi-source...schematically shown in Figure 6. A 10mW 785 nm diode laser beam was used to illuminate the first sample, while a 100mW 785 nm diode laser beam was used for the...signal transmitting narrow-band filter; TS = translation stage; CCD = charge cou- pled device; and PC = computer. Continuous wave 790-nm diode laser
A data set from flash X-ray imaging of carboxysomes
NASA Astrophysics Data System (ADS)
Hantke, Max F.; Hasse, Dirk; Ekeberg, Tomas; John, Katja; Svenda, Martin; Loh, Duane; Martin, Andrew V.; Timneanu, Nicusor; Larsson, Daniel S. D.; van der Schot, Gijs; Carlsson, Gunilla H.; Ingelman, Margareta; Andreasson, Jakob; Westphal, Daniel; Iwan, Bianca; Uetrecht, Charlotte; Bielecki, Johan; Liang, Mengning; Stellato, Francesco; Deponte, Daniel P.; Bari, Sadia; Hartmann, Robert; Kimmel, Nils; Kirian, Richard A.; Seibert, M. Marvin; Mühlig, Kerstin; Schorb, Sebastian; Ferguson, Ken; Bostedt, Christoph; Carron, Sebastian; Bozek, John D.; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Epp, Sascha W.; Chapman, Henry N.; Barty, Anton; Andersson, Inger; Hajdu, Janos; Maia, Filipe R. N. C.
2016-08-01
Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.
High efficiency laser-pumped emerald lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, S.T.
1987-09-25
Highly efficient laser operation has been achieved in emerald. In a quasi-cw laser-pumped emerald laser, 64% output slope efficiency has been measured at 768 nm, corresponding to a laser quantum yield of 76%. An output power of 1.6 W was reached at 3.6 W of pump power at 647.1 nm from a krypton laser, and was pump power limited. The emerald laser has a tuning range of 720 to 842 nm. The round trip loss excluding the excited state absorption (ESA) is 0.4%/cm. These results indicate the high laser efficiency and the high optical quality of the emerald attainable inmore » the present laser.« less
Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.
Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting
2010-11-08
We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.
NASA Astrophysics Data System (ADS)
Fu, S. C.; Wang, X.; Chu, H.
2013-02-01
We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-01-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
NASA Astrophysics Data System (ADS)
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-03-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.
Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter
NASA Astrophysics Data System (ADS)
Tian, Wenyan; Zhang, Shukui
2018-02-01
We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
NASA Astrophysics Data System (ADS)
Qian, Min; Niu, Yue Ping; Gong, Shang Qing
2018-01-01
Pulsed Nd:YAG (532 nm) and Excimer (248 nm) lasers were employed to produce freestanding, two-dimensional (2D), carbon nanosheets (CNSs) from naphthalene, through laser-induced exfoliation. The polymer-to-carbon transition was investigated in terms of laser wavelengths, fluences, as well as target preparations. Continuous and porous CNSs of several nanometers in thickness and micrometers in size were obtained from 532 and 248 nm pulsed laser exfoliation of spin-coated naphthalene films, respectively. The porous morphology is ascribed to the photon-induced dissociation of chemical bonds dominated in 248 nm laser interaction with ablated naphthalene. With the increase of laser fluences from 1 to 5 J cm-2, amorphous carbon and ultrathin CNS structures were obtained in sequence. This work revealed a general mechanism of producing 2D structured carbon materials from pulsed laser exfoliation.
NASA Astrophysics Data System (ADS)
Odor, Alin A.; Violant, Deborah; Badea, Victoria; Gutknecht, Norbert
2016-03-01
Backgrounds: Er,Cr:YSGG (2780nm) and diode (940 nm) lasers can be used adjacent to the conventional periodontal treatment as minimally invasive non-surgical devices. Aim: To describe the short-term clinical outcomes by combining Er,Cr:YSGG (2780nm) and diode 940 nm lasers in non-surgical periodontal treatment. Materials and methods: A total of 10 patients with periodontal disease (mild, moderate, severe) - 233 teeth and 677 periodontal pockets ranging from 4 mm to 12 mm - were treated with Er,Cr:YSGG (2780nm) and diode (940 nm) lasers in adjunct to manual and piezoelectric scaling and root planning (SRP). Periodontal parameters such as mean probing depth (PD), mean clinical attachment level (CAL) and mean bleeding on probing (BOP) were evaluated at baseline and 6 months after the laser treatment using an electronic periodontal chart. Results: At baseline, the mean PD was 4.06 ± 1.06 mm, mean CAL was 4.56 ± 1.43 mm, and mean BOP was 43.8 ± 23.84 %. At 6 months after the laser supported periodontal treatments the mean PD was 2.6 ± 0.58 mm (p <0.001), mean CAL was 3.36 ± 1.24 mm (p <0.001) and mean BOP was 17 ± 9.34 % (p <0.001). Also 3 patients showed radiographic signs of bone regeneration. Conclusion: The combination of two laser wavelengths in adjunct to SRP offers significant improvements of periodontal clinical parameters such as PD, CAL and BOP. Keywords: Laser supported periodontal treatment concept, Er,Cr:YSGG and diode 940nm lasers, Scaling and root planning, Minimally invasive non-surgical device
Lasers' spectral and temporal profile can affect visual glare disability.
Beer, Jeremy M A; Freeman, David A
2012-12-01
Experiments measured the effects of laser glare on visual orientation and motion perception. Laser stimuli were varied according to spectral composition and temporal presentation as subjects identified targets' tilt (Experiment 1) and movement (Experiment 2). The objective was to determine whether the glare parameters would alter visual disruption. Three spectral profiles (monochromatic Green vs. polychromatic White vs. alternating Red-Green) were used to produce a ring of laser glare surrounding a target. Two experiments were performed to measure the minimum contrast required to report target orientation or motion direction. The temporal glare profile was also varied: the ring was illuminated either continuously or discontinuously. Time-averaged luminance of the glare stimuli was matched across all conditions. In both experiments, threshold (deltaL) values were approximately 0.15 log units higher in monochromatic Green than in polychromatic White conditions. In Experiment 2 (motion identification), thresholds were approximately 0.17 log units higher in rapidly flashing (6, 10, or 14 Hz) than in continuous exposure conditions. Monochromatic extended-source laser glare disrupted orientation and motion identification more than polychromatic glare. In the motion task, pulse trains faster than 6 Hz (but below flicker fusion) elevated thresholds more than continuous glare with the same time-averaged luminance. Under these conditions, alternating the wavelength of monochromatic glare over time did not aggravate disability relative to green-only glare. Repetitively flashing monochromatic laser glare induced occasional episodes of impaired motion identification, perhaps resulting from cognitive interference. Interference speckle might play a role in aggravating monochromatic glare effects.
Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.
2018-02-01
A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.
21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser
NASA Astrophysics Data System (ADS)
Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi
2001-10-01
A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.
Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang
2007-10-15
We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.
Nonvolatile Memory Technology for Space Applications
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.
2010-01-01
This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.
1986-07-16
present the design and results from the current flash spectroscopic system at the R.I. A hybrid mode-locked, cavity dumped dye laser is used to seed a...date require a HE sum of at least three exponentials to achieve an acceptable fit. Lettuce chloroplasts exhibit decay times of 100 psec., 500-600 psec...other lettuce preparations. A PS1 preparation from the cyanobacterium Chlorogloea Fritschii, which has been thoroughly characterised previously [2
Havard, Laurent; Fellous-Jerome, Joelle; Bonan, Brigitte; Pradeau, Dominique; Prognon, Patrice
2005-01-01
Peracetic acid (PAA) permeation in flash sterilization was studied using three different plastic infusion bags made of polypropylene and polyethylene, filled with glucose 5% or NaCl 0.9%. The pH was measured and acetic acid (AA) and PAA concentrations were made by reverse phase high-performance liquid chromatography (RP-HPLC). PAA was derivatized by oxidation of methyl tolyl sulfide (MTS) into methyl tolyl sulfoxide (MTSO) detected by ultraviolet (UV) absorbance at 230 nm. The technique has a sensitivity of 0.3 microg x L(-1) and was highly specific. Results showed that pH measurements remain constant and demonstrated the absence of PAA permeation, which was confirmed by the absence of AA permeation regardless of the brand tested, with both unwrapped and overwrapped infusion bags, when flash sterilization is applied. These results allow flash sterilization to be performed with unwrapped infusion bags without any risk of drug degradation by PAA. This makes compounding safer and easier, which improves productivity.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.
2011-01-01
Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
NASA Astrophysics Data System (ADS)
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Evaluation of the Diode laser (810nm, 980 nm) on color change of teeth after external bleaching
Kiomars, Nazanin; Azarpour, Pouneh; Mirzaei, Mansooreh; Hashemi kamangar, Sedighe Sadat; Kharazifard, Mohammad Javad
2016-01-01
Subject and aim: The aim of this study was to evaluate the efficiency of diode laser-activated bleaching systems for color change of teeth. Materials & Methods: 40 premolars with intact enamel surfaces were selected for five external bleaching protocols (n=8). Two different wavelengths of diode laser (810 and 980 nm) with two different hydrogen peroxide concentrations (30% and 46%) were selected for laser bleaching. Group 1 received bleaching (Heydent- Germany) with a 810 nm diode laser; Group 2 received bleaching (Heydent- Germany) with a 980 nm diode laser; Group 3 received bleaching (laser white*20- Biolase) with a 810 nm diode laser; Group 4 received bleaching (laser white*20- Biolase) with a 980 nm diode laser, with an output power of 1.5 W, in continuous wave (cw) mode for each irradiation. Group 5 as control group received 40% hydrogen peroxide (Opalescence Boost, Ultradent-USA) with no light activation. The color of teeth was scored at baseline and 1 week after bleaching with spectrophotometer. Color change data on the CIEL*a*b* system were analyzed statistically by the one-way ANOVA and Tukey's HSD test. Results: All the bleaching techniques resulted in shade change. According to ΔE values, all techniques were effective to bleach the teeth (ΔE ≥ 3). Statistically significant differences were detected among bleaching protocols (p=0.06). Regarding shade change values expressed as ΔL*, Δa*, Δb*, ΔE*, laser bleached groups were no statistically different with each other (p>0.05). Conclusion: Bleaching with different wavelengths of diode laser resulted in the same results. PMID:28765671
Grunewald, Sonja; Bodendorf, Marc Oliver; Zygouris, Alexander; Simon, Jan Christoph; Paasch, Uwe
2014-01-01
Alexandrite and diode lasers are commonly used for hair removal. To date, the available spot sizes and repetition rates are defining factors in terms of penetration depth, treatment speed, and efficacy. Still, larger treatment areas and faster systems are desirable. To compare the efficacy, tolerability, and subject satisfaction of a continuously linear-scanning 808 nm diode laser with an alexandrite 755 nm laser for axillary hair removal. A total of 31 adults with skin types I-IV received 6 treatments at 4-week intervals with a 755 nm alexandrite laser (right axilla) and a continuously linear-scanning 808 nm diode laser (left axilla). Axillary hair density was assessed using a computerized hair detection system. There was a significant reduction in axillary hair after the 6th treatment (P < 0.05) on both sides (left, 808 nm: hair clearance of 72.16%; right, 755 nm: hair clearance of 71.30%). The difference in reduction between the two lasers was not significant, but both were persistant at 18 months follow-up (left: hair clearance of 73.71%; right: hair clearance of 71.90%). Erythema and perifollicular edema were more common after alexandrite laser treatment, but all side effects were transient. While 62.50% of patients reported more pain in response to treatment with the new diode laser, all patients rated treatment with either laser tolerable. Treatment with either the alexandrite or the linear-scanning diode laser results in significant, comparable, persistent (at least 18 months) axillary hair reduction among individuals with skin types I-IV. © 2013 Wiley Periodicals, Inc.
Evaluation of the Diode laser (810nm, 980 nm) on color change of teeth after external bleaching.
Kiomars, Nazanin; Azarpour, Pouneh; Mirzaei, Mansooreh; Hashemi Kamangar, Sedighe Sadat; Kharazifard, Mohammad Javad; Chiniforush, Nasim
2016-12-30
Subject and aim: The aim of this study was to evaluate the efficiency of diode laser-activated bleaching systems for color change of teeth. Materials & Methods: 40 premolars with intact enamel surfaces were selected for five external bleaching protocols (n=8). Two different wavelengths of diode laser (810 and 980 nm) with two different hydrogen peroxide concentrations (30% and 46%) were selected for laser bleaching. Group 1 received bleaching (Heydent- Germany) with a 810 nm diode laser; Group 2 received bleaching (Heydent- Germany) with a 980 nm diode laser; Group 3 received bleaching (laser white*20- Biolase) with a 810 nm diode laser; Group 4 received bleaching (laser white*20- Biolase) with a 980 nm diode laser, with an output power of 1.5 W, in continuous wave (cw) mode for each irradiation. Group 5 as control group received 40% hydrogen peroxide (Opalescence Boost, Ultradent-USA) with no light activation. The color of teeth was scored at baseline and 1 week after bleaching with spectrophotometer. Color change data on the CIEL*a*b* system were analyzed statistically by the one-way ANOVA and Tukey's HSD test. Results: All the bleaching techniques resulted in shade change. According to ΔE values, all techniques were effective to bleach the teeth (ΔE ≥ 3). Statistically significant differences were detected among bleaching protocols (p=0.06). Regarding shade change values expressed as ΔL*, Δa*, Δb*, ΔE*, laser bleached groups were no statistically different with each other (p>0.05). Conclusion: Bleaching with different wavelengths of diode laser resulted in the same results.
Laser-induced bulk damage of silica glass at 355nm and 266nm
NASA Astrophysics Data System (ADS)
Kashiwagi, R.; Aramomi, S.
2016-12-01
Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.
Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers
NASA Astrophysics Data System (ADS)
Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter
2015-04-01
We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.
NASA Astrophysics Data System (ADS)
Huynh, T. T. D.; Semmar, N.
2017-09-01
The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.
Experimental investigation of a pulsed Rb-Ar excimer-pumped alkali laser
NASA Astrophysics Data System (ADS)
Cheng, Hongling; Wang, Zhimin; Zhang, Fengfeng; Wang, Mingqiang; Tian, Zhaoshuo; Peng, Qinjun; Cui, Dafu; Xu, Zuyan
2017-03-01
We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb-Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.
Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon
2014-01-01
Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273
Tunable double-clad ytterbium-doped fiber laser based on a double-pass Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Meng, Yichang; Zhang, Shumin; Wang, Xinzhan; Du, Juan; Li, Hongfei; Hao, Yanping; Li, Xingliang
2012-03-01
We have demonstrated an adjustable double-clad Yb 3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.
Haslerud, Sturla; Naterstad, Ingvill Fjell; Bjordal, Jan Magnus; Lopes-Martins, Rodrigo Alvaro Brandão; Magnussen, Liv Heide; Leonardo, Patrícia Sardinha; Marques, Ricardo Henrique; Joensen, Jon
2017-10-01
There is a lack of knowledge about the influence tissue temperature may have on laser light penetration and tendon structure. The purpose of this study was to investigate whether penetration of laser energy in human Achilles tendons differed before and after ice pack application. The Achilles tendons (n = 54) from 27 healthy young adults were irradiated with two class 3B lasers (810 nm 200 mW continuous mode laser and a 904 nm 60 mW superpulsed mode laser). The optical energy penetrating the Achilles area was measured before and after 20 min of ice application. Measurements were obtained after 30, 60, and 120 sec irradiation with the 904 nm laser and after 30 and 60 sec irradiation with the 810 nm laser. Achilles tendon thickness was measured with ultrasonography. Optical energy penetration increased significantly (p < 0.01) after ice application for both lasers and at all time points from 0.34% to 0.39% of energy before ice application to 0.43-0.52% of energy after ice application for the 904 nm laser and from 0.24% to 0.25% of energy before ice application to 0.30-0.31% of energy after ice application for the 810 nm laser. The energy loss per centimeter of irradiated tissue was significantly higher (p < 0.05) at all time points after ice application. Ultrasonography imaging of skin-to-skin and transversal tendon thickness was significantly reduced after ice application at p = 0.05 and p = 0.03, respectively. Achilles tendon thickness in the longitudinal plane remained unchanged (p = 0.49). The penetration of laser light increased significantly through healthy Achilles tendons subjected to 20 min of cooling. These findings occurred in the presence of a significant reduction in skin temperature and Achilles tendon thickness.
Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.
Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J
2010-06-21
We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.
Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.
Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu
2009-06-15
In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.
Influence of low power CW laser irradiation on skin hemoglobin changes
NASA Astrophysics Data System (ADS)
Ferulova, Inesa; Lesins, Janis; Lihachev, Alexey; Jakovels, Dainis; Spigulis, Janis
2012-06-01
Influence of low power laser irradiance on healthy skin using diffuse reflectance spectroscopy and multispectral imaging was studied. Changes of diffuse reflectance spectra in spectral range from 500 to 600 nm were observed after 405 nm, 473 nm and 532 nm laser provocation, leading to conclusion that the content of skin hemoglobin has changed. Peaks in spectral absorbance (optical density) curves corresponded to well-known oxy-hemoglobin absorbance peaks at 542 and 577 nm.
Weldon, Vincent; McInerney, David; Phelan, Richard; Lynch, Michael; Donegan, John
2006-04-01
Tuneable laser diodes were characterized and compared for use as tuneable sources in gas absorption spectroscopy. Specifically, the characteristics of monolithic widely tuneable single frequency lasers, such as sampled grating distributed Bragg reflector laser and modulated grating Y-branch laser diodes, recently developed for optical communications, with operating wavelengths in the 1,520 nm
Energetic Materials Laboratory
2015-04-30
regolith simulants mixed with magnesium, supported by NASA. It has also been used for studies on combustion synthesis of magnesium silicide , a...ammonium dinitramide based monopropellant. The laser flash apparatus has been used for thermal diffusivities measurements for magnesium silicide and
Gould, Ian R; Wosinska, Zofia M; Farid, Samir
2006-01-01
Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.
Numerical design of a magnetized turbulence experiment at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca
2017-10-01
The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.
Generation of 369.4 nm Radiation by Efficient Doubling of a Diode Laser
NASA Technical Reports Server (NTRS)
Williams, A.; Seidel, D. J.; Maleki, J.
1993-01-01
A resonant cavity second harmonic generation system has been developed to produce 369.4 nm radiation from a 738.8 nm diode laser with 10 mW nominal output power. This system utilizes a polarization technique to lock the cavity to the laser frequency. In this paper we report on an evaluation of the system using a Titanium:Sapphire laser as the input source, and preliminary results with a diode laser source. To our knowledge, this is the deepest uv light ever produced by frequency-doubling a diode laser.
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
NASA Astrophysics Data System (ADS)
Ladalardo, Thereza C.; Mangabeira Albernaz, Pedro L.; Brugnera, Aldo, Jr.; Zanin, Fatima A. A.; Siqueira, Jose T.; Pinheiro, Antonio L. B.
2002-06-01
In this comparative clinical study, we aimed at evaluating the immediate and late analgesic effect of GaAlAs diode lasers of 660 nm and 830 nm in treatment of dentine pain. We used GaAlAs diode lasers of 660 nm and 830 nm with 35 mW, continuous wave emission, spot size 1 mm2 and a dosage of 4 joules/cm2 applied to the cervical dentine surface. In total 4 treatment sessions were performed at intervals of 7 days in a period of 4 consecutive weeks. A total of 40 teeth treated were divided into two groups comprising 20 teeth each: one group irradiated with a 660 nm wavelength laser, and the other one with a 830 nm wavelength laser. By means of a quantitative visual analogue scale (V.A.S.), we measured the sensitive responses to cold stimulus pre- treatment, and at a follow-up period of 15 and 30 minutes post-treatment in both groups in order to evaluate the immediate analgesic effect. The late effect was evaluated at a follow-up period of 15 and 30 days. Using the GaAlAs diode laser of 660 nm wavelength resulted in better levels of dentine desensitization, at both immediate and late analgesic effect analysis compared with the use of the GaAlAs diode laser of 830 nm wavelength.
Optofluidic chlorophyll lasers.
Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong
2016-06-21
Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants.
Wavelength stabilized multi-kW diode laser systems
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens
2015-03-01
We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.
New stable tunable solid-state dye laser in the red
NASA Astrophysics Data System (ADS)
Gvishi, Raz; Reisfeld, Renata; Burshtein, Zeev; Miron, Eli
1993-08-01
A red perylene derivative was impregnated into a composite silica-gel glass, and characterized as a dye laser material. The absorption spectrum in the range 480 - 600 nm belongs to the S0 - S1 electronic transition, with a structure reflecting the perylene skeletal vibrations, of typical energy 1100 - 1200 cm-1. An additional peak between 400 and 460 nm belongs to the S0 - S2 transition. The fluorescence exhibits a mirror image relative to the S0 - S1 absorption, with a Stokes shift of about 40 nm for the 0 - 0 transition. Laser tunability was obtained in the range 605 - 630 nm using a frequency-doubled Nd:YAG laser for pumping ((lambda) equals 532 nm). This wavelength range is important for medical applications, such as photodynamic therapy of some cancer tumors. Maximum laser efficiency of approximately 2.5% was obtained at 617 nm. Maximum output was approximately 0.36 mJ/pulse at a repetition rate of 10 Hz. Minimum laser threshold obtained was 0.45 mJ/pulse. The medium losses are attributed to an excited-state singlet-singlet absorption, with an upper limit cross-section of approximately 2.5 X 10-16 cm2. The laser output was stable over more than approximately 500,000 pulses, under excitation with the green line of a copper vapor laser (510 nm), of energy density approximately 40 mJ/cm2 per pulse. Good prospects exist for a considerable enhancement in laser output efficiency.
High-efficency stable 213-nm generation for LASIK application
NASA Astrophysics Data System (ADS)
Wang, Zhenglin; Alameh, Kamal; Zheng, Rong
2005-01-01
213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.
Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal
NASA Astrophysics Data System (ADS)
Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan
2018-02-01
Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
High resolution laser patterning of ITO on PET substrate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.
2013-03-01
Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.
Nonradiative relaxation and laser action in tunable solid state laser crystals
NASA Technical Reports Server (NTRS)
Petricevic, V.; Gayen, S. K.; Alfano, R. R.
1989-01-01
Room-temperature pulsed laser action was obtained in chromium-activated forsterite (Cr:Mg2SiO4) for both 532 and 1064 nm pumping. Free running laser emission in both cases is centered at 1235 nm and has a bandwidth of approximately 30 nm. Slope efficiency as high as 22 percent was measured. Using different sets of output mirrors and a single birefrigent plate as the intracavity wavelength selecting element tunability over the 1167 to 1268 nm spectral range was demonstrated. Continuous wave laser operation at room temperature was obtained for 1064 nm pumping from a CW Nd:YAG laser. The output power slope efficiency is 6.8 percent. The gain cross section is estimated to be 1.1 x 10 to the 19th sq cm. Spectroscopic studies suggest that the laser action is due to a center other than the trivalent chromium (Cr 3+), presumably the tetravalent chromium (Cr 4+) in a tetrahedrally coordinated site.
Current laser applications in reconstructive microsurgery: A review of the literature.
Leclère, Franck Marie; Vogt, Peter; Schoofs, Michel; Delattre, Maryline; Mordon, Serge
2016-06-01
Microvascular surgery has become an important method for reconstructing surgical defects following trauma, tumor resection, or burns. Laser-assisted microanastomoses (LAMA) were introduced by Jain in 1979 in order to help the microsurgeon reduce both operating time and complications. This article reviews the literature on clinical applications of LAMA. A Medline literature search was performed and cross-referenced. Articles between 1979 and 2014 were included. Keywords used were laser, laser microanastomoses, laser microanastomosis, LAMA, and microsurgery. Only seven clinical studies using three different wavelengths were found in the literature: 1,064 nm (Nd: YAG), 10,600 nm (CO2), 514 nm (Argon), and 1,950 nm (Diode). Clinical outcomes, type of procedures, laser wavelength and parameters, and possible wider applications in the operating room are discussed in each case. The success rate for reconstructive free flap surgery and hand surgery achieved with LAMA appears promising. In particular, use of the 1950-nm diode laser for microsurgery is likely to increase in the near future.
Cryogenic Tm:YAP microchip laser
NASA Astrophysics Data System (ADS)
Hubka, Zbyněk.; Å ulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav
2016-04-01
The spectral characteristics of laser active media, and thus those of the laser output, are temperature dependent. Specifically, in almost every crystal host, cooling to low temperatures leads to better heat removal, a higher efficiency and output power, and a reduced lasing threshold. Tm-ion doped lasers have an emission wavelength around 2 μm and are important in medicine for soft tissue cutting and hemostasis, as well as in LIDAR or atmosphere sensing technology. This paper presents the performance-temperature dependency of a 4 at. % doped Tm:YAP microchip. During the experiment the Tm:YAP crystal was placed inside an evacuated liquid nitrogen cryostat on a cooling finger. As its temperature was varied from 80 K to 340 K, changes were observed in the absorption spectrum, ranging from 750 nm to 2000 nm and in the fluorescence spectrum from 1600 nm to 2050 nm. Fluorescence lifetime was seen to rise and fall with decreasing temperature. The laser was pumped by a 792 nm laser diode and at 80 K the maximum output peak power of the laser was 4.6 W with 23 % slope efficiency and 0.6 W threshold, compared to 2.4 W output peak power, 13 % slope efficiency and 3.3 W threshold when at 340 K. The laser emission wavelength changed from 1883 nm to 1993 nm for 80 K and 300 K, respectively.
Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser
NASA Astrophysics Data System (ADS)
Zheng, Lihe; Taira, Takunori
2016-03-01
A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.
Theoretical study and design of third-order random fiber laser
NASA Astrophysics Data System (ADS)
Xie, Zhaoxin; Shi, Wei; Fu, Shijie; Sheng, Quan; Yao, Jianquan
2018-02-01
We present result of achieving a random fiber laser at a working wavelength of 1178nm while pumping at 1018nm. The laser power is realized by 200m long cavity which includes three high reflectivity fiber Bragg gratings. This simple and efficient random fiber laser could provide a novel approach to realize low-threshold and high-efficiency 1178nm long wavelength laser. We theoretically analyzed the laser power in random fiber lasers at different pump power by changing three high reflectivity fiber Bragg gratings. We also calculated the forward and backward power of 1st-order stokes, 2nd-order stokes, 3rd-order stokes. With the theoretical analysis, we optimize the cavity's reflectivity to get higher laser power output. The forward random laser exhibits larger gain, the backward random laser has lower gain. By controlling the value of angle-cleaved end fiber's reflectivity to 3×10-7, when the high reflectivity increases from 0.01 to 0.99, the laser power increases, using this proposed configuration, the 1178nm random laser can be generated easily and stably.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Masahara, Meishoku
2014-01-01
Three-dimensional (3D) fin-channel charge trapping (CT) flash memories with different gate materials of physical-vapor-deposited (PVD) titanium nitride (TiN) and n+-polycrystalline silicon (poly-Si) have successfully been fabricated by using (100)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. Electrical characteristics of the fabricated flash memories including statistical threshold voltage (Vt) variability, endurance, and data retention have been comparatively investigated. It was experimentally found that a larger memory window and a deeper erase are obtained in PVD-TiN-gated metal-oxide-nitride-oxide-silicon (MONOS)-type flash memories than in poly-Si-gated poly-Si-oxide-nitride-oxide-silicon (SONOS)-type memories. The larger memory window and deeper erase of MONOS-type flash memories are contributed by the higher work function of the PVD-TiN metal gate than of the n+-poly-Si gate, which is effective for suppressing electron back tunneling during erase operation. It was also found that the initial Vt roll-off due to the short-channel effect (SCE) is directly related to the memory window roll-off when the gate length (Lg) is scaled down to 46 nm or less.
Solid-state-based laser system as a replacement for Ar+ lasers.
Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas
2016-09-15
We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.
Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T
2013-06-01
We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.
Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.
Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R
2014-10-10
Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062 nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067 nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067 nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.
Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten
2011-03-01
Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.
Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten
2012-10-01
Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.
Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F
2013-03-11
We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.
Process research of non-Cz material
NASA Astrophysics Data System (ADS)
Campbell, R. B.
1985-06-01
Efforts were aimed at achieving a simultaneous front and back junction. Lasers and other heat sources were tried. Successful results were gained by two different methods: laser and flash lamp. Polymer dopants were applied to both sides of dendritic web cells. Rapid heating and cooling avoided any cross contamination between two junctions after removal of the dendrites. Both methods required subsequent thermal annealing in an oven to produce maximum efficiency cells.
Laser induced photoluminescence spectroscopy of cometary radicals
NASA Technical Reports Server (NTRS)
Jackson, W. M.; Cody, R. J.; Sabety-Dzvonik, M.
1976-01-01
Flash photolysis together with laser excitation of the product fragments was used in laboratory studies of cometary radicals. The LIPS method has been applied to the CN radical to determine: (1) Radiative lifetimes of individual rotational levels in the zeroth vibrational level of the B state; (2) energy partitioning during photodissociation of C2N2; and (3) vibrational and rotational excitation during formation of CN radicals in the photodissociation of dicyanoacetylene.
Research on the Ocular Effects of Laser Radiation. Executive Summary
1988-09-01
safety standards and identify- ing the need for additional safety criteria. 7he Execulive Summ~ary is przsanted in seven parts dealing with the effects...laser safety standards and in identifying the need for additional safety criteria. The Executive Summary is divided into seven parts, dealing with...to coherent and noncoherent light flashes at flashblinding intensities, only limited studies have been made of the functional effects of lesion
Choice of the laser wavelength for a herpetic keratitis treatment
NASA Astrophysics Data System (ADS)
Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.
2002-06-01
For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.
A compact OPO/SFG laser for ultraviolet biological sensing
NASA Astrophysics Data System (ADS)
Tiihonen, Mikael; Pasiskevicius, Valdas; Laurell, Fredrik; Jonsson, Per; Lindgren, Mikael
2004-07-01
A compact parametric oscillator (OPO) with intracavity sum-frequency generation (SFG) to generate 293 nm UV laser irradiation, was developed. The OPO/SFG device was pumped by a 100 Hz Nd:YAG laser (1064 nm) of own design, including subsequent second harmonic generation (SHG) in an external periodically poled KTiOPO4 (KTP) crystal. The whole system could be used to deliver more than 30 μJ laser irradiation per pulse (100 Hz) at 293 nm. The UV laser light was introduced in an optical fiber attached to a sample compartment allowing detection of fluorescence emission using a commercial spectrometer. Aqueous samples containing biomolecules (ovalbumin) or bacteria spores (Bacillus subtilis) were excited by the UV-light at 293 nm resulting in strong fluorescence emission in the range 325 - 600 nm.
NASA Technical Reports Server (NTRS)
Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.
1991-01-01
Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.
Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level
NASA Astrophysics Data System (ADS)
Liu, J. H.
2012-10-01
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.
Direct femtosecond laser surface structuring of crystalline silicon at 400 nm
NASA Astrophysics Data System (ADS)
Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore
2018-03-01
We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.
NASA Astrophysics Data System (ADS)
Mateos, Xavier; Serres, Josep Maria; Loiko, Pavel; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc
2017-02-01
We report on the growth, spectroscopic and laser characterization of a novel monoclinic laser crystal, 3.5 at.% Yb, 5.5 at.% In:KLu(WO4)2 (Yb,In:KLuW). Single-crystals of high optical quality are grown by the TSSG method. The absorption, stimulated-emission and gain cross-sections are determined for this material at room temperature with polarized light. The maximum σabs is 9.9×10-20 cm2 at 980.8 nm for light polarization E || Nm. The radiative lifetime of Yb3+ in Yb,In:KLuW is 237+/-5 μs. The stimulated-emission cross-sections are σSE(m) = 2.4×10-20 cm2 at 1022.4 nm and σSE(p) = 1.3×10-20 cm2 at 1039.1 nm corresponding to an emission bandwidth of >30 nm and >35 nm, respectively. A diode-pumped Ng-cut Yb,In:KLuW microchip laser generates 4.11 W at 1047-1052 nm with a slope efficiency of 78%. Passive Q-switching of a Yb,In:KLuW laser is also demonstrated. The Yb,In:KLuW crystal seems very promising for sub-100 fs mode-locked lasers.
Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.
Castaing, Marc; Balembois, François; Georges, Patrick
2008-09-01
We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.
Results of TLE and TGF Observation in RELEC Experiment onboard "Vernov" Mission
NASA Astrophysics Data System (ADS)
Klimov, Pavel; Garipov, Gali; Klimov, Stanislav; Rothkaehl, Hanna; Khrenov, Boris; Pozanenko, Alexei; Morozenko, Violetta; Iyudin, Anatoly; Bogomolov, Vitalij V.; Svertilov, Sergey; Panasyuk, Mikhail; Saleev, Kirill; Kaznacheeva, Margarita; Maximov, Ivan
2016-07-01
"Vernov" satellite with RELEC experiment onboard was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DUV ultraviolet and red photometer and DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors. Both instruments directed to the atmosphere. Total area of DRGE detectors is ˜500 cm ^{2}. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ˜15 μs. Several TGF candidates with 10-40 gammas in a burst with duration <1 ms were detected. Analysis of data from other instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with a world wide lightning location network (WWLLN) data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of TGF candidates with electron precipitations is discussed. Observations of transient luminous events (TLEs) were made in UV (240-400 nm) and IR (>610 nm) wavelength bands. More than 8 thousands of flashes with duration between 1 and 128 ms were detected from the atmosphere. Time profiles of detected flashes are very diverse. There are single peak events with significant UV and IR signal, multi-peak structures visible in the both UV and IR channels and very complicated events mixed from UV and IR signals and UV flashes which can continue even during the whole waveform. In addition, there are flashes of various temporal duration and structure measured only in UV wavelength range. Number of UV photons released in the atmosphere varies in a wide range from 10 ^{20} to 10 ^{26}. Apart from the events detected in the thunderstorm regions over the continents, many flashes were observed outside of thunderstorm areas, above the ocean and even at rather high latitudes. Such events are not associated with the thunderstorm and lightning activity measured by WWLLN. Various types of UV and IR flashes measurements and their interpretation, geographical, energy and spectral distribution are presented and discussed.
NASA Astrophysics Data System (ADS)
Wang, Ya; Su, Yingna; Hong, Zhenxiang; Zeng, Zhicheng; Ji, Kaifan; Goode, Philip R.; Cao, Wenda; Ji, Haisheng
2016-10-01
We report our first-step results of high resolution He I 1083 nm narrow-band imaging of an M 1.8 class two-ribbon flare on July 5,2012. The flare was observed with the 1.6 meter aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extention of umbral flashes, both take the form of absorption in our 1083 nm narrow-band images. From a space-time image made of a slit cutting across the ribbon and the sunspot, we find that dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside one ribbon of the flare when it sweeps into sunspot's penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a returning of the absorption strip with similar speed. We tentatively explain the phenomenon as the result of a sudden increase in the density of ortho-Helium atoms in the area of the sunspot area being excited by the flare's EUV illumination. This explanation is based on the obsevation that 1083 nm absorption in the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.
NASA Astrophysics Data System (ADS)
Zorn, Martin; Hülsewede, Ralf; Pietrzak, Agnieszka; Meusel, Jens; Sebastian, Jürgen
2015-03-01
Laser bars, laser arrays, and single emitters are highly-desired light sources e.g. for direct material processing, pump sources for solid state and fiber lasers or medical applications. These sources require high output powers with optimal efficiency together with good reliability resulting in a long lifetime of the device. Desired wavelengths range from 760 nm in esthetic skin treatment over 915 nm, 940 nm and 976 nm to 1030 nm for direct material processing and pumping applications. In this publication we present our latest developments for the different application-defined wavelengths in continuouswave operation mode. At 760nm laser bars with 30 % filling factor and 1.5 mm resonator length show optical output powers around 90-100 W using an optimized design. For longer wavelengths between 915 nm and 1030 nm laser bars with 4 mm resonator length and 50 % filling factor show reliable output powers above 200 W. The efficiency reached lies above 60% and the slow axis divergence (95% power content) is below 7°. Further developments of bars tailored for 940 nm emission wavelength reach output powers of 350 W. Reliable single emitters for effective fiber coupling having emitter widths of 90 μm and 195 μm are presented. They emit optical powers of 12 W and 24 W, respectively, at emission wavelengths of 915 nm, 940 nm and 976 nm. Moreover, reliability tests of 90 μm-single emitters at a power level of 12W currently show a life time over 3500 h.
NASA Astrophysics Data System (ADS)
Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2017-02-01
Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.
Gozzi, Fábio; Oliveira, Silvio C; Dantas, Renato F; Silva, Volnir O; Quina, Frank H; Machulek, Amilcar
2016-03-30
Due to contamination of the environment by pesticides and their mishandling, there is the need for treatment of contaminated sites and correct disposal of materials containing them. Thus, studies with advanced oxidation processes are expanding and can determine the rate constant of the hydroxyl radical with organic compounds of great importance in environmental contamination. In this context, the use of laser flash photolysis has been shown to be viable for the determination of these constants. The reaction rate constants of different pesticides with HO(•) in degassed acetonitrile have been determined. They were 1.6 × 10(9) M(-1) s(-1), 0.6 × 10(9) M(-1) s(-1), 1.2 × 10(9) M(-1) s(-1), 2.4 × 10(9) M(-1) s(-1) and 2.2 × 10(9) M(-1) s(-1) for the pesticides carbaryl, propoxur, fenoxycarb, ethoxysulfuron and chlorimuron-ethyl, respectively. These values are about an order of magnitude smaller than the diffusion controlled rate and correlate with the relative rates of disappearance of the pesticides in the photo-Fenton reaction in water. The correlation of the relative rate constants determined by laser flash photolysis with the relative rates of photo-Fenton degradation of the pesticides is compelling evidence for the participation of the hydroxyl radical in the degradation of these pesticides in the latter system. © 2015 Society of Chemical Industry.
Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.
Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen
2007-01-20
A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.
NASA Astrophysics Data System (ADS)
Sroka, Ronald; Pongratz, Thomas; Havel, Miriam; Englert, Elsa; Kremser, Thomas; Betz, Christain S.; Leunig, Andreas
2013-03-01
Introduction: The need for reduction of post-tonsillectomy hemorrhage has led to promotion of tonsillotomy techniques for tonsil tissue reduction in obstructive tonsillar hypertrophy. A first study compares ablative tissue effects using 1470nm diode laser and CO2-laser for tonsillotomy in an intraindividual design. A number of different laser systems have been used for volume reduction of hyperplastic nasal turbinates. The aim of a 2nd clinical feasibility study was to show the coagulative and tissue reducing effects using a novel Tm: fiber laser system emitting at λ = 1940 nm Patients and methods: First 21 children aged 3 -13 years (mean age 6.3 years) underwent laser tonsillotomy for obstructive tonsillar hypertrophy in this double blind, prospective, randomized, clinical feasibility trial. In each case, tonsillotomy was performed using fibre guided 1470nm diode laser (contact mode, 15 W power) on the one side and CO2-laser (12 W power) on the other side. An independent physician documented clinical presentation and patients' symptoms preoperatively and on day 1, 3, 7, 14 and 21 postoperatively using standardized questionnaire including VAS (was ist das) for each side separately. The 2nd clinical feasibility trial included 11 patients suffering from hyperplastic inferior nasal turbinates, who were therapy-refractory to conservative medical treatment. The obstructive nasal cavity was treated using the 1940 nm Tm: fiber laser at < 5 W output power. The treatment was performed in non-contact mode under endoscopic control. Patients ' symptoms were documented both preoperatively and on days 1 - 3 and 28 postoperatively using a non-validated questionnaire. Additionally, an endoscopic examination was performed. Results: Mean duration of single tonsillotomy operative treatment was 2.7 min using 1470nm laser and 4.9 min using CO2 laser respectively. Intraoperative bleeding and the frequency of bipolar forceps use for intraoperative bleeding control was significantly less pronounced using the 1470nm diode laser system. There was no difference in postoperative pain scores between the CO2-laser treated and the 1470nm fibre guided diode laser treated side. No infections, hemorrhages or other complications occurred in the course of the three weeks postoperative period. In the turbinate study, none of the patients showed infections, and no hemorrhages or other complications occurred intraor postoperatively.The mean laser activation time was extremely short being 28.0 +/- 8.5 s. In conjunction with a low power setting (median, 3 W; mean +/- standard deviation, 3.3 +/- 1.1 W), a low energy of 90.2 +/- 37.8 J was applied. A significant reduction in nasal obstruction could be documented in all patients on day 28 postoperatively. Evaluation, as assessed preoperatively and 4 weeks postoperatively, showed significant subjective improvements. Conclusion: A fiber-guided 1470nm diode laser system offers an efficient and safe method for tonsillotomy as treatment of obstructive tonsillar hypertrophy. Compared to our standard practice with CO2- laser, 1470nm laser application provides comparable tissue ablation effects with less intraoperative bleeding and shorter operation time. The treatment of hyperplastic inferior turbinates using a 1940 nm Tm: fiber laser provides sufficient tissue reduction in a short operation time using low total energy. Patients described a significant improvement in nasal breathing postoperatively.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2012-02-01
Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.
In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser.
Liu, Ying; Gao, Jie; Gao, Yan; Xu, Shuaimei; Zhan, Xueling; Wu, Buling
2013-01-01
To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm(2); Group B: 2 W/CW (continuous mode), 166 J/cm(2); Group C: 3W/CW, 250 J/cm(2); and Group D: 4W/CW, 333 J/cm(2). Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm(2); and Group F: 2.0 W/CW, 166 J/cm(2). The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm(2)) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue.
In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser
Liu, Ying; Gao, Jie; Gao, Yan; XU, Shuaimei; Zhan, Xueling; Wu, Buling
2013-01-01
Introduction: To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Methods: Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm2; Group B: 2 W/CW (continuous mode), 166 J/cm2; Group C: 3W/CW, 250 J/cm2; and Group D: 4W/CW, 333 J/cm2. Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm2; and Group F: 2.0 W/CW, 166 J/cm2. The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. Results: The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusions: Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm2) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue. PMID:25606318
Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator
NASA Astrophysics Data System (ADS)
Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.
2014-02-01
We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.
Skin autofluorescence photo-bleaching and photo-memory
NASA Astrophysics Data System (ADS)
Lesins, Janis; Lihachev, Alexey; Rudys, Romualdas; Bagdonas, Saulius; Spigulis, Janis
2011-07-01
Photo-bleaching of in-vivo skin autofluorescence intensity under continuous low power laser irradiation has been studied. Temporal behavior of single-spot fluorescence and spectral fluorescent images have been studied at continuous 405 nm, 473 nm and 532 nm laser excitation and/or pre-irradiation, with power densities well below the laser-skin safety limits. Skin autofluorescence photo-memory effects (laser signatures) have been observed and analyzed, as well.
High-power laser diodes at various wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, M.A.
High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.
Extending the wavelength range in the Oclaro high-brightness broad area modules
NASA Astrophysics Data System (ADS)
Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert
2010-02-01
The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.
kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber
NASA Astrophysics Data System (ADS)
Sun, Shihao; Zhan, Huan; Li, Yuwei; Liu, Shuang; Jiang, Jiali; Peng, Kun; Wang, Yuying; Ni, Li; Wang, Xiaolong; Jiang, Lei; Yu, Juan; Liu, Gang; Lu, Pengfei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2018-03-01
Based on a master oscillator power amplifier configuration, laser performance of commercial Nufern-20/400-8M Ybdoped aluminophosphosilicate ternary laser fiber was investigated. Pumped by 976 nm laser diodes, 982 W laser output power was obtained with a slope efficiency of 84.9%. Spectrum of output was centered at 1066.56nm with 3dB bandwidth less than 0.32 nm, and the nonlinearity suppression ratio was more than 39dB. Beam quality of Mx2 and M2y were 1.55 and 1.75 at 982 W, respectively. The laser performance indicated that Nufern-20/400-8M Yb-doped aluminophosphosilicate ternary laser fiber is highly competitive for industry fiber laser use.
Airborne atmospheric electricity experiments
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.
1985-01-01
During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.
Development of template and mask replication using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Brooks, Cynthia; Selinidis, Kosta; Doyle, Gary; Brown, Laura; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2010-09-01
The Jet and Flash Imprint Lithography (J-FILTM)1-7 process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105 imprints. This suggests that tens of thousands of templates/masks will be required. It is not feasible to employ electronbeam patterning directly to deliver these volumes. Instead, a "master" template - created by directly patterning with an electron-beam tool - will be replicated many times with an imprint lithography tool to produce the required supply of "working" templates/masks. In this paper, we review the development of the pattern transfer process for both template and mask replicas. Pattern transfer of resolutions down to 25nm has been demonstrated for bit patterned media replication. In addition, final resolution on a semiconductor mask of 28nm has been confirmed. The early results on both etch depth and CD uniformity are promising, but more extensive work is required to characterize the pattern transfer process.
NASA Astrophysics Data System (ADS)
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
NASA Astrophysics Data System (ADS)
Zhong, Xunqi; Miao, Zhiming; Zhang, Linlin; Jiang, Hongbing; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin
2018-03-01
We investigate the 391-nm lasing dynamics from ionized nitrogen molecules in 800-nm femtosecond laser fields. By comparing the radiation intensity, spectrum shape, and temporal profile of the 391-nm lasing at various experimental conditions, we conclude that the lasing dynamics contains not only the generation and the decay of ionized nitrogen molecules, but also the seed-built coherence among emitters as well as the propagation effect in the plasma filamentation. These results provide reliable guidance for optimizing the 391-nm lasing from ionized nitrogen molecules in 800-nm femtosecond laser fields, which have potential applications for remote sensing in the atmosphere.
High power high repetition rate VCSEL array side-pumped pulsed blue laser
NASA Astrophysics Data System (ADS)
van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni
2013-03-01
High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.
Wavelength Dependence of Excimer Laser Irradiation Effects on Ethylene-Tetrafluoroethylene Copolymer
NASA Astrophysics Data System (ADS)
Hamada, Yuji; Kawanishi, Shunichi; Nishii, Masanobu; Sugimoto, Shun'ichi; Yamamoto, Tadashi
1994-08-01
Irradiation with an ArF laser at wavelength of 193 nm formed diene in a whole ethylene-tetrafluoroethylene copolymer (ETFE) film and irradiation with a KrF and a XeCl laser at 248 and 308 nm induced the carbonization of ETFE. ArF-laser radiation at 193 nm formed diene in the bulk of ETFE via the process of single-photon absorption, and in case of KrF and XeCl-laser irradiation multiphoton absorption brought about the carbonization of ETFE. The surface analysis by X-ray photoelectron spectroscopy showed that excimer laser-induced elimination of fluorine atoms depended on the laser wavelength.
Visible high power fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe
2018-02-01
In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.
Two-photon photoemission from a copper cathode in an Χ-band photoinjector
Li, H.; Limborg-Deprey, C.; Adolphsen, C.; ...
2016-02-24
This study presents two-photon photoemission from a copper cathode in an X-band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R) of the copper surface for 400 nm photons (R=0.48) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when themore » incident laser intensity is above 300 GW/cm 2. At the same laser pulse energy (E) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X-band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.« less
NASA Astrophysics Data System (ADS)
Chariff, Mark D.; Olszak, Peter
2015-03-01
A laser therapy device using three combined wavelengths 532nm, 808nm, and 1064nm has been demonstrated in clinical studies. Primarily, therapeutic lasers have used wavelengths in the ranges of 632nm through 1064nm, where the optical density (OD) < 5, to achieve pain relief and tissue regeneration. Conventional wisdom would argue against using wavelengths in the region of 532nm, due to poor penetration (OD ~ 8); however, the author's observations are to the contrary. The 532nm light is efficiently absorbed by chromophores such as oxyhemoglobin, deoxyhemoglobin, and cytochrome c oxidase thereby providing energy to accelerate the healing process. The 808nm light is known to result in Nitric Oxide production thereby reducing inflammation and oxidative stress. All three laser wavelengths likely contribute to pain relief by inhibiting nerve conduction; however, the 1064nm has the deepest penetration. Through the use of this device on over 1000 patients with a variety of acute and chronic neuro-musculoskeletal disorders, the author observed that a majority of these individuals experienced rapid relief from their presenting conditions and most patients reported a tingling sensation upon irradiation. Patient testimonials and thermal images have been collected to document the results of the laser therapy. These studies demonstrate the ability of laser therapy to rapidly alleviate pain from both acute and chronic conditions.
Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao
2013-01-01
A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.
Green high-power tunable external-cavity GaN diode laser at 515 nm.
Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael
2016-09-15
A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.
AlGaInN laser diode technology for defence, security and sensing applications
NASA Astrophysics Data System (ADS)
Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.
2014-10-01
The latest developments in AlGaInN laser diode technology are reviewed for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW in the 400-420nm wavelength range that are suitable for telecom applications. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Gallium-nitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.or.
Amaroli, Andrea; Benedicenti, Alberico; Ferrando, Sara; Parker, Steven; Selting, Wayne; Gallus, Lorenzo; Benedicenti, Stefano
2016-11-01
In Paramecium, cilia beating is correlated to intracellular calcium concentration ([Ca 2+ ]i) and nitric oxide (NO) synthesis. Recent findings affirm that photobiomodulation (PBM) can transiently increase the [Ca 2+ ]i in mammalian cells. In this study, we investigated the effect of both 808 and 980 nm diode laser irradiated with flat-top hand-piece on [Ca 2+ ]i and NO production of Paramecium primaurelia, to provide basic information for the development of new therapeutic approaches. In the experiments, the laser power in CW varied (0.1; 0.5; 1; and 1.5 W) to generate the following respective fluences: 6.4; 32; 64; and 96 J cm -2 . The 6.4 J cm -2 did not induce PBM if irradiated by both 808 and 980 nm diode laser. Conversely, the 32 J cm -2 fluence had no effect on Paramecium cells if irradiated by the 808 nm laser, while if irradiated by the 980 nm laser induced increment in swimming speed (suggesting an effect on the [Ca 2+ ]i, NO production, similar to the 64 J cm -2 with the 808 nm wavelength). The more evident discordance occurred with the 96 J cm -2 fluence, which had the more efficient effect on PBM among the parameters if irradiated with the 808 nm laser and killed the Paramecium cells if irradiated by the 980 nm laser. Lastly, the 980 nm and 64 or 96 J cm -2 were the only parameters to induce a release of stored calcium. © 2016 The American Society of Photobiology.
Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh
2014-01-01
Introduction: To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. Methods: The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. Result: In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam–skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Conclusion: Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer. PMID:25653820
Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh
2014-01-01
To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam-skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer.
Quantifying thermal modifications on laser welded skin tissue
NASA Astrophysics Data System (ADS)
Tabakoglu, Hasim Ö.; Gülsoy, Murat
2011-02-01
Laser tissue welding is a potential medical treatment method especially on closing cuts implemented during any kind of surgery. Photothermal effects of laser on tissue should be quantified in order to determine optimal dosimetry parameters. Polarized light and phase contrast techniques reveal information about extend of thermal change over tissue occurred during laser welding application. Change in collagen structure in skin tissue stained with hematoxilen and eosin samples can be detected. In this study, three different near infrared laser wavelengths (809 nm, 980 nm and 1070 nm) were compared for skin welding efficiency. 1 cm long cuts were treated spot by spot laser application on Wistar rats' dorsal skin, in vivo. In all laser applications, 0.5 W of optical power was delivered to the tissue, 5 s continuously, resulting in 79.61 J/cm2 energy density (15.92 W/cm2 power density) for each spot. The 1st, 4th, 7th, 14th, and 21st days of recovery period were determined as control days, and skin samples needed for histology were removed on these particular days. The stained samples were examined under a light microscope. Images were taken with a CCD camera and examined with imaging software. 809 Nm laser was found to be capable of creating strong full-thickness closure, but thermal damage was evident. The thermal damage from 980 nm laser welding was found to be more tolerable. The results showed that 1070 nm laser welding produced noticeably stronger bonds with minimal scar formation.
Age-related change in fast adaptation mechanisms measured with the scotopic full-field ERG.
Tillman, Megan A; Panorgias, Athanasios; Werner, John S
2016-06-01
To quantify the response dynamics of fast adaptation mechanisms of the scotopic ERG in younger and older adults using full-field m-sequence flash stimulation. Scotopic ERGs were measured for a series of flashes separated by 65 ms over a range of 260 ms in 16 younger (20-26, 22.2 ± 2.1; range mean ±1 SD) and 16 older (65-85, 71.2 ± 7) observers without retinal pathology. A short-wavelength (λ peak = 442 nm) LED was used for scotopic stimulation, and the flashes ranged from 0.0001 to 0.01 cd s m(-2). The complete binary kernel series was derived from the responses to the m-sequence flash stimulation, and the first- and second-order kernel responses were analyzed. The first-order kernel represented the response to a single, isolated flash, while the second-order kernels reflected the adapted flash responses that followed a single flash by one or more base intervals. B-wave amplitudes of the adapted flash responses were measured and plotted as a function of interstimulus interval to describe the recovery of the scotopic ERG. A linear function was fitted to the linear portion of the recovery curve, and the slope of the line was used to estimate the rate of fast adaptation recovery. The amplitudes of the isolated flash responses and rates of scotopic fast adaptation recovery were compared between the younger and older participants using a two-way ANOVA. The isolated flash responses and rates of recovery were found to be significantly lower in the older adults. However, there was no difference between the two age groups in response amplitude or recovery rate after correcting for age-related changes in the density of the ocular media. These results demonstrated that the rate of scotopic fast adaptation recovery of normal younger and older adults is similar when stimuli are equated for retinal illuminance.
End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal
NASA Astrophysics Data System (ADS)
Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.
2010-01-01
We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.
A frequency doubled pressure-tunable oscillator-amplifier dye laser system
NASA Technical Reports Server (NTRS)
Moriarty, A.; Heaps, W.; Davis, D. D.
1976-01-01
A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.
Diode-pumped cw Nd:YAG three-level laser at 869 nm.
Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang
2010-11-01
We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.
Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms.
Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi
2016-02-15
Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Reverse spontaneous laser line sweeping in ytterbium fiber laser
NASA Astrophysics Data System (ADS)
Navratil, P.; Peterka, P.; Honzatko, P.; Kubecek, V.
2017-03-01
Self-induced laser line sweeping of various regimes of sweep direction is reported for an experimental ytterbium fiber laser. The regimes involve sweeping from shorter to longer wavelengths (1076~\\text{nm}\\to 1083 nm)—so-called normal self-sweeping; from longer to shorter wavelengths (1079~\\text{nm}\\to 1073 nm)—so-called reverse self-sweeping; and a mixed regime in which a precarious balance of the normal and reverse sweeping exists and the sweep direction can change between consecutive sweeps. The regimes of sweeping were selected by changing the pump wavelength only. A detailed explanation of this sweep direction dynamics is presented based on a semi-empirical model. This model also provides a way to predict the sweep direction of fiber lasers based on other rare-earth-doped laser media.
Time-resolved measurements of statistics for a Nd:YAG laser.
Hubschmid, W; Bombach, R; Gerber, T
1994-08-20
Time-resolved measurements of the fluctuating intensity of a multimode frequency-doubled Nd:YAG laser have been performed. For various operating conditions the enhancement factors in nonlinear optical processes that use a fluctuating instead of a single-mode laser have been determined up to the sixth order. In the case of reduced flash-lamp excitation and a switched-off laser amplifier, the intensity fluctuations agree with the normalized Gaussian model for the fluctuations of the fundamental frequency, whereas strong deviations are found under usual operating conditions. The frequencydoubled light has in the latter case enhancement factors not so far from values of Gaussian statistics.
Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs
NASA Astrophysics Data System (ADS)
Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken
2015-09-01
To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.
NASA Astrophysics Data System (ADS)
Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav
2017-05-01
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.
2012-01-01
The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.
NASA Astrophysics Data System (ADS)
Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing
2017-02-01
We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.
308nm Excimer Laser in Dermatology
Mehraban, Shadi
2014-01-01
308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333
Canakci, Varol; Ozdemir, Atilla; Kaya, Yavuz
2009-01-01
Abstract Objectives: The aim of this study was to evaluate the effectiveness of two types of lasers, the Nd:YAG laser and the 685-nm diode laser, as dentin desensitizers as well as both the immediate and late therapeutic effects on teeth with gingival recession. Materials and Methods: The study was conducted on 56 teeth in 14 patients with Miller's class 1 and 2 gingival recession with clinically elicitable dentin hypersensitivity (DH). The patients were divided into two groups: a Nd:YAG-laser-treated group and a 685-nm diode laser-treated group. DH was assessed by means of an air stimulus, and a visual analog scale (VAS) was used to measure DH. The selected teeth in the two groups received laser therapy for three sessions. Teeth subjected to Nd:YAG-laser treatment were irradiated at 1 W and 10 Hz for 60 sec at 1064 nm, and those receiving 685-nm diode laser treatment were irradiated at 25 mW and 9 Hz for 100 sec. Results: Significant reductions in DH occurred at all time points measured during the three treatment sessions in both treatment groups. Comparing the means of the responses in the three treatment sessions for the two groups revealed that the Nd:YAG laser group had a higher degree of desensitization compared to the other group (p < 0.01). The immediate and late therapeutic effects of the Nd:YAG laser were more evident than those of the 685-nm diode laser. Conclusions: Both of these lasers can be used to reduce DH without adverse effects. Desensitization of teeth with gingival recession with the Nd:YAG laser was more effective than with the diode laser. The Nd:YAG laser appears to be a promising new tool for successfully reducing DH. PMID:19281413
High-power diode laser modules from 410 nm to 2200 nm
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Kissel, Heiko; Flament, Marco; Wolf, Paul; Brand, Thomas; Biesenbach, Jens
2010-02-01
In this work we report on high-power diode laser modules covering a wide spectral range from 410 nm to 2200 nm. Driven by improvements in the technology of diode laser bars with non-standard wavelengths, such systems are finding a growing number of applications. Fields of application that benefit from these developments are direct medical applications, printing industry, defense technology, polymer welding and pumping of solid-sate lasers. Diode laser bars with standard wavelengths from 800 - 1000 nm are based on InGaAlAs, InGaAlP, GaAsP or InGaAs semiconductor material with an optical power of more than 100 W per bar. For shorter wavelengths from 630 - 690 nm InGaAlP semiconductor material is used with an optical power of about 5 W per bar. Extending the wavelength range beyond 1100 nm is realized by using InGaAs on InP substrates or with InAs quantum dots embedded in GaAs for wavelengths up to 1320 nm and (AlGaIn)(AsSb) for wavelengths up to 2200 nm. In these wavelength ranges the output power per bar is about 6 - 20 W. In this paper we present a detailed characterization of these diode laser bars, including measurements of power, spectral data and life time data. In addition, we will show different fiber coupled modules, ranging from 638 nm with 13 W output power (400 μm fiber, NA 0.22) up to 1940 nm with more than 50 W output power (600 μm fiber NA 0.22).
An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer
NASA Astrophysics Data System (ADS)
He, Xiuju; Gu, Xian; Li, Weitao; Jiang, Hanjun; Li, Fule; Wang, Zhihua
2017-10-01
This paper presents an 11-bit 200 MS/s subrange SAR ADC with an integrated reference buffer in 65 nm CMOS. The proposed ADC employs a 3.5-bit flash ADC for coarse conversion, and a compact timing scheme at the flash/SAR boundary to speed up the conversion. The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation. Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation. In addition, the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3 dB at 200 MS/s. It consumes 3.91 mW from a 1.2 V supply, including the reference buffer. Project supported by the Zhongxing Telecommunication Equipment Corporation and Beijing Microelectronics Technology Institute.
A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation.
Dong, Xiaoxi; Liu, Tianjun; Wang, Han; Yang, Jichun; Chen, Zhuying; Hu, Yong; Li, Yingxin
2017-07-01
This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50-55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50-55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order of stimuli. Obvious tail-flick movements were observed. The TFL value of transient pain was 3.0 ± 0.8 s, and it was 4.4 ± 1.8 s for tonic pain stimulation. This study shows that our novel design can provide effective stimulation of transient pain and stable tonic pain. Furthermore, it can also provide a reliable combination of transient and consistent stimulations for basic studies of pain perception.
Effect of wavelength on cutaneous pigment using pulsed irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, K.A.; Murray, S.; Kurban, A.K.
Several reports have been published over the last two decades describing the successful removal of benign cutaneous pigmented lesions such as lentigines, cafe au lait macules' nevi, nevus of Ota, and lentigo maligna by a variety of lasers such as the excimer (351 nm), argon (488,514 nm), ruby (694 nm), Nd:YAG (1060 nm), and CO/sub 2/ (10,600 nm). Laser treatment has been applied to lesions with a range of pigment depths from superficial lentigines in the epidermis to the nevus of Ota in the reticular dermis. Widely divergent laser parameters of wavelength, pulse duration, energy density, and spotsizes have beenmore » used, but the laser parameters used to treat this range of lesions have been arbitrary, with little effort focused on defining optimal laser parameters for removal of each type. In this study, miniature black pig skin was exposed to five wavelengths (504, 590, 694, 720, and 750 nm) covering the absorption spectrum of melanin. At each wavelength, a range of energy densities was examined. Skin biopsies taken from laser-exposed sites were examined histologically in an attempt to establish whether optimal laser parameters exist for destroying pigment cells in skin. Of the five wavelengths examined, 504 nm produced the most pigment specific injury; this specificity being maintained even at the highest energy density of 7.0 J/cm2. Thus, for the destruction of melanin-containing cells in the epidermal compartment, 504 nm wavelength appears optimal.« less
Hypericin and pulsed laser therapy of squamous cell cancer in vitro.
Bublik, Michael; Head, Christian; Benharash, Peyman; Paiva, Marcos; Eshraghi, Adrian; Kim, Taiho; Saxton, Romaine
2006-06-01
This in vitro study compares continuous wave and pulsed laser light at longer wavelengths for activation of the phototoxic drug hypericin in human cancer cells. Two-photon pulsed laser light now allows high-resolution fluorescent imaging of cancer cells and should provide deeper tissue penetration with near infrared light for improved detection as well as phototoxicity in human tumors. Cultured Seoul National University (SNU)-1 tumor cells from a squamous cell carcinoma (SCC) were incubated with hypericin before photoirradiation at four laser wavelengths. Phototoxicity of hypericin sensitized SCC cells was measured by dimethyl thiazoldiphenyl (MTT) tetrazolium bromide cell viability assays and by confocal fluorescence microscopy via 532-nm and infrared two-photon pulsed laser light. Phototoxic response increased linearly with hypericin dose of 0.1-2 microM, light exposure time of 5-120 sec, and pulsed dye laser wavelengths of 514-593 nm. Light energy delivery for 50% cell phototoxicity (LD50) response was 9 joules at 514 nm, 3 joules at 550 nm, and less than 1 joule at the 593 nm hypericin light absorption maxima. Fluorescence confocal microscopy revealed membrane and perinuclear localization of hypericin in the SNU cells with membrane damage seen after excitation with visible 532 nm continuous wave light or two-photon 700-950 nm picosecond pulsed laser irradiation. Hypericin may be a powerful tumor targetting drug when combined with pulsed laser light in patients with recurrent head and neck SCC.
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zhixu; Zheng, Kezhi; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012
We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under themore » pumping of the 1560 nm femtosecond fiber laser.« less
Inactivation pathogenic microorganisms in water by laser methods
NASA Astrophysics Data System (ADS)
Iakovlev, Alexey; Grishkanich, Aleksandr; Kascheev, Sergey; Ruzankina, Julia; Afanasyev, Mikhail; Hafizov, Nail
2017-02-01
As a result of the research the following methods have been proposed for controlling harmful microorganisms: sterilization of water by laser radiation at wavelengths of 425 nm, 355 nm and 308 nm. The results of theoretical and experimental studies on the development and establishment of a system of ultraviolet disinfection of water for injection (UFOVI) intended for research sterilized water for injections. The pipe created a strong turbulent water flow. Performance irradiation laminar flow of 1.5 liters per second. Irradiation was carried out at three wavelengths 425 nm, 355 nm and 308 nm with energies semiconductor laser diode arrays to 4 MJ / cm3. Wavelength tuning implemented current in the range of 10 nm. For large capacities, we have developed a miniature solid state laser, which was used in fluid microorganisms inactivator. In the water treatment process breaks up to 98% of microbes, but can be left among pathogenic viruses destruction which requires special handling.
Classifying the Basic Parameters of Ultraviolet Copper Bromide Laser
NASA Astrophysics Data System (ADS)
Gocheva-Ilieva, S. G.; Iliev, I. P.; Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.
2009-10-01
The performance of deep ultraviolet copper bromide lasers is of great importance because of their applications in medicine, microbiology, high-precision processing of new materials, high-resolution laser lithography in microelectronics, high-density optical recording of information, laser-induced fluorescence in plasma and wide-gap semiconductors and more. In this paper we present a statistical study on the classification of 12 basic lasing parameters, by using different agglomerative methods of cluster analysis. The results are based on a big amount of experimental data for UV Cu+ Ne-CuBr laser with wavelengths 248.6 nm, 252.9 nm, 260.0 nm and 270.3 nm, obtained in Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences. The relevant influence of parameters on laser generation is also evaluated. The results are applicable in computer modeling and planning the experiments and further laser development with improved output characteristics.
Diode laser (980nm) cartilage reshaping
NASA Astrophysics Data System (ADS)
El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.
2011-03-01
Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.
Everlasting Dark Printing on Alumina by Laser
NASA Astrophysics Data System (ADS)
Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.
Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.
Formation of small gold clusters in solution by laser excitation of interband transition
NASA Astrophysics Data System (ADS)
Mafuné, Fumitaka; Kondow, Tamotsu
2003-04-01
Gold nanoparticles with ˜10 nm in average diameter were prepared by laser ablation of a gold metal plate in an aqueous solution of sodium dodecyl sulfate (SDS) and were fragmented by excitation of an interband transition of gold nanoparticles under irradiation of an intense 355-nm pulsed laser. Fragmentation dynamics was investigated by comparing the fragmentation by excitation of a surface plasmon band of gold nanoparticles by a 532-nm laser. It is found that gold nanoparticles with 1.5-nm average diameter are produced together with small gold clusters by properly optimizing the surfactant concentration.
Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young
2010-03-20
We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.
Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code
1979-06-01
dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was
Dong, Jie; He, Yanling; Zhang, Xiuying; Wang, Yixuan; Tian, Yongjing; Wang, Jie
2012-06-01
To compare the clinical efficacy and safety of combining flumetasone ointment with 308-nm excimer laser therapy vs. 308-nm excimer laser monotherapy for the treatment of psoriasis vulgaris. Forty patients with psoriasis vulgaris were recruited; 20 were treated with flumetasone ointment plus 308-nm excimer laser therapy, and the other 20 received only excimer laser monotherapy. The flumetasone ointment was applied topically twice a day, and laser treatments were scheduled twice weekly for a total of 10 treatments. Clinical efficacy was evaluated in a blinded manner by two independent physicians using photographs taken before and after treatment. Of the 40 patients who received and completed the entire course of therapy, the psoriasis area and severity index score was improved by 82.51 ± 11.24% and 72.01 ± 20.94% in the combination group and laser group, respectively (P > 0.05), and the average cumulative dose was 5.06 ± 2.20 j/cm(2) in the combination group and 7.75 ± 2.25 j/cm(2) in the laser-only group, respectively (P < 0.05). The clinical data suggest that combination treatment using flumetasone ointment and a 308-nm excimer laser is superior to laser monotherapy for treatment of psoriasis vulgaris. The combination therapy can increase effectiveness and decrease the total laser dose, thus potentially reducing side effects. © 2012 John Wiley & Sons A/S.
Mixed garnet laser for a water vapour DIAL
NASA Astrophysics Data System (ADS)
Treichel, Rainer; Strohmaier, Stephan; Nikolov, Susanne; Eichler, Hans-Joachim; Murphy, Eamonn
2017-11-01
For the water vapour DIAL "WALES" the wavelength regions around 935 nm, 942 nm and 944 nm have been identified as the most suitable wavelength ranges. These wavelengths can be obtained using opticalparametric-oscillators (OPOs), stimulated Raman shifters and the Ti-Sapphire laser but none of these systems could deliver all the needed parameters like beam quality, efficiency, pulse length and energy yet. Also these systems are comparably big and heavy making them less suitable for a satellite based application. A fourth possibility to achieve these wavelength ranges is to shift the quasi-3-level laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing aluminium and yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals or special pump lasers are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. In a first phase such mixed garnet crystals had been grown and characterised. The outcome was the selection of the gadolinium-scandium garnet for the most suitable laser crystal. During a second phase the complete laser system with output energy about 18 mJ in single 20 ns pulses and up to 8 mJ in free running mode with a combined pulse width of 250 μs at 942 nm have been demonstrated. The results of the first laser operation and the achieved performance parameter are reported.
The changes in the electronic spectra of ascorbic acid induced by laser radiation
NASA Astrophysics Data System (ADS)
Danyaeva, J. S.; Kutsenko, S. A.
2018-04-01
The results of research the changes in the absorption spectra of aqueous solutions of ascorbic acid under the influence of laser radiation are presented. The solutions were irradiated with the radiation of semiconductor lasers with wavelengths of 408 and 532 nm, YAG: Nd3+ laser with a wavelength of 1064 nm and a nitrogen laser with a wavelength of 337.1 nm. The photoinduced changes in the spectrum are revealed, which indicate the breakage of π -> π bonds in the molecule of ascorbic acid during its destruction.
A facetless regrowth-free single mode laser based on MMI couplers
NASA Astrophysics Data System (ADS)
Caro, Ludovic; Kelly, Niall P.; Dernaika, Mohamad; Shayesteh, Maryam; Morrissey, Padraic E.; Alexander, Justin K.; Peters, Frank H.
2017-09-01
This paper presents a facetless, tunable laser operating near 1575 nm, as well as a theoretical model predicting spectral features of the laser. The lasers were fabricated without regrowth or advanced lithography techniques, and are based on MMI couplers and etched facets. Coarse vernier tuning was achieved over a range of 25 nm, while fine, thermal tuning was also demonstrated over a range of 1.5 nm. SMSR values of 25 dB and higher were observed, with a measured laser linewidth of 600 kHz.
Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.
Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok
2015-12-01
The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.
Photobiomodulation of wound healing via visible and infrared laser irradiation.
Solmaz, Hakan; Ulgen, Yekta; Gulsoy, Murat
2017-05-01
Fibroblast cells are known to be one of the key elements in wound healing process, which has been under the scope of research for decades. However, the exact mechanism of photobiomodulation on wound healing is not fully understood yet. Photobiomodulation of 635 and 809 nm laser irradiation at two different energy densities were investigated with two independent experiments; first, in vitro cell proliferation and then in vivo wound healing. L929 mouse fibroblast cell suspensions were exposed with 635 and 809 nm laser irradiations of 1 and 3 J/cm 2 energy densities at 50 mW output power separately for the investigation of photobiomodulation in vitro. Viabilities of cells were examined by means of MTT assays performed at the 24th, 48th, and 72nd hours following the laser irradiations. Following the in vitro experiments, 1 cm long cutaneous incisional skin wounds on Wistar albino rats (n = 24) were exposed with the same laser sources and doses in vivo. Wound samples were examined on 3rd, 5th, and 7th days of healing by means of mechanical tensile strength tests and histological examinations. MTT assay results showed that 635 nm laser irradiation of both energy densities after 24 h were found to be proliferative. One joule per square centimeter laser irradiation results also had positive effect on cell proliferation after 72 h. However, 809 nm laser irradiation at both energy densities had neither positive nor negative affects on cell viability. In vivo experiment results showed that, 635 nm laser irradiation of both energy densities stimulated wound healing in terms of tensile strength, whereas 809 nm laser stimulation did not cause any stimulative effect. The results of mechanical tests were compatible with the histological evaluations. In this study, it is observed that 635 nm laser irradiations of low energy densities had stimulative effects in terms of cell proliferation in vitro and mechanical strength of incisions in vivo. However, 809 nm laser irradiations at the same doses did not have any positive effect.
Kim, Hyeong-Rae; Ha, Jeong-Min; Park, Min-Soo; Lee, Young; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon; Im, Myung
2015-09-01
Café-au-lait macules (CALMs) are a common pigmentary disorder. Although a variety of laser modalities have been used to treat CALMs, their efficacies vary and dyspigmentation may develop. We evaluated the clinical efficacy and safety of a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG) laser for the treatment of CALMs. In a preliminary investigation, 6 patients underwent a split-lesion comparative study with 532- and 1064-nm Q-switched Nd:YAG laser treatment. In total, 32 patients with 39 CALMs were enrolled in a subsequent prospective trial to evaluate the treatment with a low-fluence 1064-nm Q-switched Nd:YAG laser. In the preliminary study, the 1064-nm treatment group had a more favorable response and a shorter recovery time. In a subsequent prospective trial of a 1064-nm laser, 74.4% of the lesions showed a clinical response with clearance of ≥50.0%. The treatment regimen was well tolerated; 15.4% of patients experienced adverse events. The study participants were followed for 6 months, and there were no relevant treatment controls in the prospective trial group. Low-fluence 1064-nm Q-switched Nd:YAG laser therapy afforded good clinical improvement for treating CALMs. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tansu, Nelson
The thesis covers the development of novel active regions for high-performance edge-emitting lasers (EEL) and vertical cavity surface-emitting lasers (VCSELs) in optical communication. Three main themes of the thesis cover the design, fabrication, and physics of the novel and alternative active regions for GaAs-based VCSELs for the three optical communications windows at wavelength regimes of 850-nm, 1300-nm, and 1500-nm, with the emphases on the 1300-nm InGaAsN QW GaAs-based active regions and on the novel design of 1500-nm GaAs-based active regions. The studies include the utilization of compressively-strained InGaAsP quantum well (QW) active regions for the 850-nm VCSELs. The research on the long-wavelength lasers covers the design, growth, temperature analysis, carrier transport, and gain analysis of the InGaAsN (lambda = 1.3 mum) quantum well lasers. The novel and original design of the GaAsSb-(In)GaAsN type-II QWs to achieve 1500--3000 nm GaAs-based active regions is discussed in detail.
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-01-01
The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-11-04
The spectral properties and laser performance of Er:SrF 2 single crystals were investigated and compared with Er:CaF 2 . Er:SrF 2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er 3+ : 4 I 11/2 level) than those of Er:CaF 2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF 2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF 2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-11-01
The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping
2016-01-01
We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.
2017-12-01
In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.
Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm
NASA Astrophysics Data System (ADS)
Lu, Jie
2014-04-01
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.
Applications of the 308-nm excimer laser in dermatology
NASA Astrophysics Data System (ADS)
Farkas, A.; Kemeny, L.
2006-05-01
Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.
Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.
Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing
2014-10-01
A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.
Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke Yin; Weiqiang Yang; Bin Zhang
2014-02-28
An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stagemore » amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)« less
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
The Laser Guide Star System for Adaptive Optics at Subaru Telescope
NASA Astrophysics Data System (ADS)
Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.
We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high-power laser beam with no suffer from the non-linear scatter effect, i.e. stimulated Brillouin scatter, in the PCF. The laser launching telescope (LLT) has an output clear aperture as 50 cm. It is classical Cassegrain type optical configuration with tertiary mirror to insert the laser beam from the side. The wavefront error is designed to be 60 to 70nm. The LLT is a copy product what European Southern Observatory has been designed for the laser guide star system at Very Large Telescope. We succeeded to launch the laser beam to the sky on October 12, 2006. After several tests on the sky, we succeeded to get an image of the laser guide star with the size of more than 10 arc second. The larger size of the laser guide star is caused by the large optical aberration on the primary mirror of LLT due to the heat stress generated at the trigonal support points. We are making a plan to repair this problem during June and the second laser launching test will start around this summer.
Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm.
Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing
2014-10-20
We demonstrate an all-fiber tunable Tm/Ho-codoped laser operating in the 2 μm wavelength region. The wavelength tuning range of the Tm/Ho-codoped fiber laser (THFL) with 1-m length of Tm/Ho-codoped fiber (THDF) was from 1727 nm to 2030 nm. Efficient short wavelength operation and ultra-wide wavelength tuning range of 303 nm were both achieved. To the best of our knowledge, this is the broadest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. By increasing the THDF length to 2 m, the obtainable wavelength of the THFL was further red-shifted to the range from 1768 nm to 2071 nm. The output power of the THFL was scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.
Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert
2018-02-01
This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.