Science.gov

Sample records for nm laser transition

  1. Hydrocarbon-free resonance transition 795-nm rubidium laser

    SciTech Connect

    Wu, S Q; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-01-09

    An optical resonance transition rubidium laser (5{sup 2}P{sub 1/2} {yields} 5{sup 2}S{sub 1/2}) is demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a 'clean' helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.

  2. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition

    SciTech Connect

    Cappellini, G.; Lombardi, P.; Mancini, M.; Pagano, G.; Pizzocaro, M.; Fallani, L.; Catani, J.

    2015-07-15

    In this paper, we present the realization of a compact, high-power laser system able to excite the ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to an ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic {sup 173}Y b with a <50 Hz linewidth over 5 min, limited only by a residual frequency drift of some 0.1 Hz/s.

  3. Resonance transition 795-nm Rubidium laser using 3He buffer gas

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2007-08-02

    We report the first demonstration of a 795-nm Rubidium resonance transition laser using a buffer gas consisting of pure {sup 3}He. This follows our recent demonstration of a hydrocarbon-free 795-nm Rubidium resonance laser which used naturally-occurring He as the buffer gas. Using He gas that is isotopically enriched with {sup 3}He yields enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure, improving thermal management in high average power Rb lasers and enhancing the power scaling potential of such systems.

  4. Study of transitions in thulium atoms in the 410-420-nm range for laser cooling

    SciTech Connect

    Akimov, A V; Chebakov, K Yu; Tolstikhina, I Yu; Sokolov, A V; Rodionov, P B; Kanorsky, S I; Sorokin, V N; Kolachevsky, N N

    2008-10-31

    The possibility of laser cooling of thulium atoms is considered. The hyperfine structure of almost cyclic 4f{sup 13}6s{sup 2} (J{sub g} = 7/2) {r_reversible} 4f{sup 12}5d{sub 3/2}6s{sup 2} (J{sub e} = 9/2) and 4f{sup 13}6s{sup 2} (J{sub g} = 7/2) {r_reversible} 4f{sup 12}5d{sub 5/2}6s{sup 2} (J{sub e} = 9/2) transitions at 410.6 and 420.4 nm, respectively, is studied by the method of sub-Doppler saturation spectroscopy in counterpropagating laser beams. The hyperfine splitting of excited levels involved in these transitions is measured and the natural linewidths of these transitions are determined. The structure of the neighbouring 4f{sup 13}6s6p (J{sub e} = 5/2) and 4f{sup 12}5d{sub 5/2}6s{sup 2} (J{sub e} = 7/2) levels is studied for the first time by this method. The decay probabilities of the J{sub e} = 9/2 levels via channels removing atoms from the cooling cycle are calculated. It is found that the branching ratio for the strong transition at 410.6 nm (A = 6x10{sup 7} s{sup -1}) is smaller than 2x10{sup -5}, which makes this transition most promising for laser cooling. The laser cooling of atoms in a Zeeman cooler at this transition is simulated. The possibility of using a laser-cooled cloud of thulium atoms to study the metrological transition at 1.14 {mu}m is discussed. (laser cooling of atoms)

  5. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    SciTech Connect

    Gong, W.; Peng, X. Li, W.; Guo, H.

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  6. Frequency stabilization of a 1083 nm fiber laser to 4He transition lines with optical heterodyne saturation spectroscopies

    NASA Astrophysics Data System (ADS)

    Gong, W.; Peng, X.; Li, W.; Guo, H.

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable 4He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10-12@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  7. Diode-pumped Nd:YVO4 laser emitting at 1074 nm based on the 4 F 3/2-4 I 11/2 transition

    NASA Astrophysics Data System (ADS)

    Ma, Z. Y.; Li, C. L.; Liang, W.; Wang, J. G.

    2011-09-01

    We report a diode-pumped Nd:YVO4 laser emitting at 1074 nm, based on the 4 F 3/2-4 I 11/2 transition, generally used for a 1064 nm emission. A power of 323 mW at 1074 nm has been achieved in continuouswave (CW) operation with a fiber-coupled laser diode emitting 18.2 W at 808 nm. Intracavity second-harmonic generation in CW mode has also been demonstrated with a power of 18 mW at 537 nm by using a LiB3O5 (LBO) nonlinear crystal.

  8. Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm

    PubMed Central

    Wang, Jiarui; Jiao, Luguang; Jing, Xiaomin; Chen, Hongxia; Hu, Xiangjun; Yang, Zaifu

    2016-01-01

    The retinal damage effects induced by transitional near-infrared (NIR) lasers have been investigated for years. However, the damage threshold dependence on exposure duration has not been revealed. In this paper, the in-vivo retinal damage ED50 thresholds were determined in chinchilla grey rabbits for 1319 nm laser radiation for exposure durations from 0.1 s to 10 s. The incident corneal irradiance diameter was fixed at 5 mm. The ED50 thresholds given in terms of the total intraocular energy (TIE) for exposure durations of 0.1, 1 and 10 s were 1.36, 6.33 and 28.6 J respectively. The ED50 thresholds were correlated by a power law equation, ED50 = 6.31t0.66 [J] where t is time [s], with correlation coefficient R = 0.9999. There exists a sufficient safety margin (factor of 28~60) between the human ED50 thresholds derived from the rabbit and the maximum permissible exposure (MPE) values in the current laser safety standards. PMID:27231639

  9. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    PubMed

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  10. Demonstration of saturated tabletop soft x-ray lasers at 5 Hz repetition rate in transitions of Ne-like ions with wavelengths near 30 nm

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2005-10-01

    Recent experiments have demonstrated that the laser pump energy required to operate collisional soft x-ray lasers in the gain saturated regime can be significantly reduced by directing the heating pulse into the plasma at grazing incidence for a more efficient energy deposition [1-2]. Optimization of the incidence angle led to gain-saturated operation at 5Hz repetition rate in several transitions of Ni-like ions at wavelengths ranging from 18.9nm to 13.2nm [3]. We report saturated high repetition rate laser-pumped table-top soft x-ray lasers in Ne-like ions at wavelengths near 30nm. Gain-saturated lasers operating at 5Hz repetition rate were obtained in Ne-like Ti at 32.6nm and in Ne-like V at 30.4nm heating plasmas with laser pulses of ˜1J and 8ps impinging at 20^o grazing incidence. Average powers > 1μW were measured. Strong lasing was also observed in Ne-like Cr at 28.6nm. 1. R. Keenan et al, Phys. Rev. Lett., 94, 103901, (2005). 2. B. M. Luther et al, Opt. Lett., 30, 165, (2005). 3. Y. Wang et al, submitted to Phys. Rev. A, (2005).

  11. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  12. Multi-watt 589nm fiber laser source

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Drobshoff, Alex D.; Beach, Raymond J.; Messerly, Michael J.; Payne, Stephen A.; Brown, Aaron; Pennington, Deanna M.; Bamford, Douglas J.; Sharpe, Scott J.; Cook, David J.

    2006-02-01

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichio-metric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd 3+ fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the 1088nm 4-level laser transition. At 15W, the 938nm laser has an M2 of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  13. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  14. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  15. A 729 nm laser with ultra-narrow linewidth for probing 4S 1/2-3D 5/2 clock transition of 40Ca +

    NASA Astrophysics Data System (ADS)

    Guan, Hua; Liu, Qu; Huang, Yao; Guo, Bin; Qu, Wancheng; Cao, Jian; Huang, Guilong; Huang, Xueren; Gao, Kelin

    2011-01-01

    A Coherent Inc. Ti:sapphire laser MBR-110 is locked to a temperature-controlled high finesse Fabry-Perot cavity supported on an isolated platform. The linewidth is measured by locking the laser to another similar super-cavity at the same time and the heterodyne beatnote between two laser beams that locked to different cavities determines the linewidth. The result shows that the laser's linewidth is suppressed to be 41 Hz. The long-term drift is measured with a femtosecond comb and determined to be ~ 0.1 Hz/s. This laser is used to probe the 4S 1/2-3D 5/2 clock transition of a single 40Ca + ion. The Zeeman components of the clock transition with a linewidth of 160 Hz have been observed.

  16. Diode-pumped continuous-wave Nd:LuVO4 laser emitting at 1089 nm based on the 4F(3/2)-4I(11/2) transition.

    PubMed

    Lü, Yanfei; Zhang, Xihe; Xia, Jing; Fu, Xinhua

    2010-07-10

    We present what is, to the best of our knowledge, the first diode-pumped Nd:LuVO(4) laser emitting at 1089 nm, based on the (4)F(3/2)-(4)I(11/2) transition, generally used for a 1066 nm emission. A power of 8.7 W at 1089 nm has been achieved in continuous-wave (cw) operation with a fiber-coupled laser diode emitting 18.7 W at 809 nm. Intracavity second-harmonic generation in cw mode has also been demonstrated with a power of 3.6 W at 544.5 nm by using a LiB(3)O(5) nonlinear crystal.

  17. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  18. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  19. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  20. Efficient 1645-nm Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Young, York E.; Setzler, Scott D.; Snell, Kevin J.; Budni, Peter A.; Pollak, Thomas M.; Chicklis, E. P.

    2004-05-01

    We report a resonantly fiber-laser-pumped Er:YAG laser operating at the eye-safe wavelength of 1645 nm, exhibiting 43% optical efficiency and 54% incident slope efficiency and emitting 7-W average power when repetitively Q switched at 10 kHz. To our knowledge, this is the best performance (conversion efficiency and average power) obtained from a bulk solid-state Q-switched erbium laser. At a 1.1-kHz pulse repetition frequency the laser produces 3.4-mJ pulses with a corresponding peak power of 162 kW. Frequency doubling to produce 822.5-nm, 4.7-kW pulses at 10 kHz was performed to demonstrate the laser's utility.

  1. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Zheng; Tao, Zhi-Ming; Jiang, Zhao-Jie; Chen, Jing-Biao

    2014-12-01

    We mainly present the 728 nm laser spectroscopy and Faraday atomic filter of Cs atoms with 650 MHz linewidth and 2.6% transmission based on an electrodeless discharge vapor lamp, compared with Rb 728 nm laser spectroscopy. Accidentally, this remarkably strong Cs 728 nm transition from the 6F7/2 state to the 5D5/2 state is only about 2.5 GHz away from the Rb 728 nm transition of the future potential four-level active optical clock, once laser cooled and trapped from the 7S1/2 state to the 5P1/2 state, as we proposed previously. A Faraday atomic filter stabilized 728 nm laser using a Cs electrodeless discharge vapor lamp with a power of 10mW will provide a frequency reference to evaluate the performance of the potential Rb four-level active optical clock at 728 nm with power less than 1 nW by 2.5 GHz heterodyne measurements.

  2. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  3. Detection of chloride in reinforced concrete using a dualpulsed laser-induced breakdown spectrometer system: comparative study of the atomic transition lines of Cl I at 594.85 and 837.59 nm.

    PubMed

    Gondal, Mohammed Ashraf; Dastageer, Mohamed Abdulkader; Maslehuddin, Mohammed; Alnehmi, Abdul Jabar; Al-Amoudi, Omar Saeed Baghabra

    2011-07-10

    The presence of chloride in reinforced concrete can cause severe damage to the strength and durability of buildings and bridges. The detection of chloride in concrete structures at early stages of the corrosion buildup process is, therefore, very important. However, detection of chlorine in trace amounts in concrete is not a simple matter. A dual-pulsed laser-induced breakdown spectrometer (LIBS) has been developed at our laboratory for the detection of chloride contents in reinforced concrete by using two atomic transition lines of neutral chlorine (Cl I) at 594.8 and 837.5 nm. A calibration curve was also established by using standard samples containing chloride in known concentration in the concrete. Our dual-pulsed LIBS system demonstrated a substantial improvement in the signal level at both wavelengths (594.8 and 837.5 nm). However, the new atomic transition line at 594.8 nm shows a significant improvement compared to the line at 837.5 nm in spite of the fact that the relative intensity of the former is 0.1% of the latter. This weak signal level of the 837.5 nm transition line of chlorine can be attributed to some kind of self-absorption process taking place in the case of the concrete sample.

  4. Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1 nm

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Maganda, Y. W.; Dastageer, M. A.; Al Adel, F. F.; Naqvi, A. A.; Qahtan, T. F.

    2014-04-01

    Fourth harmonic of a pulsed Nd:YAG laser (wavelength 266 nm) in combination with high resolution spectrograph equipped with Gated ICCD camera has been employed to design a high sensitive analytical system. This detection system is based on Laser Induced Breakdown Spectroscopy and has been tested first time for analysis of semi-fluid samples to detect fluoride content present in the commercially available toothpaste samples. The experimental parameters were optimized to achieve an optically thin and in local thermo dynamic equilibrium plasma. This improved the limits of detection of fluoride present in tooth paste samples. The strong atomic transition line of fluorine at 731.102 nm was used as the marker line to quantify the fluoride concentration levels. Our LIBS system was able to detect fluoride concentration levels in the range of 1300-1750 ppm with a detection limit of 156 ppm.

  5. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  6. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    NASA Astrophysics Data System (ADS)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2016-07-01

    We report the preparation of narrow-linewidth 637.2 nm laser device by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding optical-optical conversion efficiency is 38.0%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  7. 946 nm Diode Pumped Laser Produces 100mJ

    NASA Technical Reports Server (NTRS)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  8. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  9. Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm

    SciTech Connect

    Risk, W.P.; Lenth, W.

    1987-12-01

    We report the use of GaAlAs laser-diode arrays to pump a cw Nd:YAG laser operating on the 946-nm /sup 4/F/sub 3/2/..-->../sup 4/I/sub 9/2/ transition. At room temperature, the lasing threshold was reached with 58 mW of absorbed pump power, and, with 175 mW of absorbed pump power, 42 mW of output power at 946 nm was obtained in a TEM/sub 00/ mode by using 0.7% output coupling. In addition, pumping with an infrared dye laser operating in a pure TEM/sub 00/ mode was used to investigate the effects of reabsorption loss that are characteristic of the 946-nm laser transition. LiIO/sub 3/ was used as an intracavity doubling crystal, and 100 ..mu..W of blue light was generated by using diode-laser pumping in a nonoptimized cavity.

  10. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  11. 420nm alkali blue laser based on two-photon absorption

    NASA Astrophysics Data System (ADS)

    Tan, Yan-nan; Li, Yi-min; Liu, Tong; Gong, Fa-quan; Jia, Chun-yan; Hu, Shu; Gai, Bao-dong; Guo, Jing-wei; Liu, Wan-fa

    2015-02-01

    Based on two-photon absorption, a 420nm blue laser of alkali Rb vapor was demonstrated, and a dye laser was used as the pumping laser. Utilizing the energy level structure of Rb atom, lasering mechanism and two-photon absorption process are analyzed. Absorbing two 778.1nm photons, Rb atoms were excited from 52 S1/2 to 52 D5/2, then relaxed to 62 P3/2 with mid infrared photon radiation. 420nm blue laser was achieved by the transition 62 P3/2-->52 S1/2. To improve efficiency of the blue laser, two-photon resonant excitation pumped alkali vapor blue lasers are proposed, which will be good beam quality, high efficiency and scalable blue lasers. The development of diode pumped alkali vapor blue laser is expected.

  12. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-02-27

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry.

  13. High-Performance 1645-nm Er: YAG Laser

    DTIC Science & Technology

    2007-09-25

    laser set-up is shown in Figure 1. An IPG Photonics TEM00 erbium fiber laser , which provided 20 W cw power at 1532.4 nm, was used in these experi...output of the resonantly fiber - laser -pumped Er:AYG laser at 1645 nm using 0.25% doped crystal out- performed the 0.5% doped crystal. In addition to the...the advantages of small quantum defect and small thermal load for the laser materials. High-brightness erbium fiber pump lasers at 1532 nm not only

  14. Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser.

    PubMed

    Xu, Bin; Camy, Patrice; Doualan, Jean-Louis; Cai, Zhiping; Moncorgé, Richard

    2011-01-17

    We report continuous-wave (CW) laser operation of Pr3+-doped LiLuY4, LiYF4 and KY3F10 single crystals in the Red, Orange and Green spectral regions by using a new pumping scheme. The pump source is an especially developed compact, slightly tunable and intracavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power of 0.9W at 469.12 nm. At this pump wavelength, efficient room temperature laser emissions corresponding to the 3P0→3F2, 3P0→3H6 and 3P1→3H5 Pr3+ transitions are observed. While a maximum slope efficiency of 45% is obtained in the red with Pr:LiYF4, the demonstration is made for the first time of the orange laser operation of Pr:KY3F10 at about 610 nm.

  15. Picosecond holmium fibre laser pumped at 1125 \\ {\\text{nm}}

    NASA Astrophysics Data System (ADS)

    Kamynin, V. A.; Filatova, S. A.; Zhluktova, I. V.; Tsvetkov, V. B.

    2016-12-01

    We report a passively mode-locked, all-fibre holmium laser based on nonlinear polarisation rotation. As a pump source use is made of an 1125-{\\text{nm}} ytterbium-doped fibre laser. The pulse repetition rate of the holmium laser is 7.5 {\\text{MHz}}, and the pulse duration does not exceed 52 {\\text{ps}} at wavelengths of 2065 and 2080 {\\text{nm}}. The average laser output power reaches 5 {\\text{mW}}.

  16. End-Pumped 895 nm Cs Laser

    SciTech Connect

    Beach, R J; Krupke, W F; Kanz, V K; Payne, S A; Dubinskii, M A; Merkle, L D

    2004-02-09

    A scientific demonstration of a Cs laser is described in which the measured slope efficiency is as high as 0.59 W/W using a Ti:Sapphire laser as a surrogate diode-pump. In addition to presenting experimental data, a laser energetics model that accurately predicts laser performance is described and used to model a power-scaled, diode-pumped system.

  17. Rb-stabilized laser at 1572 nm for CO2 monitoring

    NASA Astrophysics Data System (ADS)

    Matthey, R.; Moreno, W.; Gruet, F.; Brochard, P.; Schilt, S.; Mileti, G.

    2016-06-01

    We have developed a compact rubidium-stabilized laser system to serve as optical frequency reference in the 1.55-μm wavelength region, in particular for CO2 monitoring at 1572 nm. The light of a fiber-pigtailed distributed feedback (DFB) laser emitting at 1560 nm is frequency-doubled and locked to a sub-Doppler rubidium transition at 780 nm using a 2-cm long vapor glass cell. Part of the DFB laser light is modulated with an electro-optical modulator enclosed in a Fabry-Perot cavity, generating an optical frequency comb with spectral coverage extending from 1540 nm to 1580 nm. A second slave DFB laser emitting at 1572 nm and offset-locked to one line of the frequency comb shows a relative frequency stability of 1.10-11 at 1 s averaging time and <4.10-12 from 1 hour up to 3 days.

  18. Development of high coherence high power 193nm laser

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Arakawa, Masaki; Fuchimukai, Atsushi; Sasaki, Yoichi; Onose, Takashi; Kamba, Yasuhiro; Igarashi, Hironori; Qu, Chen; Tamiya, Mitsuru; Oizumi, Hiroaki; Ito, Shinji; Kakizaki, Koji; Xuan, Hongwen; Zhao, Zhigang; Kobayashi, Yohei; Mizoguchi, Hakaru

    2016-03-01

    We have been developing a hybrid 193 nm ArF laser system that consists of a solid state seeding laser and an ArF excimer laser amplifier for power-boosting. The solid state laser consists of an Yb-fiber-solid hybrid laser system and an Er-fiber laser system as fundamentals, and one LBO and three CLBO crystals for frequency conversion. In an ArF power amplifier, the seed laser passes through the ArF gain media three times, and an average power of 110 W is obtained. As a demonstration of the potential applications of the laser, an interference exposure test is performed.

  19. Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm.

    PubMed

    Huang, Y P; Cho, C Y; Huang, Y J; Chen, Y F

    2012-02-27

    A comparison between the fluorescence spectra of the Nd-doped vanadate crystals (Nd:YVO4, Nd:GdVO4, Nd:LuVO4) for the 4F3/2 → 4I11/2 transition is studied. We numerically analyze the condition of gain-to-loss balance via an uncoated intracavity etalon to achieve the dual-wavelength operation. We further experimentally demonstrate the orthogonally polarized dual-wavelength laser with a single Nd:LuVO4 crystal. The simultaneous dual-wavelength Nd:LuVO4 laser at 1085.7 nm in σ polarization and 1088.5 nm in π polarization is realized. At an incident pump power of 12 W, the average output power obtained at 1085.7 nm and 1088.5 nm is 0.4 W and 1.7 W, respectively.

  20. LASERS: Study of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser at 1678 nm

    NASA Astrophysics Data System (ADS)

    Kalachev, Yu L.; Mikhailov, Viktor A.; Podreshetnikov, V. V.; Shcherbakov, Ivan A.

    2010-06-01

    The lasing, spectral, and luminescent characteristics of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser (λ = 1678 nm) into the 1682-nm absorption line of the 3H6-3F4 transition of the Tm3+ ion are studied. It is shown that the total (with respect to the absorbed power) and slope laser efficiencies upon pulsed pumping reach 46% and 50%, respectively. The output radiation power in the cw regime is 400 mW. The comparative measurements showed that pumping by a fibre laser at 1678 nm is more efficient than diode pumping at 792 nm.

  1. 11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium

    NASA Astrophysics Data System (ADS)

    Sané, S. S.; Bennetts, S.; Debs, J. E.; Kuhn, C. C. N.; McDonald, G. D.; Altin, P. A.; Close, J. D.; Robins, N. P.

    2012-04-01

    We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.

  2. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  3. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  4. Modeling of Tm-doped ZBLAN blue upconversion fiber lasers operating at 455 nm

    NASA Astrophysics Data System (ADS)

    Brunet, Francois; Laperle, Pierre; Vallee, Real; LaRochelle, Sophie; Pujol, Lionel

    1999-12-01

    We present a model for 455-nm thulium-doped fluorozirconate fiber lasers co-pumped at 645 nm and 1064 nm. Twelve radiative transitions are accounted for in our model, along with cross- relaxation and cooperative upconversion processes. Blue laser output power is computed using a rate equation analysis. Relevant spectroscopic data used in our model are given, including cross-section measurements that we have performed. The results of our simulation show a good agreement with previously published experimental data. The importance of cross-relaxation processes is discussed. The dependence of output laser power on fiber length, output mirror reflectivity, and pump powers is also addressed.

  5. High power room temperature 1014.8 nm Yb fiber amplifier and frequency quadrupling to 253.7 nm for laser cooling of mercury atoms.

    PubMed

    Hu, Jinmeng; Zhang, Lei; Liu, Hongli; Liu, Kangkang; Xu, Zhen; Feng, Yan

    2013-12-16

    An 8 W continuous wave linearly-polarized single-frequency 1014.8 nm fiber amplifier working at room temperature is developed with commercial double-clad single-mode Yb-doped silica fiber. Re-absorption at the laser wavelength and amplified spontaneous emission at longer wavelength are managed by optimizing the amplifier design. The laser has a linewidth of ~24 kHz without noticeable broadening after amplification. Using two resonant cavity frequency doublers, 1.03 W laser at 507.4 nm and 75 mW laser at 253.7 nm are generated with 4 W 1014.8 nm laser. Both absorption and saturated absorption spectra of the (1)S(0) - (3)P(1) transition of atomic mercury are measured with the 253.7 nm laser.

  6. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  7. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  8. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  9. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  10. Experimental study of 248nm excimer laser etching of alumina

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Shao, Jingzhen; Wang, Xi; Fang, Xiaodong

    2016-10-01

    The 248 nm excimer laser etching characteristic of alumina ceramic and sapphire had been studied using different laser fluence and different number of pulses. And the interaction mechanism of 248 nm excimer laser with alumina ceramic and sapphire had been analyzed. The results showed that when the laser fluence was less than 8 J/cm2, the etching depth of alumina ceramic and sapphire were increased with the increase of laser fluence and number of pulses. At the high number pulses and high-energy, the surface of the sapphire had no obvious melting phenomenon, and the alumina ceramic appeared obvious melting phenomenon. The interaction mechanism of excimer laser with alumina ceramics and sapphire was mainly two-photon absorption. But because of the existence of impurities and defects, the coupling between the laser radiation and ceramic and sapphire was strong, and the thermal evaporation mechanism was also obvious.

  11. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  12. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  13. Investigations of a dual seeded 1178nm Raman laser system

    NASA Astrophysics Data System (ADS)

    Block, Matthew; Henry, Leanne J.; Klopfer, Michael; Jain, Ravinder

    2016-03-01

    The leakage of 1121 nm power from a resonator cavity because of spectral broadening seriously degrades the performance of a Raman resonator by reducing the 1121 nm circulating power and the 1178 nm output power. Therefore, it is important to understand the conditions which minimize 1121 nm power leakage, maximize 1121 intracavity and 1178 nm output power while enabling a manageable Stimulated Brillouin Scattering gain for narrow linewidth systems. It was found that cavity lengths longer than approximately 40 m didn't result in significantly more 1121 nm linewidth broadening. Relative to the high reflectivity bandwidth of the fiber Bragg gratings, it was found that 4 nm FBGs seemed to optimize 1178 nm amplification while minimizing the amount of 1121 nm power leakage. A two stage high power 1178 nm Raman system was built and 20 W of 1178 nm output power was achieved with a polarization extinction ratio of 21 and nearly diffraction limited beam quality. Linewidth broadening was found to increase as the 1178 nm output increased and was approximately 8 GHz when the 1178 nm output power was 20 W. Because of the linewidth broadening, a co-pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth.

  14. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    Jain 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at

  15. Diode-pumped Nd:YAG laser emitting at 884 nm Diode-pumped Nd:YAG laser emitting at 884 nm

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shao, Y.; Yuan, J. L.; Zhang, D.; Li, Y. L.

    2012-07-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd-doped Y3Al5O12 (Nd:YAG) laser emitting at 884 nm, based on the 4F3/2 → 4I9/2 transition, generally used for a 946 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:YAG thin-disk laser with 1.14 W of continuous wave (CW) output power at 884 nm. Moreover, intracavity second-harmonic generation (SHG) in CW mode has also been demonstrated with a power of 151 mW at 442 nm by using a BiB3O6 (BiBO) nonlinear crystal.

  16. A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng

    2009-11-23

    We demonstrate a self-Q-switched, all-fiber, tunable, erbium laser at 1530 nm with high pulse repetition rates of 0.9-10 kHz. Through the use of an auxiliary 10-mW, 1570 nm laser that shortened the relaxation time of erbium, sequentially Q-switched pulses with pulse energies between 4 and 6 microJ and pulse widths of 40 ns were steadily achieved. A peak pulse power of 165 W was obtained.

  17. 80 nm tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  18. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  19. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  20. A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar

    DTIC Science & Technology

    2013-04-23

    cooling to deal with the heat. There are no direct solid-state blue-green transitions, but neodymium -doped YAG crystal lasers (Nd:YAG)) is commonly...dopants include neodymium , thulium, praseodymium, yt- terbium, and erbium, but the latter two are by far the most common. Erbium-doped fiber lasers

  1. Laser cooling transitions in atomic erbium.

    PubMed

    Ban, H; Jacka, M; Hanssen, J; Reader, J; McClelland, J

    2005-04-18

    We discuss laser cooling opportunities in atomic erbium, identifying five J ? J + 1 transitions from the 4f126s2 3H6 ground state that are accessible to common visible and near-infrared continuous-wave tunable lasers. We present lifetime measurements for the 4f11(4Io 15/2)5d5/26s2 (15/2, 5/2)7o state at 11888 cm-1 and the 4f11(4Io 13/2)5d3/26s2 (13/2, 5/2)7o state at 15847 cm-1, showing values of 20 +/- 4 micros and 5.6 +/- 1.4 micros, respectively. We also present a calculated value of 13 +/- 7 s-1 for the transition rate from the 4f11(4Io 15/2)5d3/26s2 (15/2, 3/2)7 o state at 7697 cm-1 to the ground state, based on scaled Hartree-Fock energy parameters. Laser cooling on these transitions in combination with a strong, fast (5.8 ns) laser cooling transition at 401 nm, suggest new opportunities for narrowband laser cooling of a large-magnetic moment atom, with possible applications in quantum information processing, high-precision atomic clocks, quantum degenerate gases, and deterministic single-atom doping of materials.

  2. Ocular safety limits for 1030nm femtosecond laser cataract surgery

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel V.

    2013-03-01

    Application of femtosecond lasers to cataract surgery has added unprecedented precision and reproducibility but ocular safety limits for the procedure are not well-quantified. We present an analysis of safety during laser cataract surgery considering scanned patterns, reduced blood perfusion, and light scattering on residual bubbles formed during laser cutting. Experimental results for continuous-wave 1030 nm irradiation of the retina in rabbits are used to calibrate damage threshold temperatures and perfusion rate for our computational model of ocular heating. Using conservative estimates for each safety factor, we compute the limits of the laser settings for cataract surgery that optimize procedure speed within the limits of retinal safety.

  3. High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, M.

    2016-02-01

    We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.

  4. Brain lesion induced by 1319nm laser radiation

    NASA Astrophysics Data System (ADS)

    Yang, Zaifu; Chen, Hongxia; Wang, Jiarui; Chen, Peng; Ma, Ping; Qian, Huanwen

    2010-11-01

    The laser-tissue interaction has not been well defined at the 1319 nm wavelength for brain exposure. The goal of this research effort was to identify the behavioral and histological changes of brain lesion induced by 1319 nm laser. The experiment was performed on China Kunming mice. Unilateral brain lesions were created with a continuous-wave Nd:YAG laser (1319nm). The brain lesions were identified through behavioral observation and histological haematoxylin and eosin (H&E) staining method. The behavior change was observed for a radiant exposure range of 97~773 J/cm2. The histology of the recovery process was identified for radiant exposure of 580 J/cm2. Subjects were sacrificed 1 hour, 1 week, 2 weeks, 3 months, 7 months and 13 months after laser irradiation. Results showed that after laser exposure, behavioral deficits, including kyphosis, tail entasia, or whole body paralysis could be noted right after the animals recovered from anesthesia while gradually disappeared within several days and never recurred again. Histologically, the laser lesion showed a typical architecture dependent on the interval following laser treatment. The central zone of coagulation necrosis is not apparent right after exposure but becomes obvious within several days. The nerotic tissue though may persist for a long time, will finally be completely resorbed. No carbonization granules formed under our exposure condition.

  5. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  6. Excimer lasers for superhigh NA 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Paetzel, Rainer; Albrecht, Hans S.; Lokai, Peter; Zschocke, Wolfgang; Schmidt, Thomas; Bragin, Igor; Schroeder, Thomas; Reusch, Christian; Spratte, Stefan

    2003-06-01

    Excimer lasers are widely used as the light source for microlithography scanners. The volume shipment of scanner systems using 193nm is projected to begin in year 2003. Such tools will directly start with super high numerical aperture (NA) in order to take full advantage of the 193nm wavelength over the advanced 248nm systems. Reliable high repetition rate laser light sources enabling high illumination power and wafer throughput are one of the fundamental prerequisites. In addition these light sources must support a very high NA imaging lens of more than 0.8 which determines the output spectrum of the laser to be less than 0.30 pm FWHM. In this paper we report on our recent progress in the development of high repetition rate ultra-narrow band lasers for high NA 193nm microlithography scanners. The laser, NovaLine A4003, is based on a Single Oscillator Ultral Line-narrowed (SOUL) design which yields a bandwidth of less than 0.30pm FWHM. The SOUL laser enables superior optical performance without adding complexity or cost up to the 4 kHz maximum repetition rate. The A4003's high precision line-narrowing optics used in combination with the high repetition rate of 4 kHz yields an output power of 20 W at an extremely narrow spectral bandwidth of less than 0.30 pm FWHM and highest spectral purity of less than 0.75 pm for the 95% energy content. We present performance and reliability data and discuss the key laser parameters. Improvements in the laser-internal metrology and faster regulation control result in better energy stability and improved overall operation behavior. The design considerations for line narrowing and stable laser operation at high repetition rates are discussed.

  7. Quantity change in collagen following 830-nm diode laser welding

    NASA Astrophysics Data System (ADS)

    Tang, Jing; O'Callaghan, David; Rouy, Simone; Godlewski, Guilhem; Prudhomme, Michel

    1996-12-01

    The actual mechanism for production of laser welding of tissue is presently unknown, but collagen plays an important role is tissue welded after laser irradiance. The quantity change in collagen extracted from the abdominal aorta of Wistar rats after tissue welding using an 830 nm diode laser was investigated. The collagen contents following repeated pepsin digestion after acetic acid extraction were determined with Sircol collagen assay. Compared with untreated aorta, the collagen content of the treated vessel was obvious decreased immediately after laser irradiation and following an initial increase on day 3, there was a peak at day 10. The results suggest that a part of collagen molecules is denatured by the heat of laser. There is an effect of stimulating collagen synthesis after laser welding with parameters used in this study.

  8. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  9. Measured skin damage thresholds for 1314-nm laser exposures

    NASA Astrophysics Data System (ADS)

    Montes de Oca, Cecilia I.; Cain, Clarence P.; Schuster, Kurt J.; Stockton, Kevin; Thomas, James J.; Eggleston, Thomas A.; Roach, William P.

    2003-06-01

    The use of lasers in the infrared region between 1200-1400 nm has steadily increased in various industrial and commercial applications. However, there are few studies documenting damage thresholds for the skin in this region, and current laser safety standards are based on limited data. This study has determined preliminary skin damage thresholds for the Effective Dose for 50% probability (ED50) of a Minimum Visible Lesion (MVL) with laser exposure at 1314nm and 0.35 ms pulse width. An in-vivo pigmented animal model, Yucatan mini-pig (Sus scrofa domestica), was used in this study. The type and extent of tissue damage in the porcine skin was determined through histopathologic examination, and the findings are discussed. Finally, the results of this study were compared to other literature as well as to the existing ANSI Z136.1 (2000) standard for safe use of lasers.

  10. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  11. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhixu; Yao, Chuanfei; Wang, Shunbin; Zheng, Kezhi; Xiong, Liangming; Luo, Jie; Lv, Dajuan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-04-01

    We report enhanced upconversion (UC) fluorescence in Tm3+ doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ˜1050 to ˜2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the 3H4 → 3H6 transition of Tm3+ was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ˜4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  12. Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.

    2013-03-01

    Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.

  13. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.

    PubMed

    Cozijn, F M J; Biesheuvel, J; Flores, A S; Ubachs, W; Blume, G; Wicht, A; Paschke, K; Erbert, G; Koelemeij, J C J

    2013-07-01

    We demonstrate laser cooling of trapped beryllium ions at 313 nm using a frequency-doubled extended cavity diode laser operated at 626 nm, obtained by cooling a ridge waveguide diode laser chip to -31°C. Up to 32 mW of narrowband 626 nm laser radiation is obtained. After passage through an optical isolator and beam shaping optics, 14 mW of 626 nm power remains of which 70% is coupled into an external enhancement cavity containing a nonlinear crystal for second-harmonic generation. We produce up to 35 μW of 313 nm radiation, which is subsequently used to laser cool and detect 6×10(2) beryllium ions, stored in a linear Paul trap, to a temperature of about 10 mK, as evidenced by the formation of Coulomb crystals. Our setup offers a simple and affordable alternative for Doppler cooling, optical pumping, and detection to presently used laser systems.

  14. 635nm diode laser biostimulation on cutaneous wounds

    NASA Astrophysics Data System (ADS)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2014-05-01

    Biostimulation is still a controversial subject in wound healing studies. The effect of laser depends of not only laser parameters applied but also the physiological state of the target tissue. The aim of this project is to investigate the biostimulation effects of 635nm laser irradiation on the healing processes of cutaneous wounds by means of morphological and histological examinations. 3-4 months old male Wistar Albino rats weighing 330 to 350 gr were used throughout this study. Low-level laser therapy was applied through local irradiation of red light on open skin excision wounds of 5mm in diameter prepared via punch biopsy. Each animal had three identical wounds on their right dorsal part, at which two of them were irradiated with continuous diode laser of 635nm in wavelength, 30mW of power output and two different energy densities of 1 J/cm2 and 3 J/cm2. The third wound was kept as control group and had no irradiation. In order to find out the biostimulation consequences during each step of wound healing, which are inflammation, proliferation and remodeling, wound tissues removed at days 3, 7, 10 and 14 following the laser irradiation are morphologically examined and than prepared for histological examination. Fragments of skin including the margin and neighboring healthy tissue were embedded in paraffin and 6 to 9 um thick sections cut are stained with hematoxylin and eosin. Histological examinations show that 635nm laser irradiation accelerated the healing process of cutaneous wounds while considering the changes of tissue morphology, inflammatory reaction, proliferation of newly formed fibroblasts and formation and deposition of collagen fibers. The data obtained gives rise to examine the effects of two distinct power densities of low-level laser irradiation and compare both with the non-treatment groups at different stages of healing process.

  15. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  16. A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyan; Jiang, Huawei

    2016-12-01

    A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.

  17. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  18. Novel 980-nm and 490-nm light sources using vertical cavity lasers with extended coupled cavities

    NASA Astrophysics Data System (ADS)

    McInerney, John G.; Mooradian, Aram; Lewis, Alan; Shchegrov, Andrei V.; Strzelecka, Eva M.; Lee, Dicky; Watson, Jason P.; Liebman, Michael K.; Carey, Glen P.; Umbrasas, Arvydas; Amsden, Charles A.; Cantos, Brad D.; Hitchens, William R.; Heald, David L.; Doan, Vincent V.; Cannon, J. L.

    2003-04-01

    We have developed novel electrically pumped, surface-emitting lasers emitting at 980 nm with an extended coupled cavity. The concept is scalable from monolithic low power devices all the way to high power extended cavity lasers. The latter have demonstrated 1W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. By inserting a nonlinear optical medium in the external cavity, efficient and compact frequency doubling has been achieved with CW output powers 5-40 mW demonstrated at 490 nm. The latter devices are especially noteworthy due to their very low noise, sub 10 μrad beam pointing stability combined with small size, low power consumption and high efficiency.

  19. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  20. Laser Nd:YVO{4} impulsionnel à 914 nm pompé par diode

    NASA Astrophysics Data System (ADS)

    Blandin, P.; Druon, F.; Balembois, F.; Georges, P.; Lévêque-Fort, S.; Fontaine-Aupart, M. P.

    2006-10-01

    Nous présentons ici le premier laser impulsionnel à verrouillage de modes en phase passif directement pompé par diode, utilisant la transition 4F{3 / 2}-4I{9/2} de l'ion néodyme à 914 nm. Le système de pompage utilisé permet d'obtenir un dispositif simple. Le train d'impulsions est obtenu grâce à un miroir à absorbant saturable, l'émission laser à 914 nm étant privilégiée par l'introduction dans la cavité de fortes pertes à 1064 nm. Nous obtenons avec notre dispositif des impulsions à 913.8 nm, de durée 8.8 ps à une cadence de 94 MHz et à une puissance de 86 mW.

  1. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  2. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  3. 551 nm Generation by sum-frequency mixing of intracavity pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Li, S. T.; Zhang, X. H.

    2012-02-01

    We present for the first time a Nd:YAG laser emitting at 1319 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 809 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1319 nm intracavity pumped at 946 nm. Intracavity sumfrequency mixing at 946 and 1319 nm was then realized in a LBO crystal to reach the yellow range. We obtained a continuous-wave output power of 158 mW at 551 nm with a pump laser diode emitting 18.7 W at 809 nm.

  4. Interaction of pulse laser radiation of 532 nm with model coloration layers for medieval stone artefacts

    NASA Astrophysics Data System (ADS)

    Colson, J.; Nimmrichter, J.; Kautek, W.

    2014-05-01

    Multilayer polychrome coatings on medieval and Renaissance stone artefacts represent substantial challenges in laser cleaning. Therefore, polychromic models with classical pigments, minium Pb22+PbO, zinc white (ZnO), and lead white ((PbCO3)2·Pb(OH)2) in an acrylic binder, were irradiated with a Q-switched Nd:YAG laser emitting at 532 nm. The studied medieval pigments exhibit strongly varying incubation behaviours directly correlated to their band gap energies. Higher band gaps beyond the laser photon energy of 2.3 eV require more incubative generation of defects for resonant transitions. A matching of the modification thresholds after more than four laser pulses was observed. Laser cleaning with multiple pulsing should not exceed ca. 0.05 J/cm2 when these pigments coexist in close spatial proximity.

  5. Efficient and compact intracavity-frequency-doubled Nd:LuVO4/LBO laser at 538 nm end-pumped by a fiber-coupled laser diode

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, Y. L.; Jiang, H. L.

    2011-10-01

    We report a diode-pumped Nd:LuVO4 laser emitting at 1076 nm, based on the 4 F 3/2-4 I 11/2 transition, generally used for a 1066 nm emission. A power of 689 mW at 1076 nm has been achieved in continuous-wave (CW) operation with a fiber-coupled laser diode emitting 17.8 W at 809 nm. Intracavity second-harmonic generation (SHG) in CW mode has also been demonstrated with a power of 105 mW at 538 nm by using a LiB3O5 (LBO) nonlinear crystal.

  6. Machining of optical microstructures with 157 nm laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian J.

    2003-11-01

    The precision machining of glass by laser ablation has been expanded with the short wavelength of the 157 nm of the F2 excimer laser. The high absorption of this wavelength in any optical glass, especially in UV-grade fused silica, offers a new approach to generate high quality surfaces, addressing also micro-optical components. In this paper, the machining of basic diffractive and refractive optical components and the required machining and process technology is presented. Applications that are addressed are cylindrical and rotational symmetrical micro lenses and diffractive optics like phase transmission grating and diffractive optical elements (DOEs). These optical surfaces have been machined into bulk material as well as on fiber end surfaces, to achieve compact (electro) -- optical elements with high functionality and packaging density. The short wavelength of 157 nm used in the investigations require either vacuum or high purity inert gas environments. The influence of different ambient conditions is presented.

  7. Quasi-cw 808-nm 300-W laser diode arrays

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Kozyrev, A. A.; Kondakova, N. S.; Kondakov, S. A.; Krokhin, O. N.; Mikaelyan, G. T.; Oleshchenko, V. A.; Popov, Yu. M.; Cheshev, E. A.

    2017-02-01

    Samples of 808-nm quasi-cw laser diode arrays (LDAs) with an output power exceeding 300 W, a pulse duration of 200 μs, and a pulse repetition rate of 100 Hz are developed and fabricated. The main output parameters of a set of five LDAs, including light – current characteristics, current – voltage characteristics, and emission spectra are measured. Preliminary life tests show that the LDA power remains stable for 108 pulses.

  8. 980nm diode laser pump modules operating at high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  9. 494 nm blue laser based on sum-frequency mixing of diode pumped Nd3+ lasers

    NASA Astrophysics Data System (ADS)

    Zou, J.; Wang, L. R.

    2012-02-01

    We report for the first time a continuous-wave (CW) blue radiation at 494 nm by intracavity sumfrequency generation of 912 nm Nd:GdVO4 laser and 1079 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 494 nm blue laser was obtained by 912 and 1079 nm intra-cavity sum-frequency mixing, and output power of 179 mW was demonstrated. At the output power level of 179 mW, the output power stability is better than 3.5% and laser beam quality M 2 factor is 1.21.

  10. Auditory nerve impulses induced by 980 nm laser.

    PubMed

    Guan, Tian; Zhu, Kai; Chen, Fei; He, Yonghong; Wang, Jian; Wu, Mocun; Nie, Guohui

    2015-08-01

    The discovery that a pulsed laser could trigger an auditory neural response inspired ongoing research on cochlear implants activated by optical stimulus rather than by electrical current. However, most studies to date have used visible light (532 nm) or long-wavelength near-infrared (>1840  nm ) and involved making a hole in the cochlea. This paper investigates the effect of optical parameters on the optically evoked compound action potentials (oCAPs) from the guinea pig cochlea, using a pulsed semiconductor near-infrared laser (980 nm) without making a hole in the cochlea. Synchronous trigger laser pulses were used to stimulate the cochlea, before and after deafening, upon varying the pulse duration (30–1000  μs ) and an amount of radiant energy (0–53.2  mJ/cm 2 ). oCAPs were successfully recorded after deafening. The amplitude of the oCAPs increased as the infrared radiant energy was increased at a fixed 50  μs pulse duration, and decreased with a longer pulse duration at a fixed 37.1  mJ/cm 2 radiant energy. The latency of the oCAPs shortened with increasing radiant energy at a fixed pulse duration. With a higher stimulation rate, the amplitude of the oCAPs’ amplitude decreased.

  11. 450 nm diode laser: A new help in oral surgery

    PubMed Central

    Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta

    2016-01-01

    AIM To describe the performance of 450 nm diode laser in oral surgery procedures. METHODS The case described consisted of the removal of a lower lip fibroma through a blue diode laser (λ = 450 nm). RESULTS The efficacy of this device, even at very low power (1W, CW), allows us to obtain very high intra and postoperative comfort for the patient, even with just topical anaesthesia and without needing suture. The healing process was completed in one week and, during the follow-up, the patient did not report any problems, pain or discomfort even without the consumption of any kind of drugs, such as painkillers and antibiotics. The histological examination performed by the pathologist showed a large area of fibrous connective tissue with some portions of epithelium-connective detachments and a regular incision with very scanty areas of carbonization. CONCLUSION The 450 nm diode laser proved of being very efficient in the oral soft tissue surgical procedures, with no side effects for the patients. PMID:27672639

  12. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  13. Atomic Beam Spectroscopy of the 1283 nm M1 Transition in Thallium

    NASA Astrophysics Data System (ADS)

    Majumder, P. K.; Holmes, C. D.; Green, Michael

    2003-05-01

    Using a new thallium atomic beam apparatus, we are undertaking a series of laser spectroscopy measurements with the goal of providing precise, independent cross-checks on the accuracy of new calculations of parity nonconservation in thallium(M. Kozlov et al.), Phys Rev. A64, 053107 (2001). In our apparatus, a laser beam interacts transversely with a 2-cm-wide thallium beam of density 4x10^11 cm-3 and reveals roughly tenfold Doppler narrowing of the absorption profile. Having completed a new 0.4% measurement of the scalar Stark shift within the 378 nm 6P_1/2-7S_1/2 E1transition(S.C. Doret et al.), Phys. Rev. A66, 052504 (2002), we have now begun to study the very weak 1283 nm 6P_1/2-6P_3/2 transition in the atomic beam environment. We will determine both the scalar and tensor Stark shift components, as well as the various components of the Stark-induced amplitude within this mixed M1/E2 transition. To enhance the visibility of the weak absorption signal, we are employing an FM spectroscopy technique. The demodulated laser transmission spectrum provides a zero-background signal with high signal/noise and includes copies of the atomic absorption spectrum separated by well-known RF sideband frequencies, offering built-in frequency scale calibration. In the longer term, we are developing an atomic beam experiment using this same 1283 nm laser to search for a long-range T-odd, but P-even interaction in thallium.

  14. Making transmission and reflection holograms using 650 nm laser diode from laser pointer

    NASA Astrophysics Data System (ADS)

    Panin, Alexander; Brown, Eric; Martinez, Tracy; Panin, Dmitry

    2003-10-01

    We have made both transmission and reflection holograms using inexpensive set-up with a 5 mW, 650-nm diode InGaAlP laser (similar to lasers used in common red laser pointers and DVD players). The reflection holograms can be viewed both with laser sourses of light and with non-coherent moderately collimated natural sources (like Sun or light bulb). In the transmission holograms viewed with laser both real and virtual images can be seen. Our paper presents the description of experimental set-up of exposure and development techniques, and the discussion of controversial coherence length issue of laser diodes as it applies to holograms.

  15. Diode-pumped passively mode-locked Nd:GSAG laser at 942 nm.

    PubMed

    Xu, Changwen; Wei, Zhiyi; Zhang, Yongdong; Li, Dehua; Zhang, Zhiguo; Wang, X; Wang, S; Eichler, H J; Zhang, Chunyu; Gao, Chunqing

    2009-08-01

    Stable mode-locking of a diode-pumped Nd:GSAG laser emitting at 942 nm between the 4F2/3-4I9/2 transition has been demonstrated. With a z cavity and a semiconductor saturable absorber mirror passive mode locker, we obtained 8.7 ps pulses at repetition rate of 95.6 MHz and average output power of 510 mW. The total optical efficiency is about 3.1%.

  16. 980-nm diode laser and fiber optic resectoscope in endourological surgery

    NASA Astrophysics Data System (ADS)

    Cecchetti, Walter; Guazzieri, Stefano; Tasca, Andrea; Dal Bianco, M.; Zattoni, Filiberto; Pagano, Francesco

    1996-12-01

    The 980 nm Ceralas D50 diode laser, produces homogeneous lesions on tissues of different nature. In our endourological tests we used the Ceralas D50 coupled with Comeg 24 ch laser resectoscope, and we treated 22 patients: n.5 bladder cancers, n.3 uretero pelvic junction obstructions, with hydronephrosis, n.3 urethra stenosis, n1 ureter stenosis, n.4 multiple upper tract transitional cell carcinomas, n.6 BPH treatments with VLAP modalities. Using the 1000 micrometers delivery fibers with different shaped tips, we obtained a bloodless sharp cut and easily vaporizations with minimum carbonizations, with power output in the range of 8-12 W, and 18-24W for VLAP.

  17. High-power pulsed 976-nm DFB laser diodes

    NASA Astrophysics Data System (ADS)

    Zeller, Wolfgang; Kamp, Martin; Koeth, Johannes; Worschech, Lukas

    2010-04-01

    Distributed feedback (DFB) laser diodes nowadays provide stable single mode emission for many different applications covering a wide wavelength range. The available output power is usually limited because of catastrophical optical mirror damage (COD) caused by the small facet area. For some applications such as trace gas detection output powers of several ten milliwatts are sufficiently high, other applications like distance measurement or sensing in harsh environments however require much higher output power levels. We present a process combining optimizations of the layer structure with a new lateral design of the ridge waveguide which is fully compatible with standard coating and passivation processes. By implementing a large optical cavity with the active layer positioned not in the middle of the waveguide layers but very close to the upper edge, the lasers' farfield angles can be drastically reduced. Furthermore, the travelling light mode can be pushed down into the large optical cavity by continuously decreasing the ridge waveguide width towards both laser facets. The light mode then spreads over a much larger area, thus reducing the surface power density which leads to significantly higher COD thresholds. Laterally coupled DFB lasers based on this concept emitting at wavelengths around 976 nm yield hitherto unachievable COD thresholds of 1.6 W under pulsed operation. The high mode stability during the 50 ns pulses means such lasers are ideally suited for high precision distance measurement or similar tasks.

  18. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr.

    PubMed

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-06-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.

  19. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr

    PubMed Central

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-01-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks. PMID:23822327

  20. Preliminary report: comparison of 980-nm, 808-nm diode laser enhanced with indocyanine green to the Nd:YAG laser applied to equine respiratory tissue

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Blikslager, Anthony T.; Campbell, Nigel B.

    2001-05-01

    The Neodynium: Yttrium Aluminum Garnet (Nd:YAG) laser has been the mainstay of performing upper respiratory laser surgery in the equine since 1984. The 808-nm diode laser has also been applied transendoscopically as well as the 980-nm diode laser over recent years. It has been shown that Indocyanine Green (ICG) enhances the performance of the 808- nm laser because it is absorbed at 810 nm of light. The 808- nm laser's tissue interaction combined with ICG is equivalent to or greater than the Nd:YAG laser's cutting ability. The 980-nm diode laser performance was similar to that of the Nd:YAG as determined by the parameters of this study. This study compared the depths and widths of penetration achieved with the 808-nm diode laser after intravenous injection of ICG on equine respiratory tissue. It also compared depths and widths of penetration achieved by the non-contact application of the 980-nm diode laser delivering the same energy of 200 joules. The depths and widths of penetration of both diode lasers were compared to themselves and to the Nd:YAG laser with all factors remaining constant.

  1. Analysis of Cervical Supernatant Samples Luminescence Using 355 nm Laser

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Kurtinaitiene, R.; Stanikunas, R.; Rimiene, J.; Vaitkus, J.

    2010-05-01

    The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors represents one of the current challenges in clinical medicine. Laser induced autofluorescence spectra in cervical smear content were fitted to predict the cervical epithelium diagnosis as a lab off "optical biopsy" method. Liquid PAP supernatant sediment dried on Quartz plate spectroscopy was performed by 355 nm Nd YAG microlaser STA-1 (Standa, Ltd). For comparison a liquid supernatant spectroscopy was formed by laboratory "Perkin Elmer LS 50B spetrometer at 290, 300, 310 nm excitations. Analysis of spectrum was performed by approximation using the multi-peaks program with Lorentz functions for the liquid samples and with Gaussian functions for the dry samples. Ratio of spectral components area to the area under whole experimental curve (SPP) was calculated. The spectral components were compared by averages of SPP using Mann-Whitney U-test in histology groups. Results. Differentiation of Normal and HSIL/CIN2+ cases in whole supernatant could be performed by stationary laboratory lamp spectroscopy at excitation 290 nm and emission >379 nm with accuracy AUC 0,69, Sens 0,72, Spec 0,65. Differentiation Normal versus HSIL/CIN2+ groups in dried enriched supernatant could be performed by 355 nm microlaser excitation at emission 405-424 nm with accuracy (AUC 0,96, Sens 0,91, Spec 1.00). Diagnostic algorithm could be created for all histology groups differentiation under 355 nm excitation. Microlaser induced "optical biopsy "looks promising method for cervical screening at the point of care.

  2. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  3. Study of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser at 1678 nm

    SciTech Connect

    Kalachev, Yu L; Mikhailov, Viktor A; Podreshetnikov, V V; Shcherbakov, Ivan A

    2010-06-23

    The lasing, spectral, and luminescent characteristics of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser ({lambda} = 1678 nm) into the 1682-nm absorption line of the {sup 3}H{sub 6}-{sup 3}F{sub 4} transition of the Tm{sup 3+} ion are studied. It is shown that the total (with respect to the absorbed power) and slope laser efficiencies upon pulsed pumping reach 46% and 50%, respectively. The output radiation power in the cw regime is 400 mW. The comparative measurements showed that pumping by a fibre laser at 1678 nm is more efficient than diode pumping at 792 nm. (lasers)

  4. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  5. High performance diode lasers emitting at 780-820 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; DeVito, M.; Grimshaw, M.; Leisher, P.; Zhou, H.; Dong, W.; Guan, X.; Zhang, S.; Martinsen, R.; Haden, J.

    2012-03-01

    High power 780-820 nm diode lasers have been developed for pumping and material processing systems. This paper presents recent progress in the development of such devices for use in high performance industrial applications. A newly released laser design in this wavelength range demonstrates thermally limited >25W CW power without catastrophic optical mirror damage (COMD), with peak wallplug efficiency ~65%. Ongoing accelerated lifetesting projects a time to 5% failure of ~10 years at 5 and 8 W operating powers for 95 and 200 μm emitter widths, respectively. Preliminary results indicate the presence and competition of a random and wear-out failure mode. Fiber-coupled modules based on arrays of these devices support >100W reliable operation, with a high 56% peak efficiency (ex-fiber) and improved brightness/reliability.

  6. Correlating Pulses from Two Spitfire, 800nm Lasers

    SciTech Connect

    Colby, Eric R.; Mcguinness, C.; Zacherl, W.D.; Plettner, T.; /Stanford U., Phys. Dept.

    2008-01-28

    The E163 laser acceleration experiments conducted at SLAC have stringent requirements on the temporal properties of two regeneratively amplified, 800nm, Spitfire laser systems. To determine the magnitude and cause of timing instabilities between the two Ti:Sapphire amplifiers, we pass the two beams through a cross-correlator and focus the combined beam onto a Hamamatsu G1117 photodiode. The photodiode has a bandgap such that single photon processes are suppressed and only the second order, two-photon process produces an observable response. The response is proportional to the square of the intensity. The diode is also useful as a diagnostic to determine the optimal configuration of the compression cavity.

  7. Laser ablation of polymeric materials at 157 nm

    NASA Astrophysics Data System (ADS)

    Costela, A.; García-Moreno, I.; Florido, F.; Figuera, J. M.; Sastre, R.; Hooker, S. M.; Cashmore, J. S.; Webb, C. E.

    1995-03-01

    Results are presented on the ablation by 157 nm laser radiation of polytetrafluoroethylene (PTFE), polyimide, polyhydroxybutyrate (PHB), poly(methyl methacrylate) (PMMA), and poly(2-hydroxyethyl methacrylate) with 1% of ethylene glycol dimethacrylate as a crosslinking monomer. Direct photoetching of PHB and undoped PTFE is demonstrated for laser fluences ranging from 0.05 to 0.8 J/cm2. The dependence of the ablation process on the polymer structure is analyzed, and insight into the ablation mechanism is gained from an analysis of the data using Beer-Lambert's law and the kinetic model of the moving interface. Consideration of the absorbed energy density required to initiate significant ablation suggests that the photoetching mechanism is similar for all the polymers studied.

  8. A stable 657nm laser for a Ca atom interferometer

    NASA Astrophysics Data System (ADS)

    Neyenhuis, Brian; Erickson, Christopher; Tang, Rebecca; Doermann, Greg; van Zijll, Marshall; Durfee, Dallin

    2006-05-01

    We will present an extremely stable laser to be used in an atom interferometer. A 657nm grating-stabilized diode laser is locked to a high-finesse cavity using the Pound-Drever-Hall method. Utilizing a feedback circuit with a bandwidth of 5 MHz we see a laser linewidth less than one kHz. In addition to a relatively high bandwidth, our circuit design allows for mode-hop-free scanning over a large range. We are also working on several improvements which should further reduce our linewidth; we are improving passive mechanical and thermal stability of the laser and the optical cavity and plan to change to a higher finesse cavity, we have designed and are testing a more stable current driver based on an updated Hall-Libbrecht design, and we calculating an optimized multiple-input feedback transfer function for our system. We will also present the measurement of the resonances of our optical cavity relative to the Ca intercombination line using a high-temperature vapor cell.

  9. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  10. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-10-12

    We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics.

  11. Subpicosecond 41.8-nm X-ray laser in the plasma produced by femtosecond laser irradiation of a xenon cluster jet

    SciTech Connect

    Ivanova, E P

    2012-12-31

    Model calculations are performed of the radiation gain for the 4d5d (J = 0) - 4d5p (J = 1) transition with a wavelength of 41.8 nm in Pd-like xenon ions in the plasma produced by femtosecond laser irradiation of a xenon cluster jet. Conditions for the excitation of an ultrashort-pulse ({approx}1 ps) X-ray laser are discussed. (lasers)

  12. Fiber-laser pumped actively Q-switched Er:LuYAG laser at 1648 nm

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, Y.; Zhao, T.; Zhu, H. Y.; Shen, D. Y.

    2016-02-01

    We demonstrated an acousto-optic Q-switched 1648 nm Er:LuYAG laser resonantly pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. Stable Q-switching operation was obtained with the pulse repetition rate (PRR) varying from 200 Hz to 10 kHz. At PRR of 200 Hz, the laser yielded Q-switched pulses with 3.3 mJ pulse energy and 65 ns pulse duration, corresponding to a peak power of 50.7 kW for 10.4 W of incident pump power.

  13. Study on the Pr:KYF ultraviolet laser at 305 nm pumped by blue laser

    NASA Astrophysics Data System (ADS)

    Ni, Tian-yi; Li, Yong-liang; Zhang, Tian-yi; Ruan, Ren-qiu

    2012-09-01

    An all-solid-state Pr:KY3F10 (Pr:KYF) laser pumped by blue laser (471 nm) has been demonstrated. With the incident pump power of 2.6 W, the maximum output power at 610 nm is 213 mW. Moreover, the intracavity second-harmonic generation (SHG) is also achieved with the maximum ultraviolet (UV) power at 305 nm of 11 mW by using a β-BaB2O4 (BBO) nonlinear crystal.

  14. Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range.

    PubMed

    Cai, Z P; Qu, B; Cheng, Y J; Luo, S Y; Xu, B; Xu, H Y; Luo, Z Q; Camy, P; Doualan, J L; Moncorgé, R

    2014-12-29

    The polarized emission spectra for the 3P01G4 emission transition of the Pr3+ ion around 910 nm in the Pr3+:LiYF4 (Pr:YLF) laser crystal were registered and calibrated in unit of cross sections for the first time. Continuous-wave (CW) laser operation is demonstrated at 915 nm in π polarization by pumping the crystal with an optically pumped semiconductor laser (OPSL) at 479.2 nm. An output power of 218 mW is thus obtained with a laser slope efficiency of about 24% for an output coupler (OC) transmission of 1.9%. CW laser operation is also demonstrated at 907 nm in σ polarization by using a thin plate oriented at Brewster angle. An output power of about 89 mW with a slope efficiency of about 10% is then obtained for an OC transmission of 0.8%.The round-trip cavity losses are estimated for different experimental cavity configurations to be about 1% and the typical beam quality M2 factors measured in the transverse x and y directions are found equal to about 1.07 and 1.04, respectively. Finally, we also report on a double laser wavelength operation by using an OC with a transmission of about 0.05%, such effect resulting from joint-etalon effects inside the cavity.

  15. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  16. 1125-nm quantum dot laser for tonsil thermal therapy

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen

    2011-03-01

    Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

  17. Variation of cell spreading on TiO2 film modified by 775 nm and 388 nm femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsukamoto, M.; Shinonaga, T.; Sato, Y.; Chen, P.; Nagai, A.; Hanawa, T.

    2014-03-01

    Titanium (Ti) is one of the most used biomaterials in metals. However, Ti is typically artificial materials. Thus, it is necessary for improving the biocompatibility of Ti. Recently, coating of the titanium dioxides (TiO2) film on Ti plate has been proposed to improve biocompatibility of Ti. We have developed coating method of the film on Ti plate with an aerosol beam. Periodic structures formation on biomaterials was also a useful method for improving the biocompatibility. Direction of cell spreading might be controlled along the grooves of periodic microstructures. In our previous study, periodic nanostructures were formed on the film by femtosecond laser irradiation at fundamental wave (775 nm). Period of the periodic nanostructures was about 230 nm. In cell test, cell spreading along the grooves of the periodic nanostructures was observed although it was not done for the film without the periodic nanostructures. Then, influence of the period of the periodic nanostructures on cell spreading has not been investigated yet. The period might be changed by changing the laser wavelength. In this study, the periodic nanostructures were created on the film with femtosecond laser at 775nm and 388 nm, respectively. After cell test, cell spreading along the grooves of the periodic nanostructures was observed on 775 nm and 388nm laser irradiated areas. Distribution of direction of cell spreading on laser irradiated area was also examined. These results suggested that controlling the cell spreading on periodic nanostructures with period of 230 nm was better than that with period of 130 nm.

  18. 976-nm passively mode-locked ytterbium-doped fiber laser core-pumped by 915-nm semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhou, Yue

    2016-11-01

    In this paper, we demonstrate an all-normal dispersion (ANDi) femtosecond YDFL. The laser operates around 976 nm via single-clad single-mode core-pumped method, which could enhance the slope efficiency up to 19% compared to that of 14% via double-clad multi-mode pumped method. The pulse repetition rate is 44.3 MHz, and pulse energy is approximately 1 nJ. Through external cavity pulse compression by a pair of gratings, the pulse duration can be compressed to 250 fs, nearly transform-limited.

  19. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  20. Note: deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application.

    PubMed

    Jin, Shaoqing; Fan, Fengtao; Guo, Meiling; Zhang, Ying; Feng, Zhaochi; Li, Can

    2014-04-01

    Deep UV Raman spectrograph with the laser excitation line down to 177.3 nm was developed in this laboratory. An ellipsoidal mirror and a dispersed-subtractive triple monochromator were used to collect and disperse Raman light, respectively. The triple monochromator was arranged in a triangular configuration with only six mirrors used. 177.3 nm laser excited Raman spectrum with cut-off wavenumber down to 200 cm(-1) and spectral resolution of 8.0 cm(-1) can be obtained under the condition of high purity N2 purging. With the C-C σ bond in Teflon selectively excited by the 177.3 nm laser, resonance Raman spectrum of Teflon with good quality was recorded on the home-built instrument and the σ-σ(*) transition of C-C bond was studied. The result demonstrates that deep UV Raman spectrograph is powerful for studying the systems with electronic transition located in the deep UV region.

  1. Note: Deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application

    NASA Astrophysics Data System (ADS)

    Jin, Shaoqing; Fan, Fengtao; Guo, Meiling; Zhang, Ying; Feng, Zhaochi; Li, Can

    2014-04-01

    Deep UV Raman spectrograph with the laser excitation line down to 177.3 nm was developed in this laboratory. An ellipsoidal mirror and a dispersed-subtractive triple monochromator were used to collect and disperse Raman light, respectively. The triple monochromator was arranged in a triangular configuration with only six mirrors used. 177.3 nm laser excited Raman spectrum with cut-off wavenumber down to 200 cm-1 and spectral resolution of 8.0 cm-1 can be obtained under the condition of high purity N2 purging. With the C-C σ bond in Teflon selectively excited by the 177.3 nm laser, resonance Raman spectrum of Teflon with good quality was recorded on the home-built instrument and the σ-σ* transition of C-C bond was studied. The result demonstrates that deep UV Raman spectrograph is powerful for studying the systems with electronic transition located in the deep UV region.

  2. Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Pourmand, Seyed Ebrahim; Sidi Ahmad, Muhamad Fakaruddin; Khrisnan, Ganesan; Mohd Taib, Nur Athirah; Nadia Adnan, Nurul; Bakhtiar, Hazri

    2013-02-01

    The influence of temperature and pumping energy on stimulated emission cross section and the laser output of quasi-three level laser transition are reported. Flashlamp is used to pump Nd:YAG laser rod. Distilled water is mixed with ethylene glycol to vary the temperature of the cooling system between -30 and 60 °C. The capacitor voltage of flashlamp driver is verified to manipulate the input energy within the range of 10-70 J. The line of interest in quasi-three level laser comprised of 938.5 and 946 nm. The stimulated emission cross section of both lines is found to be inversely proportional to the temperature but directly proportional to the input energy. This is attributed from thermal broadening effect. The changes of stimulated emission cross section and the output laser with respect to the temperature and input energy on line 946 nm are realized to be more dominant in comparison to 938.5 nm.

  3. Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser.

    PubMed

    Sawada, Ryota; Tanaka, Hiroki; Sugiyama, Naoto; Kannari, Fumihiko

    2017-02-20

    We experimentally reveal the pump-induced loss in a Ti:sapphire laser crystal with 451-nm indium gallium nitride (InGaN) laser diode pumping and show that 478-nm pumping can reduce such loss. The influence of the pump-induced loss at 451-nm pumping is significant even for a crystal that exhibits higher effective figure-of-merit and excellent laser performance at 520-nm pumping. We demonstrate the power scaling of a Ti:sapphire laser by combining 478- and 520-nm InGaN laser diodes and obtain CW output power of 593 mW.

  4. TO packaged 650nm red semiconductor laser with transparent window

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Zhu, Zhen; Li, Peixu; Su, Jian; Zhang, Xin; Xu, Xiangang

    2016-11-01

    Highly uniform solid-phase Zn-diffusion technique was developed to fabricate transparent windows for 650 nm red laser diodes (LDs). The maximum output power was up to 120 mW, which is three times higher than that for LDs without window structure. The LDs showed excellent thermal characteristics and aging reliability with TO-can package. The characteristic temperature was estimated to be 85 K in the temperature range of 25 65 °C. The LDs showed stable operation of 10 mW at a high temperature of 75 °C. After aging test of 2000 h, the elevated operation current was less than 3%, compared to the initial value. The predicted life time was over 10000 h for 10 mW operation at 75 °C.

  5. Magnetoelastically induced magnetic anisotropy transition in [CoO5nm/CoPt7nm]5 multilayer films

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Harumoto, Takashi; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2016-06-01

    The magnetic anisotropy transition of [CoO5nm/CoPt7nm]5 multilayer film with respect to post-annealing has been studied systematically. It undergoes a smooth transition from longitudinal magnetic anisotropy (LMA) to perpendicular magnetic anisotropy (PMA) upon annealing and returns backward to LMA at high temperature of 550 °C. The strongest PMA of [CoO5nm/CoPt7nm]5 is achieved after post-annealing at 300 °C and the tolerable post-annealing temperature with strong PMA is up to 400 °C, which indicates this multilayer film could be a potential candidate for the PMA application at middle-high-temperature-region between 300 °C and 400 °C. The mechanism responsible for the transition of magnetic anisotropy has been investigated by analyzing CoO/CoPt interface and CoPt layer internal stress. It is found the effective PMA energy is proportional to the in-plane tensile stress of CoPt layer but is inversely proportional to the roughness of CoO/CoPt interface. Finally, by means of low temperature experiment we demonstrate the magnetic anisotropy transition observed in [CoO5nm/CoPt7nm]5 multilayer film is mainly attributed to the change of CoPt layer in-plane tensile stress.

  6. 954 nm Raman fiber laser with multimode laser diode pumping

    NASA Astrophysics Data System (ADS)

    Zlobina, E. A.; Kablukov, S. I.; Skvortsov, M. I.; Nemov, I. N.; Babin, S. A.

    2016-03-01

    CW Raman fiber laser emitting at 954 nm under direct pumping by a high-power multimode laser diode at 915 nm is demonstrated. A cavity of the laser is formed with 2.5 km-long multimode graded-index fiber and two mirrors: highly reflective fiber Bragg grating (FBG) at one side and normally cleaved fiber end at the other side. The laser generates low-index transverse modes at the Stokes wavelength with output power above 4 W at a slope efficiency above 40%. It is shown that utilization of a narrowband FBG mirror with low reflectivity instead of the cleaved fiber end with Fresnel reflection leads to stronger spectral mode selection, but the generated power is reduced in this case.

  7. Toward Ultraintense Compact RBS Pump for Recombination 3.4 nm Laser via OFI

    NASA Astrophysics Data System (ADS)

    Suckewer, S.; Ren, J.; Li, S.; Lou, Y.; Morozov, A.; Turnbull, D.; Avitzour, Y.

    In our presentation we overview progress we made in developing a new ultrashort and ultraintensive laser system based on Raman backscattering (RBS) amplifier /compressor from time of 10th XRL Conference in Berlin to present time of 11th XRL Conference in Belfast. One of the main objectives of RBS laser system development is to use it for pumping of recombination X-ray laser in transition to ground state of CVI ions at 3.4 nm. Using elaborate computer code the processes of Optical Field Ionization, electron energy distribution, and recombination were calculated. It was shown that in very earlier stage of recombination, when electron energy distribution is strongly non-Maxwellian, high gain in transition from the first excited level n=2 to ground level m=1 can be generated. Adding large amount of hydrogen gas into initial gas containing carbon atoms (e.g. methane, CH4) the calculated gain has reached values up to 150-200 cm-2 Taking into account this very encouraging result, we have proceed with arrangement of experimental setup. We will present the observation of plasma channels and measurements of electron density distribution required for generation of gain at 3.4 nm.

  8. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range.

  9. Technique for cellular microsurgery using the 193-nm excimer laser.

    PubMed

    Palanker, D; Ohad, S; Lewis, A; Simon, A; Shenkar, J; Penchas, S; Laufer, N

    1991-01-01

    A new cell surgery technique has been developed to produce well-defined alterations in cells and tissue without detectable heating and/or other structural damage in the surroundings. The technique involves the use of an argon fluoride excimer laser, in the deep ultraviolet (UV) region of the spectrum at 193 nm, which is guided through a glass pipette filled with a positive air pressure. To demonstrate the method, holes were drilled in the zona pellucida of mouse oocytes. The diameter of the drilled hole was determined by the pipette tip size, and its depth by an energy emitted per pulse and number of pulses. Scanning electron microscopy of the drilled mouse oocytes showed uniform, round, well-circumscribed holes with sharp edges. Oocytes that had their zona pellucida drilled with this new method fertilized in vitro and developed to the blastocyst stage in a rate similar to that of control group. These results demonstrate the nonperturbing nature of this cold laser microsurgical procedure. In addition to the extension of our results for clinical in vitro fertilization purposes, such as enhancement of fertilization and embryo biopsy, there are wide-ranging possible uses of our method in fundamental and applied investigations that require submicron accuracy in cellular alteration.

  10. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  11. Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm

    SciTech Connect

    Clarkson, W.A.; Koch, R.; Hanna, D.C.

    1996-05-01

    Efficient, high-power operation of a diode-bar-pumped Nd:YAG laser on the quasi-three-level transition at 946 nm is reported. Longitudinal pumping of a simple folded cavity by a 20-W diode bar, with a two-mirror beam shaper used to reformat the bar{close_quote}s output, yields a continuous-wave output power at room temperature of {approximately}3W in a 1.5-times diffraction-limited beam for 13.6 W of incident pump power. The corresponding optical slope efficiency was approximately 33{percent}. {copyright} {ital 1996 Optical Society of America.}

  12. Q -switched laser at 912 nm using ground-state-depleted neodymium in yttrium orthosilicate

    SciTech Connect

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S. ); Brandle, C.; Berkstresser, G. )

    1990-09-15

    A ground-state-depleted laser is demonstrated in the form of a {ital Q}-switched oscillator operating at 912 nm. By using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest-lying Stark level of the Nd{sup 3+} {sup 4}{ital F}{sub 3/2} level to a Stark level 355 cm{sup {minus}1} above the lowest-lying one in the {sup 4}{ital I}{sub 9/2} manifold. The necessity of depleting the ground {sup 4}{ital I}{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach-wave pumping using an alexandrite laser at 745 nm has been employed. With KNbO{sub 3}, noncritical phase matching is possible at 140{degree} C using {ital d}{sub 32} and is demonstrated.

  13. 32.8-nm X-ray laser produced in a krypton cluster jet

    SciTech Connect

    Ivanova, E P; Vinokhodov, A Yu

    2013-12-31

    We have interpreted the well-known experimental quantum yield data for a 32.8-nm X-ray laser operating at the 3d{sup 9}4d (J = 0) – 3d{sup 9}4p (J = 1) transition of Kr{sup 8+} with the use of gaseous krypton or a krypton cluster jet. Proceeding from our model we propose a novel scheme for the 32.8-nm laser produced in a krypton cluster jet. The quantum yield is shown to saturate for a plasma length of ∼300 μm, a krypton ion density n{sub Kr} ∼ (4 – 9) × 10{sup 19} cm{sup -3}, and an electron temperature Te ∼ 5000 eV. In this case, the energy conversion coefficient amounts to ∼5 × 10{sup -3} of the pump pulse energy. We propose the experimental setup for producing a highefficiency subpicosecond X-ray laser in a krypton cluster jet. (lasers)

  14. 1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser.

    PubMed

    Rantamäki, Antti; Rautiainen, Jussi; Lyytikäinen, Jari; Sirbu, Alexei; Mereuta, Alexandru; Kapon, Eli; Okhotnikov, Oleg G

    2012-04-09

    We demonstrate an optically pumped semiconductor disk laser operating at 1580 nm with 4.6 W of output power, which represents the highest output power reported from this type of laser. 1 W of output power at 785 nm with nearly diffraction-limited beam has been achieved from this laser through intracavity frequency doubling, which offers an attractive alternative to Ti:sapphire lasers and laser diodes in a number of applications, e.g., in spectroscopy, atomic cooling and biophotonics.

  15. Three Hundred Patients Treated with Ultrapulsed 980 nm Diode Laser for Skin Disorders

    PubMed Central

    Wollina, Uwe

    2016-01-01

    The use of lasers in skin diseases is quite common. In contrast to other laser types, medical literature about 980 nm ultrapulsed diode laser is sparse in dermatology. Herein, we report the use of ultrapulsed diode 980 nm laser in 300 patients with vascular lesions, cysts and pseudocysts, infectious disease, and malignant tumors. This laser is a versatile tool with excellent safety and efficacy in the hands of the experienced user. PMID:27688445

  16. Highly reliable, high-brightness 915nm laser diodes for fiber laser applications

    NASA Astrophysics Data System (ADS)

    Xu, Zuntu; Gao, Wei; Cheng, Lisen; Luo, Kejian; Shen, Kun; Mastrovito, Andre

    2008-02-01

    High brightness, high power, and highly reliable 915nm InAlGaAs laser diodes with optimized design are reported in this paper. The laser diodes exhibit excellent performance, such as, high slope efficiency, low threshold current, low voltage, etc., which make them suitable for high brightness operation. The aging test data shows no failures during aging test and more than 220,000 hours estimated lifetime for 90um emitter laser diodes at 8W CW operation. The aging test with the same emitter size at higher stress conditions showed sudden failure that corresponds to catastrophic optical damage (COD) on the facet. A novel large optical cavity (LOC) epi-structure with flat-top near field intensity distribution was developed. The maximum output power is up to 23W under CW testing condition at 25 °C, which is highest level achieved so far. The output power is limited by thermal roll over and there is no COD occurring. This data shows Axcel's technologies can further increase the brightness to over 110mW per micron for 915nm laser diodes. This type of laser diodes is essential for pumping fiber lasers to replace CO2 lasers for industry applications.

  17. High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber.

    PubMed

    Wang, Jianhua; Chen, Gui; Zhang, Lei; Hu, Jinmeng; Li, Jinyan; He, Bing; Chen, Jinbao; Gu, Xijia; Zhou, Jun; Feng, Yan

    2012-10-10

    A high-efficiency fiber laser at 1018 nm using homemade Yb-doped phosphosilicate fiber is demonstrated. The fiber shows blueshifted emission spectrum compared to Yb-doped aluminosilicate fiber, and is considered favorable for the short wavelength Yb-doped fiber laser. With a 7 m gain fiber, up to 22.8 W output at 1018 nm is achieved with an optical efficiency of 53%. The amplified spontaneous emission at 1030 nm is suppressed to 50 dB below the 1018 nm laser. This work shows that highly-efficient fiber laser at 1018 nm can be obtained with Yb-doped phosphosilicate fiber.

  18. Nd:YAG laser diode-pumped directly into the emitting level at 938 nm.

    PubMed

    Sangla, Damien; Balembois, François; Georges, Patrick

    2009-06-08

    We present the first demonstration of Nd:YAG laser pumped directly in band at 938 nm with a high-brightness fiber-coupled laser diode. Up to 6 W of CW laser emission at 1064 nm have been obtained under an absorbed pump power of 28 W at 938 nm. A comparison between 808 nm and 938 nm pumping, realized by thermal cartography, demonstrates the very low heat generation of in-band pumping. Numerical simulations were also implemented to study and discuss the laser performance of our system.

  19. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser.

    PubMed

    Liu, Jukun; Jia, Tianqing; Zhou, Kan; Feng, Donghai; Zhang, Shian; Zhang, Hongxin; Jia, Xin; Sun, Zhenrong; Qiu, Jianrong

    2014-12-29

    We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.

  20. Investigations of a Dual Seeded 1178 nm Raman Laser System

    DTIC Science & Technology

    2016-01-14

    20 W. Because of the linewidth broadening, a co-pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application...pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth. Keywords: Raman...resonator, linewidth broadening, fiber Bragg grating bandwidth 1. INTRODUCTION Current narrow linewidth sodium guidestar lasers are either

  1. Laser transit anemometer experiences in supersonic flow

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.

    1988-01-01

    The purpose of this paper is to present examples of velocity measurements obtained in supersonic flow fields with the laser transit anemometer system. Velocity measurements of a supersonic jet exhausting in a transonic flow field, a cone boundary survey in a Mach 4 flow field, and a determination of the periodic disturbance frequencies of a sonic nozzle flow field are presented. Each of the above three cases also serves to illustrate different modes of laser transit anemometer operation. A brief description of the laser transit anemometer system is also presented.

  2. RELATIVISTIC CALCULATION OF TRANSITION PROBABILITIES FOR 557.7 nm AND 297.2 nm EMISSION LINES IN OXYGEN

    SciTech Connect

    Chantler, C. T.; Nguyen, T. V. B.; Lowe, J. A.; Grant, I. P.

    2013-05-20

    The 557.7 nm green line and the 297.2 nm ultraviolet line in oxygen have been studied extensively due to their importance in astrophysics and atmospheric science. Despite the enormous effort devoted to these two prominent transition lines over 30 years, and in fact going back to 1934, the ratio of their transition probabilities remains a subject of major discrepancies amongst various theoretical calculations for many decades. Moreover, theoretical results are inconsistent with available laboratory results, as well as recent spacecraft measurements of Earth's airglow. This work presents new relativistic theoretical calculations of the transition probabilities of these two photoemission lines from neutral oxygen using the multi-configuration Dirac-Hartree-Fock method. Our calculations were performed in both length and velocity gauges in order to check for accuracy and consistency, with agreement to 8%. Whilst remaining a challenging computation, these results directly bear upon interpretations of plasma processes and ionization regimes in the universe.

  3. Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser

    SciTech Connect

    Schoenly, J.; Seka, W.; Rechmann, P.

    2009-10-19

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences ≤3 J/cm^2.

  4. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    SciTech Connect

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Chamorovsky, A Yu; Yakubovich, S D

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  5. Direct laser interference patterning of polystyrene films doped with azo dyes, using 355 nm laser light

    NASA Astrophysics Data System (ADS)

    Broglia, M. F.; Suarez, S.; Soldera, F.; Mücklich, F.; Barbero, C. A.; Bellingeri, R.; Alustiza, F.; Acevedo, D.

    2014-05-01

    The generation of line-like periodic patterns by direct laser interference patterning (DLIP) of polystyrene films (PS) at a wavelength of 355 nm has been investigated. No structuration is achieved in plain PS due to the weak absorption of the polymer at 355 nm. On the other hand, patterning is achieved on films doped (PSd) with an azo dye (2-anisidine → 2-anisidine) which is incorporated in the polymer solution used for film preparation. Periodic micro-structures are generated. DLIP on PSd results in the swelling of the surface at low fluences, while at high laser intensities it causes the ablation of the regions at the interference maxima positions. The results contrast with the usual process of DLIP on PS (at shorter wavelengths, like 266 nm) where only ablation is detected. The results suggest that decomposition of the azo dye is the driving force of the patterning which therefore differ from the patterning obtained when plain PS is irradiated with laser light able to be absorbed by the aromatic ring in PS (e.g. 266 nm). The biocompatibility of these materials and adhesion of cells was tested, the data from in vitro assays shows that fibroblast cells are attached and proliferate extensively on the PSd films.

  6. Diode-pumped Nd:GAGG-LBO laser at 531 nm

    NASA Astrophysics Data System (ADS)

    Zou, J.; Chu, H.; Wang, L. R.

    2012-03-01

    We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.

  7. UV Laser Conditioning for Reduction of 351-nm Damage Initiation in Fused Silica

    SciTech Connect

    Brusasco, R M; Penetrante, B M; Peterson, J E; Maricle, S M; Menapace, J A

    2001-12-20

    This paper describes the effect of 355-nm laser conditioning on the concentration of UV-laser-induced surface damage sites on large-aperture fused silica optics. We will show the effect of various 355-nm laser conditioning methodologies on the reduction of surface-damage initiation in fused silica samples that have varying qualities of polishing. With the best, generally available fused silica optic, we have demonstrated that 355-nm laser conditioning can achieve up to 10x reduction in surface damage initiation concentration in the fluence range of 10-14 J/cm{sup 2} (355-nm {at} 3 ns).

  8. Comparison of the photothermal effects of 808nm gold nanorod and indocyanine green solutions using an 805nm diode laser

    NASA Astrophysics Data System (ADS)

    Hasanjee, Aamr M.; Zhou, Feifan; West, Connor; Silk, Kegan; Doughty, Austin; Bahavar, Cody F.; Chen, Wei R.

    2016-03-01

    Non-invasive laser immunotherapy (NLIT) is a treatment method for metastatic cancer which combines noninvasive laser irradiation with immunologically modified nanostructures to ablate a primary tumor and induce a systemic anti-tumor response. To further expand the development of NLIT, two different photosensitizing agents were compared: gold nanorods (GNR) with an optical absorption peak of 808 nm and indocyanine green (ICG) with an optical absorption peak of ~800 nm. Various concentrations of GNR and ICG solutions were irradiated at different power densities using an 805 nm diode laser, and the temperature of the solutions was monitored during irradiation using a thermal camera. For comparison, dye balls made up of a 1:1 volume ratio of gel solution to GNR or ICG solution were placed in phantom gels and were then irradiated using the 805 nm diode laser to imitate the effect of laser irradiation on in vivo tumors. Non-invasive laser irradiation of GNR solution for 2 minutes resulted in a maximum increase in temperature by 31.8 °C. Additionally, similar irradiation of GNR solution dye ball within phantom gel for 10 minutes resulted in a maximum temperature increase of 8.2 °C. Comparatively, non-invasive laser irradiation of ICG solution for 2 minutes resulted in a maximum increase in temperature by 28.0 °C. Similar irradiation of ICG solution dye ball within phantom gel for 10 minutes yielded a maximum temperature increase of only 3.4 °C. Qualitatively, these studies showed that GNR solutions are more effective photosensitizing agents than ICG solution.

  9. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    NASA Astrophysics Data System (ADS)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  10. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    PubMed

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  11. Low threshold CW Nc laser oscillator at 1060 nm study

    NASA Technical Reports Server (NTRS)

    Birnbaum, M.; Deshazer, L. G.

    1976-01-01

    A broad range of characteristics of neodymium/yag lasers were investigated. With Nd:YVO4 crystals, CW 1.06 mu lasers were operated with thresholds a factor of 2 lower than Nd:YAG and with greater slope efficiencies. Thus, the first step in the development of new oscillators suitable for application in high data rate laser communication systems which surpass the present performance of the Nd:YAG laser has been successfully demonstrated.

  12. Absolute frequency measurement of the 674-nm {sup 88}Sr{sup +} clock transition using a femtosecond optical frequency comb

    SciTech Connect

    Margolis, H.S.; Huang, G.; Barwood, G.P.; Lea, S.N.; Klein, H.A.; Rowley, W.R.C.; Gill, P.; Windeler, R.S.

    2003-03-01

    The frequency of the 5s {sup 2}S{sub 1/2}-4d {sup 2}D{sub 5/2} electric quadrupole transition at 674 nm in a single, trapped, laser-cooled {sup 88}Sr{sup +} ion has been measured with respect to the Systeme International (SI) second using a femtosecond laser optical frequency comb. The measured frequency of 444 779 044 095.52 kHz, with an estimated standard uncertainty of 0.10 kHz, is more accurate than, and in agreement with, the value previously measured using a conventional frequency chain.

  13. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  14. Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Eibl, Matthias; Pfeiffer, Tom; Wieser, Wolfgang; Huber, Robert

    2016-03-01

    We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.

  15. Precision frequency measurements of He,43 2 3P→3 3D transitions at 588 nm

    NASA Astrophysics Data System (ADS)

    Luo, Pei-Ling; Peng, Jin-Long; Hu, Jinmeng; Feng, Yan; Wang, Li-Bang; Shy, Jow-Tsong

    2016-12-01

    We report the frequency measurements of the 2 3P→3 3D transitions in He,43 at 588 nm using an optical frequency comb stabilized laser system. The Doppler-free spectra of the 2 3P→3 3D transitions are demonstrated in an rf discharged sealed-off helium cell using intermodulated fluorescence spectroscopy. The measured absolute frequency of the 4He2 3P0→3 3D1 transition is 510 059 755.352(28) MHz, which is more precise than the previous measurement by two orders of magnitude. The ionization energies of the 4He2 3P0 and 2 3S1 states can be derived from our result and agree very well with the previous experimental values. More importantly, the Lamb shift of the 2 3S1 state can be deduced to be 4057.086(34) MHz, which is two times more precise than the previous result. In addition, the absolute frequencies of the 2 3P0,1 /2→3 3D1,3 /2 , 2 3P0,1 /2→3 3D1,1 /2 , and 2 3P0,1 /2→3 3D2,3 /2 transitions in 3He are measured. Our precision surpasses the theoretical calculations by more than one to two orders of magnitude. The hyperfine separations of the 3 3D states in 3He and the frequency differences between 4He and 3He transitions are also presented.

  16. Component validation of direct diode 488nm lasers in BD Accuri C6 flow cytometers

    NASA Astrophysics Data System (ADS)

    Chen, Wei P.; Luo, Ningyi D.

    2016-03-01

    The 488nm laser is the most important excitation light source of flow cytometry. The indirect diode (frequency-doubled diode) 488nm lasers are used in the excitation of Becton Dickinson (BD) AccuriTM C6. For using cost effective lasers, we have validated direct diode 488nm lasers as the replacement component of frequency-doubled diode laser. BD Bioscience issued the protocols to cover wavelength, power, noise, and polarization at the operation temperature range of cytometer. Pavilion Integration Corporation (PIC) tested 6 samples as the component validation of direct diode 488nm lasers based on the protocols from BD Biosciences. BD Bioscience also tested one of laser samples to further validate the test results of power, noise, and polarization from PIC.

  17. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 2.17 W output power at 543 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2013-03-01

    Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.

  18. Femtosecond laser-written lithium niobate waveguide laser operating at 1085 nm

    NASA Astrophysics Data System (ADS)

    Tan, Yang; de Aldana, Javier R. Vázquez; Chen, Feng

    2014-10-01

    We report on the channel waveguide lasers at 1085 nm in femtosecond laser written Type II waveguides in an Nd:MgO:LiNbO3 crystal. The waveguide was constructed in a typical dual-line approach. In the geometry, we found that four vicinal regions of the track pair could guide light propagation. In addition, these guiding cores support polarization-dependent-guided modes. The propagation losses of the waveguides were measured to be as low as 1 dB/cm. Under an optical pump at 808 nm, the continuous-wave waveguide lasing at 1085 nm was generated, reaching a slope efficiency of 27% and maximum output power of 8 mW. The lasing threshold was 71 mW. Our results show that with the femtosecond laser written Nd:MgO:LiNbO3 waveguide as the miniature light source, it was possible to construct all-LiNbO3-based integrated devices for diverse photonic applications.

  19. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    SciTech Connect

    Reagan, Brendon; Berrill, Mark A; Wernsing, Keith; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge

    2014-01-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  20. Mid-IR Transition Metal Lasers (Postprint)

    DTIC Science & Technology

    2007-01-01

    alexandrite was demonstrated in 1979. [2] Cr4+ and Cr2+ infrared laser materials took even longer to be discovered. However, transition metal laser...already been mentioned. Other transition metal laser ions such as Cr3+ in alexandrite [19] and Ti3+ in YAlO3 [20] have excited state absorption (ESA...Washington, DC. 19. Shand, M.L., J.C. Walling, and R.C. Morris, Excited-state absorption in the pump region of alexandrite , Journal of Applied Physics

  1. Degradation mechanism of laser diodes for 880-nm band

    NASA Astrophysics Data System (ADS)

    DÄ browska, E.; Nakielska, M.; Kozłowska, A.; Teodorczyk, M.; KrzyŻak, K.; Sobczak, G.; Kalbarczyk, J.; MalÄ g, A.

    2013-01-01

    The laser diodes (LD) have numerous applications and promise to become key elements for next generation laser technologies. LD are usually operated under conditions of heavy thermal load. As a result, the devices are affected by aging processes leading to changes of the operation parameters, degradation and, eventually, complete failure. Degradation of high power semiconductor lasers remains a serious problem for practical application of these devices. We investigated the effect of mounting induced strain and defects on the performance of high power laser. In this paper measurements of the temperature distribution and the electroluminescence along the cavity of InGaAs quantum well lasers before and after accelerated aging processes are presented. The electro-optical parameters of the high output power laser diodes, such as emission wavelength, output power, threshold current, slope efficiency, and operating lifetime are presented too.

  2. Study of the emission spectra of a 1320-nm semiconductor disk laser and its second harmonic

    SciTech Connect

    Gochelashvili, K S; Derzhavin, S I; Evdokimova, O N; Zolotovskii, I O; Podmazov, S V

    2016-03-31

    The spectral characteristics of an optically pumped external-cavity semiconductor disk laser near λ = 1320 nm are studied experimentally. Intracavity second harmonic generation is obtained using an LBO nonlinear crystal. The output power at a wavelength of 660 nm in the cw regime was 620 mW, and the peak power in the pulsed regime was 795 mW. (lasers)

  3. Temperature dependence of the dielectric function of laser deposited YBCO thin film at 3392nm

    SciTech Connect

    Walmsley, D.G.; Bade, T.; McCafferty, P.G.; Rea, C.; Dawson, P.; Wallace, R.J.; Bowman, R.M.

    1996-12-31

    The authors have excited surface plasmons in an YBCO thin film at different temperatures using attenuated total reflection of light. The 300nm thick c-axis film was fabricated using pulsed laser deposition onto an MgO (100) substrate with 248nm KrF excimer radiation. Critical temperature of the film was 89.6K and its roughness, as shown by atomic force microscopy, 20nm rms, without droplets over areas of 10 {micro}m x 10{micro}m. The sample was mounted in Otto geometry on a cooled stage which allowed the temperature to be varied between 300K and 70K. An infrared HeNe laser at 3,392nm was used to excite the surface plasmons. The dielectric function of the film was determined between room temperature and 80K. The imaginary part of the dielectric function decreased substantially with reduction in temperature. Results obtained were: {var_epsilon}{sub r} = {minus}24.1 + 0.0013T and {var_epsilon}{sub i} = 7.7 + 0.067T where T is the temperature in kelvin. The ratio {var_epsilon}{sub i}{sup 300}/{var_epsilon}{sub i}{sup 80} at 2.13 is less than the resistance ratio R{sup 300}/R{sup 80} at 2.81. An explanation is offered in terms of two temperature independent mechanisms operative at optical frequencies: enhanced Rayleigh scattering of surface plasmons at grain boundaries and intraband/interband transitions. The real part of the dielectric function, {var_epsilon}{sub r}, was found to be only slightly temperature dependent. It was, however, highly sample dependent when comparison was made with the results of other films, a feature attributed to surface and grain boundary contamination.

  4. High power single-longitudinal-mode cyan laser at 500.8 nm

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.

    2012-05-01

    An all-solid-state single-longitudinal-mode (SLM) laser at 500.8 nm with 830 mW output power has been demonstrated for the first time. By using a new resonator for doubly resonant, Nd:GdVO4 and Nd:YAG were pumped by two laser diode arrays coupled by optical fiber, respectively. In the two sub-cavities, SLM wavelengths of 1064 and 946 nm were induced by using the twisted-mode technique and then mixed into SLM 500.8 nm laser with sum-frequency technology. The SLM 500.8 nm laser output of 830 mW was obtained at the incident pump power of 20 W for Nd:GdVO4 and 23 W for Nd:YAG. The experimental results showed that the intracavity sum-frequency mixing by twisted-mode technique is an effective method for SLM 500.8 nm laser.

  5. 7-W single-mode thulium-doped fibre laser pumped at 1230 nm

    SciTech Connect

    Kravtsov, K S; Bufetov, Igor' A; Medvedkov, O I; Dianov, Evgenii M; Yashkov, M V; Gur'yanov, A N

    2005-07-31

    An efficient thulium-doped fibre laser emitting at {approx}2 {mu}m upon pumping into the long-wavelength {sup 3}H{sub 6} {yields} {sup 3}H{sub 5} absorption band of Tm{sup 3+} ions is developed. The maximum output power of the single-mode thulium laser pumped at 1230 nm was 7 W at 1956 nm for a pump conversion efficiency of 35%. (lasers)

  6. Reliability of high power/brightness diode lasers emitting from 790 to 980 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Bai, J.; Price, K.; Devito, M.; Grimshaw, M.; Dong, W.; Guan, X.; Zhang, S.; Zhou, H.; Bruce, K.; Dawson, D.; Kanskar, M.; Martinsen, R.; Haden, J.

    2013-02-01

    This paper presents recent progress in the development of high power single emitter laser diodes from 790 nm to 980 nm for reliable use in industrial and pumping applications. High performance has been demonstrated on diode lasers from 790 nm to 980 nm, with corresponding peak efficiency ~65%. Reliability has been fully demonstrated on high power diode lasers of 3.8 mm laser cavity at 3 major wavelengths. We report on the correlation between photon-energy (wavelength) and device failure modes (reliability). A newly released laser design demonstrates diode lasers with 5.0 mm laser cavity at 915-980 nm and 790 nm, with efficiency that matches the values achieved with 3.8 mm cavity length. 915-980 nm single emitters with 5.0 mm laser cavity were especially designed for high power and high brightness applications and can be reliably operated at 12 W to 18 W. These pumps have been incorporated into nLIGHT's newly developed fiber coupled pump module, elementTM. Ongoing highly accelerated diode life-tests have accumulated over 200,000 raw device hours, with extremely low failure rate observed to date. High reliability has also been demonstrated from multiple accelerated module-level lifetests.

  7. Novel 980-nm and 490-nm light sources using vertical-cavity lasers with extended coupled cavities

    NASA Astrophysics Data System (ADS)

    McInerney, John G.; Mooradian, Aram; Lewis, Alan; Shchegrov, Andrei V.; Strzelecka, Eva M.; Lee, Dicky; Watson, Jason P.; Liebman, Michael K.; Carey, Glen P.; Umbrasas, Arvydas; Amsden, Charles A.; Cantos, Brad D.; Hitchens, William R.; Heald, David L.; Doan, Vincent

    2003-06-01

    We have developed novel electrically pumped, surface-emitting lasers emitting at 980 nm with an extended coupled cavity. The concept is scalable from monolithic low power (~10 mW) devices all the way to high power extended cavity lasers. The latter have demonstrated ~1 W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. By inserting a nonlinear optical medium in the external cavity, efficient and compact frequency doubling has been achieved with CW output powers 5-40 mW demonstrated at 490 nm. The latter devices are especially noteworthy due to their very low noise (0.05% rms from dc-2 MHz), sub 10 mrad beam pointing stability combined with small size, low power consumption (<10 W) and high efficiency.

  8. Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm

    NASA Astrophysics Data System (ADS)

    Yoon, S. J.; Mackenzie, J. I.

    2014-05-01

    We present our measurements of the key spectroscopic properties over the temperature range of 77 K to 450 K for Nd3+ ions doped in Y3Al5O12 (YAG). From room to liquid nitrogen temperature (LNT), the peak absorption cross section around 808 nm increased by almost 3 times, in conjunction the bandwidth of this absorption line reduced by the same factor. At LNT the peak of the absorption line was blue shifted by 0.25 nm with respect to that at 300 K. The fluorescence spectrum between 850 nm - 1450 nm was measured, from which the emission cross sections for the three main transitions were calculated. One note of particular interest for the dominant emission wavelengths around 1064nm and 1061nm (4F3/2 --> 4I11/2) was the switch in their relative strength below 170K, and at LNT the 1061 nm line has almost twice the cross section as at 1064nm.. The fluorescence and lifetime of the upper laser level (4F3/2) was measured and the effective emission cross section determined by the Fuchtbauer-Ladenburg (F-L) method. The effective emission cross section for 946 nm (R1 --> Z5) increased by more than two times over the 300 K to 77 K range. A numerical fit for the temperature dependent emission cross section at 946 nm and 1064 nm and also calculated absorption coefficient at 808 nm pump diode laser have also obtained from the measured spectroscopic data.

  9. Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ng, S. P.; Mackenzie, J. I.

    2012-03-01

    We present a diode-end-pumped Nd:YAG planar waveguide laser operating on neodymium's quasi-four-level transition at a wavelength of 946 nm. Two modes of operation are described: a high-power multi-mode monolithic cavity generating 105 for 210 W of incident pump power with a slope efficiency of ˜54%, and secondly, a high-radiance configuration employing an external stable resonator producing a maximum output power of 29.2 for 86.5 W of incident pump-power, with a slope efficiency of 33%. The output beam quality values of the external cavity were M2 of 3.2 by 2.4, leading to a maximum radiance of 0.43 GW cm-2 sr-1.

  10. Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses

    PubMed Central

    Shi, Jiulin; Wu, Haopeng; Liu, Juan; Li, Shujing; He, Xingdao

    2015-01-01

    Stimulated scattering in gold-nanorod-water samples has been investigated experimentally. The scattering centers are impurity particles rather than the atoms or molecules of conventional homogeneous scattering media. The pump source for exciting stimulated scattering is a pulsed and narrow linewidth second-harmonic Nd: YAG laser, with 532 nm wavelength, ~8 ns pulse duration, and 10 Hz repetition rate. Experimental results indicate that SMBS, SBS and STRS can be generated in gold-nanorod-water samples under appropriate pump and absorption conditions. The incident pump energy has to be larger than a certain threshold value before stimulated scattering can be detected. The absorption coefficient of samples at 532 nm wavelength depends on the one of characteristic absorption bands of gold nanorods located around 530 nm. A critical absorption coefficient can be determined for the transition from SBS to STRS. Also, the spectral-line-broadening effects of STRS have been observed, the line-shape presents a pseudo-Voigt profile due to the random thermal motion of molecules and strong particle collision. PMID:26173804

  11. Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Shi, Jiulin; Wu, Haopeng; Liu, Juan; Li, Shujing; He, Xingdao

    2015-07-01

    Stimulated scattering in gold-nanorod-water samples has been investigated experimentally. The scattering centers are impurity particles rather than the atoms or molecules of conventional homogeneous scattering media. The pump source for exciting stimulated scattering is a pulsed and narrow linewidth second-harmonic Nd: YAG laser, with 532 nm wavelength, ~8 ns pulse duration, and 10 Hz repetition rate. Experimental results indicate that SMBS, SBS and STRS can be generated in gold-nanorod-water samples under appropriate pump and absorption conditions. The incident pump energy has to be larger than a certain threshold value before stimulated scattering can be detected. The absorption coefficient of samples at 532 nm wavelength depends on the one of characteristic absorption bands of gold nanorods located around 530 nm. A critical absorption coefficient can be determined for the transition from SBS to STRS. Also, the spectral-line-broadening effects of STRS have been observed, the line-shape presents a pseudo-Voigt profile due to the random thermal motion of molecules and strong particle collision.

  12. Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses.

    PubMed

    Shi, Jiulin; Wu, Haopeng; Liu, Juan; Li, Shujing; He, Xingdao

    2015-07-15

    Stimulated scattering in gold-nanorod-water samples has been investigated experimentally. The scattering centers are impurity particles rather than the atoms or molecules of conventional homogeneous scattering media. The pump source for exciting stimulated scattering is a pulsed and narrow linewidth second-harmonic Nd: YAG laser, with 532 nm wavelength, ~8 ns pulse duration, and 10 Hz repetition rate. Experimental results indicate that SMBS, SBS and STRS can be generated in gold-nanorod-water samples under appropriate pump and absorption conditions. The incident pump energy has to be larger than a certain threshold value before stimulated scattering can be detected. The absorption coefficient of samples at 532 nm wavelength depends on the one of characteristic absorption bands of gold nanorods located around 530 nm. A critical absorption coefficient can be determined for the transition from SBS to STRS. Also, the spectral-line-broadening effects of STRS have been observed, the line-shape presents a pseudo-Voigt profile due to the random thermal motion of molecules and strong particle collision.

  13. Blue Up-Conversion Fibre Laser Pumped by a 1120-nm Raman Fibre Laser

    NASA Astrophysics Data System (ADS)

    Qin, Guan-Shi; Huang, Sheng-Hong; Feng, Yan; Shirakawa, A.; Musha, M.; Ueda, Ken-ichi

    2005-05-01

    A Tm3+-doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibre up-conversion laser pumped by a 1120-nm Raman fibre laser is demonstrated with blue output power levels up to 116 mW. For the output mirror with 80% reflectivity, the slope efficiency is about 15%, the optical-to-optical conversion efficiency is 11%, and the maximum un-saturated output power is 116 mW. For 60% reflectivity, the slope efficiency is about 18% and the optical-to-optical conversion efficiency is 12%, whilst the maximum saturated output power is about 80 mW due to the existence of photo-degradation effect in Tm3+ doped ZBLAN glass fibre.

  14. Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Zuo, Duluo; Zhao, Jun; Li, Bin; Yu, Anlan; Wang, Xinbing

    2016-10-01

    A stable external cavity diode laser coupled with volume Bragg grating for metastable argon atoms pumping is presented. The measured maximum output power of the continuous wave is 6.5 W when the spectral width (FWHM) is less than 21 pm around 811.53 nm and the power efficiency is 68%. The tuning range of the emission wavelength is bigger than 270 pm. The calculated deviation in relative absorption efficiency caused by the fluctuations of wavelength and power is less than 4%.

  15. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range.

    PubMed

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-21

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  16. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  17. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    PubMed Central

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-01-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327

  18. Asymmetric, nonbroadened waveguide structures for double QW high-power 808nm diode laser

    NASA Astrophysics Data System (ADS)

    Abbasi, S. P.; Mahdieh, M. H.

    2017-01-01

    In this paper, we propose an asymmetric epitaxial layer structre for designing 808nm diode laser. In this asymmetric sructure, the p-waveguide is reduced in thickness and the p-cladding is doped for increasing the thermal conductivity and consequently better heat extraction. The main purpose of using such design is enhancing the laser gain by reduction of loss in laser cavity, and reduction of electrical and thermal resistivity of the diode laser.

  19. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; Young, R. P.; Zagwodzki, T.

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  20. 532-nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Shchegrov, Andrei V.; Umbrasas, Arvydas; Watson, Jason P.; Lee, Dicky; Amsden, Charles A.; Ha, Wonill; Carey, Glen P.; Doan, Vincent V.; Moran, Bryan; Lewis, Alan; Mooradian, Aram

    2004-07-01

    We introduce a novel type of cw green laser source, the Protera 532, based on the intracavity frequency doubling of an extended-cavity, surface-emitting diode laser. The distinguishing characteristics of this platform are high compactness and efficiency in a stable, single-longitudinal mode with beam quality M2 < 1.2. The laser design is based on the previously reported NECSEL architecture used for 488nm lasers, and includes several novel features to accommodate different types of nonlinear optical materials. The infrared laser die wavelength is increased from 976nm to 1064nm without compromising performance or reliability. The intracavity frequency doubling to 532nm has been demonstrated with both bulk and periodically poled nonlinear materials, with single-ended cw power outputs of greater than 30 mW.

  1. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  2. Two-level laser: Analytical results and the laser transition

    SciTech Connect

    Gartner, Paul

    2011-11-15

    The problem of the two-level laser is studied analytically. The steady-state solution is expressed as a continued fraction and allows for accurate approximation by rational functions. Moreover, we show that the abrupt change observed in the pump dependence of the steady-state population is directly connected to the transition to the lasing regime. The condition for a sharp transition to Poissonian statistics is expressed as a scaling limit of vanishing cavity loss and light-matter coupling, {kappa}{yields}0, g{yields}0, such that g{sup 2}/{kappa} stays finite and g{sup 2}/{kappa}>2{gamma}, where {gamma} is the rate of nonradiative losses. The same scaling procedure is also shown to describe a similar change to the Poisson distribution in the Scully-Lamb laser model, suggesting that the low-{kappa}, low-g asymptotics is of more general significance for the laser transition.

  3. 1059 and 1328nm LD pumped Nd:S-FAP solid state laser

    SciTech Connect

    Sun Lianke; Zhang Shaojun; Zhao Shengzhi; Wang Qingpu

    1996-12-31

    In this paper the authors introduce a new laser crystal--Nd{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F, Nd:S-FAP, and present its optical and physical characteristics. Based on the experiment lasing performance of CW LD pumped Nd:S-FAP crystal is reported here: the threshold and slope efficiency of 1059 nm Nd:S-FAP laser pumped by CW LD at 805nm are 7mW and 41%, and that of 1328nm Nd:S-FAP laser are 19mW and 35%. The comparison between experimental result and theoretical calculation is also discussed in this paper.

  4. High-order harmonic generation from plasma plume pumped by 400 nm wavelength laser

    SciTech Connect

    Ganeev, Rashid A.; Elouga Bom, Luc B.; Ozaki, Tsuneyuki

    2007-09-24

    The authors present their study on high-order harmonic generation pumped by 400 nm wavelength laser from plasma plumes produced on the surfaces of various solid-state targets. The maximum harmonic cutoff was observed for Be plasma (31st harmonic, {lambda}=12.9 nm). They compared these results with harmonic generation pumped by 800 nm wavelength laser. The authors demonstrated single harmonic enhancement for Cr, Sn, Sb, and Mn plasmas. They also studied the use of varying the chirp of the pump laser to control the enhancement of single harmonics within the plateau.

  5. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-Hours Post-Exposure: Results Compendium

    DTIC Science & Technology

    2004-06-01

    Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-hours Post-Exposure: Results Compendium John W. Obringer Martin D. Johnson Laser and Optics...Explanted Human Retinal Pigment Epithelial Cells 12-hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Lightl2-hours...Explanted Human Retinal Pigment Epithelial USAFA F05611-02-P-0471 Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser-Light and 1064nm, 170 ps Pulsed

  6. Research on 9xx nm diode laser for direct and pumping applications

    NASA Astrophysics Data System (ADS)

    Sebastian, J.; Hülsewede, R.; Pietrzak, A.; Zorn, M.; Wölz, M.; Meusel, J.; Schröder, M.; Wittschirk, Th.

    2015-02-01

    High-power laser bars and single emitters have proven as attractive light sources for many industrial applications such as direct material processing or as pump sources for solid state and fiber-lasers. There is also a great interest in quasi-CW laser bars for high-energy projects. These applications require a continuous improvement of laser diodes for reliable optical output powers, high electrical-to-optical efficiencies, brightness and costs. In this paper JENOPTIK presents an overview of recent research for highly efficient CW and quasi-CW laser devices emitting in a wide wavelength range between 880 nm and 1020 nm. The last research results concern the 9xx single emitters and laser arrays. The 9xx nm 12 W single emitters and 976 nm 55 W laser arrays have efficiencies above 65%. New life time tests for single emitter devices currently exceed 1300 hours of reliable operation at room temperature and over 1500 hours at 45°C. Because of the small far field distribution of the optical power, the high output power and the small near field the 55 W arrays show a brightness of 75 MW x cm-2sr-1 with 95% power content. The technology for new generation 940 nm high fill-factor bars has been currently extended to emission wavelengths of 976 nm and 1020 nm with excellent results: 200 W output power with 63% efficiency using passive cooling. The innovative design of the laser structure enables, moreover, the realization of 500 W 880 nm quasi-CW laser bars with wall-plug efficiencies of 55% and a narrow fast-axis divergence angle of 40° (95% power content).

  7. 1016nm all fiber picosecond MOPA laser with 50W output.

    PubMed

    Qi, Xue; Chen, Sheng-Ping; Sun, Hai-Yue; Yang, Bing-Ke; Hou, Jing

    2016-07-25

    This paper presents an all fiber high power picosecond laser at 1016 nm in master oscillator power amplifier (MOPA) configuration. A direct amplification of this seed source encounters obvious gain competition with amplified spontaneous emission (ASE) at ~1030 nm, leading to a seriously reduced amplification efficiency. To suppress the ASE and improve the amplification efficiency, we experimentally investigate the influence of the gain fiber length and the residual ASE on the perforemance of the 1016 nm amplifier. The optimized 1016 nm MOPA laser exhibits an average power of 50 W and an optical conversion efficiency of 53%.

  8. All-solid-state parametric Raman anti-Stokes laser at 508 nm.

    PubMed

    Mildren, R P; Coutts, D W; Spence, D J

    2009-01-19

    We report a parametric anti-Stokes Raman laser using potassium gadolinium tungstate, generating output chiefly at the first anti-Stokes at 508 nm. The compact 4.5 cm long device is pumped by a Q-switched 532 nm laser and uses an off-axis Stokes resonator to provide non-collinear phase matching between the pump and the generated Stokes and anti-Stokes fields. Anti-Stokes output energies up 0.27 mJ were obtained at a conversion efficiency from the pump of 0.46%. Second- and third-order anti-Stokes lines at 486 nm and 465 nm were also observed.

  9. Measurement of the Yb I S10-P11 transition frequency at 399 nm using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Kleinert, Michaela; Gold Dahl, M. E.; Bergeson, Scott

    2016-11-01

    We determine the frequency of the Yb I S10-P11 transition at 399 nm using an optical frequency comb. Although this transition was measured previously using an optical transfer cavity [D. Das et al., Phys. Rev. A 72, 032506 (2005), 10.1103/PhysRevA.72.032506], recent work has uncovered significant errors in that method. We compare our result of 751 526 533.49 ± 0.33 MHz for the 174Yb isotope with those from the literature and discuss observed differences. We verify the correctness of our method by measuring the frequencies of well-known transitions in Rb and Cs, and by demonstrating proper control of systematic errors in both laser metrology and atomic spectroscopy. We also demonstrate the effect of quantum interference due to hyperfine structure in a divalent atomic system and present isotope shift measurements for all stable isotopes.

  10. Laser Manipulation of Nuclear Transitions

    DTIC Science & Technology

    2008-04-14

    Pyataev, The interactions of Mössbauer photons with nuclei showing nonlinear spins dynamics. Proceedings of II International conference "Frontiers of... Nonlinear Physics", ed. Litvak A., Nizny-Novgorod, 2005, p.482-486 9. F.G. Vagizov, R.L. Kolesov, O.A. Kocharovskaya, Laser-induced transformations of...57Fe:MgO Mössbauer spectrum, Proceedings of II International conference "Frontiers of Nonlinear Physics",-ed. Litvak A.,Nizny-Novgorod, 2005, p.505

  11. High efficient photovoltaic power converter suitable for 920nm to 970nm InGaAs laser diodes

    NASA Astrophysics Data System (ADS)

    Liu, James; Wu, Ta-Chung; Cohen, Mort; Werthen, Jan G.

    2005-09-01

    In this work, we report a highly efficient Photovoltaic Power Converter (PPC) suitable for 920 nm to 970 nm InGaAs MQW lasers for the first time. The epitaxial layers were grown by low pressure MOCVD on the semi-insulting GaAs substrate. The epi layers consist of a p-n junction of In0.12Ga0.88As and the window layer of p+ AlInGaAs. The device is made of seven or eight pie-segments of equal area series-connected by means of air-bridges. Under 500mW of 940nm laser illumination, the open-circuit voltage of the eight-segment InGaAs chip is 6.7V. The short-circuit current is 29.7mA. Its maximum delivered electrical power is 171.2mW, equal to a 34.2% overall power conversion efficiency. We also demonstrate the high temperature characteristic and stability of the device.

  12. Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm.

    PubMed

    Ackermann, S; Azima, A; Bajt, S; Bödewadt, J; Curbis, F; Dachraoui, H; Delsim-Hashemi, H; Drescher, M; Düsterer, S; Faatz, B; Felber, M; Feldhaus, J; Hass, E; Hipp, U; Honkavaara, K; Ischebeck, R; Khan, S; Laarmann, T; Lechner, C; Maltezopoulos, Th; Miltchev, V; Mittenzwey, M; Rehders, M; Rönsch-Schulenburg, J; Rossbach, J; Schlarb, H; Schreiber, S; Schroedter, L; Schulz, M; Schulz, S; Tarkeshian, R; Tischer, M; Wacker, V; Wieland, M

    2013-09-13

    Initiating the gain process in a free-electron laser (FEL) from an external highly coherent source of radiation is a promising way to improve the pulse properties such as temporal coherence and synchronization performance in time-resolved pump-probe experiments at FEL facilities, but this so-called "seeding" suffers from the lack of adequate sources at short wavelengths. We report on the first successful seeding at a wavelength as short as 38.2 nm, resulting in GW-level, coherent FEL radiation pulses at this wavelength as well as significant second harmonic emission at 19.1 nm. The external seed pulses are about 1 order of magnitude shorter compared to previous experiments allowing an ultimate time resolution for the investigation of dynamic processes enabling breakthroughs in ultrafast science with FELs. The seeding pulse is the 21st harmonic of an 800-nm, 15-fs (rms) laser pulse generated in an argon medium. Methods for finding the overlap of seed pulses with electron bunches in spatial, longitudinal, and spectral dimensions are discussed and results are presented. The experiment was conducted at FLASH, the FEL user facility at DESY in Hamburg, Germany.

  13. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  14. Combination of 595-nm pulsed dye laser, long-pulsed 755-nm alexandrite laser, and microdermabrasion treatment for keratosis pilaris: retrospective analysis of 26 Korean patients.

    PubMed

    Lee, Sang Ju; Choi, Min Ju; Zheng, Zhenlong; Chung, Won Soon; Kim, Young Koo; Cho, Sung Bin

    2013-06-01

    Keratosis pilaris (KP) has beenpresented as small keratotic follicular papules with or without surrounding erythema. Various treatments with laser or light therapy have been used for the management of KP with various clinical outcomes. In the present study, we investigated the efficacy and safety of a combination therapy for KP. A total of 29 anatomical sites with KP in 26 patients were treated using a 595-nm pulsed dye laser (PDL) with nonpurpuragenic fluences, a long-pulsed 755-nm alexandrite laser, and microdermabrasion. Clinical improvement was assessed by comparing preand posttreatment clinical photographs and patient satisfaction rates. Evaluation of the clinical results three months after the treatments showed that 12 of the 29 anatomical sites (41.4%) demonstrated Grade 3 clinical improvement, ten (34.5%) had Grade 2 clinical improvement, four (13.8%) showed Grade 1 improvement, and three (10.3%) showed Grade 4 improvement. We observed that KP lesions improved not only in erythema and skin texture, but also in brownish dyschromias. Potential adverse events were not observed, except prolonged posttherapy scaling. Our observations demonstrate that combination therapy using a 595-nm PDL, a long-pulsed 755-nm alexandrite laser, and microdermabrasion can have a positive therapeutic effect on KP.

  15. Continuous wave Nd:YAG-BiBO blue laser under direct 869 nm pumping

    NASA Astrophysics Data System (ADS)

    Zou, J.; Chu, H.; Wang, L. R.

    2012-03-01

    We report a blue laser at 473 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 946 nm Nd:YAG laser under in-band diode pumping at 869 nm. An BiBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 8.6 W, as high as 721 mW of CW output power at 473 nm is achieved. The optical-to-optical conversion efficiency is up to 8.4%, and the fluctuation of the blue output power was better than 3.5% in the given 30 min.

  16. Mechanisms of the blue emission of NaYF4:Tm(3+) nanoparticles excited by an 800 nm continuous wave laser.

    PubMed

    Zhang, Hongxin; Jia, Tianqing; Shang, Xiaoying; Zhang, Shian; Sun, Zhenrong; Qiu, Jianrong

    2016-10-07

    A thorough understanding of energy transfer and upconversion (UC) processes between trivalent lanthanide (Ln(3+)) ions is essential and important for improving UC performance. However, because of the abundant energy states of Ln(3+) ions, UC mechanisms are very complicated, which makes it a challenge to exclusively verify and quantitatively evaluate the dominant process. In this study, the fundamental excitation processes of Tm(3+)-doped NaYF4 nanocrystals under 800 nm continuous wave (CW) laser excitation were experimentally investigated on the basis of the quantum transition principle. An 800 nm CW laser combined with other wavelength CW lasers, including 471 nm, 657 nm, 980 nm, and 1550 nm lasers, were designed to study in-depth the excitation processes of UC luminescence via simultaneous two-wavelength laser excitation. The results indicate that the excited state absorption of (3)H6→(3)H4∼∼(3)H5→(1)G4 is the dominant pathway of the 481 nm and 651 nm emission bands, and two kinds of energy transfer UC pathways, uniformly expressed as (1)G4 + (3)H4→(1)D2 + (3)F4, play the primary roles in the 456 nm emission band.

  17. 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony

    2012-01-01

    The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (laser pulses, laser diodes such as the 885-nm LDA were used for pumping the Nd:YAG laser crystal. This pumping scheme has many potential advantages for improved reliability, efficiency, thermal management, contamination control, and mechanical flexibility. The advantages of using 885-nm pump diodes in Nd:YAG laser systems are numerous. The epitaxial structures of these 885-nm diodes are aluminum-free. There is a significant reduction in the thermal load generated from the Stokes shift or quantum defects. A Stokes shift is the energetic difference between the pump and laser photons. Pumping at a wavelength band closer to the lasing wavelength can reduce the thermal load by .30% compared to traditional pumping at 808 nm, and increase the optical- to-optical efficiency by the same factor. The slope efficiency is expected to increase with a reduction in the thermal load. The typical crystalline Nd:YAG can be difficult to produce with doping level >1% Nd. To make certain that the absorption at 885 nm is on the same par as the 808-nm diode, the Nd:YAG material needs to be doped with higher concentration of Nd. Ceramic Nd:YAG is the only material that can be tailored

  18. Characterization, diagnosis and ablation of human teeth using blue laser at 457 nm

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Gomaa, Walid; El-Sharkawy, Yasser H.

    2014-02-01

    The light interaction with tissue is governed by the specific wavelength of the laser used and the optical properties of target tissue. Absorption, scattering and fluorescence together can probably be used as the basis of quantitative diagnostic methods for teeth caries. The absorption coefficient of human teeth was determined from detached wet teeth (incisors and premolars). Laser absorption of these teeth was measured using compact blue laser source at wavelength of 457 nm and a high resolution spectrometer equipped with an integrating sphere. The average absorption coefficient of abnormal caries tissue of human teeth is observed to be higher than the normal ones. Detection and diagnosis of caries tissues were monitored by high resolution translational scanning of human teeth. We have a powerful tool to diagnosis a caries region of human teeth using blue laser at 457 nm. Ablations of caries region are investigated using higher power of blue laser at 457 nm.

  19. Note: Deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application

    SciTech Connect

    Jin, Shaoqing; Fan, Fengtao; Guo, Meiling; Zhang, Ying; Feng, Zhaochi E-mail: canli@dicp.ac.cn; Li, Can E-mail: canli@dicp.ac.cn

    2014-04-15

    Deep UV Raman spectrograph with the laser excitation line down to 177.3 nm was developed in this laboratory. An ellipsoidal mirror and a dispersed-subtractive triple monochromator were used to collect and disperse Raman light, respectively. The triple monochromator was arranged in a triangular configuration with only six mirrors used. 177.3 nm laser excited Raman spectrum with cut-off wavenumber down to 200 cm{sup −1} and spectral resolution of 8.0 cm{sup −1} can be obtained under the condition of high purity N{sub 2} purging. With the C–C σ bond in Teflon selectively excited by the 177.3 nm laser, resonance Raman spectrum of Teflon with good quality was recorded on the home-built instrument and the σ-σ{sup *} transition of C–C bond was studied. The result demonstrates that deep UV Raman spectrograph is powerful for studying the systems with electronic transition located in the deep UV region.

  20. Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia

    2016-10-01

    With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.

  1. All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO₄ laser with excellent beam quality.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2014-06-02

    In this paper we report on the realization of a deep-UV light source using the 1.3 μm transition of neodymium as pumping wavelength. The 191.7 nm radiation was obtained by generating the seventh harmonic of a high-power Q-switched 1342 nm Nd:YVO4 laser. A cesium lithium borate crystal was used for sum frequency mixing of the sixth harmonic and the fundamental. With a total of four conversion stages, up to 240 mW were achieved, with excellent beam quality at 155 mW (M2 < 1.7) and 190 mW (M2 < 1.9).

  2. Theoretical and experimental research on the ˜980-nm Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Yanshan; Ke, Weiwei; Ma, Yi; Sun, Yinhong; Feng, Yujun

    2016-07-01

    The output properties of the ˜980-nm Yb-doped fiber laser versus pump power and core-cladding ratio of gain fiber, also the amplified spontaneous emission (ASE) at different wavelengths of seed laser, are investigated theoretically. An all-fiber amplifier based on different wavelengths of seed laser at 974.4, 977, and 981.7 nm brings the studies on parasitic oscillation and ASE in the ˜980-nm Yb-doped fiber amplifier. Through the theoretical and experimental research, we found that the controlling of three-level ASE around ˜980-nm is pivotal for obtaining a high-power 980-nm Yb-doped fiber amplifier.

  3. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%.

  4. Sub-70 nm resolution tabletop microscopy at 13.8 nm using a compact laser-plasma EUV source.

    PubMed

    Wachulak, Przemyslaw W; Bartnik, Andrzej; Fiedorowicz, Henryk

    2010-07-15

    We report the first (to our knowledge) demonstration of a tabletop, extreme UV (EUV) transmission microscope at 13.8 nm wavelength with a spatial (half-pitch) resolution of 69 nm. In the experiment, a compact laser-plasma EUV source based on a gas puff target is applied to illuminate an object. A multilayer ellipsoidal mirror is used to focus quasi-monochromatic EUV radiation onto the object, while a Fresnel zone plate objective forms the image. The experiment and the spatial resolution measurements, based on a knife-edge test, are described. The results might be useful for the realization of a compact high-resolution tabletop imaging systems for actinic defect characterization.

  5. Performance and reliability of high power 7xx nm laser diodes

    NASA Astrophysics Data System (ADS)

    Bao, Ling; Wang, Jun; Devito, Mark; Xu, Dapeng; Grimshaw, Mike; Dong, Weimin; Guan, Xingguo; Huang, Hua; Leisher, Paul; Zhang, Shiguo; Wise, Damian; Martinsen, Robert; Haden, Jim

    2011-02-01

    High power diode lasers in 7xx-nm region, have been needed for various applications. Compared to 9xx nm lasers that have been developed extensively in the last 20 years, high power lasers at 7xx-nm region presents much more challenges for operation power, efficiency, temperature performance and reliability. This paper will present recent progresses on 7xx nm laser diodes for the above attributes. Two laser designs will be reviewed and high power diode laser performance and reliability will be presented. Single emitter devices, with 200μm wide emitting width, show up to 10W reliable operation power, with peak efficiency more than 65%. Accelerated life testing at 12A, 50°C heatsink temperature has been running for thousands of hours. High temperature performance and high COMD threshold (> 20W) will also be shown. Life-test failure modes will also be discussed. In summary, with advanced epitaxial structure design and MOCVD process, critical facet passivation and advanced heatsink and bonding technology, 7xx-8xx nm devices have been demonstrated with high performance and reliability similar to those of 9xx nm devices.

  6. Ruby Emission in the Range 400-800 nm with Excitation by Continuous-Wave CO2 Laser Pulses

    NASA Astrophysics Data System (ADS)

    Marchenko, V. M.; Kiselev, V. V.

    2017-01-01

    Thermal emission spectra of ruby single crystals in the range 400-800 nm were studied experimentally as functions of the intensity at 10.6 μm of exciting pulses ( 0.5 s) from a continuous-wave electrical-discharge CO2 laser. Spectra at excitation intensity 1-20 kW/cm2 were superpositions of the thermal emission continuum of the sapphire crystal lattice in the range 600-800 nm and selective emission spectra of Cr3+ that were observed for the first time for ruby and consisted of R-lines at 695 nm; N-lines at 715 nm; 2 T 1, 4 T 2 → 4 A 2 transition bands at 672 and 643 nm; and 4 T 1, 2 T 2 → 4 A 2 transition bands at 530 and 490 nm that were not observed in the luminescence spectrum. Time dependences of the shapes of selective emission spectra, quenching and shifts of the R 1 line, and the temperature dependence of ruby luminescence spectra were investigated.

  7. [Carbonization in endovasal laser obliteration by radial light guide with wavelength of 1470 and 970 nm].

    PubMed

    Shaidakov, E V; Ilyukhin, E A; Grigoryan, A G; Bulatov, V L; Rosukhovsky, D A; Shonov, O A

    2015-01-01

    The authors assessed the effect of carbonization and its influence on the parameters of endovasal laser obliteration (EVLO) depending on wavelength of laser radiation (970 and 1470 nm) using a light guide with radial emission. They also analysed the value of drop of radiation power of the light guide after performing EVLO and visually assessed the degree of damage of the glass tip of the radial fibre by means of ultra-close-up photography. The study comprised a total of 20 patients with varicose disease. A total of ten procedures of EVLO were performed in two modes: mode one - W-laser 1470 nm, mode two - H-laser 970 nm, using fibre with radial emission, an automatic retractor of the light guide. It was determined that the median of power loss after EVLO with W-laser amounted to 0.6 W, and that for H-laser - 3.15 W (p=0.002). Ultra-close-up photography showed pronounced damage of the glass tip of the radial light guide while using H-laser and no damages while using the W-laser. It was proved that using laser radiation with wavelength of 970 nm using the light guide with radial emission leads to pronounced carbonization on the surface of the glass tip of the light guide, its damage, a decrease in radiation power and risk of mechanical destruction of the flask. Using the laser with wavelength of 1470 nm with the use of radial light guide did not result in the development of such negative effects, which increases the service life of laser fibre and makes it possible to use it for obliteration of several segments in one patient.

  8. High reliability level on single-mode 980nm-1060 nm diode lasers for telecommunication and industrial applications

    NASA Astrophysics Data System (ADS)

    Van de Casteele, J.; Bettiati, M.; Laruelle, F.; Cargemel, V.; Pagnod-Rossiaux, P.; Garabedian, P.; Raymond, L.; Laffitte, D.; Fromy, S.; Chambonnet, D.; Hirtz, J. P.

    2008-02-01

    We demonstrate very high reliability level on 980-1060nm high-power single-mode lasers through multi-cell tests. First, we show how our chip design and technology enables high reliability levels. Then, we aged 758 devices during 9500 hours among 6 cells with high current (0.8A-1.2A) and high submount temperature (65°C-105°C) for the reliability demonstration. Sudden catastrophic failure is the main degradation mechanism observed. A statistical failure rate model gives an Arrhenius thermal activation energy of 0.51eV and a power law forward current acceleration factor of 5.9. For high-power submarine applications (360mW pump module output optical power), this model exhibits a failure rate as low as 9 FIT at 13°C, while ultra-high power terrestrial modules (600mW) lie below 220 FIT at 25°C. Wear-out phenomena is observed only for very high current level without any reliability impact under 1.1A. For the 1060nm chip, step-stress tests were performed and a set of devices were aged during more than 2000 hours in different stress conditions. First results are in accordance with 980nm product with more than 100khours estimated MTTF. These reliability and performance features of 980-1060nm laser diodes will make high-power single-mode emitters the best choice for a number of telecommunication and industrial applications in the next few years.

  9. Diverse effects of a 445 nm diode laser on isometric contraction of the rat aorta

    PubMed Central

    Park, Sang Woong; Shin, Kyung Chul; Park, Hyun Ji; Lee, In Wha; Kim, Hyung-Sik; Chung, Soon-Cheol; Kim, Ji-Sun; Jun, Jae-Hoon; Kim, Bokyung; Bae, Young Min

    2015-01-01

    The usefulness of visible lasers in treating vascular diseases is controversial. It is probable that multiple effects of visible lasers on blood vessels and their unclear mechanisms have hampered the usefulness of this therapy. Therefore, elucidating the precise actions and mechanisms of the effects of lasers on blood vessels would provide insight into potential biomedical applications. Here, using organ chamber isometric contraction measurements, western blotting, patch-clamp, and en face immunohistochemistry, we showed that a 445 nm diode laser contracted rat aortic rings, both by activating endothelial nitric oxide synthase and by increasing oxidative stress. In addition to the effects on the endothelium, the laser also directly relaxed and contracted vascular smooth muscle by inhibiting L-type Ca2+ channels and by activating protein tyrosine kinases, respectively. Thus, we conclude that exposure to 445 nm laser might contract and dilate blood vessels in the endothelium and smooth muscle via distinct mechanisms. PMID:26417517

  10. Study on damage of K9 glass under 248nm ultraviolet pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Fang, Xiaodong

    2015-04-01

    The damage of K9 glass under 248nm ultraviolet pulsed laser irradiation was studied. The laser pulse energy was kept within the range of 60mJ to 160mJ, and the repetition rate was adjusted within the range of 1Hz to 40Hz. The damage morphologies of single-pulse and multi-pulse laser irradiation were characterized by optical microscope, and the damage mechanism was discussed. The experimental results indicated that the damage of K9 glass irradiated by 248nm ultraviolet laser mainly followed the thermal-mechanical coupling mechanism and the damage threshold of K9 glass was 2.8J/cm2. The intensity of damage area increased gradually with the increase of the laser pulse number. It was shown that accumulation effect of laser induced damage to K9 glass was obvious.

  11. Successful treatment of cutaneous Kaposi's sarcoma by the 585-nm pulsed dye laser.

    PubMed

    Marchell, N; Alster, T S

    1997-10-01

    The clinical appearance of Kaposi's sarcoma (KS) can cause significant disfigurement and lead to functional impairment, particularly if the lesions ulcerate and become secondarily infected. We describe a patient with a KS plaque on the face that was successfully treated with 585-nm pulsed dye laser (PDL) therapy. No recurrence of the tumor was noted 12 months after the final laser treatment.

  12. Efficient Coupling of 527 nm Laser Beam Power to a Long Scalelength Plasma

    SciTech Connect

    Moody, J D; Divol, L; Glenzer, S H; MacKinnon, A J; Froula, D H; Gregori, G; Kruer, W L; Meezan, N B; Suter, L J; Williams, E A; Bahr, R; Seka, W

    2005-08-24

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scalelength plasma with n{sub e}/n{sub cr} = 0.14 and T{sub e} = 2 keV.

  13. Applications using a Picosecond 14.7 nm X-Ray Laser

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C

    2001-09-21

    We report recent application experiments on the LLNL COMET tabletop facility using the picosecond, 14.7 nm Ni-like Pd x-ray laser. This work includes measurements of a laser-produced plasma density profile with a diffraction grating interferometer.

  14. LASERS 808-nm laser diode bars based on epitaxially stacked double heterostructures

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Konyaev, V. P.; Ladugin, M. A.; Lebedeva, E. I.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Petrov, S. V.; Sapozhnikov, S. M.; Simakov, V. A.; Uspenskii, Mikhail B.; Yarotskaya, I. V.

    2010-10-01

    We have fabricated and investigated linear arrays of single laser diodes (LDs) and epitaxially stacked double LDs based on AlGaAs/GaAs heterostructures emitting in the 808-nm range. The power — current characteristic of the double-LD bars has a slope of 2.18 W A-1, which is almost twice that of the single-LD bars (1.16 W A-1). The voltage drop across the former bars is also larger. At a pump current of 60 A, the output power of 5-mm-long arrays of LDs based on epitaxially stacked double heterostructures is 100 W under quasi-cw pumping, which is a factor of 1.8 above that of the single-LD bars under identical conditions.

  15. Promethium-doped phosphate glass laser at 933 and 1098 nm

    SciTech Connect

    Krupke, W.F.; Shinn, M.D.; Kirchoff, T.A.; Finch, C.B.; Boatner, L.A.

    1987-12-28

    A promethium (Pm/sup 3 +/) laser has been demonstrated for the first time. Trivalent promethium 147 doped into a lead-indium-phosphate glass etalon was used to produce room-temperature four-level laser emission at wavelengths of 933 and 1098 nm. Spectroscopic and kinetic measurements have shown that Pm/sup 3 +/ is similar to Nd/sup 3 +/ as a laser active ion.

  16. Behavior of 157 nm excimer-laser-induced refractive index changes in silica

    SciTech Connect

    Smith, Charlene M.; Borrelli, Nicholas F.

    2006-09-15

    This study describes the observation of large induced refractive index changes produced by 157 nm excimer laser exposure in high-purity synthetic silica glasses. With 157 nm exposure, large induced changes are observed within a few hundred thousand pulses of exposure. Similar to 193 nm exposures, exposure with polarized 157 nm light yields polarization-induced birefringence (PIB). However, the 157 nm exposure also exhibits a behavior not observed with 193 nm exposures; namely, the initial response of the glass is a decrease in refractive index, followed by an increase with continued exposure. An explanation of the behaviors for both wavelength results is proposed where the induced refractive index is considered to arise from two different concurrent phenomena. One produces a decreased refractive index and also accounts for the PIB. The other, which accounts for the increased refractive index, is associated with an isotropic laser-induced volume change.

  17. Interaction between high power 532nm laser and prostatic tissue: in vitro evaluation for laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Peng, Yihlih Steven; Stinson, Douglas

    2011-03-01

    Photoselective vaporization of the prostate (PVP) has been developed for effective treatment of obstructive benign prostatic hyperplasia. To maximize tissue ablation for large prostate gland, identifying the optimal power level for PVP is still necessary. We investigated the effect of various power levels on in vitro bovine prostate ablation with a 532-nm laser system. A custom-made 532-nm laser was employed to provide various power levels, delivered through a newly designed 750-μm side-firing fiber. Tissue ablation efficiency was evaluated in terms of power (P; 120~200W), treatment speed of fiber (TS; 2~8 mm/s), and working distance between fiber and tissue surface (WD; 1~5 mm). Coagulation depth was also estimated macroscopically and histologically (H&E) at various Ps. Both 180 and 200W yielded comparable ablated volume (104.3+/-24.7 vs. 104.1+/-23.9 mm3 at TS=4 mm/s and WD=2 mm; p=0.99); thus, 180W was identified as the optimal power to maximize tissue ablation, by removing tissue up to 80% faster than 120W (41.7+/-9.9 vs. 23.2+/-3.4 mm3/s at TS=4 mm/s and WD=2 mm; p<0.005). Tissue ablation was maximized at TS=4 mm/s and ablated equally efficiently at up to 3 mm WD (104.5+/-16.7 mm3 for WD=1 mm vs. 93.4+/-7.4 mm3 for WD=3 mm at 180W; p=0.33). The mean thickness of coagulation zone for 180W was 20% thicker than that for 120W (1.31+/-0.17 vs. 1.09+/-0.16 mm; p<0.005). The current in vitro study demonstrated that 180W was the optimal power to maximize tissue ablation efficiency with enhanced coagulation characteristics.

  18. The Versatility of 980 nm Diode Laser in Dentistry: A Case Series.

    PubMed

    Derikvand, Nahid; Chinipardaz, Zahra; Ghasemi, Sara; Chiniforush, Nasim

    2016-01-01

    Introduction: Laser surgery has been considered a popular alternative over conventional modalities in dentistry during the last few years. Among different types of lasers, diode lasers have gained special attention in oral soft tissue surgery. Case Reports: Five patients were referred to a private office. After careful evaluation of medical history and oral examination, oral diagnosis and treatment plan of each patient was established as follows: (1) A 21-year-old female with ankyloglossia (tongue-tie); (2) A 65-year-old female with a poor denture fit needing vestibuloplasty and frenectomy; (3) A 10-year-old male patient with pigmented gingiva in mandible and maxilla; (4) A 14-year-old female needing exposure of maxillary right canine for bracket bonding; and (5) A 25-year-old female patient who has a gingival maxillary frenum with a nodule. The treatment plan for all the patients was laser surgery with diode laser at 980 nm, in continuous mode. Results: All the patients experienced normal healing process with no postoperative complications. Favorable outcomes of laser surgery were observed on follow-up sessions. Conclusion: Considering the versatility of the 980 nm diode laser in oral soft tissue surgeries and the advantages of laser surgery, this study suggests the use of 980 nm diode laser in this regard.

  19. The Versatility of 980 nm Diode Laser in Dentistry: A Case Series

    PubMed Central

    Derikvand, Nahid; Chinipardaz, Zahra; Ghasemi, Sara; Chiniforush, Nasim

    2016-01-01

    Introduction: Laser surgery has been considered a popular alternative over conventional modalities in dentistry during the last few years. Among different types of lasers, diode lasers have gained special attention in oral soft tissue surgery. Case Reports: Five patients were referred to a private office. After careful evaluation of medical history and oral examination, oral diagnosis and treatment plan of each patient was established as follows: (1) A 21-year-old female with ankyloglossia (tongue-tie); (2) A 65-year-old female with a poor denture fit needing vestibuloplasty and frenectomy; (3) A 10-year-old male patient with pigmented gingiva in mandible and maxilla; (4) A 14-year-old female needing exposure of maxillary right canine for bracket bonding; and (5) A 25-year-old female patient who has a gingival maxillary frenum with a nodule. The treatment plan for all the patients was laser surgery with diode laser at 980 nm, in continuous mode. Results: All the patients experienced normal healing process with no postoperative complications. Favorable outcomes of laser surgery were observed on follow-up sessions. Conclusion: Considering the versatility of the 980 nm diode laser in oral soft tissue surgeries and the advantages of laser surgery, this study suggests the use of 980 nm diode laser in this regard. PMID:28144444

  20. Simultaneous dual-wavelength lasing at 1047 and 1053 nm and wavelength tuning to 1072 nm in a diode-pumped a-cut Nd : LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping

    2015-12-01

    We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.

  1. Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.

    PubMed

    Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi

    2005-09-05

    Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.

  2. Compact 498-nm light source based on intracavity sum-frequency Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Wang, A. G.; Li, Y. L.

    2011-08-01

    We report a coherent cyan radiation at 498 nm by intracavity sum-frequency generation of the 937 and 1062 nm laser-lines of the Nd:GGG crystal. With a diode pump power of 18.2 W, the maximum cyan output power of 186 mW is obtained. The beam quality M2 value is 1.22 in the horizontal plane. The output power stability over 30 min is better than 5%. To the best of our knowledge, this is first work on intracavity sum-frequency generation of a diode pumped Nd:GGG laser at 498 nm.

  3. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    PubMed Central

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  4. Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Ni, Weidou

    2015-08-01

    The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method. supported by National Natural Science Foundation of China (No. 51276100) and National Basic Research Program of China (973 Program) (No. 2013CB228501)

  5. High efficiency single frequency 355 nm all-solid-state UV laser

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-05-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions.

  6. Development and characterization of a 22 W narrow-linewidth 3186 nm ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2016-10-01

    We demonstrate a high-power narrow-linewidth ultraviolet (UV) laser system at 318.6 nm for direct 6S1/2-nP (n = 70 to 100) Rydberg excitation of cesium atoms. Based on commercial fiber lasers and efficient nonlinear frequency conversion technology, 2.26 W of tunable UV laser power is obtained from cavity-enhanced second harmonic generation following sum-frequency generation of two infrared lasers at 1560.5 nm and 1076.9 nm to 637.2 nm. The maximum doubling efficiency is 57.3%. The typical UV laser power root-mean-square fluctuation is less than 0.87% over 30 minutes, and the continuously tunable range of the UV laser frequency is more than 6 GHz. Its beam quality factors M2 X and M2 Y are 1.16 and 1.48, respectively. This high-performance UV laser has significant potential use in quantum optics and cold atom physics.

  7. Mode-locked Nd:YAG laser with output at 1052, 1061, 1064, and 1074 nm

    SciTech Connect

    Badalian, A.A.; Sapondzhian, S.O.; Sarkisian, D.G.; Torosian, G.A.

    1985-10-01

    The picosecond Nd:YAG laser with an output radiation at 1064 nm is currently widely used. However, in connection with many applications, picosecond pulses at other wavelengths are also needed. The present study is, therefore, concerned with the development of a picosecond laser which provides pulses at 1052, 1061.5, and 1073.7 nm. Lasing at 1052, 1061.5, 1064, and 1073.7 nm was achieved by varying the angle between the resonator axis and the normal to the etalon by four degrees. Attention is given to the measurement of the lengths of the ultrashort pulses, and the transverse distribution of the energy in the second harmonic for the wavelength 1052 nm. The discretely tunable picosecond Nd:YAG laser described appears to be a promising tool for many research applications. 9 references.

  8. The experimental study of a CW 1080 nm multi-point pump fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Ge, Tingwu; Ding, Xing; Tan, Qirui; Wang, Zhiyong

    2016-07-01

    In this paper, we report on a CW 1080 nm fiber laser cascaded-pumped by a CW 975 nm diode laser. The fiber used in the experiment has a core diameter of 20 μm (NA  =  0.06), inner clad of 400 μm (NA  =  0.46), and an absorption coefficient of about 1.26 dB m-1 at 975 nm. An output power of 780 W with an optical conversion efficiency of 71% has been achieved at a pump light of 1.1 kW. To the best of our knowledge, this is the first time that a 1080 nm CW fiber laser has used a cascaded-pump coupler.

  9. Laser intervention on trabeculo-Descemet's membrane after resistant viscocanalostomy: Selective 532 nm gonioreconditioning or conventional 1064 nm neodymium-doped yttrium aluminum garnet laser goniopuncture?

    PubMed Central

    Sabur, Huri; Baykara, Mehmet; Can, Basak

    2016-01-01

    Purpose: To compare the results of conventional 1064 nm neodymium-doped yttrium-aluminum garnet laser goniopuncture (Nd:YAG-GP) and selective 532 nm Nd:YAG laser (selective laser trabeculoplasty [SLT]) gonioreconditioning (GR) on trabeculo-Descemet's membrane in eyes resistant to viscocanalostomy surgery. Methods: Thirty-eight eyes of 35 patients who underwent laser procedure after successful viscocanalostomy surgery were included in the study. When postoperative intraocular pressure (IOP) was above the individual target, the eyes were scheduled for laser procedure. Nineteen eyes underwent 532 nm SLT-GR (Group 1), and the remaining 19 eyes underwent conventional 1064 nm Nd:YAG-GP (Group 2). IOPs before and after laser (1 week, 1 month, 3 months, 6 months, 1 year, and last visit), follow-up periods, number of glaucoma medications, and complications were recorded for both groups. Results: Mean times from surgery to laser procedures were 17.3 ± 9.6 months in Group 1 and 13.0 ± 11.4 months in Group 2. Mean IOPs before laser procedures were 21.2 ± 1.7 mmHg in Group 1 and 22.8 ± 1.9 mmHg in Group 2 (P = 0.454). Postlaser IOP measurements of Group 1 were 12.1 ± 3.4 mmHg and 13.8 ± 1.7 mmHg in the 1st week and last visit, respectively; in Group 2, these measurements were 13.6 ± 3.7 mmHg and 14.9 ± 4.8 mmHg, respectively. There were statistically significant differences (P < 0.001) in IOP reduction at all visits in both groups; the results of the two groups were similar (P > 0.05). Mean follow-up was 16.6 ± 6.4 months after SLT-GR and 18.9 ± 11.2 months after Nd:YAG-GP. Conclusions: While conventional Nd:YAG-GP and SLT-GR, a novel procedure, are both effective choices in eyes resistant to viscocanalostomy, there are fewer complications with SLT-GR. SLT-GR can be an alternative to conventional Nd:YAG-GP. PMID:27688277

  10. 486nm blue laser operating at 500 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  11. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    SciTech Connect

    Thiyagarajan, Magesh; Thompson, Shane

    2012-04-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 {mu}m radius spot size that produces laser intensities up to 3 - 6 TW/cm{sup 2}, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10{sup 8} nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then

  12. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  13. Injection locking of a low cost high power laser diode at 461 nm.

    PubMed

    Pagett, C J H; Moriya, P H; Celistrino Teixeira, R; Shiozaki, R F; Hemmerling, M; Courteille, Ph W

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  14. Injection locking of a low cost high power laser diode at 461 nm

    NASA Astrophysics Data System (ADS)

    Pagett, C. J. H.; Moriya, P. H.; Celistrino Teixeira, R.; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  15. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    PubMed Central

    Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  16. Diode-pumped Q-switched Nd:YLF laser at 1313 nm

    NASA Astrophysics Data System (ADS)

    Xu, Shan; Gao, Shufang; Zheng, Chunyan

    2016-06-01

    In this letter, we describe the operation of an end-pumped acousto-optic Q-switched Nd:YLF laser. According to the theoretical analysis and calculation for Nd:YLF crystal, the thermal focal length of σ-polarized laser is positive in plane-parallel resonator, while that of π-polarized laser is negative. Hence laser operation at σ-polarized 1313 nm should be stable in plane-parallel cavity. When absorbed pump power is 12.45 W and the pulse repetition frequency is 10 kHz, 3.1 W output laser at 1313 nm is achieved. As a result, the optical-optical conversion efficiency is 25.4 % and slope efficiency is 31.2 %, respectively.

  17. Laser trapping dynamics of 200 nm-polystyrene particles at a solution surface

    NASA Astrophysics Data System (ADS)

    Yuyama, Ken-ichi; Sugiyama, Teruki; Masuhara, Hiroshi

    2013-09-01

    We present laser trapping behaviors of 200 nm-polystyrene particles in D2O solution and at its surface using a focused continuous-wave laser beam of 1064 nm. Upon focusing the laser beam into the solution surface, the particles are gathered at the focal spot, and their assembly is expanded to the outside and becomes much larger than the focal volume. The resultant assembly is observed colored under halogen lamp illumination, which is due to a periodic structure like a colloidal crystal. This trapping behavior is much different compared to the laser irradiation into the inside of the solution where a particle-like assembly with a size similar to that of the focal volume is prepared. These findings provide us new insights to consider how radiation pressure of a focused laser beam acts on nanoparticles at a solution surface.

  18. Optimizing treatment parameters for the vascular malformations using 1064-nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Lin, He; Xie, Shusen

    2010-02-01

    Near infrared Nd:YAG pulsed laser treatment had been proved to be an efficient method to treat large-sized vascular malformations like leg telangiectasia for deep penetrating depth into skin and uniform light distribution in vessel. However, optimal clinical outcome was achieved by various laser irradiation parameters and the key factor governing the treatment efficacy was still unclear. A mathematical model in combination with Monte Carlo algorithm and finite difference method was developed to estimate the light distribution, temperature profile and thermal damage in epidermis, dermis and vessel during and after 1064 nm pulsed Nd:YAG laser irradiation. Simulation results showed that epidermal protection could be achieved during 1064 nm Nd:YAG pulsed laser irradiation in conjunction with cryogen spray cooling. However, optimal vessel closure and blood coagulation depend on a compromise between laser spot size and pulse duration.

  19. Effects of the 755-nm Alexandrite laser on fine dark facial hair: review of 90 cases.

    PubMed

    Uyar, Belkiz; Saklamaz, Ali

    2012-05-01

    Laser hair removal is a relatively effective method for thick hair. Despite the risk for induction of fine hair growth, application of laser for fine dark hair is sometimes inevitable. We investigate the effects of 755-nm Alexandrite laser on fine dark facial hair and evaluate the induction rates of fine hair growth and case satisfaction. In the present study, the thickening rate of hairs (33.33%) was found to be higher than the previously published rates. However, reduction of hair density can be obtained when the laser sessions are continued.

  20. High-power 1300-nm Fabry-Perot and DFB ridge-waveguide lasers

    NASA Astrophysics Data System (ADS)

    Garbuzov, Dmitri Z.; Maiorov, Mikhail A.; Menna, Raymond J.; Komissarov, Anatoly V.; Khalfin, V.; Kudryashov, Igor V.; Lunev, Alexander V.; DiMarco, Louis A.; Connolly, John C.

    2002-05-01

    In this paper we summarize the results on the development of high power 1300 nm ridge waveguide Fabry-Perot and distributed-feedback (DFB) lasers. Improved performance of MOCVD grown InGaAsP/InP laser structures and optimization of the ridge waveguide design allowed us to achieve more than 800 mW output power from 1300 nm single mode Fabry-Perot lasers. Despite the fact that the beam aspect ratio for ridge lasers (30 degree(s) x 12 degree(s)) is higher than that for buried devices, our modeling and experiments demonstrated that the fiber coupling efficiency of about 75-80% could be routinely achieved using a lensed fiber or a simple lens pair. Fiber power of higher than 600 mW was displayed. Utilizing similar epitaxial structures and device geometry, the 1300 nm DFB lasers with output power of 500 mW have been fabricated. Analysis of the laser spectral characteristics shows that the high power DFB lasers can be separated into several groups. The single frequency spectral behavior was exhibited by about 20% of all studied DFB lasers. For these lasers, side-mode suppression increases from 45 dB at low current up to 60 dB at maximum current. About 30% of DFB lasers, at all driving currents, demonstrate multi-frequency spectra consisting of 4-8 longitudinal modes with mode spacing larger than that for Fabry-Perot lasers of the same cavity length. Both single frequency and multi frequency DFB lasers exhibit weak wavelength-temperature dependence and very low relative intensity noise (RIN) values. Fabry-Perot and both types of DFB lasers can be used as pump sources for Raman amplifiers operating in the 1300 nm wavelength range where the use of EDFA is not feasible. In addition, the single-mode 1300 nm DFB lasers operating in the 500 mW power range are very attractive for new generation of the cable television transmission and local communication systems.

  1. High-power and highly efficient Tm3+-doped silica fiber lasers pumped with diode lasers operating at 1150 nm.

    PubMed

    Jackson, Stuart D; Bugge, Frank; Erbert, Götz

    2007-10-01

    An output power of 1.74 W at 2.03 microm was generated at a slope efficiency of 51% when a double-clad Tm(3+)-doped silica fiber laser was pumped with high-power 1150 nm diode lasers. Pump excited state absorption from the upper laser level populates higher energy levels allowing cross relaxation to repopulate the upper laser level at a quantum efficiency greater than unity and to limit losses relating to additional pump excited state absorption. The output power was scaled to 4.77 W when both ends of the fiber were pumped.

  2. Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577 nm-pulsed laser penetration into cutaneous vessels

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Keijzer, Marleen

    1991-06-01

    The role of skin optics in planning proper dosimetry for radiant energy delivered by lasers and conventional light sources is presented. The optical properties of the epidermis, dermis, and cutaneous blood are summarized. The ability of laser pulses at 577-nm wavelength to penetrate into and around a large blood vessel is studied using Monte Carlo simulations. The variation in laser penetration for variable beam diameters and variable vessel depths in presented. The distinction between TOTAL PULSE ENERGY versus PULSE ENERGY DENSITY is illustrated. The topic of this paper is especially pertinent to laser therapy for portwine stain lesions.

  3. Laser materials based on transition metal ions

    NASA Astrophysics Data System (ADS)

    Moncorgé, Richard

    2017-01-01

    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  4. 63W output tandem-pumped thulium-doped silica fiber laser at 1980 nm

    NASA Astrophysics Data System (ADS)

    Xing, Ying-bin; Bu, Fan; Wang, Yi-bo; Li, Hai-qing; Peng, Jing-gang; Yang, Lv-yun; Dai, Neng-li; Li, Jin-yan

    2016-11-01

    We have demonstrated a high power and high efficiency thulium-doped silica fiber laser using a cascade tandem pumping method. A 1915nm Tm-doped fiber laser was used as a pump source for another Tm-doped fiber laser with the output power of 63W at 1980nm, corresponding to the slope efficiency of 80%, which is the highest power to our best knowledge. And the 3dB bandwidth was 0.24nm. The 1915nm Tm-doped fiber laser was pumped by 793nm diode laser and the slope efficiency was 51%. The preform of double cladding Tm-doped fiber for the tandem pumped fiber laser was manufactured by MCVD with using the vapor-solution hybrid doping method. The fiber has a 25μm diameter, 0.098 NA(numerical aperture) core and 400μm diameter, 0.46 NA inner cladding. In the tandem pumped fiber laser, the resonant cavity consist of a high reflection FBG at 1980nm, flat fiber end and the homemade Tm-doped silica fiber. The optimal active fiber length was presented and it is found that when the length of homemade Tm-doped silica fiber was 7m, the efficiency was the highest. The influence of Tm concentration and ratio of Tm ion and Al ion on the efficiency was also explored. And it is found that the thulium-doped silica fiber with lower Tm concentration and higher Tm:Al ratio had lower optical efficiency. Meanwhile, the optimal fiber length became shorter.

  5. Analysis of frequency noise properties of 729nm extended cavity diode laser with unbalanced Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Pham, Tuan M.; Čížek, Martin; Hucl, Václav; Lazar, Josef; Hrabina, Jan; Řeřucha, Šimon; Lešundák, Adam; Obšil, Petr; Filip, Radim; Slodička, Lukáš; Číp, Ondřej

    2016-12-01

    We report on the frequency noise investigation of a linewidth-suppressed Extended Cavity Diode Laser (ECDL), working at 729 nm. Since the ECDL is intended as an excitation laser for the forbidden transition in a trapped and laser cooled 40Ca+ ion, an Hz-level linewidth is required. We present the experimental design that comprises a two-stage linewidth narrowing and a facility for frequency and noise analysis. The linewidth is first narrowed with a phase lock loop of the ECDL onto a selected component of an optical frequency comb where the frequency noise was suppressed with a fast electronic servo-loop controller that drives the laser injection current with a high bandwidth. The second stage comprises locking the laser onto a selected mode of a high-finesse passive optical cavity. The frequency analysis used an unbalanced Mach-Zehnder interferometer with a fiber spool inserted in the reference arm in order to give a general insight into the signal properties by mixing two separated beams, one of them delayed by the spool, and processing it with a spectral analyzer. Such a frequency noise analysis reveals what are the most significant noises contributions to the laser linewidth, which is a crucial information in field of ion trapping and cooling. The presented experimental results show the effect of the linewidth narrowing with the first stage, where the linewidth of ECDL was narrowed down to a kHz level.

  6. Nanosecond laser-induced damage of transparent conducting ITO film at 1064nm

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; Adams, John J.; Menor, Marlon G.; Olson, Tammy Y.; Lee, Jonathan R. I.; Samanta, Amit; Bude, Jeff; Elhadj, Selim

    2016-12-01

    Transparent conducting films with superior laser damage performance have drawn intense interests toward optoelectronic applications under high energy density environment. In order to make optoelectronic applications with high laser damage performance, a fundamental understanding of damage mechanisms of conducting films is crucial. In this study, we performed laser damage experiments on tin-doped indium oxide films (ITO, Bandgap = 4.0 eV) using a nanosecond (ns) pulse laser (1064 nm) and investigated the underlying physical damage mechanisms. Single ns laser pulse irradiation on ITO films resulted in common thermal degradation features such as melting and evaporation although the laser photon energy (1.03 eV, 1064 nm) was smaller than the bandgap. Dominant laser energy absorption of the ITO film is attributed to free carriers due to degenerate doping. Upon multi-pulse irradiation on the film, damage initiation and growth were observed at lower laser influences, where no apparent damage was formed upon single pulse, suggesting a laser-induced incubation effect.

  7. Characterization of red-near infrared transition for wheat and chickpea using 3 nm bandwidth data

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    2001-01-01

    Enhancement of space based capabilities to discriminate different crops and different varieties of a particular crop needs measurement of (i) the shift in red edge and (ii) the slope of the sudden rise of reflectance in 680 - 760 nm spectral region as a function of Days After Sowing (DAS). To develop the knowledge base for catering to the analysis of future space-based hyperspectral measurements, ground based measurements in 3 nm bandwidth in visible - near Infrared region together with corresponding Leaf Area Index (LAI) observations were taken over the Crop Growth Cycle (CGC) of Wheat and Chickpea. The red edge for wheat crop was at 679 nm for 25 DAS and reached the upper limit i.e., 693.7 nm at 84 DAS and thereafter shifted backward to 679 nm at 108 DAS. There was no change in red edge value of 684.9 nm during 40 to 49 DAS and of 687.8 nm during 55 to 71 DAS. The slope of Red to NIR transition for wheat varied from 0.457 to peak value of 0.784 during 25 to 71 DAS and thereafter decreased to 0.073 at 108 DAS. The peak of Red to Near Infrared (NIR) transition slope and Ratio Vegetation Index (RVI) occurred at the same time i.e., 71 DAS. However, the upper most value of red edge shift occurred at 84 DAS. Paper discusses the above aspects including role of mid point of Red to NIR transition, interrelationships among the Red-NIR transition Slope, Red Edge, LAI and RVI for wheat and chickpea.

  8. Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design

    NASA Astrophysics Data System (ADS)

    Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen

    2016-11-01

    852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.

  9. Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.

    PubMed

    Zhang, Yi-Ming; Ruan, Jing; Xiao, Rong; Zhang, Qiong; Huang, Yue-Sheng

    2013-01-01

    Infrared lasers are widely used in medicine, industry, and other fields. While science, medicine, and the society in general have benefited from the many practical uses of lasers, they also have inherent safety issues. Although several procedures have been put forward to protect the skin from non-specific laser-induced damage, individuals receiving laser therapy or researchers who use laser are still at risk for skin damage. This study aims to understand the interaction between laser and the skin, and to investigate the differences between the skin damage caused by 1,064-nm laser and common thermal burns. Skin lesions on Wistar rats were induced by a 1,064-nm CW laser at a maximum output of 40 W and by a copper brass bar attached to an HQ soldering iron. Histological sections of the lesions and the process of wound healing were evaluated. The widths of the epidermal necrosis and dermal denaturalization of each lesion were measured. To observe wound healing, the epithelial gap and wound gap were measured. Masson's trichrome and picrosirius red staining were also used to assess lesions and wound healing. The thermal damage induced by laser intensified significantly in both horizontal dimension and in vertical depth with increased duration of irradiation. Ten days after wounding, the dermal injuries induced by laser were more severe. Compared with the laser-induced skin damage, the skin burn induced by an HQ soldering iron did not show a similar development or increased in severity with the passage of time. The results of this study showed the pattern of skin damage induced by laser irradiation and a heated brass bar. This study also highlighted the difference between laser irradiation and thermal burn in terms of skin damage and wound healing, and offers insight for further treatment.

  10. Time-resolved hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm

    NASA Astrophysics Data System (ADS)

    Mills, R. L.; Lu, Y.

    2011-09-01

    Spectra of low energy, high current pinch discharges in pure hydrogen, oxygen, nitrogen, and helium were recorded in the EUV region, and continuum radiation was only observed from hydrogen [www.blacklightpower.com/pdf/GEN3_Harvard.pdf; Int. J. Hydrogen Energy 35, 8446 (2010); Cent. Eur. J. Phys. 8, 318 (2010)]. The continuum radiation bands at 10.1 and 22.8 nm and going to longer wavelengths for theoretically predicted transitions of hydrogen to lower-energy, so called "hydrino" states, was observed first at blacklight power, Inc. (BLP) and reproduced at the Harvard center for astrophysics (CfA). Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120 eV to 40 eV and reference experiments, no conventional explanation was found to be plausible, including electrode metal emission, Bremsstrahlung radiation, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the CCD and H2 re-radiation at the detector chamber. To further study these continuum bands assigned to hydrinos, time resolved spectra were performed that showed a unique delay of the continuum radiation of about 0.1 μs and a duration of < 2 μs following the high-voltage pulse consistent with the mechanism of recombination to form the optimal high-density atomic hydrogen in the pinch that permits the H-H interactions to cause the hydrino transitions and corresponding emission.

  11. Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1992-01-01

    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM.

  12. Treatment endpoints for resistant port wine stains with a 755 nm laser.

    PubMed

    Izikson, Leonid; Anderson, R Rox

    2009-03-01

    Laser therapy of port wine stains (PWS) resistant to pulsed dye laser is challenging and controversial. Based on the theory of selective photothermolysis, vessels in such lesions may be specifically targeted with the laser wavelength of 755 nm. There is much deeper penetration of the near-infrared light and it is difficult to visualize laser-induced changes within the deeper dermis. The recognition of an appropriate immediate endpoint response with this wavelength would be helpful. This is a clinical observations report. We present examples of an appropriate PWS tissue response endpoint based on our clinical observations in resistant PWS treated with a 755 nm laser at high fluences (40-100 J/cm(2)), 1.5-ms pulse duration, with dynamic cooling device (DCD) cooling. Mild-to-moderate PWS lightening was associated with the immediate endpoint of a transient gray color that gradually evolved into persistent deep purpura within several minutes. We also discuss the clinical endpoints that represent undertreatment and overtreatment of PWS. It is important to attain, and maintain, the correct endpoint when treating PWS with this deeply penetrating near-infrared laser at high fluences in order to (a) induce lesional lightening, and (b) avoid deep dermal burns that may produce scarring. Judicious use of the 755 nm laser can be beneficial for resistant PWS.

  13. Single-mode 140 nm swept light source realized by using SSG-DBR lasers

    NASA Astrophysics Data System (ADS)

    Fujiwara, N.; Yoshimura, R.; Kato, K.; Ishii, H.; Kano, F.; Kawaguchi, Y.; Kondo, Y.; Ohbayashi, K.; Oohashi, H.

    2008-02-01

    We demonstrate a single-mode and fast wavelength swept light source by using Superestrucuture grating distributed Bragg reflector (SSG-DBR) lasers for use in optical frequency-domain reflectometry optical coherence tomography. The SSG-DBR lasers provide single-mode operation resulting in high coherency. Response of the wavelength tuning is very fast; several nanoseconds, but there was an unintentional wavelength drift resulting from a thermal drift due to injecting tuning current. The dri1ft unfortunately requires long time to converge; more than a few milliseconds. For suppressing the wavelength drift, we introduced Thermal Drift Compensation mesa (TDC) parallel to the laser mesa with the spacing of 20 μm. By controlling TDC current to satisfy the total electric power injected into both the laser mesa and the TDC mesa, the thermal drift can be suppressed. In the present work, we fabricated 4 wavelength's kinds of SSG-DBR laser, which covers respective wavelength band; S-band (1496-1529 nm), C-band (1529-1564 nm), L --band (1564-1601 nm), and L +-band (1601-1639). We set the frequency channel of each laser with the spacing 6.25 GHz and 700 channels. The total frequency channel number is 2800 channels (700 ch × 4 lasers). We simultaneously operated the 4 lasers with a time interval of 500 ns/channel. A wavelength tuning range of more than 140 nm was achieved within 350 μs. The output power was controlled to be 10 mW for all channels. A single-mode, accurate, wide, and fast wavelength sweep was demonstrated with the SSG-DBR lasers having TDC mesa structure for the first time.

  14. A compact dual-wavelength Nd:LuVO4 laser with adjustable power-ratio between 1064 nm and 1342 nm lines by controlling polarization dependent loss

    NASA Astrophysics Data System (ADS)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2017-01-01

    We demonstrate a compact dual-wavelength operation of Nd:LuVO4 laser with a power-ratio adjustable between 1064 nm and 1342 nm lines in a compound cavity configuration. The output power at two wavelengths of the laser indicates that it depends not only on pumping-power and but also on the controllable polarization loss in the cavity. Also, the power-ratio, defined as ratio between the output power at 1064 nm and that at 1342 nm, can be adjusted from 0 to 8 or higher accurately by rotating a quarter-wave plate (QWP) in the cavity.

  15. The effect of bleaching gel and (940 nm and 980 nm) diode lasers photoactivation on intrapulpal temperature and teeth whitening efficiency.

    PubMed

    Al-Karadaghi, Tamara S; Al-Saedi, Asmaa A; Al-Maliky, Mohammed A; Mahmood, Ali S

    2016-12-01

    This in vitro study aimed to investigate the whitening efficacy of 940 nm and 980 nm diode laser photoactivation in tooth bleaching by analysing pulp chamber temperature, as well as the change in tooth colour. Root canals of thirty extracted human lower premolars were prepared. Laserwhite* 20 bleaching agent containing 38% of hydrogen peroxide was photoactivated with 7 W output power of 940 nm and 980 nm diode lasers for 120 s. Bleaching gel reduced 27-29% of the temperature from reaching the pulp chamber. For shade assessment, only the groups photoactivated using diode lasers showed statistically significant differences from control group P < 0.001. Within the studied parameters, both 940 nm and 980 nm diode lasers produced a safe pulp temperature increase. Diode laser photoactivation of bleaching gel resulted in more efficient teeth whitening. Photoactivation with 940 nm diode laser yielded the highest change in colour with only minor increase in pulp chamber temperature.

  16. Transscleral contact retinal photocoagulation with an 810-nm semiconductor diode laser

    SciTech Connect

    Jennings, T.; Fuller, T.; Vukich, J.A.; Lam, T.T.; Joondeph, B.C.; Ticho, B.; Blair, N.P.; Edward, D.P. )

    1990-07-01

    Since the 810-nm wavelength has marked transmissibility through the sclera and absorption by melanin, it would be ideal for transscleral photocoagulation. We performed experiments to determine if consistent transscleral chorioretinal lesions could be produced in Dutch belted pigmented rabbits using the 810-nm laser, and if this modality caused less blood-retinal barrier disruption than retinal cryopexy of clinically equivalent treatment areas. The laser applications produced whitish to grayish-white retinal lesions when the surgeon, under direct visualization, used low powers and long durations (5 to 10 seconds), and controlled the treatment duration. Histopathologic evaluation of a lesion demonstrated an intact sclera overlying the chorioretinal lesion. Vitreous protein concentration, which was measured to assess blood-retinal barrier disruption, was significantly less in eyes treated with transscleral photocoagulation than in eyes treated with cryopexy of clinically equivalent treatment areas. We conclude that transscleral 810-nm laser treatment may be a viable clinical alternative to retinal cryopexy.

  17. Broadly tunable (440-670 nm) solid-state organic laser with disposable capsules

    NASA Astrophysics Data System (ADS)

    Mhibik, Oussama; Leang, Tatiana; Siove, Alain; Forget, Sébastien; Chénais, Sébastien

    2013-01-01

    An innovative concept of thin-film organic solid-state laser is proposed, with diffraction-limited output and a broad tuning range covering the visible spectrum under UV optical pumping. The laser beam is tunable over 230 nm, from 440 to 670 nm, with a 3 nm full width at half maximum typical spectral width. The structure consists of a compact fixed bulk optical cavity, a polymeric intracavity etalon for wavelength tuning, as well as five different disposable glass slides coated with a dye-doped polymer film, forming a very simple and low-cost gain medium. The use of interchangeable/disposable "gain capsules" is an alternative solution to photodegradation issues, since gain chips can be replaced without realignment of the cavity. The laser lifetime of a single chip in ambient conditions and without encapsulation was extrapolated to be around 107 pulses at a microjoule energy-per-pulse level.

  18. Dosimetric analysis for low-level laser therapy (LLLT) of the human inner ear at 593 nm and 633 nm

    NASA Astrophysics Data System (ADS)

    Beyer, Wolfgang; Baumgartner, Reinhold; Tauber, Stefan

    1998-12-01

    The administration of low-level-laserlight for irradiation of the inner ear could represented a new therapeutic model for complex diseases of the inner ear. However, successful therapy requires a well-defined light dosimetry based on a dosimetric analysis of the human cochlea that represents a complex anatomy. The light distribution inside the cochlear windings, produced by an irradiation of the tympanic membrane, was quantitatively measured ex vivo for HeNe laser wavelengths of 593 nm and 633 nm. To obtain the space irradiance within an intact cochlea a correction factor of about 6 has been determined by Monte Carlo calculations. It follows from 3 contributions, first the backscattering of light in the bony parts removed during the preparation procedure of the specimen, second the change of index of refraction from the bony parts to air and third some geometrical factors due to the angular distribution of the radiation. The transmission of light across the tympanic cavity and the promontory depends strongly on the wavelength. Due to the observed spatial intensity variations of a factor 10 and more inside the cochlear windings the optimum external light dose has to be chosen with regard to the tonotopy of the ear.

  19. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  20. CO2-Laser Polishing for Reduction of 351-nm Surface Damage Initiation in Fused Silica

    SciTech Connect

    Brusasco, R M; Penetrante, B M; Butler, J A; Maricle, S M; Peterson, J E

    2001-11-01

    We have applied a carbon dioxide (CO{sub 2}) raster scanning laser polishing technique on two types of fused silica flat optics to determine the efficacy of CO{sub 2}-laser polishing as a method to increase the 351-nm laser damage resistance of optic surfaces. R-on-1 damage test results show that the fluence for any given 355-nm damage probability is 10-15 J/cm{sup 2} higher (at 3 ns pulse length, scaled) for the CO{sub 2}-laser polished samples. Poor quality and good quality surfaces respond to the treatment such that their surface damage resistance is brought to approximately the same level. Surface stress and the resultant effect on wavefront quality remain key technology issues that would need to be addressed for a robust deployment.

  1. Controlling H atom production in the 193 nm laser photolysis of triethylarsenic

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Deshmukh, Subhash; Brum, Jeffrey L.; Koplitz, Brent

    1991-05-01

    We report on the production of atomic hydrogen subsequent to the 193 nm photolysis of triethylarsenic (TEAs) using an excimer laser. The H atoms are probed via two-photon (121.6+364.7 nm) ionization, and the resulting H atom Doppler profile at Lyman-α is presented. Photolysis power dependence studies demonstrate that substantial H atom formation occurs at relatively low laser powers. However, the H atom signal actually begins to diminish as the photolysis laser power is increased beyond ˜70 MW/cm2. Correlations with time-of-fight mass spectral data suggest that ion channels are being accessed. The possible mechanisms for TEAs excitation that lead to H atom formation/depletion are presented, and the implications of these observations on controlling carbon incorporation in the laser-enhanced growth of films of GaAs, AlGaAs, etc. are discussed.

  2. High-power in-band pumped Er:YAG laser at 1617 nm.

    PubMed

    Kim, J W; Shen, D Y; Sahu, J K; Clarkson, W A

    2008-04-14

    High-power room-temperature operation of an Er:YAG laser at 1617 nm in-band pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm is reported. The Er:YAG laser yielded 31 W of continuous-wave output in a beam with M(2) approximately = 2.2 for 72 W of incident pump power. The threshold pump power was 4.1 W and the slope efficiency with respect to incident pump power was approximately 47%. The influence of erbium doping level and resonator design on laser performance is discussed, and the prospects for further increase in output power and improvement in lasing efficiency are considered.

  3. Ultrastructure: effects of melanin pigment on target specificity using a pulsed dye laser (577 nm)

    SciTech Connect

    Tong, A.K.; Tan, O.T.; Boll, J.; Parrish, J.A.; Murphy, G.F.

    1987-06-01

    It has been shown recently that brief pulses of 577 nm radiation from the tunable dye laser are absorbed selectively by oxyhemoglobin. This absorption is associated with highly specific damage to superficial vascular plexus blood vessels in those with lightly pigmented (type I-II) skin. To determine whether pigmentary differences in the overlying epidermis influence this target specificity, we exposed both type I (fair) and type V (dark) normal human skin to varying radiant exposure doses over 1.5-microsecond pulse durations from the tunable dye laser at a wavelength of 577 nm. Using ultrastructural techniques, we found in type I skin that even clinical subthreshold laser exposures caused reproducible alterations of erythrocytes and adjacent dermal vascular endothelium without comparable damage to the overlying epidermis. In contrast, degenerated epidermal basal cells represented the predominant form of cellular damage after laser exposure of type V skin at comparable doses. We conclude that epidermal melanin and vascular hemoglobin are competing sites for 577 nm laser absorption and damage, and that the target specificity of the 577 nm tunable dye laser is therefore influenced by variations in epidermal pigmentation. This finding is relevant to the clinical application of the tunable dye laser in the ablative treatment of vascular lesions. We also found on ultrastructure that the presence of electron-lucent circular structures of approximately 800 A in diameter were observed only at and above clinical threshold doses in those with type I skin and at the highest dose of 2.75 J/cm2 in type V skin. It has been proposed that these structures might be heat-fixed molds of water vapor. Both this and ultrastructural changes of epidermal basal cells demonstrate mechanisms responsible for alteration of tissue after exposure to 577 nm, which are discussed.

  4. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    NASA Astrophysics Data System (ADS)

    Fu, S. C.; Wang, X.; Chu, H.

    2013-02-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.

  5. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  6. Modeling of filamentation damage induced in silica by 351-nm laser pulses

    SciTech Connect

    Milam, D.; Manes, K.R.; Williams, W.H.

    1996-10-17

    A major risk factor that must be considered in design of the National Ignition Facility is the possibility for catastrophic self-focusing of the 351-nm beam in the silica optical components that are in the final section of the laser. Proposed designs for the laser are analyzed by the beam-propagation code PROP92. A 351-nm self-focusing experiment, induction of tracking damage, was done to provide data for validation of this code. The measured self-focusing lengths were correctly predicted by the code.

  7. Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm.

    PubMed

    Kalita, Mridu P; Alam, Shaif-Ul; Codemard, Christophe; Yoo, Seongwoo; Boyland, Alexander J; Ibsen, Morten; Sahu, Jayanta K

    2010-03-15

    An all-fiber, narrow-linewidth, high power Yb-doped silica fiber laser at 1179 nm has been demonstrated. More than 12 W output power has been obtained, corresponding to a slope efficiency of 43% with respect to launched pump power, by core-pumping at 1090 nm. In order to increase the pump absorption, the Yb-doped fiber was heated up to 125 degrees C. At the maximum output power, the suppression of amplified spontaneous emission was more than 50 dB. Furthermore, theoretical work confirms that the proposed laser architecture can be easily scaled to higher power.

  8. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    PubMed

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  9. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  10. Use of diode laser energy (808 nm) for selective photothermolysis of contaminated wounds

    NASA Astrophysics Data System (ADS)

    Bartels, Kenneth E.; Morton, Rebecca J.; Dickey, D. Thomas; Stair, Ernest L.; Payne, Marie E.; Schafer, Steven A.; Nordquist, Robert E.

    1995-05-01

    The objective of this study was to compare the antibacterial effects of selective laser treatments on contaminated wounds. Comparisons were made using the diode (808 nm) laser with and without an accompanying chromophore, Nd:YAG (1064 nm), and KTP (532 nm) lasers. A known quantity (mean concentration of 7.9 +/- 1.9 CFU/ml X 108) of bacterial organisms (Staphylococcus intermedius) was inoculated into skin incisions aseptically made on the backs of experimental rabbits. The bacteria were allowed to adhere/colonize for one hour, and each site was then treated with various laser modalities. Tissue samples were taken at one and forty-eight hours after treatment. The number of viable bacteria was then quantitated (CFU/ml) by a spot-plate counting technique. Initial results illustrated the fact that selective photothermolysis of superficial cellular layers of targeted tissue occurred with an accompanying decrease of bacterial numbers that virtually created a `clean' (organisms numbers less than 105 per gram of tissue) wound. This effect was especially noticeable using the diode laser (808 nm) and an accompanying chromophore, indocyanine green.

  11. 5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes.

    PubMed

    Zhan, Huan; Liu, Qinyong; Wang, Yuying; Ke, Weiwei; Ni, Li; Wang, Xiaolong; Peng, Kun; Gao, Cong; Li, Yuwei; Lin, Honghuan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2016-11-28

    With home-made fiber perform and special fiber drawing & coating technique, a new-type of (3 + 1) GTWave fiber theoretically designed for bi-directional pump method, was successfully fabricated and justified of integrating multi-kW pump energy from commercial 976nm laser diodes. This (3 + 1) GTWave fiber amplifier demonstrated uniform absorption of pump light and easy thermal management characteristics along the whole fiber length. This amplifier is capable of simultaneously aggregating 5.19kW pump power at 976nm and finally generating 5.07kW laser output at 1066.5nm with an optical-to-optical efficiency of 74.5%, the first publically-reported multi-kW GTWave fiber directly pumped with commercial 976nm laser diodes to the best of our knowledge. No power roll-over was found at 5kW level and further power scaling can be expected with more pump power. The results indicate that GTWave fiber is a competitive integrated fiber device to collect enough pump energy from low-cost commercial laser diodes for multi-kW fiber laser development.

  12. Tissue coloring with exogenous chromophores to extend surgical use of 808-nm diode lasers

    NASA Astrophysics Data System (ADS)

    Marangoni, Ovidio; Melato, Mauro

    2000-06-01

    Lasers with a wavelength between 351-1064nm, preset fluence and pulse duration induce a selective thermolysis of tissue chromophores. Specific exogenous chromophores, such as indocyanine green, are used in ophthalmology, in photodynamic therapy, in welding, and more recently for epilation. The aim of our study was to assess the effectiveness of a wavelength of 808nm on tissues stained with different exogenous chromophores whose absorption curves we studied by spectrophotometer. Out of five chromophores, methylene blue proved to be effective at 808nm. We tested the diode laser 808nm, at focused powers of 1, 2, 3, 5, 7 W in cw, for 1, 2, 3, 5, 7, 10 sec on skin specimens stained with 1 percent methylene blue in a small- spot sequence. At low powers the destructive effect was highly concentrated, both in depth and laterally, while greater intensities result in marked destruction even after a short irradiation time. The use of exogeneous chromophores increases absorption and reduces laser energy transmission and scatter. This study confirms that the selectivity of 808nm lasers can be 'tricked' since thermolysis is confined to the stained areas and there is less risk of damaging surrounding areas in the event of abrupt movements by either the surgeon or the patient, especially in the case of emotionally unstable or very young patients.

  13. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  14. Long Coherence Length 193 nm Laser for High-Resolution Nano-Fabrication

    DTIC Science & Technology

    2008-06-27

    ns pulses, considering Kerr self phase modulation and perhaps Kramers- Kronig self phase modulation as well? What conversion efficiency to 193.4 nm is...Kramers- Kronig phase related to Actinix 31 6/27/2008 Long Coherence Length 193-nm Laser for High-Resolution Nano-Fabrication DARPA Phase I STTR Final...by. Usually the n 2 contribution is the larger of the two, and better characterized. I do not include a Kramers- Kronig contribution in the

  15. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    NASA Astrophysics Data System (ADS)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  16. A compact, sub-Hertz linewidth 729 nm laser for a miniaturized 40Ca+ optical clock

    NASA Astrophysics Data System (ADS)

    Shang, Junjuan; Cao, Jian; Cui, Kaifeng; Wang, Shaomao; Zhang, Ping; Yuan, Jinbo; Chao, Sijia; Shu, Hualin; Huang, Xueren

    2017-01-01

    We present a compact, sub-Hertz 729 nm laser for a miniaturized 40Ca+ single-ion optical clock. An external cavity diode laser is frequency-stabilized to a horizontally mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. The laser linewidth is measured to be about 0.9 Hz from a heterodyne beat note with the other 729 nm laser. After removing the linear drift of about 0.1 Hz/s, the fractional frequency instability is less than 2 × 10 - 15 (1 100 s). This compact, ultra-stable laser system with a volume about 0.1 m3 excluding the electronics has been employed into a miniaturized 40Ca+ single-ion optical clock. The clock frequency instability has been measured to be 3.4×10-14/τ1/2 (1 10,000 s) with a 729 nm laser probe pulse time of 20 ms.

  17. Incisional effects of 1940 nm thulium fiber laser on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Güney, Melike; Tunç, Burcu; Gülsoy, Murat

    2013-02-01

    Lasers of different wavelengths are being used in oral surgery for incision and excision purposes with minimal bleeding and pain. Among these wavelengths, those close to 2μ yield more desirable results on oral soft tissue due to their strong absorption by water. The emission of 1940 nm Thulium fiber laser is well absorbed by water which makes it a promising tool for oral soft tissue surgery. This study was conducted to investigate the potential of thulium fiber laser as an incisional and excisional oral surgical tool. Ovine tongue has been used as the target tissue due to its similarities to human oral tissues. Laser light obtained from a 1940 nm Thulium fiber laser was applied in contact mode onto ovine tongue completely submerged in saline solution in vitro, via a 600)μm fiber moved with a velocity of 0.5 mm /s to form incisions. There were a total of 9 groups determined by the power (2,5-3- 3,5 W), and number of passes (1-3-5). The samples were stained with HE for microscopic evaluation of depth of ablation and extent of coagulation. The depth of incisions produced with 1940 nm Thulium fiber laser increased with increasing power and number of passes, however an increase in the width of the coagulation zone was also observed.

  18. Heading to 1 kW levels with laser bars of high-efficiency and emission wavelength around 880 nm and 940 nm

    NASA Astrophysics Data System (ADS)

    Pietrzak, A.; Woelz, M.; Huelsewede, R.; Zorn, M.; Hirsekorn, O.; Meusel, J.; Kindsvater, A.; Schröder, M.; Bluemel, V.; Sebastian, J.

    2015-03-01

    High-power quasi-CW laser bars are of great interest as pump sources of solid-state lasers generating high-energy ultrashort pulses for high energy projects. These applications require a continuous improvement of the laser diodes for reliable optical output powers and simultaneously high electrical-to-optical power efficiencies. An overview is presented of recent progress at JENOPTIK in the development of commercial quasi-CW laser bars emitting around 880 nm and 940 nm optimized for peak performance. At first, performances of 1.5 mm long laser bars with 75% fill-factor are presented. Both, 880 nm and 940 nm laser bars deliver reliable power of 500 W with wall-plug-efficiencies (WPE) <55% within narrow beam divergence angles of 11° and 45° in slow-axis and fast-axis directions, respectively. The reliability tests at 500 W powers under application quasi- CW conditions are ongoing. Moreover, laser bars emitting at 880 nm tested under 100 μs current pulse duration deliver 1 kW output power at 0.9 kA with only a small degradation of the slope efficiency. The applications of 940 nm laser bars require longer optical pulses and higher repetition rates (1-2 ms, ~10 Hz). In order to achieve output powers at the level of 1 kW under such long pulse duration, heating of the laser active region has to be minimized. Power-voltage-current characteristics of 4 mm long cavity bars with 50% fill-factor based on an optimized laser structure for strong carrier confinement and low resistivity were measured. We report an output power of 0.8 kW at 0.8 A with <60% conversion efficiency (52% WPE). By increasing the fill-factor of the bars a further improvement of the WPE at high currents is expected.

  19. Simulations of a grazing-incidence pumped x-ray laser at 14.7 nm

    SciTech Connect

    Yan, F.; Zhang, J.; Dong, Q. L.; Lu, X.; Li, Y. J.

    2006-02-15

    Numerical simulations of the grazing-incidence pumped Ni-like Pd x-ray laser at 14.7 nm (4d{yields}4p, J=0{yields}1) is performed using a modified one-dimensional hydrodynamic code MEDUSA. The effective absorption of the main laser pulse in the gain region is greatly increased due to the lengthened propagation path. Results predict that a saturated output of the x-ray laser can be achieved with only subjoules driver energy on a 4-mm-long Pd target.

  20. High-power cw laser bars of the 750 - 790-nm wavelength range

    SciTech Connect

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-06-30

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 - 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  1. Mechanism of aneurysm formation after 830-nm diode-laser-assisted microarterial anastomosis

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Godlewski, Guilhem; Rouy, Simone

    1998-01-01

    A series of 830 nm diode laser assisted longitudinal aortorrhophy with a condition of 400 to 500 J/mm2 for one cm length of anastomosis versus conventional manual anastomoses were performed in 90 Wistar rats. With comparing with normal media process, a histologic examination of aneurysm formation was conducted. The results show that there are two important factors to cause aneurysm formation after laser assisted anastomosis: (1) vessel wall is damaged by laser heating; (2) proliferation of collagen fiber at adventitia is absent when media reconstruction.

  2. Laser-damage processes in cleaved and polished CaF{sub 2} at 248nm

    SciTech Connect

    Reichling, M.; Gogoll, S.; Stenzel, S.

    1996-12-31

    Single-shot irradiation of single crystal CaF{sub 2} with 248nm/14ns laser light results in various degrees of degradation and damage depending on the applied laser fluence. Phenomena range from subtle, non-topographic surface modification only detectable by secondary electrons of scanning electron microscopy (SE-SEM) over cracking along crystallographic directions to the ablation of crystalline material. Significant differences are found for cleaved and polished surfaces. Findings from SEM investigations, in-situ photoacoustic mirage measurements and visual inspection of irradiated samples form a comprehensive picture of the stages of laser-induced damage.

  3. Biostimulative effects of 809 nm diode laser on cutaneous skin wounds

    NASA Astrophysics Data System (ADS)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2015-03-01

    The use of low-level laser therapy (LLLT) for therapeutic purposes in medicine has become widespread recently. There are many studies in literature supporting the idea of therapeutic effects of laser irradiation on biological tissues. The aim of this study is to investigate the biostimulative effect of 809nm infrared laser irradiation on the healing process of cutaneous incisional skin wounds. 3-4 months old male Wistar Albino rats weighing 300 to 350 gr were used throughout this study. Lowlevel laser therapy was applied through local irradiation of 809nm infrared laser on open skin incisional wounds of 1 cm length. Each animal had six identical incisions on their right and left dorsal region symmetrical to each other. The wounds were separated into three groups of control, 1 J/cm2 and 3 J/cm2 of laser irradiation. Two of these six wounds were kept as control group and did not receive any laser application. Rest of the incisions was irradiated with continuous diode laser of 809nm in wavelength and 20mW power output. Two of them were subjected to laser irradiation of 1 J/cm2 and the other two were subjected to laser light with energy density of 3 J/cm2. Biostimulation effects of irradiation were studied by means of tensile strength tests and histological examinations. Wounded skin samples were morphologically examined and removed for mechanical and histological examinations at days 3, 5 and 7 following the laser applications. Three of the six fragments of skin incisions including a portion of peripheral healthy tissue from each animal were subjected to mechanical tests by means of a universal tensile test machine, whereas the other three samples were embedded in paraffin and stained with hematoxylin and eosin for histological examinations. The findings of the study show that tissue repair following laser irradiation of 809nm has been accelerated in terms of tissue morphology, strength and cellular content. These results seem to be consistent with the results of many

  4. Analysis of the optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm.

    PubMed

    Cho, C Y; Huang, T L; Cheng, H P; Huang, K F; Chen, Y F

    2016-01-11

    The optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm is theoretically and experimentally analyzed. It is clear that decreasing temperature can considerably eliminate the thermal population at the lower laser level to enhance the quantum efficiency. However, the narrowing of the absorption bandwidth for the gain medium leads to a reduction of the effective absorption efficiency as the temperature is decreased. Consequently, an optimal temperature for the maximum output power is found to be in the range of approximately 120 K to 140 K. It is experimentally verified that employing a pump source with a narrower emission spectrum linewidth contributes a more efficient output for the cryogenic laser.

  5. Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces

    SciTech Connect

    Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith; LeBlanc, Mary M.; Lowdermilk, W. Howard; Rotter, Mark D.; Stanley, Joel R.

    2014-07-17

    When modeling laser interaction with metals for various applications it requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. But, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. Futhermore, the obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.

  6. Long wavelength GaN blue laser (400-490nm) development

    SciTech Connect

    DenBaars, S P; Abare, A; Sink, K; Kozodoy, P; Hansen, M; Bowers, J; Mishra, U; Coldren, L; Meyer, G

    2000-10-26

    Room temperature (RT) pulsed operation of blue nitride based multi-quantum well (MQW) laser diodes grown on c-plane sapphire substrates was achieved. Atmospheric pressure MOCVD was used to grow the active region of the device which consisted of a 10 pair In{sub 0.21}Ga{sub 0.79}N (2.5nm)/In{sub 0.07}Ga{sub 0.93}N (5nm) InGaN MQW. The threshold current density was reduced by a factor of 2 from 10 kA/cm{sup 2} for laser diodes grown on sapphire substrates to 4.8 kA/cm{sub 2} for laser diodes grown on lateral epitaxial overgrowth (LEO) GaN on sapphire. Lasing wavelengths as long as 425nm were obtained. LEDs with emission wavelengths as long as 500nm were obtained by increasing the Indium content. These results show that a reduction in nonradiative recombination from a reduced dislocation density leads to a higher internal quantum efficiency. Further research on GaN based laser diodes is needed to extend the wavelength to 490nm which is required for numerous bio-detection applications. The GaN blue lasers will be used to stimulate fluorescence in special dye molecules when the dyes are attached to specific molecules or microorganisms. Fluorescein is one commonly used dye molecule for chemical and biological warfare agent detection, and its optimal excitation wavelength is 490 nm. InGaN alloys can be used to reach this wavelength.

  7. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    PubMed

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm(2). And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  8. Fabrication of nanostructures on silicon carbide surface and microgroove sidewall using 800-nm femtosecond laser

    NASA Astrophysics Data System (ADS)

    Khuat, Vanthanh; Chen, Tao; Dao, Vanluu

    2015-07-01

    Nanoripples and nanoparticles have been fabricated on the surface of a silicon carbide sample with the irradiation of an 800-nm femtosecond laser in an underwater environment. When a linearly polarized laser was used, the nanoripples were perpendicular to the polarization direction of the incident laser, and the period of the nanoripples was dependent on the number of pulses. When a circularly polarized laser was used, nanoparticles with a diameter of approximately 80 nm were formed. In addition, we observed two kinds of nanoripples on the sidewall of the silicon carbide microgroove fabricated by femtosecond laser irradiation followed by chemical wet etching. When the polarization direction was aligned perpendicular to the writing direction, ripples parallel to the surface of the sample were formed. We attribute the formation of this kind of ripple to interference of the incident laser and the reflected wave. When the polarization direction was aligned parallel to the writing direction, the ripples are perpendicular to the surface of the sample. We attribute the formation of this kind of ripple to interference of incident laser and bulk electron plasma wave. A scanning electron microscope equipped with an energy dispersive X-ray spectroscope was employed to characterize the morphology of the structures.

  9. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    SciTech Connect

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  10. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    SciTech Connect

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2015-12-31

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power of 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts. (lasers)

  11. Short-term clinical outcomes of laser supported periodontal treatment concept using Er,Cr:YSGG (2780nm) and diode (940 nm): a pilot study

    NASA Astrophysics Data System (ADS)

    Odor, Alin A.; Violant, Deborah; Badea, Victoria; Gutknecht, Norbert

    2016-03-01

    Backgrounds: Er,Cr:YSGG (2780nm) and diode (940 nm) lasers can be used adjacent to the conventional periodontal treatment as minimally invasive non-surgical devices. Aim: To describe the short-term clinical outcomes by combining Er,Cr:YSGG (2780nm) and diode 940 nm lasers in non-surgical periodontal treatment. Materials and methods: A total of 10 patients with periodontal disease (mild, moderate, severe) - 233 teeth and 677 periodontal pockets ranging from 4 mm to 12 mm - were treated with Er,Cr:YSGG (2780nm) and diode (940 nm) lasers in adjunct to manual and piezoelectric scaling and root planning (SRP). Periodontal parameters such as mean probing depth (PD), mean clinical attachment level (CAL) and mean bleeding on probing (BOP) were evaluated at baseline and 6 months after the laser treatment using an electronic periodontal chart. Results: At baseline, the mean PD was 4.06 ± 1.06 mm, mean CAL was 4.56 ± 1.43 mm, and mean BOP was 43.8 ± 23.84 %. At 6 months after the laser supported periodontal treatments the mean PD was 2.6 ± 0.58 mm (p <0.001), mean CAL was 3.36 ± 1.24 mm (p <0.001) and mean BOP was 17 ± 9.34 % (p <0.001). Also 3 patients showed radiographic signs of bone regeneration. Conclusion: The combination of two laser wavelengths in adjunct to SRP offers significant improvements of periodontal clinical parameters such as PD, CAL and BOP. Keywords: Laser supported periodontal treatment concept, Er,Cr:YSGG and diode 940nm lasers, Scaling and root planning, Minimally invasive non-surgical device

  12. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Saito, Yoshihiko; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Takazawa, Akira; Kato, Mayumi; Ito, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-06-01

    We developed a high power and high beam quality 589 nm coherent light source by sum-frequency generation in order to utilize it as a laser guide star at the Subaru telescope. The sum-frequency generation is a nonlinear frequency conversion in which two mode-locked Nd:YAG lasers oscillating at 1064 and 1319 nm mix in a nonlinear crystal to generate a wave at the sum frequency. We achieved the qualities required for the laser guide star. The power of laser is reached to 4.5 W mixing 15.65 W at 1064 nm and 4.99 W at 1319 nm when the wavelength is adjusted to 589.159 nm. The wavelength is controllable in accuracy of 0.1 pm from 589.060 and 589.170 nm. The stability of the power holds within 1.3% during seven hours operation. The transverse mode of the beam is the TEM 00 and M2 of the beam is smaller than 1.2. We achieved these qualities by the following technical sources; (1) simple construction of the oscillator for high beam quality, (2) synchronization of mode-locked pulses at 1064 and 1319 nm by the control of phase difference between two radio frequencies fed to acousto-optic mode lockers, (3) precise tunability of wavelength and spectral band width, and (4) proper selection of nonlinear optical crystal. We report in this paper how we built up each technical source and how we combined those.

  13. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  14. Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery.

    PubMed

    Guney, M; Tunc, B; Gulsoy, M

    2014-08-01

    The use of a laser in surgical procedures involving the soft tissues is advantageous due to its sterile and hemostatic nature. Several different lasers are in use for intraoral soft tissue surgery; however, small, efficient, and fibre-coupled lasers are favoured due to the tightly confined nature of the intraoral environment. This study proposes the use of a 1940-nm thulium fibre laser (Tm:fibre laser) for intraoral soft tissue procedures. Its thermal effects when used to make incisions were investigated. This laser was chosen due to its output wavelength, which is absorbed well by water in biological tissues. Lamb tongues were used in the experiments. The laser was coupled to a 600-μm silica fibre and incisions were made in contact mode with a continuous wave. The extent of ablation and coagulation produced were measured at three different speeds, powers, and numbers of passes. The thermal effects of laser power, movement speed, and number of passes on incision depth and ablation efficiency were determined. The Tm:fibre laser is a promising tool for intraoral surgery, with excellent absorption by tissue, good coagulative qualities, and easy to manipulate fibre output. Its use as an incisional tool with very little to no carbonization is shown in this study.

  15. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm.

    PubMed

    Warrier, Aravindan M; Lin, Jipeng; Pask, Helen M; Mildren, Richard P; Coutts, David W; Spence, David J

    2014-02-10

    We present a highly efficient picosecond diamond Raman laser synchronously-pumped by a 4.8 W mode-locked laser at 1064 nm. A ring cavity was adopted for efficient operation. With a low-Q cavity for first-Stokes 1240 nm, we have achieved 2.75 W output power at 1240 nm with 59% overall conversion efficiency. The slope efficiency tended towards 76% far above the SRS threshold, approaching the SRS quantum limit for diamond. A high-Q first-Stokes cavity was employed for second-Stokes 1485 nm generation through the combined processes of four-wave mixing and single-pass stimulated Raman scattering. Up to 1.0 W of second-stokes at 1485 nm was obtained, corresponding to 21% overall conversion efficiency. The minimum output pulse duration was compressed relative to the 15 ps pump, producing pulses as short as 9 ps for 1240 nm and 6 ps for 1485 nm respectively.

  16. Spectroscopic and laser properties of SrMoO4:Tm3+ crystal under 1700-nm laser diode pumping

    NASA Astrophysics Data System (ADS)

    Doroshenko, M. E.; Papashvili, A. G.; Dunaeva, E. E.; Ivleva, L. I.; Osiko, V. V.; Jelinkova, H.; Sulc, J.; Nemec, M.

    2016-10-01

    Spectroscopic and laser properties of Tm3+ ions under 1700 nm excitation in SrMoO4 crystal are investigated. Negligible effect of cross-relaxation process (3H4sbnd 3F4, 3H6sbnd 3F4) on population of 3F4 level for thulium concentrations up to 0.25 at.% was demonstrated. Efficient lasing with slope efficiency up to 18% and broadband (over 100 nm) tuning at room temperature under 1700 nm diode pumping were obtained.

  17. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  18. Effects of 980-nm diode laser on the ultrastructure and fracture resistance of dentine.

    PubMed

    Faria, Maria Isabel Anastacio; Sousa-Neto, Manoel Damião; Souza-Gabriel, Aline Evangelista; Alfredo, Edson; Romeo, Umberto; Silva-Sousa, Yara Teresinha Correa

    2013-01-01

    Few reports have addressed the effects of diode laser irradiation at 980 nm on the morphology and fracture resistance of dentine. The purpose of this study is to evaluate the effects of 980-nm diode laser on the ultrastructure and fracture resistance of root dentine. The roots of 90 extracted canine teeth were divided into three groups according to the type of irrigating solution (water, NaOCl, and NaOCl/EDTA) and subdivided into three subgroups (n = 10) according to the amount of laser irradiation (without irradiation, 1.5 W/100 Hz and 3.0 W/100 Hz). The roots were filled with an epoxy resin-based sealer and gutta-percha and then subjected to a fracture resistance test. Data were analyzed by ANOVA and the Tukey test (p < 0.05). Additionally, 18 canine teeth were prepared using the same irrigation/irradiation protocols and evaluated by scanning electron microscopy (SEM). The SEM showed greater changes when the laser power increased, and the changes also varied according to the irrigating solution. A modified smear layer was observed in specimens that were treated with water and then laser-irradiated. The laser treatment did not alter the fracture resistance of roots treated with 1.5 W/100 Hz (246.3 ± 29.5 N) and 3.0 W/100 Hz (215.3 ± 25.1 N) laser power. The roots treated with NaOCl were more susceptible to fracture (199.4 ± 15.1 N) than those irrigated with water (254.2 ± 23.0 N) (p < 0.05). The 980-nm diode laser altered the morphology of the dentine but did not affect the fracture resistance of the roots.

  19. High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO₄ laser at 1342 nm with a semiconductor saturable absorber mirror.

    PubMed

    Li, Fang-Qin; Liu, Ke; Han, Lin; Zong, Nan; Bo, Yong; Zhang, Jing-Yuan; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2011-04-15

    A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO₄ laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.3 W was obtained with a repetition rate of 76 MHz and a pulse width of 29.2 ps under an absorbed pump power of 12.1 W, corresponding to an optical-optical efficiency of 19.0% and a slope efficiency of 23.9%, respectively.

  20. LD end-pumped acousto-optic Q-switched 1319 nm/1338 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Yu, M.; Wang, C.; Yu, K.; Yu, Y. J.; Chen, X. Y.; Jin, G. Y.

    2016-10-01

    Laser characteristics of acousto-optic Q-switched operation of 1319 nm/1338 nm dual-wavelength composite Nd:YAG laser were studied. Maximum output power of 5.77 W was achieved in CW operation. Under Q-switched operation, the maximum peak power of 3.96 kW and minimum pulse width of 65.6 ns was obtained at repetition frequency of 20 kHz with the duty ratio of 96%. The influence of the duration of the ultrasonic field acted on the Q-switch to the output characteristics of dual-wavelength composite Nd:YAG laser had been reported first time.

  1. In Vivo Photonic Stimulation of Sciatic Nerve with a 1470 nm Laser

    PubMed Central

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Botquin, Yohan; Nonclercq, Antoine

    2016-01-01

    Photonic stimulation is a new modality of nerve stimulation, which could overcome some of the electrical stimulation limitations. In this paper, we present the results of photonic stimulation of rodent sciatic nerve with a 1470 nm laser. Muscle activation was observed with radiant exposure of 0.084 J/cm². PMID:27990230

  2. Attenuation of 1310- and 1550-nm laser light through sound dental enamel

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Fried, Daniel

    2002-06-01

    Inexpensive laser diodes and fiber-optic technology have revived optical transillumination as a promising diagnostic method for the early detection of dental caries. The principal factor limiting transillumination through dental hard tissue is light scattering in the normal enamel and dentin. Previous studies have shown that the scattering coefficient decreases with increasing wavelength. Therefore, the near-IR region is likely to be well suited for fiber optic transillumination. The objective of this study was to measure the optical attenuation of near-IR light through dental enamel at 1310-nm and 1550-nm. These laser wavelengths are readily available due to their suitability for application to fiber optic communication. In this study the collimated transmission of laser light through polished thin sections of dental enamel for various thickness from 0.1 to 2.5 mm was measured in cuvettes of index matching fluid with n= 1.63. Beer-Lambert plots show that the attenuation coefficients are 3.1+/- 0.17cm-1 and 3.8+/- 0.17cm-1 for 1310-nm and 1550-nm, respectively. This study indicates that near-IR laser wavelengths are well-suited for the transillumination of dental enamel for caries detection since the attenuation through normal tissue is an order of magnitude less than in the visible.

  3. Safety and efficacy of 2,790-nm laser resurfacing for chest photoaging.

    PubMed

    Grunebaum, Lisa D; Murdock, Jennifer; Cofnas, Paul; Kaufman, Joely

    2015-01-01

    Chest photodamage is a common cosmetic complaint. Laser treatment of the chest may be higher risk than other areas. The objective of this study was to assess the safety and efficacy of 2,790-nm chest resurfacing for photodamage. Twelve patients with Fitzpatrick skin types I-III were enrolled in this university IRB-approved study. Photo documentation was obtained at baseline and each visit. A test spot with the 2,790-nm resurfacing laser was performed on the chest. Patients who did not have adverse effects from the test spot went on to have a full chest resurfacing procedure. Patients were instructed on standardized aftercare, including sunscreen. A 5-point healing and photodamage improvement scale was used to rate improvement by both investigators and the patients and was obtained at 2 weeks, 1 month, 2 months, and 3 months. One pass chest treatment with the 2,790-nm resurfacing laser at fluences greater than or equal to 3.0 mJ with 10% overlap leads to unacceptable rates of hyperpigmentation. Double pass chest treatment at fluences less than or equal to 2.5 mJ with 10% overlap leads to mild improvement in chest photodamage parameters without significant or persistent adverse effects. Laser treatment of aging/photodamaged chest skin remains a challenge due to the delicacy of chest skin. Mild improvement may be obtained with double pass resurfacing with the 2,790-nm wavelength.

  4. Continuous-wave 193.4 nm laser with 120 mW output power.

    PubMed

    Sakuma, Jun; Kaneda, Yushi; Oka, Naoya; Ishida, Takayuki; Moriizumi, Koichi; Kusunose, Haruhiko; Furukawa, Yasunori

    2015-12-01

    This Letter describes an all-solid-state continuous-wave, deep-ultraviolet coherent source that generates more than 100 mW of output power at 193.4 nm. The source is based on nonlinear frequency conversion of three single-frequency infrared fiber laser master-oscillator power-amplifier (MOPA) light sources.

  5. Developments toward a reliable diode-pumped hydrocarbon-free 795-nm rubidium laser

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-05-07

    We report a 795-nm diode-pumpable Rb laser using a buffer gas of pure {sup 3}He. {sup 3}He gas enhances mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He pressures and improved thermal management.

  6. Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region

    SciTech Connect

    Dvoirin, V V; Mashinskii, V M; Medvedkov, O I; Dianov, Evgenii M; Umnikov, A A; Gur'yanov, Aleksei N

    2009-06-30

    Bismuth-doped optical fibres fully compatible with standard telecommunication fibres are developed. Lasers based on such fibres emitting in the spectral range 1430-1500 nm with an efficiency of up to 7.6% at room temperature and up to 10.5% at a temperature of -65{sup 0}C are fabricated. (waveguides. optical fibres)

  7. Is the 810-nm diode laser the best choice in oral soft tissue therapy?

    PubMed Central

    Akbulut, Nihat; Kursun, E. Sebnem; Tumer, M. Kemal; Kamburoglu, Kivanc; Gulsen, Ugur

    2013-01-01

    Objective: To evaluate the safety and efficacy of an 810-nm diode laser for treatment of benign oral soft tissue lesions. Materials and Methods: Treatment with the 810-nm diode laser was applied to a group of eighteen patients with pathological frenulum and epulis fissuratum; five patients with oral lichen planus, oral leukoplakia, and mucous membrane pemphigoid; and four patients with pyogenic granuloma. Results: Although the conventional surgery wound heals in a fairly short time, in the present study, the simple oral soft tissue lesions healed within two weeks, the white and vesiculobullous lesions healed completely within six weeks, and the pyogenic granuloma lesions healed within four weeks. Any complication was treated by using the 810-nm diode laser. Conclusions: Patient acceptance and satisfaction, without compromising health and function, have been found to be of a high degree in this present study. Thus, we can say that the use of the 810-nm diode laser may indeed be the best choice in oral soft tissue surgery. PMID:24883028

  8. Treatment of dilated pores with 1410-nm fractional erbium-doped fiber laser.

    PubMed

    Suh, Dong-Hye; Chang, Ka-Yeun; Lee, Sang-Jun; Song, Kye-Yong; Choi, Jeong Hwee; Shin, Min Kyung; Jeong, Ki-Heon

    2015-04-01

    Dilated pores can be an early sign of skin aging and are a significant cosmetic concern. The 1410-nm wavelength is optimal for superficial dermal treatments up to 650 μm deep. The aim of the present study was to evaluate the clinical effectiveness and safety of the fractional erbium-doped fiber 1410-nm laser in the treatment of dilated pores. Fifteen patients with dilated facial pores underwent three laser treatments at 3-week intervals. Posttreatment skin responses and side effects were assessed at treatment and follow-up visits by study physicians. Clinical effectiveness of treatment was assessed by both study physicians and patients 3 months after the final laser treatment using a quartile grading scale. Histological examination was performed using biopsy samples taken at baseline (pretreatment) and 3 months after the last treatment. This study showed that greater than 51 % improvement in dilated pores was demonstrated in 14 of 15 patients after three sessions of laser treatments. Improvements in skin texture, tone, and smoothness were reported in all patients. Treatment was well tolerated in all patients, with no unanticipated side effects. This study demonstrates that the 1410-nm fractional erbium fiber laser is effective and safe for treatment of dilated facial pores in Fitzpatrick skin types III-IV.

  9. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm.

    PubMed

    Saenko, Yury V; Glushchenko, Eugenia S; Zolotovskii, Igor O; Sholokhov, Evgeny; Kurkov, Andrey

    2016-04-01

    Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250-1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.

  10. Fractional Erbium laser in the treatment of photoaging: randomized comparative, clinical and histopathological study of ablative (2940nm) vs. non-ablative (1540nm) methods after 3 months*

    PubMed Central

    Borges, Juliano; Cuzzi, Tullia; Mandarim-de-Lacerda, Carlos Alberto; Manela-Azulay, Mônica

    2014-01-01

    BACKGROUND Fractional non-ablative lasers keep the epidermis intact, while fractional ablative lasers remove it, making them theoretically more effective. OBJECTIVES To evaluate the clinical and histological alterations induced by fractional photothermolysis for treating photoaging, comparing the possible equivalence of multiple sessions of 1540nm Erbium, to one session of 2940nm Erbium. METHODS Eighteen patients (mean age 55.9) completed the treatment with three sessions of 1540nm fractional Erbium laser on one side of the face (50 mJ/mB, 15ms, 2 passes), and one session of 2940nm on the other side (5mJ/mB, 0.25ms, 2 passes). Biopsies were performed before and 3 months after treatment. Clinical, histological and morphometric evaluations were carried out. RESULTS All patients presented clinical improvement with no statistically significant difference (p> 0.05) between the treated sides. Histopathology revealed a new organization of collagen and elastic fibers, accompanied by edema, which was more evident with the 2940nm laser. This finding was confirmed by morphometry, which showed a decrease in collagen density for both treatments, with a statistical significance for the 2940nm laser (p > 0.001). CONCLUSIONS Three 1540nm sessions were clinically equivalent to one 2940nm session. The edema probably contributed to the positive results after three months, togheter with the new collagen and elastic fibers organization. The greater edema after the 2940nm session indicates that dermal remodeling takes longer than with 1540nm. It is possible that this histological superiority relates to a more prolonged effect, but a cohort longer than three months is needed to confirm that supposition. PMID:24770501

  11. Comparison of Bare-Tip and Radial Fiber in Endovenous Laser Ablation with 1470 nm Diode Laser

    PubMed Central

    Kurihara, Nobuhisa

    2014-01-01

    Objective: Major side effects after endovenous laser ablation (EVLA) are pain and bruising. The aim of this study was to compare outcome and side effects after EVLA for primary varicose veins with 1470 nm diode laser using bare-tip orradial fiber. Methods: From October 2007 to December 2010, 385 patients (453 limbs) with primary varicose veins treated with 1470 nm laser were studied. Bare-tip fiber was used in 215 patients (242 limbs) (BF group) and radial fiber (ELVeSTMRadial, Biolitec AG, Germany) was used in 177 patients (211 limbs) (RF group). This study is a retrospective study and radial fiber was started for use from November 2008. Laser energy was administered at 6–12 W of power in the BF group and 10 W of power in the RF group with constant pullback of laser fiber under tumescent local anesthesia. The patients were assessed by clinical examination and venous duplex ultrasonography at 24–48 h, one week, one month, 4 months and one year follow-up postoperatively. Results: Mean operating time, length of treated vein and linear endovenous laser energy of all cases were 42.6 min, 36.2 cm and 83.4 J/cm, respectively. Major complications such as deep vein thrombosis and skin burns were not noted. Bruising (1.9% vs. 19.4%) and pain (0.9% vs. 7.4%) were significantly lower in the RF group. Cumulative occlusion rates by Kaplan-Meier method were 100% at 32 months in the RF group and 99.5% at 4 years in the BF group. Conclusion: EVLA using 1470 nm laser with the radial fiber minimized adverse effects compared with bare-tip laser fiber. (*English translation of Jpn J Vasc Surg 2013; 22: 615-621) PMID:25298824

  12. Portable Raman spectroscopy using retina-safe (1550 nm) laser excitation

    NASA Astrophysics Data System (ADS)

    Brouillette, Carl; Smith, Wayne; Donahue, Michael; Huang, Hermes; Shende, Chetan; Sengupta, Atanu; Inscore, Frank; Patient, Michael; Farquharson, Stuart

    2012-06-01

    The use of portable Raman analyzers to identify unknown substances in the field has grown dramatically during the past decade. Measurements often require the laser beam to exit the confines of the sample compartment, which increases the potential of eye or skin damage. This is especially true for most commercial analyzers, which use 785 nm laser excitation. To overcome this safety concern, we have built a portable FT-Raman analyzer using a 1550 nm retina-safe excitation laser. Excitation at 1550 nm falls within the 1400 to 2000 nm retina-safe range, so called because the least amount of damage to the eye occurs in this spectral region. In contrast to wavelengths below 1400 nm, the retina-safe wavelengths are not focused by the eye, but are absorbed by the cornea, aqueous and vitreous humor. Here we compare the performance of this system to measurements of explosives at shorter wavelengths, as well as its ability to measure surface-enhanced Raman spectra of several chemicals, including the food contaminant melamine.

  13. High power, 1060-nm diode laser with an asymmetric hetero-waveguide

    SciTech Connect

    Li, T; Zhang, Yu; Hao, E

    2015-07-31

    By introducing an asymmetric hetero-waveguide into the epitaxial structure of a diode laser, a 6.21-W output is achieved at a wavelength of 1060 nm. A different design in p- and n-confinement, based on optimisation of energy bands, is used to reduce voltage loss and meet the requirement of high power and high wall-plug efficiency. A 1060-nm diode laser with a single quantum well and asymmetric hetero-structure waveguide is fabricated and analysed. Measurement results show that the asymmetric hetero-structure waveguide can be efficiently used for reducing voltage loss and improving the confinement of injection carriers and wall-plug efficiency. (lasers)

  14. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    NASA Astrophysics Data System (ADS)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  15. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  16. A InGaN/GaN quantum dot green ({lambda}=524 nm) laser

    SciTech Connect

    Zhang Meng; Banerjee, Animesh; Lee, Chi-Sen; Hinckley, John M.; Bhattacharya, Pallab

    2011-05-30

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/cm{sup 2} at 278 K. The slope and wall plug efficiencies are 0.74 W/A and {approx}1.1%, respectively, at 1.3 kA/cm{sup 2}. The value of T{sub 0}=233 K in the temperature range of 260-300 K.

  17. Low intensity noise and narrow line-width diode laser light at 540 nm

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Tamaki, Ryo; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2015-05-01

    We present a convenient method to generate high quality single-frequency green light at a wavelength of 540 nm. It consists of a noise suppressed external cavity diode laser at a wavelength of 1080 nm by optical filtering and resonant optical feedback, and a frequency doubling of the fundamental light with an a-cut KTP crystal. Highly efficient conversion is realized by type II non-critical phase matching. A stable single-frequency operation with a maximum power of about 20 mW is performed for more than 3 h. Both the intensity noise and line-width reach the level of a monolithic nonplanar ring laser, which is well known for its extraordinarily narrow line-width and extremely low noise among available single-frequency operating lasers.

  18. Ytterbium-doped fibre laser tunable in the range 1017 - 1040 nm with second-harmonic generation

    SciTech Connect

    Dontsova, E I; Kablukov, S I; Babin, Sergei A

    2013-05-31

    A cladding-pumped ytterbium-doped fibre laser has been tuned to shorter emission wavelengths (from 1040 to 1017 nm). The laser output power obtained has been compared to calculation results. We have studied frequency doubling of the laser in a KTiOPO{sub 4} (KTP) crystal with type II phase matching in the XY plane and demonstrated wavelength tuning in the range 510 - 520 nm. (lasers)

  19. Spectroscopic study of carbon plasma produced by the first (1064 nm) and second (532 nm) harmonics of Nd:YAG laser

    SciTech Connect

    Hanif, M.; Salik, M.; Arif, F.

    2015-03-15

    In this research work, spectroscopic studies of carbon (C) plasma by using laser-induced breakdown spectroscopy (LIBS) are presented. The plasma was produced by the first (1064 nm) and second (532 nm) harmonics of a Q-switched Nd:YAG (Quantel Brilliant) pulsed laser having a pulse duration of 5 ns and 10-Hz repetition rate, which is capable of delivering 400 mJ at 1064 nm and 200 mJ at 532 nm. The laser beam was focused on the target material (100% carbon) by placing it in air at atmospheric pressure. The experimentally observed line profiles of five neutral carbon (C I) lines at 247.85, 394.22, 396.14, 588.95, and 591.25 nm were used to extract the electron temperature T{sub e} by using the Boltzmann plot method and determine its value, 9880 and 9400 K, respectively, for the fundamental and second harmonics of the laser, whereas the electron density N{sub e} was determined from the Stark broadening profile of neutral carbon line at 247.85 nm. The values of N{sub e} at a distance of 0.05 mm from the target surface for the fundamental-harmonic laser with a pulse energy of 130 mJ and the second-harmonic laser with a pulse energy of 72 mJ are 4.68 × 10{sup 17} and 5.98 × 10{sup 17} cm{sup −3}, respectively. This extracted information on T{sub e} and N{sub e} is useful for the deposition of carbon thin films by using the pulsed laser deposition technique. Moreover, both plasma parameters (T{sub e} and N{sub e}) were also calculated by varying the distance from the target surface along the line of propagation of the plasma plume and also by varying the laser irradiance.

  20. Depth of penetration of a 785nm wavelength laser in food powders

    NASA Astrophysics Data System (ADS)

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon S.; Peng, Yankun; Schmidt, Walter F.

    2015-05-01

    Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume is detected by Raman system. The aim of this study was to investigate the penetration depth of a 785nm laser (maximum power output 400mw) into three different food powders, namely dry milk powder, corn starch, and wheat flour. The food powders were layered in 5 depths between 1 and 5 mm overtop a Petri dish packed with melamine. Melamine was used as the subsurface reference material for measurement because melamine exhibits known and identifiable Raman spectral peaks. Analysis of the sample spectra for characteristics of melamine and characteristics of milk, starch and flour allowed determination of the effective penetration depth of the laser light in the samples. Three laser intensities (100, 200 and 300mw) were used to study the effect of laser intensity to depth of penetration. It was observed that 785nm laser source was able to easily penetrate through every point in all three food samples types at 1mm depth. However, the number of points that the laser could penetrate decreased with increasing depth of the food powder. ANOVA test was carried out to study the significant effect of laser intensity to depth of penetration. It was observed that laser intensity significantly influences the depth of penetration. The outcome of this study will be used in our next phase of study to detect different chemical contaminants in food powders and develop quantitative analysis models for detection of chemical contaminants.

  1. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  2. Investigation of GaAs photoconductive switches triggered by 900nm semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Ma, Deming; Shi, Wei; Ma, Xiangrong; Wang, Xinmei; Pei, Tao

    2008-12-01

    Experiment of a lateral semi-insulating GaAs photoconductive semiconductor switch (SI-GaAs PCSS) with different electrode gaps triggered by 900nm semiconductor laser is reported. With the biased voltage of 0.2KV~3.0KV, the linear electrical pulse is outputted by SI-GaAs PCSS. When laser energy is very low, the semi-insulating GaAs PCSS with 1.5mm electrode gap is triggered by laser pulse, the output electrical pulse samples is instable. When the energy of the laser increases, the amplitude and the width of the electrical pulse also increase. It indicates that a stable electrical pulse is obtained while laser energy is high. With the biased voltage of 2.8kV, the SI-GaAs PCSS with 3mm electrode gap is triggered by laser pulse about 10nJ in 200ns at 900nm. The SI-GaAs PCSS switches a electrical pulse with a voltage up to 80V. The absorption mechanism by Franz-Keldysh effect under high-intensity electric field and EL2 deep level defects is discussed.

  3. Wound treatment on a diabetic rat model by a 808 nm diode laser

    NASA Astrophysics Data System (ADS)

    Lau, Pik Suan; Bidin, Noriah; Krishnan, Ganesan; AnaybBaleg, Sana Mohammed; Marsin, Faridah M.; Sum, Mohamad Bin Md; Baktiar, Harzi; Nassir, Zaleha; Lian Chong, Pek; Hamid, Asmah

    2015-07-01

    This paper presents a study on the effect of laser irradiation on wound healing. 808 nm diode laser was employed to facilitate the healing of impaired wounds in experimental diabetes using a rat model. Diabetes was induced in male rats by a streptozotocin injection with a dose of 60 mg kg-1. The disease was verified via measurement of the blood glucose level, which was set having 20 mmol L-1 stability. The rats were randomly distributed into two groups; one served as a control group and the other group was treated with the laser. The power density of the laser used was 0.5 W cm-2 and the wounds were treated for 8 d with the contact time of one second daily. The energy density used was 0.5 J cm-2. The healing progress was recorded via a digital camera. The recorded images were then transferred into Inspector Matrox and image J programs for the accurate measurement of the healing area. The tissue details of the wound were studied through histology. The wound contraction rate of laser therapy group was found to be two times faster than control group. This indicates that the 808 nm diode laser can accelerate the wound healing process.

  4. Laser Phototherapy (660 nm) Can Be Beneficial for Reducing Gingival Inflammation in Prosthodontics

    PubMed Central

    Cardoso Bezerra, Sávio José; Fioranelli Vieira, Glauco; Eduardo, Carlos de Paula; de Freitas, Patrícia Moreira; Aranha, Ana Cecilia Corrêa

    2015-01-01

    Among the new technologies developed, low power lasers have enabled new approaches to provide conservative treatment. Low power lasers act at cellular level, resulting in reduced pain, modulating inflammation, and improved tissue healing. Clinical application of the low power laser requires specific knowledge concerning laser interaction with biological tissue so that the correct irradiation protocol can be established. The present case report describes the clinical steps involved in an indirect composite resin restoration performed in a 31-year-old patient, in whom low power laser was used for soft tissue biomodulation. Laser therapy was applied with a semiconductor laser 660 nm, spot size of 0.028 cm2, energy density of 35.7 J/cm2, mean power of 100 mW, and energy per point as 1 J, in contact mode, on a total of 2 points (mesial and distal), totaling 2 J of energy. The therapy with low power laser can contribute positively to the success of an indirect restorative treatment. PMID:26491573

  5. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  6. Extended coherence length Fourier domain mode locked lasers at 1310 nm.

    PubMed

    Adler, Desmond C; Wieser, Wolfgang; Trepanier, Francois; Schmitt, Joseph M; Huber, Robert A

    2011-10-10

    Fourier domain mode locked (FDML) lasers are excellent tunable laser sources for frequency domain optical coherence tomography (FD-OCT) systems due to their combination of high sweep rates, large tuning ranges, and high output powers. However, conventional FDML lasers provide coherence lengths of only 4-10 mm, limiting their use in demanding applications such as intravascular OCT where coherence lengths of >20 mm are required for optimal imaging of large blood vessels. Furthermore, like most swept lasers, conventional FDML lasers produce only one useable sweep direction per tunable filter drive cycle, halving the effective sweep rate of the laser compared to the filter drive frequency. Here, we demonstrate a new class of FDML laser incorporating broadband dispersion compensation near 1310 nm. Elimination of chromatic dispersion in the FDML cavity results in the generation of forward (short to long wavelength) and backward (long to short wavelength) sweeps with substantially identical properties and coherence lengths of >21 mm. This advance enables long-range, high-speed FD-OCT imaging without the need for optical buffering stages, significantly reducing laser cost and complexity.

  7. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  8. Novel technique to treat melasma in Chinese: The combination of 2940-nm fractional Er:YAG and 1064-nm Q-switched Nd:YAG laser.

    PubMed

    Tian, Wei Cheng Brian Anthony

    2016-01-01

    Melasma is one of the most common pigmented lesions in Chinese women. Although topical therapies are the mainstay treatment, lasers are being used increasingly to treat pigmented lesions. Laser treatment of melasma is however still controversial. This is because lasers have not been able to produce complete clearance of melasma and recurrence rates are high. Laser treatments also cause complications such as hypopigmentation and post-inflammatory hyperpigmentation. In this article, we report on a novel technique using a combination of fractional 2940-nm Er:YAG and 1064-nm Q-switched Nd:YAG lasers. We achieved a rapid improvement in two cases of melasma in Chinese type III skin. The improvement was seen rapidly within a month of treatment. Follow-up at 6 months showed sustained results with no complications. This novel technique is able to safely confer excellent and sustained clearance within a short treatment time.

  9. Extensive angiokeratoma circumscriptum - successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser.

    PubMed

    Baumgartner, Ján; Šimaljaková, Mária; Babál, Pavel

    2016-06-01

    Angiokeratomas are rare vascular mucocutaneous lesions characterized by small-vessel ectasias in the upper dermis with reactive epidermal changes. Angiokeratoma circumscriptum (AC) is the rarest among the five types in the current classification of angiokeratoma. We present a case of an extensive AC in 19-year-old women with Fitzpatrick skin type I of the left lower extremity, characterized by a significant morphological heterogeneity of the lesions, intermittent bleeding, and negative psychological impact. Histopathological examination after deep biopsy was consistent with that of angiokeratoma. The association with metabolic diseases (Fabry disease) was excluded by ophthalmological, biochemical, and genetic examinations. Nuclear magnetic resonance imaging has not detected deep vascular hyperplasia pathognomic for verrucous hemangioma. The combined treatment with 595-nm variable-pulse pulsed dye laser (VPPDL) and 755-nm long-pulse pulsed alexandrite laser (LPPAL) with dynamic cooling device led to significant removal of the pathological vascular tissue of AC. Only a slight degree of secondary reactions (dyspigmentations and texture changes) occurred. No recurrence was observed after postoperative interval of 9 months. We recommend VPPDL and LPPAL for the treatment of extensive AC.

  10. Energy efficiency of drilling granite and travertine with a CO2 laser and 980 nm diode laser

    NASA Astrophysics Data System (ADS)

    Guedes Valente, L. C.; Pérez, M. Angélica A.; Gouvêa, Paula M. P.; Martelli, C.; de Avillez, R. R.; Braga, Arthur M. B.

    2013-03-01

    Using lasers to drill hard rock presents potential advantages compared to conventional mechanical drilling, such as higher penetration rates and reduced vibration. Before realistic drilling tools can be proposed, the influence of important parameters and the mechanisms involved in drilling different rocks with different lasers must be understood. In this work, we investigate the efficiency of laser drilling of granite and travertine with a CO2 laser and a 980 nm fiber coupled diode laser. At the drilling surface, the maximum CW power delivered by the CO2 laser was 140 W, while the diode laser delivered up to 215 W. Even at these modest power levels, it was possible to drill holes with diameters of the order of 8 mm at efficiencies varying from 40 kJ/cm3 to 150 kJ/cm3. The optimum laser exposure period of time was also investigated. Finally, x-ray diffraction and fluorescence analysis, as well as Tg (Thermogravimetry) and DTA (Differential Thermal Analysis) measurements, were performed on the rocks samples used.

  11. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  12. Effects of Nd:YAG (532 nm) laser radiation on `clean' cotton

    NASA Astrophysics Data System (ADS)

    Bloisi, F.; Vicari, L.; Barone, A. C.; Martuscelli, E.; Gentile, G.; Polcaro, C.

    The use of pulsed laser radiation in order to remove small particles from a substrate has gained a growing interest in the last decade, finding applications in several fields ranging from the microcircuits industry to cultural heritage restoration and conservation. The application of such a technique requires the knowledge of the correct laser irradiation parameters to be used in order to obtain a desired result avoiding substrate damage. In this paper we have studied the effect of frequency-doubled (532 nm) Nd:YAG laser radiation on clean cotton samples. We have observed that `yellowing' is present even at low fluences. This suggests that less invasive laser assisted particle removal techniques, some of which have already been proposed by different authors, must be considered.

  13. 355, 532, and 1064 nm picosecond laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2012-12-01

    In this article, we investigate how 355, 532, and 1064 nm picosecond lasers interact with grass tissues. We have identified five interaction regimes, and based on this classification, interaction maps have been constructed from a systematic experiment. The optical properties of light absorbing grass constituents are studied theoretically in order to understand how and how much light is absorbed by grass tissues. Scanning electron microscopy and optical microscopy are employed for observing morphological and structural changes of grass tissues. To the best of the authors' knowledge, this is the first investigation into laser interaction with plant leaves and reveals some fundamental findings regarding how a laser interacts with grass tissues and how plant leaves can be processed using lasers.

  14. Design of high-brightness 976nm fiber-coupled laser diodes based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Hou, Linbao; Zhang, He; Xu, Li; Li, Yang; Zou, Yonggang; Zhao, Xin; Ma, Xiaohui

    2015-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. To obtain high power, high brightness semiconductor laser beam output, a 976nm wavelength fiber coupling module with 12 single-emitter laser diodes has been designed using ZEMAX optical design software, and single-emitter has an output power of 10 W with a 105μm wide emission aperture. The core diameter of output fiber is set as 105μm with a numerical aperture (NA) of 0.15. Finally, the simulated result indicates that the module will have an output power over 100W with the brightness of 16.63MW·cm-2·str-1, and the coupling efficiency achieved 85%.

  15. 0.26-Hz-linewidth ultrastable lasers at 1557 nm

    NASA Astrophysics Data System (ADS)

    Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Qi, Wen; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2016-04-01

    Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ultrastable Fabry-Pérot cavities at room temperature. The fractional frequency instability of each laser system is nearly 8 × 10-16 at 1-30 s averaging time, approaching the thermal noise limit of the reference cavities. A remarkable frequency instability of 1 × 10-15 is achieved on the long time scale of 100-4000 s.

  16. 0.26-Hz-linewidth ultrastable lasers at 1557 nm.

    PubMed

    Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Qi, Wen; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2016-04-27

    Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ultrastable Fabry-Pérot cavities at room temperature. The fractional frequency instability of each laser system is nearly 8 × 10(-16) at 1-30 s averaging time, approaching the thermal noise limit of the reference cavities. A remarkable frequency instability of 1 × 10(-15) is achieved on the long time scale of 100-4000 s.

  17. 0.26-Hz-linewidth ultrastable lasers at 1557 nm

    PubMed Central

    Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Qi, Wen; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2016-01-01

    Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ultrastable Fabry-Pérot cavities at room temperature. The fractional frequency instability of each laser system is nearly 8 × 10−16 at 1–30 s averaging time, approaching the thermal noise limit of the reference cavities. A remarkable frequency instability of 1 × 10−15 is achieved on the long time scale of 100–4000 s. PMID:27117356

  18. Influence of consecutive picosecond pulses at 532 nm wavelength on laser ablation of human teeth

    NASA Astrophysics Data System (ADS)

    Mirdan, Balsam M.; Antonelli, Luca; Batani, Dimitri; Jafer, Rashida; Jakubowska, Katarzyna; Tarazi, Saad al; Villa, Anna Maria; Vodopivec, Bruno; Volpe, Luca

    2014-07-01

    The interaction of 40 ps pulse duration laser emitting at 532 nm wavelength with human dental tissue (enamel, dentin, and dentin-enamel junction) has been investigated. The crater profile and the surface morphology have been studied by using a confocal auto-fluorescence microscope (working in reflection mode) and a scanning electron microscope. Crater profile and crater morphology were studied after applying consecutive laser pulses and it was found that the ablation depth increases with the number of consecutive pulses, leaving the crater diameter unchanged. We found that the thermal damage is reduced by using short duration laser pulses, which implies an increased retention of restorative material. We observe carbonization of the irradiated samples, which does not imply changes in the chemical composition. Finally, the use of 40 ps pulse duration laser may become a state of art in conservative dentistry.

  19. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  20. Investigation of Plasma Processes in Electronic Transition Lasers.

    DTIC Science & Technology

    1980-11-01

    essential features of electron-beau controlled dis- charges of the type coumon to rare gas halide and mercury- halide lasers. Particular attention is...ELECTRON-BEAM CONTROLLED DISCHARGES A. Application to Electronic Transition Lasers III. RARE GAS- HALIDE AND MERCURY- HALIDE LASERS I A. XeCl(B X) Laser...Dist Special I I iii I oI. INTRODUCTION Electrically excited rare gas- halide lasers and their closely related I] mercury- halide counterparts are

  1. A novel single frequency stabilized Fabry-Perot laser diode at 1590 nm for gas sensing

    NASA Astrophysics Data System (ADS)

    Weldon, Vincent; Boylan, Karl; Corbett, Brian; McDonald, David; O'Gorman, James

    2002-09-01

    A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of λ=1590 nm for H 2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H 2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588≤ λ≤1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm.m.Hz -1/2 was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.

  2. Low-cost 420nm blue laser diode for tissue cutting and hemostasis

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.

    2016-03-01

    This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.

  3. 980nm laser for difficult-to-treat basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Derjabo, A. D.; Cema, I.; Lihacova, I.; Derjabo, L.

    2013-06-01

    Begin basal cell carcinoma (BCC) is most common skin cancer over the world. There are around 20 modalities for BCC treatment. Laser surgery is uncommon option. We demonstrate our long term follow up results. Aim: To evaluate long term efficacy of a 980nm diode laser for the difficult-to-treat basal cell carcinoma. Materials and Methods: 167 patients with 173 basal cell carcinoma on the nose were treated with a 980 nm diode laser from May 1999 till May 2005 at Latvian Oncology center. All tumors were morphologically confirmed. 156 patients were followed for more than 5 years. Results: The lowest recurrence rate was observed in cases of superficial BCC, diameter<6mm bet the highest recurrence rate was in cases of infiltrative BCC and nodular recurrent BCC. Conclusions: 980 nm diode laser is useful tool in dermatology with high long term efficacy, good acceptance by the patients and good cosmetics results.

  4. Anti-Fungal Laser Treatment of Paper: A Model Study with a Laser Wavelength of 532 nm

    NASA Astrophysics Data System (ADS)

    Pilch, E.; Pentzien, S.; Mädebach, H.; Kautek, W.

    Biodeterioration of organic cultural heritage materials is a common problem. Particularly the removal of discoloration caused by fungal pigments is yet an unsolved problem in paper conservation. In the present study, cellulose (cotton and linters) and 16th century paper (rag), were incubated with several fungi types, such as Cladosporium, Epicoccum, Alternaria, Chaetomium, Aspergillus, Trichophyton, and Penicillium on agar for three weeks. Then they were immersed in 70% Ethanol for removal of hyphae and mycelia and deactivation of the remaining conidia. These specimens were laser-treated in a computer-controlled laser cleaning system with a high pulse energy diode pumped Q-switched Nd:YAG laser operating at 532 nm and a pulse duration of 8 ns. Colour differences were determined spectrophotometrically. Best cleaning results were observed with fungi such as Penicillium and Alternaria. Dry laser cleaning generally turned out to be superb over wet bleaching approaches.

  5. The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro.

    PubMed

    Masson-Meyers, Daniela Santos; Bumah, Violet Vakunseh; Biener, Gabriel; Raicu, Valerica; Enwemeka, Chukuka Samuel

    2015-12-01

    It has long been argued that light from a laser diode is superior to light from a light-emitting diode (LED) in terms of its effect on biological tissues. In order to shed light on this ongoing debate, we compared the antimicrobial effect of light emitted from a 405-nm LED with that of a 405-nm laser on methicillin-resistant Staphylococcus aureus (MRSA) at comparable fluences. We cultured 5 × 10(6) CFU/ml MRSA on tryptic soy agar and then irradiated culture plates once, twice, or thrice with either LED or laser light using 40, 54, 81, or 121 J/cm(2) fluence at 15-, 30-, or 240-min time interval between irradiation. Cultures were incubated immediately after irradiation at 37 °C for 24 h before imaging and counting remnant bacterial colonies. Regardless of the device used, LED or laser, irradiation at each fluence resulted in statistically significant bacterial growth suppression compared to non-irradiated controls (p < 0.0001). The antimicrobial effect of both light sources, LED and laser, was not statistically different at each fluence in 35 of the 36 experimental trials. Bacterial growth suppression achieved with either source of light increased with repeated irradiation, particularly at the 15- or 30-min treatment time interval. Thus, we conclude that the antimicrobial effect of 405-nm laser and 405-nm LED on MRSA is similar; neither has a superior antimicrobial effect when compared to the other.

  6. Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm.

    PubMed

    Liebetrau, Hartmut; Hornung, Marco; Seidel, Andreas; Hellwing, Marco; Kessler, Alexander; Keppler, Sebastian; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2014-10-06

    We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF₂ crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

  7. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.

    PubMed

    Chen, Teng; Madey, John M J; Price, Frank M; Sharma, Shiv K; Lienert, Barry

    2007-06-01

    This report describes a mobile Raman lidar system that has been developed for spectral measurements of samples located remotely at ranges of hundreds of meters. The performance of this system has been quantitatively verified in a lidar calibration experiment using a hard target of standardized reflectance. A new record in detection range was achieved for remote Raman systems using 532 nm laser excitation. Specifically, Raman spectra of liquid benzene were measured with an integration time corresponding to a single 532 nm laser pulse at a distance of 217 meters. The single-shot Raman spectra at 217 meters demonstrated high signal-to-noise ratio and good resolution sufficient for the unambiguous identification of the samples of interest. The transmitter consists of a 20 Hz Nd:YAG laser emitting at 532 nm and 1064 nm and a 178 mm telescope through the use of which allows the system to produce a focused beam at the target location. The receiver consists of a large custom telescope (609 mm aperture) and a Czerny-Turner monochromator equipped with two fast photomultiplier tubes.

  8. Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation

    NASA Astrophysics Data System (ADS)

    Karstens, R.; Gödecke, A.; Prießner, A.; Ihlemann, J.

    2016-09-01

    Parallel nanohole drilling in glass using an ArF excimer laser (193 nm) is demonstrated. For the first time, hole arrays with 500 nm pitch and individual holes with 250 nm diameter and more than 100 nm depth are fabricated by phase mask imaging using a Schwarzschild objective. Holes in soda lime glass are drilled by direct ablation; fused silica is processed by depositing a SiOx-film on SiO2, patterning the SiOx by ablation, and finally oxidizing the remaining SiOx to SiO2. Thermally induced ordered dewetting of noble metal films deposited on such templates may be used for the fabrication of plasmonic devices.

  9. Improving the laser-induced damage threshold of 532-nm antireflection coating using plasma ion cleaning

    NASA Astrophysics Data System (ADS)

    Zhu, Meiping; Xing, Huanbin; Chai, Yingjie; Yi, Kui; Sun, Jian; Wang, Jianguo; Shao, Jianda

    2017-01-01

    BK7 glass substrates were precleaned by different cleaning procedures before being loaded into a vacuum chamber, and then a series of plasma ion cleaning procedures were conducted at different bias voltages in the vacuum chamber, prior to the deposition of 532-nm antireflection (AR) coatings. The plasma ion cleaning process was implemented by the plasma ion bombardment from an advanced plasma source. The surface morphology of the plasma ion-cleaned substrate, as well as the laser-induced damage threshold (LIDT) of the 532-nm AR coating was investigated. The results indicated that the LIDT of 532-nm AR coating can be greatly influenced by the plasma ion cleaning energy. The plasma ion cleaning with lower energy is an attractive method to improve the LIDT of the 532-nm AR coating, due to the removal of the adsorbed contaminations on the substrate surface, as well as the removal of part of the chemical impurities hidden in the surface layer.

  10. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  11. Prospective Comparison of Dual Wavelength Long-Pulsed 755-nm Alexandrite/1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser versus 585-nm Pulsed Dye Laser Treatment for Rosacea

    PubMed Central

    Seo, Hyun-Min; Kim, Jung-In; Kim, Han-Saem; Choi, Young-Jun

    2016-01-01

    Background Rosacea treatments including oral/topical medications and laser therapy are numerous but unsatisfactory. Objective To compare the effectiveness of the dual wavelength long-pulsed 755-nm alexandrite/1,064-nm neodymium: yttrium-aluminum-garnet laser (LPAN) with that of 585-nm pulsed dye laser (PDL) for rosacea. Methods This was a randomized, single-blinded, comparative study. Full face received four consecutive monthly treatments with LPAN or PDL, followed-up for 6 months after the last treatment. Erythema index was measured by spectrophotometer, and digital photographs were evaluated by consultant dermatologists for physician's global assessment. Subjective satisfaction surveys and adverse effects were recorded. Results Forty-nine subjects with rosacea enrolled and 12 dropped out. There were no significant differences between LPAN and PDL in the mean reduction of the erythema index (p=0.812; 3.6% vs. 2.8%), improvement of physician's global assessment (p=1.000; 88.9% vs. 89.5%), and subject-rated treatment satisfaction (p=0.842; 77.8% vs. 84.2%). PDL showed more adverse effects including vesicles than LPAN (p=0.046; 26.3% vs. 0.0%). No other serious or permanent adverse events were observed in both treatments. Conclusion Both LPAN and PDL may be effective and safe treatments for rosacea. PMID:27746641

  12. Noncontact sub-10 nm temperature measurement in near-field laser heating.

    PubMed

    Yue, Yanan; Chen, Xiangwen; Wang, Xinwei

    2011-06-28

    An extremely focused optical field down to sub-10 nm in an apertureless near-field scanning optical microscope has been used widely in surface nanostructuring and structure characterization. The involved sub-10 nm near-field heating has not been characterized quantitatively due to the extremely small heating region. In this work, we present the first noncontact thermal probing of silicon under nanotip focused laser heating at a sub-10 nm scale. A more than 200 °C temperature rise is observed under an incident laser of 1.2 × 10(7) W/m(2), while the laser polarization is well aligned with the tip axis. To explore the mechanism of heating and thermal transport at sub-10 nm scale, a simulation is conducted on the enhanced optical field by the AFM tip. The high intensity of the optical field generated in this region results in nonlinear photon absorption. The optical field intensity under low polarization angles (∼10(14) W/m(2) within 1 nm region for 15° and 30°) exceeds the threshold for avalanche breakdown in silicon. The measured high-temperature rise is a combined effect of the low thermal conductivity due to ballistic thermal transport and the nonlinear photon absorption in the enhanced optical field. Quantitative analysis reveals that under the experimental conditions the temperature rise can be about 235 and 105 °C for 15° and 30° laser polarization angles, agreeing well with the measurement result. Evaluation of the thermal resistances of the tip-substrate system concludes that little heat in the substrate can be transferred to the tip because of the very large thermal contact resistance between them.

  13. Transmission characteristics of high-power 589-nm laser beam in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ito, Meguru; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Saito, Yoshihiko; Takazawa, Akira; Takami, Hideki; Iye, Masanori; Wada, Satoshi; Colley, Stephen A.; Dinkins, Matthew C.; Eldred, Michael; Golota, Taras I.; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto

    2006-06-01

    We are developing Laser Guide Star Adaptive Optics (LGSAO) system for Subaru Telescope at Hawaii, Mauna Kea. We achieved an all-solid-state 589.159 nm laser in sum-frequency generation. Output power at 589.159 nm reached 4W in quasi-continuous-wave operation. To relay the laser beam from laser location to laser launching telescope, we used an optical fiber because the optical fiber relay is more flexible and easier than mirror train. However, nonlinear scattering effect, especially stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), will happen when the inputted laser power increases, i.e., intensity at the fiber core exceed each threshold. In order to raise the threshold levels of each nonlinear scattering, we adopt photonic crystal fiber (PCF). Because the PCF can be made larger core than usual step index fiber (SIF), one can reduce the intensity in the core. We inputted the high power laser into the PCF whose mode field diameter (MFD) is 14 μm and the SIF whose MFD is 5 μm, and measured the transmission characteristics of them. In the case of the SIF, the SRS was happen when we inputted 2 W. On the other hand, the SRS and the SBS were not induced in the PCF even for an input power of 4 W. We also investigated polarization of the laser beam transmitting through the PCF. Because of the fact that the backscattering efficiency of exciting the sodium layer with a narrowband laser is dependent on the polarization state of the incident beam, we tried to control the polarization of the laser beam transmitted the PCF. We constructed the system which can control the polarization of input laser and measure the output polarization. The PCF showed to be able to assume as a double refraction optical device, and we found that the output polarization is controllable by injecting beam with appropriate polarization through the PCF. However, the Laser Guide Star made by the beam passed through the PCF had same brightness as the state of the polarization.

  14. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Liao, Wei; Yuan, Xiao-dong; Wang, Tao; Zu, Xiao-tao

    2016-10-01

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7-41 J/cm2) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm2) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  15. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup, Birgitte

    2010-04-01

    High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality. By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm between the emitters. An output power of 9 W has been achieved at an operating current of 30 A. The combined beam had an M2 value (1/e2) of 5.3 along the slow axis which is comparable to that of a single tapered emitter on the laser bar. The overall beam combining efficiency was measured to be 63%. The output spectrum of the individual emitters was narrowed considerably. In the free running mode, the individual emitters displayed a broad spectrum of the order of 0.5-1.0 nm while the spectral width has been reduced to 30-100 pm in the spectral beam combining mode.

  16. Ultrashort pulse generation by semiconductor mode-locked lasers at 760 nm.

    PubMed

    Wang, Huolei; Kong, Liang; Forrest, Adam; Bajek, David; Haggett, Stephanie E; Wang, Xiaoling; Cui, Bifeng; Pan, Jiaoqing; Ding, Ying; Cataluna, Maria Ana

    2014-10-20

    We demonstrate the first semiconductor mode-locked lasers for ultrashort pulse generation at the 760 nm waveband. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, resulting in the generation of pulses at around 766 nm, with pulse durations down to ~4 ps, at pulse repetition rates of 19.4 GHz or 23.2 GHz (with different laser cavity lengths of 1.8 mm and 1.5 mm, respectively). The influence of the bias conditions on the mode-locking characteristics was investigated for these new lasers, revealing trends which can be ascribed to the interplay of dynamical processes in the saturable absorber and gain sections. It was also found that the front facet reflectivity played a key role in the stability of mode-locking and the occurrence of self-pulsations. These lasers hold significant promise as light sources for multi-photon biomedical imaging, as well as in other applications such as frequency conversion into the ultraviolet and radio-over-fibre communications.

  17. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-04-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.

  18. Ultra-narrow linewidth optical filter based on Faraday effect at isotope 87Rb 420 nm transitions

    NASA Astrophysics Data System (ADS)

    Bi, Gang; Kang, Jia; Fu, Jun; Ling, Li; Chen, Jingbiao

    2016-12-01

    An ultra-narrow linewidth optical filter with isotope 87Rb vapor at 420 nm, within the best waveband 400-500 nm for deep sea communication is achieved for the first time. The Faraday effect, circular dichroism, and nonlinear saturation techniques are utilized to narrow the bandwidth from previous 2.5 GHz to about 15 MHz level on the energy transition 5S1/2 → 6P3/2. By changing the temperature and magnetic field, the maximum transmission is obtained when the temperature and the magnetic field of the 87Rb cell are at 100 °C and 12 G. We discuss the varying influences of temperature, magnetic field, and pump power on the transmission of the atomic filter. The maximum single peak transmission at 5S1/2, F = 2 → 6P3/2, F‧ = 3 transition is 2.1% with a bandwidth of 17.8 MHz, and 1.9% at the 5S1/2, F = 2 → 6P3/2, F‧ = 2 , 3 (cross-over) transition with that of 14.2 MHz. The calculated equivalent noise bandwidth of this system is 32.5 MHz. Compared with the conventional Faraday anomalous dispersion optical filter, the bandwidth of our system is narrowed at least two orders of magnitude and is closer to the natural linewidth. This ultra-narrow linewidth filter has the potential to be applied to submarine communication or the pump laser in a four-level Rb-based active optical clock.

  19. Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser.

    PubMed

    Hurtado, Antonio; Mee, Jesse; Nami, Mohsen; Henning, Ian D; Adams, Michael J; Lester, Luke F

    2013-05-06

    Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310 nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.

  20. 126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Hening; Zhao, Wei; Si, Jinhai; Zhao, Baoyin; Zhu, Yonggang

    2016-12-01

    We report on a 126 W fiber laser operating at 1018 nm with an optical efficiency of 75%. The optimal length for such a fiber laser is theoretically analyzed using steady-state rate equations including amplified spontaneous emission. Excellent agreement on the maximum output power is achieved between the numerical result and the experimental counterpart. Furthermore, a monolithic tandem pumped fiber amplifier is established by using conventional 30/250 μm double clad ytterbium-doped fiber, and 185 W output power with 85% optical efficiency is realized.

  1. Stable Gain-Switched Thulium Fiber Laser With 140-nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Wang, Fengqiu; Meng, Yafei; Kelleher, Edmund; Guo, Guoxiang; Li, Yao; Xu, Yongbing; Zhu, Shining

    2016-06-01

    We demonstrate a gain-switched thulium fiber laser that can be continuously tuned over 140 nm, while maintaining stable nanosecond single-pulse operation. To the best of our knowledge, this system represents the broadest tuning range for a gain-switched fiber laser. The system simplicity and wideband wavelength tunability combined with the ability to control the temporal characteristics of the gain-switched pulses mean this is a versatile source highly suited to a wide range of applications in the eye-safe region of the infrared, including spectroscopy, sensing and material processing, as well as being a practical seed source for pumping nonlinear processes.

  2. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    NASA Astrophysics Data System (ADS)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high

  3. All-fiberized synchronously pumped 1120 nm picosecond Raman laser with flexible output dynamics.

    PubMed

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Yin, Ke; Hou, Jing

    2015-09-07

    A largely simplified and highly efficient all-fiber-based synchronously pumping scheme is proposed. The synchronization between pump light and the cavity round-trip can be achieved by adjusting the repetition rate of pumping light without the requirement of altering the cavity length. Based on this scheme, we achieved generating narrow linewidth highly efficient 1120 nm pulse directly from an all-fiber Raman cavity. By pump repetition rate detuning and pump duration adjustment, the duration of the 1120 nm pulse can be widely tuned from 18 ps to ~1 ns, and the repetition rate can be adjusted from 12.41 MHz to 99.28 MHz by harmonic pumping. Up to 4.3 W high power operation is verified based on this scheme. Owing to the compact all-fiber configuration, the conversion efficiency of the 1066 nm pump light to the 1120 nm Stokes light exceeds 80% and the overall conversion efficiency (976 nm-1066 nm-1120 nm) is as high as 53.7%. The nonlinear output dynamics of the Raman laser are comprehensively explored. Two distinct operation regimes are investigated and characterized.

  4. Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanxiang; Jose, Gin; Steenson, Paul; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; Jha, Animesh

    2011-03-01

    Erbium-doped tellurite glass thin films were deposited using excimer (193 nm) laser ablation onto two different types of substrates: silica and polymer-coated silica for engineering optical integrated active-passive devices. The deposition conditions were optimized for both substrates in order to produce high-quality rare-earth (Er3+) ion-doped glass thin films with low propagation loss. The optical and spectroscopic properties of the deposited films, namely transmittance, fluorescence, lifetime as well as refractive indices at 633 nm were measured and analysed in detail.

  5. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching

    NASA Astrophysics Data System (ADS)

    de Boor, Johannes; Geyer, Nadine; Wittemann, Jörg V.; Gösele, Ulrich; Schmidt, Volker

    2010-03-01

    By combining laser interference lithography and metal-assisted etching we were able to produce arrays of silicon nanowires with uniform diameters as small as 65 nm and densities exceeding 2 × 107 mm - 2. The wires are single crystalline, vertically aligned, arranged in a square pattern and obey strict periodicity over several cm2. The applied technique allows for a tailoring of nanowire size and density. Using a controlled and scalable process to fabricate sub-100 nm silicon nanowires is an important step towards the realization of cost-effective electronic and thermoelectric devices.

  6. 167.75-nm vacuum-ultraviolet ps laser by eighth-harmonic generation of a 1342-nm Nd:YVO4 amplifier in KBBF.

    PubMed

    Dai, Shi-Bo; Zong, Nan; Yang, Feng; Zhang, Shen-Jin; Wang, Zhi-Min; Zhang, Feng-Feng; Tu, Wei; Shang, Lin-Qiao; Liu, Li-Juan; Wang, Xiao-Yang; Zhang, Jing-Yuan; Cui, Da-Fu; Peng, Qin-Jun; Li, Ru-Kang; Chen, Chuang-Tian; Xu, Zu-Yan

    2015-07-15

    We demonstrate a ps 167.75-nm vacuum-ultraviolet (VUV) laser by cascaded second-harmonic generation (SHG). The VUV laser is produced by eighth-harmonic generation (EHG) of a mode-locked ps 1342-nm Nd:YVO4 amplifier through three stages cascaded SHG with two LiB3O5 crystals and one KBe2BO3F2 crystal, successively. The 167.75-nm laser provides up to 65-μW output power, and the corresponding photon flux and photon flux density are 5.5×10(13)  s(-1) and 1.6×10(18)  s(-1)·cm(-2), respectively.

  7. Comparison of four lasers (λ = 650, 808, 980, and 1075 nm) for noninvasive creation of deep subsurface lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Wilson, Christopher R.; Fried, Nathaniel M.

    2015-07-01

    Lasers have been used in combination with applied cooling methods to preserve superficial skin layers (100's μm's) during cosmetic surgery. Preservation of a thicker tissue surface layer (millimeters) may also allow development of other noninvasive laser procedures. We are exploring noninvasive therapeutic laser applications in urology (e.g. laser vasectomy and laser treatment of female stress urinary incontinence), which require surface tissue preservation on the millimeter scale. In this preliminary study, four lasers were compared for noninvasive creation of deep subsurface thermal lesions. Laser energy from three diode lasers (650, 808, and 980 nm) and a Ytterbium fiber laser (1075 nm) was delivered through a custom built, side-firing, laser probe with integrated cooling. An alcohol-based solution at -5 °C was circulated through a flow cell, cooling a sapphire window, which in turn cooled the tissue surface. The probe was placed in contact with porcine liver tissue, ex vivo, kept hydrated in saline and maintained at ~ 35 °C. Incident laser power was 4.2 W, spot diameter was 5.3 mm, and treatment time was 60 s. The optimal laser wavelength tested for creation of deep subsurface thermal lesions during contact cooling of tissues was 1075 nm, which preserved a surface layer of ~ 2 mm. The Ytterbium fiber laser provides a compact, low maintenance, and high power alternative laser source to the Neodymium:YAG laser for noninvasive thermal therapy.

  8. Long-term laser induced contamination tests of optical elements under vacuum at 351nm

    NASA Astrophysics Data System (ADS)

    Leinhos, Uwe; Mann, Klaus; Bayer, Armin; Dette, Jens-Oliver; Schöneck, Matthias; Endemann, Martin; Wernham, Denny; Petazzi, Federico; Tighe, Adrian; Alves, Jorge; Thibault, Dominique

    2010-11-01

    Photon-induced contamination of optical surfaces is a major obstacle for space-bound laser applications. At Laser-Laboratorium Göttingen, a setup was developed that allows monitoring transmission, reflection and fluorescence of laser-irradiated optical components under well-controlled vacuum conditions, in order to assess their possible optical degradation due to radiation-induced contaminant deposition in orbit. In cooperation with the European Space Agency ESA optical elements for the ADM-Aelolus mission were investigated. In order to perform global wind-profile observation based on Doppler-LIDAR, the satellite ADM-Aelolus will be launched in 2011 and injected into an orbit 400 km above Earth's surface. ADM-Aeolus will be the first satellite ever that is equipped with a UV-laser (emitting at a wavelength of 355 nm) and a reflector telescope. For both high-reflecting mirrors and an anti-reflective coated windows long-term irradiation tests (up to 500 million laser pulses per test run) were performed at a base pressure < 10-9 mbar, using a XeF excimer laser (λ=351 nm, repetition rate 1kHz). At this, samples of polymers used inside the satellite (insulators for cabling, adhesives, etc.) were installed into the chamber, and the interaction of their degassing with the sample surfaces under laser irradiation was investigated. Optical degradation associated with contaminant adsorption was detected on the irradiated sample sites as a function of various parameters, including pulse repetition rate, view factor and coating material

  9. Evaluation of uranium transitions for isotopically-selective laser induced fluorescence with diode lasers (Technical Report for ST064)

    SciTech Connect

    Cannon, B.D.

    1993-10-01

    Isotopically-selective excitation of uranium atoms by diode lasers can be the basis for a portable instrument to perform uranium isotopic assays in the field. Such an instrument would improve the ability of on-site inspections to detect and deter nuclear proliferation. Published and unpublished spectroscopic data on atomic uranium were examined to identify candidate transitions for isotopically-selective laser excitation with diode lasers. Eleven candidate transitions were identified and evaluated for their potential usefulness for a portable uranium assay instrument. Eight of these transitions are suitable for laser induced fluorescence using different excitation and detection wavelengths, which will improve sensitivity and elemental selectivity. Data sheets on the 25 uranium transitions in the wavelength range 629 nm to 1,000 nm that originate in the ground or first excited states of neutral atomic uranium are included. Each data sheet provides the wavelength, upper and lower energy levels, angular momentum quantum numbers, {sup 235}U isotope shift (relative to {sup 238}U), and high-resolution spectra of weapons-grade uranium (93% {sup 235}U and 7% {sup 238}U).

  10. Laser transit anemometer software development program

    NASA Technical Reports Server (NTRS)

    Abbiss, John B.

    1989-01-01

    Algorithms were developed for the extraction of two components of mean velocity, standard deviation, and the associated correlation coefficient from laser transit anemometry (LTA) data ensembles. The solution method is based on an assumed two-dimensional Gaussian probability density function (PDF) model of the flow field under investigation. The procedure consists of transforming the data ensembles from the data acquisition domain (consisting of time and angle information) to the velocity space domain (consisting of velocity component information). The mean velocity results are obtained from the data ensemble centroid. Through a least squares fitting of the transformed data to an ellipse representing the intersection of a plane with the PDF, the standard deviations and correlation coefficient are obtained. A data set simulation method is presented to test the data reduction process. Results of using the simulation system with a limited test matrix of input values is also given.

  11. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA High-power EUV (13.5 nm) light source

    NASA Astrophysics Data System (ADS)

    Borisov, Vladimir M.; Borisova, Galina N.; Vinokhodov, Aleksandr Yu; Zakharov, S. V.; Ivanov, Aleksandr S.; Kiryukhin, Yurii B.; Mishchenko, Valentin A.; Prokof'ev, Aleksandr V.; Khristoforov, Oleg B.

    2010-10-01

    Characteristics of a discharge-produced plasma (DPP) light source in the spectral band 13.5±0.135 nm, developed for Extreme Ultra Violet (EUV) lithography, are presented. EUV light is generated by DPP in tin vapour formed between rotating disk electrodes. The discharge is ignited by a focused laser beam. The EUV power 1000 W/(2π sr) in the spectral band 13.5±0.135 nm was achieved with input power about of ~63 kW to the plasma at a pulse repetition rate ~7 kHz . The results of numerical simulation are compared with the experimental data.

  12. Pilot study: intravenous use of indocyanine green as an enhancer for 808-nm diode laser application in the equine

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Blikslager, Anthony T.; Papich, Mark G.

    2000-05-01

    The 808-nm diode laser, delivering 20 - 40 watts of power, has been produced for medical applications by several manufacturers over the past 10 years. This laser's power output is less than most Neodymium:yttrium aluminum garnet (Nd:YAG) lasers and other high power cutting lasers that use fiberoptic delivery systems. The 808-nm diode laser has not gained popularity in equine transendoscopic laser surgery. Indocyanine green (ICG) is absorbed at 810-nm of light which when concentrated in tissue should be an excellent absorber for the energy produced by the 808-nm diode laser. This study compares the depths and widths of penetration achieved with the 808-nm diode laser after intravenous injection of ICG in equine respiratory tissue. Indocyanine green was administered at two doses: 1.5 mg/kg and 3 mg/kg. The 808-nm diode laser was set to deliver 200 joules of energy. The depths and widths of penetration were also compared to the Nd:YAG laser applied at the same energy setting.

  13. Cellular alterations upon IR-laser (890 nm) exposures, in vivo.

    PubMed

    Kolesnikova, A I; Kubasova, T; Konoplyannikov, A G; Köteles, G J

    1998-01-01

    Exposure of cultured cells and small animals to ionizing radiation as well as irradiation of cultured cells with He-Ne laser can cause changes in the functional condition of plasma membranes. The ionizing radiation-induced cell membrane alterations have been determined after either partial or local exposures. The aim of the present study was to reveal whether the local laser treatments cause a general, distant, so called abscopal" effect measured at cellular level, when the laser treatment is intended as a stimulatory procedure. The biological effect of infrared laser (mean power of 5 Watts, 150 Hz frequency, 890 nm wavelength) was demonstrated through 3H-concanavalin A binding by blood cells of daily irradiated (altogether 10 exposures) oncological and non-oncological patients as well as by changes in the proliferation of bone marrow cells of whole body gamma-irradiated (4 Gy) rats, partially laser-treated. The lectin binding of lymphocytes of oncological, as well as ischaemic heart disease patients was increased immediately after the first laser treatment. However, it was decreased after completion of the full course. In cases of inflammatory diseases the test parameters were either unchanged or decreased as compared to their self-control values. The platelets and erythrocytes did not react in any group. Gamma irradiation caused a deep inhibition of proliferation of rat bone marrow cells. The number of fibroblast colony-forming units (CFU-F) could be increased again if the animals were partially exposed to laser. Laser irradiation of one of the femurs led to some recovery of CFU-F values in the exposed as well as unexposed femur. Thus, local infrared laser treatment induces abscopal effects on the cell membrane and cell proliferation characteristics.

  14. Optical injection of quantum dash semiconductor lasers at 1550nm for tunable photonic oscillators

    NASA Astrophysics Data System (ADS)

    Pochet, M.; Naderi, N. A.; Kovanis, V.; Lester, L. F.

    2011-02-01

    In this manuscript, we will theoretically compute and experimentally investigate the dynamics of an optically injected nanostructure laser as a function of the injection strength and the optical detuning frequency. A model describing the optically-injected semiconductor laser is derived in dimensionless format that accounts for the large nonlinear gain component associated with nanostructure semiconductor lasers through the gain coefficient's derivative with respect to perturbations in the carrier and photon density. The nonlinear gain (carrier) relaxation rate and gain compression coefficient account for the perturbation in the slave laser's photon density, and are theoretically shown to have a strong impact on the level of stability exhibited by the optically-injected laser. The theoretical model is experimentally verified through the optical-injection of a quantum-dash Fabry-Perot laser at an operating wavelength of 1550 nm. The quantum-dash laser's large damping rate and sufficiently small linewidth enhancement factor are observed to inhibit period-doubling and chaotic operation under zero frequency-detuning conditions. Additionally, the optically injected quantum-dash laser is found to exhibit a large period-one operational state as the injection strength and the detuning frequency are varied, resulting in a highly tunable microwave frequency in the coupled system's equilibrium state. The enhanced and undamped relaxation oscillations of the period-one state are discussed as a building block for tunable photonic oscillators in various RF photonics applications. Finally a path towards realizing an optically-injected diode laser with a THz resonance frequency will be reviewed.

  15. Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm

    NASA Astrophysics Data System (ADS)

    Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.

    2013-07-01

    Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.

  16. Linewidth characteristics of Raman-shifted dye laser output at 720 and 940 nm

    NASA Astrophysics Data System (ADS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1986-08-01

    Raman conversion efficiency and line broadening are reported for Stokes operation at 720 and 940 nm, with hydrogen and deuterium as the Raman source, and using an Nd:YAG pumped Quanta-Ray PDL-2 dye laser. The dye laser linewidth is 0.2/cm (FWHM) with the grating alone as an intracavity element, and the conversion efficiency at 400 psi was found to be 40 and 20 percent for outputs of 720 and 940 nm, respectively. Pressure broadening coefficients of (9.2 + or - 0.9) x 10 to the -5th per cm/psi for hydrogen, and 7.7 x 10 to the -5th per cm/psi for deuterium, were obtained in good agreement with previous results. The linewidth at the first Stokes wavelength was shown to be determined by pressure broadening in the Raman medium.

  17. Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range

    NASA Astrophysics Data System (ADS)

    Lim, H.; de Boer, J. F.; Park, B. H.; Lee, E. C.; Yelin, R.; Yun, S. H.

    2006-06-01

    Optical frequency domain imaging (OFDI) in the 800-nm biological imaging window is demonstrated by using a novel wavelength-swept laser source. The laser output is tuned continuously from 815 to 870 nm at a 43.2-kHz repetition rate with 7-mW average power. Axial resolution of 10-μm in biological tissue and peak sensitivity of 96 dB are achieved. In vivo imaging of Xenopus laevis is demonstrated with an acquisition speed of 84 frames per second (512 axial lines per frame). This new imaging technique may prove useful in comprehensive retinal screening for medical diagnosis and contrast-agent-based imaging for biological investigations.

  18. High pulse energy, high beam quality microsecond-pulse Ti:sapphire laser at 819.7 nm

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Guo, Chuan; Yu, Hai-Bo; Wang, Zhi-Min; Zuo, Jun-Wei; Xia, Yuan-Qin; Bian, Qi; Bo, Yong; Gao, Hong-Wei; Guo, Ya-Ding; Zhang, Sheng; Cui, Da-Fu; Peng, Qin-Jun; Xu, Zu-Yan

    2017-03-01

    In this letter, a high pulse energy and high beam quality 819.7 nm Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. At incident pump energy of 774 mJ, the maximum output energy of 89 mJ at 819.7 nm with a pulse width of 100 μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, this is the highest pulse energy at 819.7 nm with pulse width of hundred microseconds for a Ti:sapphire laser. The beam quality factor M 2 is measured to be 1.18. This specific wavelength with the high pulse energy and high beam quality at 819.7 nm is a promising light source to create a polychromatic laser guide star together with a home-made 589 nm laser via exciting the sodium atoms in the mesospheric atmosphere.

  19. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers

    PubMed Central

    Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Mesquita-Ferrari, Raquel Agnelli; da Silva, Daniela de Fatima Teixeira; Rocha, Lilia Alves; Alves, Agnelo Neves; Sousa, Kaline de Brito; Bussadori, Sandra Kalil; Hamblin, Michael R.; Nunes, Fábio Daumas

    2015-01-01

    M1 profile macrophages exert a major influence on initial tissue repair process. Few days after the occurrence of injury, macrophages in the injured region exhibit a M2 profile, attenuate the effects of the M1 population, and stimulate the reconstruction of the damaged tissue. The different effects of macrophages in the healing process suggest that these cells could be the target of therapeutic interventions. Photobiomodulation has been used to accelerate tissue repair, but little is known regarding its effect on macrophages. In the present study, J774 macrophages were activated to simulate the M1 profile and irradiated with two different sets of laser parameters (780 nm, 70 mW, 2.6 J/cm2, 1.5 s and 660 nm, 15 mW, 7.5 J/cm2, 20 s). IL-6, TNF-α, iNOS and COX-2 gene and protein expression were analyzed by RT-qPCR and ELISA. Both lasers were able to reduce TNF-α and iNOS expression, and TNF-α and COX-2 production, although the parameters used for 780 nm laser provided an additional decrease. 660 nm laser parameters resulted in an up-regulation of IL-6 expression and production. These findings imply a distinct, time-dependent modulation by the two different sets of laser parameters, suggesting that the best modulation may involve more than one combination of parameters. PMID:26519828

  20. A graphene passively Q-switched Nd:YAG ceramic laser at 1123 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Zhang, Xingyu; Wang, Qingpu; Shen, Hongbin; Bai, Fen; Gao, Liang; Xu, Xiangang; Wei, Rusheng; Chen, Xiufang

    2013-03-01

    A 1123 nm ceramic Nd:YAG laser passively Q-switched by graphene grown on SiC wafer was demonstrated. With a pump power of 8.1 W, an average output power of 332 mW was obtained, corresponding to an optical-to-optical conversion efficiency of 4.1% and a slope efficiency of 7.8%. The pulse width was 875.7 ns with a pulse repetition rate of 46.8 kHz.

  1. Pump-probe photoelectron spectroscopy by a high-power 90 nm vacuum-ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Sato, Motoki; Suzuki, Yoshi-ichi; Suzuki, Toshinori; Adachi, Shunsuke

    2016-02-01

    We present pump-probe photoelectron spectroscopy of Kr and NO using a high-power vacuum-ultraviolet (VUV) laser at a wavelength of 90 nm. Clear quantum beats are observed in the photoelectron angular distributions as well as in the photoelectron yields, resulting from the coherent excitation of two Kr Rydberg states by the VUV pump. The entire Franck-Condon envelope of the NO A(2Σ+) excited state is also successfully captured by the VUV probe.

  2. Studies on 405nm blue-violet diode laser with external grating cavity

    NASA Astrophysics Data System (ADS)

    Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.

  3. The effect of He-Ne laser (632.8 nm) and Solcoseryl in vitro.

    PubMed

    al-Watban, F A; Andres, B L

    2001-01-01

    He-Ne laser (632.8 nm) and Solcoseryl (SS), a non-protein calf haemodialysate, were used in the enhancement of wound healing. Nonetheless, a study on the use of He-Ne laser with SS has not been done. The purpose of this study is to determine the effect of He-Ne laser biostimulation in combination with SS on Chinese hamster ovary (CHO) and human skin fibroblast (HSF). A dose response for the cloning efficiency (CE) of CHO and HSF cells in 5% fetal bovine serum in minimum essential medium (FBS-MEM) with 6-125 micrograms/ml SS and He-Ne laser using an optimum power density of 1.25 mW/cm2 and cumulative doses (CD) of 60-600 mJ/cm2 given for three consecutive days, were done. The combined effects of He-Ne laser 180 mJ/cm2 with 6 and 12 micrograms/ml SS were determined. Quadruplicate cultures were done. Student t-test was used to determine differences of treatment groups from controls. CHO and HSF CE were increased using 180 mJ/cm2 laser by 13.1% +/- 4.5% (p < 0.0025) and 39.1% +/- 7.9% (p < 0.0005); SS 6 micrograms/ml by 14.4% +/- 8.7% (p = 0.01) and 20.7% +/- 10.9% (p = 0.01); SS 12 micrograms/ml by 17.7% +/- 6.3% (p = 0.001) and 23.9% +/- 5.6% (p < 0.0025); laser + SS 6 micrograms/ml by 15.1% +/- 8.8% (p < 0.01) and 60.9% +/- 9.4% (p < 0.0001); laser + SS 12 micrograms/ml by 23.0% +/- 1.5% (p < 0.0001) and 70.7% +/- 11.4% (p < 0.0001), respectively. Additional significant increases in CE were observed on CHO using laser + SS 12 micrograms/ml by 8.6% +/- 1.3% (p < 0.025) and on HSF using laser + SS 6 micrograms/ml and laser + SS 12 micrograms/ml by 15.6% +/- 6.8% (p < 0.025) and 22.7% +/- 10.6% (p = 0.01), respectively, when compared to the effect of 180 mJ/cm2 laser. Results suggest that further stimulation can be achieved by using He-Ne laser with SS. This could be exploited as a new treatment modality.

  4. High-power diode lasers operating around 1500-nm for eyesafe applications

    NASA Astrophysics Data System (ADS)

    Patterson, Steve; Leisher, Paul; Price, Kirk; Kennedy, Keith; Dong, Weimin; Grimshaw, Mike; Zhang, Shiguo; Patterson, Jason; Das, Suhit; Karlsen, Scott; Martinsen, Rob; Bell, Jake

    2008-04-01

    Er:YAG solid state lasers offer an "eye-safe" alternative to traditional Nd:YAG lasers for use in military and industrial applications such as range-finding, illumination, flash/scanning LADAR, and materials processing. These laser systems are largely based on diode pumped solid state lasers that are subsequently (and inefficiently) frequency-converted using optical parametric oscillators. Direct diode pumping of Er:YAG around 1.5 μm offers the potential for greatly increased system efficiency, reduced system complexity/cost, and further power scalability. Such applications have been driving the development of high-power diode lasers around these wavelengths. For end-pumped rod and fiber applications requiring high brightness, nLIGHT has developed a flexible package format, based on scalable arrays of single-emitter diode lasers and efficiently coupled into a 400 μm core fiber. In this format, a rated power of 25 W is reported for modules operating at 1.47 μm, with a peak electrical to optical conversion efficiency of 38%. In centimeter-bar on copper micro-channel cooler format, maximum continuous wave power in excess of 100 W at room temperature and conversion efficiency of 50% at 6C are reported. Copper heat sink conductively-cooled bars show a peak electrical-to-optical efficiency of 43% with 40 W of maximum continuous wave output power. Also reviewed are recent reliability results at 1907-nm.

  5. Laser-induced damage morphology in fused silica at 1064 nm in the nanosecond regime

    NASA Astrophysics Data System (ADS)

    Chambonneau, Maxime; Diaz, Romain; Duchateau, Guillaume; Grua, Pierre; Natoli, Jean-Yves; Rullier, Jean-Luc; Lamaignère, Laurent

    2014-10-01

    The morphology of laser-induced damage sites at the exit surface of fused silica is tightly correlated to the mode composition of the nanosecond laser pulses at 1064 nm. In the single longitudinal mode (SLM) configuration, a molten and fractured central zone is surrounded by a funnel-shaped surface modification. Ring patterns surround the damage sites when these are initiated by multiple longitudinal modes (MLM) laser pulses. In this last mode configuration, the pulses temporal profiles as well as the damage ring patterns differ from pulse to pulse. The appearance chronology of the rings is found to be closely related to the temporal shape of the laser pulses. This supports that the damage morphology originates from the coupling of a laser-supported detonation wave propagating in air with an ablation mechanism in silica. In our experiments, the propagation speed of the detonation wave reaches about 20 km/s and scales as the cube root of the laser intensity, in good agreement with theory.

  6. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action.

    PubMed

    Wang, Yuguang; Huang, Ying-Ying; Wang, Yong; Lyu, Peijun; Hamblin, Michael R

    2017-02-01

    Photobiomodulation (PBM) using red or near-infrared (NIR) light has been used to stimulate the proliferation and differentiation of adipose-derived stem cells. The use of NIR wavelengths such as 810nm is reasonably well accepted to stimulate mitochondrial activity and ATP production via absorption of photons by cytochrome c oxidase. However, the mechanism of action of 980nm is less well understood. Here we study the effects of both wavelengths (810nm and 980nm) on adipose-derived stem cells in vitro. Both wavelengths showed a biphasic dose response, but 810nm had a peak dose response at 3J/cm(2) for stimulation of proliferation at 24h, while the peak dose for 980nm was 10-100 times lower at 0.03 or 0.3J/cm(2). Moreover, 980nm (but not 810nm) increased cytosolic calcium while decreasing mitochondrial calcium. The effects of 980nm could be blocked by calcium channel blockers (capsazepine for TRPV1 and SKF96365 for TRPC channels), which had no effect on 810nm. To test the hypothesis that the chromophore for 980nm was intracellular water, which could possibly form a microscopic temperature gradient upon laser irradiation, we added cold medium (4°C) during the light exposure, or pre-incubated the cells at 42°C, both of which abrogated the effect of 980nm but not 810nm. We conclude that 980nm affects temperature-gated calcium ion channels, while 810nm largely affects mitochondrial cytochrome c oxidase.

  7. Treatment of infraorbital dark circles using 694-nm fractional Q-switched ruby laser.

    PubMed

    Xu, Tian-Hua; Li, Yuan-Hong; Chen, John Z S; Gao, Xing-Hua; Chen, Hong-Duo

    2016-12-01

    The objective of this study was to evaluate the efficacy and safety of using a 694-nm fractional Q-switched ruby laser to treat infraorbital dark circles. Thirty women with infraorbital dark circles (predominant color: dark/brown) participated in this open-labeled study. The participants received eight sessions of 694-nm fractional Q-switched ruby laser treatment using a fluence of 3.0-3.5 J/cm(2), at an interval of 7 days. The melanin deposition in the lesional skin was observed in vivo using reflectance confocal microscopy (RCM). The morphological changes were evaluated using a global evaluation, an overall self-assessment, and a Mexameter. Twenty-eight of the 30 patients showed global improvements that they rated as excellent or good. Twenty-six patients rated their overall satisfaction as excellent or good. The melanin index indicated a substantial decrease from 240.44 (baseline) to 194.56 (P < 0.05). The RCM results showed a dramatic decrease in melanin deposition in the upper dermis. The adverse effects were minimal. The characteristic finding of dark/brown infraorbital dark circles is caused by increased melanin deposition in the upper dermis. The treatment of these infraorbital dark circles using a 694-nm fractional QSR laser is safe and effective.

  8. Characterization of AlInGaN-based 405nm distributed feedback laser diodes

    NASA Astrophysics Data System (ADS)

    Masui, S.; Tsukayama, K.; Yanamoto, T.; Kozaki, T.; Nagahama, S.; Mukai, T.

    2008-02-01

    The first-order AlInGaN 405 nm distributed feed-back (DFB) laser diodes were grown on the low dislocation freestanding GaN substrates by a metal organic chemical vapor deposition method. The first-order diffractive grating whose period was 80 nm was formed into an n-type cladding layer. The fine tooth shape grating was obtained by the EB lithography and the dry etching. No additional threading dislocation could be found at the regrowth interface. As a result, we succeeded in demonstrating the first-order AlInGaN based 405 nm DFB laser diodes under cw operation. The threshold current and the slope efficiency were 22 mA and 1.44 W/A under continuous wave operation at 25 °C, respectively. The single longitudinal mode emission was maintained up to an output power of 60 mW. The fundamental transverse mode operation with a single longitudinal mode was observed in the temperature range from 15 °C to 85 °C at an output power of 30 mW. The lifetime was estimated to be 4000 h by the lifetime test which was carried out under the condition of a constant output power of 30mW at 25 °C for 1000 h. The single longitudinal mode emission was maintained for the life tested DFB laser diodes.

  9. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    NASA Astrophysics Data System (ADS)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang; Torzicky, Teresa; Pircher, Michael; Biedermann, Benjamin R.; Pedersen, Christian; Hitzenberger, Christoph K.; Huber, Robert; Andersen, Peter E.

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers, enable acquisition of densely sampled three-dimensional datasets covering a wide field of view. However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment. With a moderate SOA current (270 mA) we achieve up to 100nm total sweep range and 12 μm depth resolution in air. By modulating the current, we can optimize the output spectrum and thereby improve the resolution to 9 μm in air (~6.5 μm in tissue). The average output power is higher than 20mW. Both sweep directions show similar performance; hence, both can be used for OCT imaging. This enables an A-scan rate of 350 kHz without buffering the light source output.

  10. High-power and high-efficiency diode-pumped Nd:LuYAG mixed crystal lasers operating at 939 and 946  nm.

    PubMed

    Cui, Qin; Lan, Jinglong; Lin, Zhi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-09-10

    We report on high-performance infrared lasers at 0.94 μm based on quasi-three-level transition of F3/24→I9/24 in Nd:LuYAG mixed crystal, for the first time to our knowledge. The maximum output power was achieved to 5.64 W with slope efficiency of approximately 52.5% at 946 nm. The simultaneous dual-wavelength laser at 939 and 946 nm is also obtained with maximum output power of 3.61 W and slope efficiency of 34.8% by introducing a glass etalon into the cavity. Moreover, a 2.0-W single-wavelength laser at 939 nm can be further attained by suitably tilting the etalon. Using a Cr:YAG saturable absorber, Q-switched laser operation is realized with maximum average output power of 0.68 W and the narrowest pulse width of 8.4 ns, which results in the maximum single pulse energy of approximately 55.3 μJ and the maximum pulse peak power of approximately 6.15 kW. Finally, thermal focal length of the laser crystal is estimated by using a flat-flat laser cavity.

  11. Development of high coherence, 200mW, 193nm solid-state laser at 6 kHz

    NASA Astrophysics Data System (ADS)

    Nakazato, T.; Tsuboi, M.; Onose, T.; Tanaka, Y.; Sarukura, N.; Ito, S.; Kakizaki, K.; Watanabe, S.

    2015-02-01

    The high coherent, high power 193-nm ArF lasers are useful for interference lithography and microprosessing applications. In order to achieve high coherence ArF lasers, we have been developing a high coherence 193 nm solid state laser for the seeding to a high power ArF laser. We used the sum frequency mixing of the fourth harmonic (FH) of a 904-nm Ti:sapphire laser with a Nd:YVO4 laser (1342 nm) to generate 193-nm light. The laser system consists of a single-mode Ti:sapphire oscillator seeded by a 904-nm external cavity laser diode, a Pockels cell, a 6-pass amplifier, a 4-pass amplifier, a 2-pass amplifier and a wavelength conversion stage. The required repetition rate of 6 kHz corresponding to the ArF laser, along with a low gain at 904 nm induces serious thermal lens effects; extremely short focal lengths of the order of cm and bi-foci in the vertical and horizontal directions. From the analysis of thermal lens depending on pump intensity, we successfully compensated the thermal lens by dividing a 527-nm pump power with 15, 25 and 28 W to 3-stage amplifiers with even passes, resulting in the output power above 10W with a nearly diffraction limited beam. This 904-nm output was converted to 3.8 W in the second harmonic by LBO, 0.5 W in FH by BBO sequentially. Finally the output power of 230 mW was obtained at 193 nm by mixing the FH with a 1342-nm light in CLBO.

  12. Initial clinical results of laser prostatectomy procedure for symptomatic BPH using a new 50-watt diode laser (wavelength 1000 nm)

    NASA Astrophysics Data System (ADS)

    Bhatta, Krishna M.

    1995-05-01

    Lasers have been used for symptomatic Benign Prostatic Hyperplasia (BPH) in both contact and non-contact modes with reported success rates equivalent to that of Transurethral Resection of Prostate (TURP). A new high power diode laser (Phototome), capable of delivering up to 50 watts of 1000 nm wavelength laser power via a 1 mm quartz fiber, was used to treat 15 patients with symptomatic BPH. Five patients had acute retention, 3 had long term catheter (7 - 48 months), and 8 had severe prostatism. Spinal anesthesia was used in 11 patients, and 4 patients had local anesthesia and intravenous sedation. Four quadrant coagulation with an angle firing probe delivering 50 watts of laser power for 60 seconds in one quadrant was used as the core of the treatment in 11 patients, contact vaporization of BPH tissue was performed in one patient using a 4.5 mm ball tip was used in one patient and three patients with bladder neck stenosis had bladder neck incision performed using a 1 mm quartz fiber delivering 30 watts of laser power. A foley catheter was left indwelling and removed after 5 - 7 days. All patients except one were catheter free after a mean of 8 days. One patient continued to have severe prostatism and had a TURP performed with good results after 3 months of his laser prostatectomy procedure. AUA symptom scores available in 11 patients was found to be 4 after 1 - 3 months of the initial procedure.

  13. Optical measurement of temperature in biological cells under infrared laser light exposure (λ=800 nm)

    NASA Astrophysics Data System (ADS)

    Moreau, David; Lefort, Claire; Leveque, Philippe; O'Connor, Rod P.

    2015-07-01

    Interest in the interaction between laser light and biological samples has gained momentum in recent years, particularly in neurobiology, where there is significant potential to stimulate neurons with infrared laser light. Despite recent reports showing the application of infrared light for neurostimulation, the underlying mechanism is still unknown. The two main hypotheses are based on thermal or electrostatic mechanisms. Here, a novel optical method is presented to make temperature measurements in human neural cells under infrared laser excitation (λ=800nm) using the dye Rhodamine B (RhB). The measurement of temperature is based on the property of RhB, a fluorescent dye whose fluorescence intensity decreases linearly with increases in temperature. We present and detail the setup and measurement procedure that has temporal resolution of few milliseconds, based around a fluorescent live-cell imaging microscope used for cellular microfluorimetry experiments.

  14. Thermal lensing characterization of a high-radiance 946nm planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ng, S. P.; Mackenzie, J. I.

    2012-06-01

    We present the characterization of the in-plane thermal lens in a quasi-four-level Nd:YAG planar waveguide (PW) laser configured for high-radiance operation with an external stable-cavity. Our approach utilises the measurement of the laser's output irradiance distribution at the near- and far-field positions concurrently in order to obtain the "real time" beam propagation parameter and thus beam quality factor, M2. Coupled with the knowledge of the intra-cavity-thermal-lens- dependent beam sizes at an intra-cavity beam waist, the power dependent effective thermal lens focal length was characterized. A thermal lens focal length of >450 mm was obtained at all incident pump powers up to the maximum level of 87 W. This characterization enabled the build of a 29 W 946 nm PW laser with a record output radiance of 4.3 TWm-2sr-1.

  15. Effect of low-level pulsed laser 890-nm on lumbar spondylolisthesis: a case report

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyed M. J.; Afsharpad, Mitra; Djavid, Gholam-reza E.

    2002-10-01

    Objective: Evaluating the effectiveness of low-level laser therapy (LLLT) in alleviating the symptoms of lumbar spondylolisthesis. Materials and Methods: Laser was irradiated for 2 mm at six symmetric points along the lumbosacral spine and 5 points along the referred point ofpain, six times a week for 2 weeks (890 nm; 8 J/cm2; pulsed at 1500 Hz). Perception of benefit, level of function was assessed by the Oswestry disability index, lumbar mobility range of motion and low back pain intensity. Results and Discussion: Results showed a complete reduction in pain and improvement in function in the patient. This case report suggests that low-level laser therapy (LLLT) could play a role in conservative management of low-grade lumbar spondylolisthesis.

  16. Defects Induced in Fused Silica by High Power UV Laser Pulses at 355 nm

    SciTech Connect

    Stevens-Kalceff, M A; Stesmans, A; Wong, J

    2001-03-23

    Point defects induced in high quality optical-grade based silica by high power (>30 J/cm{sup 2}) 355 nm laser pulses have been investigated to elucidate the nature of laser damage in transparent optics designed for use at the National Ignition Facility (NIF). Six defects have been identified: the NBOHC (non-bridging oxygen hole center), a STE (self-trapped exciton), an ODC (oxygen-deficient center), interstitial oxygen, the E'{sub {gamma}}, and E'{sub 74}. The former four defects were identified and spatially resolved in the damage craters using cathodoluminescence (CL) microanalysis (spectroscopy and microscopy). The latter two defects were identified using ESR spectroscopy at cryogenic temperatures. These defects are unlikely to be a prime factor in damage growth by subsequent laser pulses. Their concentration is too low to effect a high enough temperature rise by a volume absorption mechanism.

  17. Surface modification during Nd:YAG (1064 nm) pulsed laser cleaning of organic fibrous materials

    NASA Astrophysics Data System (ADS)

    Strlič, Matija; Kolar, Jana; Šelih, Vid-Simon; Marinček, Marko

    2003-02-01

    Formation of yellow chromophores on artificially soiled surfaces of cellulose sheets, rag paper, linen, cotton, wool and silk during Nd:YAG (1064 nm) pulsed laser cleaning was followed using Vis and FTIR diffuse reflectance spectrometry. Content of reducing carbonyl groups and changes in FTIR reflectance spectra of cellulose are indicative of surface chemical modifications typical of thermal degradation at elevated temperatures. Two types of soiling were used: well-characterised natural dust and carbon powder and no difference in laser-induced formation of chromophores on material surface was observed at low deposit densities. The influence of laser fluence and number of repetitions was studied and a single pulse of a higher fluence (1 J cm -1) is in general more advisable. No bleaching of the chromophores formed was noticed after repeated treatments.

  18. A stable gain-switched Ho:CYA laser resonantly pumped at 1922 nm

    NASA Astrophysics Data System (ADS)

    Zhang, J. N.; Chen, B. H.; Shen, D. Y.; Xu, X. D.

    2017-04-01

    We report on a gain-switched Ho:CaYAlO4 laser resonantly pumped by a home-constructed high power Tm:fiber laser at ~1922 nm. Stable nanosecond single-pulse operation could be maintained when the continuous-wave pump signal was modulated at repetition rates of 60–100 kHz with an acousto-optic modulator. A pulse duration of 311 ns has been obtained at a 60 kHz repetition rate under a pump power level of 11 W. The temporal stability and simplicity of operation make this laser suitable for a variety of applications, such as spectroscopy, gas sensing, and as the seed source of a master oscillation power amplifier system.

  19. Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Stolarski, David J.; Noojin, Gary D.; Hodnett, Harvey M.; Harbert, Corey A.; Schuster, Kurt J.; Foltz, Michael F.; Kumru, Semih S.; Cain, Clarence P.; Finkeldei, C. J.; Buffington, Gavin D.; Noojin, Isaac D.; Thomas, Robert J.

    2010-11-01

    A series of experiments are conducted in vivo using Yucatan mini-pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1940-nm continuous-wave thulium fiber laser irradiation. Experiments employ exposure durations from 10 ms to 10 s and beam diameters of approximately 4.8 to 18 mm. Thermal imagery data provide a time-dependent surface temperature response from the laser. A damage endpoint of minimally visible effect is employed to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Results are compared with current exposure limits for laser safety. It is concluded that exposure limits should be based on data representative of large-beam exposures, where effects of radial diffusion are minimized for longer-duration damage thresholds.

  20. Safety of cornea and iris in ocular surgery with 355-nm lasers.

    PubMed

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED 50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  1. High-power highly reliable single emitter laser diodes at 808 nm

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Xu, Zuntu; Cheng, Lisen; Luo, Kejian; Mastrovito, Andre; Shen, Kun

    2007-02-01

    High power laser diodes and diode arrays emitting at the wavelength of 808nm are widely used for pumping neodymium (Nd+) doped solid state lasers and fiber lasers, medical surgery, dental treatment and material processing. In general, the power is limited by catastrophic optical mirror damage (COMD) and heat dissipation. In this paper we demonstrate 29W CW output power at 808 nm from a 400 μm single emitter with 2mm cavity length. The device thermally rolls over due to the excess heat. The L-I curve rolls over at 29.5W, the laser is still alive, and we can repeat the test again and again without catastrophic optical mirror-damage (COMD). The device consists of an InAlGaAs/AlGaAs/GaAs, optimized special graded-index separated-confinement heterostructure (GRINSCH) broad waveguide (BW), single quantum well (SQW) and barriers between waveguide and cladding layers. A weak temperature dependence characteristic, which is desirable for high power and reliable operation, is obtained from these devices.

  2. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  3. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  4. The effects of infrared-830 nm laser on exercised osteopenic rats.

    PubMed

    Muniz Renno, Ana Claudia; de Moura, Fernanda Mendes; dos Santos, Nádia Slemer Andrade; Tirico, Renata Passarelli; Bossini, Paulo Sérgio; Parizotto, Nivaldo Antonio

    2006-12-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT), 830 nm, on femora of exercised osteopenic rats. Sixty female rats were used, which were divided into six groups: sham-operated control, osteopenic control, sham-operated trained, osteopenic trained, sham-operated trained and irradiated, and osteopenic trained and irradiated. The exercise program and the laser irradiation were performed 48 h over an 8-week period. The exercise program was made in a container, filled with warm water, and consisted of jumps (four series, with ten jumps). The laser irradiation was performed with a Ga-Al-As laser, 830 nm, 100 W/cm2, 120 J/cm2. Femora were submitted to a physical and geometrical properties evaluation, a biomechanical test, and calcium and phosphorus evaluation. Exercised animals showed higher bone strength and physical properties values. However, the LLLT did not improve the stimulatory effects of the exercise on the osteopenic rats. The exercise program was able to increase femora strength and physical properties of osteopenic rats. However, concurrent treatments did not produce a more pronounced effect on femora.

  5. Residual stress near cracks of K and fused silica under 1064 nm nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Hongjie; Huang, Jin; Zhou, Xiaoyan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2012-11-01

    Measurements of birefringence induced in K9 and fused silica specimens by cracks produced by 1064 nm Nd∶YAG laser have been presented. The Birefringence data is converted into the units of stress, thus permitting the estimation of residual stress near crack. The intensity of residual stress in K9 glass is larger than that in fused silica under the same condition. The similarity of residual stress distribution along the y-axis reveals that the nature of shock wave transmission in optical materials under 1064 nm laser irradiation is the same with each other. The value of residual stress can be influenced by laser parameters and characterization of optical material. Simulation based on a theoretical model giving the residual stress field around a crack is developed for comparison with experiment results. The probability of initial damage and the direction of the energy dissipation in cracks determine the residual stress distribution. The thermal stress coupling enlarges the asymmetry of residual stress distribution. Residual stress in optical material has a strong effect on fracture and should be taken into account in any formulation that involves the enhanced damage resistance of optical components used in laser induced damage experiments.

  6. Optimization of Laser-Damage Resistance of Evaporated Hafnia Films at 351 nm

    SciTech Connect

    Oliver, J.B.; Papernov, S.; Schmid, A.W.; Lambropoulos, J.C.

    2009-04-07

    A systematic study was undertaken to improve the laser-damage resistance of multilayer high-reflector coatings for use at 351 nm on the OMEGA EP Laser System. A series of hafnium dioxide monolayer films deposited by electron-beam evaporation with varying deposition rates and oxygen backfill pressures were studied using transmission electron microscopy (TEM), x-ray diffraction (XRD), and refractive index modeling. These exhibit microstructural changes for sufficiently slow deposition rates and high oxygen backfill pressures, resulting in an absence of crystalline inclusions and a lower refractive index. Hafnia monolayers exhibited laser-damage resistance as high as 12 J/cm^2 at 351 nm with a 0.5-ns pulse. This process was utilized in the fabrication of reduced electric-field-type multilayer high-reflector coatings. Measured laser-damage thresholds as high as 16.63 J/cm^2 were achieved under identical test conditions, an exceptional improvement relative to historical damage thresholds of the order of 3 to 5 J/cm^2.

  7. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  8. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    SciTech Connect

    Jayakumar, Anupriya Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  9. Simultaneous tri-wavelength laser operation at 916, 1086, and 1089 nm of diode-pumped Nd:LuVO4 crystal

    NASA Astrophysics Data System (ADS)

    Shen, Bingjun; Jin, Lihong; Zhang, Jiajia; Tian, Jian

    2016-09-01

    We report a diode-pumped continuous-wave tri-wavelength Nd:LuVO4 laser operating at 916, 1086, and 1089 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous tri-wavelength laser operation. Using a T-shaped cavity, we realized efficient tri-wavelength operation at 4F3/2  →  4I9/2 and 4F3/2  →  4I11/2 transitions for Nd:LuVO4 crystal, simultaneously. The maximum output power was 2.8 W, which included 916, 1086, and 1089 nm, and the optical conversion efficiency was 15.1%. To our knowledge, this is the first work that realizes simultaneous tri-wavelength Nd:LuVO4 laser operation.

  10. Simulation-based formulation of a nonchemically amplified resist for 257-nm laser mask fabrication

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen M.; Tabery, Cyrus E.; Stachowiak, Timothy B.; Albelo, Jeff A.; Willson, C. Grant

    2000-06-01

    The demand for smaller and more uniform features on photomasks has inspired consideration of a DUV (257 nm) resist process for optical pattern generation. Chemically amplified resists require storage and exposure in carbon filtered environments, and they require post-exposure bakes. Few mask facilities are set up to handle chemically amplified resists commonly used in deep UV wafer fabrication process. Hence, it is appropriate to explore the lithographic performance of non-chemically amplified resist materials for 257 nm laser photomask lithography. Resist characterization and lithography simulation were used to formulate a 257 nm resist from DNQ/novolak materials provided by a commercial resist supplier. Diazonaphthoquinone (DNQ)/novolak resists have not been used for DUV Integrated Circuit (IC) applications mainly due to the low sensitivity and the strong absorbance of the DNQ photoactive compound (PAC) at 248 nm. However, a 2,1,4 DNQ based resist has been characterized that bleaches at 257 nm and inhibits novolak. The photoproduct of the 2,1,4 DNQ PAC is much more transparent at 257 nm than 248 nm. Novolak resin also has an absorbance minimum in the DUV at 257 nm that provides transparency similar to poly (hydroxystyrene). Traditional photoresist formulation requires tedious, iterative, and expensive manufacturing trials. Resist characterization and lithography simulation can be used to relate lithographic performance (resolution, sidewall and process latitude) to resist formulation parameters (PAC concentration, developer concentration, etc.), thereby supporting the formulation optimization. An exposure system using a 257 nm frequency doubled argon laser system has been constructed to study the resist photokinetics. Dill exposure parameters (A, B and C) have been extracted for a 2,1,4 DNQ/novolak based resist. Dissolution rate measurements have been made with a development rate monitor developed at the University of Texas at Austin. Simulation using the

  11. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator.

    PubMed

    Adany, Peter; Price, E Shane; Johnson, Carey K; Zhang, Run; Hui, Rongqing

    2009-03-01

    A voltage-controlled birefringent cell based on ceramic PMN-PT material is used to enable fast intensity modulation of femtosecond laser pulses in the 800 nm wavelength window. The birefringent cell based on a PMN-PT compound has comparatively high electro-optic response, allowing for a short interaction length of 3 mm and thus very small size, low attenuation of 0.16 dB, and negligible broadening for 100 fs optical pulses. As an application example, agile wavelength tuning of optical pulses is demonstrated using the soliton self-frequency shift in a photonic crystal fiber. By dynamically controlling the optical power into the fiber, this system switches the wavelength of 100 fs pulses from 900 nm to beyond 1120 nm with less than 5 micros time. In addition, a feedback system stabilizes the wavelength drift against external conditions resulting in high wavelength stability.

  12. Formation of 300 nm period pore arrays by laser interference lithography and electrochemical etching

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kleimann, P.; Laffite, G.; Jamois, C.; Orobtchouk, R.

    2015-02-01

    This paper highlights that combining laser interference lithography and electrochemical etching is a cost-effective, efficient method to realize periodic nanopore arrays in silicon with lattice pitch as small as 300 nm on centimeter-scale substrates. The fabrication of wide-area and high aspect ratio 2D pore arrays with 250 nm diameter and 5 μm depth is demonstrated. All the steps of the process have been optimized to achieve vertical sidewalls with 50 nm thickness, providing pore arrays with aspect ratio of 100 on n-type silicon substrates over an area of 2 × 2 cm2. These results constitute a technological advance in the realization of ordered pore arrays in silicon with very small lattice parameters, with impact in biotechnology, energy harvesting, or sensors.

  13. 1064-nm Nd:YAG and 980-nm Diode Laser EDTA Agitation on the Retention of an Epoxy-Based Sealer to Root Dentin.

    PubMed

    Macedo, Helena Suleiman de; Messias, Danielle Cristine Furtado; Rached-Júnior, Fuad Jacob; Oliveira, Ligia Teixeira de; Silva-Sousa, Yara Teresinha Correa; Raucci-Neto, Walter

    2016-01-01

    Root canal irrigants are used to minimize the negative effects of smear layer on endodontic sealer retention. The aim of this study was to evaluate the efficacy of agitation of 17% ethylenediaminetetraacetic acid (EDTA) with ultrasonic, 1064-nm Nd:YAG and 980-nm diode laser on the retention of an epoxy-based sealer to the root canal walls. Forty single-rooted bovine teeth were instrumented with ProTaper rotary system and divided into four groups according to the final irrigation protocol (n = 10): (1) 17% EDTA (control); (2) 17% EDTA with 50-s ultrasonic agitation; (3) 17% EDTA with 50-s diode laser (2-W) agitation; and (4) 17% EDTA with 50-s Nd:YAG (1.5-W) laser agitation. After endodontic filling with gutta-percha F5 master cone and Sealer 26, the roots were sectioned at the cervical, middle, and apical root thirds to obtain 1.5-mm slices. Push-out tests were performed using a universal testing machine at a 1 mm/min crosshead speed. Data were analyzed using two-way ANOVA and Tukey's tests (α=0.05). Apical root thirds had significant higher retention values than cervical and middle thirds (p < 0.05). EDTA with 1064-nm Nd:YAG or 980-nm diode laser presented the highest retention values and was significantly different from EDTA with ultrasonic agitation and EDTA only (p < 0.05). Adhesive failures were predominant to EDTA only group. Mixed failures were predominant to all agitation groups. 1064-nm Nd:YAG and 980-nm diode laser EDTA agitation enhanced the retention of the epoxy-based sealer to the root canal walls compared with that due to EDTA only or EDTA with ultrasonic agitation.

  14. The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Li, Can; Xu, Shanhui; Feng, Zhouming; Xiao, Yu; Mo, Shupei; Yang, Changsheng; Zhang, Weinan; Chen, Dongdan; Yang, Zhongmin

    2014-02-01

    A thorough investigation of the effect of amplified spontaneous emission (ASE) on the noise characteristics of a heavily Yb-doped phosphate fiber single-frequency laser at 1083 nm was made. Both the intensity noise and the frequency noise were measured and analyzed by introducing a band pass filter (BPF) into the fiber laser. For the intensity noise, it was found that the ASE noise is present at frequencies beyond the resonant relaxation oscillation (RRO) and until 6 MHz at low pump intensity, while it is diminished in the high power regime. Under a pump power of 42 mW, a maximum reduction of over 3 dB of the relative intensity noise (RIN) was observed with the help of the BPF. As for the frequency noise, a transition of the dominating noise sources from ASE noise in the low pump intensity condition to pump noise in the high pump intensity condition was observed. In the low power condition, more than 7 dB of the ASE noise was found to add to the frequency noise spectrum. It is believed that the obtained results will be helpful in understanding and optimizing the noise characteristics of this type of fiber laser.

  15. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    SciTech Connect

    Egorov, A. Yu. Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Nevedomskiy, V. N.; Bugrov, V. E.

    2015-11-15

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  16. Progress in LA-ICP-MS Microanalysis Using a 200 nm-femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Stoll, B.; Weis, U.; Jacob, D. E.; Mertz-Kraus, R.; Andreae, M. O.

    2013-12-01

    We have investigated the performance of LA-ICP-MS for the microanalysis of a variety of samples of different matrices using the 200 nm Ti-sapphire based fs-laser ablation system NWR Femto200 combined with the sector-field ICP-MS Thermo Element2. For comparison, we conducted similar experiments with three ns lasers: 193 nm Nd:YAG, 213 nm Nd:YAG, 193 nm ArF excimer. Measurements were performed with different spot sizes (10 - 65 μm), pulse repetition rates (5 - 250 Hz) and energy densities (0.5 - 0.7 Jcm-2) in spot and line scan analysis modes. We applied those settings to well-characterized and homogeneous synthetic silicate, geological, carbonate and phosphate microanalytical reference materials from NIST, USGS, MPI-DING and others. Our investigations show that in the case of UV-fs laser ablation line scan analysis is much more appropriate than spot analysis. In contrast to the ns lasers, fs laser spot analysis is characterized by a strong decrease of ion intensities, presumably caused by the generation of color centers by fs laser pulses [1]. On the other hand, line scan analyses yield uniform and relative high ion intensities so that detection limits for the various elements are similar to ns laser ablation. In LA-ICP-MS, the major limitations regarding measurement accuracy are matrix effects. The experiments demonstrate that in each case the fs data are more reproducible and less matrix-dependent with respect to fractionation factors [2] and mass-load induced matrix effects [3] than the results obtained using the ns lasers. The fractionation factors of refractory, volatile, lithophile and chalcophile elements are unity for the line scan mode and agree within an uncertainty of 1 %, whereas significantly lower, but matrix-independent, values for the volatile elements Pb (0.93 × 0.03) and Zn (0.88 × 0.04) were observed using the spot analysis mode. This implies that calibration can be performed reliably for quite different matrices using certified silicate

  17. The Effect of Q-Switched Nd:YAG 1064 nm/532 nm Laser in the Treatment of Onychomycosis In Vivo.

    PubMed

    Kalokasidis, Kostas; Onder, Meltem; Trakatelli, Myrto-Georgia; Richert, Bertrand; Fritz, Klaus

    2013-01-01

    In this prospective clinical study, the Q-Switched Nd:YAG 1064 nm/532 nm laser (Light Age, Inc., Somerset, NJ, USA) was used on 131 onychomycosis subjects (94 females, 37 males; ages 18 to 68 years). Mycotic cultures were taken and fungus types were detected. The laser protocol included two sessions with a one-month interval. Treatment duration was approximately 15 minutes per session and patients were observed over a 3-month time period. Laser fluencies of 14 J/cm(2) were applied at 9 billionths of a second pulse duration and at 5 Hz frequency. Follow-up was performed at 3 months with mycological cultures. Before and after digital photographs were taken. Adverse effects were recorded and all participants completed "self-evaluation questionnaires" rating their level of satisfaction. All subjects were well satisfied with the treatments, there were no noticeable side effects, and no significant differences were found treating men versus women. At the 3-month follow-up 95.42% of the patients were laboratory mycologically cured of fungal infection. This clinical study demonstrates that fungal nail infections can be effectively and safely treated with Q-Switched Nd:YAG 1064 nm/532 nm laser. It can also be combined with systemic oral antifungals providing more limited treatment time.

  18. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-11-01

    This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  19. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.

    PubMed

    Egermann, Jan; Seeger, Thomas; Leipertz, Alfred

    2004-10-10

    We describe the use of linear Raman scattering for the investigation of fuel-rich sooting flames. In comparison, the frequency-tripled and -quadrupled fundamental wavelengths of a Nd:YAG laser have been used as an excitation source for study of the applicability of these laser wavelengths for analysis of sooting flames. The results obtained show that, for the investigation of strongly sooting flames, 266-nm excitation is better than 355-nm excitation. Although the entire fluorescence intensity of polycyclic aromatic hydrocarbons (PAHs) decreases with rising excitation wavelength, there is increased interference with the Raman signals by displacement of the spectral region of the Raman signals toward the fluorescence maximum of the laser-induced fluorescence emissions. Besides the broadband signals of PAHs, narrowband emissions of laser-produced C2 occur in the spectra of sooting flames and affect the Raman signals. These C2 emission bands are completely depolarized and can be separated by polarization-resolved detection. A comparison of the laser-induced fluorescence emissions of an ethylene flame with those of a methane flame shows the same spectral features, but the intensity of the emissions is larger by a factor of 5 for the ethylene fuel. Using 266-nm radiation for Raman signal excitation makes possible measurements in the ethylene flame also.

  20. Dental ablation with 1064 nm, 500 ps, Diode pumped solid state laser: A preliminary study

    PubMed Central

    Fornaini, Carlo; Cucinotta, Annamaria; Merigo, Elisabetta; Vescovi, Paolo; Selleri, Stefano

    2013-01-01

    Background: The Er:YAG laser in conservative dentistry is. good alternative to conventional instruments. Though several studies show the advantages of these devices, some drawbacks and unsolved problems are still present, such as the cost of the device and the large dimensions of the equipment. Purpose: In the present study, the effectiveness of dental surface ablation with a picosecond infrared diode-pumped solid-state (DPSS) laser was investigated. In vitro tests on extracted human teeth were carried out, with assessment of the ablation quality in the tooth and thermal increase inside the pulp chamber. Materials and Methods: A solid-state picosecond laser was used for the experiments. The samples were exposed to laser energy at 1064 nm at a frequency of 30 kHz and a 500 ps pulse width. The target teeth were cooled during exposures. The internal temperature of the pulp chamber was monitored with. thermocouple. Results: Optical microscope images showed effective ablation with the absence of carbonisation and micro-cracks. The cooling maintained the temperature rise in the pulp chamber below the permitted 5.5°C. Discussion: The main problem with the use of lasers in dentistry when teeth are the target is the heat generated in the pulp chamber of the target teeth. With lasers operating in the femtosecond mode, a better management of the internal temperature is possible, but is offset by the high cost of such devices. With the ps domain system used in the present study together with cooling using chilled water, effective and clean ablation could be achieved with a controlled thermal effect in the pulp chamber. Conclusions: In this preliminary study with a picosecond domain DPSS laser using water cooling for the target, effective hard tissue ablation was achieved keeping the thermal increase in the pulp within the permitted range. The results suggest that this system could be used in clinical practice with appropriate modifications. PMID:24204093

  1. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  2. Application of the laser diode with central wavelength 975 nm for the therapy of neurofibroma and hemangiomas

    NASA Astrophysics Data System (ADS)

    Szymańczyk, Jacek; Sawczak, Mirosław; Cenian, Witold; Karpienko, Katarzyna; Jędrzejewska-Szczerska, Małgorzata; Cenian, Adam

    2017-01-01

    This paper presents a newly developed dermatological laser (with a central wavelength 975 nm) for application in therapies requiring deep penetration of tissue, e.g., cutaneous (dermal) neurofibroma (von Recklinghausen disease) and hemangiomas. This laser can work either in pulses or continues wave mode. Laser radiation is transmitted toward the application region by optical fiber with a diameter of 0.6 mm. The compact design of the laser facilitates its transport and increases the comfort of use.

  3. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm.

    PubMed

    Tulea, Cristian-Alexander; Caron, Jan; Gehlich, Nils; Lenenbach, Achim; Noll, Reinhard; Loosen, Peter

    2015-10-01

    Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water–air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2  mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.

  4. Apical microleakage and SEM analysis of dentin surface after 980 nm diode laser irradiation.

    PubMed

    Faria, Maria Isabel Anastácio; Souza-Gabriel, Aline Evangelista; Alfredo, Edson; Messias, Danielle Cristine Furtado; Silva-Sousa, Yara Teresinha Correa

    2011-01-01

    This study evaluated the effect of 980-nm diode laser on apical microleakage and intraradicular dentin morphology. Roots of 110 mandibular incisors were used in the study: 92 for microleakage test and 18 for scanning electron microscopy (SEM). Roots were randomly assigned to 3 groups according to the irrigating solution (water, NaOCl and NaOCl/EDTA) and were divided into 3 subgroups according to the laser irradiation protocol (without irradiation, irradiated at 1.5 W and irradiated at 3.0 W). Two specimens of each subgroup were prepared for SEM. The remaining roots were filled with AH Plus and gutta-percha. Apical leakage was assessed by ink penetration and data were analyzed statistically by ANOVA and Tukey-Krammer test (α=0.05). SEM analysis showed intensification of changes with increase of laser power as well as variations according to the irrigating solution. Modified smear layer was observed in specimens treated with water and irradiated with laser. Roots irrigated with NaOCl/EDTA had lower levels of infiltration (0.17 ± 0.18 mm) differing significantly (p<0.05) from those of roots irrigated with water (0.34 ± 0.30 mm), but similar (p>0.05) to those irrigated with NaOCl (0.28 ± 0.29 mm). Non-irradiated roots had lower levels of infiltration (0.10 ± 0.14 mm), differing (p<0.05) from those irradiated at 1.5 W (0.32 ± 0.22 mm) and 3.0 W (0.37 ± 0.32 mm). The 980 nm diode laser modified dentin morphology and increased apical microleakage.

  5. Synchronization of 1064 and 1319 nm Pulses Emitted from Actively Mode-Locked Nd:YAG Lasers and Its Application to 589 nm Sum-Frequency Generation

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2005-11-01

    Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.

  6. High repetition rate tabletop soft x-ray lasers at wavelengths down to 11.9 nm in Nickel-like ions

    NASA Astrophysics Data System (ADS)

    Luther, Bradley M.; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2005-10-01

    There is significant interest in the development of high average power table-top soft x-ray lasers (SXL) for applications. The repetition rate of gain-saturated collisional SXL operating at wavelengths of less than 30nm has been limited to one shot every several minutes by the large laser pump energy required to heat the plasma. Recent experiments have demonstrated a large pump energy reduction by directing the heating pulse into the plasma at grazing incidence [1-3]. This pumping geometry takes advantage of the refraction of the pump beam in the plasma to deposit a large fraction of its energy into the gain region. Here we report 5Hz repetition rate operation of gain-saturated table-top lasers with 1-2μW average power in transitions of Ni-like ions (Mo, Ru, Pd, Ag and Cd) at wavelengths between 18.9nm and 13.2nm, using a 1J, 8 ps heating pulse from a Ti:Sa laser. Strong amplification was also observed at 11.9 nm in Ni-like Sn. 1. R. Keenan et al, Phys. Rev. Lett., 94, 103901, (2005). 2. B. M. Luther et al, Opt. Lett., 30, 165, (2005). 3. D. Alessi et al, Opt. Express, 13, 2093, (2005).

  7. Spatial dynamic thermal iteration model for 888 nm end-pumped Nd:YVO4 solid-state laser oscillators and amplifiers

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gong, Mali; Ji, Encai; Fu, Xing; Sun, Licheng

    2017-01-01

    A new theoretical model, spatial dynamic thermal iteration (SDTI) model, for diode-end-pumped solid-state laser systems is developed, which is both applicable to laser oscillators and amplifiers. The influences of pump beam quality, ground state absorption and depletion (GSA/GSD) and energy transfer upconversion (ETU) are included in our model. According to the basic principles of nonradiative transitions and population dynamics, we can obtain the spatial distribution of heat generation and temperature within the laser crystal through numerically solving heat conduction equation by finite element method (FEM). Furthermore, a spatial mesh iteration algorithm is designed to analyze the temperature dependence of absorption cross section, emission cross section and thermal conductivity. Finally, the simulated results of our SDTI model was proved to precisely coincide with the reported experimental results in classical 888 nm end-pumped Nd:YVO4 laser oscillator and amplifier systems.

  8. Laser ablation of ceramic Al{sub 2}O{sub 3} at 193 nm and 248 nm: The importance of single-photon ionization processes

    SciTech Connect

    Pelaez, R. J.; Afonso, C. N.; Bator, M.; Lippert, T.

    2013-06-14

    The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al{sub 2}O{sub 3} in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to Almost-Equal-To 2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al{sup +} ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.

  9. Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Güney, Melike; Yuksel, Sahru; Gülsoy, Murat

    2015-02-01

    Infections with pathogens could cause serious health problems, such as septicemia and subsequent death. Some of these deaths are caused by nosocomial, chronic, or burn-related wound infections. Photodynamic therapy (PDT) can be useful for the treatment of these infections. Our aim was to investigate the antibacterial effect of indocyanine green (ICG) and 808-nm laser on a rat abrasion wound model infected with the multidrug resistant Staphylococcus aureus strain. Abrasion wounds were infected with a multidrug resistant clinical isolate of S. aureus. ICG concentrations of 500, 1000, and 2000 μg/ml were applied with a 450 J/cm2 energy dose. Temperature change was monitored by a thermocouple system. The remaining bacterial burden was determined by the serial dilution method after each application. Wounds were observed for 11 days posttreatment. The recovery process was assessed macroscopically. Tissue samples were also examined histologically by hematoxylin-eosin staining. Around a 90% reduction in bacterial burden was observed after PDT applications. In positive control groups (ICG-only and laser-only groups), there was no significant reduction. The applied energy dose did not cause any thermal damage to the target tissue or host environment. Results showed that ICG together with a 808-nm laser might be a promising antibacterial method to eliminate infections in animals and accelerate the wound-healing process.

  10. Excision of oral pyogenic granuloma in a diabetic patient with 940nm diode laser

    PubMed Central

    Al-Mohaya, Maha A.; Al-Malik, Abdulaziz M.

    2016-01-01

    Pyogenic granuloma (PG) is a common, acquired, benign vascular reactive proliferation that typically develops as a small erythematous papule on the skin or oral mucosal surface. Oral PG is often caused by constant low-grade infection, minor trauma, poor oral hygiene, and due to hormonal disturbances. It shows a striking predilection for the gingiva. Lesions can be excised surgically with removal of the underlying causes. However, this modality may be associated with unnecessary complications. Recently, different laser wavelengths have been used for removal of oral PG. Herein, we present a case of gingival PG in a 51-year-old uncontrolled diabetic woman. The lesion was excised successfully with a 940nm diode laser as a conservative and non-stressful procedure that resulted in a bloodless surgical and post-surgical course with rapid healing, minimal pain, swelling, and scarring. The 940nm Diode laser offers a new efficient noninvasive tool for excising oral soft tissue lesions, especially in medically compromised patients. PMID:27874157

  11. Ablation of bone and polymethylmethacrylate by an XeCl (308 nm) excimer laser

    SciTech Connect

    Yow, L.; Nelson, J.S.; Berns, M.W.

    1989-01-01

    One of the main problems in orthopaedics is the surgical removal of hard substances, such as bone and polymethylmethacrylate (PMMA). Such materials are often very difficult to remove without mechanical trauma to the remaining tissue. This study investigated the feasibility of the ultraviolet 308 nm excimer laser in the ablation of these materials. The beam was delivered through a 1 mm-diameter fiber optic at 40 Hz with energy densities at the target surface of 20-80 J/cm2 per pulse. The goal of the study was to establish the ideal dosimetry for removing bone and PMMA with minimum trauma to the adjacent tissue. Histology revealed that the 308 nm laser effectively removed bone leaving a thermal damage zone of only 2-3 microns in the remaining tissue. Increasing the energy per pulse gave correspondingly larger and deeper cuts with increasing zones of thermal damage. The excimer laser was also effective in the ablation of PMMA, creating craters in the substrate with a thermal damage zone of 10-40 microns. The debris from both substrates was evaluated.

  12. Treatment of trichostasis spinulosa with 0.5-millisecond pulsed 755-nm alexandrite laser.

    PubMed

    Badawi, Ashraf; Kashmar, Mouhamad

    2011-11-01

    Trichostasis spinulosa (TS) is a follicular disorder in which multiple hairs in a keratinous sheath project above the skin surface. Current treatments provide temporary relief and side effects are common. We report the successful treatment of TS in 20 patients using a short-pulsed 755-nm alexandrite laser. The 20 patients (skin types II-V) presented with TS lesions on the tip of their nose. All patients received a single treatment (one to three passes) with the laser with cold air cooling but without anaesthesia or analgesia. Treatment parameters were as follows: pulse duration 0.5 ms, fluence 15-17 J/cm(2), and spot size 5 mm. The entire procedure required less than 5 min to perform. The patients were followed up for 3 months for any adverse effects or recurrence. In all patients the lesions disappeared immediately after treatment with minimal or no pain. Erythema was minimal and lasted 5-20 min in all patients. Patients were very satisfied. The treated areas were still clear 4 to 5 weeks later, and a second treatment was not considered necessary. There were adverse effects other than the erythema and there was no recurrence within the follow-up period of 3 months. A single treatment with a short-pulsed 755-nm alexandrite laser appears to be a rapid, minimally painful, and effective treatment for TS in patients of skin types II to V.

  13. Investigation of Sub-100 nm Gold Nanoparticles for Laser-Induced Thermotherapy of Cancer

    PubMed Central

    Leung, Jennifer P.; Wu, Sherry; Chou, Keng C.; Signorell, Ruth

    2013-01-01

    Specialized gold nanostructures are of interest for the development of alternative treatment methods in medicine. Photothermal therapy combined with gene therapy that supports hyperthermia is proposed as a novel multimodal treatment method for prostate cancer. In this work, photothermal therapy using small (<100 nm) gold nanoparticles and near-infrared (NIR) laser irradiation combined with gene therapy targeting heat shock protein (HSP) 27 was investigated. A series of nanoparticles: nanoshells, nanorods, core-corona nanoparticles and hollow nanoshells, were synthesized and examined to compare their properties and suitability as photothermal agents. In vitro cellular uptake studies of the nanoparticles into prostate cancer cell lines were performed using light scattering microscopy to provide three-dimensional (3D) imaging. Small gold nanoshells (40 nm) displayed the greatest cellular uptake of the nanoparticles studied and were used in photothermal studies. Photothermal treatment of the cancer cell lines with laser irradiation at 800 nm at 4 W on a spot size of 4 mm (FWHM) for 6 or 10 min resulted in an increase in temperature of ~12 °C and decrease in cell viability of up to 70%. However, in vitro studies combining photothermal therapy with gene therapy targeting HSP27 did not result in additional sensitization of the prostate cancer cells to hyperthermia.

  14. Detection of methyl mercaptan with a 3393-nm distributed feedback interband cascade laser

    NASA Astrophysics Data System (ADS)

    Du, Zhenhui; Zhen, Weimeng; Zhang, Zheyuan; Li, Jinyi; Gao, Nan

    2016-04-01

    Attention has been focused recently on the harmful effects and malodor of methyl mercaptan (CH3SH), so it is desired to detect CH3SH in situ, sensitively, and selectively. We detected methyl mercaptan via tunable laser absorption spectroscopy (TLAS) with a room-temperature distributed feedback interband cascade laser emitting around 3393 nm and a hollow waveguide gas cell with 5 m length. The fundamental characteristic fingerprint absorptions of CH3SH from 3260 to 3400 nm were examined, and the spectral line 3393.584 nm (corresponding to the ν 2 C-H symmetric stretch) was determined to be the optimum for CH3SH detection. The response characteristics of the TLAS system were established by implementing a set of CH3SH concentration gradient experiments with wavelength-scanned direct absorption spectroscopy. The results show that CH3SH TLAS spectra are in excellent agreement with spectra from the Pacific Northwest National Laboratory database; the TLAS response linearity is 0.987, and the detection limit is as low as 25 ppbv (parts per billion by volume, 10-9) with integrated time 1.84 s, corresponding to an absorbance of 1.34 × 10-4 (near the theoretical detection limit). Overall, the TLAS system is a robust method for CH3SH monitoring of industrial waste gas emissions.

  15. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation.

    PubMed

    Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun

    2015-06-29

    Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.

  16. Estimating laser transit anemometry noise performance capabilities

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Hunter, William W., Jr.

    1989-01-01

    A Monte Carlo based LTA (laser transit anemometry) simulation system has been used to perform a detailed evaluation of a set of processing algorithms proposed by Mayo and Smart (1984) for the extraction of two-dimensional flow parameters from LTA data sets collected in a plane normal to the optical axis of the system. The present evaluation includes data ensembles containing 0.0, 5.0, 10.0, and 20.0 percent background noise levels in the constituent correlograms. The results of these evaluations indicate that for turbulence levels of up to 10.0 percent the processing system is able to extract the necessary flow parameters accurately from the LTA data sets. Mean velocity magnitude and flow angle are measurable to within 2.0 percent for turbulence intensity levels of up to 14.0 percent. Standard deviations are measureable to within 10.0 percent over a turbulence range of 3.0-10.0 percent at the same noise levels. These results indicate that the algorithms described have applications in fluid flow surveys.

  17. Comparison of 1470 nm Laser and Radial 2ring Fiber with 980 nm Laser and Bare-Tip Fiber in Endovenous Laser Ablation of Saphenous Varicose Veins: A Multicenter, Prospective, Randomized, Non-Blind Study

    PubMed Central

    Ogawa, Tomohiro; Sugawara, Hiromitsu; Shokoku, Shintaro; Sato, Shoji

    2015-01-01

    Objective: The aim of this study is to compare the clinical efficacy and safety of two laser wavelengths and fiber types in endovenous laser ablation (EVLA) of saphenous varicose veins of the lower limb. Design: Multi-center prospective randomized non-blind clinical trial. Patients and Methods: From January 2007 to December 2011, 113 patients (113 limbs) with primary varicose veins were randomized into two groups. They were treated with radial 2ring fiber and 1470 nm laser in Group I (57 limbs) and bare-tip fiber and 980 nm laser in Group E (56 limbs) in order to ablate the saphenous vein. Vein occlusion rates at 12 weeks and pain in treated region were recorded as primary endpoint. Visual analogue scale (VAS) for assessment of pain, rates of bruising, complications and equipment failure were recorded as secondary endpoint of safety. Results: Occlusion rates at 12 weeks were 100% in both groups. Rates of pain (0% vs. 25.0%) and bruising (7.0% vs. 57.1%) were significantly lower in Group I (p <0.0001). VAS of pain was significantly lower on postoperative day 1, day 5 and 2nd week in Group I. Conclusion: Treatment of saphenous varicose veins by EVLA using a 1470 nm laser and a radial 2ring fiber resulted in comparable occlusion rates at 12 weeks and less postoperative pain and bruising than EVLA with a 980 nm laser and a bare-tip fiber. (This article is a translation of Jpn J Vasc Surg 2014; 23: 964–971.) PMID:26730252

  18. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  19. VUV 157nm laser ablation of spherical particles and modelling of whispering gallery mode optical antenna structures

    SciTech Connect

    Walton, C. D.; Cockcroft, S.; Metheringham, W. J.

    2012-07-30

    We report on VUV 157nm F{sub 2} laser irradiation of CR-39 polymer substrates that have been intentionally seeded with spherical glass particles. We discuss the importance of adhesive forces for realizing spherical cavity structures by laser ablation. Strong optical absorption at 157nm in CR-39 enables precise control of pedestal height by controlling the laser fluence and the number of laser pulses. Resonant modes for free-standing spherical cavities have been calculated and we discuss briefly the potential applications for use as optical sources on-board lab-on-chip devices.

  20. Broadband-tunable CW laser operation of Pr(3+):LiYF(4) around 900  nm.

    PubMed

    Qu, Biao; Moncorgé, Richard; Cai, Zhiping; Doualan, Jean-Louis; Xu, Bin; Xu, Huiying; Braud, Alain; Camy, Patrice

    2015-07-01

    We present here the first broadband-tunable CW laser operation of a Pr(3+)-doped LiYF(4) crystal in the 900-nm spectral range after pumping with an optically pumped semiconductor laser at 479 nm. It is confirmed that the entire emission band can be assigned to the same set of thermalized emitting levels (I(6)1,P3(0,1)). It is also demonstrated that laser performance could be improved up to laser slope efficiencies of about 33% with threshold absorbed pump powers not exceeding 100 mW.

  1. All-solid-state blue laser pumped Pr:KY3F10-BBO ultraviolet laser at 305 nm All-solid-state blue laser

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Li, S. T.; Zhang, X. H.

    2012-02-01

    An all-solid-state blue laser pumped Pr:KY3F10 (Pr:KYF) laser at 610 nm has been demonstrated. With an incident pump power of 2.6 W, the maximum output power was 213 mW. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum ultraviolet power of 11 mW by using a β-BaB2O4 (BBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous-wave ultraviolet generation by intracavity frequency doubling Pr:KYF laser.

  2. Titanium, a major constituent of blue ink, causes resistance to Nd-YAG (1064 nm) laser: results of animal experiments.

    PubMed

    Kim, Jea-Wook; Lee, Jae-Wook; Won, Young Ho; Kim, Jin Hyeok; Lee, Seung-Chul

    2006-01-01

    A blue tattoo is more resistant to laser therapy than black or brown tattoos. This study aimed to confirm titanium as a key response-disturbing constituent in a blue tattoo ink after Nd-YAG (1064 nm) laser treatment by animal experiments. Rabbits' backs were tattooed with four ink colours, and the Nd-YAG (1064 nm) laser was used to remove the tattoos. The response to the laser treatment in the rabbits was evaluated and electron microscopic studies were also performed. Excellent to fair responses were observed for the black, brown and dark brown inks, but the blue ink responded poorly to the laser. Histological examination indicated that the blue pigments were unchanged even after the laser treatment. Quantitative energy dispersive spectrometry revealed that blue ink contained high amounts of titanium. Our animal experiments confirm that a blue tattoo ink containing titanium, is a key element in poor response to the Nd-YAG laser.

  3. Clinical update: transendoscopic laser surgery for treatment of epiglottic entrapment: Nd:YAG and 808-nm diode laser applied individually and in combination

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Tudor, R. A.

    1999-06-01

    Hospital records reviewed from 1986-1998 determined that 18 horses were presented for correction of epiglottic entrapment by the aryepiglottic fold. All horses had a history of an abnormal respiratory noise and/or exercise intolerance. In conjunction with epiglottic entrapment, 10 horses had dorsal displacement of the soft palate. Initial confirmation of the epiglottic entrapment was made by endoscopic examination. In addition, 3 horses had radiographs taken of the larynx and pharyngeal region to determine the length of the epiglottis.Laser surgical treatment was performed on the horses in a standing position under sedation. The treatment consisted of axially dividing the aryepiglottic fold from the base of the epiglottis to the tip or beyond by means of a laser fiber introduced through the biopsy channel of an endoscope. The Nd:YAG laser was applied transendoscopically to 11 horses using free fiber technique. Three horses received transendoscopic laser correction using the 808-nm diode laser with the fiber in contact configuration. A combination of both 808-nm diode laser and Nd:YAG lasers were used to facilitate correction in the last 4 horses. Partial re-entrapment occurred in 2 out of the 3 cases in which the 808-nm diode laser was used as a single modality for correction. This did not occur in the horses that received either the Nd:YAG laser treatment or Nd:YAG laser treatment in combination with the 808-nm diode laser. Horses that received either 808-nm diode laser irradiation alone or 808-nm diode laser irradiation in combination with Nd:YAG laser appeared to have less swelling than those that received only Nd:YAG irradiation.

  4. In vitro assessment of fiber sweeping speed during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) is considered a minimally invasive procedure to treat benign prostatic hyperplasia (BPH). During the PVP, the prostate gland is irradiated by the 532-nm laser and the fiber is swept and dragged along the urethra. In this study the speed of sweeping fiber during the PVP is being investigated. In vitro porcine kidney model was used (N=100) throughout the experiment. A Q-switched 532-nm laser, equipped with sidefiring 750-Um fiber, was employed and set to power levels of 120 and 180 W. The speed of fiber sweeping was the only variable in this study and varied at 0 (i.e. no sweeping), 0.5, 1.0, 1.5, and 2.0 sweep/s. Ablation rate, depth, and coagulation thickness were quantified. Based on the current settings, ablation rate decreased as sweeping speed increased and was maximized between 0 to 1.0 sweep/s for 120-W power level and between 0 to 0.5 sweep/s for 180-W power level. Ablation rate at 180 W was higher than that at 120 W, regardless of sweeping speed. Ablation depth at both 120 and 180 W was maximized at 0 sweep/s and decreased 35% at 0.5 sweep/s. The overall coagulation thickness was less than 1.5 mm and comparable from 0 to 1.5 sweep/s (0.8~0.9 mm) and increased at 2.0 sweep/s (~1.1 mm). This study demonstrated that tissue ablation performance was contingent upon sweeping speed and maximized at slow sweeping speed due to longer laser-tissue interaction time and larger area coverage by the 532-nm light.

  5. 980 nm high brightness external cavity broad area diode laser bar.

    PubMed

    Vijayakumar, Deepak; Jensen, Ole B; Thestrup, Birgitte

    2009-03-30

    We demonstrate off-axis spectral beam combining applied to a 980 nm high power broad area diode laser bar. The experiments yielded 9 W of optical power at 30 A of operating current and the measured M2 values of the combined beam from 12 emitters were 1.9 and 6.4 for the fast and the slow axis, respectively. The slow axis beam quality was 5-6 times better than the value obtained from a single emitter in free running mode. A high brightness of 79 MW/cm2-str was achieved using this configuration. To our knowledge, this is the highest brightness level ever achieved from a broad area diode laser bar.

  6. Refractive index-modified structures in glass written by 266nm fs laser pulses.

    PubMed

    Saliminia, Ali; Bérubé, Jean-Philippe; Vallée, Réal

    2012-12-03

    We demonstrate the inscription of embedded waveguides, anti-waveguides and Bragg gratings by use of intense femtosecond (fs) UV laser pulses at 266nm in pure fused silica, and for the first time, in bulk fused quartz and ZBLAN glasses. The magnitude of induced index changes, depends, besides pulse energy and translation speed, largely on writing depth and varies from ~10(-4) for smooth modifications to ~10(-3) for damaged structures. The obtained results are promising as they present the feasibility of fabrication of short (< 0.2μm) period first-order fiber Bragg gratings (FBGs) for applications such as in realization of all-fiber lasers operating at short wavelengths.

  7. Matrices of 960-nm vertical-cavity surface-emitting lasers

    SciTech Connect

    Maleev, N. A.; Kuzmenkov, A. G.; Shulenkov, A. S.; Blokhin, S. A.; Kulagina, M. M.; Zadiranov, Yu. M.; Tikhomirov, V. G.; Gladyshev, A. G.; Nadtochiy, A. M.; Nikitina, E. V.; Lott, J. A.; Svede-Shvets, V. N.; Ledentsov, N. N.; Ustinov, V. M.

    2011-06-15

    Matrices of vertical-cavity surface-emitting lasers with individual addressing of elements and radiation output through a gallium arsenide substrate are implemented. Individual laser emitters with a current aperture diameter of 6-7 {mu}m exhibit continuous-wave room-temperature lasing at a wavelength of 958-962 nm with threshold currents of 1.1-1.3 mA, differential efficiency of 0.5-0.8 mW/mA, and a maximum output power of 7.5-9 mW. The parameter variation of individual emitters within a matrix chip containing 5 Multiplication-Sign 7 elements does not exceed {+-}20%.

  8. Optical limiting property of a liquid malononitrile derivative on 800 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Du, Juan; Wang, Liuheng; Xie, Na; Sun, Li; Wang, Xiaodong; Zhao, Yuxia; Wu, Feipeng

    2016-08-01

    A new liquid malononitrile derivative (LBDBP) has been synthesized by incorporating four tetraethylene glycol groups into the prototype scaffold of 2-[Bis-(4‧-diethylamino-biphenyl-4-yl)-methylene]-malononitrile (BDBP). The linear photophysical properties, optical/thermal stabilities and optical limiting behaviors of LBDBP and BDBP have been investigated. The results show that LBDBP has equivalent optical/thermal stability but much better solubility compared with BDBP. Its saturation concentration in DMF is increased to 0.075 M, while the corresponding datum for BDBP is only 0.01 M. The improved solubility of LBDBP insures a very significant optical limiting behavior. The saturated DMF solution of LBDBP can significantly reduce the intensity fluctuation of laser pulses in an 800 nm laser setup.

  9. Investigation of single-mode fiber output damage by 405nm CW laser light

    NASA Astrophysics Data System (ADS)

    Gonschior, C. P.; Landrock-Bill, E.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2013-11-01

    In the past, the degradation of 405 nm fiber-coupled diode laser systems was investigated in detail with focus on the input end. The coupling and transmission loss of the laser light was associated to the growth of a periodic structure on the input surface. To reduce this damage, a short launch-fiber with a good surface quality was used on the input end surface. Thereby the power transmission was stabilized for at least one month. However, damage structures appeared on the output surface of the single-mode fiber. To investigate this effect, damaged samples were taken after different periods of time and examined with a scanning electron microscope (SEM). Bulges with a submicron periodic structure were found in the core region, too. Additionally, measurements of spectral loss were performed, showing the formation of color centers in the deep UV along the length of the fiber.

  10. Q-switched 1064nm laser source for photomechanical ablation in obsidianus lapis

    NASA Astrophysics Data System (ADS)

    Aguilar-Morales, A. I.; Álvarez-Chávez, J. A.; Morales-Ramírez, A. J.; Panzner, Michael; Ortega-Delgado, M. A.

    2015-09-01

    The process of ablation in obsidianus lapis is mainly governed by pulse energy from the laser source and scanning speed. The rate of material ablation is influenced by chemical and physical properties. In this work, laser energy at 1064 nm, has been used for ablation behavior in Q-switch regime. A >40 W, average power Nd:YAG source with pulse energies ranging from 3mJ to nearly 7 mJ, achieved surface damages up to 160 μm of depth. Photo-mechanical ablation in terms of scan speed showed a maximum depth of nearly 500 μm at 130 mm/s. The maximum pulse energy of 12 mJ resulted in ablation of 170 μm depth. Highly efficient ablation in obsidianus lapis for artistic work is an interesting field of application.

  11. Deciduous teeth occlusal caries detection with 655-nm diode laser confirmed by surface scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Duarte, Danilo; Fonseca, Yara P. C.; Zanin, Fatima A. A.; Brugnera, Aldo, Jr.

    2000-03-01

    The morphological complexity of the occlusal surface of deciduous molar teeth is considered as a factor to increase vulnerability to caries lesion. Occlusal surface of these teeth shows sulcus, pits and fissures which allow retention of both micro-organisms and food debris which make them more susceptible to caries. In the last decades there was a significant reduction on caries of smooth surface but not on the occlusal surface where dentinal caries develops under fissures which are apparently caries-free under eye observation. This is known as a hidden caries. The occlusal surface of sound extracted deciduous molar teeth were examined using a 655 nm diode laser (DIAGNOdent - KaVo) in order to detect hidden caries. When there was indication of a hidden caries, the area was examined using SEM and confirm or not the diagnosis. The authors concludes that the diagnosis of caries using 655 diode laser is reliable and precise method.

  12. High Repetition Rate Grazing Incidence Pumped X-ray Laser operating at 18.9 nm

    SciTech Connect

    Keenan, R; Dunn, J; Patel, P K; Price, D F; Smith, R F; Shlyaptsev, V N

    2004-05-11

    We have demonstrated a 10 Hz Ni-like Mo X-ray laser operating at 18.9 nm with 150 mJ total pump energy by employing a novel pumping scheme. The grazing incidence scheme is described, where a picosecond pulse is incident at a grazing angle to a Mo plasma column produced by a slab target irradiated by a 200 ps laser pulse. This scheme uses refraction of the short pulse at a pre-determined electron density to increase absorption to pump a specific gain region. The high efficiency inherent to this scheme allows a reduction in the pump energy where 70 mJ long pulse energy and 80 mJ short pulse energy are sufficient to produce lasing at a 10 Hz repetition rate. Under these conditions and by optimizing the delay between the pulses, we achieve strong amplification and saturation for 4 mm long targets.

  13. Esthetic crown lengthening with depigmentation using an 810 nm GaAlAs diode laser

    PubMed Central

    Agrawal, Amit Arvind

    2014-01-01

    Hyperpigmentation of gingiva becomes more pronounced if it is associated with “gummy smile.” Correction of gummy smile and depigmentation together are key to complete patient satisfaction. An 810 nm (1.5 W, pulsed) GaAlAs diode laser was used to achieve the desired results in a 22-year-old female patient. The 6-month follow-up results showed excellent color and contour of the gingiva. Mere depigmentation without correcting gummy smile may look cosmetically good but esthetically unacceptable. Diode laser was used as it is known to be an excellent tool as compared with other conventional surgical procedures in terms of patient and operator comfort. PMID:25565758

  14. Gain-switched 311-nm Ti:Sapphire laser might be a potential treatment modality for atopic dermatitis.

    PubMed

    Choi, Sun Young; Oh, Chang Taek; Kwon, Tae-Rin; Kwon, Hyun Jung; Choi, Eun Ja; Jang, Yu-Jin; Kim, Hye Sung; Chu, Hong; Mun, Seog Kyun; Kim, Myeung Nam; Kim, Beom Joon

    2016-09-01

    Phototherapy with 311-nm narrowband-UVB (NBUVB) is an effective adjuvant treatment modality for atopic dermatitis (AD). In this study, we evaluated the therapeutic effect of the newly developed gain-switched 311-nm Ti:Sapphire laser device using a NC/Nga mouse AD model. A total number of 50 mice were used in this study. Atopic dermatitis (AD) was induced in mice by exposure to Dermatophagoides farina. These, NC/Nga mice were then treated with conventional 311-nm NBUVB or the newly developed gain-switched 311-nm Ti:Sapphire laser. The clinical features, dermatitis severity scores, and scratching behavior were assessed. In addition, serologic analyses including inflammatory cytokines and histological analyses were performed. Gain-switched 311-nm Ti:Sapphire laser improved the AD-like skin lesions, severity, and symptoms of AD in the NC/Nga mouse model. This new laser also modulated the immune response found in the AD model, including hyper-IgE, upregulated Th2 cytokines, and the Th2-mediated allergic inflammatory reaction. Gain-switched 311-nm Ti:Sapphire laser shows therapeutic promise via an immune-modulation mechanism in an AD mouse model. These data suggest that gain-switched 311-nm Ti:Sapphire laser may be useful as a targeted phototherapy modality for AD.

  15. High-temperature operation of 640 nm wavelength high-power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Imanishi, Daisuke

    2017-03-01

    We realized the fabrication of a red semiconductor laser array with high optical power and reliability using an AlGaInP-based compound semiconductor. To obtain a high optical output, the semiconductor laser requires high-quality quantum wells. In this work, we improved quantum well layer abruptness by applying high-temperature growth condition to quantum wells. We obtained a very high optical power of 20.1 W with a wavelength of 644 nm under this growth condition using magnesium as a dopant for a p-type layer. As a results, we achieved a high characteristic temperature of 68 K and a high electrical-to-optical (E–O) conversion efficiency 37% at 15 W optical output. When the laser lifetime at a temperature of 35 °C and an optical output power of 6.6 W for operation is defined as the time when the output power decreases to 50%, which is usually used for defining the lifetime of ultra high-pressure (UHP) lamps in projection display, we can estimate the lifetime of this laser to be longer than 10000 h or more.

  16. Measurement of the fluorescence of restorative dental materials using a 655-nm diode laser

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima A. A.; Souza-Campos, Dilma H.; Zanin, Sissi; Brugnera, Aldo, Jr.; Pecora, Jesus D.; Pinheiro, Antonio L. B.; Harari, Sonia

    2001-04-01

    The aim of this study was to determine the level of fluorescence of seven restorative materials using 655 nm diode laser. The laser fluorescence system has ben used as an auxiliary method for the detection of carious lesions. This new diagnostic method increases information which are important for the choice of treatment by the Dentist. The characteristic of restorative materials and sealers interferes in the values obtained by the apparatus during the detection of secondary carious lesions. The optical properties of each biological tissue or material are related to the interaction with the laser beam. Aware of that, the fluorescence of healthy dentin and enamel is 0-15, the authors determined the fluorescence of seven restorative materials with 10 teeth in each group. The laser reading scale differed according to the materia, ranging from 1 to 22 with several materials, for example the sealer without inorganic filler and the glass ionomer, showing fluorescence values similar to carious enamel which interferes with the readings around the restorations resulting in a false positive. Knowledge of restoration material fluorescence can aid in the detection of secondary carious lesions around the restorations.

  17. Laser damage of HR, AR-coatings, monolayers and bare surfaces at 1064 nm

    NASA Technical Reports Server (NTRS)

    Garnov, S. V.; Klimentov, S. M.; Said, A. A.; Soileau, M. J.

    1993-01-01

    Laser induced damage thresholds and morphologies were investigated in a variety of uncoated and coated surfaces, including monolayers and multi-layers of different chemical compositions. Both antireflective (AR) and highly reflective (HR) were tested. Testing was done at 1064 nm with 25 picosecond and 8 nanosecond YAG/Nd laser single pulses. Spot diameter in the experiments varied from 0.09 to 0.22 mm. The laser damage measurement procedure consisted of 1-on-1 (single laser pulse in the selected site) and N-on-1 experiments including repeated irradiation by pulses of the same fluence and subsequently raised from pulse to pulse fluence until damage occurred. The highest picosecond damage thresholds of commercially available coatings averaged 12 - 14 J/sq cm, 50 percent less than thresholds obtained in bare fused silica. Some coatings and bare surfaces revealed a palpable preconditioning effect (an increase in threshold of 1.2 to 1.8 times). Picosecond and nanosecond data were compared to draw conclusions about pulse width dependence. An attempt was made to classify damage morphologies according to the type of coating, class of irradiating, and damage level.

  18. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  19. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging.

    PubMed

    Li, Hao; Chen, Sijing; You, Lixing; Meng, Wengdong; Wu, Zhibo; Zhang, Zhongping; Tang, Kai; Zhang, Lu; Zhang, Weijun; Yang, Xiaoyan; Liu, Xiaoyu; Wang, Zhen; Xie, Xiaoming

    2016-02-22

    Superconducting nanowire single-photon detectors (SNSPDs) at a wavelength of 532 nm were designed and fabricated aiming to satellite laser ranging (SLR) applications. The NbN SNSPDs were fabricated on one-dimensional photonic crystals with a sensitive-area diameter of 42 μm. The devices were coupled with multimode fiber (ϕ = 50 μm) and exhibited a maximum system detection efficiency of 75% at an extremely low dark count rate of <0.1 Hz. An SLR experiment using an SNSPD at a wavelength of 532 nm was successfully demonstrated. The results showed a depth ranging with a precision of ~8.0 mm for the target satellite LARES, which is ~3,000 km away from the ground ranging station at the Sheshan Observatory.

  20. Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm.

    PubMed

    Hannah, Alexander S; VanderLaan, Donald; Chen, Yun-Sheng; Emelianov, Stanislav Y

    2014-09-01

    Recently, a dual photoacoustic and ultrasound contrast agent-named photoacoustic nanodroplet-has been introduced. Photoacoustic nanodroplets consist of a perfluorocarbon core, surfactant shell, and encapsulated photoabsorber. Upon pulsed laser irradiation the perfluorocarbon converts to gas, inducing a photoacoustic signal from vaporization and subsequent ultrasound contrast from the resulting gas microbubbles. In this work we synthesize nanodroplets which encapsulate gold nanorods with a peak absorption near 1064 nm. Such nanodroplets are optimal for extended photoacoustic imaging depth and contrast, safety and system cost. We characterized the nanodroplets for optical absorption, image contrast and vaporization threshold. We then imaged the particles in an ex vivo porcine tissue sample, reporting contrast enhancement in a biological environment. These 1064 nm triggerable photoacoustic nanodroplets are a robust biomedical tool to enhance image contrast at clinically relevant depths.

  1. Planar waveguide Michelson interferometer fabricated by using 157nm mask laser micromachining

    NASA Astrophysics Data System (ADS)

    Bao, Haihong; Ran, Zengling; Wu, Xuezhong; Yang, Ke; Jiang, Yuan; Rao, Yunjiang

    2015-07-01

    A Michelson interferometer is fabricated on silica planar waveguide by using the one-step technology based on 157nm mask laser micromachining. The fabrication time for one device is ~10s. Experimental results show that such an interferometer has an excellent fringe contrast of >20dB. Its temperature and refractive index (RI) responses are tested by observing the wavelength shift of the interferometric fringes, which shows linear characteristics with a thermo-coefficient of ~9.5pm/°C and a RI-coefficient of ~36.7nm/RIU, respectively. The fabrication technology may pave a new way for direct writing of planar silica waveguide devices for sensing applications with high efficiency and quality.

  2. High reliability and high performance of 9xx-nm single emitter laser diodes

    NASA Astrophysics Data System (ADS)

    Bao, L.; Leisher, P.; Wang, J.; Devito, M.; Xu, D.; Grimshaw, M.; Dong, W.; Guan, X.; Zhang, S.; Bai, C.; Bai, J. G.; Wise, D.; Martinsen, R.

    2011-03-01

    Improved performance and reliability of 9xx nm single emitter laser diodes are presented. To date, over 15,000 hours of accelerated multi-cell lifetest reliability data has been collected, with drive currents from 14A to 18A and junction temperatures ranging from 60°C to 110°C. Out of 208 devices, 14 failures have been observed so far. Using established accelerated lifetest analysis techniques, the effects of temperature and power acceleration are assessed. The Mean Time to Failure (MTTF) is determined to be >30 years, for use condition 10W and junction temperature 353K (80°C), with 90% statistical confidence.

  3. Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm

    NASA Astrophysics Data System (ADS)

    Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa

    2017-02-01

    A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.

  4. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  5. Refractive index measured by laser beam displacement at {lambda}=1064 nm for solvents and deuterated solvents

    SciTech Connect

    Shelton, David P.

    2011-07-20

    The refractive index of a liquid is determined with 0.0003 accuracy from measurements of laser beam displacement by a liquid-filled standard 10 mm spectrophotometer cell. The apparatus and methods are described and the results of measurements at {lambda}=1064 nm and T=25.0 deg. C for 30 solvents and deuterated solvents are presented. Several sources of potential systematic errors as large as 0.003 are identified, the most important being the curvature of the liquid cell windows. The measurements are analyzed accounting for the significant imperfections of the apparatus.

  6. Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.

    2012-05-01

    We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.

  7. Sub-100nm material processing with sub-15 femtosecond picojoule near infrared laser pulses

    NASA Astrophysics Data System (ADS)

    König, Karsten; Uchugonova, Aisada; Straub, Martin; Zhang, Huijing; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    Ultrabroad band 12 femtosecond near infrared laser pulses at transient TW/cm2 intensities and low picojoule pulse energies (mean powers < 20 mW at 85 MHz repetition rate) have been used to perform material nanoprocessing based on multiphoton ionization and plasma formation. Cut sizes of sub-wavelength, sub-100 nm which is far beyond the Abbe diffraction limit have been realized without any collateral damage effect in silicon wafers, photoresists, glass, polymers, metals, and biological targets. Multiphoton sub-15fs microscopes may become novel non-invasive 3D tools for highly precise nanoprocessing of inorganic and organic targets as well as two-photon 3D imaging.

  8. Fiber Bragg grating inscriptions in multimode fiber using 800 nm femtosecond laser

    NASA Astrophysics Data System (ADS)

    Rong, Qiangzhou; Qiao, Xueguang

    2015-09-01

    A short fiber Bragg grating (FBG) was successfully written in a multimode fiber (MMF) tube with core and cladding diameters of 105 μm and 125 μm using 800 nm femtosecond laser. A side-illumination technique was utilized to ensure the grating inscriptions regain over the core of MMF. Both fundamental mode and high-order modes of MMF are coupled at the core-mismatch junction and appear as two well-defined resonances in transmission. Femtosecond laserwritten three FBG-types present good thermostability up to 900 °C.

  9. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-12-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained.

  10. Dose Response Effects of 810 nm Laser Light on Mouse Primary Cortical Neurons

    PubMed Central

    Sharma, Sulbha K.; Kharkwal, Gitika B.; Sajo, Mari; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-01-01

    Background and Objectives In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from embryonic mouse brains. Study Design/Materials and Methods Neurons were irradiated with fluences of 0.03, 0.3, 3, 10, or 30 J/cm2 of 810-nm laser delivered over varying times at 25 mW/cm2 and intracellular levels of reactive oxygen species (ROS), nitric oxide and calcium were measured using fluorescent probes within 5 minutes of the end of irradiation. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Results Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluences. ROS was significantly induced at low fluences, followed by a decrease and a second larger increase at 30 J/cm2. Nitric oxide levels showed a similar pattern of a double peak but values were less significant compared to ROS. Conclusions The results suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling processes which in turn may be responsible for the beneficial stimulatory effects of the low level laser. At higher fluences beneficial mediators are reduced and high levels of Janus-type mediators such as ROS and NO (beneficial at low concentrations and harmful at high concentrations) may be responsible for the damaging effects of high-fluence light and the overall biphasic dose response. PMID:21956634

  11. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Gorbashova, M. A.; Yurov, V. Yu; Konov, V. I.

    2016-06-01

    We report on an external-cavity diamond Raman laser (DRL) pumped with a Q-switched Nd:YAG and generating at 1st and 2nd Stokes (1240 nm and 1485 nm) with enhanced output energy. The slope efficiency of 54% and output energy as high as 1.2 mJ in single pulse at 1240 nm have been achieved with optimized cavity, while the pulse energy of 0.70 mJ was obtained in the eye-safe spectral region at 1485 nm. Calculations of thermal lensing effect indicate it as a possible reason for the observed decrease in conversion efficiency at the highest pump energies.

  12. Erbium: YAG laser (2,940 nm) treatment stimulates hair growth through upregulating Wnt 10b and β-catenin expression in C57BL/6 mice

    PubMed Central

    Ke, Jin; Guan, Huiwen; Li, Shan; Xu, Li; Zhang, Li; Yan, Yuehua

    2015-01-01

    Aim: To evaluate the role of 2,940 nm erbium: YAG laser in hair growth in C57BL/6 mice. Methods: Anagen was experimentally induced by depilation. Healthy C57BL/6 mice (n=22) were randomly divided into four groups, with treatment of laser or minoxidil, or with combined laser and minoxidil treatments. The skin color of each mouse was observed each day. The time from telogen (pink skin color) to anagen (black coloration) phase and from anagen (black coloration) to catagen (all hairs grew out of the depilated skin) have been recorded. Hematoxylin and eosin (H&E) assay was done at fifteen days after the first treatment for each group to observe hair follicles and hair cycle score. Western blot analysis was utilized to detect the expression levels of Wnt 10-b and β-catenin. Results: Black pigmentation started significantly earlier both in the laser and combination group than in the control group. Moreover, the time from anagen to catagen in the laser, minoxidil and combination groups were all significantly shorter from the control group. Histopathology with H&E staining showed an obvious increase in the number of hair follicles in the anagen phase caused by the treatment of 2,940 nm erbium: YAG laser and minoxidil. Similarly, the percentage of hair follicles in anagen VI accounted for 19.5%, 37.5%, 41.5% and 44% in control, laser, minoxidil, and combination group, respectively. Western blot analysis showed that both the levels of Wnt 10b and β-catenin were significantly increased by the treatment of 2,940 nm erbium: YAG laser. Conclusion: Our findings showed that 2,940-nm Er: YAG laser could promote hair growth by inducing hair cycle transition from telogen to anagen phases in C57BL/6 mice through up regulating Wnt 10b and β-catenin. These results suggest that 2,940-nm Er: YAG laser may be a potential therapy for hair loss. PMID:26885014

  13. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity

    NASA Astrophysics Data System (ADS)

    Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin

    2017-04-01

    We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.

  14. Anisotropic dependence of tune-out wavelength near Dy 741-nm transition.

    PubMed

    Kao, Wil; Tang, Yijun; Burdick, Nathaniel Q; Lev, Benjamin L

    2017-02-20

    We report the first measurement of a tune-out wavelength for ground-state bosonic Dy and linearly polarized light. The tune-out wavelength is measured as a detuning from the nearby narrow-line 741-nm transition in 162Dy, and is the wavelength at which the total Stark shift of the ground state vanishes. We find that it strongly depends on the relative angle between the optical field and quantization axis due to Dy's large tensor polarizability. This anisotropy provides a wide, 22-GHz tunability of the tune-out frequency for linearly polarized light, in contrast to Rb and Cs whose near-infrared tune-out wavelengths do not exhibit large anisotropy. The measurements of the total light shift are performed by measuring the contrast of multipulse Kapitza-Dirac diffraction. The calculated wavelengths are within a few GHz of the measured values using known Dy electronic transition data. The lack of hyperfine structure in bosonic Dy implies that the tune-out wavelengths for the other bosonic Dy isotopes should be related to this 162Dy measurement by the known isotope shifts.

  15. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Action of the 216-nm fifth harmonic of a Nd:YAP laser on photosensitive germanosilicate glass films

    NASA Astrophysics Data System (ADS)

    Murav'ev, S. V.; Mal'shakova, O. A.; Golant, K. M.; Denisov, A. N.; Mashinsky, V. M.; Sazhin, O. D.

    2003-11-01

    The absorption spectrum, refractive index, and relief of the surface of a germanosilicate glass film are studied upon the non-destructive action of the 216-nm (5.75-eV) fifth harmonic of a repetitively pulsed Nd:YAP laser. It is shown that laser irradiation of films induces a strong photorefractive effect despite the relatively low absorption coefficient. For the 100-mJ cm-2 energy density and above, two-photon process make a noticeable contribution to the absorption of laser radiation at 216 nm. The diffraction efficiency of photoinduced phase gratings achieved ~7×10-3 for the exposure dose ~6 kJ cm-2, which corresponds to the induced refractive index 1.5×10-3. At higher exposure doses, a relief appears on a film surface and the diffraction efficiency of a phase grating is reduced.

  16. High-power ultraviolet 278 nm laser from fourth-harmonic generation of a Nd:YAG laser in CsB3O5.

    PubMed

    Wang, Zhichao; Yang, Feng; Zhang, Guochun; Bo, Yong; Liu, Shanshan; Xie, Shiyong; Xu, Yiting; Zong, Nan; Li, Fangqin; Liu, Biaolong; Xu, Jialin; Peng, Qinjun; Zhang, Jingyuan; Cui, Dafu; Wu, Yicheng; Xu, Zuyan

    2012-06-15

    We demonstrate a high-power UV 278 nm laser by fourth-harmonic generation (FHG) of a 1112 nm Nd:YAG laser in a nonlinear optical (NLO) crystal CsB3O5 (CBO) for the first time, to our best knowledge. A 30 W level diode-pumped Q-switched Nd:YAG laser at 1112 nm with beam quality factor M2=1.2 was used as the fundamental light source at a pulse width of 500 ns. With an LiB3O5 crystal, the 1112 nm laser was first frequency-doubled to 556 nm with an average output power of 13.5 W. It was then frequency doubled again in a CBO crystal to obtain the FHG output at 278 nm. The maximum average output power of the 278 nm laser is up to 1.5 W. The results demonstrated that CBO crystal is a promising NLO material for UV high-power lasers below 300 nm.

  17. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  18. 980 nm tapered lasers with photonic crystal structure for low vertical divergence

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua

    2016-10-01

    High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.

  19. Pulsed 532 nm laser wirestripping: Removal of dye-doped polyurethane insulation

    NASA Astrophysics Data System (ADS)

    Brannon, J.; Snyder, C.

    1994-07-01

    Removal of rhodamine 6G doped polyurethane insulation coated onto 50 μm diameter wire is shown to proceed efficiently and cleanly by irradiation with 532 nm Q-switched pulses from a Nd:YAG laser. The stripping action produced by this method is similar in quality to excimer laser wirestripping. Several experimental parameters were explored including fluence, pulse duration, dye concentration, and the number of incident pulses. Acceptable stripping conditions were obtained for a 3 5 s exposure at 10 Hz, using a dye concentration of 10% by weight, and 12 n pulses at 650 mJ/cm2. Nearly 0.5 μm/pulse is removed at this fluence, which exceeds the threshold fluence of ≈600 mJ/cm2 by only 50 mJ/cm2. The measured 532 nm absorption coefficient of the 10% dye-doped polyurethane was ≈4×104 cm-1. Lower fluences and/or dye concentrations produced inadequate stripping, while shorter duration pulses caused unacceptable melting of the thin gold layer which covered the copper core of the wire. Pulse-by-pulse photographs of the stripping action clearly show melting of the dye/polymer insulation, and thermal “rollback” of the insulation near the stripped end. Regardless, excellent edge definition is obtained by this method.

  20. Advances in 808nm high power diode laser bars and single emitters

    NASA Astrophysics Data System (ADS)

    Morales, J.; Lehkonen, S.; Liu, G.; Schleuning, D.; Acklin, B.

    2016-03-01

    Key applications for 780-830nm high power diode lasers include the pumping of various gas, solid state, and fiber laser media; medical and aesthetic applications including hair removal; direct diode materials processing; and computer-to-plate (CtP) printing. Many of these applications require high brightness fiber coupled beam delivery, in turn requiring high brightness optical output at the bar and chip level. Many require multiple bars per system, with aggregate powers on the order of kWs, placing a premium on high power and high power conversion efficiency. This paper presents Coherent's recent advances in the production of high power, high brightness, high efficiency bars and chips at 780-830nm. Results are presented for bars and single emitters of various geometries. Performance data is presented demonstrating peak power conversion efficiencies of 63% in CW mode. Reliability data is presented demonstrating <50k hours lifetime for products including 60W 18% fill factor and 80W 28% fill factor conduction cooled bars, and <1e9 shots lifetime for 500W QCW bars.

  1. Transmission of 1064 nm laser radiation during ablation with an ultra-short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Oehme, Bernd; Frentzen, Matthias

    2012-01-01

    During ablation of oral hard tissue with an USPL system a small amount of the incident laser power does not contribute to the ablation process and is being transmitted. Partial transmission of ultra-short laser pulses could potentially affect the dental pulp. The aim of this study was to assess the transmission during ablation and to deduce possible risks for the patient. The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz and an average power of 9 W were chosen to achieve high ablation efficiency. A scanner system created square cavities with an edge length of 1 mm. Transmission during ablation of mammoth ivory and dentin slices with a thickness of 2 mm and 5 mm was measured with a power meter, placed directly beyond the samples. Effects on subjacent blood were observed by ablating specimens placed in contact to pork blood. In a separate measurement the temperature increase during ablation was monitored using an infrared camera. The influence of transmission was assessed by tuning down the laser to the corresponding power and then directly irradiating the blood. Transmission during ablation of 2 mm specimens was about 7.7% (ivory) and 9.6% (dentin) of the incident laser power. Ablation of specimens directly in contact to blood caused coagulation at longer irradiation times (t~18s). Direct irradiation of blood with the transmitted power provoked bubbling and smoke formation. Temperature measurements identified heat generation as the main reason for the observed coagulation.

  2. Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration.

    PubMed

    Trigo, Federico F; Corrie, John E T; Ogden, David

    2009-05-30

    Rapid, localised photolytic release of neurotransmitters from caged precursors at synaptic regions in the extracellular space is greatly hampered at irradiation wavelengths in the near-UV, close to the wavelength of maximum absorption of the caged precursor, because of inner-filtering by strong absorption of light in the cage solution between the objective and cell. For this reason two-photon excitation is commonly used for photolysis, particularly at multiple points distributed over large fields; or, with near-UV, if combined with local perfusion of the cage. These methods each have problems: the small cross-sections of common cages with two-photon excitation require high cage concentrations and light intensities near the phototoxic limit, while local perfusion gives non-uniform cage concentrations over the field of view. Single-photon photolysis at 405 nm, although less efficient than at 330-350 nm, with present cages is more efficient than two-photon photolysis. The reduced light absorption in the bulk cage solution permits efficient wide-field uncaging at non-toxic intensities with uniform cage concentration. Full photolysis of MNI-glutamate with 100 micros pulses required intensities of 2 mW microm(-2) at the preparation, shown to be non-toxic with repeated exposures. Light scattering at 405 nm was estimated as 50% at 18 microm depth in 21-day rat cerebellum. Methods are described for: (1) varying the laser spot size; (2) photolysis calibration in the microscope with the caged fluorophore NPE-HPTS over the wavelength range 347-405 nm; and (3) determining the point-spread function of excitation. Furthermore, DM-Nitrophen photolysis at 405 nm was efficient for intracellular investigations of Ca2+-dependent processes.

  3. Efficient generation of coherent blue light at 440 nm by intracavity-frequency-tripling 1319-nm emission from a Nd:YAG laser.

    PubMed

    Mu, Xiaodong; Ding, Yujie J

    2005-06-01

    A new route for efficiently generating coherent blue light has been explored based on intracavity effective third-harmonic generation in one partly periodically poled KTiOPO4 crystal placed inside the cavity of a diode-pumped Nd:YAG laser. To achieve efficient conversion, we use a dual-temperature oven to separately control the phase-matching conditions for the two second-order nonlinear processes. In addition, a Fabry-Perot cavity at 660 nm is incorporated into the crystal to increase the blue power significantly. When the laser is Q switched to produce long pulses, an average power of 118 mW is generated at 440 nm at a pump power of 10 W.

  4. Fabrication-tolerant 1310 nm laterally-coupled distributed feedback lasers with high side mode suppression ratios

    SciTech Connect

    Millett, R.; Dridi, K.; Benhsaien, A.; Schriemer, H.; Hinzer, K.; Hall, T.

    2010-11-10

    A laterally-coupled distributed feedback (LC-DFB) laser was designed and fabricated using stepper lithography. Such DFB lasers eliminate the need of the commonly required re-growth steps in a conventional DFB laser fabrication process. With LC-DFB lasers, the grating can be lithographically patterned out of the ridge waveguide. High order gratings can enhance the lithographic tolerance for lower resolution patterning, yielding lasers more amenable to mass-manufacturing. 1310 nm InGaAsP/InP LC-DFB laser with third-order gratings was fabricated using i-line 5x stepper lithography. Excellent side mode suppression ratio over 52 dB has been measured with a single mode lasing around 1310 nm.

  5. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium.

    PubMed

    Eismann, U; Bergschneider, A; Sievers, F; Kretzschmar, N; Salomon, C; Chevy, F

    2013-04-08

    We present an all-solid-state laser source emitting up to 2.1 W of single-frequency light at 671 nm developed for laser cooling of lithium atoms. It is based on a diode-pumped, neodymium-doped orthovanadate (Nd:YVO(4)) ring laser operating at 1342 nm. Optimization of the thermal management in the gain medium results in a maximum multi-frequency output power of 2.5 W at the fundamental wavelength. We develop a simple theory for the efficient implementation of intracavity second harmonic generation, and its application to our system allows us to obtain nonlinear conversion efficiencies of up to 88%. Single-mode operation and tuning is established by adding an etalon to the resonator. The second-harmonic wavelength can be tuned over 0.5 nm, and mode-hop-free scanning over more than 6 GHz is demonstrated, corresponding to around ten times the laser cavity free spectral range. The output frequency can be locked with respect to the lithium D-line transitions for atomic physics applications. Furthermore, we observe parametric Kerr-lens mode-locking when detuning the phase-matching temperature sufficiently far from the optimum value.

  6. The long-term effect of 1550 nm erbium:glass fractional laser in acne vulgaris.

    PubMed

    Liu, Yale; Zeng, Weihui; Hu, Die; Jha, Smita; Ge, Qin; Geng, Songmei; Xiao, Shengxiang; Hu, Guanglei; Wang, Xiaoxiao

    2016-04-01

    We evaluated the short-term and long-term effects of the 1550 nm erbium:glass (Er:glass) fractional laser in the treatment of facial acne vulgaris. Forty-five (9 male and 36 female) acne patients were treated 4 times at 4-week intervals with the following parameters: 169 spot density and 15-30 mJ/cm(2) fluence. There was no control group. The laser spots were adjustable (maximum overlap: 20%) according to the treatment area, and delivered in rows in order to cover all the face. Clinical photographs were taken. The IGA scores and lesion counts were performed for each treatment. Their current state was obtained by phone call follow-up to determine the long-term effect and photographs were offered by themselves or taken in hospital. After four treatments, all patients had an obvious reduction of lesion counts and IGA score and the peak lesion counts decreased to 67.7% after the initial four treatment sessions. For long-term effect, 8 patients lost follow-up, hence 37 patients were followed-up. 8 patients were 2-year follow up, 27 at the 1-year follow-up, and all patients at the half-year follow-up. The mean percent reduction was 72% at the half-year follow-up, 79 at the 1-year follow-up and 75% at the 2-year follow-up. Side effects and complications were limited to transient erythema and edema, and few patients suffered from transient acne flare-ups and sensitivity. All patients responded that their skin was less prone to oiliness. In conclusion, acne can be successfully treated by 1550 nm Er:glass fractional laser, with few side effects and prolonged acne clearing.

  7. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model.

    PubMed

    Suzuki, Ryoichi; Takakuda, Kazuo

    2016-11-01

    This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm(2). Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm(2) irradiation, compared to the control and 10 J/cm(2) irradiation groups (p < 0.01). The area occupied by collagen fibers in day 7 was largest in 5 J/cm(2) group, followed by 1 J/cm(2) group, although this difference was not significant. The day 7 tensile test demonstrated significantly greater rupture strength in healing tissues from 1 and 5 J/cm(2) irradiation groups, compared to the control group (p < 0.05). Thus, LLLT with a 660-nm diode laser with energy density of 1 and 5 J/cm(2) enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.

  8. High-power high-brightness 808nm QCW laser diode mini bars

    NASA Astrophysics Data System (ADS)

    Huang, Hua; Wang, Jun; DeVito, Mark; Bao, Ling; Hodges, Aaron; Zhang, Shiguo; Wise, Damian; Grimshaw, Mike; Xu, Dapeng; Bai, Chendong

    2010-02-01

    A new class of high power high brightness 808 nm QCW laser diode mini bars has been developed. With nLight's nXLT facet passivation technology and improvements in epitaxial structure, mini bars of 3 mm bar width with high efficiency design have tested to over 280 W peak power with peak efficiency over 64% on conduction cooled CS packages, equivalent to output power density near 130 mW/μm. These mini laser bars open up new applications as compact, portable, and low current pump sources. Liftests have been carried out on conduction cooled CS packages and on QCW stacks. Over 370 million (M) shots lifetest with high efficiency design has been demonstrated on CS so far without failure, and over 80 M shots on QCW stacks with accelerated stress lifetest have also proven high reliability on mini bars with high temperature design. Failure analysis determined that the failure mechanism was related to bulk defects, showing that mini laser bars are not prone to facet failure, which is consistent with the large current pulse test and failure analysis on high power single emitters.

  9. Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light

    NASA Astrophysics Data System (ADS)

    Gonschior, Cornell P.; Klein, Karl-Friedrich; Menzel, Matthias; Sun, Tong; Grattan, Kenneth T. V.

    2014-12-01

    The degradation of 405-nm fiber-coupled diode laser systems with more than 50 mW power was investigated in detail with focus on the effects occurring at the input end. The coupling and transmission loss of the laser light were associated with the growth of a projection and a periodic structure on the input surface. To avoid this degradation, a short launch fiber with a good surface quality was used at the input end. In this way, the power transmission was stabilized for at least one month. However, structural degradation was noticed on the output surface of the single-mode fiber. To investigate this effect, the damaged samples were measured after different periods of time and examined with a scanning electron microscope and with an atomic force microscope. Reproducible spherical projections with a submicron periodic structure were found in the core region. Additionally, the spectral loss of the fiber was measured, showing the formation of color centers in the deep ultraviolet along the length of the fiber. These investigations were accompanied by simulations of the growth of the structure on the output surface. The influence of the structure was mainly on the divergence angle of the emitted laser beam, reducing the beam quality for applications.

  10. An efficient frequency-doubled Nd:KLu(WO4)2 laser at 535 nm

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhang, Xingyu; Liu, Zhaojun; Cong, Zhenhua; Zhang, Huaijin; Li, Jing; Yu, Haohai; Wang, Weitao

    2016-03-01

    An efficient laser diode pumped frequency-doubled Nd:KLu(WO4)2 laser at 535 nm was demonstrated for the first time. For continuous wave (CW) operation, the obtained maximum output power was 2.4 W and the overall optical-to-optical conversion efficiency with respect to the absorbed pump power was 20.5%. For active Q-switching operation, the obtained maximum average output power was 2.6 W and the conversion efficiency with regard to the absorbed pump power was 26.8%. The corresponding pulse repetition rate (PRR), pulse width, single pulse energy and peak power were 30 kHz, 36.6 ns, 86.7 μJ, and 2.4 kW, respectively. On the basis of rate equations, the characteristics of the actively Q-switched frequency-doubled Nd:KLu(WO4)2 laser were simulated. The theoretical results of the average output power and pulse width were obtained. They were in agreement with the measured data on the whole.

  11. Transurethral diode (810 nm) laser application for treatment of benign prostatic hyperplasia: a clinical study

    NASA Astrophysics Data System (ADS)

    Pow-Sang, Mariela; Orihuela, Eduardo; Motamedi, Massoud

    1995-05-01

    The objective of this study was to evaluate the effectiveness and safety of diode laser for the treatment of human BPH. The study included 11 patients with significant BPH that were treated with diode laser 15 watts for 180 seconds (Diomed, Inc., Gallium-Aluminum- Arsenide, 810 nm). Mean age was 69 years (range 59 to 84). Mean prostatic volume was 64.5 cc (range 30 to 96). In all cases the procedure was uncomplicated, the blood loss was minimal (< 100 cc) and all patients were discharged within the first 24 hours. On average, patients voided spontaneously after 4 days (range 1 to 11). There were no postoperative complications. At 6 months follow up the mean AUA-7 symptom score decreased from 24.27 to 8.12, the peak flow rate increased from 7.12 cc/sec, to 13.85 cc/sec, and the post void residual diminished from 58.5 cc to 38 cc. Our study suggests that diode laser therapy may offer a safe and effective alternative for the treatment of BPH.

  12. Performance of multilayer optical coatings under long-term 532nm laser exposure

    NASA Astrophysics Data System (ADS)

    Poulios, D.; Konoplev, O.; Chiragh, F.; Vasilyev, A.; Stephen, M.; Strickler, K.

    2013-11-01

    The effects of long-term exposure to high intensity 532 nm radiation on various dielectric-coated optics are studied. To investigate potential photodarkening effects on optical surfaces, an accelerated life test platform was constructed where optics were exposed to 532 nm radiation from a short-pulse, high repetition rate fiber amplifier at total doses up to 1 trillion shots. The first run of trillion-shot tests were conducted on e-beam deposited and ion beam sputtering (IBS) coated high reflecting mirrors with onsurface intensities ranging from 1.0-1.4 GW/cm2. It was found that the e-beam coated mirrors failed catastrophically at less than 150 billion shots, while the IBS coated mirror was able to complete the trillionshot test with no measurable loss of reflectivity. Profiling the IBS mirror surface with a high-resolution white light interferometer post-irradiation revealed a ~10 nm high photocontamination deposit at the irradiation site that closely matched the intensity profile of the laser spot. Trillion-shot surface exposure tests were also conducted at multiple surface sites of an LBO frequency doubling crystal at ~1.5 GW/cm2 at multiple surface sites. The transmitted power and on-surface beam size were monitored throughout the tests, and periodic measurements of the beam quality and waist location of the transmitted light were also made using an M2 meter. No changes in transmitted power or M2 were observed in any of the tests, but 3D surface profiling revealed laser-induced contamination deposits at each site tested.

  13. Effects of 810-nm Laser on Murine Bone-Marrow-Derived Dendritic Cells

    PubMed Central

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K

    2011-01-01

    Abstract Objective: The purpose of this study was to Investigate the effect of 810-nm low level laser therapy (LLLT) on dendritic cells (DC) in vitro. Background data: LLLT can enhance wound healing and increase cell proliferation and survival, and is used to treat inflammatory conditions. However there are reports that LLLT can stimulate leukocytes and could therefore be pro-inflammatory. Recently, DC have been found to play an important role in inflammation and immune response. Methods: Murine bone-marrow-derived DC were isolated, stimulated with lipopolysaccharide (LPS) or CpG oligodeoxynucleotide and treated with 810-nm laser, using fluences of 0.3, 3, and 30 J/cm2 delivered at irradiances of 1, 10, and 100 mW/cm2 respectively. Confocal microscopy, flow cytometry for DC markers, viability using propidium iodide, enzyme-linked immunosorbent assays (ELISA) for secreted interleukin-12 (IL-12), and bioluminescence measurements in cells transduced with a reporter for toll-like receptor (TLR)-9/nuclear factor kappa B (NF-κB) activation, were performed. Results: LLLT changed the morphology of LPS-stimulated DC, increased their viability, and altered the balance of DC activation markers (major histocompatibility complex [MHC] class 2 up and CD86 down). LLLT reduced IL-12 secretion from DC stimulated by either LPS or CpG. LLLT reduced NF-κB activation in reporter cells stimulated with CpG. There was no obvious light dose response observed. Conclusions: Taken together, these data suggest that 810-nm LLLT has an anti-inflammatory effect on activated DC, possibly mediated by cyclic adenosine monophosphate (cAMP) and reduced NF-κB signaling. PMID:21214383

  14. Linearly polarized, single-frequency, widely tunable Er:Yb bulk laser at around 1550 nm wavelength

    SciTech Connect

    Taccheo, S.; Laporta, P.; Svelto, O.

    1996-11-01

    We report on a 36 nm tunable, single-frequency, linearly polarized Er:Yb:glass laser. A tuning range from 1528 to 1564 nm, with output power ranging from 1 to 8 mW, is achieved. Wavelength tuning and linearly polarized output are simultaneously obtained by using a special polarizing etalon with anisotropic absorption losses. {copyright} {ital 1996 American Institute of Physics.}

  15. Complete resolution of minocycline pigmentation following a single treatment with non-ablative 1550-nm fractional resurfacing in combination with the 755-nm Q-switched alexandrite laser.

    PubMed

    Vangipuram, Ramya K; DeLozier, Whitney L; Geddes, Elizabeth; Friedman, Paul M

    2016-03-01

    Pigmentation secondary to minocycline ingestion is an uncommon adverse event affecting 3.7-14.8% of treated individuals for which few effective therapies are available. Three patterns of minocycline pigmentation have a characteristic clinical and histological appearance. The pigment composition in each variety is different and occurs at varying skin depths. Accordingly, a tailored approach according to the type of minocycline pigmentation is crucial for treatment success. The purpose of this intervention was to evaluate the efficacy of non-ablative fractional photothermolysis in combination with the Q-switched alexandrite laser for the treatment of type I minocycline pigmentation on the face. A patient with type I minocycline pigmentation was treated with non-ablative 1550-nm fractional photothermolysis followed immediately by 755-nm Q-switched alexandrite laser and then observed clinically to determine the outcome of this modality. The patient was seen in clinic 1 month later following her single treatment session and 100% clearance of all blue facial pigment was observed. Non-ablative fractional photothermolysis in combination with the 755-nm Q-switched alexandrite laser should be considered for treatment of type I minocycline pigmentation.

  16. Surface modification of polyhedral oligomeric silsesquioxane block copolymer films by 157 nm laser light

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, Evangelia; Kollia, Zoe; Cefalas, Alkiviadis Constantinos; Siokou, Ageliki Elina; Argitis, Panagiotis; Bellas, Vassilios; Kobe, Spomenka

    2009-06-01

    Thin films of ethyl polyhedral oligomeric silsesquioxane (ethyl-POSS) containing polymers at different compositions were chemically modified using laser irradiation at 157 nm. The irradiation caused photodissociation of C-O and C-H bonds followed by the formation of new chemical bonds. The content of Si-O and C-O bonds increased, as did the surface hardness. Vacuum ultraviolet (VUV) absorption, mass spectrometry, x-ray photoelectron spectroscopy, and atomic force microscopy imaging and indentation were used to evaluate the effects of the 157 nm irradiation. The chemical modification was restricted to a thin surface layer. The layer depth was determined by the penetration depth of the 157 nm VUV photons inside the thin copolymer layer. With prolonged VUV irradiation, the absorbance of the polymers increased, eventually becoming saturated. The chemical changes were accompanied by surface hardening, as evidenced by the increase in the Young's modulus from 4 to 24 GPa due to glassification of the irradiated parts. The chemically modified layer acts as a shield against photodissociation and degradation of the deeper portion of the POSS polymer by VUV radiation. Applications include the protection of solar cells on low orbit satellites from solar VUV photons.

  17. 980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Liu, Jia; Liang, Shanshan; Sun, Changsen

    2014-10-01

    Photothermal effect (PE) plays a major role in the near-infrared laser interaction with biological tissue. But, quite few interactions can be quantitatively depicted. Here, a two-step model is proposed to describe a 980-nm infrared laser interaction with neuron cell in vitro. First, the laser-induced temperature rises in the cell surrounding area were measured by using an open pipette method and also calculated by solving the heat conduction equation. Second, we recorded the modifications on sodium (Na) channel current in neuron cells directly by using a patch clamp to synchronize the 980-nm laser irradiation and obtained how the electrophysiological function of neuron cells respond to the temperature rise. Then, the activation time constants, τm, were extracted by fitting the sodium currents with the Hodgkin-Huxley model. The infrared laser modulation effect on sodium currents kinetics was examined by taking a ratio between the time constants with and without the laser irradiations. The analysis revealed that the averaged ratio at a specific laser exposure could be well related to the temperature properties of the Na channel protein. These results proved that the modulation of sodium current kinetics of a neuron cell in vitro by 980-nm laser with different-irradiation levels was linearly mediated corresponding to the laser-induced PE.

  18. Subdermal Coagulation Treatment of Axillary Bromhidrosis by 1,444 nm Nd:YAG Laser: A Comparison with Surgical Treatment.

    PubMed

    Lee, Kyung Goo; Kim, Sun Ae; Yi, Sang Min; Kim, Jae Hwan; Kim, Il-Hwan

    2014-02-01

    Bromhidrosis is a disease presenting as malodor caused by interaction between the discharge of apocrine glands and bacteria. The main therapeutic modalities are applying topical agents, liposuction surgery, and elective surgery. Among these, elective surgery is reported to be most effective. However, the efficiency largely depends on surgical technique. Additionally, other side effects, such as hematoma and scarring, are occasionally reported. Currently, CO2 laser and 1,064 nm Nd:YAG laser therapy are used, but as the wavelength is not specific to apocrine glands, these laser therapies have certain limitations. Recently, a 1,444 nm wavelength Accusculpt™ laser (LutronicCorp., Seoul, Korea) has been developed which is now commonly used for facial fat plasty and laser liposuction therapy. The use of this laser for bromhidrosis therapy targeting apocrine sweat glands is currently being discussed. Still, no studies on practical clinical use and side effects of this 1,444 nm wavelength laser have been published. In this report, we treated one bromhidrosis patient with 1,444 nm wavelength Accusculpt™ laser therapy on one side while conventional surgery was performed on the other side using a modified Inaba's method. We compared the efficacy of this laser therapy to the surgical modality by measuring malodor severity and overall satisfaction by questionnaire. We also checked for other complications and recurrence for 12 months after the treatment. This patient was largely satisfied as it has a much shorter down time with the same therapeutic outcome. As subdermal coagulation treatment by 1,444 nm Nd:YAG laser may be less invasive but effective therapy, we would like to recommend this modality as a possible treatment option.

  19. Holmium:YAG (λ=2120nm) vs. Thulium fiber laser (λ=1908nm) ablation of kidney stones: thresholds, rates, and retropulsion

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-03-01

    The Holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but its efficient operation is limited to relatively low pulse rates (~10 Hz) during lithotripsy. On the contrary, the Thulium Fiber Laser (TFL) is limited to low pulse energies, but can operate at very high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion effects for different Ho:YAG and TFL operation modes. The TFL (λ=1908 nm) was operated with pulse energies of 5-35 mJ, 500-μs pulse duration, and pulse rates of 10-400 Hz. The Ho:YAG laser (λ=2120 nm) was operated with pulse energies of 30-550 mJ, 350-μs pulse duration, and pulse rate of 10 Hz. Laser energy was delivered through small-core (200-270-μm) optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 J/cm2and 20.8 J/cm2, respectively. Stone retropulsion with Ho:YAG laser increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies < 175 mJ at 10 Hz, and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies (e.g. 100-200 mJ) and high pulse rates (100-150 Hz) may also provide higher ablation rates, when retropulsion is not the primary concern.

  20. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.

    PubMed

    Huang, Y J; Tzeng, Y S; Tang, C Y; Huang, Y P; Chen, Y F

    2012-07-30

    We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM(00)-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.