Sample records for nm laser power

  1. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  2. Recent development on high-power tandem-pumped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  3. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  4. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  5. Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.

    2013-03-01

    Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.

  6. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  7. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    PubMed

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  8. Orange fiber laser for ophthalmology

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Kojima, K.; Hayashi, K.

    2007-02-01

    For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.

  9. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.

  10. Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoxin; Shi, Wei; Sheng, Quan; Fu, Shijie; Fang, Qiang; Zhang, Haiwei; Bai, Xiaolei; Shi, Guannan; Yao, Jianquan

    2017-03-01

    1018nm short wavelength Yb3+-doped fiber laser can be widely used for tandem-pumped fiber laser system in 1 μm regime because of its high brightness and low quantum defect (QD). In order to achieve 1018nm short wavelength Yb3+-doped fiber laser with high output power, a steady-state rate equations considering the amplified spontaneous emission (ASE) and Stimulated Raman Scattering (SRS) has been established. We theoretically analyzed the ASE and SRS effects in 1018nm short wavelength Yb3+-doped fiber laser and the simulation results show that the ASE is the main restriction rather than SRS for high power 1018nm short wavelength Yb3+-doped fiber laser, besides the high temperature of fiber is also the restriction for high output power. We use numerical solution of steady-state rate equations to discuss how to suppress ASE in 1018nm short wavelength fiber laser and how to achieve high power 1018nm short-wavelength fiber laser.

  11. High power diode lasers emitting from 639 nm to 690 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  12. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

  13. Extending the wavelength range in the Oclaro high-brightness broad area modules

    NASA Astrophysics Data System (ADS)

    Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert

    2010-02-01

    The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.

  14. Miniature solid-state lasers for pointing, illumination, and warning devices

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.

    2008-04-01

    In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.

  15. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  16. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 2.17 W output power at 543 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2013-03-01

    Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.

  17. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  18. Theoretical study and design of third-order random fiber laser

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoxin; Shi, Wei; Fu, Shijie; Sheng, Quan; Yao, Jianquan

    2018-02-01

    We present result of achieving a random fiber laser at a working wavelength of 1178nm while pumping at 1018nm. The laser power is realized by 200m long cavity which includes three high reflectivity fiber Bragg gratings. This simple and efficient random fiber laser could provide a novel approach to realize low-threshold and high-efficiency 1178nm long wavelength laser. We theoretically analyzed the laser power in random fiber lasers at different pump power by changing three high reflectivity fiber Bragg gratings. We also calculated the forward and backward power of 1st-order stokes, 2nd-order stokes, 3rd-order stokes. With the theoretical analysis, we optimize the cavity's reflectivity to get higher laser power output. The forward random laser exhibits larger gain, the backward random laser has lower gain. By controlling the value of angle-cleaved end fiber's reflectivity to 3×10-7, when the high reflectivity increases from 0.01 to 0.99, the laser power increases, using this proposed configuration, the 1178nm random laser can be generated easily and stably.

  19. Blood absorption during 970 and 1470 nm laser radiation in vitro.

    PubMed

    Shaydakov, E; Ilyukhin, E; Rosukhovskiy, D

    2015-10-01

    Soon after introduction of water lasers in medical practice for EVLA, less power and energy line density have been used. However, there are no experimental grounds for different energy modes and there is no clear evidence for a difference in the effect of the two wavelengths dealt with in this study. The goal of this study was to evaluate the temperature profile of various laser action modes with testing devices. Three experimental testing devices consisted of cylinders filled with whole donor blood and a set of temperature sensors installed in different positions. We have determined the range of temperatures around the fiber tip of 970 and 1470 nm lasers. The average temperature of 970 nm laser at 1 mm distance along the axis from the fiber tip substantially differed from that of 1470 nm laser, power being equal. Statistically substantial differences were found in endovenous laser ablation simulation in vitro for the 970 nm and 1470 nm laser radiation. Similar temperatures can be reached with 970 nm lasers if power is increased.

  20. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    PubMed

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  1. Diode-pumped Nd:GAGG-LBO laser at 531 nm

    NASA Astrophysics Data System (ADS)

    Zou, J.; Chu, H.; Wang, L. R.

    2012-03-01

    We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.

  2. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    DTIC Science & Technology

    2017-08-01

    accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line

  3. Power and Efficiency Scaling of Fiber OPO Around 700 to 850 nm and Power-scaling of High Coherence Fiber Raman Amplifiers

    DTIC Science & Technology

    2013-10-01

    sources and on a fiber OPO at red wavelengths. The fiber Raman laser reached 20 W of output power at 1019 nm, pulsed operation at 835 nm, and M2 = 2 at...1019 nm from a double-clad fiber Raman laser . These three results are all world records or world firsts. It was also found that the fiber OPO suffers...power multimode diode sources and on a fiber OPO at red wavelengths. With the fiber Raman laser we reach 20 W of output power at 1019 nm, pulsed

  4. High-power diode laser modules from 410 nm to 2200 nm

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Kissel, Heiko; Flament, Marco; Wolf, Paul; Brand, Thomas; Biesenbach, Jens

    2010-02-01

    In this work we report on high-power diode laser modules covering a wide spectral range from 410 nm to 2200 nm. Driven by improvements in the technology of diode laser bars with non-standard wavelengths, such systems are finding a growing number of applications. Fields of application that benefit from these developments are direct medical applications, printing industry, defense technology, polymer welding and pumping of solid-sate lasers. Diode laser bars with standard wavelengths from 800 - 1000 nm are based on InGaAlAs, InGaAlP, GaAsP or InGaAs semiconductor material with an optical power of more than 100 W per bar. For shorter wavelengths from 630 - 690 nm InGaAlP semiconductor material is used with an optical power of about 5 W per bar. Extending the wavelength range beyond 1100 nm is realized by using InGaAs on InP substrates or with InAs quantum dots embedded in GaAs for wavelengths up to 1320 nm and (AlGaIn)(AsSb) for wavelengths up to 2200 nm. In these wavelength ranges the output power per bar is about 6 - 20 W. In this paper we present a detailed characterization of these diode laser bars, including measurements of power, spectral data and life time data. In addition, we will show different fiber coupled modules, ranging from 638 nm with 13 W output power (400 μm fiber, NA 0.22) up to 1940 nm with more than 50 W output power (600 μm fiber NA 0.22).

  5. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  6. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  7. Visible high power fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  8. Progress in reliable single emitters and laser bars for efficient CW-operation in the near-infrared emission range

    NASA Astrophysics Data System (ADS)

    Zorn, Martin; Hülsewede, Ralf; Pietrzak, Agnieszka; Meusel, Jens; Sebastian, Jürgen

    2015-03-01

    Laser bars, laser arrays, and single emitters are highly-desired light sources e.g. for direct material processing, pump sources for solid state and fiber lasers or medical applications. These sources require high output powers with optimal efficiency together with good reliability resulting in a long lifetime of the device. Desired wavelengths range from 760 nm in esthetic skin treatment over 915 nm, 940 nm and 976 nm to 1030 nm for direct material processing and pumping applications. In this publication we present our latest developments for the different application-defined wavelengths in continuouswave operation mode. At 760nm laser bars with 30 % filling factor and 1.5 mm resonator length show optical output powers around 90-100 W using an optimized design. For longer wavelengths between 915 nm and 1030 nm laser bars with 4 mm resonator length and 50 % filling factor show reliable output powers above 200 W. The efficiency reached lies above 60% and the slow axis divergence (95% power content) is below 7°. Further developments of bars tailored for 940 nm emission wavelength reach output powers of 350 W. Reliable single emitters for effective fiber coupling having emitter widths of 90 μm and 195 μm are presented. They emit optical powers of 12 W and 24 W, respectively, at emission wavelengths of 915 nm, 940 nm and 976 nm. Moreover, reliability tests of 90 μm-single emitters at a power level of 12W currently show a life time over 3500 h.

  9. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    PubMed

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  10. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  11. High-power laser diodes at various wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuel, M.A.

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  12. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  13. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  14. Green high-power tunable external-cavity GaN diode laser at 515  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-09-15

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.

  15. Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun

    2016-08-01

    We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.

  16. The effects of TGG crystal length on output power and beam quality of a unidirectional ring Nd:YVO4 laser with and without second harmonic generation

    NASA Astrophysics Data System (ADS)

    Ahmadi, A.; Avazpour, A.; Nadgaran, H.; Mousavi, M.

    2018-04-01

    The effect of terbium gallium garnet (TGG ) crystal length on 1064 and 532 nm output powers and beam quality of a unidirectional ring Nd:YVO4 laser is investigated. In the case of 1064 nm (without nonlinear crystal), the laser output power without considerating the effect of TGG crystal was computed theoretically. Then three TGG crystals with different lengths were placed in the laser setup one by one. A systematic decrease in output power was observed by increasing the TGG crystal length. The experiment was repeated in the case of 532 nm. It was found that in a 532 nm laser, higher laser efficiency and small beam quality degradation can be achieved by increasing the TGG crystal length leading to a 5.7 W green laser with 27 W pump power. The power stability and beam quality were 0.8% for 30 min and less than 1.3, respectively.

  17. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  18. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  19. High efficiency laser-pumped emerald lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.

    1987-09-25

    Highly efficient laser operation has been achieved in emerald. In a quasi-cw laser-pumped emerald laser, 64% output slope efficiency has been measured at 768 nm, corresponding to a laser quantum yield of 76%. An output power of 1.6 W was reached at 3.6 W of pump power at 647.1 nm from a krypton laser, and was pump power limited. The emerald laser has a tuning range of 720 to 842 nm. The round trip loss excluding the excited state absorption (ESA) is 0.4%/cm. These results indicate the high laser efficiency and the high optical quality of the emerald attainable inmore » the present laser.« less

  20. Extending solid state laser performance

    NASA Astrophysics Data System (ADS)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  1. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  2. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  3. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    PubMed

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  4. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    PubMed

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  5. Single- and dual-wavelength laser operation of a diode-pumped Nd:LaF3 single crystal around 1.05 μm and 1.32 μm

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Huiying; Cai, Zhiping; Moncorgé, Richard

    2016-07-01

    Calibrated room temperature polarized emission spectra recorded between 850 and 1400 nm and nearly free from any reabsorption effect are presented for the first time. A laser output power of 2.35 W is obtained at 1063.45 nm with a laser slope efficiency of about 56% by pumping an uncoated Nd:LaF3 single crystal with a fiber-coupled laser diode at 790 nm inside a standard two-mirror linear laser cavity. True dual-wavelength laser operation on two orthogonally polarized laser lines around 1040 and 1065 nm as well as continuous laser wavelength tuning around 1040 nm, 1048 nm and 1064 nm are also achieved for the first time by using either an intracavity etalon or a birefringent filter. Laser operation is finally obtained around 1330.73 nm with a maximum output power of 0.18 W and a laser slope efficiency of about 4% and simultaneous dual-wavelength laser operation at 1329.04 and 1359.67 nm is demonstrated by using a glass etalon.

  6. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    NASA Astrophysics Data System (ADS)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  7. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  8. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    NASA Astrophysics Data System (ADS)

    Fu, S. C.; Wang, X.; Chu, H.

    2013-02-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.

  9. High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, M.

    2016-02-01

    We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.

  10. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers

    NASA Astrophysics Data System (ADS)

    Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter

    2015-04-01

    We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.

  11. End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal

    NASA Astrophysics Data System (ADS)

    Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.

    2010-01-01

    We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.

  12. A frequency doubled pressure-tunable oscillator-amplifier dye laser system

    NASA Technical Reports Server (NTRS)

    Moriarty, A.; Heaps, W.; Davis, D. D.

    1976-01-01

    A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.

  13. Efficient blue emission of ytterbium-doped Sr5(PO4)3F under quasi-three-level intracavity pumping

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Cao, G. H.

    2012-02-01

    We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.

  14. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  15. Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level

    NASA Astrophysics Data System (ADS)

    Liu, J. H.

    2012-10-01

    We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.

  16. Continuous-wave broadly tunable Cr 2+:ZnSe laser pumped by a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Sennaroglu, Alphan; Demirbas, Umit; Vermeulen, Nathalie; Ottevaere, Heidi; Thienpont, Hugo

    2006-12-01

    We describe a compact, broadly tunable, continuous-wave (cw) Cr 2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm. In the experiments, a polycrystalline ZnSe sample with a chromium concentration of 9.5 × 10 18 cm -3 was used. Free-running laser output was around 2500 nm. Output couplers with transmissions of 3%, 6%, and 15% were used to characterize the power performance of the laser. Best power performance was obtained with a 15% transmitting output coupler. In this case, as high as 640 mW of output power was obtained with 2.5 W of pump power at a wavelength of 2480 nm. The stimulated emission cross-section values determined from laser threshold data and emission measurements were in good agreement. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster cut MgF 2 prism and a single set of optics.

  17. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    PubMed

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  18. Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Li, Ruixian; Xiao, Hu; Huang, Long; Zhang, Hanwei; Leng, Jinyong; Chen, Zilun; Xu, Jiangmin; Wu, Jian; Wang, Xiong

    2017-08-01

    Ytterbium-doped fiber laser (YDFL) and Thulium doped fiber laser (TDFL) have been two kinds of the most widely studied fiber laser in recent years. Although both silica-based Ytterbium-doped fiber and Thulium doped fiber have wide emission spectrum band (more than 200 nm and 400 nm, respectively), the operation spectrum region of previously demonstrated high power YDFL and TDFL fall into 1060-1100 nm and 1900-2050nm. Power scaling of YDFL and TDFL operates at short-wavelength or long-wavelength band, especially for extreme wavelength operation, although is highly required in a large variety of application fields, is quite challenging due to small net gain and strong amplified spontaneous emission (ASE). In this paper, we will present study on extreme wavelength operation of high power YDFL and TDFL in our group. Comprehensive mathematical models are built to investigate the feasibility of high power operation and propose effective technical methods to achieve high power operation. We have achieved (1) Diodepumped 1150nm long wavelength YDFL with 120-watt level output power (2) Diode-pumped 1178nm long wavelength YDFL operates at high temperature with 30-watt level output power (3) Random laser pumped 2153nm long wavelength TDFL with 20-watt level output power (4) Diode-pumped 1018nm short wavelength YDFL with a record 2 kilowatt output power is achieved by using home-made fiber combiner.

  19. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  20. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.

    PubMed

    Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F

    2013-03-11

    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.

  1. Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian

    2018-05-01

    We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.

  2. High-power 266 nm ultraviolet generation in yttrium aluminum borate.

    PubMed

    Liu, Qiang; Yan, Xingpeng; Gong, Mali; Liu, Hua; Zhang, Ge; Ye, Ning

    2011-07-15

    A yttrium aluminum borate [YAl(3)(BO(3))(4)] (YAB) crystal with UV cutoff wavelength of 165 nm is used as the nonlinear optical crystal for fourth harmonic generation. The fundamental frequency laser at 1064 nm from an Nd:YVO(4) master oscillator power amplifier laser was frequency doubled to 532 nm. Using the type I phase-matching YAB crystal, a 5.05 W average power 266 nm UV laser was obtained at the pulse repetition frequency of 65 kHz, corresponding to the conversion efficiency of 12.3% from 532 to 266 nm. The experimental results show great potential for the application of using YAB as a nonlinear optical crystal to get high-power fourth harmonic generation. © 2011 Optical Society of America

  3. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  4. A highly integrated single-mode 1064 nm laser with 8.5 kHz linewidth for dual-wavelength active optical clock

    NASA Astrophysics Data System (ADS)

    Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao

    2018-04-01

    Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.

  5. Influence of low power CW laser irradiation on skin hemoglobin changes

    NASA Astrophysics Data System (ADS)

    Ferulova, Inesa; Lesins, Janis; Lihachev, Alexey; Jakovels, Dainis; Spigulis, Janis

    2012-06-01

    Influence of low power laser irradiance on healthy skin using diffuse reflectance spectroscopy and multispectral imaging was studied. Changes of diffuse reflectance spectra in spectral range from 500 to 600 nm were observed after 405 nm, 473 nm and 532 nm laser provocation, leading to conclusion that the content of skin hemoglobin has changed. Peaks in spectral absorbance (optical density) curves corresponded to well-known oxy-hemoglobin absorbance peaks at 542 and 577 nm.

  6. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    PubMed

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  7. Diode-pumped cw Nd:YAG three-level laser at 869 nm.

    PubMed

    Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang

    2010-11-01

    We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.

  8. Skin autofluorescence photo-bleaching and photo-memory

    NASA Astrophysics Data System (ADS)

    Lesins, Janis; Lihachev, Alexey; Rudys, Romualdas; Bagdonas, Saulius; Spigulis, Janis

    2011-07-01

    Photo-bleaching of in-vivo skin autofluorescence intensity under continuous low power laser irradiation has been studied. Temporal behavior of single-spot fluorescence and spectral fluorescent images have been studied at continuous 405 nm, 473 nm and 532 nm laser excitation and/or pre-irradiation, with power densities well below the laser-skin safety limits. Skin autofluorescence photo-memory effects (laser signatures) have been observed and analyzed, as well.

  9. Concepts and performance of solid state RGB laser sources for large-frame laser projection displays

    NASA Astrophysics Data System (ADS)

    Nebel, Achim; Wallenstein, Richard E.

    2000-04-01

    We report on concepts and the performance of diode pumped solid state laser systems which generate simultaneously red (R), green (G) and blue (B) laser light with output powers of up to 7.1 W at 629 nm, 6.9 W at 532 nm and 5.0 W at 446 nm. The superposition of this RGB radiation provides white light with a power of 19 W. In respect to the diode pump power of 110 W the RGB output corresponds to an optical efficiency of 17%.

  10. High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.

    PubMed

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-09-01

    We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  11. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  12. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers

    NASA Astrophysics Data System (ADS)

    Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.

    2015-03-01

    We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.

  13. Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal

    NASA Astrophysics Data System (ADS)

    Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan

    2018-02-01

    Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.

  14. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    PubMed

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  15. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  16. A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin

    2013-04-01

    Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.

  17. Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.

    PubMed

    Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi

    2005-09-05

    Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.

  18. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection.

    PubMed

    Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A

    2008-06-23

    In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

  19. Diamond Raman laser emitting at 1194, 1419, and 597 nm

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Konov, V. I.

    2018-03-01

    A Raman laser based on a synthetic diamond crystal pumped by nanosecond pulses of a 1030-nm Yb : YAG laser and emitting in the IR region at the first and second Stokes wavelengths of 1194 and 1419 nm, respectively, was developed. The conversion efficiency was 34% with a slope efficiency of 50% and an average power of 1.1 W at a wavelength of 1194 nm; the average power at 1419 nm was 0.52 W. Frequency doubling of the first Stokes component in a nonlinear BBO crystal resulted in orange (597.3 nm) radiation with a pulse energy of 0.15 mJ, an average power of 0.22 W, and a maximum efficiency of 20%.

  20. An efficient continuous-wave 591 nm light source based on sum-frequency mixing of a diode pumped Nd:GdVO4-Nd:CNGG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Y. D.; Liu, J. H.

    2013-08-01

    We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB3O5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm.

  1. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and their combination may provide an alternative to conventional Ho:YAG and KTP lasers for applications in urology and other surgical fields.

  2. Discrete multi-wavelength tuning of a continuous wave diode-pumped Nd:GdVO4 laser

    NASA Astrophysics Data System (ADS)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-05-01

    Discrete multi-wavelength operation of a diode-pumped Nd:GdVO4 laser at four different wavelengths was demonstrated using a single birefringent filter plate. The laser achieved maximum output powers of 5.92 W, 5.66 W, 5.56 W and 3.98 W at 1063.2 nm, 1070.8 nm, 1082.5 nm and 1086.2 nm wavelengths, respectively. To the best of our knowledge, apart from achieving the maximum output powers at ~1071 nm and ~1086 nm and best efficiencies at ~1071 nm, ~1083 nm and ~1086 nm wavelengths for a Nd:GdVO4 laser, this is also the largest number of wavelengths from the 4F3/2  →  4I11/2 transition that was ever obtained in a controlled manner from a single laser setup based on any of the Nd-doped laser crystals.

  3. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation.

    PubMed

    Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun

    2015-06-29

    Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.

  4. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping.

    PubMed

    Jebali, M A; Maran, J-N; LaRochelle, S

    2014-07-01

    We demonstrate a high-power cladding-pumped Er-Yb codoped fiber laser with 74% efficiency. A pump-limited output power of 264 W is obtained using in-band pumping at 1535 nm. We compare the efficiency of 1480 and 1535 nm pumping through numerical simulations and experimental measurements.

  5. DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Norbert; Schmidt, Berthold E.; Fily, Arnaud; Weiss, Stefan; Arlt, Sebastian; Pawlik, Susanne; Sverdlov, Boris; Muller, Jurgen; Harder, Christoph S.

    2004-06-01

    Diode-pumped solid state laser (DPSSL) and fiber laser (FL) are believed to become the dominant systems of very high power lasers in the industrial environment. Today, ranging from 100 W to 5 - 10 kW in light output power, their field of applications spread from biomedical and sensoring to material processing. Key driver for the wide spread of such systems is a competitive ratio of cost, performance and reliability. Enabling high power, highly reliable broad-area laser diodes and laser diode bars with excellent performance at the relevant wavelengths can further optimize this ratio. In this communication we present, that this can be achieved by leveraging the tremendous improvements in reliability and performance together with the high volume, low cost manufacturing areas established during the "telecom-bubble." From today's generations of 980-nm narrow-stripe laser diodes 1.8 W of maximum CW output power can be obtained fulfilling the stringent telecom reliability at operating conditions. Single-emitter broad-area lasers deliver in excess of 11 W CW while from similar 940-nm laser bars more than 160 W output power (CW) can be obtained at 200 A. In addition, introducing telecom-grade AuSn-solder mounting technology on expansion matched subassemblies enables excellent reliability performance. Degradation rates of less than 1% over 1000 h at 60 A are observed for both 808-nm and 940-nm laser bars even under harsh intermittent operation conditions.

  6. Several hundred kHz repetition rate nanosecond pulses amplification in Er-Yb co-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing

    2014-07-01

    We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.

  7. Blue laser diode (450 nm) systems for welding copper

    NASA Astrophysics Data System (ADS)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  8. Subsurface optical stimulation of rat prostate cavernous nerves using a continuous wave, single mode, 1490 nm diode laser

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Stahl, Charlotte S. D.; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2013-03-01

    Successful identification of the cavernous nerves (CN's) during radical prostatectomy requires detection of the CN's through a thin layer of overlying fascia. This study explores the 1490 nm infrared (IR) diode laser wavelength for rapid and deep subsurface CN stimulation in a rat model, in vivo. A 150-mW, 1490-nm diode laser providing an optical penetration depth of 520 μm was used to stimulate the CN's in 8 rats through a single mode fiber optic probe with 1-mm-diameter spot and 15 s irradiation time. Successful ONS was judged by an intracavernous pressure response (ICP) in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 and 1550 nm IR diode laser wavelengths. ONS was observed through fascia layers up to 380 μm thick using an incident laser power of 50 mW. ICP response times as short as 4.6 +/- 0.2 s were recorded using higher laser powers bust still below the nerve damage threshold. The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper optical penetration than 1455 nm and more rapid and efficient nerve stimulation than 1550 nm.

  9. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    PubMed

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  10. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    PubMed

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  11. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke Yin; Weiqiang Yang; Bin Zhang

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stagemore » amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)« less

  12. Stable, high power, high efficiency picosecond ultraviolet generation at 355 nm in K3B6O10 Br crystal

    NASA Astrophysics Data System (ADS)

    Hou, Z. Y.; Wang, L. R.; Xia, M. J.; Yan, D. X.; Zhang, Q. L.; Zhang, L.; Liu, L. J.; Xu, D. G.; Zhang, D. X.; Wang, X. Y.; Li, R. K.; Chen, C. T.

    2018-06-01

    We demonstrate a high efficiency and high power picosecond ultraviolet source at 355 nm with stable output by sum frequency generation from a Nd:YAG laser using a type-I critically phase matched K3B6O10 Br crystal as nonlinear optical material. Conversion efficiency as high as 30.8% was achieved using a 25 ps laser at 1064 nm operated at 10 Hz. Similar work is done by using a 35 W 10 ps laser at 1064 nm as the pump source with a repetition rate of 80 MHz, and the highest average output power obtained was up to 5.3 W. In addition, the power stability of the 355 nm output power measurement shows that the standard deviation fluctuations of the average power are ±0.69% and ±0.91% at 3.0 W and 3.5 W, respectively.

  13. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    PubMed Central

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-01-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively. PMID:28181571

  14. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-02-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively.

  15. Investigation of the laser pumping power impact on the operating regimes of a laser passively Q-switched by a saturated absorber

    NASA Astrophysics Data System (ADS)

    Benarab, Mustapha; Mokdad, Rabah; Djellout, Hocine; Benfdila, Arezki; Lamrous, Omar; Meyrueis, Patrick

    2011-09-01

    We have adapted the point model for the study of an all-fiber laser doped with Nd3+ and Q-switched by a saturable fiber absorber doped with Cr4+. Calculations of the output power of the 1084 nm laser are considered as a function of the pump power supplied by a 790 nm laser diode. The analysis of the simulation results reveals the existence of pulsed, sinusoidal, and dc operating regimes.

  16. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  17. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  18. Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm

    NASA Astrophysics Data System (ADS)

    Wieser, Wolfgang; Klein, Thomas; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.

  19. High-efficiency diode-pumped actively Q-switched ceramic Nd:YAG/BaWO₄ Raman laser operating at 1666 nm.

    PubMed

    Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P

    2014-05-01

    A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.

  20. AlGaInN laser diode technology for defence, security and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2014-10-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW in the 400-420nm wavelength range that are suitable for telecom applications. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Gallium-nitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.or.

  1. 12W laser amplification at 1427nm on the 4F 3/2 to 4I 13/2 spectral line in an Nd 3+ doped fused silica optical fiber

    DOE PAGES

    Dawson, Jay W.; Pax, Paul H.; Allen, Graham S.; ...

    2016-12-08

    A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the 4F 3/2 to 4I 13/2 transition in an Nd 3+ doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary 4F 3/2 to 4I 11/2 optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gainmore » of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the 4F 3/2 to 4I 9/2 optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Lastly, future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.« less

  2. 12W laser amplification at 1427nm on the 4F 3/2 to 4I 13/2 spectral line in an Nd 3+ doped fused silica optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Jay W.; Pax, Paul H.; Allen, Graham S.

    A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the 4F 3/2 to 4I 13/2 transition in an Nd 3+ doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary 4F 3/2 to 4I 11/2 optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gainmore » of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the 4F 3/2 to 4I 9/2 optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Lastly, future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.« less

  3. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  4. Investigation of the Low Power Stage of an 1178 nm Raman System

    DTIC Science & Technology

    2013-12-23

    LEANNE HENRY, DR-III, DAF KENTON T. WOOD, DR-IV, DAF Work Unit Manager Chief, Laser Division This report is published in the...and 1069 nm pumped Raman laser system where the second Stokes is amplified in a 1121 nm resonator defined by high reflector fiber Bragg gratings (FBGs...the gratings was found to impact the performance of the laser and needs to be dealt with in order to obtain high 1178 nm output power levels. In order

  5. Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Gouhier, B.; Laroche, M.; Zhao, J.; Canuel, B.; Bertoldi, A.; Bouyer, P.; Traynor, N.; Cadier, B.; Robin, T.; Santarelli, G.

    2018-02-01

    We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4% and a low relative intensity noise.

  6. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    NASA Astrophysics Data System (ADS)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  7. High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo

    2014-11-01

    A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.

  8. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    PubMed

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  9. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  10. High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique

    NASA Astrophysics Data System (ADS)

    Didierjean, Julien; Castaing, Marc; Balembois, François; Georges, Patrick; Perrodin, Didier; Fourmigué, Jean Marie; Lebbou, Kherreddine; Brenier, Alain; Tillement, Olivier

    2006-12-01

    We present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak power for 12 ns pulses at 1 kHz in the Q-switched regime. It is, to the best of our knowledge, the highest laser power ever achieved with directly grown single-crystal fibers.

  11. Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Chang, C. C.; Chen, Y. F.

    2013-04-01

    We originally employ a compact combination of a Nd:YAG crystal and a Nd:YVO4 crystal to develop an efficient dual-wavelength laser operating at 946 and 1064 nm. We exploit a short Nd:YAG crystal to generate 946 nm laser by reducing the reabsorption loss and a follow-up Nd:YVO4 crystal to generate a 1064 nm laser by absorbing the residual pump light. The output power ratio between the 946 and 1064 nm emissions can be flexibly adjusted from 0.3 to 0.9 by varying the separation between the two output couplers. At an incident pump power of 17 W, the total output power is generally higher than 5.2 W, with an overall optical-to-optical efficiency greater than 30%.

  12. Simultaneous dual-wavelength lasing at 1047 and 1053 nm and wavelength tuning to 1072 nm in a diode-pumped a-cut Nd : LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping

    2015-12-01

    We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.

  13. Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia

    2016-10-01

    With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.

  14. All-fiber, ultra-wideband tunable laser at 2 μm.

    PubMed

    Li, Z; Alam, S U; Jung, Y; Heidt, A M; Richardson, D J

    2013-11-15

    We report a direct diode-pumped all-fiber tunable laser source at 2 μm with a tuning range of more than 250 nm. A 3 dB power flatness of 200 nm with a maximum output power of 30 mW at 1930 nm was achieved. The laser has a high optical signal-to-noise ratio (OSNR) of more than 40 dB across the whole tuning range.

  15. Continuous-wave and passively Q-switched Nd:YVO4 laser at 1085 nm

    NASA Astrophysics Data System (ADS)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Zhang, Jiyan

    2017-11-01

    An admirable and efficient Nd:YVO4 laser at 1085 nm is demonstrated with a compact 35 mm plano-plano cavity. A chosen narrow bandpass filter with high-transmittance (HT) coating at 1064 nm (T=96%) and optimized part-reflection (PR) coating at 1085 nm (T=15%) is used as the output coupler. In the continuous-wave (CW) regime, the maximum output power reaches 3110 mW at the pump power of 11.41 W. Based on a Cr:YAG crystal with initial-transmittance of 91%, the first passively Q-switched Nd:YVO4 laser at 1085 nm is achieved. When the pump power is changed from the threshold of 4.50 to 6.08 W, the dual-wavelength lines at 1064 and 1085 nm are generated simultaneously. However, at the pump power of above 6.08 W, the single-wavelength line at 1085 nm is achieved. The largest output power, the highest peak power, and the narrowest pulse width are 1615 mW, 878 W and 26.2 ns, respectively.

  16. kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber

    NASA Astrophysics Data System (ADS)

    Sun, Shihao; Zhan, Huan; Li, Yuwei; Liu, Shuang; Jiang, Jiali; Peng, Kun; Wang, Yuying; Ni, Li; Wang, Xiaolong; Jiang, Lei; Yu, Juan; Liu, Gang; Lu, Pengfei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    Based on a master oscillator power amplifier configuration, laser performance of commercial Nufern-20/400-8M Ybdoped aluminophosphosilicate ternary laser fiber was investigated. Pumped by 976 nm laser diodes, 982 W laser output power was obtained with a slope efficiency of 84.9%. Spectrum of output was centered at 1066.56nm with 3dB bandwidth less than 0.32 nm, and the nonlinearity suppression ratio was more than 39dB. Beam quality of Mx2 and M2y were 1.55 and 1.75 at 982 W, respectively. The laser performance indicated that Nufern-20/400-8M Yb-doped aluminophosphosilicate ternary laser fiber is highly competitive for industry fiber laser use.

  17. Realization of a mW-level 10.7-eV (λ = 115.6 nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz.

    PubMed

    Zhao, Zhigang; Kobayashi, Yohei

    2017-06-12

    We demonstrate a 10.7-eV (λ = 115.6 nm) laser with mW levels of average power and a 1-MHz repetition rate, which was driven by the third harmonic radiation (THG), at 347 nm, of an Yb:fiber chirped pulse amplifier (CPA) laser. The 347 nm ultraviolet radiation was obtained by frequency conversion of the high power output of a 1-MHz Yb:fiber CPA, using beta barium borate (BBO) nonlinear crystals. The frequency converted output was focused down into a gas cell filled with a mixture of Ar and Xe, and was subjected to a second THG frequency conversion. The generated 10.7-eV laser was separated from the fundamental beam using a LiF prism and no further separation from other harmonic waves was required. The highest measured output power was ~80 μW, which corresponded to an average power of ~1.25 mW inside the gas cell when the transmission coefficients of the LiF optics were taken into account. The corresponding conversion efficiency from 347 nm down to 115.6 nm was ~2.5 × 10 -4 .

  18. 1030 nm high power polarization maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Chu, Qiuhui; Zhao, Pengfei; Li, Chengyu; Wang, Bopeng; Lin, Honghuan; Guo, Chao; Liu, Yu; Jing, Feng; Tang, Chuanxiang

    2018-03-01

    A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality

  19. Cryogenic Tm:YAP microchip laser

    NASA Astrophysics Data System (ADS)

    Hubka, Zbyněk.; Å ulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2016-04-01

    The spectral characteristics of laser active media, and thus those of the laser output, are temperature dependent. Specifically, in almost every crystal host, cooling to low temperatures leads to better heat removal, a higher efficiency and output power, and a reduced lasing threshold. Tm-ion doped lasers have an emission wavelength around 2 μm and are important in medicine for soft tissue cutting and hemostasis, as well as in LIDAR or atmosphere sensing technology. This paper presents the performance-temperature dependency of a 4 at. % doped Tm:YAP microchip. During the experiment the Tm:YAP crystal was placed inside an evacuated liquid nitrogen cryostat on a cooling finger. As its temperature was varied from 80 K to 340 K, changes were observed in the absorption spectrum, ranging from 750 nm to 2000 nm and in the fluorescence spectrum from 1600 nm to 2050 nm. Fluorescence lifetime was seen to rise and fall with decreasing temperature. The laser was pumped by a 792 nm laser diode and at 80 K the maximum output peak power of the laser was 4.6 W with 23 % slope efficiency and 0.6 W threshold, compared to 2.4 W output peak power, 13 % slope efficiency and 3.3 W threshold when at 340 K. The laser emission wavelength changed from 1883 nm to 1993 nm for 80 K and 300 K, respectively.

  20. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    NASA Astrophysics Data System (ADS)

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.

    2017-01-01

    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  1. Fluorescence lifetime spectroscopy: potential for in-vivo estimation of skin fluorophores changes after low power laser treatment

    NASA Astrophysics Data System (ADS)

    Ferulova, Inesa; Lihachev, Alexey; Spigulis, Janis

    2013-11-01

    The impact of visible cwlaser irradiation on skin autofluorescence lifetimes was investigated in spectral range from 450 nm to 600 nm. Skin optical provocations were performed during 1 min by 405 nm low power cw laser with power density up to 20 mW/cm2. Autofluorescence lifetimes were measured before and immediately after the optical provocation.

  2. Holmium:YAG (lambda=2120nm) vs. Thulium fiber (lambda=1908nm) laser for high-power vaporization of canine prostate tissue

    NASA Astrophysics Data System (ADS)

    Casperson, Andrew L.; Barton, Robert A.; Scott, Nicholas J.; Fried, Nathaniel M.

    2008-02-01

    Direct studies comparing different lasers for treatment of BPH are lacking. This preliminary study compares continuous-wave (CW) vs. pulsed prostate tissue vaporization for the Thulium fiber laser and Holmium:YAG laser, both operating near the 1940 nm water absorption peak in tissue. A 50-W Thulium fiber laser (λ= 1908 nm) delivered CW laser radiation through a 600-μm silica fiber in non-contact mode with a 5-mm-diameter spot at the tissue surface. A Holmium:YAG laser (λ= 2120 nm) operated with an energy of 2 J, pulse rate of 25 Hz, and average power of 50 W, and delivered pulsed laser radiation through a 600-μm silica fiber with a 5-mm-diameter laser spot to achieve similar irradiances at the tissue surface. Tissue vaporization was performed in air with the prostate kept hydrated in saline. Tissue vaporization efficiency of both lasers was compared (n = 10 canine prostates for each laser group). Mean vaporization efficiency measured 5.30 +/- 0.48 kJ/g vs. 4.13 +/- 0.46 kJ/g for Thulium fiber and Holmium lasers (P < 0.05). Tissue vaporization rates measured 0.57 +/- 0.05 g/min vs. 0.73 +/- 0.07 g/min (P < 0.05). The Holmium:YAG laser vaporizes prostate tissue at a higher rate than the Thulium fiber laser, for the same average power delivered to the tissue. Both the Thulium fiber laser and Holmium:YAG lasers are capable of vaporizing prostate tissue at a rate > 1 g/min if operated at the high powers (100-W) typically used in the clinic.

  3. Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Alphonse, G. A.; Carlin, D. B.; Ettenberg, M.

    1991-01-01

    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power.

  4. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  5. 926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing

    2018-05-01

    926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.

  6. Room temperature high power mid-IR diode laser bars for atmospheric sensing applications

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Patterson, Steve; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Zhang, Shiguo; Elim, Sandrio; Bougher, Mike; Patterson, Jason; Das, Suhit; Wise, Damian; Matson, Triston; Balsley, David; Bell, Jake; DeVito, Mark; Martinsen, Rob

    2007-04-01

    Peak CW optical power from single 1-cm diode laser bars is advancing rapidly across all commercial wavelengths and the available range of emission wavelengths also continues to increase. Both high efficiency ~ 50% and > 100-W power InP-based CW bars have been available in bar format around 1500-nm for some time, as required for eye-safe illuminators and for pumping Er-YAG crystals. There is increasing demand for sources at longer wavelengths. Specifically, 1900-nm sources can be used to pump Holmium doped YAG crystals, to produce 2100-nm emission. Emission near 2100-nm is attractive for free-space communications and range-finding applications as the atmosphere has little absorption at this wavelength. Diode lasers that emit at 2100-nm could eliminate the need for the use of a solid-state laser system, at significant cost savings. 2100-nm sources can also be used as pump sources for Thulium doped solid-state crystals to reach even longer wavelengths. In addition, there are several promising medical applications including dental applications such as bone ablation and medical procedures such as opthamology. These long wavelength sources are also key components in infra-red-counter-measure systems. We have extended our high performance 1500-nm material to longer wavelengths through optimization of design and epitaxial growth conditions and report peak CW output powers from single 1-cm diode laser bars of 37W at 1910-nm and 25W at 2070-nm. 1-cm bars with 20% fill factor were tested under step-stress conditions up to 110-A per bar without failure, confirming reasonable robustness of this technology. Stacks of such bars deliver high powers in a collimated beam suitable for pump applications. We demonstrate the natural spectral width of ~ 18nm of these laser bars can be reduced to < 3-nm with use of an external Volume Bragg Grating, as required for pump applications. We review the developments required to reach these powers, latest advances and prospects for longer wavelength, higher power and higher efficiency.

  7. Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong

    2003-10-01

    Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.

  8. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less

  9. Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser

    DTIC Science & Technology

    2007-06-05

    visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density...was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width...visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power

  10. Cascaded Raman lasing in a PM phosphosilicate fiber with random distributed feedback

    NASA Astrophysics Data System (ADS)

    Lobach, Ivan A.; Kablukov, Sergey I.; Babin, Sergey A.

    2018-02-01

    We report on the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization maintaining phosphosilicate fiber operating beyond zero dispersion wavelength ( 1400 nm). With increasing pump power from a Yb-doped fiber laser at 1080 nm, the random laser generates subsequently 8 W at 1262 nm and 9 W at 1515 nm with polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 nm and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random lasing.

  11. Frequency-doubled passively Q-switched microchip laser producing 225  ps pulses at 671  nm.

    PubMed

    Nikkinen, Jari; Korpijärvi, Ville-Markus; Leino, Iiro; Härkönen, Antti; Guina, Mircea

    2016-11-15

    We report a 671 nm laser source emitting 225 ps pulses with an average power of 55 mW and a repetition rate of 444 kHz. The system consists of a 1342 nm SESAM Q-switched Nd:YVO4 microchip master oscillator and a dual-stage Nd:YVO4 power amplifier. The 1342 nm signal was frequency-doubled to 671 nm using a periodically poled lithium niobate crystal. This laser source provides a practical alternative for applications requiring high energy picosecond pulses, such as time-gated Raman spectroscopy.

  12. CW molecular iodine laser pumped with a low power DPSSL

    NASA Astrophysics Data System (ADS)

    Luhs, W.; Wellegehausen, B.; Goyal, M.

    2017-04-01

    Cw oscillation of molecular iodine on many lines in the range of 557-802 nm pumped with a low power common diode pumped and frequency doubled solid state laser DPSSL is reported. The DPSSL is temperature stabilized, operates in single frequency and can be tuned by about 2 nm at 532 nm. Operation conditions of this simple and low cost iodine ring laser will be described and possible applications will be discussed.

  13. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    NASA Astrophysics Data System (ADS)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  14. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-06

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

  15. Passively Q-switched Nd:YAG/Cr(4+):YAG bonded crystal microchip laser operating at 1112  nm and its application for second-harmonic generation.

    PubMed

    Fu, S G; Ouyang, X Y; Liu, X J

    2015-10-10

    A passively Q-switched Nd:YAG/Cr4+:YAG microchip laser operating at 1112 nm is demonstrated. Under a pump power of 5.5 W, a maximum average output power of 623 mW was obtained with T=6% output coupler, corresponding to an optical-to-optical conversion efficiency of 11.3% and a slope efficiency of 19.5%. The minimum pulse width was 2.8 ns, the pulse energy and peak power were 39.3 μJ and 14 kW, respectively. Additionally, based on the 1112 nm laser, a 230 mW 556 nm green-yellow laser was achieved within an LBO crystal.

  16. 808nm high-power high-efficiency GaAsP/GaInP laser bars

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yang, Ye; Qin, Li; Wang, Chao; Yao, Di; Liu, Yun; Wang, Lijun

    2008-11-01

    808nm high power diode lasers, which is rapidly maturing technology technically and commercially since the introduction in 1999 of complete kilowatt-scale diode laser systems, have important applications in the fields of industry and pumping solid-state lasers (DPSSL). High power and high power conversion efficiency are extremely important in diode lasers, and they could lead to new applications where space, weight and electrical power are critical. High efficiency devices generate less waste heat, which means less strain on the cooling system and more tolerance to thermal conductivity variation, a lower junction temperature and longer lifetimes. Diode lasers with Al-free materials have superior power conversion efficiency compared with conventional AlGaAs/GaAs devices because of their lower differential series resistance and higher thermal conductivity. 808nm GaAsP/GaInP broad-waveguide emitting diode laser bars with 1mm cavity length have been fabricated. The peak power can reach to 100.9W at 106.5A at quasicontinuous wave operation (200μs, 1000Hz). The maximum power conversion efficiency is 57.38%. Based on these high power laser bars, we fabricate a 1x3 arrays, the maximum power is 64.3W in continuous wave mode when the current is 25.0A. And the threshold current is 5.9A, the slope efficiency is 3.37 W/A.

  17. A diode-pumped Tm:CaYAlO4 laser at 1851 nm

    NASA Astrophysics Data System (ADS)

    Lan, Jinglong; Guan, Xiaofeng; Xu, Bin; Moncorgé, Richard; Xu, Huiying; Cai, Zhiping

    2017-07-01

    Laser emission at ~1850 nm is of great interest for neural stimulation applications. In this letter, we report on the diode-pumped continuous-wave (CW) and Q-switched (QS) laser operation of Tm:CaYAlO4 at 1851 nm, for the first time to our knowledge. In the CW regime, a maximum output power up to 0.62 W is obtained with a laser slope efficiency of about 18.0%. Using a Cr:ZnSe saturable absorber, QS laser operation is achieved with a maximum average output power of 0.25 W, the narrowest pulse width of 107 ns and the highest repetition rate of 5.85 kHz. The corresponding pulse peak power and pulse energy are about 388 W and 42.8 µJ, respectively. In this Q-switched mode, wavelength tuning is also realized over about 3 nm by slightly tilting the saturable absorber.

  18. Mid-infrared transmitter and receiver modules for free-space optical communication.

    PubMed

    Hao, Qiang; Zhu, Guoshen; Yang, Song; Yang, Kangwen; Duan, Tao; Xie, Xiaoping; Huang, Kun; Zeng, Heping

    2017-03-10

    We report on the experimental implementation of single-frequency fiber-laser pumped mid-infrared (mid-IR) transmitter and receiver modules for free-space communications. These modules enable frequency upconversion and downconversion between the 1550-nm telecom wavelength and the mid-IR, thus providing essential free-space transmission links with mid-IR single-frequency lasers in the 3.6 μm region. Specifically, based on difference frequency generation (DFG) in MgO-doped periodically poled LiNbO3 (MgO:PPLN), the mid-IR transmitter produces 9.3-mW power at 3594 nm with 5-W pump power at 1083 nm (<10  kHz linewidth) and 3-W signal power at 1550 nm (<10  kHz linewidth), and the mid-IR receiver reproduces 12-μW power at 1550 nm with 4.7-W pump power at 1083 nm and 5-mW laser at 3594 nm. The whole modules are integrated into portable and compact devices by incorporating single-frequency fiber lasers, fiber amplifiers, DFG units, and related electronic circuits. In addition, the uses of all polarization-maintaining fiber configuration and well-controlled heat dissipation make the mid-IR transmitter and receiver exhibit a long-term stability.

  19. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser

    PubMed Central

    Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-01

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863

  20. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.

    PubMed

    Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-30

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.

  1. Wide spectral band beam analysis

    NASA Astrophysics Data System (ADS)

    Aharon, Oren

    2015-03-01

    The reality in laser beam profiling is that measurements are performed over a wide spectrum of wavelengths and power ranges. Many applications use multiple laser wavelengths with very different power levels, a fact which dictates a need for a better measuring tool. Rapid progress in the fiber laser area has increased the demand for lasers in the wavelength range of 900 - 1030 nm, while the telecommunication market has increased the demand for wavelength range of 1300nm - 1600 nm, on the other hand the silicone chip manufacturing and mass production requirements tend to lower the laser wavelength towards the 190nm region. In many cases there is a need to combine several lasers together in order to perform a specific task. A typical application is to combine one visible laser for pointing, with a different laser for material processing with a very different wavelength and power level. The visible laser enables accurate pointing before the second laser is operated. The beam profile of the intensity distribution is an important parameter that indicates how a laser beam will behave in an application. Currently a lab, where many different lasers are used, will find itself using various laser beam profilers from several vendors with different specifications and accuracies. It is the propose of this article to present a technological breakthrough in the area of detectors, electronics and optics allowing intricate measurements of lasers with different wavelength and with power levels that vary many orders of magnitude by a single beam profiler.

  2. Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm

    NASA Astrophysics Data System (ADS)

    Lu, Jie

    2014-04-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.

  3. Influence of Temperature on Nanosecond Pulse Amplification in Thulium Doped Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Abdulfattah, Ali; Gausmann, Stefan; Sincore, Alex; Bradford, Joshua; Bodnar, Nathan; Cook, Justin; Shah, Lawrence; Richardson, Martin

    2018-05-01

    Thulium silica doped fiber (TDF) lasers are becoming important laser sources in both research and applications in industry. A key element of all high-power lasers is thermal management and its impact on laser performance. This is particularly important in TDF lasers, which utilize an unusual cross-relation pumping scheme, and are optically less efficient than other types of fiber lasers. The present work describes an experimental investigation of thermal management in a high power, high repetition-rate, pulsed Thulium (Tm) fiber laser. A tunable nanosecond TDF laser system across the 1838 nm – 1948 nm wavelength range, has been built to propagate 2μm signal seed pulses into a TDF amplifier, comprising a polarized large mode area (PLMA) thulium fiber (TDF) with a 793nm laser diode pump source. The PLMA TDF amplifier is thermally managed by a separately controlled cooling system with a temperature varied from 12°C to 36°C. The maximum output energy (∼400 μJ), of the system is achieved at 12°C at 1947 nm wavelength with ∼32 W of absorbed pump power at 20 kHz with a pulse duration of ∼ 74 ns.

  4. All-fibre ytterbium laser tunable within 45 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullina, S R; Babin, S A; Vlasov, A A

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  5. Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Goldberg, Lew; Chinn, Steve

    2018-02-01

    We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.

  6. 1164.4  nm and 1174.7  nm dual-wavelength Nd : GdVO4/Cr4+ : YAG/YVO4 passively Q-switched Raman microchip laser.

    PubMed

    Wang, Xiaojie; Wang, Xiaolei; Zheng, Zhifen; Qiao, Xihao; Dong, Jun

    2018-04-20

    A synchronous pulsed, dual-wavelength Raman laser at 1164.4 nm and 1174.7 nm has been demonstrated in a Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 passively Q-switched Raman microchip laser (PQSRML). The 1164.4 nm and 1174.7 nm dual-wavelength first-order Stokes laser oscillation is attributed to the conversion of the 1063.2 nm and 1063.43 nm two-longitudinal-mode fundamental lasers with Raman frequency shifts of 816  cm -1 and 890  cm -1 , respectively. Stable dual-wavelength Raman laser pulses with nearly equal spectral intensities have been achieved independent of the pump power. A pulse repetition rate as high as 139.4 kHz has been achieved with T 0 =85%, and the pulse width has been shortened to 825 ps with T 0 =70%. A dual-wavelength Raman laser with sub-nanosecond pulse width and peak power of over 1 kW has been achieved in the Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 PQSRML.

  7. Injection locking of a low cost high power laser diode at 461 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagett, C. J. H.; Moriya, P. H., E-mail: paulohisao@ifsc.usp.br; Celistrino Teixeira, R.

    2016-05-15

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the mastermore » laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.« less

  8. Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Chang, C. C.; Chen, Y. F.

    2015-01-01

    We develop a theoretical model for designing a compact efficient multi-wavelength laser with dual gain media in a shared resonator. The developed model can be used to analyze the optimal output reflectivity for each wavelength to achieve maximum output power for multi-wavelength emission. We further demonstrate a dual-wavelength laser at 946 nm and 1064 nm with Nd:YAG and Nd:YVO4 crystals to confirm the numerical analysis. Under optimum conditions and at incident pump power of 17 W, output power at 946 nm and 1064 nm was up to 2.51 W and 2.81 W, respectively.

  9. CW and passively Q-switched laser performance of Nd:Lu2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-01-01

    We demonstrated an efficient and controllable dual-wavelength continuous-wave (CW) laser of Nd:Lu2SiO5 (Nd:LSO) crystal. The maximum output power was 3.02 W at wavelength of 1075 nm and 1079 nm, and with increasing of absorbed pump power, the ratio of 1079 nm laser rose. The slope efficiency of 65.6% and optical-to-optical conversion efficiency of 63.3% were obtained. The passively Q-switched laser properties of Nd:LSO were investigated for the first time. The shortest pulse, maximum pulse energy and peak power were 11.58 ns, 29.05 μJ and 2.34 kW, respectively.

  10. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal

    NASA Astrophysics Data System (ADS)

    Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun

    2018-02-01

    We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.

  11. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus

    2016-01-01

    We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.

  12. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.

    PubMed

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E

    2013-07-01

    Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

  13. Influence of high power 405 nm multi-mode and single-mode diode laser light on the long-term stability of fused silica fibers

    NASA Astrophysics Data System (ADS)

    Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2012-04-01

    As the demand for high power fiber-coupled violet laser systems increases existing problems remain. The typical power of commercially available diode lasers around 400 nm is in the order of 100 to 300 mW, depending on the type of laser. But in combination with the small core of single-mode fibers reduced spot sizes are needed for good coupling efficiencies, leading to power densities in the MW/cm2 range. We investigated the influence of 405 nm laser light irradiation on different fused silica fibers and differently treated end-faces. The effect of glued-and-polished, cleaved-and-clamped and of cleaved-and-fusion-arc-treated fiber end-faces on the damage rate and behavior are presented. In addition, effects in the deep ultra-violet were determined spectrally using newest spectrometer technology, allowing the measurement of color centers around 200 nm in small core fibers. Periodic surface structures were found on the proximal end-faces and were investigated concerning generation control parameters and composition. The used fiber types range from low-mode fiber to single-mode and polarization-maintaining fiber. For this investigation 405 nm single-mode or multi-mode diode lasers with 150 mW or 300 mW, respectively, were employed.

  14. 940  mW 1564  nm multi-longitudinal-mode and 440  mW 1537  nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers.

    PubMed

    Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-15

    An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.

  15. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    PubMed

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  16. Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm

    NASA Astrophysics Data System (ADS)

    Waritanant, Tanant; Major, Arkady

    2018-02-01

    A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.

  17. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao

    2013-11-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.

  18. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Tong, Xin; Jiang, Chenyang

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  19. 11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium

    NASA Astrophysics Data System (ADS)

    Sané, S. S.; Bennetts, S.; Debs, J. E.; Kuhn, C. C. N.; McDonald, G. D.; Altin, P. A.; Close, J. D.; Robins, N. P.

    2012-04-01

    We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.

  20. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  1. Experimental investigation of a diode-pumped powerful continuous-wave dual-wavelength Nd:YAG laser at 946 and 938.6 nm

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.

    2013-05-01

    In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.

  2. High-Power Single- and Dual-Wavelength Nd:GdVO4 Lasers with Potential Application for the Treatment of Telangiectasia

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang

    2012-11-01

    Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.

  3. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  4. Passively mode-locked pulse generation in a c-cut Nd:LuVO4 laser at 1086 nm with a semiconductor saturable-absorber mirror

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Yang, Pao-Keng; Lin, Wei-Cheng

    2012-04-01

    We demonstrate a diode-pumped passively mode-locked (ML) c-cut Nd:LuVO4 laser with central wavelength at 1086 nm by shifting the reflectance band of the SESAM into a longer wavelength to result in larger loss around 1068 nm. At 15 W absorbed pump power, the highest output power of the ML pulse was about 2.6 W that corresponded to the 17.3% optical-to-optical conversion efficiency and the slope efficiency of laser was about 22.9%. Using our ML laser as the light source, we have also successfully measured the saturation fluence of the SESAM at 1086 nm.

  5. 1.6 μm microchip laser

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Ryba-Romanowski, W.; Lukasiewicz, T.

    2009-03-01

    Properties of new pulsed-diode-pumped Er:YVO4 and Er:YVO4+CaO microchip lasers working in an ``eye-safe'' spectral region were investigated. As a pumping source, a fiber coupled (core diameter-200 μm) laser diode emitting radiation at wavelength 976 nm was used. The laser diode was operating in pulsed regime with 3 ms pulse width, and 20 Hz repetition rate. The result obtained was 175 mW and 152 mW output peak power for the Er:YVO4 and Er:YVO4+CaO lasers, respectively. The maximal efficiency with respect to the absorbed power was ~ 5%. The laser emission for Er:YVO4 microchip was observed in detail in the range 1593 nm to 1604 nm with respect to pumping. However, for Er:YVO4+CaO crystal only 1604 nm was generated.

  6. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    PubMed Central

    Ramalho, Karen Müller; de Freitas, Patrícia Moreira; Correa-Aranha, Ana Cecília; Bello-Silva, Marina Stella; Lopes, Roberta Marques da Graça; Eduardo, Carlos de Paula

    2014-01-01

    The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm) for dentin decontamination, diode (660 nm) for soft tissue biomodulation, and Er:YAG laser (2,940 nm) for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success. PMID:25147746

  7. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less

  8. Efficient single-mode (TEM{sub 00}) Nd : YVO{sub 4} laser with longitudinal 808-nm diode pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donin, V I; Yakovin, D V; Yakovin, M D

    2013-10-31

    A single-mode Nd : YVO{sub 4} laser with unidirectional longitudinal pumping by laser diodes with λ = 808 nm and a power of 40 W is studied. In the TEM{sub 00} mode, the output laser power is 24 W with the optical efficiency η{sub opt} = 57.1 % (slope efficiency 63.3 %), which, as far as we know, is the best result for Nd{sup 3+} : YVO{sub 4} lasers with longitudinal pumping at λ = 808 nm from one face of the active crystal. Estimates of thermal effects show that, using a Nd : YVO{sub 4} crystal (length 20 mm,more » diameter 3 mm, dopant concentration 0.27 at%) with two undoped ends and bidirectional diode pumping with a total power of 170 W, one can obtain an output power of ∼100 W in the TEM{sub 00} mode from one active element. (lasers)« less

  9. Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power.

    PubMed

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Chen, Xiaohan; Fan, Shuzhen; Zhang, Xiaolei; Zhang, Huaijin; Tao, Xutang; Li, Shutao

    2010-06-07

    A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO(4)/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.

  10. Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm

    NASA Astrophysics Data System (ADS)

    Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.

    2013-07-01

    Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.

  11. High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications

    NASA Astrophysics Data System (ADS)

    Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao

    2012-03-01

    Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  13. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  14. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs.

    PubMed

    Matys, Jacek; Flieger, Rafał; Dominiak, Marzena

    2017-07-01

    Many surgical procedures in soft tissue are performed using diode lasers. Recently, a novel diode laser operating at 445 nm wavelength was introduced in dentistry. The aim of our study was to evaluate the time of surgery and an increase in temperature of titanium implants during its uncovering using 445 and 980 nm wavelengths. The research included 45 pig mandibles (n = 45). The specimens were randomly divided into 3 groups (n = 15) according to the laser irradiation mode and wavelength; G1 - 445 nm laser, power: 3 W, continuous wave (CW), distance: 2 mm, power density: 7460 W/cm2, fiber: 320 μm, noncontact mode; G2 - 445 nm laser (power: 2 W, CW, power density: 4970 W/cm2, fiber: 320 μm, contact mode; G3 (control) - 980 nm laser, power: 2.5 W, CW, power density: 15920 W/cm2, fiber: 200 μm, contact mode. The temperature was measured with a 2 K-type thermocouples (a P1 at collar and a P2 at mid height of the implant). The mean temperature rises measured by the P1 thermocouple were 16.9°C, 36.1°C and 21.6°C in the G1, G2 and G3 group, respectively. Significant differences in temperature rise were found between the G1 and G2 group (p = 0.0007) and the G2 and G3 group (p = 0.01). The mean temperature rises measured by the P2 thermocouple were 1.8°C, 1.4°C and 5.6°C in the G1, G2 and G3 group, respectively. Significant differences in temperature rise were found between the G1 and the G2 or G3 group (p = 0.0001). The significant differences among the study groups in average time necessary for uncovering the implants amounted to 69.7, 54.4 and 83.6 s, respectively (p < 0.05). The application of the 445 nm diode laser in non-contact mode reduced the temperature rise of the implants. The additional pulse intervals during laser irradiation with wavelength of 445 nm when operating in contact mode are needed.

  15. High-repetition-rate widely tunable LiF : \\mathbf{\\mathsf{F}}_\\mathbf{\\mathsf{2}}^{-} color center lasers

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu

    2016-02-01

    High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.

  16. In vivo monitoring laser tissue interaction using high resolution Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jo, Hang Chan; Shin, Dong Jun; Ahn, Jin-Chul; Chung, Phil-Sang; Kim, DaeYu

    2017-02-01

    Laser-induced therapies include laser ablation to remove or cut target tissue by irradiating high-power focused laser beam. These laser treatments are widely used tools for minimally invasive surgery and retinal surgical procedures in clinical settings. In this study, we demonstrate laser tissue interaction images of various sample tissues using high resolution Fourier-domain optical coherence tomography (Fd-OCT). We use a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength) with a 4W maximum output power at a 20 kHz repetition rate to ablate in vitro and in vivo samples including chicken breast and mouse ear tissues. The Fd-OCT system acquires time-series Bscan images at the same location during the tissue ablation experiments with 532nm laser irradiation. The real-time series of OCT cross-sectional (B-scan) images compare structural changes of 532nm laser ablation using same and different laser output powers. Laser tissue ablation is demonstrated by the width and the depth of the tissue ablation from the B-scan images.

  17. Pr:YAlO(3) microchip laser.

    PubMed

    Fibrich, Martin; Jelínková, Helena; Sulc, Jan; Nejezchleb, Karel; Skoda, Václav

    2010-08-01

    A cw Pr:YAlO(3) microchip-laser operation in the near-IR spectral region is reported. A microchip resonator was formed by dielectric mirrors directly deposited on the Pr:YAlO(3) crystal surfaces. For active medium pumping, a GaN laser diode providing up to 1W of output power at approximately 448 nm was used. 139mW of laser radiation at 747nm wavelength has been extracted from the microchip-laser system. Slope efficiency related to the incident pumping power was approximately 25%.

  18. 970-nm ridge waveguide diode laser bars for high power DWBC systems

    NASA Astrophysics Data System (ADS)

    Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther

    2018-02-01

    de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.

  19. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm.

    PubMed

    Wei, Chen; Luo, Hongyu; Shi, Hongxia; Lyu, YanJia; Zhang, Han; Liu, Yong

    2017-04-17

    In this paper, we demonstrate a wavelength widely tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. The laser can be tuned over 170 nm (2699 nm~2869.9 nm) for various pump power levels, while maintaining stable μs-level single-pulse gain-switched operation with controllable output pulse duration at a selectable repetition rate. To the best of our knowledge, this is the first wavelength tunable gain-switched fiber laser in the 3 μm spectral region with the broadest tuning range (doubling the record tuning range) of the pulsed fiber lasers around 3 μm. Influences of pump energy and power on the output gain-switched laser performances are investigated in detail. This robust, simple, and versatile mid-infrared pulsed fiber laser source is highly suitable for many applications including laser surgery, material processing, sensing, spectroscopy, as well as serving as a practical seed source in master oscillator power amplifiers.

  20. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser

    NASA Astrophysics Data System (ADS)

    Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming

    2017-03-01

    In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.

  1. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    PubMed

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  2. Multi-wavelength photoacoustic system based on high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Wiśniowski, Bartosz; Gawali, Sandeep Babu; Rodríguez, Sergio; Sánchez, Miguel; Gallego, Daniel; Carpintero, Guillermo; Lamela, Horacio

    2017-03-01

    Multi-wavelength laser sources are necessary for a functional photoacoustic (PA) spectroscopy. The use of high-power diode lasers (HPDLs) has aroused great interest for their relatively low costs and small sizes if compared to solid state lasers. However, HPDLs are only available at few wavelengths and can deliver low optical energy (normally in the order of μJ), while diode laser bars (DLBs) offer more wavelengths in the market and can deliver more optical energy. We show the simulations of optical systems for beam coupling of single high-power DLBs operating at different wavelengths (i.e. 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm) into 400-μm optical fibers. Then, in a separate design, the beams of the DLBs are combined in a compact system making use of dichroic mirrors and focusing lenses for beam coupling into a 400-μm optical fiber. The use of optical fibers with small core diameter (< 1 mm) is particularly suggestive for future photoacoustic endoscopy (PAE) applications that require interior examination of the body.

  3. 100μJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing

    2017-02-01

    We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.

  4. Resonantly diode-pumped Er:YAG laser: 1470-nm versus 1530-nm CW pumping case

    NASA Astrophysics Data System (ADS)

    Kudryashov, Igor; Ter-Gabrielyan, Nikolai; Dubinskii, Mark

    2009-05-01

    Growing interest to high power lasers in the eye-safe spectral domain initiated a new wave of activity in developing solid-state lasers based on bulk Er3+-doped materials. The resonant pumping of SSL allows for shifting significant part of thermal load from gain medium itself to the pump diodes, thus greatly reducing gain medium thermal distortions deleterious to SSL power scaling with high beam quality. The two major resonant pumping bands in Er:YAG are centered around 1470 and 1532 nm. Pumping into each of these bands has its pros and contras. The best approach to resonant pumping of Er:YAG active media in terms of pump wavelength is yet to be determined. We report the investigation results of high power diode-pumped Er:YAG laser aimed at direct comparison of resonant pumping at 1470 and 1532 nm. Two sources used for pumping were: 1530-nm 10-diode bar stack (>300 W CW) and 1470-nm 10-diode bar stack (>650 W CW). Both pumps were spectrally narrowed by external volume Bragg gratings. The obtained spectral width of less than 1 nm allowed for 'in-line' pumping of Er3+ in either band. The obtained CW power of over 87 W is, to the best of our knowledge, the record high power reported for resonantly pumped Er:YAG DPSSL at room temperature.

  5. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  6. Histologic analyses on the response of the skin to 1,927-nm fractional thulium fiber laser treatment.

    PubMed

    Kwon, In Ho; Bae, Youin; Yeo, Un-Cheol; Lee, Jin Yong; Kwon, Hyuck Hoon; Choi, Young Hee; Park, Gyeong-Hun

    2018-02-01

    The histologic responses to varied parameters of 1,927-nm fractional thulium fiber laser treatment have not yet been sufficiently elucidated. This study sought to evaluate histologic changes immediately after 1,927-nm fractional thulium fiber laser session at various parameters. The dorsal skin of Yucatan mini-pig was treated with 1,927-nm fractional thulium fiber laser at varied parameters, with or without skin drying. The immediate histologic changes were evaluated to determine the effects of varying laser parameters on the width and the depth of treated zones. The increase in the level of pulse energy widened the area of epidermal changes in the low power level, but increased the dermal penetration depth in the high power level. As the pulse energy level increased, the increase in the power level under the given pulse energy level more evidently made dermal penetration deeper and the treatment area smaller. Skin drying did not show significant effects on epidermal changes, but evidently increased the depth of dermal denaturation under both high and low levels of pulse energy. These results may provide important information to establish treatment parameters of the 1,927-nm fractional thulium fiber laser for various skin conditions.

  7. Spectral narrowing of a 980 nm tapered diode laser bar

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  8. A CW green laser emission by self-sum-frequency-mixing in Nd:GdCOB crystal

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Jin, H. J.; Lin, J.; Zhang, D.; Tao, Z. H.; Zhang, T. Y.; Li, Y. L.; Ruan, Q. R.

    2011-10-01

    A compact and efficient green laser light at 538 nm produced by self-sum-frequency-mixing of both fundamental infrared laser waves (1061 and 1091 nm) in Nd:GdCa4O(BO3)3 (Nd:GdCOB) crystal is demonstrated. With 18.2 W of diode pump power, a maximum output power of 1.73 W in the green spectral range at 538 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 9.5%; the output power stability over 30 min is better than 3%. To the best of our knowledge, this is first work on self-sum-frequency-mixing of a diode pumped Nd:GdCOB laser.

  9. Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm

    NASA Astrophysics Data System (ADS)

    Lan, Jinglong; Cui, Qin; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-10-01

    Single-mode oscillation of a diode-pumped conventional Nd:YAG laser at 1835 nm is demonstrated, for the first time to our knowledge, in the form of microchip configuration. The achieved maximum output power reaches 189 mW with slope efficiency of about 5.5% with respect to absorbed pump power. The laser spectra are measured with linewidth less than 0.08 nm indicating a single longitudinal mode. The output laser beam is also measured to be near diffraction-limited with M2 factors of about 1.2 and 1.5 in x and y directions. Using a mechanical chopper with 50% duty cycle, the maximum output power is improved to 253 mW with slope efficiency of about 9.7%.

  10. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  11. High power fiber coupled diode lasers for display and lighting applications

    NASA Astrophysics Data System (ADS)

    Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens

    2017-02-01

    The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.

  12. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence.

    PubMed Central

    Leitz, Guenther; Fällman, Erik; Tuck, Simon; Axner, Ove

    2002-01-01

    Optical tweezers have emerged as a powerful technique for micromanipulation of living cells. Although the technique often has been claimed to be nonintrusive, evidence has appeared that this is not always the case. This work presents evidence that near-infrared continuous-wave laser light from optical tweezers can produce stress in Caenorhabditis elegans. A transgenic strain of C. elegans, carrying an integrated heat-shock-responsive reporter gene, has been exposed to laser light under a variety of illumination conditions. It was found that gene expression was most often induced by light of 760 nm, and least by 810 nm. The stress response increased with laser power and irradiation time. At 810 nm, significant gene expression could be observed at 360 mW of illumination, which is more than one order of magnitude above that normally used in optical tweezers. In the 700-760-nm range, the results show that the stress response is caused by photochemical processes, whereas at 810 nm, it mainly has a photothermal origin. These results give further evidence that the 700-760-nm wavelength region is unsuitable for optical tweezers and suggest that work at 810 nm at normal laser powers does not cause stress at the cellular level. PMID:11916877

  13. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    PubMed

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  14. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.

    PubMed

    Schulze, Philipp; Ludwig, Martin; Belder, Detlev

    2008-12-01

    A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.

  15. Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam

    NASA Astrophysics Data System (ADS)

    Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.

    2017-02-01

    High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.

  16. Development of all-solid-state coherent 589 nm light source: toward the realization of sodium lidar and laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-12-01

    We report an all-solid-state coherent 589 nm light source in single-pass sum-frequency generation (SFG) with actively mode-locked Nd:YAG lasers for the realization of sodium lidar and laser guide star adaptive optics. The Nd:YAG lasers are constructed as a LD-side-pumped configuration and are operated at 1064 and 1319 nm for 589 nm light generation in SFG. Output powers of 16.5 and 5.3 W at 1064 and 1319 nm are obtained with two pumping chambers. Each chamber consisted of three 80-W-LD arrays. Single transverse mode TEM 00; M2 ~1.1 is achieved with adjustment of cavity length considering thermal lens effect with increase of input LD power. The cavity length is set to approximately 1 m. Accordingly the mode-locked lasers are operated at a repetition rate of approximately 150 MHz. Synchronization of two pulse trains at 1064 and 1319 nm is accomplished by control of phase difference between two radio frequencies input in acousto-optic mode-lockers. Then temporal delay is controlled with a resolution of 37 ps/degree. Pump beams are mixed in periodically poled stoichiometric lithium tantalate (PPSLT) without an antireflection coating. The effective aperture and length of the crystal are 0.5 × 2 mm2 and 15 mm. When input intensity is set at 5.6 MW/cm , an average output power of 4.6 W is obtained at 589.159 nm. Precise tuning to the sodium D II line is accomplished by thermal control of etalons set in the Nd:YAG lasers. The output power at 589.159 nm is stably maintained within +/-1.2% for 8 hours.

  17. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm.

    PubMed

    Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing

    2014-10-20

    We demonstrate an all-fiber tunable Tm/Ho-codoped laser operating in the 2 μm wavelength region. The wavelength tuning range of the Tm/Ho-codoped fiber laser (THFL) with 1-m length of Tm/Ho-codoped fiber (THDF) was from 1727 nm to 2030 nm. Efficient short wavelength operation and ultra-wide wavelength tuning range of 303 nm were both achieved. To the best of our knowledge, this is the broadest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. By increasing the THDF length to 2 m, the obtainable wavelength of the THFL was further red-shifted to the range from 1768 nm to 2071 nm. The output power of the THFL was scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.

  18. High energy 523 nm ND:YLF pulsed slab laser with novel pump beam waveguide design

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Zhu, Xiaolei; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Chen, Weibiao

    2015-11-01

    A laser diode pumped Nd:YLF master oscillator power amplifier (MOPA) green laser system with high pulse energy and high stable output is demonstrated. At a repetition rate of 50 Hz, 840 mJ pulse energy, 9.1 ns pulse width of 1047 nm infrared laser emitting is obtained from the MOPA system. The corresponding peak power is 93 MW. Extra-cavity frequency doubling with a LiB3O5 crystal, pulse energy of 520 mJ at 523 nm wavelength is achieved. The frequency conversion efficiency reaches up to 62%. The output pulse energy instability of the laser system is less than 0.6% for one hour.

  19. An intra-cavity pumped dual-wavelength laser operating at 946 nm and 1064 nm with Nd:YAG  +  Nd:YVO4 crystals

    NASA Astrophysics Data System (ADS)

    He-Dong, Xiao; Yuan, Dong; Yu, Liu; Shu-Tao, Li; Yong-Ji, Yu; Guang-Yong, Jin

    2016-09-01

    We adopt a compact intra-cavity pumped structure of Nd:YAG and Nd:YVO4 crystals to develop an efficient dual-wavelength laser that operates at 946 nm and 1064 nm. A 808 nm laser diode is used to pump the Nd:YAG crystal, which emits at 946 nm, and the Nd:YVO4 crystal, which emits at 1064 nm, is intra-cavity pumped at 946 nm. In order to avoid unnecessary pump light passing though the Nd:YAG crystal, reaching the Nd:YVO4 crystal and having an impact on the cavity pump, the two crystals are placed as far from one another as possible in this experiment. The output power at 1064 nm can be adjusted from 1 W-2.9 W by varying the separation between the two crystals. A total output power of 4 W at the dual-wavelengths is achieved at an incident pump power of 30.5 W, where the individual output powers for the 946 nm and 1064 nm emissions are 1.1 W and 2.9 W, respectively.

  20. Tm:GGAG crystal for 2μm tunable diode-pumped laser

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2016-04-01

    The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.

  1. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  2. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    PubMed

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  3. Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.

    PubMed

    He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing

    2009-10-12

    We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.

  4. Red laser-diode pumped 806 nm Tm3+: ZBLAN fibre laser

    NASA Astrophysics Data System (ADS)

    Juárez-Hernández, M.; Mejía, E. B.

    2017-06-01

    A Tm3+-doped fluorozirconate (ZBLAN) fibre laser operating CW at 806 nm when diode-pumped at 687 nm is described for the first time. This device is based on the 3F4  →  3H6 transition, and is suitable for first telecom window and sensing applications. A slope efficiency of 50.3% and low threshold pump-power of 11.6 mW were obtained. Maximum output power of 15 mW for 40 mW coupled pump was achieved.

  5. Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Sun, D. L.; Wang, S. Z.; Luo, J. Q.; Li, X. L.; Huang, L.; Hu, A. L.; Tang, Y. Q.; Guo, Q.

    2013-05-01

    We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance.

  6. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  7. High power, 1060-nm diode laser with an asymmetric hetero-waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Zhang, Yu; Hao, E

    2015-07-31

    By introducing an asymmetric hetero-waveguide into the epitaxial structure of a diode laser, a 6.21-W output is achieved at a wavelength of 1060 nm. A different design in p- and n-confinement, based on optimisation of energy bands, is used to reduce voltage loss and meet the requirement of high power and high wall-plug efficiency. A 1060-nm diode laser with a single quantum well and asymmetric hetero-structure waveguide is fabricated and analysed. Measurement results show that the asymmetric hetero-structure waveguide can be efficiently used for reducing voltage loss and improving the confinement of injection carriers and wall-plug efficiency. (lasers)

  8. High power, widely tunable dual-wavelength 2 μm laser based on intracavity KTP optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Yan, Dexian; Wang, Yuye; Xu, Degang; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Mei, Jialin; Shi, Jia; Yao, Jianquan

    2017-01-01

    We presented a high power, widely tunable narrowband 2 μm dual-wavelength source employing intracavity optical parametric oscillator with potassium titanium oxide phosphate (KTP) crystal. Two identical KTP crystals were oriented oppositely in the OPO cavity to compensate the walk-off effect. The output average power of dual-wavelength 2 μm laser was up to 18.18 W at 10 kHz with the peak power of 165 kW. The two wavelengths can be tuned in the range of 2070.7 nm to 2191.1 nm for ordinary light while in the range of 2190.7 nm to 2065.9 nm for extraordinary light with the full width at half maximum (FWHM) about 0.8 nm. The pulse width of the tunable laser was as narrow as 11 ns. The beam quality factor M 2 was less than 4 during wavelength tuning.

  9. Dual-wavelength tunable fibre laser with a 15-dBm peak power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latif, A A; Awang, N A; Zulkifli, M Z

    2011-08-31

    A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths andmore » has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)« less

  10. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    DTIC Science & Technology

    2009-03-30

    seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the

  11. Comparison for 1030nm DBR-tapered diode lasers with 10W central lobe output power and different grating layouts for wavelength stabilization and lateral spatial mode filtering

    NASA Astrophysics Data System (ADS)

    Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.

  12. A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyan; Jiang, Huawei

    2016-12-01

    A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.

  13. Spectral and power characteristics of a 5% Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe crystal

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.; Vedin, I. A.; Kurbatov, P. F.; Smolina, E. A.; Pavlyuk, A. A.; Korostelin, Yu. V.; Skasyrsky, Ya. K.

    2017-12-01

    Laser characteristics of a 5%Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe saturable absorber are presented. At a pump power of 21 W, the average laser power at a wavelength of 1.91 μm was 3.2 W (pulse duration 35 ns, pulse energy 0.3 mJ). The maximum slope efficiency of the laser in the Q-switched regime was 31%; the loss in power with respect to the cw regime did not exceed 17%. At pump powers above 15 W, the dependence of the output power in the Q-switched regime on the pump power considerably differed from linear, which was explained by the formation of a thermal lens in the saturable absorber volume. The experimental energies and durations of laser pulses well agree with the values calculated from rate equations.

  14. Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.

    2011-12-01

    This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.

  15. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  16. OPO-based compact laser projection display

    NASA Astrophysics Data System (ADS)

    Lee, Dicky; Moulton, Peter F.; Bergstedt, Robert; Flint, Graham W.

    2001-09-01

    In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) based laser projection display. The complete project display consists of two subsystems, the RGB-OPO laser head and the light modulation unit. The RGB lights from rack-mounted laser head are fibers coupled to the projection unit for independent placement. The light source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non- critically phase-matched (NCPM) OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra- cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power on a commercially available JVC's three- panel D-ILA (reflective LCD) projector with the arc-lamp removed and extensive modifications. The projector has a native resolution of 1365 x 1024 and the expected on screen lumens from our laser display is about 1200 lumens.

  17. Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2017-02-01

    A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.

  18. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of a Nd:YAG laser was demonstrated in which the laser emitted up to 8.6 Watts at a temperature of -21.5 C, bringing the wavelength into a regime favorable for efficient Raman shifting by CaWO4.

  19. Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.

    PubMed

    Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi

    2017-02-01

    Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.

  20. Tunable high-power blue external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  1. Laser at 532 nm by intracavity frequency-doubling in BBO

    NASA Astrophysics Data System (ADS)

    Yuan, Xiandan; Wang, Jinsong; Chen, Yongqi; Wu, Yulong; Qi, Yunfei; Sun, Meijiao; Wang, Qi

    2017-06-01

    A simple and compact linear resonator green laser at 532 nm is generated by intracavity frequency-doubling of a diode-side-pumped acousto-optically (AO) Q-switched Nd:YAG laser at 1064 nm. Two acousto-optic Q-switches were placed orthogonally with each other to improve the hold-off capacity. As high as 214 W of continuous-wave (CW) and 154 W of quasi-continuous-wave (QCW) output power at 1064 nm were obtained when the pumping power was 1598 W. The type I phase-matched BBO crystal was used as the nonlinear medium in the second harmonic generation. A green laser with an average output power of 37 W was obtained at a repetition rate of 20 kHz and a pulse width of 54 ns, which corresponds to pulse energy of 1.85 mJ per pulse and a peak power 34.26 kW, respectively. Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, the National High Technology Research and Development Program of China (No. 2014AA032607), and the National Natural Science Foundation of China (Nos. 61404135, 61405186, 61308032, 61308033).

  2. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes

    NASA Astrophysics Data System (ADS)

    Kaifuchi, Yoshikazu; Yamagata, Yuji; Nogawa, Ryozaburo; Morohashi, Rintaro; Yamada, Yumi; Yamaguchi, Masayuki

    2017-02-01

    Design optimization of single emitter broad stripe 9xx-nm laser diodes was studied to achieve ultimate high power and high efficiency operation for a use in fiber laser pumping and other industrial applications. We tuned laser vertical layer design and stripe width in terms of optical confinement as well as electrical resistance. As a result, newly designed LDs with 4mm-long cavity and 220 μm-wide stripe successfully demonstrate maximum CW output power as high as 33 W and high efficiency operation of more than 60 % PCE even at 27 W output power. In pulse measurement, the maximum output of 68 W was obtained.

  3. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    PubMed

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  4. Observation of a rainbow of visible colors in a near infrared cascaded Raman fiber laser and its novel application as a diagnostic tool for length resolved spectral analysis

    NASA Astrophysics Data System (ADS)

    Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.

    2018-02-01

    In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.

  5. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach-Zehnder interferometer and tunable filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  6. Synchronization of 1064 and 1319 nm Pulses Emitted from Actively Mode-Locked Nd:YAG Lasers and Its Application to 589 nm Sum-Frequency Generation

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2005-11-01

    Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.

  7. Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology

    NASA Astrophysics Data System (ADS)

    Paoletti, R.; Codato, S.; Coriasso, C.; Gotta, P.; Meneghini, G.; Morello, G.; De Melchiorre, P.; Riva, E.; Rosso, M.; Stano, A.; Gattiglio, M.

    2018-02-01

    This paper reports a DBR High Power Diode Laser (DBR-HPDL) realization, emitting up to 10W in the 920 nm range. High spectral purity (90% power in about 0.5 nm), and wavelength stability versus injected current (about 5 times more than standard FP laser) candidates DBR-HPDL as a suitable device for wavelength stabilized pump source, and high brightness applications exploiting Wavelength Division Multiplexing. Key design aspect is a multiple-orders Electron Beam Lithography (EBL) optical confining grating, stabilizing on same wafer multiple wavelengths by a manufacturable and reliable technology. Present paper shows preliminary demonstration of wafer with 3 pitches, generating DBRHPDLs 2.5 nm spaced.

  8. Continuous-wave Nd:GYSGG laser at 1.1 μm

    NASA Astrophysics Data System (ADS)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Copner, Nigel; Sun, Dong

    2018-02-01

    We demonstrated a compact and simple continuous-wave (CW) Nd:GYSGG laser with triple-wavelength lines at 1105, 1107 and 1110 nm based on R2 → Y6, R1 → Y5 and R1 → Y6 of the 4F3/2 → 4I11/2 transition. The total output power of the triple-wavelength lines was 480 mW. Moreover, we obtained an efficient CW Nd:GYSGG laser at 1110 nm with the output power of 1560 mW at the pump power of 11.05 W. Those lines at 1058 and 1062 nm were suppressed completely by the simple output mirror of high transmission at 1.06 μm.

  9. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

    NASA Astrophysics Data System (ADS)

    Ma, Qinglei; Mo, Haiding; Zhao, Jay

    2018-04-01

    A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

  10. Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2  μm.

    PubMed

    Zhu, Xiushan; Zong, Jie; Wiersma, Kort; Norwood, R A; Prasad, Narasimha S; Obland, Michael D; Chavez-Pirson, Arturo; Peyghambarian, N

    2014-03-15

    In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 μm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.

  11. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    NASA Astrophysics Data System (ADS)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan

    2017-11-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.

  12. Compact DFB laser modules with integrated isolator at 935 nm

    NASA Astrophysics Data System (ADS)

    Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.

    2018-02-01

    New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.

  13. Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Zhaojun; Cong, Zhenhua; Shen, Hongbin; Li, Yongfu; Wang, Qingpu; Fang, Jiaxiong; Xu, Xiaodong; Xu, Jun; Zhang, Xingyu

    2015-12-01

    We systematically investigated a laser diode (LD) pumped Nd:GYSO (Nd3+:Gd0.6Y1.4SiO5) laser. The output power of the continuous wave laser was as high as 3.5 W with a slope efficiency of 31.8%. In the Q-switched operation; the laser exhibited dual-wavelengths output (1073.6 nm and 1074.7 nm) synchronously with a Cr4+:YAG as the saturable absorber (SA). Additionally, a passively mode-locked laser was demonstrated using a semiconductor SA mirror with a maximum average output power of 510 mW at a central wavelength of 1074 nm, while the pulse width of the laser was as short as 5 ps. Our experiment proved that the Nd:GYSO mixed crystal was a promising material for a solid-state laser.

  14. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  15. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  16. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A

    2015-12-31

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power ofmore » 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts. (lasers)« less

  17. Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying

    2005-04-01

    Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.

  18. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    NASA Astrophysics Data System (ADS)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  19. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    PubMed

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  20. Wavelength dependence of nanosecond laser induced surface damage in fused silica from 260 to 1550 nm

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Cao, Jianjun; Liu, Mian; Sun, Yuan; Wu, Meng; Guo, Shiming; Gao, Shumei

    2018-04-01

    The wavelength dependence of laser induced surface damage in fused silica is experimentally studied in a wide wavelength range from 260 to 1550 nm. An optical parametric oscillator system is used to provide the tunable laser pulses with a duration of 5 ns. In the experiments, the exit surface of the silica slice is observed to be damaged prior to the entrance surface. The damage threshold decreases gradually as the wavelength decreases from 1550 to 324 nm and drops suddenly at 324 nm, which corresponds to a half of 7.66 eV. This wavelength dependence can be explained by a defect assisted multiphoton absorption mechanism. By fitting the experimental data with a power law equation, the damage threshold is found to be proportional to the 3.47-th power of wavelength in the range of 325-685 nm and 1.1-th power of wavelength in the range of 260-1550 nm.

  1. 1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.

    2002-01-01

    Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.

  2. Side-pumping combiner for high-power fiber laser based on tandem pumping

    NASA Astrophysics Data System (ADS)

    Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun

    2017-11-01

    We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.

  3. Eye safe high power laser diode in the 1410-1550nm range

    NASA Astrophysics Data System (ADS)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  4. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  5. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  6. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.

    2011-09-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.

  7. High power laser source for atom cooling based on reliable telecoms technology with all fibre frequency stabilisation

    NASA Astrophysics Data System (ADS)

    Legg, Thomas; Farries, Mark

    2017-02-01

    Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.

  8. High-power thulium-doped fiber laser in an all-fiber configuration

    NASA Astrophysics Data System (ADS)

    Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel

    2016-12-01

    High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.

  9. 2μm all fiber multi-wavelength Tm/Ho co-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Jiang, Qiuxia; Wang, Xiaofa

    2017-10-01

    A 2 μm all fiber multi-wavelength Tm/Ho co-doped fiber laser based on a simple ring cavity is experimentally demonstrated. Compared with other 2 μm multi-wavelength Tm/Ho co-doped fiber lasers, the multi-wavelength fiber laser is obtained by the gain saturation effect and inhomogeneous broadening effect without any frequency selector component, filter component or polarization-dependent component. When the pump power is about 304 mW, the fiber laser enters into single-wavelength working state around 1967.76 nm. Further increasing the pump power to 455 mW, a stable dual-wavelength laser is obtained at room temperature. The bimodal power difference between λ1 and λ2 is 5.528 dB. The fluctuations of wavelength and power are less than 0.03 nm and 0.264 dB in an hour, which demonstrates that the multi-wavelength fiber laser works at a stable state. Furthermore, a research about the relationship between the pump power and the output spectra has been made.

  10. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  11. Reliable high-power injection locked 6kHz 60W laser for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Hidenori; Komae, Shigeo; Tanaka, Satoshi; Nohdomi, Ryoichi; Yamazaki, Taku; Nakarai, Hiroaki; Fujimoto, Junichi; Matsunaga, Takashi; Saito, Takashi; Kakizaki, Kouji; Mizoguchi, Hakaru

    2007-03-01

    Reliable high power 193nm ArF light source is desired for the successive growth of ArF-immersion technology for 45nm node generation. In 2006, Gigaphoton released GT60A, high power injection locked 6kHz/60W/0.5pm (E95) laser system, to meet the demands of semiconductor markets. In this paper, we report key technologies for reliable mass production GT laser systems and GT60A high durability performance test results up to 20 billion pulses.

  12. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  13. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Saito, Yoshihiko; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Takazawa, Akira; Kato, Mayumi; Ito, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-06-01

    We developed a high power and high beam quality 589 nm coherent light source by sum-frequency generation in order to utilize it as a laser guide star at the Subaru telescope. The sum-frequency generation is a nonlinear frequency conversion in which two mode-locked Nd:YAG lasers oscillating at 1064 and 1319 nm mix in a nonlinear crystal to generate a wave at the sum frequency. We achieved the qualities required for the laser guide star. The power of laser is reached to 4.5 W mixing 15.65 W at 1064 nm and 4.99 W at 1319 nm when the wavelength is adjusted to 589.159 nm. The wavelength is controllable in accuracy of 0.1 pm from 589.060 and 589.170 nm. The stability of the power holds within 1.3% during seven hours operation. The transverse mode of the beam is the TEM 00 and M2 of the beam is smaller than 1.2. We achieved these qualities by the following technical sources; (1) simple construction of the oscillator for high beam quality, (2) synchronization of mode-locked pulses at 1064 and 1319 nm by the control of phase difference between two radio frequencies fed to acousto-optic mode lockers, (3) precise tunability of wavelength and spectral band width, and (4) proper selection of nonlinear optical crystal. We report in this paper how we built up each technical source and how we combined those.

  14. Comparison of 1470nm diode laser vs. C02-laserlaser for tonsillotomy and a clinical feasability trial on the use of 1940nm in ENT

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Pongratz, Thomas; Havel, Miriam; Englert, Elsa; Kremser, Thomas; Betz, Christain S.; Leunig, Andreas

    2013-03-01

    Introduction: The need for reduction of post-tonsillectomy hemorrhage has led to promotion of tonsillotomy techniques for tonsil tissue reduction in obstructive tonsillar hypertrophy. A first study compares ablative tissue effects using 1470nm diode laser and CO2-laser for tonsillotomy in an intraindividual design. A number of different laser systems have been used for volume reduction of hyperplastic nasal turbinates. The aim of a 2nd clinical feasibility study was to show the coagulative and tissue reducing effects using a novel Tm: fiber laser system emitting at λ = 1940 nm Patients and methods: First 21 children aged 3 -13 years (mean age 6.3 years) underwent laser tonsillotomy for obstructive tonsillar hypertrophy in this double blind, prospective, randomized, clinical feasibility trial. In each case, tonsillotomy was performed using fibre guided 1470nm diode laser (contact mode, 15 W power) on the one side and CO2-laser (12 W power) on the other side. An independent physician documented clinical presentation and patients' symptoms preoperatively and on day 1, 3, 7, 14 and 21 postoperatively using standardized questionnaire including VAS (was ist das) for each side separately. The 2nd clinical feasibility trial included 11 patients suffering from hyperplastic inferior nasal turbinates, who were therapy-refractory to conservative medical treatment. The obstructive nasal cavity was treated using the 1940 nm Tm: fiber laser at < 5 W output power. The treatment was performed in non-contact mode under endoscopic control. Patients ' symptoms were documented both preoperatively and on days 1 - 3 and 28 postoperatively using a non-validated questionnaire. Additionally, an endoscopic examination was performed. Results: Mean duration of single tonsillotomy operative treatment was 2.7 min using 1470nm laser and 4.9 min using CO2 laser respectively. Intraoperative bleeding and the frequency of bipolar forceps use for intraoperative bleeding control was significantly less pronounced using the 1470nm diode laser system. There was no difference in postoperative pain scores between the CO2-laser treated and the 1470nm fibre guided diode laser treated side. No infections, hemorrhages or other complications occurred in the course of the three weeks postoperative period. In the turbinate study, none of the patients showed infections, and no hemorrhages or other complications occurred intraor postoperatively.The mean laser activation time was extremely short being 28.0 +/- 8.5 s. In conjunction with a low power setting (median, 3 W; mean +/- standard deviation, 3.3 +/- 1.1 W), a low energy of 90.2 +/- 37.8 J was applied. A significant reduction in nasal obstruction could be documented in all patients on day 28 postoperatively. Evaluation, as assessed preoperatively and 4 weeks postoperatively, showed significant subjective improvements. Conclusion: A fiber-guided 1470nm diode laser system offers an efficient and safe method for tonsillotomy as treatment of obstructive tonsillar hypertrophy. Compared to our standard practice with CO2- laser, 1470nm laser application provides comparable tissue ablation effects with less intraoperative bleeding and shorter operation time. The treatment of hyperplastic inferior turbinates using a 1940 nm Tm: fiber laser provides sufficient tissue reduction in a short operation time using low total energy. Patients described a significant improvement in nasal breathing postoperatively.

  15. Theoretical and experimental study on reabsorption effect and temperature characteristic of a quasi-three-level 946nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Wan, Yuan; Chen, Weibiao

    2015-02-01

    The influence of temperature and incident pump power on reabsorption loss is theoretically discussed. Temperature characteristic and reabsorption loss rate of a diode-pumped quasi-three-level 946 nm Nd:YAG laser are investigated. Reabsorption effect has a significant impact on laser performance. The results indicate that reabsorption loss increases as the working temperature rises and decreases with the increased incident pump power.

  16. Continuous-wave and actively Q-switched resonantly dual-end-pumped Er : YAG ceramic laser emitting at 1.6 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, T Y; Deng, Yu; Ju, Y-L

    2015-12-31

    We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)

  17. A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun

    2017-10-01

    In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.

  18. High-power Al-free active region (λ= 852nm) DFB laser diodes for atomic clocks and interferometry applications

    NASA Astrophysics Data System (ADS)

    Ligeret, V.; Vermersch, F.-J.; Bansropun, S.; Lecomte, M.; Calligaro, M.; Parillaud, O.; Krakowski, M.

    2017-11-01

    Atomic clocks will be used in the future European positioning system Galileo. Among them, the optically pumped clocks provide a better alternative with comparable accuracy for a more compact system. For these systems, diode lasers emitting at 852nm are strategic components. The laser in a conventional bench for atomic clocks presents disadvantages for spatial applications. A better approach would be to realise a system based on a distributed-feedback laser (DFB). We have developed the technological foundations of such lasers operating at 852nm. These include an Al free active region, a single spatial mode ridge waveguide and a DFB structure. The device is a separate confinement heterostructure with a GaInP large optical cavity and a single compressive strained GaInAsP quantum well. The broad area laser diodes are characterised by low internal losses (<3cm -1 ), a high internal efficiency (94%) and a low transparency current density (100A/cm2). For an AR-HR coated ridge Fabry Perot laser, we obtain a power of 230mW with M2=1.3. An optical power of 150mW was obtained at 854nm wavelength, 20°C for AR-HR coated devices. We obtain a single spatial mode emission with M2=1.21 and a SMSR over 30dB, both at 150mW. DFB Lasers at 852.12nm, corresponding to the D2 caesium transition, were then realised with a power of 40mW, 37°C for uncoated devices. The SMSR is over 30dB and the M2=1.33 at 40mW. Furthermore, the preliminary results of the linewidth obtained with a Fabry Perot interferometer give a value of less than 2MHz.

  19. Lifetime behavior of laser diodes with highly strained InGaAs QWs and emission wavelength between 1120 nm and 1180 nm

    NASA Astrophysics Data System (ADS)

    Bugge, F.; Bege, R.; Blume, G.; Feise, D.; Sumpf, B.; Werner, N.; Zeimer, U.; Paschke, K.; Weyers, M.

    2018-06-01

    Highly strained InxGa1-xAs QWs are commonly used for laser diodes in the wavelength range beyond 1100 nm, but they suffer from strain induced formation of defects. The effect of different laser structures and different laser layouts on the aging behavior was investigated. If grown and processed under optimized conditions, laser diodes emitting at 1120 nm, 1156 nm and 1180 nm have lifetimes of several 1000 h up to more than 20,000 h in dependence on structure or indium content. Laser diodes with three different emission wavelength were mounted in a microoptical bench with a second harmonic generation crystal. From these benches laser emission in the green-yellow spectral range with more than 800 mW output power was obtained.

  20. Generation of 369.4 nm Radiation by Efficient Doubling of a Diode Laser

    NASA Technical Reports Server (NTRS)

    Williams, A.; Seidel, D. J.; Maleki, J.

    1993-01-01

    A resonant cavity second harmonic generation system has been developed to produce 369.4 nm radiation from a 738.8 nm diode laser with 10 mW nominal output power. This system utilizes a polarization technique to lock the cavity to the laser frequency. In this paper we report on an evaluation of the system using a Titanium:Sapphire laser as the input source, and preliminary results with a diode laser source. To our knowledge, this is the deepest uv light ever produced by frequency-doubling a diode laser.

  1. High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan

    2015-12-01

    High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.

  2. 1-kW monolithic narrow linewidth linear-polarized fiber laser at 1030 nm

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Fang, Qiang; Cui, Xuelong; Hou, Bowen; Fu, Shijie; Xie, Zhaoxin; Shi, Wei

    2018-02-01

    We demonstrate an all-fiberized, linear-polarized, narrow spectral linewidth laser system with kilowatts-level output power at 1030 nm in master oscillator-power amplifier (MOPA) configuration. The laser system consists of a linear-polarized, narrow linewidth ( 28 GHz) fiber laser oscillator and two stages of linear-polarized fiber amplifiers. A 925 W linear-polarized fiber laser with a polarization extinction ratio (PER) of 15.2 dB and a spectral width of 60 GHz at the central wavelength of 1030.1 nm is achieved. Owing to the setting of the appropriate parameters for the laser, no indication of Stimulate Brillouin Scattering (SBS) is observed in the system. Moreover, thanks to the excellent quantum efficiency of the laser and the thightly coiling of the active fiber in the main amplifier, the mode instability (MI) is successfully avoided. As a result, the near diffraction-limited beam quality (M2<1.3) is achieved.

  3. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    NASA Astrophysics Data System (ADS)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  4. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%.

  5. Design and characterization of a novel power over fiber system integrating a high power diode laser

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  6. Synthesis of Al2O3 thin films using laser assisted spray pyrolysis (LASP)

    NASA Astrophysics Data System (ADS)

    Dhonge, Baban P.; Mathews, Tom; Tripura Sundari, S.; Krishnan, R.; Balamurugan, A. K.; Kamruddin, M.; Subbarao, R. V.; Dash, S.; Tyagi, A. K.

    2013-01-01

    The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X-Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  7. Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng

    2016-03-01

    Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.

  8. Intraindividual comparison of 1,470 nm diode laser versus carbon dioxide laser for tonsillotomy: a prospective, randomized, double blind, controlled feasibility trial.

    PubMed

    Havel, Miriam; Sroka, Ronald; Englert, Elsa; Stelter, Klaus; Leunig, Andreas; Betz, Christian S

    2012-09-01

    The need for reduction of post-tonsillectomy hemorrhage has led to promotion of tonsillotomy techniques for tonsil tissue reduction in obstructive tonsillar hypertrophy. This trial compares ablative tissue effects using 1,470 nm diode laser and carbon dioxide laser for tonsillotomy in an intraindividual design. 21 children aged 3-13 years (mean age 6.3 years) underwent laser tonsillotomy for obstructive tonsillar hypertrophy in this double blind, prospective, randomized, clinical feasibility trial. In each of the blinded patients, tonsillotomy was performed using fiber guided 1,470 nm diode laser (contact mode, 15 W power) on the one side and carbon dioxide laser (12 W power) on the other side. An independent, blinded physician documented clinical presentation and patients' symptoms preoperatively and on Days 1, 3, 7, 14, and 21 post-operatively using standardized questionnaire including VAS for each side separately. The mean duration of operative treatment was 2.7 min using 1,470 nm laser and 4.9 min using carbon dioxide laser respectively. Intraoperative bleeding and the frequency of bipolar forceps use for intraoperative bleeding control was significantly less using 1,470 nm diode laser system. There was no difference in post-operative pain scores between the carbon dioxide laser treated and the 1,470 nm fiber guided diode laser treated side. No infections, hemorrhages or other complications occurred in the course of the 3 weeks post-operative period. A fiber-guided 1,470 nm diode laser system offers an efficient and safe method for tonsillotomy as treatment of obstructive tonsillar hypertrophy. Compared to our standard practice (carbon dioxide laser), 1,470 nm laser application provides comparable tissue ablation effects with less intraoperative bleeding and shorter operation time. Copyright © 2012 Wiley Periodicals, Inc.

  9. Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 µm

    NASA Astrophysics Data System (ADS)

    Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan

    2017-04-01

    We report on the highly stable self-pulsed operation of a 2.74 µm Er:Lu2O3 ceramic laser pumped by a wavelength locked narrow bandwidth 976 nm laser diode. The operating pulse repetition rate is continuously tunable from 126 kHz to 270 kHz depending on the pump power level. For 12.3 W of absorbed diode pump power, the Er:Lu2O3 ceramic laser generates 820 mW of average output power at a 270 kHz repetition rate and with a pulse duration of 183 ns. The corresponding pulse-to-pulse amplitude fluctuation is estimated to be less than 0.7%. In the continues-wave (CW) mode of operation, the laser yields over 1.3 W of output power with a slope efficiency of 11.9% with respect to the 976 nm pump power.

  10. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  11. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  12. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  13. 2.4 μm diode-pumped Dy2+:CaF2 laser

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Papashvili, Alexander G.; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Batygov, Sergei H.; Osiko, Vyacheslav V.

    2018-01-01

    In this work, a cryogenic cooled, longitudinal diode-pumped Dy2+ :CaF2 laser was investigated for the first time. The temperature dependence of the spectroscopy and the laser properties of Dy2+ :CaF2 are presented. The tested Dy2+ :CaF2 crystal was a longitudinal pump in a near-IR region (926 nm) by laser diode radiation. The maximal mean output power and slope efficiency at 78 K during the pulse regime of the laser were 57.5 mW and 7%, respectively. Furthermore, the CW regime was successfully tested and a maximum output power of 0.37 W was obtained for the absorbed pumping power 5.7 W. The emission laser wavelength was 2367 nm.

  14. Wavelength tunability of laser based on Yb-doped YGAG ceramics

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-02-01

    The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.

  15. Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm.

    PubMed

    Wu, Bo; Jiang, Peipei; Yang, Dingzhong; Chen, Tao; Kong, Jian; Shen, Yonghang

    2009-04-13

    We report a compact diode-laser pumped Nd:GdVO(4) laser with stable dual-wavelength output at 1063 nm and 1065 nm simultaneously. Two types of resonant cavity configurations were presented to support the stable dual-wavelength operation of the laser. Using a polarization beam splitter(PBS) included T-shaped cavity, we obtained a total power output over 5 W in two orthogonal polarized beam directions with 4 W in sigma polarization (1065.5 nm) and 1 W in pi polarization (1063.1 nm). By combining a half-wave-plate with the PBS in the laser cavity, a new configuration favoring one beam direction dual-wavelength output with same polarization direction was realized. A phenomenon of further line splitting was observed in both 1065 nm and 1063 nm.

  16. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  17. InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady

    2018-02-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.

  18. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    PubMed

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  19. 3.1 W narrowband blue external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  20. Quantifying thermal modifications on laser welded skin tissue

    NASA Astrophysics Data System (ADS)

    Tabakoglu, Hasim Ö.; Gülsoy, Murat

    2011-02-01

    Laser tissue welding is a potential medical treatment method especially on closing cuts implemented during any kind of surgery. Photothermal effects of laser on tissue should be quantified in order to determine optimal dosimetry parameters. Polarized light and phase contrast techniques reveal information about extend of thermal change over tissue occurred during laser welding application. Change in collagen structure in skin tissue stained with hematoxilen and eosin samples can be detected. In this study, three different near infrared laser wavelengths (809 nm, 980 nm and 1070 nm) were compared for skin welding efficiency. 1 cm long cuts were treated spot by spot laser application on Wistar rats' dorsal skin, in vivo. In all laser applications, 0.5 W of optical power was delivered to the tissue, 5 s continuously, resulting in 79.61 J/cm2 energy density (15.92 W/cm2 power density) for each spot. The 1st, 4th, 7th, 14th, and 21st days of recovery period were determined as control days, and skin samples needed for histology were removed on these particular days. The stained samples were examined under a light microscope. Images were taken with a CCD camera and examined with imaging software. 809 Nm laser was found to be capable of creating strong full-thickness closure, but thermal damage was evident. The thermal damage from 980 nm laser welding was found to be more tolerable. The results showed that 1070 nm laser welding produced noticeably stronger bonds with minimal scar formation.

  1. Low-power-laser therapy used in tendon damage

    NASA Astrophysics Data System (ADS)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  2. Development of highly efficient laser bars emitting at around 1060 nm for medical applications

    NASA Astrophysics Data System (ADS)

    Pietrzak, Agnieszka; Zorn, Martin; Meusel, Jens; Huelsewede, Ralf; Sebastian, Juergen

    2018-02-01

    An overview is presented on the recent progress in the development of high power laser bars at wavelengths around 1060nm. The development is focused on highly efficient and reliable laser performance under pulsed operation for medical applications. The epitaxial structure and lateral layout of the laser bars were tailored to meet the application requirements. Reliable operation peak powers of 350W and 500W are demonstrated from laser bars with fill-factor FF=75% and resonator lengths 1.5mm and 2.0mm, respectively. Moreover, 60W at current 65A with lifetime <10.000h are presented. The power scaling with fill-factor enables a cost reduction ($/W) up to 35%.

  3. Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials

    NASA Astrophysics Data System (ADS)

    Kolev, V. Z.; Duering, M. W.; Luther-Davies, B.; Rode, A. V.

    2006-12-01

    We propose a novel tuneable table-top optical source as an alternative to the free electron laser currently used for resonant infrared pulsed laser deposition of polymers. It is based on two-stage pulsed optical parametric amplification using MgO doped periodically poled lithium niobate crystals. Gain in excess of 106 in the first stage and pump depletion of 58% in the second stage were achieved when the system was pumped by a high-power Nd:YVO4 picosecond laser source at 1064 nm and seeded by a CW tuneable diode laser at 1530 nm. An average power of 2 W was generated at 3.5 µm corresponding to 1.3 µJ pulse energy.

  4. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    PubMed

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  5. 1940 nm all-fiber Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.

    2017-02-01

    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  6. Modulated Pulsed Laser Sources for Imaging Lidars

    DTIC Science & Technology

    2007-10-01

    doped PM fiber . The ytterbium ions in the fiber are cladding-pumped to their excited states using four, 6-Watt multimode lasers at 976 nm. Yh-dop...next amplified using a fiber amplifier to an average power of 10-15 Watts. A highly efficient, periodically poled nonlinear optical material will be...establish the feasibility of both pulsing a 1064 nm laser to produce enough average power to successfully seed a Yb- doped fiber amplifier so it will

  7. The Laser Guide Star System for Adaptive Optics at Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.

    We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high-power laser beam with no suffer from the non-linear scatter effect, i.e. stimulated Brillouin scatter, in the PCF. The laser launching telescope (LLT) has an output clear aperture as 50 cm. It is classical Cassegrain type optical configuration with tertiary mirror to insert the laser beam from the side. The wavefront error is designed to be 60 to 70nm. The LLT is a copy product what European Southern Observatory has been designed for the laser guide star system at Very Large Telescope. We succeeded to launch the laser beam to the sky on October 12, 2006. After several tests on the sky, we succeeded to get an image of the laser guide star with the size of more than 10 arc second. The larger size of the laser guide star is caused by the large optical aberration on the primary mirror of LLT due to the heat stress generated at the trigonal support points. We are making a plan to repair this problem during June and the second laser launching test will start around this summer.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dontsova, E I; Kablukov, S I; Babin, Sergei A

    A cladding-pumped ytterbium-doped fibre laser has been tuned to shorter emission wavelengths (from 1040 to 1017 nm). The laser output power obtained has been compared to calculation results. We have studied frequency doubling of the laser in a KTiOPO{sub 4} (KTP) crystal with type II phase matching in the XY plane and demonstrated wavelength tuning in the range 510 - 520 nm. (lasers)

  9. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  10. Effect of low level laser therapy and high intensity laser therapy on endothelial cell proliferation in vitro: preliminary communication

    NASA Astrophysics Data System (ADS)

    Lukowicz, Malgorzata; Szymanska, Justyna; Goralczyk, Krzysztof; Zajac, Andrzej; Rość, Danuta

    2013-01-01

    Background: The main purpose of this study was to analyze the influence of power intensity and wavelength of Low Level Laser Therapy (LLLT) and HILT (High Intensity Laser Therapy) on endothelial cell proliferation. Material and methods: The tests were done on human umbilical vein endothelial cells (HUVEC). Cultures were exposed to laser irradiation of 660 nm and 670 nm at different dosages, power output was 10 - 40 mW as well as 820 nm with power 100 mW and 808 nm with power 1500 mW. Energy density was from 0.28 to 11,43 J/cm2. Cell proliferation of a control and tested culture was evaluated with a colorimetric device to detect live cells. The tests were repeated 8 times. Results: We observed good effects of LLLT on live isolated ECs and no effects in experiments on previous deep-frozen cultures. Also HILT stimulated the proliferation of HUVEC. Conclusion: Endothelial cells play a key role in vascular homeostasis in humans. We observed the stimulatory effect of LLLT and HILT on proliferation of HUVEC. Many factors influence the proliferation of EC, so is it necessary to continue the experiment with different doses, intensity and cell concentration.

  11. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  12. Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.

    PubMed

    Kerridge-Johns, William R; Damzen, Michael J

    2018-03-19

    Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.

  13. A high repetition rate multiwavelength polarized solid state laser source for long range lidar applications

    NASA Astrophysics Data System (ADS)

    Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.

    2006-12-01

    Advances in Laser Technology and nonlinear Optical techniques can be effectively utilized for LIDAR applications in space and atmospheric sciences to achieve better flexibility and control of the available optical power. Using such devices, one can achieve highly accurate and resolved, measurement of the distribution for atmospheric scattering layers. In the present investigation a diode double end pumped high repetition rate, multi wavelength Nd:YAG laser is designed, fabricated and various laser beam parameters have been characterized for LIDAR applications. Nonlinear optical techniques have been employed to generate higher harmonics like 532nm, 355nm and 266nm for various spectral studies. The experimental setup mainly consists of two Fiber coupled pump laser diodes (Model FAP- 81-30C-800B, Coherent Inc, USA) with a maximum output power of 30Watt at a wavelength of 807-810nm at 30°C set temperature. A second harmonic LBO crystal cut for critical phase matching placed within the laser resonator is provided for converting a fraction of the fundamental beam to a second harmonic beam. A type II frequency tripling LBO nonlinear crystal (cut for critical phase matching) is also located inside the laser resonator. The third harmonic beam and the unconverted fundamental beam are then directed across a type I fourth harmonic LBO crystal cut for critical phase matching where a portion of the fundamental beam and a portion of the third harmonic beam are converted to a fourth harmonic frequency when both fundamental and third harmonic beams propagate through the frequency quadrupling crystal. The resulting beams which are the fundamental (1064nm), second harmonic (532nm), third harmonic (355nm) and fourth harmonic (266nm) are then directed to a fourth harmonic separator in which the fourth harmonic beam is separated from the fundamental beam. A maximum average power of 12W at 1064nm, 8W at 532nm, 5W at 355nm and 3W at 266nm have been measured at a repetition rate of 10KHz. A minimum pulse width of 25ns have been observed.

  14. Disordered Nd:LuYSiO5 crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofeng; Zhou, Zhiyong; Huang, Xiaoxu; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Xu, Jun

    2017-11-01

    We report on diode-pumped disordered Nd:LuYSiO5 (Nd:LYSO) crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I 13/2 transitions. Simultaneous laser operation at 1074 and 1078 nm is achieved with maximum output power of 4.46 W and slope efficiency of 39.6%. Single wavelength laser at 1358 nm with maximum output power of 1.15 W and slope efficiency of 11.8% is also obtained. Moreover, four single-wavelength lasers at 1058, 1107, 1330 and 1386 nm with relatively low gains are achieved with maximum output powers of 2.72, 1.22, 0.52 and 0.42 W, respectively, for the first time to our knowledge. Lasing at non-traditional emission lines was obtained by using output couplers with dielectric coatings for specific wavelength ranges.

  15. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  16. Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter

    NASA Astrophysics Data System (ADS)

    Tian, Wenyan; Zhang, Shukui

    2018-02-01

    We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours

  17. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2017-01-01

    We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.

  18. Retinal injury from simultaneous exposure to 532-nm and 860-nm laser irradiation

    NASA Astrophysics Data System (ADS)

    Schuster, Kurt; Roach, William P.; Polhamus, Garrett; Notabartolo, John; DiCarlo, Cheryl; Stockton, Kevin; Stolarski, David; Carothers, Val; Rockwell, Benjamin A.; Cain, Clarence

    2004-07-01

    To properly assess the retinal hazards from several lasers using multiple wavelengths, the retinal effects of 10-second laser irradiation from 532 and 860 nm were determined in non-human primates for several different power combinations of these wavelengths. A total of 12 eyes were exposed using four different ratios of power levels to determine the contribution to the damage levels from each wavelength. The data are compared to the calculations resulting from use of the currently accepted method of predicting hazards from simultaneous laser. The ANSI-Z136 - 2000 standard was used to calculate the combined maximum permissible exposure (MPE) and for comparison with the measured visible lesion thresholds, i.e., ED50s.

  19. Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.

    PubMed

    Demas, J; Prabhakar, G; He, T; Ramachandran, S

    2017-04-03

    Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

  20. Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Yasukevich, Anatoly; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2015-11-15

    Passive Q-switching of a compact Tm:KLu(WO(4))(2) microchip laser diode pumped at 805 nm is demonstrated with a polycrystalline Cr(2+):ZnS saturable absorber. This laser generates subnanosecond (780 ps) pulses with a pulse repetition frequency of 5.6 kHz at 1846.6 nm, the shortest pulse duration ever achieved by Q-switching of ~2 μm lasers. The maximum average output power is 146 mW with a slope efficiency of 21% with respect to the absorbed power. This corresponds to a pulse energy of 25.6 μJ and a peak power of 32.8 kW.

  1. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  2. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber.

    PubMed

    Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-01-10

    Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

  3. Comparing irradiation parameters on disinfecting enterrecoccus faecalis in root canal disinfection

    NASA Astrophysics Data System (ADS)

    Sarp, Ayşe. S.; Gülsoy, Murat

    2016-02-01

    Although conventional method carries all the debris, studies on persisting infections in root canals show bacteria and their toxins spread from the root canal and contaminate the apical region. Thus developes apical periodontitis or symptoms, and loss of tooth. Even if the treatment has adequate success, anatomy of root canal system can be very complexwith accessory canals. The disinfecting effect of laser radiation has only recently been used in dentistry. Laser irradiation has a bactericidal effect. Each wavelength has its own advantages and limitations according to their different absorption characteristics, depending on their 'absorption coefficient'. The sterilizing efficiency of two types of wavelengths, a new fiber laser 1940- nm Thulium fiber Laser and an 2940 nm Er:YAG Laser were compared in this study. Irradiation with a power of 0.50 W with 1940- nm Thulium fiber Laser disinfected 95,15% of bacteria, however irradiation with same laser power with Er:YAG Laser caused a reduction of 96,48 %. But there was no significant difference in the disinfection effect of two different laser groups ( p < 0.05, Mann- U-Whitney Test). In addition to this, Er :YAG Laser caused three times more reduction from its own positive control group where 1940- nm Thulium fiber Laser caused 2,5 times effective disinfection.

  4. Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping

    NASA Astrophysics Data System (ADS)

    Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca

    2018-02-01

    Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.

  5. Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm.

    PubMed

    Lagatsky, A A; Fusari, F; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W

    2009-09-01

    We report the first demonstration, to our knowledge, of passive mode locking in a Tm(3+), Ho(3+)-codoped KY(WO(4))(2) laser operating in the 2000-2060 nm spectral region. An InGaAsSb-based quantum well semiconductor saturable absorber mirror is used for the initiation and stabilization of the ultrashort pulse generation. Pulses as short as 3.3 ps were generated at 2057 nm with average output powers up to 315 mW at a pulse repetition frequency of 132 MHz for 1.15 W of absorbed pump power at 802 nm from a Ti:sapphire laser.

  6. Efficient Q-switched operation in 1.64 μm Er:YAG tapered rod laser

    NASA Astrophysics Data System (ADS)

    Polyakov, Vadim M.; Vitkin, Vladimir V.; Krylov, Alexandr A.; Uskov, Alexander V.; Mak, Andrey A.

    2017-02-01

    We model output characteristics of the 1645 nm 8 mJ 10 ns 100 Hz Q-switched Er:YAG DPSSL. The laser is end pumped at a wavelength of 1532 nm. Fiber-coupled diode laser module was 10 nm FWHM, 12 W CW, 200 μm, NA 0.22. Various tapering of the active rod has been considered for 1 mm diameter, 20 mm long and 0.5% Er doping. We discuss the heat deposition process, the energy storage efficiency and the average power limitations for Q-switched regime of generation and amplification, and find the system scalable for the high power operation.

  7. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    NASA Astrophysics Data System (ADS)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  8. Comparative study of two intraoral laser techniques for soft tissue surgery

    NASA Astrophysics Data System (ADS)

    Swick, Michael D.; Richter, Alexander

    2003-06-01

    Historically, 810nm has been the predominant wavelength used for intraoral surgery, when diode lasers have been discussed, due to their large numbers in the market place. The techniques used intraorally with the 810nm diode have been relatively similar in most cases. Low powers, 1 or 2 watts, using continuous wave, are employed. The purpose of this study is to compare the thermal damage of the technique of using continuous wave at low powers, to using higher powers with a pulse mode and water for coolant, with the 980nm diode wavelength. During the study the laser fiber was held immobile eliminating surgical manipulation as an error. The resultant histology proves, while the volume of vaporization dramatically increases, thus giving the clinician the ability to reduce the time for destructive conduction of excess heat for a given procedure, the amount of coagulation actually decreases in width and depth. As an added benefit charring, which has been implicated in delayed healing is virtually eliminated. This evidence, coupled with excellent clinical results, lends validity to the use of pulsed higher powers and water coolant for the 980nm diode laser.

  9. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; hide

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  10. Vertical cavity surface-emitting semiconductor lasers with injection laser pumping

    NASA Astrophysics Data System (ADS)

    McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.

    1990-05-01

    Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.

  11. Lidar Measurements of the Stratosphere and Mesosphere at the Biejing Observatory

    NASA Astrophysics Data System (ADS)

    Du, Lifang; Yang, Guotao; Cheng, Xuewu; Wang, Jihong

    With the high precision and high spatial and temporal resolution, the lidar has become a powerful weapon of near space environment monitoring. This paper describes the development of the solid-state 532nm and 589nm laser radar, which were used to detect the wind field of Beijing stratosphere and mesopause field. The injection seeding technique and atomic absorption saturation bubble frequency stabilization method was used to obtain narrow linewidth of 532nm lidar, Wherein the laser pulse energy of 800mJ, repetition rate of 30Hz. The 589nm yellow laser achieved by extra-cavity sum-frequency mixing 1064nm and 1319nm pulse laser with KTP crystal. The base frequency of 1064nm and 1319nm laser adopted injection seeding technique and YAG laser amplification for high energy pulse laser. Ultimately, the laser pulse of 150mJ and the linewidth of 130MHz of 589nm laser was obtain. And after AOM crystal frequency shift, Doppler frequency discriminator free methods achieved of the measuring of high-altitude wind. Both of 532nm and 589nm lidar system for engineering design of solid-state lidar provides a basis, and also provide a solid foundation for the development of all-solid-state wind lidar.

  12. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  13. High-power operation of highly reliable narrow stripe pseudomorphic single quantum well lasers emitting at 980 nm

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.

    1990-01-01

    Ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well lasers exhibiting record high quantum efficiencies and high output power densities (105 mW per facet from a 6 micron wide stripe) at a lasing wavelength of 980 nm are discussed that were fabricated from a graded index separate confinement heterostructure grown by molecular beam epitaxy. Life testing at an output power of 30 mW per uncoated facet reveals a slow gradual degradation during the initial 500 h of operation after which the operating characteristics of the lasers become stable. The emission wavelength, the high output power, and the fundamental lateral mode operation render these lasers suitable for pumping Er3+-doped fiber amplifiers.

  14. The effect of bleaching gel and (940 nm and 980 nm) diode lasers photoactivation on intrapulpal temperature and teeth whitening efficiency.

    PubMed

    Al-Karadaghi, Tamara S; Al-Saedi, Asmaa A; Al-Maliky, Mohammed A; Mahmood, Ali S

    2016-12-01

    This in vitro study aimed to investigate the whitening efficacy of 940 nm and 980 nm diode laser photoactivation in tooth bleaching by analysing pulp chamber temperature, as well as the change in tooth colour. Root canals of thirty extracted human lower premolars were prepared. Laserwhite* 20 bleaching agent containing 38% of hydrogen peroxide was photoactivated with 7 W output power of 940 nm and 980 nm diode lasers for 120 s. Bleaching gel reduced 27-29% of the temperature from reaching the pulp chamber. For shade assessment, only the groups photoactivated using diode lasers showed statistically significant differences from control group P < 0.001. Within the studied parameters, both 940 nm and 980 nm diode lasers produced a safe pulp temperature increase. Diode laser photoactivation of bleaching gel resulted in more efficient teeth whitening. Photoactivation with 940 nm diode laser yielded the highest change in colour with only minor increase in pulp chamber temperature. © 2016 Australian Society of Endodontology Inc.

  15. Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Shaw-Stewart, J.; Mattle, T.; Dinca, V.; Lippert, T.; Wokaun, A.; Dinescu, M.

    2013-08-01

    Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.

  16. Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Hendinger, Anita; Sailer, Reinhard; Gschwend, Michael H.; Strauss, Wolfgang S.; Bauer, Manfred; Schuetze, Karin

    2000-01-01

    Viability of cultivated Chinese hamster ovary cells in optical tweezers was measured after exposure to various light doses of red high power laser diodes ((lambda) equals 670 - 680 nm) and a Nd:yttrium-aluminum-garnet laser ((lambda) equals 1064 nm). When using a radiant exposure of 2.4 GJ/cm2, a reduction of colony formation up to a factor 2 (670 - 680 nm) or 1.6 (1064 nm) as well as a delay of cell growth were detected in comparison with nonirradiated controls. In contrast, no cell damage was found at an exposure of 340 MJ/cm2 applied at 1064 nm. Cell viabilities were correlated with fluorescence excitation spectra and with literature data of wavelength dependent cloning efficiencies. Fluorescence excitation maxima of the coenzymes NAD(P)H and flavins were detected at 365 and 450 nm, respectively. This is half of the wavelengths of the maxima of cell inactivation, suggesting that two-photon absorption by these coenzymes may contribute to cellular damage. Two-photon excitation of NAD(P)H and flavins may also affect cell viability after exposure to 670 - 680 nm, whereas one-photon excitation of water molecules seems to limit cell viability at 1064 nm.

  17. Low-cost, single-mode diode-pumped Cr:Colquiriite lasers.

    PubMed

    Demirbas, Umit; Li, Duo; Birge, Jonathan R; Sennaroglu, Alphan; Petrich, Gale S; Kolodziejski, Leslie A; Kaertner, Franz X; Fujimoto, James G

    2009-08-03

    We present three Cr3+:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with approximately 520 mW of absorbed pump power, up to 257, 269 and 266 mW of output power and slope efficiencies of 53%, 62% and 54% were demonstrated for Cr:LiSAF, Cr:LiSGaF and Cr:LiCAF, respectively. Record cw tuning ranges from 782 to 1042 nm for Cr:LiSAF, 777 to 977 nm for Cr:LiSGaF, and 754 to 871 nm for Cr:LiCAF were demonstrated. In cw mode-locking experiments using semiconductor saturable absorber mirrors at 800 and 850 nm, Cr:Colquiriite lasers produced approximately 50-100 fs pulses with approximately 1-2.5 nJ pulse energies at approximately 100 MHz repetition rate. Electrical-to-optical conversion efficiencies of 8% in mode-locked operation and 12% in cw operation were achieved.

  18. Advancements in high-power diode laser stacks for defense applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens

    2012-06-01

    This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.

  19. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  20. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  1. High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617  nm.

    PubMed

    Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao

    2014-12-01

    An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.

  2. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V

    2013-05-31

    The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible tomore » use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)« less

  3. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    PubMed

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  4. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  5. Power balance on a multibeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  6. Power balance on a multibeam laser

    NASA Astrophysics Data System (ADS)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  7. Power balance on a multibeam laser

    DOE PAGES

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.; ...

    2018-02-15

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  8. Simple modules for high efficiency conversion of standard ytterbium doped fiber lasers into octave spanning continuous-wave supercontinuum sources

    NASA Astrophysics Data System (ADS)

    Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.

    2018-02-01

    We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.

  9. ALMDS laser system

    NASA Astrophysics Data System (ADS)

    Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.

    2003-06-01

    The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.

  10. Use of 1070 nm fiber lasers in oral surgery: preliminary ex vivo study with FBG temperature monitoring.

    PubMed

    Fornaini, Carlo; Merigo, Elisabetta; Poli, Federica; Cavatorta, Chiara; Rocca, Jean-Paul; Selleri, Stefano; Cucinotta, Annamaria

    2017-12-31

    The aim of this ex vivo study was to demonstrate the performances of 1070 nm fiber lasers for the ablation of oral tissues through the evaluation of the histological modifications made by a blind pathologist and the measurement of the thermal elevation during laser irradiation by a sensor based on a fiber Bragg grating. The source used was a pulsed fiber laser emitting at 1070 nm, with 20 W maximum average output power and 100 ns fixed pulse duration. Different tests were performed by changing the laser parameters, particularly the peak power of the pulses and the repetition rate. The tissue of the measurements demonstrated that the best properties in term of cutting capability and, at the same time, the lower thermal damages to the tissues can be obtained with a peak power of 3 kW, a repetition rate of 50 kHz and a speed of 5 mm/s. This ex vivo study showed that 1070 nm fiber lasers can be very useful in oral surgery, since they provide a reduced thermal elevation in the irradiated tissues, thus consequently respecting their biological structures. Moreover, this work demonstrates that FBG sensors, based on the optical fiber technology as the laser source considered for the tests, may be good instruments to record thermal elevation when applied to the ex vivo studies on animal models.

  11. Highly-efficient multi-watt Yb:CaLnAlO4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady

    2017-02-01

    Tetragonal rare-earth calcium aluminates, CaLnAlO4 where Ln = Gd or Y (CALGO and CALYO, respectively), are attractive laser crystal hosts due to their locally disordered structure and high thermal conductivity. In the present work, we report on highly-efficient power-scalable microchip lasers based on 8 at.% Yb:CALGO and 3 at.% Yb:CALYO crystals grown by the Czochralski method. Pumped by an InGaAs laser diode at 978 nm, the 6 mm-long Yb:CALGO microchip laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η = 84% (with respect to the absorbed pump power) and an optical-to-optical efficiency of ηopt = 49%. The 3 mm-long Yb:CALYO microchip laser generated 5.06 W at 1048-1056 nm corresponding to η = 91% and ηopt = 32%. Both lasers produced linearly polarized output (σ- polarization) with an almost circular beam profile and beam quality factors M2 x,y <1.1. The output performance of the developed lasers was modeled yielding a loss coefficient as low as 0.004-0.007 cm-1. The results indicate that the Yb3+- doped calcium aluminates are very promising candidates for high-peak-power passively Q-switched microchip lasers.

  12. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  13. A double-stream Xe:He jet plasma emission in the vicinity of 6.7 nm

    NASA Astrophysics Data System (ADS)

    Chkhalo, N. I.; Garakhin, S. A.; Golubev, S. V.; Lopatin, A. Ya.; Nechay, A. N.; Pestov, A. E.; Salashchenko, N. N.; Toropov, M. N.; Tsybin, N. N.; Vodopyanov, A. V.; Yulin, S.

    2018-05-01

    We present the results of investigations of extreme ultraviolet (EUV) light emission in the range from 5 to 10 nm. The light source was a pulsed "double-stream" Xe:He gas jet target irradiated by a laser beam with a power density of ˜1011 W/cm2. The radiation spectra were measured with a Czerny-Turner monochromator with a plane diffraction grating. The conversion efficiency of the laser energy into EUV radiation caused by Xe+14…+16 ion emission in the range of 6-8 nm was measured using a calibrated power meter. The conversion efficiency of the laser radiation into EUV in the vicinity of 6.7 nm was (2.17 ± 0.13)% in a 1 nm spectral band. In the spectral band of the real optical system (0.7% for La/B multilayer mirrors) emitted into the half-space, it was (0.1 ± 0.006)%. The results of this study provide an impetus for further research on laser plasma sources for maskless EUV lithography at a wavelength of 6.7 nm.

  14. Development of a red diode laser system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Halkiotis, Konstantinos N.; Yova, Dido M.; Uzunoglou, Nikolaos K.; Papastergiou, Georgios; Matakias, Sotiris; Koukouvinos, Ilias

    1998-07-01

    The effectiveness of photodynamic treatment modality has been proven experimentally for a large variety of tumors, during the last years. This therapy utilizes the combined action of light and photosensitizing drug. Until now, a disadvantage of PDT has be the low tissue penetration of light, at the wavelengths of most commonly available lasers, for clinical studies. The red wavelength offers the advantage of increased penetration depth in tissue, in addition several new wavelength offers the advantage of increased penetration depth in tissue, in addition several new photosensitizers present absorption band at the region 630nm to 690nm. The development of high power red diode laser system for photodynamic therapy, has provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the system design, development and performance of a diode laser system, connected with a fiber optic facility, to be used for PDT. The system was based on a high power semiconductor diode laser emitting at 655nm. The laser output power was approximately 60mW at the output of a 62.5/125/900 micron fiber optic probe. FUll technical details and optical performance characteristics of the system will be discussed in this paper.

  15. Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect.

    PubMed

    Zhang, Peng; Wang, Tianshu; Ma, Wanzhuo; Dong, Keyan; Jiang, Huilin

    2015-05-20

    A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.

  16. Laser effect on the 248 nm KrF transition using heavy ion beam pumping

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.

    2007-07-01

    In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).

  17. Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers

    NASA Astrophysics Data System (ADS)

    Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.

    2017-12-01

    Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end

  18. Solid-state-based laser system as a replacement for Ar+ lasers.

    PubMed

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  19. Beam shaping by using small-aperture SLM and DM in a high power laser

    NASA Astrophysics Data System (ADS)

    Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng

    2018-03-01

    High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.

  20. Comparison of four lasers (λ = 650, 808, 980, and 1075 nm) for noninvasive creation of deep subsurface lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Wilson, Christopher R.; Fried, Nathaniel M.

    2015-07-01

    Lasers have been used in combination with applied cooling methods to preserve superficial skin layers (100's μm's) during cosmetic surgery. Preservation of a thicker tissue surface layer (millimeters) may also allow development of other noninvasive laser procedures. We are exploring noninvasive therapeutic laser applications in urology (e.g. laser vasectomy and laser treatment of female stress urinary incontinence), which require surface tissue preservation on the millimeter scale. In this preliminary study, four lasers were compared for noninvasive creation of deep subsurface thermal lesions. Laser energy from three diode lasers (650, 808, and 980 nm) and a Ytterbium fiber laser (1075 nm) was delivered through a custom built, side-firing, laser probe with integrated cooling. An alcohol-based solution at -5 °C was circulated through a flow cell, cooling a sapphire window, which in turn cooled the tissue surface. The probe was placed in contact with porcine liver tissue, ex vivo, kept hydrated in saline and maintained at ~ 35 °C. Incident laser power was 4.2 W, spot diameter was 5.3 mm, and treatment time was 60 s. The optimal laser wavelength tested for creation of deep subsurface thermal lesions during contact cooling of tissues was 1075 nm, which preserved a surface layer of ~ 2 mm. The Ytterbium fiber laser provides a compact, low maintenance, and high power alternative laser source to the Neodymium:YAG laser for noninvasive thermal therapy.

  1. Benefits of low-power lasers on oral soft tissue

    NASA Astrophysics Data System (ADS)

    Eduardo, Carlos d. P.; Cecchini, Silvia C. M.; Cecchini, Renata C.

    1996-04-01

    The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.

  2. Single Frequency Monolithic Solid State Green Laser as a Potential Source for Vibrometry Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, Jaroslaw Z.; Antonczak, Arkadiusz J.; Abramski, Krzysztof M.

    2010-05-28

    In this paper miniature, monolithic single frequency solid state laser operating at 532 nm is presented. Developed Nd:GdVO{sub 4}/YVO{sub 4}/KTP consist of three crystal bonded together with a UV adhesive. The single frequency operation was obtained in wide temperature range from 17 deg. C to 27 deg. C. The laser operated with output power up to 90 mW at 532 nm. The total optical efficiency (808 nm to 532 nm) was 9.5%. Power stability was at the level of +-0.8% and the long term frequency stability was approximately 3centre dot10{sup -8}. The beam has a Gaussian profile and the M2more » parameter was below 1.1.« less

  3. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  4. Diode-pumped dual-wavelength Nd:LSO laser at 1059 and 1067  nm with nearly diffraction-limited beam quality.

    PubMed

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-04-10

    We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.

  5. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting

    2010-11-08

    We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 
105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.

  6. Design of 6 kw fiber-coupled system for semiconductor laser

    NASA Astrophysics Data System (ADS)

    Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yunfei; Ding, Lushuang; Zhao, Pengfei; Zou, Yonggang; Xu, Li; Lin, Xuechun

    2016-10-01

    In this paper, we present the design of a 6 kW fiber-coupled laser diode system by using ZEMAX, and power scaling and fiber coupling techniques for high-power laser diode stacks were introduced in detail. Beams emitted from eight laser diode stacks comprised of four 960 W stacks with center wavelength of 938 nm and four 960 W stacks with center wavelength of 976 nm are combined and coupled into a standard fiber with a core diameter of 800 μm and numerical aperture of 0.22. Simulative result shows that the final power came out of the fiber could reach 6283.9 W, the fiber-coupling efficiency is 87%, and the brightness is 8.2 MW/ (cm2·sr).

  7. Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric

    NASA Astrophysics Data System (ADS)

    Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya

    2018-02-01

    Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.

  8. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    NASA Astrophysics Data System (ADS)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  9. Long-wavelength vertical-cavity laser research at Gore

    NASA Astrophysics Data System (ADS)

    Jayaraman, Vijaysekhar; Geske, J. C.; MacDougal, Michael H.; Peters, Frank H.; Lowes, Ted D.; Char, T. T.; Van Deusen, Dale R.; Goodnough, T.; Donhowe, Mark N.; Kilcoyne, Sean P.; Welch, David J.

    1999-04-01

    Vertical cavity surface emitting lasers (VCSELs) operating near 1310 or 1550 nm have been the subject of intensive research by multiple groups for several years. In the past year at Gore, we have demonstrated the first 1300 nm VCSELs which operate with useful power, high modulation rate, and low voltage over the commercial temperature range of 0 - 70 degree(s)C. These results have been achieved using a new structure in which an 850 nm VCSEL optical pump is integrated with the 1300 nm VCSEL. Electrical drive is applied to the 850 nm pump, and 1300 nm light is emitted from the integrated structure. This approach has resulted in over a milliwatt of single transverse mode power at room temperature, and several hundred microwatts of single transverse mode power at 70 degree(s)C. In addition, these devices demonstrate multi-gigabit modulation and excellent coupling efficiency to single-mode fiber.

  10. High repetition-rate Q-switched and intracavity doubled diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1992-01-01

    A Nd:YAG laser was end pumped with 2.2 W of continuous-wave (CW) diode laser output. Efficient operation of the laser at high repetition rates was emphasized. This laser provides 890 mW of TEM00 CW output at 1064 nm, and 340 mW of 532 nm average power at a Q-switched repetition rate of 25 kHz. Experimental data are compared with analysis.

  11. Simultaneous dual-wavelength laser operation at 937 and 1062 nm in Nd3+:Gd3Ga5O12

    NASA Astrophysics Data System (ADS)

    Gao, F.; Sun, G. C.; Li, Y. D.; Dong, Y.; Li, S. T.

    2013-08-01

    Diode-end-pumped continuous-wave (cw) simultaneous dual-wavelength laser operation at 937 and 1062 nm in a single Nd3+:Gd3Ga5O12 (Nd:GGG) crystal was demonstrated. A total output power of 1.12 W at the two fundamental wavelengths was achieved at incident pump power of 17.6 W. The optical-to-optical conversion was up to 6.4% with respect to the incident pump power. To the best of our knowledge, this is first work on cw simultaneous dual-wavelength operation at 937 and 1062 nm in Nd:GGG crystal.

  12. Compact fs ytterbium fiber laser at 1010 nm for biomedical applications.

    PubMed

    Kong, Cihang; Pilger, Christian; Hachmeister, Henning; Wei, Xiaoming; Cheung, Tom H; Lai, Cora S W; Huser, Thomas; Tsia, Kevin K; Wong, Kenneth K Y

    2017-11-01

    Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers.

  13. Compact fs ytterbium fiber laser at 1010 nm for biomedical applications

    PubMed Central

    Kong, Cihang; Pilger, Christian; Hachmeister, Henning; Wei, Xiaoming; Cheung, Tom H.; Lai, Cora S. W.; Huser, Thomas; Tsia, Kevin. K.; Wong, Kenneth K. Y.

    2017-01-01

    Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers. PMID:29188091

  14. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  16. Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal

    NASA Astrophysics Data System (ADS)

    Němec, Michal; Šulc, Jan; Hlinomaz, Kryštof; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav

    2018-02-01

    Solid-state eye-safe lasers are interesting sources for various applications, such as lidar, remote sensing, and ranging. A resonantly diode-pumped Er:YAG laser could be one of them allowing to reach a tunable laser emission in 1.6 μm spectral region. To overcome low pump absorption and poor pumping beam quality generated by commercially available laser diode, an active medium could be formed to long and thin laser rod guiding pumping radiation. Such an effective cooling during a high power pumping, which is a "crystal-fiber" benefit, may be useful for "standard" crystal active medium. The main goal of this work was to investigate the laser characteristics of new developed Er:YAG crystal with a special shape for diode-pumping. Er:YAG fiber-shape crystal with square cross-section (1x1mm) and 40mm in length was doped by 0.1% Er3+ ions. All sides of this crystal were polished and in addition the end-faces of it were antireflection coatings for the wavelength 1470 and 1645 nm. As a pump system, a fiber coupled laser diode (f = 10 Hz, t = 10 ms) emitting radiation at 1465 nm wavelength was used. Er:YAG fiber-shape crystal was placed onto a copper holder in the 85 mm long plan-concave resonator consisting of a pump flat mirror and output curved (r = 150 mm) coupler with a reflectivity of 96 % @ 1645 nm. The dependence of the output peak power on absorbed pump power was investigated and the maximum 0.8 W was obtained. The corresponding slope efficiency was 14.5 %. The emitting wavelength was equaled to 1645 nm (4 nm linewidth, FWHM). The spatial beam structure was close to the Gaussian mode.

  17. High reliability level on single-mode 980nm-1060 nm diode lasers for telecommunication and industrial applications

    NASA Astrophysics Data System (ADS)

    Van de Casteele, J.; Bettiati, M.; Laruelle, F.; Cargemel, V.; Pagnod-Rossiaux, P.; Garabedian, P.; Raymond, L.; Laffitte, D.; Fromy, S.; Chambonnet, D.; Hirtz, J. P.

    2008-02-01

    We demonstrate very high reliability level on 980-1060nm high-power single-mode lasers through multi-cell tests. First, we show how our chip design and technology enables high reliability levels. Then, we aged 758 devices during 9500 hours among 6 cells with high current (0.8A-1.2A) and high submount temperature (65°C-105°C) for the reliability demonstration. Sudden catastrophic failure is the main degradation mechanism observed. A statistical failure rate model gives an Arrhenius thermal activation energy of 0.51eV and a power law forward current acceleration factor of 5.9. For high-power submarine applications (360mW pump module output optical power), this model exhibits a failure rate as low as 9 FIT at 13°C, while ultra-high power terrestrial modules (600mW) lie below 220 FIT at 25°C. Wear-out phenomena is observed only for very high current level without any reliability impact under 1.1A. For the 1060nm chip, step-stress tests were performed and a set of devices were aged during more than 2000 hours in different stress conditions. First results are in accordance with 980nm product with more than 100khours estimated MTTF. These reliability and performance features of 980-1060nm laser diodes will make high-power single-mode emitters the best choice for a number of telecommunication and industrial applications in the next few years.

  18. Theoretical and experimental investigations on high peak power Q-switched Nd:YAG laser at 1112 nm

    NASA Astrophysics Data System (ADS)

    He, Miao; Yang, Feng; Wang, Zhi-Chao; Gao, Hong-Wei; Yuan, Lei; Li, Chen-Long; Zong, Nan; Shen, Yu; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-07-01

    We report on the experimental measurement and theoretical analysis on a Q-switched high peak power laser diode (LD) side-pumped 1112 nm Nd:YAG laser by means of special mirrors coating design in cavity. In theory, a numerical model, based on four-wavelength rate equations, is performed to analyze the competition process of different gain lines and the output characteristics of the Q-switched Nd:YAG laser. In the experiment, a maximum output power of 25.2 W with beam quality factor M2 of 1.46 is obtained at the pulse repetition rate of 2 kHz and 210 ns of pulse width, corresponding to a pulse energy and peak power of 12.6 mJ and 60 kW, respectively. The experimental data agree well with the theoretical simulation results.

  19. Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers

    NASA Astrophysics Data System (ADS)

    Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2018-02-01

    We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).

  20. Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8

    NASA Astrophysics Data System (ADS)

    Osiac, E.; Heumann, E.; Huber, G.; Kück, S.; Sani, E.; Toncelli, A.; Tonelli, M.

    2003-06-01

    The letter reports on upconverted orange (607.5 nm, 3P0→3H6) and red (638.7 nm, 3P0→3F2) laser oscillation at room temperature observed in Pr3+, Yb3+:BaY2F8 under excitation at 822 or 841 nm at 300 K. The upconversion mechanism that populates the emitting level is an avalanche excitation mechanism. Output powers up to 55 mW and slope efficiencies up to 27% were demonstrated at 607.5 nm. At 638.7 nm, the maximum output power was 26 mW with a slope efficiency of about 13.5%.

  1. Efficient second-harmonic conversion of CW single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler

    NASA Technical Reports Server (NTRS)

    Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.

    1991-01-01

    Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.

  2. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    PubMed

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  3. Numerical and experimental determination of weld pool shape during high-power diode laser welding

    NASA Astrophysics Data System (ADS)

    Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.

    2003-10-01

    In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.

  4. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  5. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE PAGES

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.; ...

    2016-12-12

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  6. Imaging of tissue using a NIR supercontinuum laser light source with wavelengths in the second and third NIR optical windows

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, R. R.

    2015-03-01

    Supercontinuum light (SC) at wavelengths in the second (1,100 nm to 1,350 nm) and third (1,600 nm to 1,870 nm) NIR optical windows can be used to improve penetration depths of light through tissue and produce clearer images. Image quality is increased due to a reduction in scattering (inverse wavelength power dependence 1/λn, n≥1). We report on the use of a compact Leukos supercontinuum laser (model STM-2000-IR), which utilizes the spectral range from 700 nm to 2,400 nm and offers between 200 - 500 microwatt/nm power in the second and third NIR windows, with an InGaAs detector to image abnormalities hidden beneath thick tissue.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schearer, L.D.; Leduc, M.

    Over 250 mW of CW laser emission at 1084 nm is obtained from Nd:LiNbO{sub 3} when the rod is end-pumped along the crystalline {open quote}{ital y}{close quote} axis by 1 W from a Kr{sup +} laser at 752 nm. The laser can be tuned over 3 nm at the 1084 nm peak with a thin, uncoated etalon in the cavity. Thresholds of 30 mW of absorbed pump power were obtained with a weak output coupler, rising to 220 mW with a 35% transmitting output mirror. No pump-induced photorefractive effects were observed.

  8. 885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto

    2010-04-01

    The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.

  9. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    NASA Astrophysics Data System (ADS)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  10. A global design of high power Nd 3+-Yb 3+ co-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Zhang; Chuncan, Wang; Tigang, Ning

    2008-09-01

    A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.

  11. Tunable femtosecond laser based on the Nd3+:BaLaGa 3O 7 disordered crystal

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Pirzio, F.; Tartara, L.; Ugolotti, E.; Zhang, H.; Wang, J.; Yu, H.; Petrov, V.

    2014-03-01

    We demonstrate clear inhomogeneous linewidth broadening for the disordered laser crystal Nd:BaLaGa3O7 (Nd:BLG), which is very promising for the replacement of Nd:glass for ultrafast sources in multiwatt power applications. A Nd:BLG laser oscillator passively mode-locked and pumped by a Ti:sapphire laser generated pulses of 316-fs duration at 1060 nm, whose spectrum completely fills the fluorescence peak at such wavelength. More interestingly, sub-picosecond pulses were smoothly tunable in a 20-nm range, from 1070 to 1090 nm. The shortest pulses achieved were 290 fs long, centered at 1075 nm.

  12. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  13. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  14. Advancements of ultra-high peak power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  15. Histologic and photonic evaluation of a pulsed Nd:YAG laser for ablation of subcutaneous adipose tissue.

    PubMed

    Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki

    2006-12-20

    Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.

  16. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  17. Development of lasers optimized for pumping Ti:Al2O3 lasers

    NASA Technical Reports Server (NTRS)

    Rines, Glen A.; Schwarz, Richard A.

    1994-01-01

    Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).

  18. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm.

    PubMed

    Kück, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-04-20

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of approximately 1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute.

  19. All-semiconductor high-speed akinetic swept-source for OCT

    NASA Astrophysics Data System (ADS)

    Minneman, Michael P.; Ensher, Jason; Crawford, Michael; Derickson, Dennis

    2011-12-01

    A novel swept-wavelength laser for optical coherence tomography (OCT) using a monolithic semiconductor device with no moving parts is presented. The laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) structure exhibiting a single longitudinal mode. All-electronic wavelength tuning is achieved at a 200 kHz sweep repetition rate, 20 mW output power, over 100 nm sweep width and coherence length longer than 40 mm. OCT point-spread functions with 45- 55 dB dynamic range are demonstrated; lasers at 1550 nm, and now 1310 nm, have been developed. Because the laser's long-term tuning stability allows for electronic sample trigger generation at equal k-space intervals (electronic k-clock), the laser does not need an external optical k-clock for measurement interferometer sampling. The non-resonant, allelectronic tuning allows for continuously adjustable sweep repetition rates from mHz to 100s of kHz. Repetition rate duty cycles are continuously adjustable from single-trigger sweeps to over 99% duty cycle. The source includes a monolithically integrated power leveling feature allowing flat or Gaussian power vs. wavelength profiles. Laser fabrication is based on reliable semiconductor wafer-scale processes, leading to low and rapidly decreasing cost of manufacture.

  20. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  1. Solid State Research

    DTIC Science & Technology

    2005-06-21

    266-nm, l-,W, 500-ps laser pulse from a frequency-quadrupled Nd:YAG microchip laser operating at 10 kHz. Fluorescence and elastic scattering from the...on Solid State Research xv Organization xxiii QUANTUM ELECTRONICS 1.1 Fluorescence-Cued Laser -Induced Breakdown Spectroscopy Detection of Bioaerosols...2. ELECTRO-OfI’ICAL MATERIALS AND DEVICES 2.1 Narrow-Linewidth, High-Power 1556-nm Slab-Coupled Optical Waveguide External-Cavity Laser 7 3

  2. Three Year Aging of Prototype Flight Laser at 10 Khz and 1 Ns Pulses with External Frequency Doubler for the Icesat-2 Mission

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; hide

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 J/cm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 J/cm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  3. Three Three-Year Aging of Prototype Flight Laser at 10 kHz and 1 ns Pulses With External Frequency Doubler for ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; hide

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 Jcm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 Jcm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASAs Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  4. Three-year aging of prototype flight laser at 10 kHz and 1 ns pulses with external frequency doubler for ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; Culpepper, Charles F.; Strickler, Kathy

    2016-05-01

    We present the results of a three-year operational-aging test of a specially designed prototype flight laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and externally frequency-doubled. Fibertek designed and built the q-switched, 1064nm laser and this laser was in a sealed container of dry air pressurized to 1.3 atm. The external frequency doubler was in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm separately. The external frequency doubler consisted of a Lithium triborate, LiB3O5, non-critically phase-matched crystal. After some 1064 nm light was diverted for diagnostics, 13.7W of fundamental power was available to pump the doubling crystal. Between 8.5W and 10W of 532nm power was generated, depending on the level of stress and degradation. The test consisted of two stages, the first at 0.3 J/cm2 for almost 1 year, corresponding to expected operational conditions, and the second at 0.93 J/cm2 for the remainder of the experiment, corresponding to accelerated optical stress testing. We observed no degradation at the first stress-level and linear degradation at the second stress-level. The linear degradation was linked to doubler crystal output surface changes from laser-assisted contamination. We estimate the expected lifetime for the flight laser at 532 nm using fluence as the stress parameter. This work was done for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  5. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  6. High-efficency stable 213-nm generation for LASIK application

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  7. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  8. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  9. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  10. Fiber laser at 2 μm for soft tissue surgery

    NASA Astrophysics Data System (ADS)

    Ghosh, Aditi; Pal, Debasis; Sen, Ranjan; Pal, Atasi

    2014-11-01

    Strong water absorption at 2 μm generated recent interest in lasers at this wavelength for soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave, cladding pumped, thulium-doped fiber laser at 1.95 μm is configured. The thulium-doped active fiber with octagonal-shaped inner cladding is pumped at 808 nm (total power of 17 W) with six laser diodes through a combiner. The laser power of 3.3 W (after elimination of unabsorbed pump power through a passive fiber) with slope efficiency of 23% (against launched pump power) is achieved. The linear variation of laser power with pump offers scope of further power scaling.

  11. 3 μm CW lasers for myringotomy and microsurgery.

    PubMed

    Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S

    2013-03-08

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.

  12. 3-μm CW lasers for myringotomy and microsurgery

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.

    2013-03-01

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.

  13. 3 μm CW lasers for myringotomy and microsurgery

    PubMed Central

    Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D’Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.

    2013-01-01

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899. PMID:24382990

  14. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  15. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  16. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    NASA Astrophysics Data System (ADS)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  17. System analysis of wavelength beam combining of high-power diode lasers for photoacoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep B.; Sánchez, Miguel; Rodriguez, Sergio; Osiński, Marek; Sacher, Joachim; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    This paper, originally published on 27 April 2016, was replaced with a corrected/revised version on 8 June 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The purpose of wavelength-beam combining (WBC) is to improve the output power of a multi-wavelength laser system while maintaining the quality of the combined beam. This technique has been primarily proposed for industrial applications, such as metal cutting and soldering, which require optical peak power between kilowatts and megawatts. In order to replace the bulkier solid-state lasers, we propose to use the WBC technique for photoacoustic (PA) applications, where a multi-wavelength focused beam with optical peak power between hundreds of watts up to several kilowatts is necessary to penetrate deeply into biological tissues. In this work we present an analytical study about the coupling of light beams emitted by diode laser bars at 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm into a < 600-μm core-diameter optical fiber for PA endoscopy. In order to achieve an efficient coupling it is necessary to collimate the beams in both fast and slow axes by means of cylindrical lenses and to use partial reflection mirrors at 45° tilt. We show an example of beam collimation using cylindrical lenses in both fast and slow axes. In a real PA scenario, the resulting beam should have a sufficient peak power to generate significant PA signals from a turbid tissue>.

  18. Rigrod laser-pumped-laser resonator model: II. Application to thin and optically-dilute laser media

    NASA Astrophysics Data System (ADS)

    Brown, D. C.

    2014-08-01

    In part I of this paper, and to set the foundation for this part II, we derived the resonator equations describing the normalized intensities, output power, gain, and extraction efficiency for a standard resonator incorporating two dielectric mirrors and a gain element. We then generalized the results to include an absorbing region representing a second laser crystal characterized by a small-signal transmission T0. Explicit expressions were found for the output power extracted into absorption by the second laser crystal and the extraction efficiency, and the limits to each were discussed. It was shown that efficient absorption by a thin or dilute second laser crystal can be realized in resonators in which the mirror reflectivities were high and in which the single-pass absorption was low, due to the finite photon lifetime and multi-passing of the absorbing laser element. In this paper, we apply the model derived in part I to thin or dilute laser materials, concentrating on a Yb, Er:glass intracavity pumped by a 946 nm Nd:YAG laser, a Yb, Er:glass laser-pumped intracavity by a 977 nm diode laser, and an Er:YAG laser-pumped intracavity to a 1530 nm diode laser. It is shown that efficient absorption can be obtained in all cases examined.

  19. Compact 151 W green laser with U-type resonator for prostate surgery

    NASA Astrophysics Data System (ADS)

    Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza

    2013-04-01

    We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.

  20. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  1. 980 nm diode laser with automatic power control mode for dermatological applications

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.

    2015-07-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are compared. It was demonstrated that using APC mode decreases the width of collateral damage at removing of these nosological neoplasms of human skin. The mean width of collateral damage reached 0.846+/-0.139 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.443+/-0.312 mm, dermatofibroma - 0.923+/-0.271 mm, and basal cell skin cancer - 0.787+/-0.325 mm. The mean width of collateral damage reached 0.592+/-0.197 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.191+/-0.162 mm, dermatofibroma - 0.476+/-0.366 mm, and basal cell skin cancer - 0.517+/-0.374 mm. It was found that the percentage of laser wounds with collateral damage less than 300 μm of quantity of removed nosological neoplasms in APC mode is 50%, that significantly higher than the percentage of laser wounds obtained using CW mode (13.4%).

  2. Tm:CaGdAlO4: spectroscopy, microchip laser and passive Q-switching by carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Mateos, Xavier; Choi, Sun Young; Rotermund, Fabian; Liebald, Christoph; Peltz, Mark; Vernay, Sophie; Rytz, Daniel; Wang, Yicheng; Kemnitzer, Matthias; Agnesi, Antonio; Vilejshikova, Elena; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin

    2017-02-01

    Absorption, stimulated-emission and gain cross-sections are determined for 3 at.% Tm:CaGdAlO4. This crystal is employed in a microchip laser diode-pumped at 802 nm. In the continuous-wave (CW) regime, this laser generates 1.16 W at 1883-1893 nm with a slope efficiency of 32% with respect to the absorbed pump power. Using a special "bandpass" output coupler, vibronic CW laser operation up to 2043 nm is achieved. For passive Q-switching of the Tm:CaGdAlO4 laser-saturable absorbers (SAs) based on CVD-grown graphene and randomly-oriented arc-discharge single-walled carbon nanotubes (SWCNTs) in a PMMA film. The SWCNT-SA demonstrates superior performance. The laser produced a maximum average output power of 245 mW at 1844 nm with a slope efficiency of 8%. The latter corresponds to a pulse energy and duration of 6 μJ and 138 ns, respectively, at a repetition rate of 41 kHz. Using the graphene-SA, 2.8 μJ, 490 ns pulses are obtained at a repetition rate of 86 kHz.

  3. In-situ identification of meat from different animal species by shifted excitation Raman difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2012-05-01

    The identification of food products and the detection of adulteration are of global interest for food safety and quality control. We present a non-invasive in-situ approach for the differentiation of meat from selected animal species using microsystem diode laser based shifted excitation Raman difference spectroscopy (SERDS) at 671 nm and 785 nm. In that way, the fingerprint Raman spectra can be used for identification without a disturbing fluorescence background masking Raman signals often occurring in the investigation of biological samples. Two miniaturized SERDS measurement heads including the diode laser and all optical elements are fiber-optically coupled to compact laboratory spectrometers. To realize two slightly shifted excitation wavelengths necessary for SERDS the 671 nm laser (spectral shift: 0.7 nm, optical power: 50 mW) comprises two separate laser cavities each with a volume Bragg grating for frequency selection whereas the 785 nm light source (spectral shift: 0.5 nm, optical power: 110 mW) is a distributed feedback laser. For our investigations we chose the most consumed meat types in the US and Europe, i.e. chicken and turkey as white meat as well as pork and beef as red meat species. The applied optical powers were sufficient to detect meat Raman spectra with integration times of 10 seconds pointing out the ability for a rapid discrimination of meat samples. Principal components analysis was applied to the SERDS spectra to reveal spectral differences between the animals suitable for their identification. The results will be discussed with respect to specific characteristics of the analyzed meat species.

  4. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1988-04-15

    plasma focus (DPF) device was evaluated for the feasibility of blue-green and near ultraviolet laser pumping. As the result of optimizing the operating conditions of DPF and laser system, the maximum untuned laser output exceeded 4.0mJ corresponding to the energy density 8.3J/liter which is much higher than the typical flashlamp dye laser. The spectral irradiance of DPF at the absorption bands for LD390 and LD490 were 5.5W/sq cm-nm, 0.3W.sq cm-nm, respectively. Due to the lower pump power of DPF at 355nm than the threshold of LD390, the laser pumping of LD390 dye was not

  5. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    PubMed

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd:YAG laser.

  6. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.

    2017-02-01

    The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.

  7. Optimized Biasing of Pump Laser Diodes in a Highly Reliable Metrology Source for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan

    2011-01-01

    Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler

  8. Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications

    NASA Astrophysics Data System (ADS)

    Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.

    2018-02-01

    We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.

  9. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  10. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  11. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Kang, Zhe; Xu, Yang; Zhang, Lei; Jia, Zhixu; Liu, Lai; Zhao, Dan; Feng, Yan; Qin, Guanshi; Qin, Weiping

    2013-07-01

    We demonstrated a passively mode-locked erbium-doped fiber laser by using gold nanorods as a saturable absorber. The gold nanorods (GNRs) were mixed with sodium carboxymethylcellulose (NaCMC) to form GNRs-NaCMC films. By inserting one of the GNRs-NaCMC films into an EDFL cavity pumped by a 980 nm laser diode, stable passively mode-locking was achieved with a threshold pump power of ˜54 mW, and 12 ps pulses at 1561 nm with a repetition rate of 34.7 MHz and a maximum average power of ˜2.05 mW were obtained for a pump power of ˜62 mW.

  12. Laser performance of in-band pumped Er : LiYF{sub 4} and Er : LiLuF{sub 4} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachenya, K N; Kisel, V E; Yasukevich, A S

    2016-02-28

    Spectroscopic properties of Er : LiLuF{sub 4} and Er : LiYF{sub 4} crystals in the spectral region near 1.5 μm and the lasing characteristics of these crystals under in-band pumping at a wavelength of 1522 nm are studied. With the Er : LiLuF{sub 4} crystal, the maximum slope efficiency with respect to the absorbed pump power was 44% at a wavelength of 1609 nm. Continuous-wave operation of an inband pumped Er : LiYF{sub 4} laser is obtained for the first time. The output power at a wavelength of 1606 nm was 58 mW with a slope efficiency of 21%. (lasers)

  13. Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Bai, Jinxi; Li, Ping; Guo, Lei; Zhang, Baitao; Hu, Qiongyu; Wang, Lili; Liu, Binghai; Chen, Xiaohan

    2018-05-01

    Au nanocages/SiO2 (Au-NCs/SiO2) with the surface plasmon resonance peak at 1060 nm were fabricated and experimentally exploited as the saturable absorber in an all-fiber passively Q-switched ytterbium-doped fiber laser for the first time. Under a pump power of 440 mW, the average output power of 10.6 mW was obtained with the pulse duration 1.4 µs and the repetition rate of 126.9 kHz at 1060.5 nm with the 3 dB spectral width of 0.131 nm. The results indicate that Au-NCs/SiO2 exhibits the potential for applications in the field of pulse lasers.

  14. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  15. Rapid heating of matter using high power lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  16. Ultra-long fiber Raman lasers: design considerations

    NASA Astrophysics Data System (ADS)

    Koltchanov, I.; Kroushkov, D. I.; Richter, A.

    2015-03-01

    In frame of the European Marie Currie project GRIFFON [http://astonishgriffon.net/] the usage of a green approach in terms of reduced power consumption and maintenance costs is envisioned for long-span fiber networks. This shall be accomplished by coherent transmission in unrepeatered links (100 km - 350 km) utilizing ultra-long Raman fiber laser (URFL)-based distributed amplification, multi-level modulation formats, and adapted Digital Signal Processing (DSP) algorithms. The URFL uses a cascaded 2-order pumping scheme where two (co- and counter-) ˜ 1365 nm pumps illuminate the fiber. The URFL oscillates at ˜ 1450 nm whereas amplification is provided by stimulated Raman scattering (SRS) of the ˜ 1365 nm pumps and the optical feedback is realized by two Fiber Bragg gratings (FBGs) at the fiber ends reflecting at 1450 nm. The light field at 1450 nm provides amplification for signal waves in the 1550 nm range due to SRS. In this work we present URFL design studies intended to characterize and optimize the power and noise characteristics of the fiber links. We use a bidirectional fiber model describing propagation of the signal, pump and noise powers along the fiber length. From the numerical solution we evaluate the on/off Raman gain and its bandwidth, the signal excursion over the fiber length, OSNR spectra, and the accumulated nonlinearities. To achieve best performance for these characteristics the laser design is optimized with respect to the forward/backward pump powers and wavelengths, input/output signal powers, reflectivity profile of the FBGs and other parameters.

  17. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    PubMed

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  18. Nanosecond-pulsed Q-switched Nd:YAG laser at 1064 nm with a gold nanotriangle saturable absorber

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohan; Li, Ping; Dun, Yangyang; Song, Teng; Ma, Baomin

    2018-06-01

    Gold nanotriangles (GNTs) were successfully employed as a saturable absorber (SA) to achieve passively Q-switched lasers for the first time. The performance of the Q-switched Nd:YAG laser at 1064 nm has been systematically investigated. The corresponding shortest pulsewidth, the threshold pump power and the maximum Q-switched average output power were 275.5 ns, 1.37 W, and 171 mW, respectively. To our knowledge, this is the shortest pulsewidth and the lowest threshold in a passively Q-switched laser at approximately 1.1 µm based on a gold nanoparticle SA (GNPs-SA). Our experimental results proved that the GNTs-SA can be used as a promising saturable absorber for nanosecond-pulsed lasers.

  19. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.

    PubMed

    Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang

    2018-02-19

    Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.

  20. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    NASA Astrophysics Data System (ADS)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.

  1. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    PubMed

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  2. Surface smoothing of indium tin oxide film by laser-induced photochemical etching

    NASA Astrophysics Data System (ADS)

    Kang, JoonHyun; Kim, Young-Hwan; Kwon, Seok Joon; Park, Joon-Suh; Park, Kyoung Wan; Park, Jae-Gwan; Han, Il Ki

    2017-12-01

    Surface smoothing of indium tin oxide (ITO) film by laser irradiation was demonstrated. The ITO surface was etched by choline radicals, which were activated by laser irradiation at a wavelength of 532 nm. The RMS surface roughness was improved from 5.6 to 4.6 nm after 10 min of laser irradiation. We also showed the changes in the surface morphology of the ITO film with various irradiation powers and times.

  3. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.

    PubMed

    Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K

    2012-01-30

    Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

  4. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device.

    PubMed

    Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel

    2010-04-01

    Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P < 0.05). A calculated 'output power efficiency per watt' revealed that the 1,318-nm laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P < 0.0001). All three diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P < 0.01). The extend of morphological tissue necrosis was 4.62 mm (1,318 nm), 1.30 mm (1,470 nm), 4.18 mm (980 nm) and 0.84 mm (GreenLight HPS laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.

  5. Direct micromachining of quartz glass plates using pulsed laser plasma soft x-rays

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Miyamoto, Hisao; Kenmotsu, Youichi; Murakami, Kouichi; Niino, Hiroyuki

    2005-03-01

    We have investigated direct micromachining of quartz glass, using pulsed laser plasma soft x-rays (LPSXs) having a potential capability of nanomachining because the diffraction limit is ˜10nm. The LPSX's were generated by irradiation of a Ta target with 532nm laser light from a conventional Q switched Nd :YAG laser at 700mJ/pulse. In order to achieve a sufficient power density of LPSX's beyond the ablation threshold, we developed an ellipsoidal mirror to obtain efficient focusing of LPSXs at around 10nm. It was found that quartz glass plates are smoothly ablated at 45nm/shot using the focused and pulsed LPSX's.

  6. Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules

    NASA Astrophysics Data System (ADS)

    Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.

    2018-02-01

    High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.

  7. Nonradiative relaxation and laser action in tunable solid state laser crystals

    NASA Technical Reports Server (NTRS)

    Petricevic, V.; Gayen, S. K.; Alfano, R. R.

    1989-01-01

    Room-temperature pulsed laser action was obtained in chromium-activated forsterite (Cr:Mg2SiO4) for both 532 and 1064 nm pumping. Free running laser emission in both cases is centered at 1235 nm and has a bandwidth of approximately 30 nm. Slope efficiency as high as 22 percent was measured. Using different sets of output mirrors and a single birefrigent plate as the intracavity wavelength selecting element tunability over the 1167 to 1268 nm spectral range was demonstrated. Continuous wave laser operation at room temperature was obtained for 1064 nm pumping from a CW Nd:YAG laser. The output power slope efficiency is 6.8 percent. The gain cross section is estimated to be 1.1 x 10 to the 19th sq cm. Spectroscopic studies suggest that the laser action is due to a center other than the trivalent chromium (Cr 3+), presumably the tetravalent chromium (Cr 4+) in a tetrahedrally coordinated site.

  8. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources formore » laser cooling experiments including transportable optical lattice clocks.« less

  9. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    PubMed

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this hypothesis. Pulsed lasers with higher peak powers provided better hemostatic effects than CW lasers. The degree of lipolysis depended on wavelength, laser power, and energy density. Subdermal laser irradiation can stimulate collagen deposition in subdermal tissue and reticular dermis.

  10. Generation of silicon nanocrystals by damage free continuous wave laser annealing of substrate-bound SiO{sub x} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke-Begemann, T., E-mail: fricke-begemann@llg-ev.de; Ihlemann, J.; Wang, N.

    2015-09-28

    Silicon nanocrystals have been generated by laser induced phase separation in SiO{sub x} films. A continuous wave laser emitting at 405 nm is focused to a 6 μm diameter spot on 530 nm thick SiO{sub x} films deposited on fused silica substrates. Irradiation of lines is accomplished by focus scanning. The samples are investigated by atomic force microscopy, TEM, Raman spectroscopy, and photoluminescence measurements. At a laser power of 35 mW corresponding to an irradiance of about 1.2 × 10{sup 5 }W/cm{sup 2}, the formation of Si-nanocrystals in the film without any deterioration of the surface is observed. At higher laser power, the centralmore » irradiated region is oxidized to SiO{sub 2} and exhibits some porous character, while the surface remains optically smooth, and nanocrystals are observed beside and beneath this oxidized region. Amorphous Si-nanoclusters are formed at lower laser power and around the lines written at high power.« less

  11. Laser induced white lighting of tungsten filament

    NASA Astrophysics Data System (ADS)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  12. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  13. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm.

    PubMed

    Lagatsky, A A; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W

    2011-05-09

    Efficient mode-locking in a Tm:KY(WO(4))(2) laser is demonstrated by using InGaAsSb quantum-well SESAMs. Self-starting ultrashort pulse generation was realized in the 1979-2074 nm spectral region. Maximum average output power up to 411 mW was produced around 1986 nm with the corresponding pulse duration and repetition rate of 549 fs and 105 MHz respectively. Optimised pulse durations of 386 fs were produced with an average power of 235 mW at 2029 nm. © 2011 Optical Society of America

  14. Diode pumped Yb:CN laser at 1082 nm and intracavity doubling to the green spectral range

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, Y. L.; Jiang, H. L.

    2011-08-01

    A diode pumped Yb:CaNb2O6 (Yb:CN) laser at 1082 nm with a maximum output of 1.35 W at 13.3 W pump power has been demonstrated. The slope efficiency was 12.4%. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum green power of 374 mW by using a LiB3O5 (LBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous wave (CW) green generation by intracavity frequency doubling Yb:CN laser.

  15. FALCON nuclear-reactor-pumped laser program and wireless power transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Pickard, P.S.

    1992-12-31

    FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less

  16. FALCON nuclear-reactor-pumped laser program and wireless power transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Pickard, P.S.

    1992-01-01

    FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less

  17. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    PubMed

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  18. Studies on 405nm blue-violet diode laser with external grating cavity

    NASA Astrophysics Data System (ADS)

    Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.

  19. Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing

    NASA Astrophysics Data System (ADS)

    Bernhardi, E. H.; de Ridder, R. M.; Wörhoff, K.; Pollnau, M.

    2013-03-01

    We report on diode-pumped distributed-feedback (DFB) and distributed-Bragg-reflector (DBR) channel waveguide lasers in Er-doped and Yb-doped Al2O3 on standard thermally oxidized silicon substrates. Uniform surface-relief Bragg gratings were patterned by laser-interference lithography and etched into the SiO2 top cladding. The maximum grating reflectivity exceeded 99%. Monolithic DFB and DBR cavities with Q-factors of up to 1.35×106 were realized. The Erdoped DFB laser delivered 3 mW of output power with a slope efficiency of 41% versus absorbed pump power. Singlelongitudinal- mode operation at a wavelength of 1545.2 nm was achieved with an emission line width of 1.70 0.58 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at wavelengths near 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. An Yb-doped dualwavelength laser was achieved based on the optical resonances induced by two local phase shifts in the DFB structure. A stable microwave signal at ~15 GHz with a -3-dB width of 9 kHz and a long-term frequency stability of +/- 2.5 MHz was created via the heterodyne photo-detection of the two laser wavelengths. By measuring changes in the microwave beat signal as the intra-cavity evanescent laser field interacts with micro-particles on the waveguide surface, we achieved real-time detection and accurate size measurement of single micro-particles with diameters ranging between 1 μm and 20 μm, which represents the typical size of many fungal and bacterial pathogens. A limit of detection of ~500 nm was deduced.

  20. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  1. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser.

    PubMed

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong

    2018-03-05

    We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

  2. Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor.

    PubMed

    Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal

    2015-02-01

    Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.

  3. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5  μm.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Babin, Sergey A

    2017-09-15

    We report on, to the best of our knowledge, the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization-maintaining phosphosilicate fiber with a zero dispersion wavelength at ∼1400  nm. Pumped by a 1080 nm Yb-doped fiber laser, the random laser delivers more than 8 W at 1262 nm and 9 W at 1515 nm with a polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random fiber lasing.

  4. Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Cai, Zhiping; Chardon, Alain; Xu, Huiying; Féron, Patrice; Michel Stéphan, Guy

    2002-03-01

    An Er:Yb codoped phosphate glass microchip laser has been studied under pumping with a Ti:sapphire laser ranging from 945 to 990 nm. The characteristics (threshold, slope efficiency) are first described for an optimized laser. The gain spectrum is calculated for the transition 4I13/2→ 4I15/2 around 1535 nm from fundamental spectroscopic data and from experimental results. Red-shift effect on the frequency of a single mode is experimentally observed when the pump power is increased, originating from thermal effects. Temperature inside the microchip cavity and thermal expansion coefficient were determined by employing the intensity ratio of two green upconversion emission line centered at 530 and 554 nm, respectively, which quantitatively explain this red shift.

  5. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  6. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications

    NASA Astrophysics Data System (ADS)

    Scholle, K.; Schäfer, M.; Lamrini, S.; Wysmolek, M.; Steinke, M.; Neumann, J.; Fuhrberg, P.

    2018-02-01

    In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level. A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.

  7. Potassium titanyl arsenate based cascaded optical parametric oscillator emit at 2.5 µm derived by neodymium-doped yttrium lithium fluoride laser

    NASA Astrophysics Data System (ADS)

    Duan, Yanmin; Zhang, Jing; Guo, Junhong; Zhu, Haiyong; Zhang, Yongchang; Xu, Changwen; Wang, Hongyan; Zhang, Yaoju

    2018-04-01

    We reported a potassium titanyl arsenate (KTA) based cascaded optical parametric oscillator (OPO). The secondary OPO signal light at 2.5 µm was obtained with two OPO processes in one non-critical phase matching cut KTA crystal. This cascaded OPO was driven by a Q-switched neodymium-doped yttrium lithium fluoride (Nd:YLF) laser at 1047 nm. Making full use of the negative thermal lens effect and long upper level fluorescence lifetime of Nd:YLF, signal power of 605 mW at 2503 nm was achieved with a pulse repetition frequency of 15 kHz and an incident diode pump power of 9.7 W. Therefore, the cascaded OPO derived by Q-switched Nd:YLF laser could provide high peak power pulsed laser emission in mid-infrared band.

  8. Optical Trapping-Cavity Ringdown Spectroscopy System for Single Aerosol Particle Measurements

    DTIC Science & Technology

    2015-02-17

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Final Report REPORT DOCUMENTATION PAGE 11. SPONSOR...focused 532 nm laser ( Bermuda grass smut spores, horizontal illumination at power of 4.5 mW, focus length = 10 mm, UV quartz cuvette is from Starna...Cells, Inc.) (b) Single bioaerosol particles trapped using a focused 405 nm laser ( Bermuda grass smut spores, upward illumination at power of 2.0

  9. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis.

    PubMed

    Jiang, S C; Zhang, X X

    2005-12-01

    A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.

  10. High-power direct green laser oscillation of 598 mW in Pr(3+)-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes.

    PubMed

    Nakanishi, Jun; Horiuchi, Yuya; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki; Yoshida, Minoru; Fujimoto, Yasushi

    2011-05-15

    We demonstrated a high-power and highly efficient Pr-doped waterproof fluoride glass fiber laser at 522.2 nm excited by two-polarization-combined GaN laser diodes and achieved a subwatt output power of 598 mW and slope efficiency of 43.0%. This system will enable us to make a vivid laser display, a photocoagulation laser for eye surgery, a color confocal scanning laser microscope, and an effective laser for material processing. Direct visible ultrashort pulse generation is also expected. © 2011 Optical Society of America

  11. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  12. Advances in 7xx-nm fiber-coupled modules with application to Tm fiber laser pumping and DPAL (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patterson, Steven G.; Guiney, Tina; Stapleton, Dean; Braker, Joseph; Alegria, Kim; Irwin, David A.; Ebert, Christopher

    2017-02-01

    DILAS has leveraged its industry-leading work in manufacturing low SWaP fiber-coupled modules extending the wavelength range to 793nm for Tm fiber laser pumping. Ideal for medical, industrial and military applications, modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be discussed. The highlight is a lightweight module capable of <200W of 793nm pump power out of a package weighing < 400 grams. In addition, other modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be presented. In addition, advances in DPAL modules, emitting at the technologically important wavelengths near 766nm and 780nm, will be detailed. Highlights include a fully microprocessor controlled fiber-coupled module that produces greater than 400W from a 600 micron core fiber and a line width of only 56.3pm. The micro-processor permits the automated center wavelength and line width tuning of the output over a range of output powers while retaining excellent line center and line width stability over time.

  13. Evaluation of Energy Dose and Output Power Optimum of Diode’s Laser of 450 nm and 650 nm in Photoantimicrobial Mechanisms Against Inhibition of C. Albicans Biofilm Cells

    NASA Astrophysics Data System (ADS)

    Dewi-Astuty, S.; Suhariningsih; Dyah-Astuti, S.; Baktir, A.

    2018-03-01

    Photoantimicrobial as a pathogenic microbial inhibitory therapy system such as C. albicans in biofilms forms has been studied in vitro. Mechanisms of inhibiting called inactivating used the absorb principles of a dye agents such as chlorophyll against the photon energy of diode laser which any number of ROS product depend on energy doses of a laser, time of irradiation, concentration and time of incubation the dyes agent. The inactivation profile of C. albicans biofilm cells was observed based on cell viability reduction after photoantimicrobial treatment with or without oxygenation by XTT assay test. Results show that the inhibiting significantly with the time incubation of the dye agents and the oxygen degree inside the sample. The inhibition for oxygenation biofilm’s group 10% lower than without oxygenation biofilm’s group at the maximum of reduction of cell viability occurred in the 3hour incubation group. Optimum of inactivation are 89.6% (without oxygenation) and 94.8% (with oxygenation) after irradiation with 450 nm laser (power output 128.73 at energy dose 86.09 J/cm2), While, by 650 nm laser (power output 164.53 mW at energy dose 92.52 J/cm2) irradiation treatment obtained optimum of inactivation are 89.5% (without oxygenation) and 92.3% (with oxygenation).

  14. Scaleable multi-format QCW pump stacks based on 200W laser diode bars and mini bars at 808nm and 940nm

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan

    2011-03-01

    Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.

  15. Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.

    2018-05-01

    Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.

  16. Waveform agile high-power fiber laser illuminators for directed-energy weapon systems

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu

    2012-06-01

    A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.

  17. A tunable erbium-doped fiber ring laser with power-equalized output

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien

    2006-12-01

    We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.

  18. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  19. Analysis of shade, temperature and hydrogen peroxide concentration during dental bleaching: in vitro study with the KTP and diode lasers.

    PubMed

    Fornaini, C; Lagori, G; Merigo, E; Meleti, M; Manfredi, M; Guidotti, R; Serraj, A; Vescovi, P

    2013-01-01

    Many dental bleaching techniques are now available, several of them using a laser source. However, the literature on the exact role of coherent light in the biochemical reaction of the whitening process is very discordant. The aims of this in vitro study were: (1) to compare two different laser sources, a KTP laser with a wavelength of 532 nm and a diode laser with a wavelength of 808 nm, during dental bleaching, and (2) to investigate the relationships among changes in gel temperature, tooth shade and hydrogen peroxide (HP) concentration during laser irradiation. Altogether, 116 bovine teeth were bleached using a 30% HP gel, some of them with gel only and others with gel plus one of the two lasers (532 or 808 nm) at two different powers (2 and 4 W). The KTP laser produced a significant shade variation with a minimal temperature increase. The diode laser led to a higher temperature increase with a greater reduction in HP concentration, but the change in shade was only statistically significant with a power of 4 W. At a power of 2 W, the KTP laser caused a greater change in shade than the diode laser. No significant correlations were found among temperature, HP concentration and shade variation. The KTP laser appears to provide better results with less dangerous thermal increases than the diode laser. This might call into question most of the literature affirming that the action of laser bleaching is by increasing the gel temperature and, consequently, the speed of the redox reaction. Further study is required to investigate the correlations between the parameters investigated and efficacy of the bleaching process.

  20. Single-mode 140 nm swept light source realized by using SSG-DBR lasers

    NASA Astrophysics Data System (ADS)

    Fujiwara, N.; Yoshimura, R.; Kato, K.; Ishii, H.; Kano, F.; Kawaguchi, Y.; Kondo, Y.; Ohbayashi, K.; Oohashi, H.

    2008-02-01

    We demonstrate a single-mode and fast wavelength swept light source by using Superestrucuture grating distributed Bragg reflector (SSG-DBR) lasers for use in optical frequency-domain reflectometry optical coherence tomography. The SSG-DBR lasers provide single-mode operation resulting in high coherency. Response of the wavelength tuning is very fast; several nanoseconds, but there was an unintentional wavelength drift resulting from a thermal drift due to injecting tuning current. The dri1ft unfortunately requires long time to converge; more than a few milliseconds. For suppressing the wavelength drift, we introduced Thermal Drift Compensation mesa (TDC) parallel to the laser mesa with the spacing of 20 μm. By controlling TDC current to satisfy the total electric power injected into both the laser mesa and the TDC mesa, the thermal drift can be suppressed. In the present work, we fabricated 4 wavelength's kinds of SSG-DBR laser, which covers respective wavelength band; S-band (1496-1529 nm), C-band (1529-1564 nm), L --band (1564-1601 nm), and L +-band (1601-1639). We set the frequency channel of each laser with the spacing 6.25 GHz and 700 channels. The total frequency channel number is 2800 channels (700 ch × 4 lasers). We simultaneously operated the 4 lasers with a time interval of 500 ns/channel. A wavelength tuning range of more than 140 nm was achieved within 350 μs. The output power was controlled to be 10 mW for all channels. A single-mode, accurate, wide, and fast wavelength sweep was demonstrated with the SSG-DBR lasers having TDC mesa structure for the first time.

  1. Prospective study of the 532 nm laser (KTP) versus diode laser 980 nm in the resection of hyperplastic lesions of the oral cavity

    PubMed Central

    Bargiela-Pérez, Patricia; González-Merchán, Jorge; Díaz-Sánchez, Rosa; Serrera-Figallo, Maria-Angeles; Volland, Gerd; Joergens, Martin; Gutiérrez-Pérez, Jose-Luis

    2018-01-01

    Background The aim of this study is to evaluate the resection of hyperplastic lesions on the buccal mucosa comparing the 532nm laser (KTP), versus diode 980nm laser, considering pain, scarring, inflammation and drug consumption that occurred postoperatively with each lasers. Material and Methods A prospective study of consecutive series of 20 patients in two groups that presents hyperplastic lesions on the buccal mucosa. The choice of the KTP laser or diode 980nm laser for the surgery was made randomly. The power used was 1.5W in both groups in a continuous wave mode with a 320 μm optical fiber. Parameters of pain, scarring, inflammation and consumption of drugs were recorded by a Numerical Rating Scale and evaluated postoperatively. These recordings were made the day of the surgery, 24 hours after, 14 and 28 days after. Results Pain and inflammation was light - moderate. The consumption of paracetamol was somewhat higher in the diode 980nm laser versus the KTP laser after 24 hours, although data was not statistically significant; significant differences were found after 28 days in regards to pain (p = 0.023) and inflammation (p = 0.023), but always in the absence parameter so we find no pain in both lasers. Scarring in the two types of laser showed no differences along the visits, with not detected scar retractable. Conclusions Although there is a slight histological difference regarding the KTP laser in the oral soft tissues for clinical use, both wavelengths are very suitable for excision of oral fibroma. Key words:Laser surgery, Laser therapy, oral surgery, soft tissue, 980 nm diode laser, 532 nm KTP laser. PMID:29274158

  2. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser.

    PubMed

    Leconte, Baptiste; Gilles, Hervé; Robin, Thierry; Cadier, Benoit; Laroche, Mathieu

    2018-04-16

    We present the first frequency-doubled neodymium-doped fiber laser generating multi-watt CW power near 450 nm. A bow-tie resonator incorporating a LBO nonlinear crystal is integrated within a Nd-doped fiber laser emitting near 900 nm. This scheme achieves an IR to blue conversion efficiency close to 55% without any active control of the internal resonant cavity. As a result, up to 7.5 W of linearly-polarized blue power is generated, with beam quality factors M x 2 ~1.0 and M y 2 ~1.5. A simple numerical model has been developed to optimize and analyse the IR to blue conversion efficiency in the resonant cavity. Performance limitations and prospects for further improvements are discussed.

  3. Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm

    NASA Astrophysics Data System (ADS)

    Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa

    2017-02-01

    A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.

  4. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    PubMed

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  5. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers

    PubMed Central

    Tandoi, Giuseppe; Ironside, Charles N.; Marsh, John H.; Bryce, A. Catrina

    2013-01-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers. PMID:23843678

  6. Diode-pumped DUV cw all-solid-state laser to replace argon ion lasers

    NASA Astrophysics Data System (ADS)

    Zanger, Ekhard; Liu, B.; Gries, Wolfgang

    2000-04-01

    The slim series DELTATRAINTM-worldwide the first integrated cw diode-pumped all-solid-state DUV laser at 266 nm with a compact, slim design-has been developed. The slim design minimizes the DUV DPSSL footprint and thus greatly facilitates the replacement of commonly used gas ion lasers, including these with intra-cavity frequency doubling, in numerous industrial and scientific applications. Such a replacement will result in an operation cost reduction by several thousands US$DLR each year for one unit. Owing to its unique geometry-invariant frequency doubling cavity- based on the LAS patent-pending DeltaConcept architecture- this DUV laser provides excellent beam-pointing stability of <2 (mu) rad/ degree(s)C and power stability of <2%. The newest design of the cavity block has adopted a cemented resonator with each component positioned precisely inside a compact monolithic metal block. The automatic and precise crystal shifter ensures long operation lifetime of > 5000 hours of whole 266 nm laser. The microprocessor controlled power supply provides an automatic control of the whole 266 nm laser, making this DUV laser a hands-off system which can meet tough requirements posed by numerous industrial and scientific applications. It will replace the commonplace ion laser as the future DUV laser of choice.

  7. Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Yao, Yong

    2016-08-01

    We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.

  8. MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang.; Xiong, Feibing; Cai, Lie

    2017-06-01

    We demonstrate a passively Q-switched Nd: YAG quasi-three-level laser operating at 946 nm using MoS2 as saturable absorber. A maximum average output power of 210 mW is achieved at an absorbed pump power of 6.67 W with a slope efficiency of about 5.8%. The shortest pulse width and maximum pulse repetition frequency are measured to be 280 ns and 609 kHz, respectively. The maximum pulse energy and maximum pulse peak power are therefore estimated to be about 0.35 μJ and 1.23 W, respectively. This work represents the first MoS2-based Q-switched laser operating at 0.9 μm spectral region.

  9. Passively Q-switched Tm:BaY2F8 lasers

    NASA Astrophysics Data System (ADS)

    Yu, Haohai; Veronesi, Stefano; Mateos, Xavier; Petrov, Valentin; Griebner, Uwe; Parisi, Daniela; Tonelli, Mauro

    2013-07-01

    We demonstrate passive Q-switching (PQS) of the Tm-doped BaY2F8 (Tm:BYF) laser for the first time. The Tm:BYF laser is diode-pumped using an L-shaped hemispherical resonator. In the cw regime, the maximum output power with an 18% Tm-doped BYF crystal reached 1.12 W at ~1920 nm for an absorbed pump power of 3.06 W. In the PQS regime, maximum pulse energy (720 μJ) and peak power (17.1 kW) were obtained with an 8% Tm-doped BYF crystal and a Cr:ZnS saturable absorber with 92% low-signal transmission, again near 1920 nm, for a pulse width of ~40 ns and a repetition rate of 50 Hz.

  10. Investigation of various factors influencing Raman spectra interpretation with the use of likelihood ratio approach.

    PubMed

    Michalska, Aleksandra; Martyna, Agnieszka; Zadora, Grzegorz

    2018-01-01

    The main aim of this study was to verify whether selected analytical parameters may affect solving the comparison problem of Raman spectra with the use of the likelihood ratio (LR) approach. Firstly the LR methodologies developed for Raman spectra of blue automotive paints obtained with the use of 785nm laser source (results published by the authors previously) were implemented for good quality spectra recorded for these paints with the use of 514.5nm laser source. For LR models construction two types of variables were used i.e. areas under selected pigments bands and coefficients derived from discrete wavelet transform procedure (DWT). Few experiments were designed for 785nm and 514.5nm Raman spectra databases after constructing well performing LR models (low rates of false positive and false negative answers and acceptable results of empirical cross entropy approach). In order to verify whether objective magnification described by its numerical aperture affects spectra interpretation, three objective magnifications -20×(N.A.=0.4.), 50×(N.A.=0.75) and 100×(N.A.=0.85) within each of the applied laser sources (514.5nm and 785nm) were tested for a group of blue solid and metallic automotive paints having the same sets of pigments depending on the applied laser source. The findings obtained by two types of LR models indicate the importance of this parameter for solving the comparison problem of both solid and metallic automotive paints regardless of the laser source used for measuring Raman signal. Hence, the same objective magnification, preferably 50× (established based on the analysis of within- and between-samples variability and F-factor value), should be used when focusing the laser on samples during Raman measurements. Then the influence of parameters (laser power and time of irradiation) of one of the recommended fluorescence suppression techniques, namely photobleaching, was under investigation. Analysis performed on a group of solid automotive paint samples showed that time of irradiation upon established laser power does not affect solving the comparison problem with the use of LR test. Likewise upon established time of irradiation 5% or 10% laser power could be used interchangeably without changing conclusions within this problem. However, upon the established time of irradiation changes in laser power between control and recovered sample from 5% or 10% to 50% may cause erroneous conclusions. Additionally it was also proved that prolonged irradiation of paint does not quantitatively affect pigments bands areas revealed after such a pre-treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  12. Cr:ZnSe laser pumped with Tm:YAP microchip laser

    NASA Astrophysics Data System (ADS)

    Koranda, Petr; Sulc, Jan; Doroshenko, Maxim; Jelinková, Helena; Basiev, Tasoltan T.; Osiko, Vjatcheslav; Badikov, V. V.; Badikov, D.

    2010-02-01

    Cr:ZnSe laser coherently longitudinally pumped with Tm:YAP microchip laser was realised. The pumping laser consisted of Tm:YAP crystal (3x3 mm) with resonator mirrors deposited directly on its faces (on rear face the dielectric layer with high reflectance for 1998 nm wavelength and high transmittance for 790 nm pumping radiation wavelength; on output face the dielectric layer with reflectance 97% at 1998 nm wavelength). The maximal output power was 5.5 W and the generated radiation wavelength was 1998 nm. The main advantage of this pumping was stable and still output without relaxation spikes (non-spiking). The Tm:YAP laser radiation was collimated and focused by the set of two CaF2 lenses. The pumping beam spot diameter inside the Cr:ZnSe crystal was 300 μm. The Cr:ZnSe laser resonator consisted of flat rear mirror (HT at 1998 nm and HR at 2100 - 2900 nm) and curved output coupler (r = -150 mm, R = 95% at 2100 - 2700 nm). The maximal output energy of stable radiation was 4 mJ (pulse duration 10 ms, repetition rate 10 Hz). For wavelength tuning the Lyott filter (quartz plate under Brewster angle) was placed between the Cr:ZnSe crystal and output coupler. The generated radiation wavelength was continuously tunable from 2246 - 2650 nm.

  13. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers.

    PubMed

    Booth, I J; Archambault, J L; Ventrudo, B F

    1996-03-01

    Photodegradation has been observed in Tm(3+)-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below ~650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C.

  14. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator.

    PubMed

    Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F

    2013-01-28

    We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions.

  15. Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers

    NASA Astrophysics Data System (ADS)

    Richter, A.; Pavel, N.; Heumann, E.; Huber, G.; Parisi, D.; Toncelli, A.; Tonelli, M.; Diening, A.; Seelert, W.

    2006-04-01

    We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source.Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.

  16. Switchable and tunable dual-wavelength Er-doped fiber ring laser with single-frequency lasing wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan

    2018-02-01

    We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.

  17. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    ABSTRACT. Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770  nm/830  nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  18. Ultrastructural analysis of dental ceramic surface processed by a 1070 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Fornaini, C.; Merigo, E.; Poli, F.; Rocca, J.-P.; Selleri, S.; Cucinotta, A.

    2018-04-01

    Background: Lithium di-silicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fibre laser for their surface treatment. Methods: Samples were irradiated by a pulsed fibre laser at 1070 nm with different parameters (peak power of 5, 7.5, and 10 kW, repetition rate (RR) 20 kHz, speed of 10 and 50 mm/sec, and total energy density from 1.3 to 27 kW/cm2) Subsequently, the surface modifications were analysed by optical microscope, scanning electron microscope (SEM) and energy dispersive X-ray Spectroscopy (EDS). Results: With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/sec, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Conclusions: A 1070 nm fibre laser can be considered as a good device to increase the adhesion of lithium di-silicate ceramics when optimum parameters are considered.

  19. LASERS: Excimer XeCl laser excited by microsecond megawatt microwave pulses from a commercial 3.07-GHz microwave oscillator

    NASA Astrophysics Data System (ADS)

    Vaulin, V. A.; Slinko, V. N.; Sulakshin, S. S.

    1990-12-01

    An excimer laser (λ approx 308 nm) utilizing an Ne-Xe-HCl mixture was excited by microwave (ν0 = 3.07 GHz) pulses of 2.8-μs duration and ~ 0.9 MW power delivered by a commercial microwave oscillator. A peak laser radiation power of 130 W was obtained in pulses of 280 ns duration. Laser radiation from along the center of a laser tube was recorded in addition to that from the skin layer.

  20. Compact and efficient blue laser sheet for measurement

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia

    2017-10-01

    Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.

  1. Nd:GdVO4 ring laser pumped by laser diodes

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.

    2013-02-01

    The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.

  2. Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm

    NASA Astrophysics Data System (ADS)

    Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.

    2018-03-01

    An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.

  3. Compact Cr:ZnS Channel Waveguide Laser Operating at 2333 nm

    DTIC Science & Technology

    2014-03-24

    B. Mirov and V. V. Federov, “Mid-IR microchip laser : ZnS:Cr2+ laser with saturable absorber material,” (US Patent No 6,960,486., 2009). 23. A...Compact Cr:ZnS channel waveguide laser operating at 2333 nm John R. Macdonald,1* Stephen J. Beecher,2 Adam Lancaster,1 Patrick A. Berry,3 Kenneth...35294, USA *J.R.Macdonald@hw.ac.uk Abstract: A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling

  4. Laser annealing and in situ absorption measurement of float glass implanted with Ag ions

    NASA Astrophysics Data System (ADS)

    Okur, I.; Townsend, P. D.

    2004-08-01

    In this paper in situ pulsed laser annealing and absorption measurements results of Ag-implanted float glass are reported. A Nd:YAG laser harmonic at 266 nm was used to anneal the target area by coupling energy to the glass host, whilst an argon laser at 488 nm was used as a probe beam of changes in nanoparticle size. The equilibrium conditions show a third order power dependence on the laser pulse energy, which is attributed to the volume in which ion migration can occur during excitation.

  5. Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser

    NASA Astrophysics Data System (ADS)

    Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.

    2004-05-01

    In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.

  6. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu

    2015-12-21

    Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less

  7. High single-spatial-mode pulsed power from 980 nm emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro

    2012-11-01

    Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.

  8. Tuneable powerful UV laser system with UV noise eater

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Radnatarov, Daba; Khripunov, Sergey; Zarudnev, Yurii

    2018-02-01

    The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275-310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275-310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.

  9. Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Guandalini, Annalisa; Tomaselli, Alessandra; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro

    2004-07-01

    Continuous-wave mode locking (CW-ML) of a diode-pumped Nd3+:BaY2F8 laser is reported for the first time to our knowledge. Pulses as short as 4.8 ps were measured with a total output power of almost equal to 1 W at 1049 nm, corresponding to 3.4 W of absorbed power from the pump diode at 806 nm. A novel technique for passive stabilization of CW-ML has been demonstrated.

  10. Advances in single mode and high power AlGaInN laser diode technology for systems applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Michal; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Smalc-Koziorowska, Julita; Stanczyk, Szymon; Watson, Scott; Kelly, Antony E.

    2015-03-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.

  11. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  12. Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.

    2018-02-01

    We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.

  13. High-power highly stable passively Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu

    2018-03-01

    We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.

  14. Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shen, Dongyi; Zheng, Yuanlin; Feng, Yaming; Kong, Yan; Wan, Wenjie

    2017-05-01

    With the rapid progress in fiber technologies, femtosecond fiber lasers, which are compact, cost-effective and stable, have been developed and are commercially available. Studies of optical parametric oscillators (OPOs) pumped by this type of laser are demanding. Here we report a femtosecond optical parametric oscillator (OPO) at 79.6 MHz repetition rate based on MgO-doped periodically poled LiNbO3 (MgO:PPLN), synchronously pumped by the integrated second harmonic radiation of a femtosecond fiber laser at 532 nm. The signal delivered by the single resonant OPO is continuously tunable from 757 to 797 nm by tuning the crystal temperature in a poling period of 7.7 μ \\text{m} . The output signal shows good beam quality in TEM00 mode profile with pulse duration of 206 fs at 771 nm. Maximum output signal power of 71 mW is obtained for a pump power of 763 mW and a low pumping threshold of 210 mW is measured. Moreover, grating tuning and cavity length tuning of the signal wavelength are also investigated.

  15. Nonlinear excitation fluorescence microscopy: source considerations for biological applications

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.

    2008-02-01

    Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.

  16. Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2016-01-01

    We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.

  17. Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry

    PubMed Central

    Telford, William G.; Babin, Sergey A.; Khorev, Serge V.; Rowe, Stephen H.

    2009-01-01

    Green and yellow diode-pumped solid state (DPSS) lasers (532 and 561 nm) have become common fixtures on flow cytometers, due to their efficient excitation of phycoerythrin (PE) and its tandems, and their ability to excite an expanding array of expressible red fluorescent proteins. Nevertheless, they have some disadvantages. DPSS 532 nm lasers emit very close to the fluorescein bandwidth, necessitating optical modifications to permit detection of fluorescein and GFP. DPSS 561 nm lasers likewise emit very close to the PE detection bandwidth, and also cause unwanted excitation of APC and its tandems, requiring high levels of crossbeam compensation to reduce spectral overlap into the PE tandems. In this paper, we report the development of a new generation of green fiber lasers that can be engineered to emit in the range between 532 and 561 nm. A 550 nm green fiber laser was integrated into both a BD LSR II™ cuvette and FACSVantage DiVa™ jet-in-air cell sorter. This laser wavelength avoided both the fluorescein and PE bandwidths, and provided better excitation of PE and the red fluorescent proteins DsRed and dTomato than a power-matched 532 nm source. Excitation at 550 nm also caused less incidental excitation of APC and its tandems, reducing the need for crossbeam compensation. Excitation in the 550 nm range therefore proved to be a good compromise between 532 and 561 nm sources. Fiber laser technology is therefore providing the flexibility necessary for precisely matching laser wavelengths to our flow cytometry applications. PMID:19777600

  18. High average-power 2 μm radiation generated by intracavity KTP OPO

    NASA Astrophysics Data System (ADS)

    He, Guangyuan; Guo, Jing; Jiao, Zhongxing; Wang, Biao

    2015-09-01

    A high average-power 2 μm laser with good beam quality based on an intracavity potassium titanium oxide phosphate (KTP) optical parametric oscillator (OPO) is demonstrated. A concave lens is used in the 1064 nm Nd:YAG pumped laser cavity to compensate for the thermal lensing of the laser rod. The cavity length of the KTP OPO is enlarged to improve the 2 μm beam quality. The maximum average output of the 2 μm laser is up to 18 W at 7 kHz with M 2 less than 6 and pulse width of 70 ns. The FWHM of the signal and idle lights are both less than 3 nm.

  19. Continuous-wave yellow-green laser at 0.56  μm based on frequency doubling of a diode-end-pumped ceramic Nd:YAG laser.

    PubMed

    Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin

    2015-06-20

    We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.

  20. Incisional effects of 1940 nm thulium fiber laser on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Güney, Melike; Tunç, Burcu; Gülsoy, Murat

    2013-02-01

    Lasers of different wavelengths are being used in oral surgery for incision and excision purposes with minimal bleeding and pain. Among these wavelengths, those close to 2μ yield more desirable results on oral soft tissue due to their strong absorption by water. The emission of 1940 nm Thulium fiber laser is well absorbed by water which makes it a promising tool for oral soft tissue surgery. This study was conducted to investigate the potential of thulium fiber laser as an incisional and excisional oral surgical tool. Ovine tongue has been used as the target tissue due to its similarities to human oral tissues. Laser light obtained from a 1940 nm Thulium fiber laser was applied in contact mode onto ovine tongue completely submerged in saline solution in vitro, via a 600)μm fiber moved with a velocity of 0.5 mm /s to form incisions. There were a total of 9 groups determined by the power (2,5-3- 3,5 W), and number of passes (1-3-5). The samples were stained with HE for microscopic evaluation of depth of ablation and extent of coagulation. The depth of incisions produced with 1940 nm Thulium fiber laser increased with increasing power and number of passes, however an increase in the width of the coagulation zone was also observed.

Top