Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films
NASA Astrophysics Data System (ADS)
Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan
2004-03-01
Photoinduced birefringence in bacteriorhodopsin films was investigated using pump-probe method and its application for photonic switching explored. A diode-pumped second-harmonic YAG laser was used as a pumping beam and a diode laser at λ=660 nm was used as a probing beam. The pump and probe beams overlap at the sample. Without the pumping beam, the probing light cannot transmit the analyzer to the detector. However, due to the photoinduced anisotropy, a portion of the probing light is detected when the pumping beam is present. Since λ=660 nm is far from the absorption peak (˜570 nm) of the ground state, the photoinduced birefringence predominates. Using the intensity-dependent photoinduced birefringence in a bacteriorhodopsin film, we have demonstrated a photonic switch with ˜1000:1 contrast ratio, ˜0.6 s rise time and ˜1.5 s decay time.
Stimulated Raman scattering holography for time-resolved imaging of methane gas.
Amer, Eynas; Gren, Per; Edenharder, Stefan; Sjödahl, Mikael
2016-05-01
In this paper, pulsed digital holographic detection is coupled to the stimulated Raman scattering (SRS) process for imaging gases. A Q-switched Nd-YAG laser (532 nm) has been used to pump methane gas (CH4) at pressures up to 12 bars. The frequency-tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) has been tuned to 629.93 nm so that the frequency difference between the pump (532 nm) and the Stokes beams fits a Raman active vibrational mode of the methane molecule (2922 cm-1). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped in time, space, and polarization on the gas molecules, resulting in a stimulated Raman gain of the Stokes beam and a corresponding loss of the pump beam through the SRS process. The resulting gain of the Stokes beam has been detected using pulsed digital holography by blending it with a reference beam on the detector. Two holograms of the Stokes beam, without and with the pump beam fringes present, were recorded. Intensity maps calculated from the recorded digital holograms showed amplification of the Stokes beam at the position of overlap with the pump beam fringes and the gas molecules. The gain of the Stokes beam has been separated from the background in the Fourier domain. A gain of about 4.5% at a pump beam average intensity of 4 MW/cm2 and a Stokes beam intensity of 0.16 MW/cm2 have been recorded at a gas pressure of 12 bars. The gain decreased linearly with decreasing gas pressure. The results show that SRS holography is a promising technique to pinpoint a specific species and record its spatial and temporal distribution.
NASA Astrophysics Data System (ADS)
Satija, Aman; Lucht, Robert P.
2015-06-01
Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam at 486 nm. The 486-nm beam was frequency doubled to a 243-nm beam. Use of the second scheme simplifies the TPP-PSP technique making it more convenient for diagnostics in practical systems.
Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun
2016-04-10
We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.
High-efficient Nd:YAG microchip laser for optical surface scanning
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav
2017-12-01
A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.
1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.
Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N
2012-01-30
We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.
Two and Three Beam Pumped Optical Parametric Amplifier of Chirped Pulses
NASA Astrophysics Data System (ADS)
Ališauskas, S.; Butkus, R.; Pyragaitė, V.; Smilgevičius, V.; Stabinis, A.; Piskarskas, A.
2010-04-01
We present two and three beam pumped optical parametric amplifier of broadband chirped pulses. The seed pulses from Ti:sapphire oscillator were stretched and amplified in a non-collinear geometry pumping with up to three beams derived from independent laser amplifiers. The signal with ˜90 nm bandwidth was amplified up to 0.72 mJ. The conversion efficiency dependence on intersection angles of pump beams is also revealed.
LD-pumped erbium and neodymium lasers with high energy and output beam quality
NASA Astrophysics Data System (ADS)
Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.
2013-05-01
Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.
NASA Astrophysics Data System (ADS)
Li, Chun-Hao; Tsai, Ming-Jong
2009-06-01
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.
Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A
2008-06-23
In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.
Group-III nitride VCSEL structures grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ng, HockMin; Moustakas, Theodore D.
2000-07-01
III-nitride VCSEL structures designed for electron-beam pumping have been grown by molecular beam epitaxy (MBE). The structures consist of a sapphire substrate on which an AlN/GaN distributed Bragg reflector (DBR) with peak reflectance >99% at 402 nm is deposited. The active region consists of a 2-(lambda) cavity with 25 In0.1Ga0.9N/GaN multiquantum wells (MQWs) whose emission coincides with the high reflectance region of the DBR. The thicknesses of the InGaN wells and the GaN barriers are 35 angstrom and 75 angstrom respectively. The top reflector consists of a silver metallic mirror which prevents charging effects during electron-beam pumping. The structure was pumped from the top- side with a cw electron-beam using a modified cathodoluminescence (CL) system mounted on a scanning electron microscope chamber. Light output was collected from the polished sapphire substrate side. Measurements performed at 100 K showed intense emission at 407 nm with narrowing of the linewidth with increasing beam current. A narrow emission linewidth of 0.7 nm was observed indicating the onset of stimulated emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.
2010-07-15
Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355more » nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)« less
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
Laser effect on the 248 nm KrF transition using heavy ion beam pumping
NASA Astrophysics Data System (ADS)
Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.
2007-07-01
In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).
Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser
NASA Astrophysics Data System (ADS)
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-05-01
We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.
Analysis of all-optical light modulation in proteorhodopsin protein molecules
NASA Astrophysics Data System (ADS)
Roy, Sukhdev; Sharma, Parag
2008-03-01
We present a detailed steady-state and time-dependent theoretical analysis of all-optical light modulation in the recently discovered, wild-type proteorhodopsin (WTpR) protein molecules based on excited-state absorption. Amplitude modulation of cw probe laser beam transmissions at 520, 405, 555 and 560 nm, corresponding to the peak absorption of pR, pRM, pRK and pRN intermediate states of pR photocycle, respectively, by cw and pulsed modulating pump laser beam at 520 nm have been analyzed. The effect of various spectral and kinetic parameters on modulation characteristics has been studied. There is an optimum value of concentration for a given pump intensity value for which maximum modulation of the probe beam can be achieved. The switching characteristics of probe beam at 405 and 520 nm exhibit dip and peak, respectively, which can be removed by decreasing the absorption of pRM state at 520 nm. The modulation in WTpR is at lower pump powers with smaller contrast in comparison to WT bacteriorhodopsin (bR) and WT pharaonis phoborhodopsin (ppR). The modulation characteristics exhibit unique features compared to bR and ppR.
A 25kW fiber-coupled diode laser for pumping applications
NASA Astrophysics Data System (ADS)
Malchus, Joerg; Krause, Volker; Koesters, Arnd; Matthews, David G.
2014-03-01
In this paper we report the development of a new fiber-coupled diode laser for pumping applications capable of generating 25 kW with four wavelengths. The delivery fiber has 2.0 mm core diameter and 0.22 NA resulting in a Beam Parameter Product (BPP) of 220 mm mrad. To achieve the specifications mentioned above a novel beam transformation technique has been developed combining two high power laser stacks in one common module. After fast axis collimation and beam reformatting a beam with a BPP of 200 mm mrad x 40 mm mrad in the slow and fast-axis is generated. Based on this architecture a customer-specific pump laser with 25 kW optical output power has been developed, in which two modules are polarization multiplexed for each wavelength (980nm, 1020nm, 1040m and 1060nm). After slow-axis collimation these wavelengths are combined using dense wavelength coupling before focusing onto the fiber endface. This new laser is based on a turn-key platform, allowing straight-forward integration into any pump application. The complete system has a footprint of less than 1.4m² and a height of less than 1.8m. The laser diodes are water cooled, achieve a wall-plug efficiency of up to 60%, and have a proven lifetime of <30,000 hours. The new beam transformation techniques open up prospects for the development of pump sources with more than 100kW of optical output power.
NASA Astrophysics Data System (ADS)
Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.
2017-09-01
A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.
Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity
NASA Astrophysics Data System (ADS)
Castro-Olvera, Gustavo; Garduño-Mejía, Jesus; Rosete-Aguilar, Martha; Roman-Moreno, Carlos J.
2016-09-01
In this work we present a numerical analysis of the mode coupling between the pump-beam and the laser-beam in a Ti:Sapphire crystal used as a gain medium of a femtosecond laser. Using the Matrix ABCD and propagation gaussian beam models, we obtained an optimal configuration for compensate the astigmatism in the output beam laser. Also we analysed pump-beam propagation and got the settings to fix the astigmatism in the crystal. Furthermore we apply this configuration to a homemade femtosecond laser, accomplishing an overall efficiency of laser to 20% in continuum wave (CW) and 16% in mode looking (ML) operation. The femtosecond laser have 30 nm bandwidth to FWHM at 810 nm corresponding 30fs.
Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R
2010-04-01
Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.
Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.
Lancaster, D G; Gross, S; Withford, M J; Monro, T M
2014-10-20
We report widely tunable (≈ 260 nm) Tm(3+) and Ho(3+) doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M(2) ≈ 1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm(3+)-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm(3+)-sensitized Tm(3+):Ho(3+) chip laser displays tuning across both ions evidenced by a red enhanced tuning range of 1810 to 2053 nm. We also demonstrate a compact 790 nm diode laser pumped Tm(3+)-doped chip laser which tunes from 1750 nm to 1998 nm at a 14% incident slope efficiency, and a beam quality of M(2) ≈ 1.2 for a large mode-area waveguide with 70 µm core diameter.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan
2017-01-01
We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.
Simultaneous CARS and Interferometric Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Grinstead, Keith D., Jr.; Tedder, Sarah; Cutler, Andrew D.
2006-01-01
This paper reports for the first time the combination of a dual-pump coherent anti-Stokes Raman scattering system with an interferometric Rayleigh scattering system (CARS - IRS) to provide time-resolved simultaneous measurement of multiple properties in combustion flows. The system uses spectrally narrow green (seeded Nd:YAG at 532 nm) and yellow (552.9 nm) pump beams and a spectrally-broad red (607 nm) beam as the Stokes beam. A spectrometer and a planar Fabry-Perot interferometer used in the imaging mode are used to record the spectrally broad CARS spectra and the spontaneous Rayleigh scattering spectra, respectively. Time-resolved simultaneous measurement of temperature, absolute mole fractions of N2, O2, and H2, and two components of velocity in a Hencken burner flame were performed to demonstrate the technique.
Bismuth-doped fibre amplifier operating between 1600 and 1800 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firstov, S V; Alyshev, S V; Riumkin, K E
2015-12-31
We report the first bismuth-doped fibre amplifier operating between 1600 and 1800 nm, which utilises bidirectional pumping (co-propagating and counter-propagating pump beams) by laser diodes at a wavelength of 1550 nm. The largest gain coefficient of the amplifier is 23 dB, at a wavelength of 1710 nm. It has a noise figure of 7 dB, 3-dB gain bandwidth of 40 nm and gain efficiency of 0.1 dB mW{sup -1}. (letters)
Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal
NASA Astrophysics Data System (ADS)
Němec, Michal; Šulc, Jan; Hlinomaz, Kryštof; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav
2018-02-01
Solid-state eye-safe lasers are interesting sources for various applications, such as lidar, remote sensing, and ranging. A resonantly diode-pumped Er:YAG laser could be one of them allowing to reach a tunable laser emission in 1.6 μm spectral region. To overcome low pump absorption and poor pumping beam quality generated by commercially available laser diode, an active medium could be formed to long and thin laser rod guiding pumping radiation. Such an effective cooling during a high power pumping, which is a "crystal-fiber" benefit, may be useful for "standard" crystal active medium. The main goal of this work was to investigate the laser characteristics of new developed Er:YAG crystal with a special shape for diode-pumping. Er:YAG fiber-shape crystal with square cross-section (1x1mm) and 40mm in length was doped by 0.1% Er3+ ions. All sides of this crystal were polished and in addition the end-faces of it were antireflection coatings for the wavelength 1470 and 1645 nm. As a pump system, a fiber coupled laser diode (f = 10 Hz, t = 10 ms) emitting radiation at 1465 nm wavelength was used. Er:YAG fiber-shape crystal was placed onto a copper holder in the 85 mm long plan-concave resonator consisting of a pump flat mirror and output curved (r = 150 mm) coupler with a reflectivity of 96 % @ 1645 nm. The dependence of the output peak power on absorbed pump power was investigated and the maximum 0.8 W was obtained. The corresponding slope efficiency was 14.5 %. The emitting wavelength was equaled to 1645 nm (4 nm linewidth, FWHM). The spatial beam structure was close to the Gaussian mode.
Resonantly diode-pumped Er:YAG laser: 1470-nm versus 1530-nm CW pumping case
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Ter-Gabrielyan, Nikolai; Dubinskii, Mark
2009-05-01
Growing interest to high power lasers in the eye-safe spectral domain initiated a new wave of activity in developing solid-state lasers based on bulk Er3+-doped materials. The resonant pumping of SSL allows for shifting significant part of thermal load from gain medium itself to the pump diodes, thus greatly reducing gain medium thermal distortions deleterious to SSL power scaling with high beam quality. The two major resonant pumping bands in Er:YAG are centered around 1470 and 1532 nm. Pumping into each of these bands has its pros and contras. The best approach to resonant pumping of Er:YAG active media in terms of pump wavelength is yet to be determined. We report the investigation results of high power diode-pumped Er:YAG laser aimed at direct comparison of resonant pumping at 1470 and 1532 nm. Two sources used for pumping were: 1530-nm 10-diode bar stack (>300 W CW) and 1470-nm 10-diode bar stack (>650 W CW). Both pumps were spectrally narrowed by external volume Bragg gratings. The obtained spectral width of less than 1 nm allowed for 'in-line' pumping of Er3+ in either band. The obtained CW power of over 87 W is, to the best of our knowledge, the record high power reported for resonantly pumped Er:YAG DPSSL at room temperature.
Braiman, M; Mathies, R
1982-01-01
We have obtained the resonance Raman spectrum of bacteriorhodopsin's primary photoproduct K with a novel low-temperature spinning sample technique. Purple membrane at 77 K is illuminated with spatially separated actinic (pump) and probe laser beams. The 514-nm pump beam produces a photostationary steady-state mixture of bacteriorhodopsin and K. This mixture is then rotated through the red (676 nm) probe beam, which selectively enhances the Raman scattering from K. The essential advantage of our successive pump-and-probe technique is that it prevents the fluorescence excited by the pump beam from masking the red probe Raman scattering. K exhibits strong Raman lines at 1516, 1294, 1194, 1012, 957, and 811 cm-1. The effects of C15 deuteration on K's fingerprint lines correlate well with those seen in 13-cis model compounds, indicating that K has a 13-cis chromophore. However, the presence of unusually strong "low-wavenumber" lines at 811 and 957 cm-1, attributable to hydrogen out-of-plane wags, indicates that the protein holds the chromophore in a distorted conformation after trans leads to cis isomerization. PMID:6281770
NASA Astrophysics Data System (ADS)
Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca
2018-02-01
Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.
Cladding-pumped ytterbium-doped fiber laser with radially polarized output.
Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A
2014-09-15
A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.
Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David
2014-04-15
An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.
Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.
Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U
2015-08-01
Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.
High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode
NASA Astrophysics Data System (ADS)
Ma, Qinglei; Mo, Haiding; Zhao, Jay
2018-04-01
A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.
A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.
2013-05-01
A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.
NASA Astrophysics Data System (ADS)
Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.
2006-12-01
Advances in Laser Technology and nonlinear Optical techniques can be effectively utilized for LIDAR applications in space and atmospheric sciences to achieve better flexibility and control of the available optical power. Using such devices, one can achieve highly accurate and resolved, measurement of the distribution for atmospheric scattering layers. In the present investigation a diode double end pumped high repetition rate, multi wavelength Nd:YAG laser is designed, fabricated and various laser beam parameters have been characterized for LIDAR applications. Nonlinear optical techniques have been employed to generate higher harmonics like 532nm, 355nm and 266nm for various spectral studies. The experimental setup mainly consists of two Fiber coupled pump laser diodes (Model FAP- 81-30C-800B, Coherent Inc, USA) with a maximum output power of 30Watt at a wavelength of 807-810nm at 30°C set temperature. A second harmonic LBO crystal cut for critical phase matching placed within the laser resonator is provided for converting a fraction of the fundamental beam to a second harmonic beam. A type II frequency tripling LBO nonlinear crystal (cut for critical phase matching) is also located inside the laser resonator. The third harmonic beam and the unconverted fundamental beam are then directed across a type I fourth harmonic LBO crystal cut for critical phase matching where a portion of the fundamental beam and a portion of the third harmonic beam are converted to a fourth harmonic frequency when both fundamental and third harmonic beams propagate through the frequency quadrupling crystal. The resulting beams which are the fundamental (1064nm), second harmonic (532nm), third harmonic (355nm) and fourth harmonic (266nm) are then directed to a fourth harmonic separator in which the fourth harmonic beam is separated from the fundamental beam. A maximum average power of 12W at 1064nm, 8W at 532nm, 5W at 355nm and 3W at 266nm have been measured at a repetition rate of 10KHz. A minimum pulse width of 25ns have been observed.
50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping
NASA Astrophysics Data System (ADS)
Chyla, Michal; Miura, Taisuke; Smrž, Martin; Severova, Patricie; Novak, Ondrej; Endo, Akira; Mocek, Tomas
2014-02-01
We are developing a 100-mJ Yb:YAG thin-disk regenerative amplifier operating at 1-kHz repetition rate pumped at zero-phonon-line (968.825-nm1) and delivering 1-2 ps pulses for EUV plasma sources applicable in science and industry. Recently we achieved the output energy of nearly 50-mJ from a single laser-head cavity with good beam quality (M2<1.2) as well as stable beam-pointing (<4μrad). Applying pulsed pumping with the pulse duration shorter than the upper state lifetime of Yb:YAG helps to reduce the ASE and thermal loading of the thin-disk.
Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm
NASA Astrophysics Data System (ADS)
Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.
2018-03-01
An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.
NASA Astrophysics Data System (ADS)
Shen, Yijie; Gong, Mali; Fu, Xing
2018-05-01
Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.
High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping
NASA Astrophysics Data System (ADS)
Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo
2014-11-01
A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.
Ultrafast Airy beam optical parametric oscillator
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
NASA Astrophysics Data System (ADS)
Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.
2015-02-01
With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.
UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.
Amer, Eynas; Gren, Per; Sjödahl, Mikael
2013-10-21
A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
NASA Astrophysics Data System (ADS)
Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav
2017-05-01
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert
2018-02-01
This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganot, Yuval, E-mail: yuvalga@sapir.ac.il, E-mail: ibar@bgu.ac.il; Bar, Ilana, E-mail: yuvalga@sapir.ac.il, E-mail: ibar@bgu.ac.il
2015-09-28
Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340more » mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.« less
High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm
NASA Astrophysics Data System (ADS)
Newburgh, G. A.; Dubinskii, M.
2016-02-01
We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.
NASA Astrophysics Data System (ADS)
Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.
2017-01-01
A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.
Cr:ZnSe laser pumped with Tm:YAP microchip laser
NASA Astrophysics Data System (ADS)
Koranda, Petr; Sulc, Jan; Doroshenko, Maxim; Jelinková, Helena; Basiev, Tasoltan T.; Osiko, Vjatcheslav; Badikov, V. V.; Badikov, D.
2010-02-01
Cr:ZnSe laser coherently longitudinally pumped with Tm:YAP microchip laser was realised. The pumping laser consisted of Tm:YAP crystal (3x3 mm) with resonator mirrors deposited directly on its faces (on rear face the dielectric layer with high reflectance for 1998 nm wavelength and high transmittance for 790 nm pumping radiation wavelength; on output face the dielectric layer with reflectance 97% at 1998 nm wavelength). The maximal output power was 5.5 W and the generated radiation wavelength was 1998 nm. The main advantage of this pumping was stable and still output without relaxation spikes (non-spiking). The Tm:YAP laser radiation was collimated and focused by the set of two CaF2 lenses. The pumping beam spot diameter inside the Cr:ZnSe crystal was 300 μm. The Cr:ZnSe laser resonator consisted of flat rear mirror (HT at 1998 nm and HR at 2100 - 2900 nm) and curved output coupler (r = -150 mm, R = 95% at 2100 - 2700 nm). The maximal output energy of stable radiation was 4 mJ (pulse duration 10 ms, repetition rate 10 Hz). For wavelength tuning the Lyott filter (quartz plate under Brewster angle) was placed between the Cr:ZnSe crystal and output coupler. The generated radiation wavelength was continuously tunable from 2246 - 2650 nm.
Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping
NASA Astrophysics Data System (ADS)
Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet
2018-02-01
The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.
Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm.
Wu, Bo; Jiang, Peipei; Yang, Dingzhong; Chen, Tao; Kong, Jian; Shen, Yonghang
2009-04-13
We report a compact diode-laser pumped Nd:GdVO(4) laser with stable dual-wavelength output at 1063 nm and 1065 nm simultaneously. Two types of resonant cavity configurations were presented to support the stable dual-wavelength operation of the laser. Using a polarization beam splitter(PBS) included T-shaped cavity, we obtained a total power output over 5 W in two orthogonal polarized beam directions with 4 W in sigma polarization (1065.5 nm) and 1 W in pi polarization (1063.1 nm). By combining a half-wave-plate with the PBS in the laser cavity, a new configuration favoring one beam direction dual-wavelength output with same polarization direction was realized. A phenomenon of further line splitting was observed in both 1065 nm and 1063 nm.
Development of a polarized 31Mg+ beam as a spin-1/2 probe for BNMR
NASA Astrophysics Data System (ADS)
Levy, C. D. P.; Pearson, M. R.; Dehn, M. H.; Karner, V. L.; Kiefl, R. F.; Lassen, J.; Li, R.; MacFarlane, W. A.; McFadden, R. M. L.; Morris, G. D.; Stachura, M.; Teigelhöfer, A.; Voss, A.
2016-12-01
A 28 keV beam of 31Mg+ ions was extracted from a uranium carbide, proton-beam-irradiated target coupled to a laser ion source. The ion beam was nuclear-spin polarized by collinear optical pumping on the 2it {S}_{1/2}-2it {P}_{1/2} transition at 280 nm. The polarization was preserved by an extended 1 mT guide field as the beam was transported via electrostatic bends into a 2.5 T longitudinal magnetic field. There the beam was implanted into a single crystal MgO target and the beta decay asymmetry was measured. Both hyperfine ground states were optically pumped with a single frequency light source, using segmentation of the beam energy, which boosted the polarization by approximately 50 % compared to pumping a single ground state. The total decay asymmetry of 0.06 and beam intensity were sufficient to provide a useful spin-1/2 beam for future BNMR experiments. A variant of the method was used previously to optically pump the full Doppler-broadened absorption profile of a beam of 11Be+ with a single-frequency light source.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz
Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.
2017-01-01
We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode
NASA Astrophysics Data System (ADS)
Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.
2018-04-01
The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.
Laser Demonstration of Diode-Pumped Nd3+-Doped Fluorapatite Anisotropic Ceramics
NASA Astrophysics Data System (ADS)
Akiyama, Jun; Sato, Yoichi; Taira, Takunori
2011-02-01
We report the first demonstration of a diode-pumped anisotropic ceramic laser that uses microdomain-controlled neodymium-doped hexagonal fluorapatite [Nd3+:Ca10(PO4)6F2, Nd:FAP] polycrystalline ceramics as the gain medium, which were fabricated by the rare-earth-assisted magnetic grain-orientation control method, as a step toward achieving giant micro photonics. The laser delivers 1063.10 and 1063.22 nm output beams when pumped with a central wavelength of 807.5 nm and a 2 nm bandwidth diode laser operating in quasi-continuous-wave (QCW) mode. We obtained a maximum QCW peak power of 255 mW with an uncoated 2 at. % Nd:FAP material.
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-12-31
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-01-01
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency.
Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc
2015-02-01
We report on a continuous-wave Ho:KLu(WO4)2 (KLuW) microchip laser with a record slope efficiency of 84%, the highest value among the holmium inband-pumped lasers, delivering 201 mW output power at 2105 nm. The Ho laser operating at room temperature on the (5)I8→(5)I7 transition is in-band-pumped by a diode-pumped Tm:KLuW microchip laser at 1946 nm. Ho:KLuW laser operation at 2061 and 2079 nm is also demonstrated with a maximum slope efficiency of 79%. The microchip laser generates an almost diffraction-limited output beam with a Gaussian profile and a M2<1.1. The laser performance of the Ng-cut Ho:KLuW crystal is very similar for pump light polarizations ‖Nm and Np. The positive thermal lens plays a key role in the laser mode stabilization and proper mode-matching. The latter, together with the low quantum defect under in-band-pumping (∼0.08), is responsible for the extraordinary high slope efficiency.
Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser
NASA Astrophysics Data System (ADS)
Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying
2005-04-01
Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.
NASA Astrophysics Data System (ADS)
Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.
2008-03-01
The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.
High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement.
Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark
2017-01-20
We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
Landgraf, Björn; Hoffmann, Andreas; Kartashov, Daniil; Gärtner, Felix; Samsonova, Zhanna; Polynkin, Pavel; Jacoby, Joachim; Kühl, Thomas; Spielmann, Christian
2015-03-23
The efficient generation of redshifted pulses from chirped femtosecond joule level Bessel beam pulses in gases is studied. The redshift spans from a few 100 cm⁻¹ to several 1000 cm⁻¹ corresponding to a shift of 50-500 nm for Nd:glass laser systems. The generated pulses have an almost perfect Gaussian beam profile insensitive of the pump beam profile, and are much shorter than the pump pulses. The highest measured energy is as high as 30 mJ, which is significantly higher than possible with solid state nonlinear frequency shifters.
Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Cui, Qin; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping
2016-10-01
Single-mode oscillation of a diode-pumped conventional Nd:YAG laser at 1835 nm is demonstrated, for the first time to our knowledge, in the form of microchip configuration. The achieved maximum output power reaches 189 mW with slope efficiency of about 5.5% with respect to absorbed pump power. The laser spectra are measured with linewidth less than 0.08 nm indicating a single longitudinal mode. The output laser beam is also measured to be near diffraction-limited with M2 factors of about 1.2 and 1.5 in x and y directions. Using a mechanical chopper with 50% duty cycle, the maximum output power is improved to 253 mW with slope efficiency of about 9.7%.
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Akbari Jafarabadi, Marzieh; Safari Syahkal, Mehran; Mozaffari, Hossein
2017-08-01
In this paper, laser induced optical breakdown in colloidal nanoparticles was studied by using pump- probe beam technique. Colloidal nanoparticles of Ag (as a good conductor), Al2O3 and TiO2 (with good dielectric properties) were used in this investigation. The optical breakdown was induced by an Nd:YAG laser beam (operating at 1064 nm with pulse duration ∼30 ns). A small portion of the beam was taken by an optical splitter and used as probe beam. The time varying transmission of the probe beam transversely through the plasma was measured during the breakdown process. According to the results, the nanoparticles characteristics and pump beam intensity have significant influence in the breakdown process. Our results also show dissimilar dynamic behaviors for conductor and dielectric nanoparticles at different pump intensity. The results are useful for nanoparticle synthesis by laser ablation in distilled water in which the optical breakdown intensity threshold of ambient water influenced by generated nanoparticles.
Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser
NASA Astrophysics Data System (ADS)
Cao, Jianjun; Shen, Dongyi; Zheng, Yuanlin; Feng, Yaming; Kong, Yan; Wan, Wenjie
2017-05-01
With the rapid progress in fiber technologies, femtosecond fiber lasers, which are compact, cost-effective and stable, have been developed and are commercially available. Studies of optical parametric oscillators (OPOs) pumped by this type of laser are demanding. Here we report a femtosecond optical parametric oscillator (OPO) at 79.6 MHz repetition rate based on MgO-doped periodically poled LiNbO3 (MgO:PPLN), synchronously pumped by the integrated second harmonic radiation of a femtosecond fiber laser at 532 nm. The signal delivered by the single resonant OPO is continuously tunable from 757 to 797 nm by tuning the crystal temperature in a poling period of 7.7 μ \\text{m} . The output signal shows good beam quality in TEM00 mode profile with pulse duration of 206 fs at 771 nm. Maximum output signal power of 71 mW is obtained for a pump power of 763 mW and a low pumping threshold of 210 mW is measured. Moreover, grating tuning and cavity length tuning of the signal wavelength are also investigated.
Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.
2008-01-01
In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.
Femtosecond time-resolved MeV electron diffraction
Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...
2015-06-02
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less
Microchip laser based on Yb:YAG/V:YAG monolith crystal
NASA Astrophysics Data System (ADS)
Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav
2016-03-01
V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.
Diode-pumped cw Nd:YAG three-level laser at 869 nm.
Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang
2010-11-01
We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Zhao, Pengfei; Li, Chengyu; Wang, Bopeng; Lin, Honghuan; Guo, Chao; Liu, Yu; Jing, Feng; Tang, Chuanxiang
2018-03-01
A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality
Recent Progress Made in the Development of High-Energy UV Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.
2007-01-01
In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.
Self-mode-locked AlGaInP-VECSEL
NASA Astrophysics Data System (ADS)
Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.
2017-10-01
We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.
NASA Astrophysics Data System (ADS)
Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.
2017-11-01
Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.
Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F
2013-01-28
We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions.
NASA Astrophysics Data System (ADS)
Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki
2014-12-01
We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.
Chirp and temperature effects in parametric down conversion from crystals pumped at 800 nm
NASA Astrophysics Data System (ADS)
Sánchez-Lozano, X.; Wiechers, C.; Lucio, J. L.
2018-04-01
We consider spontaneous parametric down conversion from aperiodic poled crystals pumped at 800 nm. Our analyses account the effect of internal and external parameters, where, in the former, we include the crystal chirp and length, while in the latter temperature, also the pump chirp and other beam properties. The typical distribution produced is a pop-tab like structure in frequency-momentum space, and our results show that this system is a versatile light source, appropriated to manipulate the frequency and transverse momentum properties of the light produced. We briefly comment on the potential usefulness of the types of telecom wavelength light produced, in particular for quantum information applications.
Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal
NASA Astrophysics Data System (ADS)
Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun
2018-02-01
We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.
Observation of stimulated Mie-Bragg scattering from large-size-gold-nanorod suspension in water
NASA Astrophysics Data System (ADS)
He, Guang S.; Yong, Ken-Tye; Zhu, Jing; Prasad, P. N.
2012-04-01
Highly directional backward stimulated scattering has been observed from large-size-gold nanorods suspended in water, pumped with ˜816 nm and ˜10 ns laser pulses. In comparison with other known stimulated scattering effects, the newly observed effect exhibits the following features. (i) The scattering centers are impurity particles with a size comparable in order of magnitude to the incident wavelength. (ii) There is no frequency shift between the pump wavelength and the stimulated scattering wavelength. (iii) The pump threshold can be significantly lower than that of stimulated Brillouin scattering in pure water. The nonfrequency shift can be explained by the formation of a standing-wave Bragg grating induced by the interference between the forward pump beam and the backward Mie-scattering beam. The low pump threshold results from stronger initial Mie-scattering (seed) signals and the intensity-dependent refractive-index change of the scattering medium enhanced by metallic nanoparticles.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M.; Kubeček, V.
2017-07-01
Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.
Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide
NASA Astrophysics Data System (ADS)
Bouadjemine, R.; Liang, D.; Almeida, J.; Mehellou, S.; Vistas, C. R.; Kellou, A.; Guillot, E.
2017-12-01
To improve the output beam stability of a TEM00-mode solar-pumped laser, a twisted fused silica light-guide was used to achieve uniform pumping along a 3 mm diameter and 50 mm length Nd:YAG rod. The concentrated solar power at the focal spot of a primary parabolic mirror with 1.18 m2 effective collection area was efficiently coupled to the entrance aperture of a 2D-CPC/2V-shaped pump cavity, within which the thin laser rod was pumped. Optimum solar laser design parameters were found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 2.3 W continuous-wave TEM00-mode 1064 nm laser power was measured, corresponding to 1.96 W/m2 collection efficiency and 2.2 W laser beam brightness figure of merit. Excellent TEM00-mode laser beam profile at M2 ≤ 1.05 and very good output power stability of less than 1.6% were achieved. Heliostat orientation error dependent laser power variation was considerably less than previous solar laser pumping schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, H., E-mail: harvey6117@gmail.com; Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801; Mironov, A. E.
2015-02-23
Direct coupling of the optical field in a ∼244 nm thick, CdSe/ZnS quantum dot film to an optical fiber has yielded lasing in the red (λ ∼ 644 nm) with a threshold pump energy density < 2.6 mJ cm{sup −2}. Comprising 28–31 layers of ∼8 nm diameter quantum dots deposited onto the exterior surface of a 125 μm diameter coreless silica fiber, this free-running oscillator produces 134 nJ in 3.6 ns FWHM pulses which correspond to 37 W of peak power from an estimated gain volume of ∼4.5 × 10{sup −7} cm{sup 3}. Lasing was confirmed by narrowing of the output optical radiation in both the spectral and temporal domains, and the lasermore » beam intensity profile approximates a top hat.« less
High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.
Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E
2013-08-15
We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.
Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.
Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A
2006-01-15
A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, T., E-mail: tklein@ifp.uni-bremen.de; Klembt, S.; Institut Néel, Université Grenoble Alpes and CNRS, B.P. 166, 38042 Grenoble
2015-03-21
ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue)more » is achieved, respectively.« less
Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 μm.
You, Zhenyu; Wang, Yan; Xu, Jinlong; Zhu, Zhaojie; Li, Jianfu; Wang, Hongyan; Tu, Chaoyang
2015-08-15
We reported on a diode-end-pumped single-longitudinal-mode microchip laser using a 600-μm-thick Er:GGG crystal at ∼2.7 μm, generating a maximum output power of 50.8 mW and the maximum pulsed energy of 0.306 mJ, with repetition rates of pumping light of 300, 200, and 100 Hz, respectively. The maximum slope efficiency of the laser was 20.1%. The laser was operated in a single-longitudinal mode centered at about 2704 nm with a FWHM of 0.42 nm. The laser had a fundamental beam profile and the beam quality parameter M(2) was measured as 1.46. These results indicate that the Er:GGG microchip laser is a potential compact mid-infrared laser source.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-12-01
We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.
NASA Astrophysics Data System (ADS)
Ahmadi, A.; Avazpour, A.; Nadgaran, H.; Mousavi, M.
2018-04-01
The effect of terbium gallium garnet (TGG ) crystal length on 1064 and 532 nm output powers and beam quality of a unidirectional ring Nd:YVO4 laser is investigated. In the case of 1064 nm (without nonlinear crystal), the laser output power without considerating the effect of TGG crystal was computed theoretically. Then three TGG crystals with different lengths were placed in the laser setup one by one. A systematic decrease in output power was observed by increasing the TGG crystal length. The experiment was repeated in the case of 532 nm. It was found that in a 532 nm laser, higher laser efficiency and small beam quality degradation can be achieved by increasing the TGG crystal length leading to a 5.7 W green laser with 27 W pump power. The power stability and beam quality were 0.8% for 30 min and less than 1.3, respectively.
High energy 523 nm ND:YLF pulsed slab laser with novel pump beam waveguide design
NASA Astrophysics Data System (ADS)
Yang, Qi; Zhu, Xiaolei; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Chen, Weibiao
2015-11-01
A laser diode pumped Nd:YLF master oscillator power amplifier (MOPA) green laser system with high pulse energy and high stable output is demonstrated. At a repetition rate of 50 Hz, 840 mJ pulse energy, 9.1 ns pulse width of 1047 nm infrared laser emitting is obtained from the MOPA system. The corresponding peak power is 93 MW. Extra-cavity frequency doubling with a LiB3O5 crystal, pulse energy of 520 mJ at 523 nm wavelength is achieved. The frequency conversion efficiency reaches up to 62%. The output pulse energy instability of the laser system is less than 0.6% for one hour.
Radiation enhancement in doped AlGaN-structures upon optical pumping
NASA Astrophysics Data System (ADS)
Bokhan, P. A.; Zhuravlev, K. S.; Zakrevsky, D. E.; Malin, T. V.; Osinnykh, I. V.; Fateev, N. V.
2017-01-01
Spectral characteristics of spontaneous and stimulated luminescence have been studied for molecular beam epitaxy synthesized Al x Ga1- x N/AlN solid solutions with x = 0.5 and 0.74 upon optical pumping by pulse laser radiation with λ = 266 nm. Broadband radiation spectra with a width of 260 THz for Al0.5Ga0.5N and 360 THz for Al0.74Ga0.26N have been obtained. The measured enhancement factors are g ≈ 70 cm-1 for Al0.5Ga0.5N at λ ≈ 528 nm and g ≈ 20 cm-1 for Al0.74Ga0.26N at λ ≈ 468 nm.
High-brightness 800nm fiber-coupled laser diodes
NASA Astrophysics Data System (ADS)
Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior
2014-03-01
Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.
Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength
NASA Astrophysics Data System (ADS)
Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš
2018-02-01
Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery
NASA Astrophysics Data System (ADS)
Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Swiderski, J.
2016-11-01
We report an all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser emitting 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm. The laser operated at ~1.94 µm and the output beam quality factor M 2 was measured to be ~1.2. The output beam was very stable with power fluctuations <1% measured over 1 h. The laser system is to be implemented as a scalpel for low-invasive soft-tissue surgery.
NASA Astrophysics Data System (ADS)
Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Gogler, S.; Swiderski, J.
2016-12-01
An all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser operated at a wavelength of 1.94 μm was developed. 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm was demonstrated. The laser output beam quality factor M2 was measured to be 1.2. The output beam was very stable with power fluctuations <1% measured over 1 hour. The laser system is to be implemented as a scalpel for surgery of soft biological tissues.
Wavelength locking of single emitters and multi-emitter modules: simulation and experiments
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe
2016-03-01
Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.
1-mJ Q-switched diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-08-01
We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.
Optical gain at 650 nm from a polymer waveguide with dye-doped cladding
NASA Astrophysics Data System (ADS)
Reilly, M. A.; Coleman, B.; Pun, E. Y. B.; Penty, R. V.; White, I. H.; Ramon, M.; Xia, R.; Bradley, D. D. C.
2005-12-01
Signal amplification at the polymer optical fiber low-loss window of 650 nm is reported in an SU8 rib waveguide coated with Rhodamine-640 doped poly(methyl methacrylate). A signal beam is end-fired into the facet of a 7×100μm waveguide and amplified by top pumping of the 2-μm-thick cladding region with a pulsed pump source focused into a 9-mm-long stripe. A gain of 14dB and a minimum signal-to-noise ratio of around 2 dB are achieved in a 15-mm-long device with a low threshold pump intensity of 0.25μJ/mm2, which is an order of magnitude lower than previously reported.
Louyer, Yann; Wallerand, Jean-Pierre; Himbert, Marc; Deneva, Margarita; Nenchev, Marin
2003-09-20
We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023-1033-nm (1030-1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.
Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser
Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-01
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863
Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M
2016-01-01
We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.
Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-30
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
Electron beam induced light emission
NASA Astrophysics Data System (ADS)
Ulrich, A.; Heindl, T.; Krücken, R.; Morozov, A.; Skrobol, C.; Wieser, J.
2009-08-01
Electron beams with a particle energy of typically 12keV are used for collisional excitation of dense gases. The electrons are sent through ceramic membranes of only 300nm thickness into gas targets. Excimer light emission from the pure rare gases and from gas mixtures are studied for the development of brilliant VUV and UV light sources. The application of the technology for gas kinetic studies is described and its potential for building very small electron beam pumped lasers is discussed.
Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)
NASA Astrophysics Data System (ADS)
Wadsworth, William J.; Coutts, David W.; Webb, Colin E.
1999-11-01
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin
2014-12-29
We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics.
NASA Astrophysics Data System (ADS)
Saleh, Mohammad Abu
2007-05-01
When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.
Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser
NASA Technical Reports Server (NTRS)
Coyle, Donald B.
2008-01-01
A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.
Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser
NASA Astrophysics Data System (ADS)
Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan
2017-11-01
High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.
NASA Astrophysics Data System (ADS)
Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.
2013-05-01
In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.
Pavel, Nicolaie; Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian
2014-09-22
Depressed cladding waveguides have been realized in Nd:YVO(4) employing direct writing technique with a femtosecond-laser beam. It was shown that the output performances of such laser devices are improved by the reduction of the quantum defect between the pump wavelength and the laser wavelength. Thus, under the classical pump at 808 nm (i.e. into the (4)F(5/2) level), a 100-μm diameter circular waveguide inscribed in a 0.7-at.% Nd:YVO(4) outputted 1.06-μm laser pulses with 3.0-mJ energy, at 0.30 optical efficiency and slope efficiency of 0.32. The pump at 880 nm (i.e.directly into the (4)F(3/2) emitting level) increased the pulse energy at 3.8 mJ and improved both optical efficiency and slope efficiency at 0.36 and 0.39, respectively. The same waveguide yielded continuous-wave 1.5-W output power at 1.06 μm under the pump at 880 nm. Laser emission at 1.34 μm was also improved using the pump into the (4)F(3/2) emitting level of Nd:YVO(4).
Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality
NASA Astrophysics Data System (ADS)
Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.
2017-11-01
We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.
Trapped-Ion Quantum Simulation of an Ising Model with Transverse and Longitudinal Fields
2013-03-29
resonant λ = 355 nm laser beams which drive stimulated Raman transitions [33, 34]. The beams intersect at right angles so that their wavevector difference...ated by a pair of Raman laser beams with a beatnote frequency of ωS , with the field amplitude determined by the beam intensities. The field directions...cool- ing, followed by optical pumping to the state |↓↓↓ ..〉z and 100 µs of Raman sideband cooling that prepares the motion of all modes along ∆~k in
Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.
Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G
2014-05-05
Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.
High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR
NASA Astrophysics Data System (ADS)
Stöppler, Georg; Kieleck, Christelle; Eichhorn, Marc
2010-10-01
For some medical fields in laser surgery and as a pump source for nonlinear materials to generate mid-IR radiation, e.g. for countermeasure applications, it is very useful to have a solid-state laser with high pulse energy at 2 μm. The rare earth ion Thulium offers a cross relaxation and can thus be directly diode pumped with common laser diodes around 800 nm for an efficient pumping. However, it was not considered for high pulse energy operation due to the high saturation fluence of around 62 J/cm2 at 2 μm. A limiting factor has always been the damage threshold of the optical elements inside the cavity. One of the reasons is the strong thermal lens of YAG, which affects a change of the beam radius inside the resonator and additionally degrades the beam quality with increasing pump power. Using a new pump geometry of the Tm3+:YAG laser system, it is now possible to reach pulse energies > 13 mJ at a diffraction limited beam quality of M2 < 1.1. The Q-switched Tm3+:YAG laser system uses an AOM operating at 100 Hz and will be described in detail. Due to the high pulse energy and very good beam quality, this laser is very interesting for nonlinear parametric frequency conversion.
High-power picosecond fiber source for coherent Raman microscopy
Kieu, Khanh; Saar, Brian G.; Holtom, Gary R.; Xie, X. Sunney; Wise, Frank W.
2011-01-01
We report a high-power picosecond fiber pump laser system for coherent Raman microscopy (CRM). The fiber laser system generates 3.5 ps pulses with 6 W average power at 1030 nm. Frequency doubling yields more than 2 W of green light, which can be used to pump an optical parametric oscillator to produce the pump and the Stokes beams for CRM. Detailed performance data on the laser and the various wavelength conversion steps are discussed, together with representative CRM images of fresh animal tissue obtained with the new source. PMID:19571996
Medium-power diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Lucca, Andrea; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro; dell'Acqua, Stefano
2003-05-01
We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at approximately 804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.
Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A
2015-11-20
We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.
Thermal Lens Measurement in Diode-Pumped Nd:YAG Zig-Zag Slab
NASA Technical Reports Server (NTRS)
Smoak, M. C.; Kay, R. B.; Coyle, D. B.; Hopf, D.
1998-01-01
A major advantage that solid state zig-zag slab lasers have over conventional rod-based designs is that a much weaker thermal lens is produced in the slab when side-pumped with Quasi-CW laser diode arrays, particularly if the pump radiation is kept well away from the Brewster-cut ends. This paper reports on a rather strong thermal lens produced when diode pump radiation is collimated into a narrow portion of the zig-zag slab. The collimation of multi-bar pump packages to increase brightness and improve overlap is a direct consequence of designs which seek to maximize performance and efficiency. Our slab design employed a 8.1 cm x 2.5 mm x 5 mm slab with opposing Brewster end faces. It was pumped through the 2.5 mm direction by seven laser diode array packages, each housing four 6OW diode bars, 1 cm in width. The pump face, anti-reflection (AR) coated at 809 nm, was 6.8 cm in width and the 8.1 cm opposing side, high-reflection (HR) coated at 809 nm, reflected the unabsorbed pump beam for a second pass through the slab.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
NASA Astrophysics Data System (ADS)
Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus
2016-01-01
We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.
10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2017-01-01
We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.
High beam quality of a Q-switched 2-µm Tm,Ho:LuVO4 laser
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Xining; Shen, Yingjie; Li, Linjun; Zhou, Long; Yang, Yuqiang; Bai, Yunfeng; Xie, Wenqiang; Ye, Guangchao; Yu, Xiaoyang
2018-05-01
A diode-end-pumped 2.05-µm Q-switched Tm,Ho:LuVO4 laser is reported in this paper. The cryogenic Tm3+ (5.0 at.%),Ho3+ (0.5 at.%):LuVO4 crystal was pumped by an 800-nm laser diode. At a pulse repetition frequency of 10 kHz, the maximum average output power of 3.77 W was achieved at 77 K when an incident pump power of 14.7 W was used. The slope efficiency and optical-optical conversion efficiency were 28.3 and 25.6%, respectively. The maximum per pulse energy was 2.54 mJ for a pulse duration of 69.9 ns. The beam quality factor Mx 2 was approximately 1.17 and My 2 was approximately 1.01 for the Tm,Ho:LuVO4 laser.
NASA Astrophysics Data System (ADS)
Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.
2016-05-01
This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.
Electron-beam pumped laser structures based on MBE grown {ZnCdSe}/{ZnSe} superlattices
NASA Astrophysics Data System (ADS)
Kozlovsky, V. I.; Shcherbakov, E. A.; Dianov, E. M.; Krysa, A. B.; Nasibov, A. S.; Trubenko, P. A.
1996-02-01
Cathodoluminescence (CL), photoreflection (PR), phototransmission (PT) of single and multiquantum wells (MQWs) and strain layer {ZnCdSe}/{ZnSe} superlattices (SLs) grown by molecular beam epitaxy (MBE) were studied. An increase of the Stokes shift with the number of quantum wells (QWs) and the appearance of new lines in CL and PT spectra were observed. Room temperature (RT) vertical-cavity surface-emitting laser (VCSEL) operation was achieved by using the SL structures. Output power up to 2.2 W in single longitudinal mode with λ = 493 nm was obtained. Cut facet laser wavelength of the same SL structure was 502 nm.
Remote air lasing for trace detection
NASA Astrophysics Data System (ADS)
Dogariu, Arthur; Michael, James B.; Miles, Richard B.
2011-05-01
We demonstrate coherent light propagating backwards from a remotely generated high gain air laser. A short ultraviolet laser pulse tuned to a two-photon atomic oxygen electronic resonance at 226 nm simultaneously dissociates the oxygen molecules in air and excites the resulting atomic oxygen fragments. Due to the focal depth of the pumping laser, a millimeter long region of high gain is created in air for the atomic oxygen stimulated emission at 845nm. We demonstrate that the gain in excess of 60 cm-1 is responsible for both forward and backwards emission of a strong, collimated, coherent laser beam. We present evidence for coherent emission and characterize the backscattered laser beam while varying the pumping conditions. The optical gain and directional emission allows for six orders of magnitude enhancement for the backscattered emission when compared with the fluorescence emission collected into the same solid angle. . This opens new opportunities for the remote detection capabilities of trace species, and provides much greater range for the detection of optical molecular and atomic features from a distant target.
Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser
NASA Astrophysics Data System (ADS)
Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun
2017-01-01
Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.
Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D J; Barty, C J; Betts, S M
2005-04-21
The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less
NASA Astrophysics Data System (ADS)
Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick
2016-05-01
We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2<1.26 for the SH beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.
de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D
2005-05-15
We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.
Backward pumping kilowatt Yb3+-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.
2011-09-01
A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.
NASA Astrophysics Data System (ADS)
Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping
2017-02-01
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}
Marshall, C.D.; Payne, S.A.; Krupke, W.F.
1996-05-14
Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.
Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6
Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.
1996-01-01
Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.
NASA Astrophysics Data System (ADS)
Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.
2007-03-01
The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.
Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity
NASA Astrophysics Data System (ADS)
Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao
2017-04-01
Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm-2 · sr-1.
Room temperature high power mid-IR diode laser bars for atmospheric sensing applications
NASA Astrophysics Data System (ADS)
Crump, Paul; Patterson, Steve; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Zhang, Shiguo; Elim, Sandrio; Bougher, Mike; Patterson, Jason; Das, Suhit; Wise, Damian; Matson, Triston; Balsley, David; Bell, Jake; DeVito, Mark; Martinsen, Rob
2007-04-01
Peak CW optical power from single 1-cm diode laser bars is advancing rapidly across all commercial wavelengths and the available range of emission wavelengths also continues to increase. Both high efficiency ~ 50% and > 100-W power InP-based CW bars have been available in bar format around 1500-nm for some time, as required for eye-safe illuminators and for pumping Er-YAG crystals. There is increasing demand for sources at longer wavelengths. Specifically, 1900-nm sources can be used to pump Holmium doped YAG crystals, to produce 2100-nm emission. Emission near 2100-nm is attractive for free-space communications and range-finding applications as the atmosphere has little absorption at this wavelength. Diode lasers that emit at 2100-nm could eliminate the need for the use of a solid-state laser system, at significant cost savings. 2100-nm sources can also be used as pump sources for Thulium doped solid-state crystals to reach even longer wavelengths. In addition, there are several promising medical applications including dental applications such as bone ablation and medical procedures such as opthamology. These long wavelength sources are also key components in infra-red-counter-measure systems. We have extended our high performance 1500-nm material to longer wavelengths through optimization of design and epitaxial growth conditions and report peak CW output powers from single 1-cm diode laser bars of 37W at 1910-nm and 25W at 2070-nm. 1-cm bars with 20% fill factor were tested under step-stress conditions up to 110-A per bar without failure, confirming reasonable robustness of this technology. Stacks of such bars deliver high powers in a collimated beam suitable for pump applications. We demonstrate the natural spectral width of ~ 18nm of these laser bars can be reduced to < 3-nm with use of an external Volume Bragg Grating, as required for pump applications. We review the developments required to reach these powers, latest advances and prospects for longer wavelength, higher power and higher efficiency.
Compact 151 W green laser with U-type resonator for prostate surgery
NASA Astrophysics Data System (ADS)
Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza
2013-04-01
We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-11-01
We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.
A dual-end-pumped Ho:YAG laser with a high energy output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X M; Cui, Zh; Dai, T Y
2015-08-31
We report a high energy output from a Ho:YAG oscillator resonantly double-end pumped by Tm:YLF lasers at room temperature. The maximum pulse energy of 52.5 mJ was achieved at a pulse repetition rate of 100Hz and a pulse duration of 35.2 ns, corresponding to a peak power of approximately 1.5 MW. The output wavelength was 2090.7 nm with beam quality factor M{sup 2} ∼ 1.2. (lasers)
NASA Astrophysics Data System (ADS)
Khan, Pritam; Barik, A. R.; Vinod, E. M.; Sangunni, K. S.; Adarsh, K. V.
2015-02-01
We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm2, however the kinetics remain rather different.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-02-29
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
Towards an 100 Hz X-Ray Laser Station
NASA Astrophysics Data System (ADS)
Tümmler, J.; Stiel, H.; Jung, R.; Janulewicz, K. A.; Nickles, P. V.; Sandner, W.
During the last few years the optimization of pumping schemes of X-ray lasers (XRL) has reached a level where the required pump power could be provided by table-top or even by commercially available laser systems. But the stability of the XRL output signal is limited by that of the pumping lasers and also the repetition rate is at maximum about 10 Hz. Many envisioned applications would however benefit from an improvement of these crucial parameters. A way to overcome this situation could be the use of diode pumped solid state lasers (DPSSL) as drivers. Therefore we are developing a new 100 Hz DPSSL based on Yb:YAG thin disk and CPA technology. This system is based on newly developed efficient diode stacks for 100 Hz repetition rate. According to the common requirements of a transient collisional XRL (here in a grazing incidence pumping scheme -GRIP) the new laser driver has a double beam structure with one beam for plasma performing, delivering an energy at the target in the range of 200 mJ in 200 ps and a second one with > 500 mJ and < 5 ps to heat the plasma. The amplifier system consists of 4 amplifiers of different sizes. For the following XRL operation a water cooled Ag or Mo tape as target for 13.9 nm or 18.9 nm XRL emission was developed. The target speed can be adjusted to the driver laser repetition rate. Parallel to the commissioning the XRL station and first application experiments an upgrade of the driver laser is planned.
Electron-Beam Recombination Lasers
NASA Astrophysics Data System (ADS)
Rhoades, Robert Lewis
1992-01-01
The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also reported are the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7^3S and 6^3 D states of Hg, of which 7^3S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne_2^{+}. One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.
Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping
NASA Astrophysics Data System (ADS)
Arbabzadah, E. A.; Damzen, M. J.
2016-06-01
We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry
NASA Technical Reports Server (NTRS)
Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph
1992-01-01
Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.
Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.
Zhang, Weina; Li, Juan; Lei, Hongxiang; Li, Baojun
2017-12-13
By introducing an 18 nm thick Au nanofilm, selective enhancement of green emission from lanthanide-doped (β-NaYF 4 :Yb 3+ /Er 3+ ) upconversion nanoparticles (UCNPs) is demonstrated. The Au nanofilm is deposited on a microfiber surface by the sputtering method and then covered with the UCNPs. The plasma on the surface of the Au nanofilm can be excited by launching a 980 nm wavelength laser beam into the microfiber, resulting in an enhancement of the local electric field and a strong thermal effect. A 36-fold luminescence intensity enhancement of the UCNPs at 523 nm is observed, with no obvious reduction in the photostability of the UCNPs. Further, the intensity ratios of the emissions at 523-545 nm and at 523-655 nm are enhanced with increasing pump power, which is attributed to the increasing plasmon-induced thermal effect. Therefore, the fabricated device is further demonstrated to exhibit an excellent ability in temperature sensing. By controlling the pump power and the UCNP concentration, a wide temperature range (325-811 K) and a high temperature resolution (0.035-0.046 K) are achieved in the fabricated device.
Highly-efficient multi-watt Yb:CaLnAlO4 microchip lasers
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady
2017-02-01
Tetragonal rare-earth calcium aluminates, CaLnAlO4 where Ln = Gd or Y (CALGO and CALYO, respectively), are attractive laser crystal hosts due to their locally disordered structure and high thermal conductivity. In the present work, we report on highly-efficient power-scalable microchip lasers based on 8 at.% Yb:CALGO and 3 at.% Yb:CALYO crystals grown by the Czochralski method. Pumped by an InGaAs laser diode at 978 nm, the 6 mm-long Yb:CALGO microchip laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η = 84% (with respect to the absorbed pump power) and an optical-to-optical efficiency of ηopt = 49%. The 3 mm-long Yb:CALYO microchip laser generated 5.06 W at 1048-1056 nm corresponding to η = 91% and ηopt = 32%. Both lasers produced linearly polarized output (σ- polarization) with an almost circular beam profile and beam quality factors M2 x,y <1.1. The output performance of the developed lasers was modeled yielding a loss coefficient as low as 0.004-0.007 cm-1. The results indicate that the Yb3+- doped calcium aluminates are very promising candidates for high-peak-power passively Q-switched microchip lasers.
1047 nm laser diode master oscillator Nd:YLF power amplifier laser system
NASA Technical Reports Server (NTRS)
Yu, A. W.; Krainak, M. A.; Unger, G. L.
1993-01-01
A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.
Design and Performance of the Vegetation Canopy Lidar (VCL) Laser Transmitter
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Lindauer, Steven J., II
2002-01-01
The Vegetation Canopy Lidar (VCL) laser is a Nd:YAG Q-switched, diode side-pumped, zig-zag slab design producing 10 ns, 15 mJ pulses at 1064 nm. It employs an unstable resonator as well as a graded reflectivity output coupler with a Gaussian reflectivity profile. In order to conserve power, a conductively cooled design is employed and is designed to operate over a range of 25 C without active thermal control. The laser is an oscillator-only design and equipped with an 15X beam expander to limit the output divergence to less than 60 microrad. Thermal lensing compensation in the side-pumped slab was performed with different treatments of the x and y portions of the z-directed beam. Performance data as a function of temperature are given.
High average-power 2 μm radiation generated by intracavity KTP OPO
NASA Astrophysics Data System (ADS)
He, Guangyuan; Guo, Jing; Jiao, Zhongxing; Wang, Biao
2015-09-01
A high average-power 2 μm laser with good beam quality based on an intracavity potassium titanium oxide phosphate (KTP) optical parametric oscillator (OPO) is demonstrated. A concave lens is used in the 1064 nm Nd:YAG pumped laser cavity to compensate for the thermal lensing of the laser rod. The cavity length of the KTP OPO is enlarged to improve the 2 μm beam quality. The maximum average output of the 2 μm laser is up to 18 W at 7 kHz with M 2 less than 6 and pulse width of 70 ns. The FWHM of the signal and idle lights are both less than 3 nm.
NASA Astrophysics Data System (ADS)
He, Guang S.; Zheng, Qingdong; Prasad, Paras N.
2007-05-01
We show that the backward-stimulated Rayleigh-Bragg scattering (SRBS) can be efficiently generated in a three-photon absorbing medium. Compared with all other known stimulated (such as Brillouin and Raman) scattering effects, the observed effect exhibits the following three features: (i) no frequency shift, (ii) a lower pump threshold, and (iii) no critical requirement for pump spectral linewidths within a range of Δv¯≤1cm-1. The specific nonlinear scattering medium is a three-photon absorbing chromophore solution (PRL-OT04 in chloroform), pumped by 1064nm laser pulses of nanoseconds duration but with three different spectral linewidths. The mechanism for generating backward SRBS in a three-photon active medium is the formation of a stationary Bragg grating enhanced by three-photon-absorption-associated refractive index changes. A superior optical phase-conjugation property of the backward SRBS beam has been experimentally demonstrated by employing two different optical setups. In both cases, a specially introduced aberration influence of 4-5 mrad can be basically removed by the backward SRBS beam that retains a much smaller beam divergence of ≤0.4 mrad.
NASA Astrophysics Data System (ADS)
Wei, Junxiong; Chaitanya Kumar, S.; Ye, Hanyu; Schunemann, Peter G.; Ebrahim-Zadeh, M.
2018-02-01
Orientation-patterned gallium phosphide (OP-GaP) is a recently developed nonlinear material with wide transparency across 0.8-12 μm and high nonlinearity (d14 70 pm/V), which is a promising candidate material for mid-infrared generation. Here we report the full performance characterization of a tunable single-pass nanosecond difference frequency generation (DFG) source based on OP-GaP by mixing the output of a Q-switched Nd:YAG laser at 1.064 μm with the signal from a pulsed MgO:PPLN OPO pumped by the same laser. Using the longest OP-GaP crystal (40 mm) deployed to date, the DFG source provides up to 14 mW of average output power at 2719 nm at 80 kHz repetition rate, with >6 mW across 2492-2782 nm, in TEM00 spatial profile. By performing relevant measurements, detrimental issues such as residual absorption and thermal effects have been studied and confirmed. The temperature and spectral acceptance bandwidths for DFG in the 40-mm-log OP-GaP are measured to be 18 °C and 17 nm, respectively, at 1766 nm. The DFG beam exhibits passive power stability better than 1.7% rms over 1.4 hours at 2774 nm, compared to 1.6% and 0.1% rms for the signal and pump, respectively. The polarization dependence of the input beams on the DFG power has also been systematically investigated, for the first time to our knowledge. Further, we have measured the damage threshold of the OP-GaP crystal to be 0.8 J/cm2 at 1064 nm.
Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios
2007-01-01
A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.
Distributed Bragg reflector tapered diode lasers emitting more than 10 W at 1154 nm
NASA Astrophysics Data System (ADS)
Feise, D.; Bugge, F.; Matalla, M.; Thies, A.; Ressel, P.; Blume, G.; Hofmann, J.; Paschke, K.
2018-02-01
Distributed Bragg reflector tapered diode lasers (DBR-TPL) emitting at 1154 nm are ideal light sources to be implemented into medical devices and hand-held tools for treatment in dermatology and ophthalmology at 577 nm due to their high spectral radiance enabling second harmonic generation from near infrared to yellow. In this work, we present DBR-TPLs which are able to emit more than 10 W in continuous-wave operation with a narrow spectral emission at 1154 nm and a very good beam quality providing excellent spectral radiance. The investigated DBRTPLs are based on three different epitaxial structures with varying vertical far field angles of 35°, 26°, and 17°. To optimize the coupling efficiency into non-linear crystals we studied DBR-TPL with a vertical far field angle of approx. 17° based on an asymmetrical super large optical cavity epitaxial structure. At a pump current of 18 A these devices are able to emit more than 9 W at 25°C and nearly 11 W at 10°C. The spectral emission is very narrow (ΔλFWHM = 18 pm) and single mode over the entire current range. While the beam quality factor M2 according to the 1/e2-level remains 1.1, the M2 according to second order moments deteriorates when the laser is pumped with higher currents. Therefore, the power content in the central lobe increases somewhat less rapidly than the total power.
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
Excited-state dissociation dynamics of phenol studied by a new time-resolved technique
NASA Astrophysics Data System (ADS)
Lin, Yen-Cheng; Lee, Chin; Lee, Shih-Huang; Lee, Yin-Yu; Lee, Yuan T.; Tseng, Chien-Ming; Ni, Chi-Kung
2018-02-01
Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.
Gain measurements and spatial coherence in neon-like x-ray lasers
NASA Astrophysics Data System (ADS)
Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.
1995-05-01
Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.
Latest developments in resonantly diode-pumped Er:YAG lasers
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-04-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2006-12-01
We report an all-solid-state coherent 589 nm light source in single-pass sum-frequency generation (SFG) with actively mode-locked Nd:YAG lasers for the realization of sodium lidar and laser guide star adaptive optics. The Nd:YAG lasers are constructed as a LD-side-pumped configuration and are operated at 1064 and 1319 nm for 589 nm light generation in SFG. Output powers of 16.5 and 5.3 W at 1064 and 1319 nm are obtained with two pumping chambers. Each chamber consisted of three 80-W-LD arrays. Single transverse mode TEM 00; M2 ~1.1 is achieved with adjustment of cavity length considering thermal lens effect with increase of input LD power. The cavity length is set to approximately 1 m. Accordingly the mode-locked lasers are operated at a repetition rate of approximately 150 MHz. Synchronization of two pulse trains at 1064 and 1319 nm is accomplished by control of phase difference between two radio frequencies input in acousto-optic mode-lockers. Then temporal delay is controlled with a resolution of 37 ps/degree. Pump beams are mixed in periodically poled stoichiometric lithium tantalate (PPSLT) without an antireflection coating. The effective aperture and length of the crystal are 0.5 × 2 mm2 and 15 mm. When input intensity is set at 5.6 MW/cm , an average output power of 4.6 W is obtained at 589.159 nm. Precise tuning to the sodium D II line is accomplished by thermal control of etalons set in the Nd:YAG lasers. The output power at 589.159 nm is stably maintained within +/-1.2% for 8 hours.
Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M; Yang, Lan; Chormaic, Síle Nic
2016-11-15
Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.
Comparison of tunable lasers based on diode pumped Tm-doped crystals
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Koranda, Petr; Černý, Pavel; Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Urata, Yoshiharu; Higuchi, Mikio
2008-12-01
We report on continuously tunable operation of a diode pumped lasers based on Tm-doped materials, emitting in the 1.8 - 2.μ1 m spectral band. In our study we compare results obtained with three various single crystals doped by Tm3+ ions: Yttrium Aluminum perovskite YAP (YAlO3), Gadolinium orthovanadate GdVO4, and Yttrium Lithium Fluoride YLF (YLiF4). Following samples were available: the 3mm long a-cut crystal rod of Tm:YAP with 4% at. Tm/Y (diameter 3 mm); the 8mm long b-cut crystal rod of Tm:YLF with 3.5% at. Tm/Y (diameter 3 mm); the 2.7mm long a-cut crystal block of Tm:GdVO4 with 2% at. Tm/Gd (crystal face 5×3 mm). For active medium pumping, the laser diode radiation was used. Because the tested samples differs significantly in absorption spectra, two fibre-coupled (core diameter 400 µm) temperature-tuned laser diodes were used: first operating at wavelength 793nm was used for Tm:YAP and Tm:YLF; the second operating at wavelength 802nm was used for Tm:GdVO4. In both cases, the continuous power up to 20W was available for pumping. The diode radiation was focused into the active crystal by two achromatic doublet lenses with the focal length f = 75 mm. The measured radius of pumping beam focus inside the crystal was 260 µm. The longitudinally diode pumped crystals were tested in linear, 80mm long, hemispherical laser cavity. The curved (radius 150mm) output coupler reflectivity was ~ 97 % in range from 1.8 up to 2.1 μm. The pumping flat mirror had maximal reflectivity in this range and it had high transmission around 0.8 μm. A 1.5mm thick birefringent plate made from quartz (Lyot filter) inserted under a Brewster's angle was used as a tuning element. This plate was placed inside the resonator between the crystal and the output coupler. Using Tm:YAP crystal, the maximal output power of 2.8W in this set-up was obtained. The laser could be tuned from 1865nm up to 2036nm with a maximum at 1985 nm. Laser based on Tm:YLF crystal was tunable from 1835nm up to 2010nm with a maximum at 1928 nm (3.0W was reached). Using the Tm:GdVO4 tunable operation with greater that 1W output at 1920nm and 130nm tuning range (1842-1972 nm) was demonstrated. The overall reached tuning range of over 200nm covers many important atmospheric absorption lines and contains also the local absorption peak of liquid water, making them attractive for applications such as high resolution spectroscopy, atmospheric remote sensing, laser radar, and laser microsurgery.
Research on laser-removal of a deuterium deposit from a graphite sample
NASA Astrophysics Data System (ADS)
Kubkowska, M.; Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Rosinski, M.; Gasior, P.
2014-04-01
The paper presents experimental results of investigation of a removal of deuterium deposits from a graphite target by means of pulsed laser beams. The sample was a part of the TEXTOR limiter with a deuterium-deposited layer. That target was located in the vacuum chamber, pumped out to 5×10-5 Torr, and it was irradiated with a Nd:YAG laser, which generated 3.5-ns pulses of energy of 0.5 J at λ1 = 1063 nm, or 0.1 J at λ3 = 355 nm.
High-power diode-pumped solid-state lasers for optical space communications
NASA Technical Reports Server (NTRS)
Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan
1991-01-01
The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.
2016-06-01
Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less
Field, Ella S.; Bellum, John C.; Kletecka, Damon E.
2016-07-15
Here, optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low-base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence and high-reflection coatings for 527 nm at 45-deg angle of incidence in P-polarization.« less
NASA Astrophysics Data System (ADS)
Ohta, Takayuki; Hashizume, Hiroshi; Takeda, Keigo; Ishikawa, Kenji; Ito, Masafumi; Hori, Masaru
2014-10-01
Biological applications employing non-equilibrium plasma processing has been attracted much attention. It is essential to monitor the changes in an intracellular structure of the cell during the plasma exposure. In this study, we have analyzed the molecular structure of biological samples using multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. Two picosecond pulse lasers with fundamental (1064 nm) or the supercontinuum (460-2200 nm) were employed as a pump and Stokes beams of multiplex CARS microspectroscopy, respectively. The pump and the Stokes laser beams were collinearly overlapped and tightly focused into a sample using an objective lens of high numerical aperture. The CARS signal was collected by another microscope objective lens which is placed facing the first one. After passing through a short pass filter, the signal was dispersed by a polychromator, and was detected by a charge-coupled device camera. The sample was sandwiched by a coverslip and a glass bottom dish for the measurements and was placed on a piezo stage. The CARS signals of the quinhydrone crystal at 1655, 1584, 1237 and 1161 cm-1 were assigned to the C-C, C =O stretching, O-H and C-O stretching vibrational modes, respectively.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser
NASA Astrophysics Data System (ADS)
Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng
2006-03-01
We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.
Frequency-doubled vertical-external-cavity surface-emitting laser
Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.
2002-01-01
A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.
Advances in generation of high-repetition-rate burst mode laser output.
Jiang, Naibo; Webster, Matthew C; Lempert, Walter R
2009-02-01
It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20 kHz are demonstrated with individual pulse energy at 1064 nm of 220 and 400 mJ, respectively. Conversion efficiency to the second- (532 nm) and third- (355 nm) harmonic wavelengths of approximately 50% and 35-40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622 nm with residual output from the 355 nm pump beam is shown to produce uniform bursts of tunable output at approximately 226 nm, with individual pulse energy of approximately 0.5 mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500 kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz.
NASA Astrophysics Data System (ADS)
Shindin, Alexey; Nasyrov, Igor; Grach, Savely; Sergeev, Evgeny; Klimenko, Vladimir; Beletsky, Alexandr
We present results of artificial optical emission observations in the red (630 nm) and green (557.7 nm) lines of the atomic oxygen during ionosphere HF pumping at the Sura facility (56.1°N, 46.1°E, magnetic field dip angle 71.5°) in Sep. 2012. Pump wave (PW) of O-polarization at frequencies f0 = 4.74 - 5.64 MHz was used in the experiment according to ionospheric conditions after sunset. Two CCD cameras (S1C/079-FP(FU) and KEO Sentinel with fields of view 20° and 145°, respectively, and 3 photometers were used for the emission registration. For estimation of a relation between the PW frequency f0 and 4th electron gyroharmonic 4fce Stimulated Electromagnetic Emission (SEE) registration was applied (for details see [1]). On September 11 the pump beam was inclined by 12° to the South, the PW frequencies f0 = 5.40 and 5.42 MHz were slightly above 4fce. On September 13, for vertical pumping, f0 was 5.64 MHz (well above 4fce), 5.32 - 5.42 MHz (around 4fce) and 4.74 MHz (well below 4fce). On September 14 the vertical pumping at f0 = 5.30 - 5.36 MHz and 4.74 MHz was used. In the latter day due to natural motion of the ionosphere and concurrent SEE measurements we were able to obtain a fine dependence of the optical brightness on the proximity f0 and 4fce. For the red line no essential dependence, as well of the shape and position of the airglow spot on the proximity was obtained with one exception: on Sep. 14 when, according to the SEE spectra, f0 was just below 4fce (by 15-20 kHz), the brightness essentially increased, by 1.25-1.5 times. For the green line, the brightest emission occurred when f0 was passing through 4fce (Sep. 14) and when f0 = 5.64 MHz (Sep. 13, well above 4fce). Also, on Sep. 14 the airglow enhancement in the red line during the pumping was replaced by the suppression of the background emission when the ionosphere critical frequency approached to f0 by less than 500 kHz. Similar effect was obtained on Sep. 11 and in [2] for south-inclined pump beam, but never observed at the Sura facility for vertical pumping. The data of KEO Sentinel camera obtained on Sep. 11 have shown the suppression of the background existed even for vertical direction while the pump beam was South-inclined by 12° and the spot of enhanced airglow was observed, similar to [2], in the magnetic zenith. Note that earlier experiments near 4fce performed at EISCAT facility during previous Solar maximum did not show any clear dependence of the red and green line brightness of the relation between f0 and 4fce [3]. 1. Layser T.B. // Space Sci. Rev., V. 98, 223 (2001). 2. Grach S.M., et al. // Radiophys. Quantum Electron. V. 55, P. 33-50 (2012). 3. Gustavsson B., et al. // Phys. Rev. Lett., 97, 195002 (2006).
Baudisch, M; Hemmer, M; Pires, H; Biegert, J
2014-10-15
The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8 GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4 GW/cm².
Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre
Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang
2016-01-01
Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011
Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.
Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang
2016-12-23
Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.
Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less
Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell
NASA Astrophysics Data System (ADS)
Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.
2013-03-01
We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.; Camacho-Lopez, S.
2010-11-15
This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, {lambda}=532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 {mu}J, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher onmore » previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].« less
Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm
NASA Astrophysics Data System (ADS)
Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei
2015-10-01
The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.
NASA Astrophysics Data System (ADS)
Zhao, Qiancheng; Luo, Yanhua; Wang, Wenyu; Canning, John; Peng, Gang-Ding
2017-04-01
A dual 830 and 980 nm pumping scheme is proposed aiming at broadening and flattening the spectral performance of bismuth/erbium codoped multicomponent fiber (BEDF). The spectral properties of distinct Bi active centers (BACs) associated with germanium (BAC-Ge), aluminium (BAC-Al), phosphorus (BAC-P) and silicon (BAC-Si) are characterized under single pumping of 830 and 980 nm, respectively. Based on the emission slope efficiencies of BAC-Al (˜1100 nm) and BAC-Si (˜1430 nm) under single pumping of 830 and 980 nm, the dual pumping scheme with the optimal pump power ratio of 25 (980 nm VS 830 nm) is determined to achieve flat, ultrabroadband luminescence spectra covering the wavelength range 950-1600 nm. The dual pumping scheme is further demonstrated on the on-off gain performance of BEDF. It is found under the pump power ratio of ˜8 (980 VS 830 nm), The gain spectrum has been flattened and broadened over 300 nm (1300-1600 nm) with an average gain coefficient of ˜1.5 dBm-1. The spectral coverage is approximately 1.5 and 3 times wider compared to single pumping of 830 and 980 nm pumping, respectively. The energy level diagrams of 830 and 980 nm are also constructed separately in view of the optical characteristic, which further clarifies the advantage for dual pumping. The proposed dual 830 and 980 nm pumping scheme with the multicomponent BEDF shows great potential in various broadband optical applications such as uniform ASE source, broadband amplifier and tuneable laser in NIR band.
Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications
NASA Astrophysics Data System (ADS)
Bayramian, Andrew James
2000-11-01
A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.
Compact nanosecond laser system for the ignition of aeronautic combustion engines
NASA Astrophysics Data System (ADS)
Amiard-Hudebine, G.; Tison, G.; Freysz, E.
2016-12-01
We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.
Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology
NASA Astrophysics Data System (ADS)
Paoletti, R.; Codato, S.; Coriasso, C.; Gotta, P.; Meneghini, G.; Morello, G.; De Melchiorre, P.; Riva, E.; Rosso, M.; Stano, A.; Gattiglio, M.
2018-02-01
This paper reports a DBR High Power Diode Laser (DBR-HPDL) realization, emitting up to 10W in the 920 nm range. High spectral purity (90% power in about 0.5 nm), and wavelength stability versus injected current (about 5 times more than standard FP laser) candidates DBR-HPDL as a suitable device for wavelength stabilized pump source, and high brightness applications exploiting Wavelength Division Multiplexing. Key design aspect is a multiple-orders Electron Beam Lithography (EBL) optical confining grating, stabilizing on same wafer multiple wavelengths by a manufacturable and reliable technology. Present paper shows preliminary demonstration of wafer with 3 pitches, generating DBRHPDLs 2.5 nm spaced.
kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber
NASA Astrophysics Data System (ADS)
Sun, Shihao; Zhan, Huan; Li, Yuwei; Liu, Shuang; Jiang, Jiali; Peng, Kun; Wang, Yuying; Ni, Li; Wang, Xiaolong; Jiang, Lei; Yu, Juan; Liu, Gang; Lu, Pengfei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2018-03-01
Based on a master oscillator power amplifier configuration, laser performance of commercial Nufern-20/400-8M Ybdoped aluminophosphosilicate ternary laser fiber was investigated. Pumped by 976 nm laser diodes, 982 W laser output power was obtained with a slope efficiency of 84.9%. Spectrum of output was centered at 1066.56nm with 3dB bandwidth less than 0.32 nm, and the nonlinearity suppression ratio was more than 39dB. Beam quality of Mx2 and M2y were 1.55 and 1.75 at 982 W, respectively. The laser performance indicated that Nufern-20/400-8M Yb-doped aluminophosphosilicate ternary laser fiber is highly competitive for industry fiber laser use.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang
2017-12-01
We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.
All-solid-state single longitudinal mode MOPA laser system
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Gu, Haidong; Hu, Wenhua; Ren, Shilong
2018-03-01
Side diode pumped electro-optical Q Switching Nd: YAG is demonstrated as master oscillator. F-P etalon and twisted-mode cavity combined configuration is introduced to select longitudinal modes. The seed light experiences a round trip through the two flash pump amplifiers, in this device, the 4f image transmission system and SBS phase conjugate mirror is adopted in order to improved beam quality, by compensating the heat depolarization effect and eliminate wave-front distortion. In the condition of 1 or 5 repetitions of the wavelength at 1064nm, it produces the pulse energy of 300mJ, pulse width of 12ns, and energy instability (RMS) below 3% in single longitudinal mode operation. With a type two-phase matched KTP crystal, 532nm green light is yielded, at 1 Hz repetition rate, the pulse energy of green light is more than 150mJ.
Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A
2016-10-01
We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.
Research on High-Intensity Picosecond Pump Laser in Short Pulse Optical Parametric Amplification
NASA Astrophysics Data System (ADS)
Pan, Xue; Peng, Yu-Jie; Wang, Jiang-Feng; Lu, Xing-Hua; Ouyang, Xiao-Ping; Chen, Jia-Lin; Jiang, You-En; Fan, Wei; Li, Xue-Chun
2013-01-01
A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated. The theoretical simulation result shows that it has 106 gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm2, and that it can limit the parametric fluorescence in the picosecond time scale of pump duration. The pump laser system adopts a master-oscillator power amplifier, which integrates a more than 30 pJ fiber-based oscillator with a 150 μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with <2% pulse-to-pulse energy stability. The output energy of the power amplifier is limited to 4 mJ for B-integral concern, and the frequency doubling efficiency can reach 65% with input intensity 10 GW/cm2.
Xu, Yi-Ting; Xu, Jia-Lin; Guo, Ya-Ding; Yang, Feng-Tu; Chen, Yan-Zhong; Xu, Jian; Xie, Shi-Yong; Bo, Yong; Peng, Qin-Jun; Cui, Dafu; Xu, Zu-Yan
2010-08-20
We present a compact high-efficiency and high-average-power diode-side-pumped Nd:YAG rod laser oscillator operated with a linearly polarized fundamental mode. The oscillator resonator is based on an L-shaped convex-convex cavity with an improved module and a dual-rod configuration for birefringence compensation. Under a pump power of 344 W, a linearly polarized average output power of 101.4 W at 1064 nm is obtained, which corresponds to an optical-to-optical conversion efficiency of 29.4%. The laser is operated at a repetition rate of 400 Hz with a beam quality factor of M(2)=1.14. To the best of our knowledge, this is the highest optical-to-optical efficiency for a side-pumped TEM(00) Nd:YAG rod laser oscillator with a 100-W-level output ever reported.
NASA Astrophysics Data System (ADS)
Mis'kevich, A. I.; Guo, J.; Dyuzhov, Yu A.
2013-11-01
The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe - CCl4 and Ar - Xe - CCl4 gas mixtures with a low CCl4 content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction 235U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm-3. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm-1 and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 - 50 kW sr-1 and a base ASE pulse duration of ~200 ms.
NASA Astrophysics Data System (ADS)
Wang, Junmin; Zhang, Kong; Ge, Yulong; Guo, Shanlong
2016-06-01
We have demonstrated 1.61 W of 780 nm single-frequency continuous-wave laser output with a semi-monolithic periodically poled potassium titanyl phosphate (PPKTP) crystal doubler pumped by a 2-W erbium-doped fiber amplifier boosted 1560 nm diode laser. The measured maximum doubling efficiency is 77%, and the practical value should be 80% when taking into account the fundamental-wave mode matching efficiency. The measured beam quality factor of 780 nm output, M2, is better than 1.04. Typical root-mean-square fluctuation of 780 nm output is less than 0.5% in 30 minutes. This compact frequency doubler has good mechanical stability, and can be employed for many applications, such as laser cooling and trapping, atomic coherent control, atomic interferometer, and quantum frequency standard with rubidium atoms.
Effective gain measurements in chromium-doped forsterite
NASA Technical Reports Server (NTRS)
Petricevic, V.; Seas, A.; Alfano, R. R.
1991-01-01
Effective gain cross section in tetravalent chromium-doped forsterite laser crystal was measured over the 1180-1330 nm spectral range. The experiment was performed using two collinear laser beams in a pump-and-probe arrangement. The peak-gain cross section from this measurement is estimated to be 1.9 x 10 to the -19th sq cm at 1215 nm, which is comparable to the value of about 2 x 10 to the -19th sq cm predicted by fluorescence linewidth and lifetime measurements. These results indicate that excited-state absorption is not a major loss mechanism in tetravalent chromium-doped forsterite.
Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.
Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei
2012-04-01
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.
Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.
Mero, M; Sipos, A; Kurdi, G; Osvay, K
2011-05-09
Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America
High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser
NASA Astrophysics Data System (ADS)
Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao
2017-03-01
An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.
Laser systems configured to output a spectrally-consolidated laser beam and related methods
Koplow, Jeffrey P [San Ramon, CA
2012-01-10
A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.
All-fiber laser at 1.94 µm: effect on soft tissue
NASA Astrophysics Data System (ADS)
Pal, Atasi; Pal, Debasis; Das Chowdhury, Sourav; Sen, Ranjan
2017-02-01
A focused laser beam at wavelength of strong water absorption at 1.94 μm can be a good scalpel for precision soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave as well as modulated, cladding pumped, thulium-doped fiber laser at 1.94 μm has been configured to deliver up to 10 W of laser power under pumping at 793 nm having an efficiency of 32 %. The laser was exposed to freshly sacrificed chicken breast at different power level and exposure time. The formalin-fixed samples were examined by microscopy to identify the ablation region, carbonization and necrosis region for laser parameter optimization.
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.
Lin, Di; Andrew Clarkson, W
2017-08-01
A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.
High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier
NASA Astrophysics Data System (ADS)
Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.
2016-03-01
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers
NASA Astrophysics Data System (ADS)
Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc
2017-02-01
A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.
High-power, continuous-wave, tunable mid-IR, higher-order vortex beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Aadhi, A.; Sharma, Varun; Samanta, G. K.
2018-05-01
We report on a novel experimental scheme to generate continuous-wave (cw), high power, and higher-order optical vortices tunable across mid-IR wavelength range. Using cw, two-crystal, singly resonant optical parametric oscillator (T-SRO) and pumping one of the crystals with Gaussian beam and the other crystal with optical vortices of orders, lp = 1 to 6, we have directly transferred the vortices at near-IR to the mid-IR wavelength range. The idler vortices of orders, li = 1 to 6, are tunable across 2276-3576 nm with a maximum output power of 6.8 W at order of, li = 1, for the pump power of 25 W corresponding to a near-IR vortex to mid-IR vortex conversion efficiency as high as 27.2%. Unlike the SROs generating optical vortices restricted to lower orders due to the elevated operation threshold with pump vortex orders, here, the coherent energy coupling between the resonant signals of the crystals of T-SRO facilitates the transfer of pump vortex of any order to the idler wavelength without stringent operation threshold condition. The generic experimental scheme can be used in any wavelength range across the electromagnetic spectrum and in all time scales from cw to ultrafast regime.
Microchip Yb:CaLnAlO4 lasers with up to 91% slope efficiency.
Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Jambunathan, Venkatesan; Navratil, Petr; Lucianetti, Antonio; Mocek, Tomas; Zhang, Xuzhao; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady
2017-07-01
Multi-watt continuous-wave (CW) operation of tetragonal rare-earth calcium aluminate Yb:CaLnAlO 4 (Ln=Gd,Y)) crystals in plano-plano microchip lasers was demonstrated with an almost quantum-defect-limited slope efficiency. Pumped at 978 nm by an InGaAs laser diode, a 3.4 mm long 8 at. % Yb:CaGdAlO 4 laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η=84% (with respect to the absorbed pump power). An even higher η=91% was achieved with a 2.5 mm long 3 at. % Yb:CaYAlO 4 laser, from which 5.06 W were extracted at 1048-1056 nm. Both lasers produced linearly polarized output (σ-polarization) with an almost circular diffraction-limited beam (Mx,y2<1.1). The output performance of the developed lasers was modeled, yielding an internal loss coefficient as low as 0.004-0.007 cm -1 . In addition, their spectroscopic properties were revisited.
NASA Astrophysics Data System (ADS)
Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen
2018-04-01
Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.
Efficient blue emission of ytterbium-doped Sr5(PO4)3F under quasi-three-level intracavity pumping
NASA Astrophysics Data System (ADS)
Yang, Y.; Cao, G. H.
2012-02-01
We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.
Tunable pulsed narrow bandwidth light source
Powers, Peter E.; Kulp, Thomas J.
2002-01-01
A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.
NASA Astrophysics Data System (ADS)
Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai
1999-09-01
The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.
Bright, A N; Yoshida, K; Tanaka, N
2013-01-01
Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.
Latest development of high-power fiber lasers in SPI
NASA Astrophysics Data System (ADS)
Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan
2004-06-01
High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse powers of up to 50kW have been developed and are being commercialized. In all cases reducing the total "cost of ownership" for customers and end users is our primary objective.
The FERMIatElettra FEL Photon Transport System
NASA Astrophysics Data System (ADS)
Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.
2010-06-01
The FERMI@Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI@Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.
NASA Astrophysics Data System (ADS)
Zhao, Y. D.; Liu, J. H.
2013-08-01
We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB3O5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm.
Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation
NASA Astrophysics Data System (ADS)
Liu, Shengshuai; Wang, Hailong; Jing, Jietai
2018-04-01
We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.
Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity
NASA Astrophysics Data System (ADS)
Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.
2016-12-01
We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.
NASA Astrophysics Data System (ADS)
Huynh, T. T. D.; Semmar, N.
2017-09-01
The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.
Characterization of laser damage performance of fused silica using photothermal absorption technique
NASA Astrophysics Data System (ADS)
Wan, Wen; Shi, Feng; Dai, Yifan; Peng, Xiaoqiang
2017-06-01
The subsurface damage and metal impurities have been the main laser damage precursors of fused silica while subjected to high power laser irradiation. Light field enhancement and thermal absorption were used to explain the appearance of damage pits while the laser energy is far smaller than the energy that can reach the intrinsic threshold of fused silica. For fused silica optics manufactured by magnetorheological finishing or advanced mitigation process, no scratch-related damage site occurs can be found on the surface. In this work, we implemented a photothermal absorption technique based on thermal lens method to characterize the subsurface defects of fused silica optics. The pump beam is CW 532 nm wavelength laser. The probe beam is a He-Ne laser. They are collinear and focused through the same objective. When pump beam pass through the sample, optical absorption induces the local temperature rise. The lowest absorptance that we can detect is about the order of magnitude of 0.01 ppm. When pump beam pass through the sample, optical absorption induces the local temperature rise. The photothermal absorption value of fused silica samples range from 0.5 to 10 ppm. The damage densities of the samples were plotted. The damage threshold of samples at 8J/cm2 were gived to show laser damage performance of fused silica.The results show that there is a strong correlation between the thermal absorption and laser damage density. The photothermal absorption technique can be used to predict and evaluate the laser damage performance of fused silica optics.
A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun
2017-10-01
In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.
Low-NA single-mode LMA photonic crystal rod fiber amplifier
NASA Astrophysics Data System (ADS)
Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara; Broeng, Jes
2011-02-01
Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm is demonstrated.
Electron beam pumped semiconductor laser
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Reid, Ray D. (Inventor)
2009-01-01
Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.
NASA Astrophysics Data System (ADS)
Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae
2016-05-01
We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.
Dell'Angela, M.; Anniyev, T.; Beye, M.; ...
2015-03-01
Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W
2015-03-01
Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
NASA Technical Reports Server (NTRS)
Cobb, Stephen H.
1991-01-01
An evaluation of prospective laser materials for a space-based solar pumped laser system over the past decade has resulted in the identification of the iodine photodissociation laser as that system best suited to solar-pumped high energy operation. The active medium for the solar-pumped iodine photodissociation laser is from the family of perfluoroalkyl iodides. These lasants have the general form C(n)F(2n + 1)I, often abbreviated as RI. These iodides are known to exhibit photodissociaiton of the C-I bond when irradiated by near UV photons. The focus was on the experimental determination of the lifetime of the excited iodine atom following photodissociation of C4F9I, and also to monitor fluorescence from the iodine molecule at 500 nm to determine if I2 is being produced in the process. Photodissociation is achieved using an XeCl excimer laser with an output wavelength of 308 nm. The XeCl beam is focused into the middle of a cylindrical quartz cell containing the lasant. The laser pulse is detected with a fast risetime photomultiplier tube as it exits the cell. Other aspects of the investigation are discussed.
Composite Yb:YAG/SiC-prism thin disk laser.
Newburgh, G A; Michael, A; Dubinskii, M
2010-08-02
We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.
NASA Astrophysics Data System (ADS)
Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.
2015-06-01
Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.
Polarization of fast particle beams by collisional pumping
Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.
1988-01-01
Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.
The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectivelymore » when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ∼47% at an output power of ∼14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ∼20% at ∼6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.« less
Characterization of Titanium Oxide Layers Formation Produced by Nanosecond Laser Coloration
NASA Astrophysics Data System (ADS)
Brihmat-Hamadi, F.; Amara, E. H.; Kellou, H.
2017-06-01
Laser marking technique is used to produce colors on titanium while scanning a metallic sample under normal atmospheric conditions. To proceed with different operating conditions related to the laser beam, the parameters of a Q-switched diode-pumped Nd:YAG ( λ = 532 nm) laser, with a pulse duration of τ = 5 ns, are varied. The effect on the resulting mark quality is the aim of the present study which is developed to determine the influence of the operating parameters ( i.e., pulse frequency, beam scanning speed, and pumping intensity) and furthermore their combination, such as the accumulated fluences and the overlapping rate of laser impacts. From the obtained experimental results, it is noted that the accumulated fluences and the scanning speed are the most influential operating parameters during laser marking, since they have a strong effect on the surface roughness and reflectance, and the occurrence of many oxide phases such as TiO, Ti2O3, TiO2 ( γ- phase, anatase, and rutile).
Anisotropic ultrafast response of MoS2 on rippled substrates
NASA Astrophysics Data System (ADS)
Cinquanta, Eugenio; Camellini, Andrea; Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Della Valle, Giuseppe; Zavelani Rossi, Margherita; Buatier de Mongeot, Francesco; Molle, Alessandro; Stagira, Salvatore
TMDs represent one of the most promising option for new devices characterized by high performances for opto- and nanoelectronics applications. Top-down schemes have been fruitfully exploited for the tuning of TMDs physics by stain engineering in exfoliated flakes. We propose an original bottom-up strategy based on the CVD growth of MoS2 on anisotropic substrates and its characterization by means of pump-probe spectroscopy. The ultrafast response of the rippled MoS2 reveals strongly anisotropic. While the transient absorption emerges as independent from the orientation of the pump beam polarization, the angle between the probe beam polarization and the ripples induces remarkable effects. Within an orthogonal geometry, both the overall intensity of the transient spectrum and the el-ph scattering decay time are halved while the photo-bleaching at 450 nm is blueshifted with respect to the parallel orientation case. Our results demonstrate that the coupling of TMDs with anisotropic substrates is a promising way for the integration of TMDs photonics devices.
NASA Astrophysics Data System (ADS)
Li, Chao-yu; Dong, Jun
2016-08-01
The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.
Polarization of fast particle beams by collisional pumping
Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.
1984-10-19
The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.
Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm
NASA Astrophysics Data System (ADS)
Lu, Jie
2014-04-01
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.
2014-07-15
Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to itsmore » flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.« less
Determination of the spin Hall angle in single-crystalline Pt films from spin pumping experiments
NASA Astrophysics Data System (ADS)
Keller, Sascha; Mihalceanu, Laura; Schweizer, Matthias R.; Lang, Philipp; Heinz, Björn; Geilen, Moritz; Brächer, Thomas; Pirro, Philipp; Meyer, Thomas; Conca, Andres; Karfaridis, Dimitrios; Vourlias, George; Kehagias, Thomas; Hillebrands, Burkard; Papaioannou, Evangelos Th
2018-05-01
We report on the determination of the spin Hall angle in ultra-clean, defect-reduced epitaxial Pt films. By applying vector network analyzer ferromagnetic resonance spectroscopy to a series of single crystalline Fe (12 nm) /Pt (t Pt) bilayers we determine the real part of the spin mixing conductance (4.4 ± 0.2) × 1019 m‑2 and reveal a very small spin diffusion length in the epitaxial Pt (1.1 ± 0.1) nm film. We investigate the spin pumping and ISHE in a stripe microstucture excited by a microwave coplanar waveguide antenna. By using their different angular dependencies, we distinguish between spin rectification effects and the inverse spin Hall effect. The relatively large value of the spin Hall angle (5.7 ± 1.4)% shows that ultra-clean e-beam evaporated non-magnetic materials can also have a comparable spin-to-charge current conversion efficiency as sputtered high resistivity layers.
Sun, Bo; Koh, Yee Kan
2016-06-01
Time-domain thermoreflectance (TDTR) is a pump-probe technique frequently applied to measure the thermal transport properties of bulk materials, nanostructures, and interfaces. One of the limitations of TDTR is that it can only be employed to samples with a fairly smooth surface. For rough samples, artifact signals are collected when the pump beam in TDTR measurements is diffusely scattered by the rough surface into the photodetector, rendering the TDTR measurements invalid. In this paper, we systemically studied the factors affecting the artifact signals due to the pump beam leaked into the photodetector and thus established the origin of the artifact signals. We find that signals from the leaked pump beam are modulated by the probe beam due to the phase rotation induced in the photodetector by the illumination of the probe beam. As a result of the modulation, artifact signals due to the leaked pump beam are registered in TDTR measurements as the out-of-phase signals. We then developed a simple approach to eliminate the artifact signals due to the leaked pump beam. We verify our leak-pump correction approach by measuring the thermal conductivity of a rough InN sample, when the signals from the leaked pump beam are significant. We also discuss the advantages of our new method over the two-tint approach and its limitations. Our new approach enables measurements of the thermal conductivity of rough samples using TDTR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Bo; Koh, Yee Kan, E-mail: mpekyk@nus.edu.sg; Centre of Advanced 2D Materials, National University of Singapore, Singapore 117542
Time-domain thermoreflectance (TDTR) is a pump-probe technique frequently applied to measure the thermal transport properties of bulk materials, nanostructures, and interfaces. One of the limitations of TDTR is that it can only be employed to samples with a fairly smooth surface. For rough samples, artifact signals are collected when the pump beam in TDTR measurements is diffusely scattered by the rough surface into the photodetector, rendering the TDTR measurements invalid. In this paper, we systemically studied the factors affecting the artifact signals due to the pump beam leaked into the photodetector and thus established the origin of the artifact signals.more » We find that signals from the leaked pump beam are modulated by the probe beam due to the phase rotation induced in the photodetector by the illumination of the probe beam. As a result of the modulation, artifact signals due to the leaked pump beam are registered in TDTR measurements as the out-of-phase signals. We then developed a simple approach to eliminate the artifact signals due to the leaked pump beam. We verify our leak-pump correction approach by measuring the thermal conductivity of a rough InN sample, when the signals from the leaked pump beam are significant. We also discuss the advantages of our new method over the two-tint approach and its limitations. Our new approach enables measurements of the thermal conductivity of rough samples using TDTR.« less
NASA Astrophysics Data System (ADS)
Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy
2012-06-01
In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.
2018-06-01
We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.
Solid-state laser source of narrowband ultraviolet B light for skin disease care
NASA Astrophysics Data System (ADS)
Tarasov, Aleksandr A.; Chu, Hong
2013-03-01
We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.
970-nm ridge waveguide diode laser bars for high power DWBC systems
NASA Astrophysics Data System (ADS)
Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther
2018-02-01
de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.
Electrically-pumped 850-nm micromirror VECSELs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith
Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission ismore » employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.« less
Electrically pumped 850-nm micromirror VECSELs
NASA Astrophysics Data System (ADS)
Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Mar, Alan
2005-03-01
Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.
264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping.
Jebali, M A; Maran, J-N; LaRochelle, S
2014-07-01
We demonstrate a high-power cladding-pumped Er-Yb codoped fiber laser with 74% efficiency. A pump-limited output power of 264 W is obtained using in-band pumping at 1535 nm. We compare the efficiency of 1480 and 1535 nm pumping through numerical simulations and experimental measurements.
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
NASA Astrophysics Data System (ADS)
He-Dong, Xiao; Yuan, Dong; Yu, Liu; Shu-Tao, Li; Yong-Ji, Yu; Guang-Yong, Jin
2016-09-01
We adopt a compact intra-cavity pumped structure of Nd:YAG and Nd:YVO4 crystals to develop an efficient dual-wavelength laser that operates at 946 nm and 1064 nm. A 808 nm laser diode is used to pump the Nd:YAG crystal, which emits at 946 nm, and the Nd:YVO4 crystal, which emits at 1064 nm, is intra-cavity pumped at 946 nm. In order to avoid unnecessary pump light passing though the Nd:YAG crystal, reaching the Nd:YVO4 crystal and having an impact on the cavity pump, the two crystals are placed as far from one another as possible in this experiment. The output power at 1064 nm can be adjusted from 1 W-2.9 W by varying the separation between the two crystals. A total output power of 4 W at the dual-wavelengths is achieved at an incident pump power of 30.5 W, where the individual output powers for the 946 nm and 1064 nm emissions are 1.1 W and 2.9 W, respectively.
NASA Astrophysics Data System (ADS)
Yan, Dexian; Xu, Degang; Wang, Yuye; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Sheng, Quan; Mei, Jialin; Shi, Jia; Yao, Jianquan
2016-11-01
High-repetition-rate, monochromatic and tunable terahertz (THz) source is demonstrated. We use an orthogonally polarized dual-wavelength intracavity OPO to complete the type-II phase-matched collinear difference-frequency generation in GaSe. A high average-power 2 μm laser with 12 W output power and good beam quality based on an intracavity KTP OPO is experimentally designed. The KTP OPO is intracavity pumped by an acousto-optical Q-switched side-pumped Nd:YAG with the repetition rate of 10 kHz. Two identical KTP crystals were 7 × 8 × 15 mm3 in size, cut at θ = 51.2°, φ = 0°, which were tuned in the x-z plane to achieve type-II phase-matching. The KTP OPO consists of two identical KTP crystals to reduce the walk-off effect and improve the beam overlap area of the output signal and idler waves. The pulse-width of the 2-μm KTP OPO laser is about 11 ns with the linewidth about 0.8 nm. The focused OPO beam is injected into the uncoated GaSe with the length of 8 mm, and the generated THz wave is detected with a 4.2-K Si-bolometer after focusing with a polyethylene lens. The tunable and coherent radiation from 0.2 to 3 THz has been achieved based on the type-II phase-matching DFG when the two pump waves are in the range of 2.1064 - 2.1272 μm and 2.1516 - 2.1304 μm while symmetrically tuning the phase-matching angle of the KTPs. The maximum output THz average power can reach μW-level around 1.48 THz.
Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification
NASA Astrophysics Data System (ADS)
Kawanaka, J.; Tsubakimoto, K.; Yoshida, H.; Fujioka, K.; Fujimoto, Y.; Tokita, S.; Jitsuno, T.; Miyanaga, N.; Gekko-EXA Design Team
2016-03-01
A 50 PW ultrahigh-peak-power laser has been conceptually designed, which is based on optical parametric chirped pulse amplification (OPCPA). A 250 J DPSSL and a flash- lamp-pumped kJ laser are adopted as new repeatable pump source. The existed LFEX-laser with more than ten kilo joules are used in the final amplifier stage and the OPCPA with the 2x2 tiled pump beams in random phase has been proposed with several ten centimeter aperture. A pulse duration of amplified pulses is set at less than 10 fs. A broadband OPCPA with ∼500 nm of the gain spectral width near 1 μm is required. A partially deuterated KDP (p-DKDP) crystal is one of the most promising nonlinear crystals and our numerical calculation ensured such ultra-broad gain width. p-DKDP crystals with several deuteration ratio have been successfully grown.
Zhou, Nan; Wang, Jian
2018-05-23
Bessel-Gaussian beams have distinct properties of suppressed diffraction divergence and self-reconstruction. In this paper, we propose and simulate metasurface-assisted orbital angular momentum (OAM) carrying Bessel-Gaussian laser. The laser can be regarded as a Fabry-Perot cavity formed by one partially transparent output plane mirror and the other metasurface-based reflector mirror. The gain medium of Nd:YVO 4 enables the lasing wavelength at 1064 nm with a 808 nm laser serving as the pump. The sub-wavelength structure of metasurface facilitates flexible spatial light manipulation. The compact metasurface-based reflector provides combined phase functions of an axicon and a spherical mirror. By appropriately selecting the size of output mirror and inserting mode-selection element in the laser cavity, different orders of OAM-carrying Bessel-Gaussian lasing modes are achievable. The lasing Bessel-Gaussian 0 , Bessel-Gaussian 01 + , Bessel-Gaussian 02 + and Bessel-Gaussian 03 + modes have high fidelities of ~0.889, ~0.889, ~0.881 and ~0.879, respectively. The metasurface fabrication tolerance and the dependence of threshold power and output lasing power on the length of gain medium, beam radius of pump and transmittance of output mirror are also discussed. The obtained results show successful implementation of metasurface-assisted OAM-carrying Bessel-Gaussian laser with favorable performance. The metasurface-assisted OAM-carrying Bessel-Gaussian laser may find wide OAM-enabled communication and non-communication applications.
40nm tunable multi-wavelength fiber laser
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin
2014-12-01
A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.
Molecular spectroscopy from 5-12 μm using an OP-GaP OPO
NASA Astrophysics Data System (ADS)
Maidment, Luke; Schunemann, Peter G.; Reid, Derryck T.
2017-02-01
We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP) and being the first example of a broadband OPO operating across the molecular fingerprint region. OP-GaP crystals with lengths of 1 mm and several patterning periods were diced, polished, and antireflection (AR) coated for near- to mid-infrared wavelengths. We configured a synchronously pumped OP-GaP OPO in a 101.2-MHz resonator with high reflectivity from 1.15-1.35 μm, pumped with 150-fs pulses from a 1040-nm femtosecond laser (Chromacity Spark). The coating of one spherical mirror was optimized for transmission at the pump wavelength of 1040 nm and for high reflectivity at the resonant signal wavelength in a range from 1.15-1.35 μm, while the other spherical mirror collimated the idler beam emerging from the OP-GaP crystal and was silver coated to provide high reflectivity for all idler wavelengths. This collimated idler beam was output-coupled from the cavity by transmission through a plane mirror coated with high transmission for the idler wavelengths (5-12 μm) and high reflectivity for the signal wavelengths (1.15-1.35 μm) on an infrared-transparent ZnSe substrate. Idler spectra centered from 5.4-11.8 μm and extending to 12.5 μm were collected. The maximum average power was 55 mW at 5.4 μm with 7.5 mW being recorded at 11.8 μm. Details of Fourier transform spectroscopy using water vapor and a polystyrene reference standard are presented.
Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers
NASA Astrophysics Data System (ADS)
Keita, Kafing; Delaye, Philippe; Frey, Robert; Roosen, Gérald
2006-12-01
A theoretical analysis of the Raman amplification in optical fibers and the pump-to-signal relative intensity noise (RIN) transfer has been performed in the spectral domain. An efficient Raman amplification of a monochromatic signal beam by a large-bandwidth pump beam has been demonstrated for a pump bandwidth much smaller than the Raman linewidth. Under the same approximation the pump-to-signal RIN transfer has been calculated in both cases of copropagating and counterpropagating beams in the two limiting cases of modulated monochromatic and smooth-profile large-bandwidth pump beams. At low frequencies the excess of noise evidenced in the case of a modulated monochromatic pump beam did not exist in the case of large-bandwidth pseudoincoherent sources. As this noise reduction can be as large as 13 dB for a 40 dB net gain of the amplifier, such incoherent pumping sources must be considered for the purpose of low-noise Raman amplifiers.
NASA Astrophysics Data System (ADS)
Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.
2014-03-01
The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.
Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun
2014-10-01
We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.
Development of thermally controlled HALNA DPSSL for inertial fusion energy
NASA Astrophysics Data System (ADS)
Matsumoto, Osamu; Yasuhara, Ryo; Kurita, Takashi; Ikegawa, Tadashi; Sekine, Takashi; Kawashima, Toshiyuki; Kawanaka, Junji; Norimatsu, Takayoshi; Miyanaga, Noriaki; Izawa, Yasukazu; Nakatsuka, Masahiro; Miyamoto, Masahiro; Kan, Hirofumi; Furukawa, Hiroyuki; Motokoshi, Shinji
2006-02-01
We have been developing a high average-power laser system for science and industry applications that can generate an output of 20 J per pulse at 10-Hz operation. Water-cooled Nd:glass zig-zag slab is pumped with 803-nm AlGaAs laser-diode modules. To efficiently extract energy from the laser medium, the laser beam alternately passes through dual zig-zag slab amplifier modules. Twin LD modules equipped on each slab amplifier module pump the laser medium with a peak power density of 2.5 kW/cm2. In high power laser system, thermal load in the laser medium causes serious thermal effects. We arranged cladding glasses on the top and bottom of the laser slab to reduce thermal effects.
2-kW single-mode fiber laser employing bidirectional-pump scheme
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai
2018-01-01
2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.
Pulsed laser-induced damage of metals at 492 nm.
Marrs, C D; Faith, W N; Dancy, J H; Porteus, J O
1982-11-15
A triaxial flashlamp-pumped dye laser has been used to perform laser damage testing of metal surfaces in the blue-green spectral region. Using LD490 laser dye, the laser produces 0.18-J, 0.5-microsec pulses at 492 nm. The spatial profile of the focused beam is measured in orthogonal directions in the plane of the sample surface. The orthogonal profiles are flat-topped Gaussians with 1/e(2) widths of 270 microm. Multithreshold laser damage test results are presented for polished Mo, diamond-turned high-purity Al alloy, diamond-turned bulk Cu, and diamond-turned electrodeposits of Ag and Au on Cu. Comparisons are made between calculated and experimentally measured slip and melt thresholds.
Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng
2018-06-14
Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.
NASA Astrophysics Data System (ADS)
Scholle, K.; Schäfer, M.; Lamrini, S.; Wysmolek, M.; Steinke, M.; Neumann, J.; Fuhrberg, P.
2018-02-01
In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level. A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.
KrF laser pumping by electron beam discharge
NASA Astrophysics Data System (ADS)
Bonnet, J.; Fournier, G.; Pigache, D.
1981-09-01
The pumping of excimer lasers used in nuclear fusion and isotope separation is considered. Homogeneous ionization with an electron beam permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This result does not modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate.
Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator
NASA Astrophysics Data System (ADS)
Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.
2014-02-01
We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.
Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation
NASA Astrophysics Data System (ADS)
Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav
2017-02-01
The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.
CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source
NASA Astrophysics Data System (ADS)
Haluska, Nathan D.; Rice, Christopher A.; Perram, Glen P.
2018-02-01
We report the first CW lasing from two-photon pumping via a virtual state. Pulsed and the CW lasing of the 3096 nm 72 P1/2 to 72 S1/2 line are observed from degenerate two-photon pumping of the cesium 72 S1/2 to 62 D3/2 transition. High intensity pulses excite over 17 lasing wavelengths. Under lower intensity CW excitation, 3 μm lasing is still observed with efficiencies of 0.7%. CW experiments utilized a Cs heat pipe at 150 °C to 270 °C, and a highly-focused, single pass, Ti-Sapphire pump with no aid of a cavity. Unlike normal DPALS, this architecture does not require buffer gas, and heat is released optically so a flowing system is not required. Both suggest a very simple device with excellent beam quality is possible. This proof of concept can be greatly enhanced with more optimal conditions such as non-degenerate pumping to further increase the two-photon pump cross section and the addition of a cavity to improve mode volume overlap. These improvements may lead to an increase in efficiencies to a theoretical maximum of 14%. Results suggest two-photon pumping with diodes is feasible.
Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.
Torregrosa, A J; Maestre, H; Capmany, J
2015-11-15
We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.
Spiking suppression of high power QCW pulse 1319 nm Nd:YAG laser with different intracavity doublers
NASA Astrophysics Data System (ADS)
Bian, Qi; Zuo, Jun-Wei; Guo, Chuan; Xu, Chang; Shen, Yu; Zong, Nan; Bo, Yong; Peng, Qin-Jun; Chen, Hong-Bin; Cui, Da-Fu; Xu, Zu-Yan
2016-09-01
We describe the results of our efforts in suppressing spiking of a high power, high beam quality 1319 nm Nd:YAG microsecond-pulse laser with three different intracavity frequency doublers. The 1319 nm laser is generated by a quasi-continuous-wave diode-pumped Nd:YAG ring laser system. One potassium titanyl phosphate (KTP), two KTPs and one lithium triborate (LBO) as frequency doublers are installed in the ring resonator and tested, respectively. At 800 Hz repetition rate, with a pulse width of 100 µs, performances of spiking suppression for each case are observed. The average output power are 23.6 W, 22.7 W and 23.4 W with beam quality factors of M 2 = 2.21, 1.28 and 1.25 for one KTP, two KTPs and one LBO, respectively. The corresponding brightness are 270 MW/(cm2·sr), 780 MW/(cm2·sr) and 860 MW/(cm2·sr). With better beam quality, higher brightness, and easier maintainability, the LBO is the best option of the three. A laser rate equation model including the insertion loss of the doubler is applied for theoretical analysis of the output temporal pulse shape and power, and the simulated results agree well with the experimental data.
DPSSL for direct dicing and drilling of dielectrics
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Schwagmeier, M.
2007-02-01
New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.
Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H
2017-08-22
Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.
Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng
2014-06-01
A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield.
2006-04-01
recording singlet oxygen emission spectra. A diode -pumped solid-state laser (Millenia X, Spectra-Physics) at 532 nm was the excitation source. The sample...biological properties in vitro Youngjae You,a,* Scott L. Gibsonb and Michael R. Dettya aInstitute for Lasers , Photonics, and Biophotonics, Department...relative to the exciting laser beam. An additional long-pass filter (850LP) was used to attenuate the excitation laser and the fluorescence from the
Novel Wavelength Standards in the Near IR
2008-04-15
optical fiber, and dashed lines indicate free-space opti- cal beams. Aspheric lenses are shown as shaded ovals; the vacuum chambers (VC), indicated...shows the laser configuration, with a 10 mm long Brewster -cut crystal of Cr:f, cooled to -5°C and pumped at 1075 nm by 8 W of power from a Yb:fiber...modelocked Cr:f system. EXPERIMENT The laser used in this study is based on a folded bow-tie cavity configuration that uses a 10 mm long Brewster
Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers
NASA Astrophysics Data System (ADS)
Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2018-05-01
Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.
Kersten, Hendrik; Lorenz, Matthias; Brockmann, Klaus J; Benter, Thorsten
2011-06-01
The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.5 cm(2), 3 MW/cm(2)). The DPSS laser, operating at 266 nm, provides higher power densities, however, on a two orders of magnitude smaller illuminated area (60 μJ/pulse, 1 ns pulse duration, beam waist area 2 × 10(-3) cm(2), 30 MW/cm(2)). In a common LC-APLI MS setup with direct infusion of a 10 nM pyrene solution, the DPSS laser yields a significantly smaller ion signal (0.9%) and signal to noise ratio (1.4%) compared with the excimer laser. With respect to the determined low detection limits (LODs) for PAHs of 0.1 fmol using an excimer laser, LODs in DPSS laser LC-APLI MS in the low pmol regime are expected. The advantages of the DPSS laser with respect to applicability (size, cost, simplicity) may render this light source the preferred one for APLI applications not focusing on ultimately high sensitivities. Furthermore, the impact of adjustable ion source parameters on the performance of both laser systems is discussed in terms of the spatial sensitivity distribution described by the distribution of ion acceptance (DIA) measurements. Perspectives concerning the impact on future APLI-MS applications are given.
Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber
NASA Astrophysics Data System (ADS)
Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.
2011-05-01
A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.
Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge
2013-07-20
We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.
Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM
2012-07-03
An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.
Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...
2016-03-31
Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less
Comprehensive description of the Orion laser facility
NASA Astrophysics Data System (ADS)
Hopps, Nicholas; Oades, Kevin; Andrew, Jim; Brown, Colin; Cooper, Graham; Danson, Colin; Daykin, Simon; Duffield, Stuart; Edwards, Ray; Egan, David; Elsmere, Stephen; Gales, Steve; Girling, Mark; Gumbrell, Edward; Harvey, Ewan; Hillier, David; Hoarty, David; Horsfield, Colin; James, Steven; Leatherland, Alex; Masoero, Stephen; Meadowcroft, Anthony; Norman, Michael; Parker, Stefan; Rothman, Stephen; Rubery, Michael; Treadwell, Paul; Winter, David; Bett, Thomas
2015-06-01
The Orion laser facility at the atomic weapons establishment (AWE) in the UK has been operational since April 2013, fielding experiments that require both its long and short pulse capability. This paper provides a full description of the facility in terms of laser performance, target systems and diagnostics currently available. Inevitably, this is a snapshot of current capability—the available diagnostics and the laser capability are evolving continuously. The laser systems consist of ten beams, optimised around 1 ns pulse duration, which each provide a nominal 500 J at a wavelength of 351 nm. There are also two short pulse beams, which each provide 500 J in 0.5 ps at 1054 nm. There are options for frequency doubling one short pulse beam to enhance the pulse temporal contrast. More recently, further contrast enhancement, based on optical parametric amplification (OPA) in the front end with a pump pulse duration of a few ps, has been installed. An extensive suite of diagnostics are available for users, probing the optical emission, x-rays and particles produced in laser-target interactions. Optical probe diagnostics are also available. A description of the diagnostics is provided.
Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki
2010-07-05
We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.
Spectroscopic Chemical Analysis Methods and Apparatus
NASA Technical Reports Server (NTRS)
Hug, William F.; Reid, Ray D.
2012-01-01
This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses ballistic electron beam injection directly into the active region of a wide bandgap semiconductor material.
Q-switched all-solid-state lasers and application in processing of thin-film solar cell
NASA Astrophysics Data System (ADS)
Liu, Liangqing; Wang, Feng
2009-08-01
Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.
Fiber optics interface for a dye laser oscillator and method
Johnson, Steve A.; Seppala, Lynn G.
1986-01-01
A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.
Fiber optics interface for a dye laser oscillator and method
Johnson, S.A.; Seppala, L.G.
1984-06-13
A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.
Zhang, Yuan-Xian; Pu, Xiao-Yun; Feng, Li; Han, De-Yu; Ren, Yi-Tao
2013-05-20
The polarization characteristics of Whispering-Gallery-Mode (WGM) fiber lasers based on evanescent-wave-coupled gain are investigated. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized states of the pump beams. The polarization property of lasing emission depends on the propagating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the refractive index (RI) of the cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System
NASA Technical Reports Server (NTRS)
Yu, Anthony
2012-01-01
The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei
2014-06-15
A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelengthmore » of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.« less
Modeling of static and flowing-gas diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman
2016-03-01
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers
NASA Astrophysics Data System (ADS)
Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.
2017-12-01
Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end
Three-beam double stimulated Raman scatterings: Cascading configuration
NASA Astrophysics Data System (ADS)
Rao, B. Jayachander; Cho, Minhaeng
2018-03-01
Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we present a theoretical expression and numerical simulation results for the full-width-at-half-maximum of SRS imaging point spread function, assuming that the pump and Stokes beam profiles are Gaussian and the second Stokes beam has a doughnut-shaped spatial profile. It is clear that the spatial resolution with the present 3-beam cascading SRS method can be enhanced well beyond the diffraction limit. We anticipate that the present work will provide a theoretical framework for a super-resolution stimulated Raman scattering microscopy that is currently under investigation.
NASA Astrophysics Data System (ADS)
Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei
2018-04-01
This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.
Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan
2012-09-01
We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.
CO.sub.2 optically pumped distributed feedback diode laser
Rockwood, Stephen D.
1980-01-01
A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kholin, I. V.; L'dov, A. Yu; Seleznev, L. V.; Ustinovskii, N. N.; Zayarnyi, D. A.
2017-12-01
A new electron beam-optical procedure is proposed for quasi-cw pumping of high-pressure large-volume He-Ar laser on the 4p[1/2]1-4s[3/2]20 argon atom transition at the wavelength of 912.5 nm. It consists of creation and maintenance of a necessary density of the 4s[3/2]20 metastable state in the gain medium by a fast electron beam and subsequent optical pumping of the upper laser level via the classical three-level scheme using a laser diode. Absorption probing is used to study collisional quenching of Ar* metastable in electron-beam-excited high-pressure He-Ar mixtures with a low content of argon. The rate constants for plasma-chemical reactions Ar* + He + Ar > Ar2* + He (3.6 ± 0.4) × 10-33 cm6 s-1, Ar* + 2He > HeAr* + He (4.4 ± 0.9) × 10-36 cm6 s-1 and Ar* + He > Products + He (2.4 ± 0.3) × 10-15 cm3 s-1 were for the first time measured.
Optical pumping in a whispering mode optical waveguide
Kurnit, Norman A.
1984-01-01
A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.
Experimental investigation of a pulsed Rb-Ar excimer-pumped alkali laser
NASA Astrophysics Data System (ADS)
Cheng, Hongling; Wang, Zhimin; Zhang, Fengfeng; Wang, Mingqiang; Tian, Zhaoshuo; Peng, Qinjun; Cui, Dafu; Xu, Zuyan
2017-03-01
We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb-Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.
Ultraviolet emission in Tm3+-doped fluoride fiber pumped with two infrared wavelengths
NASA Astrophysics Data System (ADS)
Mejía, E. B.
2006-12-01
An infrared, two-wavelength pumping scheme for generating UV in Tm3+-doped fibers is investigated and proposed as an alternative because the pump wavelengths are accessible from laser diodes. Spectral characterizations of fiber samples with different concentrations revealed that moderate concentrations are best suitable to produce UV (348-362nm) emission when single—or double-line pumping with 1117 and 725nm. Detailed spectroscopic measurements realized to the fiber with the best performance, the 2000ppmwt, allowed to obtain the copumping wavelengths (in the ˜725nm region) that enhanced the UV emission. For example, when applying tens of milliwatts at 725nm, which represented a 28% increase of total pump power, the UV emission increased in an avalanchelike fashion up to three orders of magnitude. Then, a high-power 1117nm source that currently exists in the market and a moderate power 725nm source under development are possible to be used as pumps for this scheme.
Diode-pumped DUV cw all-solid-state laser to replace argon ion lasers
NASA Astrophysics Data System (ADS)
Zanger, Ekhard; Liu, B.; Gries, Wolfgang
2000-04-01
The slim series DELTATRAINTM-worldwide the first integrated cw diode-pumped all-solid-state DUV laser at 266 nm with a compact, slim design-has been developed. The slim design minimizes the DUV DPSSL footprint and thus greatly facilitates the replacement of commonly used gas ion lasers, including these with intra-cavity frequency doubling, in numerous industrial and scientific applications. Such a replacement will result in an operation cost reduction by several thousands US$DLR each year for one unit. Owing to its unique geometry-invariant frequency doubling cavity- based on the LAS patent-pending DeltaConcept architecture- this DUV laser provides excellent beam-pointing stability of <2 (mu) rad/ degree(s)C and power stability of <2%. The newest design of the cavity block has adopted a cemented resonator with each component positioned precisely inside a compact monolithic metal block. The automatic and precise crystal shifter ensures long operation lifetime of > 5000 hours of whole 266 nm laser. The microprocessor controlled power supply provides an automatic control of the whole 266 nm laser, making this DUV laser a hands-off system which can meet tough requirements posed by numerous industrial and scientific applications. It will replace the commonplace ion laser as the future DUV laser of choice.
A diode-pumped Nd:YAlO3 dual-wavelength yellow light source
NASA Astrophysics Data System (ADS)
Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao
2013-11-01
We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin
2014-05-01
Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.
100 J UV glass laser for dynamic compression research
NASA Astrophysics Data System (ADS)
Zweiback, J.; Fochs, S. F.; Bromage, J.; Broege, D.; Cuffney, R.; Currier, Z.; Dorrer, C.; Ehrich, B.; Engler, J.; Guardalben, M.; Kephalos, N.; Marozas, J.; Roides, R.; Zuegel, J.
2017-02-01
A frequency tripled, Nd:Glass laser has been constructed and installed at the Dynamic Compression Sector located at the Advanced Photon Source. This 100-J laser will be used to drive shocks in condensed matter which will then be interrogated by the facility x-ray beam. The laser is designed for reliable operation, utilizing proven designs for all major subsystems. A fiber front-end provides arbitrarily shaped pulses to the amplifier chain. A diode-pumped Nd:glass regenerative amplifier is followed by a four-pass, flashlamp- pumped rod amplifier. The regenerative amplifier produces up to 20 mJ with better than 1% RMS stability. The passively multiplexed four-pass amplifier produces up to 2 J. The final amplifier uses a 15-cm Nd:glass disk amplifier in a six-pass configuration. Over 200 J of infrared energy is produced by the disk amplifier. A KDP Type-II/Type-II frequency tripler configuration, utilizing a dual tripler, converts the 1053-nm laser output to a wavelength of 351 nm and the ultraviolet beam is image relayed to the target chamber. Output energy stability is better than 3%. Smoothing by Spectral Dispersion and polarization smoothing have been optimized to produce a highly uniform focal spot. A distributed phase plate and aspheric lens produce a farfield spot with a measured uniformity of 8.2% RMS. Custom control software collects all data and provides the operator an intuitive interface to operate and maintain the laser.
Highly efficient 400 W near-fundamental-mode green thin-disk laser.
Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou
2016-01-01
We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru
2017-03-15
The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less
High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2
NASA Astrophysics Data System (ADS)
Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.
2012-06-01
We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.
Side-pumping combiner for high-power fiber laser based on tandem pumping
NASA Astrophysics Data System (ADS)
Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun
2017-11-01
We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser
NASA Astrophysics Data System (ADS)
Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter
2009-02-01
A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides <=25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.
Willis, R T; Becerra, F E; Orozco, L A; Rolston, S L
2011-07-18
We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s(-1), a heralding efficiency of 10%, and a narrow spectral width.
Some aspects of precise laser machining - Part 2: Experimental
NASA Astrophysics Data System (ADS)
Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert
2018-05-01
The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.
Guo, Y Q; Bhattacharya, A; Bernstein, E R
2009-01-08
Photodissociation of nitromethane has been investigated for decades both theoretically and experimentally; however, as a whole picture, the dissociation dynamics for nitromethane are still not clear, although many different mechanisms have been proposed. To make a complete interpretation of these different mechanisms, photolysis of nitromethane at 226 and 271 nm under both collisional and collisionless conditions is investigated at nanosecond and femtosecond time scales. These two laser wavelengths correspond to the pi* <-- pi and pi* <-- n excitations of nitromethane, respectively. In nanosecond 226 nm (pi* <-- pi) photolysis experiments, CH(3) and NO radicals are observed as major products employing resonance enhanced multiphoton ionization techniques and time-of-flight mass spectrometry. Additionally, OH and CH(3)O radicals are weakly observed as dissociation products employing laser induced fluorescence spectroscopy; the CH(3)O product is only observed under collisional conditions. In femtosecond 226 nm experiments, CH(3), NO(2), and NO products are observed. These results confirm that rupture of C-N bond should be the main primary process for the photolysis of nitromethane after the pi* <-- pi excitation at 226 nm, and the NO(2) molecule should be the precursor of the observed NO product. Formation of the CH(3)O radical after the recombination of CH(3) and NO(2) species under collisional conditions rules out a nitro-nitrite isomerization mechanism for the generation of CH(3)O and NO from pi pi* CH(3)NO(2). The OH radical formation for pi pi* CH(3)NO(2) should be a minor dissociation channel because of the weak OH signal in both nanosecond and femtosecond (nonobservable) experiments. Single color femtosecond pump-probe experiments at 226 nm are also employed to monitor the dynamics of the dissociation of nitromethane after the pi* <-- pi excitation. Because of the ultrafast dynamics of product formation at 226 nm, the pump-probe transients for the three dissociation products are measured as an autocorrelation of the laser pulse, indicating the dissociation of nitromethane in the pi pi* excited state is faster than the laser pulse duration (180 fs). In nanosecond 271 nm (pi* <-- n) photolysis experiments, pump-probe experiments are performed to detect potential dissociation products, such as CH(3), NO(2), CH(3)O, and OH; however, none of them is observed. In femtosecond 271 nm laser experiments, the nitromethane parent ion is observed with major intensity, together with CH(3), NO(2), and NO fragment ions with only minor intensities. Pump-probe transients for both nitromethane parent and fragment ions at 271 nm excitation and 406.5 nm ionization display a fast exponential decay with a constant time of 36 fs, which we suggest to be the lifetime of the excited n pi* state of nitromethane. Combined with the 271 nm nanosecond pump-probe experiments, in which none of the CH(3), NO(2), CH(3)O, or OH fragment is observed, we suggest that all the fragment ions generated in 271 nm femtosecond laser experiments are derived from the parent ion, and dissociation of nitromethane from the n pi* excited electronic state does not occur in a supersonic molecular beam under collisionless conditions.
Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2018-02-01
High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.
Optical pumping in a whispering-mode optical waveguide
Kurnit, N.A.
1981-08-11
A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser
NASA Astrophysics Data System (ADS)
Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong
2003-10-01
Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.
Method and apparatus for an increased output for a pumped laser using a moving aperture
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPlante, M.J.; Bender, H.A. III; Carbaugh, W.D. Jr.
1993-08-03
An enhanced pumped laser system is described comprising: (a) at least one laser medium for forming a laser beam, said laser beam having a laser beam axis, (b) at least one means for pumping at least a portion of said at least one laser medium, wherein said pumping causes a population inversion in at least a portion of said at least one laser medium, (c) at least one means for defining an allowable laser beam path, wherein said allowable laser beam path is smaller than the cross-section of said at least one laser medium, (d) at least one means formore » sweeping said allowable laser beam path through said population inverted region of said at least one laser medium, (e) at least one first mirror to reflect at least a portion of said laser beam,« less
NASA Astrophysics Data System (ADS)
Thapa, Rajesh; Rhonehouse, Dan; Nguyen, Dan; Wiersma, Kort; Smith, Chris; Zong, Jie; Chavez-Pirson, Arturo
2013-10-01
Mid-infrared sources are a key enabling technology for various applications such as remote chemical sensing, defense communications and countermeasures, and bio-photonic diagnostics and therapeutics. Conventional mid-IR sources include optical parametric amplifiers, quantum cascade lasers, synchrotron and free electron lasers. An all-fiber approach to generate a high power, single mode beam with extremely wide (1μm-5μm) and simultaneous wavelength coverage has significant advantages in terms of reliability (no moving parts or alignment), room temperature operation, size, weight, and power efficiency. Here, we report single mode, high power extended wavelength coverage (1μm to 5μm) supercontinuum generation using a tellurite-based dispersion managed nonlinear fiber and an all-fiber based short pulse (20 ps), single mode pump source. We have developed this mid IR supercontinuum source based on highly purified solid-core tellurite glass fibers that are waveguide engineered for dispersion-zero matching with Tm-doped pulsed fiber laser pumps. The conversion efficiency from 1922nm pump to mid IR (2μm-5μm) supercontinuum is greater than 30%, and approaching 60% for the full spectrum. We have achieved > 1.2W covering from 1μm to 5μm with 2W of pump. In particular, the wavelength region above 4μm has been difficult to cover with supercontinuum sources based on ZBLAN or chalcogenide fibers. In contrast to that, our nonlinear tellurite fibers have a wider transparency window free of unwanted absorption, and are highly suited for extending the long wavelength emission above 4μm. We achieve spectral power density at 4.1μm already exceeding 0.2mW/nm and with potential for higher by scaling of pump power.
Vortex operation in Er:LuYAG crystal laser at ∼1.6 μm
NASA Astrophysics Data System (ADS)
Liu, Qiyao; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan
2017-09-01
An Er3+-doped Lu1.5Y1.5Al5O12 (Er:LuYAG) solid-state laser with direct generation of optical vortex is reported. The vortex laser operation was realized through being pumped by an annular beam at 1532 nm, which was reformatted by a specially fabricated optical mirror. With two different laser output couplers of 10% and 20% transmissions, pure LG01 mode lasers with right-handedness at 1647.7 nm and 1619.5 nm were yielded from a simple two-mirror cavity, respectively, without any helicity control optical element. Furthermore, stable pulse trains at 1647.7 nm have been achieved via employing an acousto-optic Q-switch, and ∼0.66 mJ pulsed energy and ∼65 ns pulse duration were finally obtained at 1 kHz repetition rate, corresponding to a peak power of ∼10.2 kW. The generated pulse vortex maintained LG01 mode with well-determined right-handedness, as in the case of cw laser operation.
NASA Astrophysics Data System (ADS)
Brenier, A.; Alombert-Goget, G.; Guyot, Y.; Boulon, G.
2012-10-01
The absorption and fluorescence properties of the Nd-doped YGd2Sc2Al2GaO12 mixed garnet ceramics have been measured at different temperatures. Under laser diode pumping an efficient laser emission has been demonstrated with 45% slope efficiency. The emission is constituted by two lines at 1058.6 and 1061.3 nm, subjected to a red shift and a variable relative intensity versus pump power. The role of the temperature has been investigated playing with the cavity parameters. The thermal conductivity of the 1% Nd-doped material has been determined (3.2 W/m/K) measuring the radial temperature distribution of the exit face of the sample including the axial heat flow in the analysis. The M2 beam quality factor and the dioptric power of the thermal lens have been investigated versus the pump power. The thermo-optic coefficient χ was determined as 44.4×10-6 K-1.
Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, Andrew J.
One of the major motivators of this work is the Mercury Project, which is a 1 kW scalable diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL). Major goals include 100 J pulses, 10% wallplug efficiency, 10 Hz repetition rate, and a 5 times diffraction limited beam. To achieve these goals the Mercury laser incorporates ytterbium doped Sr 5(PO 4) 3F (S-FAP) as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material which are necessary for proper design and modeling of the system. Ytterbium doped fluorapatites,more » which were previously investigated at LLNL, were found to be ideal candidate materials for a high power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals were grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Sr 5-xBa x(PO 4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8 times enhancement) of absorption bandwidth and 6.9 nm (1.4 times enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The extraction data was successfully fit to a homogeneous extraction model. The crystal quality of Czochralski grown Yb:S-FAP crystals, which have been plagued by many defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. The very best crystals grown to date were found to have adequate crystal quality for use in the Mercury laser system. In addition to phase distortions which are fixed by material growth, thermal loading of the S-FAP media also leads to distortions due to thermal expansion, α, temperature dependent refractive index, ∂n/∂T, and stress optic effects. The stress optic coefficients necessary for modeling thermal distortions in Yb:S-FAP slab amplifiers were measured giving q 33 = 0.308 x 10 -12 Pa -1, and q 31 = 0.936 x 10 -12 Pa -1. Nonlinear optical losses due to high intensity laser interaction with S-FAP were evaluated including Stimulated Raman Scattering (SRS) and Stimulated Brillouin Scattering. The SRS gain coefficient was measured to be 1.3 cm/GW. The SRS losses in the Mercury amplifier system were successfully modeled and shown to be an issue for high-energy short pulse operation. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces would allow operation of the Mercury laser at 100 J and 2 ns output below SRS threshold. A simple model of SBS losses in the Mercury laser system shows SBS will also be a problem, however suppression is possible with the introduction of moderate bandwidth (relative to the SRS case). Finally, a Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make a compact efficient blue laser source.« less
Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers
NASA Astrophysics Data System (ADS)
Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.
2013-08-01
Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.
Mixed garnet laser for a water vapour DIAL
NASA Astrophysics Data System (ADS)
Treichel, Rainer; Strohmaier, Stephan; Nikolov, Susanne; Eichler, Hans-Joachim; Murphy, Eamonn
2017-11-01
For the water vapour DIAL "WALES" the wavelength regions around 935 nm, 942 nm and 944 nm have been identified as the most suitable wavelength ranges. These wavelengths can be obtained using opticalparametric-oscillators (OPOs), stimulated Raman shifters and the Ti-Sapphire laser but none of these systems could deliver all the needed parameters like beam quality, efficiency, pulse length and energy yet. Also these systems are comparably big and heavy making them less suitable for a satellite based application. A fourth possibility to achieve these wavelength ranges is to shift the quasi-3-level laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing aluminium and yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals or special pump lasers are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. In a first phase such mixed garnet crystals had been grown and characterised. The outcome was the selection of the gadolinium-scandium garnet for the most suitable laser crystal. During a second phase the complete laser system with output energy about 18 mJ in single 20 ns pulses and up to 8 mJ in free running mode with a combined pulse width of 250 μs at 942 nm have been demonstrated. The results of the first laser operation and the achieved performance parameter are reported.
Er-doped YVO4 amplifier diode pumped at 976 nm
NASA Astrophysics Data System (ADS)
Newburgh, G. A.; Dubinskii, Mark
2016-05-01
We report on the use of a 976 nm diode pumped Er:YVO4 slab for the amplification of 1603 nm laser radiation with a small signal gain of 2.1. To the best of our knowledge, this represents the first use of Er:YVO4 as a non-resonantly pumped amplifier.
926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition
NASA Astrophysics Data System (ADS)
Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing
2018-05-01
926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.
A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin
2013-04-01
Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.
Nonlinearities of polymethine and squarylium molecules for optical limiting
NASA Astrophysics Data System (ADS)
Lim, Jin Hong
Optical limiting, a process that reduces transmittance at high laser input energies (irradiance, fluence), is of interest in applications where sensitive optical components, e.g. detectors, are vulnerable to damage by the laser beam. Polymethine and squarylium dyes show strong reverse saturable absorption (RSA) at 532 nm. RSA is a process by which weak linear absorption populates excited states which subsequently absorb strongly. Thus, low inputs are transmitted while high inputs are absorbed. This nonlinear absorption is determined by the ground and excited-state absorption cross sections as well as excited state lifetimes of the molecular system. We characterized a series of polymethine and squarine molecules in ethanol and polyurethane acrylate polymeric host (PUA) using Z-scan and pump-probe techniques at the second harmonic of the Nd:YAG laser system. A comparison of the properties in these two hosts is made. Some of these dyes show a large ratio of excited to ground state absorption cross section, ~200, which is larger than any previously reported values. In order to determine the wavelength dependence of the nonlinearities of these molecules, we also performed Z-scan and pump-probe experiments at wavelengths from 440 to 650 nm using a picosecond optical parametric oscillator (OPO) which is synchronously pumped by the third-harmonic of a modelocked train of Nd:YAG laser pulses. The OPO is continuously tunable from 400 to 700 nm using two critically phase-matched BBO crystals mounted for walkoff compensation. A polymethine dye in PUA (PD #3), which is one of the best polymethine dyes at 532 nm, shows strong RSA over a broad spectral range from 480 to 620 nm. while a squarylium dye shows RSA over a relatively narrow spectral range from 500 to 560 nm. However, the excited state lifetimes (~2.5 ns in PUA) are shorter than desirable for good nanosecond optical limiting (10 ns) and at high inputs (>=0.36 J/cm2) the limiting properties are reduced. Extensive measurements of these molecules along with computer modeling indicate that the reduced limiting at high inputs is due to molecular degradation induced after a trans-cis conformational change. Evidence for this and possible methods to eliminate this problem are presented.
Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber
Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili
2015-01-01
We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850
Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm
NASA Astrophysics Data System (ADS)
Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.
2018-06-01
We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.
High power high repetition rate VCSEL array side-pumped pulsed blue laser
NASA Astrophysics Data System (ADS)
van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni
2013-03-01
High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.
Non-plasmonic nanostructures for subwavelength nonlinear optics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shcherbakov, Maxim R.
2016-09-01
Thin films of hydrogenated amorphous silicon were grown on cover glasses by PECVD in an Oxford PlasmaLab System 100. The thickness of the films and their linear optical properties were characterized by J.A. Woollam Co. Spectroscopic Ellipsometer M-2000D. The follow-up procedure was to spin coat the negative tone ma-N 2403 electron-beam resist over the film, and expose the resist using an electron-beam lithography system (Raith 150). The exposed film was developed and brought to the reactive ion etching facility. We performed conventional apertureless z-scan and I-scan measurements. A train of femtosecond laser pulses form a Coherent Micra 5 laser with an output mean power of 250 mW passed through a precompressor for a negative chirp. A thin-film nanoparticle polarizer (ThorLabs LPVIS050) and a Glan laser-grade polarizer were used to adjust the fluence values in the range of 0.1-10 mJ/cm2. For the pump-probe measurements, a train of femtosecond laser pulses form the laser passed through a pre-compressor for a negative chirp. The pulses were split into two; the resulting mean power values of pump and probe beams at the sample site were approximately 40 mW and 1.5 mW, respectively. The pulses were measured to have 45 fs intensity autocorrelation FHWM duration, and a spectral FWHM width of 19 nm, resulting in a time-bandwidth product of 0.4. Focusing through a silica lens pair achieved waists of roughly 30 μm in diameter, resulting in modest pump fluence values of approximately 30 μJ/cm2, a pump pulse energy of 0.25 nJ, and per-disk deposited energy of 13 fJ. The third-harmonic generation experiment description can be found as the supplementary information of the following publication: http://pubs.acs.org/doi/abs/10.1021/nl503029j
NASA Astrophysics Data System (ADS)
Tsai, Ko-Fan; Chu, Shu-Chun
2018-03-01
This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.
Laser-induced retinal damage thresholds for annular retinal beam profiles
NASA Astrophysics Data System (ADS)
Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.
2004-07-01
The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.
LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm
NASA Astrophysics Data System (ADS)
Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan
2017-12-01
A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.
NASA Astrophysics Data System (ADS)
Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian
2016-06-01
A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.
Two-photon absorption induced stimulated Rayleigh-Bragg scattering
NASA Astrophysics Data System (ADS)
He, Guang S.; Prasad, Paras N.
2005-01-01
A frequency-unshifted and backward stimulated scattering can be efficiently generated in one-photon-absorption free but two-photon absorbing materials. Using a number of novel two-photon absorbing dye solutions as the scattering media and nanosecond pulsed laser as the pump beams, a highly directional backward stimulated scattering at the exact pump wavelength can be readily observed once the pump intensity is higher than a certain threshold level. The spectral and spatial structures as well as the temporal behavior and optical phase-conjugation property of this new type of backward stimulated scattering have been experimentally studied. This stimulated scattering phenomenon can be explained by using a model of two-photon-excitation enhanced standing-wave Bragg grating initially formed by the strong forward pump beam and much weaker backward Rayleigh scattering beam; the partial reflection of the pump beam from this grating provides an positive feedback to the initial backward Rayleigh scattering beam without suffering linear attenuation influence. Comparing to other known stimulated (Raman, Brillouin, Rayleigh-wing, and Kerr) scattering effects, the stimulated Rayleigh-Bragg scattering exhibits the advantages of no frequency-shift, low pump threshold, and low spectral linewidth requirement.
Note: Deep UV-pump THz-probe spectroscopy of the excess electron in water.
Berger, Arian; Savolainen, Janne; Shalit, Andrey; Hamm, Peter
2017-06-28
In the work of Savolainen et al. [Nat. Chem. 6, 697 (2014)], we studied the excess (hydrated) electron in water with the help of transient THz spectroscopy, which is a sensitive probe of its delocalization length. In that work, we used laser pulses at 800 nm, 400 nm, and 267 nm for photoionization. While the detachment mechanism for 400 nm and 267 nm is complicated and requires a concerted nuclear rearrangement, we provided evidence that 800 nm pumping excites the excess electron directly and vertically into the conduction band, despite a highly nonlinear field-ionization process. In the present note, we extend that work to 200 nm pumping, which provides a much cleaner way to reach the conduction band. We show that the detachment pathways upon 200 nm and 800 nm pumping are in essence the same, as indicated by the same initial size of the electron wavefunction and the same time scales for the collapse of the wavefunction and geminate recombination.
As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation.
Xie, Shangran; Tani, Francesco; Travers, John C; Uebel, Patrick; Caillaud, Celine; Troles, Johann; Schmidt, Markus A; Russell, Philip St J
2014-09-01
A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2 dB at 1550 nm in the case of free-space in-coupling, which is ∼7 dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.
Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.
Jana, Dipankar; Porwal, S; Sharma, T K; Kumar, Shailendra; Oak, S M
2014-04-01
Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.
Laser intensity scaling through stimulated scattering in optical fibers
NASA Astrophysics Data System (ADS)
Russell, Timothy H.
The influence of stimulated scattering on laser intensity in fiber optic waveguides is examined. Stimulated Brillouin scattering (SBS) in long, multimode optical waveguides is found to generate a Stokes beam that propagates in the fiber LP01 mode. This characteristic of the Stokes beam was first applied to beam cleanup, where an aberrated pump generated a Gaussian-like Stokes beam. Additionally, the same process is found to combine multiple laser beams into a single spatially coherent source. The mean square difference between the two beams was used to measure the degree of spatial overlap, demonstrating spatial coherence between the Stokes beams even when the pump beams are not spatially correlated. This result is obtained regardless of whether the pump beams are at the same or different frequencies; producing two temporally coherent or incoherent Stokes beams respectively. Limitations in beam cleanup and combining are also examined to identify ways to overcome them. Output couplers are designed that could be used to spatially filter the Stokes beam from the pump, thus increasing the number of beams that could be combined. The combined power restriction induced by second order Stokes threshold is examined experimentally and theoretically and is not found to be a significant limitation. Finally, stimulated Raman scattering (SRS) beam cleanup is examined to overcome the stringent spectral requirements on the pump beams required by SBS. The last portion of the dissertation theoretically examines suppression of stimulated Raman scattering in fibers to eliminate the restriction this imposes on the power of a fiber laser or amplifier. The suppression was modeled using both a holmium dopant and adding a long period grating to the fiber. Both methods were shown to have a significant effect on the SRS threshold.
Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao
2013-01-01
A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zhixu; Zheng, Kezhi; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012
We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under themore » pumping of the 1560 nm femtosecond fiber laser.« less
16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm
NASA Astrophysics Data System (ADS)
Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan
2017-11-01
We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuyuki, Takuma; Yoshioka, Ryo; Yoshida, Kenji
2013-11-11
This study demonstrates long-wavelength emission of up to 1204 nm in photo-pumped GaAs{sub 1−x}Bi{sub x} lasers grown by molecular beam epitaxy under low temperature conditions. The characteristic temperature (T{sub 0}) between 20 and 80 °C in the GaAs{sub 1−x}Bi{sub x} lasers with Al{sub 0.3}Ga{sub 0.7}As electron blocking layer is approximately 100 K, which is larger than that of the typical 1.3-μm InGaAsP Fabry-Perot laser diodes (FP-LDs; T{sub 0} = 66 K). The temperature coefficient of the lasing wavelength is approximately 40% of that of InGaAsP FP-LDs.
NASA Astrophysics Data System (ADS)
Polynkin, Alexander; Polynkin, Pavel; Schülzgen, Axel; Mansuripur, Masud; Peyghambarian, N.
2005-02-01
We report over 2 W of single spatial-mode output power at 1.5 µm from an 8-cm-long, large-core phosphate fiber laser. The fiber has a numerical aperture of simeq 0.17 and a 25-µm-wide core, heavily doped with 1% Er+3 and 8% Yb+3. The laser utilizes a scalable evanescent-field-based pumping scheme and can be pumped by as many as eight individual multimode pigtailed diode laser sources at a wavelength of 975 nm. Nearly diffraction-limited laser output with a beam quality factor M^2 simeq 1.1 is achieved by use of a simple intracavity all-fiber spatial-mode filter. Both spectrally broadband and narrowband operation of the laser are demonstrated.
Light emission of heavily doped AlGaN structures under optical pumping
NASA Astrophysics Data System (ADS)
Bokhan, P. A.; Fateev, N. V.; Osinnykh, I. V.; Malin, T. V.; Zakrevsky, Dm. E.; Zhuravlev, K. S.; Wei, Xin; Li, Jian; Chen, Lianghui
2018-04-01
Spectral, temporal and polarization characteristics of spontaneous and stimulated luminescence of Al0.5Ga0.5N/AlN structures grown by molecular beam epitaxy were studied at the optical pulsed pumping with λ = 266 nm. Samples with a high degree of silicon doping were investigated. The vast majority of radiation falls on transitions within the band gap between the levels of defects. As a result, the radiation band embracing the whole visible range of more than 300 THz is observed in both spontaneous radiation and induced luminescence. In spontaneous radiation the band has a smooth spectral intensity distribution over the wavelengths, whereas induced radiation has its sharp peaks corresponding to the mode structure of the planar waveguide. The measured gain of the active medium is g ≈ 70 cm‑1 for a weak signal.
Radio Pumping of Ionospheric Plasma with Orbital Angular Momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyser, T. B.; Norin, L.; McCarrick, M.
2009-02-13
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Radio pumping of ionospheric plasma with orbital angular momentum.
Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B
2009-02-13
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Method to improve optical parametric oscillator beam quality
Smith, Arlee V.; Alford, William J.; Bowers, Mark S.
2003-11-11
A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Optical pulse synthesis using brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2002-01-01
Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.
Spectroscopic Chemical Analysis Methods and Apparatus
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor)
2017-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
Spectroscopic Chemical Analysis Methods and Apparatus
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)
2018-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
Diode-pumped continuous wave and passively Q-switched Tm, Mg: LiTaO₃ lasers.
Feng, T; Li, T; Zhao, S; Li, Q; Yang, K; Zhao, J; Qiao, W; Hang, Y; Zhang, P; Wang, Y; Xu, J
2014-02-24
We have demonstrated the continuous wave and passively Q-switched Tm, Mg: LiTaO3 lasers for the first time. In continuous wave (CW) regime, a maximum CW output power of 1.03 W at 1952 nm was obtained, giving a slope efficiency of 9.5% and a beam quality M2 = 2.2. In passive Q-switching regime, a single walled carbon nanotube (SWCNT) was employed as saturable absorber (SA). The Tm,Mg:LiTaO3 laser has yielded a pulse of 560 ns under repetition rate of 34.2 kHz at 1926 nm, corresponding to a single pulse energy of 10.1 μJ. The results indicate a promising potential of nonlinear crystals in the applications for laser host materials.
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.
1990-01-01
Ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well lasers exhibiting record high quantum efficiencies and high output power densities (105 mW per facet from a 6 micron wide stripe) at a lasing wavelength of 980 nm are discussed that were fabricated from a graded index separate confinement heterostructure grown by molecular beam epitaxy. Life testing at an output power of 30 mW per uncoated facet reveals a slow gradual degradation during the initial 500 h of operation after which the operating characteristics of the lasers become stable. The emission wavelength, the high output power, and the fundamental lateral mode operation render these lasers suitable for pumping Er3+-doped fiber amplifiers.
Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenly, J.; Seka, W.; Rechmann, P.
2009-10-19
A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue ismore » not removed at fluences ≤3 J/cm^2.« less
Development of an optically-pumped cesium standard at the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Chan, Yat C.
1992-01-01
We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.
Power amplification for petawatt Ti: Sapphire lasers: New strategies for high fluence pumping
NASA Astrophysics Data System (ADS)
Canova, F.; Chambaret, J.-P.
2006-06-01
One of the major bottlenecks when we pump large Ti:Sapphire crystals, to reach Petawatt level laser amplification, is the careful control of the spatial energy distribution of Nd:Glass pump lasers. Commercially available nanosecond Nd:Glass and Nd:YAG lasers exhibit poor spatial profile quality especially in the near and in the intermediate field, which can lead to local hot spots, responsible of damages in crystals, and parasitic transverse lasing enhancement, strongly dependent on the profile of the pump beam . For these reasons, it is mandatory to keep the pump beam intensity profile as flat as possible on the pumped crystal. To guarantee the best pumping conditions we are investigating the combined use of DOE (diffractive optical elements) and optical smoothing techniques. In parallel we are starting a study on laser induced damages mechanisms in crystal. With DOE and microlens arrays we plan to guarantee to the beam a supergaussian shape. Simulation and first experiments with both optical systems show that a flat top spatial profile with less than 10% fluctuations and a 8th order supergaussian is possible with the present technology.Optical smoothing will keep the beam free of hot spots. We especially focused on the smoothing techniques involving optical fibers. This is the first time to our knowledge that this technique is applied to the pumping beams for Ti:Sapphire systems. A deep study of laser-crystal interaction will allow us to fully understand the damages created by hot spots. The knowledge of the phenomena involved in laser damages on Ti:Sapphire is mandatory to control the pumping processes and thresholds. In conclusion, mixing the advantages of these different approaches to overcome this bottleneck will allow us to amplify in a safety way femtosecond laser beams to the Petawatt level using Ti:Sapphire crystals.
A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source
NASA Astrophysics Data System (ADS)
Chen, Xiuyan; Jiang, Huawei
2016-12-01
A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.
Diode-pumped SrMoO4:Tm3+ crystal lasing near 1500 nm
NASA Astrophysics Data System (ADS)
Doroshenko, M. E.; Sulc, J.; Jelinkova, H.; Nemec, M.; Ivleva, L. I.; Dunaeva, E. E.
2018-04-01
Diode-pumped lasing of Tm3+ ions in SrMoO4 crystal at wavelength near 1500 nm was obtained for the first time to our best knowledge. Two laser lines with orthogonal polarizations were observed at 1452 and 1492 nm. The laser pulse was self-terminated about 500 µs after the pump start.
The Laser Guide Star System for Adaptive Optics at Subaru Telescope
NASA Astrophysics Data System (ADS)
Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.
We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high-power laser beam with no suffer from the non-linear scatter effect, i.e. stimulated Brillouin scatter, in the PCF. The laser launching telescope (LLT) has an output clear aperture as 50 cm. It is classical Cassegrain type optical configuration with tertiary mirror to insert the laser beam from the side. The wavefront error is designed to be 60 to 70nm. The LLT is a copy product what European Southern Observatory has been designed for the laser guide star system at Very Large Telescope. We succeeded to launch the laser beam to the sky on October 12, 2006. After several tests on the sky, we succeeded to get an image of the laser guide star with the size of more than 10 arc second. The larger size of the laser guide star is caused by the large optical aberration on the primary mirror of LLT due to the heat stress generated at the trigonal support points. We are making a plan to repair this problem during June and the second laser launching test will start around this summer.
NASA Astrophysics Data System (ADS)
Karadimitriou, N.; Klinkenberg, B.; Papadopoulos, D. N.; Serafetinides, A. A.
2007-07-01
Laser ablation for the formation of apodized patterns on intraocular lenses, as an alternative of the conventional injection molding, has been proved to be a very promising new technique. For the precise lenses ablation, the use of suitable laser wavelength and pulse duration, resulting in a small optical penetration depth in the lens and in confinement of the energy deposition in a small volume, as well as the reduced thermal damage to the surrounding tissue, is essential. Mid-infrared laser wavelengths, at which the organic biological simulators absorption coefficient is large, meet well the above conditions. Towards the complete understanding of the intraocular lens ablation procedure and therefore the choice of the optimum laser beam characteristics for the most accurate, efficient and safe surgical application, the comparative study of various mid-infrared laser sources is of great interest. In this work we investigate the potential of the development of three different mid-infrared laser sources, namely the Yb:YAG, the Cr:Tm:Ho:YAG and the Er:Tm:Ho:YLF laser, operating at 1029 nm, 2060 nm and 2080 nm respectively and their ability in forming patterns on biomaterials. Pumping was achieved with conventional Xe flash lamps in a double elliptical pump chamber. A properly designed Pulse-Forming- Network capable of delivering energy up to 800 J, in variable lamp illumination durations is used. Several hundreds of mJoules were achieved from the Yb:YAG laser oscillator and several Joules from the Ho:YAG and Ho:YLF laser oscillators. Free running and Q-switched laser operation studies and preliminary experiments on laser and biomaterials (biopolymers and animal tissues) interactions will be reported.
NASA Astrophysics Data System (ADS)
Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.
2018-02-01
Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Chitnis, Parag V.; Silverman, Ronald H.
2014-03-01
Conventional photoacoustic microscopy (PAM) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target. The resolution of conventional PAM is limited by the sensitivity and bandwidth of the ultrasound transducer. We investigated a versatile, all-optical PAM (AOPAM) system for characterizing in vivo as well as ex vivo biological specimens. The system employs non-contact interferometric detection of PA signals that overcomes limitations of conventional PAM. A 532-nm pump laser with a pulse duration of 5 ns excites the PA effect in tissue. Resulting acoustic waves produce surface displacements that are sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a 1- GHz bandwidth. The pump and probe beams are coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam is demodulated using homodyne methods. The detected timedomain signal is time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. A minimum surface-displacement sensitivity of 0.19 pm was measured. PA-induced surface displacements are very small; therefore, they impose stringent detection requirements and determine the feasibility of implementing an all-optical PAM in biomedical applications. 3D PA images of ex vivo porcine retina specimens were generated successfully. We believe the AOPAM system potentially is well suited for assessing retinal diseases and other near-surface biomedical applications such as sectionless histology and evaluation of skin burns and pressure or friction ulcers.
NASA Astrophysics Data System (ADS)
He, Hong-Sen; Chen, Zhen; Dong, Jun
2017-05-01
A hollow focus lens (HFL) has been designed to effectively produce a focused annular beam for high-intensity pumping. By applying the central-dark pump beam, a monolithic Nd:YAG microchip laser without any extra optical elements is demonstrated to generate vector vortex beams with switchable radially polarized (RP) and azimuthally polarized (AP) states by easily controlling the pump power. The order and handedness of the output vortex beam remain stable during the switching of the RP and AP states. The monolithic Nd:YAG microchip laser provides a new laser source for applications such as material processing and optical manipulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang
We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic aroundmore » 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.« less
Light sources based on semiconductor current filaments
Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen
2003-01-01
The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.
Unstable Resonator Optical Parametric Oscillator Based on Quasi-Phase-Matched RbTiOAsO(4).
Hansson, G; Karlsson, H; Laurell, F
2001-10-20
We demonstrate improved signal and idler-beam quality of a 3-mm-aperture quasi-phase-matched RbTiOAsO(4) optical parametric oscillator through use of a confocal unstable resonator as compared with a plane-parallel resonator. Both oscillators were singly resonant, and the periodically poled RbTiOAsO(4) crystal generated a signal at 1.56 mum and an idler at 3.33 mum when pumped at 1.064 mum. We compared the beam quality produced by the 1.2-magnification confocal unstable resonator with the beam quality produced by the plane-parallel resonator by measuring the signal and the idler beam M(2) value. We also investigated the effect of pump-beam intensity distribution by comparing the result of a Gaussian and a top-hat intensity profile pump beam. We generated a signal beam of M(2) approximately 7 and an idler beam of M(2) approximately 2.5 through use of an unstable resonator and a Gaussian intensity profile pump beam. This corresponds to an increase of a factor of approximately 2 in beam quality for the signal and a factor of 3 for the idler, compared with the beam quality of the plane-parallel resonator optical parametric oscillator.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.
2000-01-01
A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.
High power tube solid-state laser with zigzag propagation of pump and laser beam
NASA Astrophysics Data System (ADS)
Savich, Michael
2015-02-01
A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.
NASA Astrophysics Data System (ADS)
Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning
2018-05-01
In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.
Universal Long-Range Nanometric Bending of Water by Light.
Verma, Gopal; Singh, Kamal P
2015-10-02
Resolving mechanical effects of light on fluids has fundamental importance with wide applications. Most experiments to date on optofluidic interface deformation exploited radiation forces exerted by normally incident lasers. However, the intriguing effects of photon momentum for any configuration, including the unique total internal reflection regime, where an evanescent wave leaks above the interface, remain largely unexplored. A major difficulty in resolving nanomechanical effects has been the lack of a sensitive detection technique. Here, we devise a simple setup whereby a probe laser produces high-contrast Newton-ring-like fringes from a sessile water drop. The mechanical action of the photon momentum of a pump beam modulates the fringes, thus allowing us to perform a direct noninvasive measurement of a nanometric bulge with sub-5-nm precision. Remarkably, a <10 nm difference in the height of the bulge due to different laser polarizations and nonlinear enhancement in the bulge near total internal reflection is isolated. In addition, the nanometric bulge is shown to extend far longer, 100 times beyond the pump spot. Our high precision data validate the century-old Minkowski theory for a general angle and offer potential for novel optofluidic devices and noncontact nanomanipulation strategies.
3 μm CW lasers for myringotomy and microsurgery.
Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S
2013-03-08
This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.
3-μm CW lasers for myringotomy and microsurgery
NASA Astrophysics Data System (ADS)
Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.
2013-03-01
This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.
3 μm CW lasers for myringotomy and microsurgery
Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D’Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.
2013-01-01
This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899. PMID:24382990
Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm
NASA Astrophysics Data System (ADS)
Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady
2018-01-01
We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber.
Chang, Jun; Wang, Qing-Pu; Zhang, Xingyu; Liu, Zhejin; Liu, Zhaojun; Peng, Gang-Ding
2005-05-30
We propose a novel scheme in which Yb3+ codoping and a laser cavity are introduced in Tm3+ doped fiber to achieve efficient S-band optical amplification with a 980 nm pump source. This scheme makes it possible for conventional 980 nm pump sources for Er3+ doped fiber amplifiers to be used for S-band Tm3+ doped fiber amplifiers (TDFAs). By introducing a laser cavity into an amplifier, an internally generated pump from Yb3+ at a desirable wavelength for pumping Tm3+ could be produced. We establish and analyze, for the first time to our knowledge, a new theoretical model that takes into consideration both the internal lasing operation inside the optical amplification process and the energy transfer between the Tm3+ and the Yb3+ ions in TDFAs. Various situations such as Tm3+ doping concentration and cavity reflectivity have been investigated. The results show that high optical gain and high pump efficiency can be achieved by use of 980 nm sources. With a laser cavity of 1050 nm in Tm3+ and Yb3+ codoped fiber, for example, it is possible to achieve high optical gain of greater than 20 dB, a noise figure of approximately 5 dB in the wavelength range from 1450 to 1480 nm with a 0.3 W power at 980 nm pump source.
NASA Astrophysics Data System (ADS)
Patterson, Steven G.; Guiney, Tina; Stapleton, Dean; Braker, Joseph; Alegria, Kim; Irwin, David A.; Ebert, Christopher
2017-02-01
DILAS has leveraged its industry-leading work in manufacturing low SWaP fiber-coupled modules extending the wavelength range to 793nm for Tm fiber laser pumping. Ideal for medical, industrial and military applications, modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be discussed. The highlight is a lightweight module capable of <200W of 793nm pump power out of a package weighing < 400 grams. In addition, other modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be presented. In addition, advances in DPAL modules, emitting at the technologically important wavelengths near 766nm and 780nm, will be detailed. Highlights include a fully microprocessor controlled fiber-coupled module that produces greater than 400W from a 600 micron core fiber and a line width of only 56.3pm. The micro-processor permits the automated center wavelength and line width tuning of the output over a range of output powers while retaining excellent line center and line width stability over time.
NASA Astrophysics Data System (ADS)
Brüske, Dominik; Suntsov, Sergiy; Volk, Martin F.; Rüter, Christian E.; Kip, Detlef
2018-02-01
Erbium-ytterbium-codoped titanium in-diffused ridge waveguides optical amplifiers in x-cut congruent LiNbO3 substrates pumped at 980.5 nm and 1486 nm are reported for the first time. An internal gain of 2.8 dB/cm has been measured in 2.3 cm long Yb:Er:Ti:LiNbO3 ridge waveguides for the coupled pump power of 145 mW at 980.5 nm, which is the highest gain ever reported, to the best of our knowledge, for erbium-based LiNbO3 waveguide amplifiers under 980 nm excitation. Furthermore, we realized an internal gain of 3.2 dB/cm for the coupled pump power of 200 mW at 1486 nm, which also exceeds the best literature values for Er:Ti:LiNbO3 waveguide amplifiers pumped at this wavelength. In addition, we report on a method for local periodic poling (periods of 30 μm and 18.4 μm) of ridge waveguides in LiNbO3, which allows for future integration of waveguide lasers and nonlinear frequency converters on the same substrate.
Modeling and simulation performance of sucker rod beam pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com
2015-09-30
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less
Cheng, Tonglei; Tuan, Tong Hoang; Xue, Xiaojei; Liu, Lai; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake
2015-08-10
We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ~80 MHz and ~200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ~1800 nm. With the average pump power increasing from ~200 to 450 mW, the center wavelength of the 1st DW decreases from ~956 to 890 nm, the 2nd DW from ~1039 to 997 nm, the 3rd DW from ~1101 to 1080 nm, and the 4th DW from ~1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ~1400 and 2000 nm are investigated at the average pump power of ~350 mW.
Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng
2016-03-01
Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto
2010-04-01
The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.
Red laser-diode pumped 806 nm Tm3+: ZBLAN fibre laser
NASA Astrophysics Data System (ADS)
Juárez-Hernández, M.; Mejía, E. B.
2017-06-01
A Tm3+-doped fluorozirconate (ZBLAN) fibre laser operating CW at 806 nm when diode-pumped at 687 nm is described for the first time. This device is based on the 3F4 → 3H6 transition, and is suitable for first telecom window and sensing applications. A slope efficiency of 50.3% and low threshold pump-power of 11.6 mW were obtained. Maximum output power of 15 mW for 40 mW coupled pump was achieved.
Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph
2016-04-01
Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.
Cryosorption Pumps for a Neutral Beam Injector Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dremel, M.; Mack, A.; Day, C.
2006-04-27
We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less
NASA Technical Reports Server (NTRS)
1982-01-01
A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.
Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2014-01-10
Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
High peak-power kilohertz laser system employing single-stage multi-pass amplification
Shan, Bing; Wang, Chun; Chang, Zenghu
2006-05-23
The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.
Gün, Teoman; Metz, Philip; Huber, Günter
2011-03-15
We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.
Trusov, K K
1994-02-20
A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.
NASA Astrophysics Data System (ADS)
Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.
2018-03-01
Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.
Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Anderson, S G; Barty, C P J
2003-05-28
The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less
Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency
NASA Astrophysics Data System (ADS)
Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.
2016-03-01
High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].
Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F
2013-03-11
We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.
Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers
NASA Astrophysics Data System (ADS)
Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter
2015-04-01
We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.
High Energy, Single-Mode, All-Solid-State Nd:YAG Laser
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, Floyd
2006-01-01
In this paper, recent progress made in the design and development of an all-solid-state, single longitudinal mode, conductively cooled Nd:YAG laser operating at 1064 nm wavelength for UV lidar for ozone sensing applications is presented. Currently, this pump laser provides an output pulse energy of greater than 1.1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns. The spatial profile of the output beam is a rectangular super Gaussian. Electrical-to-optical system efficiency of greater than 7% and a minimum M(sup 2) value of less than 2 have been achieved.
Sub-nanosecond Yb:KLu(WO4)2 microchip laser.
Loiko, P; Serres, J M; Mateos, X; Yumashev, K; Yasukevich, A; Petrov, V; Griebner, U; Aguiló, M; Díaz, F
2016-06-01
A diode-pumped Yb:KLu(WO4)2 microchip laser passively Q-switched by a Cr4+:YAG saturable absorber generated a maximum average output power of 590 mW at 1031 nm with a slope efficiency of 55%. The pulse characteristics were 690 ps/47.6 μJ at a pulse repetition frequency of 12.4 kHz. The output beam had an excellent circular profile with M2<1.05. Yb:KLu(WO4)2 is very promising for ultrathin sub-ns microchip lasers.
Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.
Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping
2012-06-15
We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.
Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M
2015-08-15
We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Dipankar, E-mail: dip2602@gmail.com; Porwal, S.; Sharma, T. K., E-mail: tarun@rrcat.gov.in
Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pumpmore » beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.« less
Chen, He; Zhou, Xuanfeng; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2015-12-28
We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schearer, L.D.; Leduc, M.
Over 250 mW of CW laser emission at 1084 nm is obtained from Nd:LiNbO{sub 3} when the rod is end-pumped along the crystalline {open quote}{ital y}{close quote} axis by 1 W from a Kr{sup +} laser at 752 nm. The laser can be tuned over 3 nm at the 1084 nm peak with a thin, uncoated etalon in the cavity. Thresholds of 30 mW of absorbed pump power were obtained with a weak output coupler, rising to 220 mW with a 35% transmitting output mirror. No pump-induced photorefractive effects were observed.
Relaxation times measurement in single and multiply excited xenon clusters
NASA Astrophysics Data System (ADS)
Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.
2018-05-01
Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.
Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc
NASA Astrophysics Data System (ADS)
Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo
2004-07-01
We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.
Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi
2016-05-01
The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.
1.5 kW efficient CW Nd:YAG planar waveguide MOPA laser.
Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun
2017-08-15
In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1 mm (T)×10 mm (W)×60 mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.
Monolithic fiber laser oscillator with record high power
NASA Astrophysics Data System (ADS)
Yang, Baolai; Shi, Chen; Zhang, Hanwei; Ye, Qing; Pi, Haoyang; Tao, Rumao; Wang, Xiaolin; Ma, Pengfei; Leng, Jinyong; Chen, Zilun; Zhou, Pu; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin
2018-07-01
With an increasing output power, the power scaling of monolithic fiber laser oscillators faces the severe limitations of stimulated Raman scattering (SRS) and the transverse mode instability (TMI) effect. In this work, we report a high power monolithic fiber laser oscillator with a maximum output power of 5.2 kW, which is realized with a trade-off design between the SRS and TMI. The monolithic fiber laser oscillator is constructed with ytterbium-doped fiber with a core/inner cladding diameter of 25/400 µm and corresponding home-made FBG. High-power 915 nm laser diodes are employed as a pump source and are distributed in a bidirectional-pump configuration. By optimizing the bidirectional pump proportion, the monolithic fiber laser oscillator is scaled up to 5.2 kW with a slope efficiency of ~63%. Operating at 5.2 kW, the intensity of the Raman stokes light is ~22 dB below the signal laser and the beam quality (M2-factor) is ~2.2. To the best of our knowledge, this is a record high power for monolithic fiber laser oscillators.
160mJ and 9ns electro-optics Q-switched conductively cooled 1047nm Nd:YLF laser
NASA Astrophysics Data System (ADS)
Yang, Qi; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei
2015-02-01
A compact diode side-pumped conductively cooled 1047 nm Nd:YLF slab laser with high energy and short pulse width is developed. Through ray tracing method, we design a home-made pump module to homogenize the pump intensity. Based on the Possion equation, a thermal conduct model of side-pump laser is established. The temperature distribution in laser crystal is obtained, and the thermal lens is caculated. With the absorbed pump energy of 818 mJ, the maximum output energy of 228 mJ is achieved in free-running mode. At a repetition rate of 50 Hz, 160 mJ, 9 ns 1047 nm infrared light is obtained under the maximum absorbed pump energy, and the slope efficiency is 27.8%.
Delivering pump light to a laser gain element while maintaining access to the laser beam
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.
2001-01-01
A lens duct is used for pump delivery and the laser beam is accessed through an additional component called the intermediate beam extractor which can be implemented as part of the gain element, part of the lens duct or a separate component entirely.
Diode-pumped Nd:GAGG-LBO laser at 531 nm
NASA Astrophysics Data System (ADS)
Zou, J.; Chu, H.; Wang, L. R.
2012-03-01
We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less
Development of optically pumped DBR-free semiconductor disk lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor
2017-03-01
Semiconductor disk lasers (SDLs) are attractive for applications requiring good beam quality, wavelength versatility, and high output powers. Typical SDLs utilize the active mirror geometry, where a semiconductor DBR is integrated with the active region by growth or post-growth bonding. This imposes restrictions for the SDL design, like material system choice, thermal management, and effective gain bandwidth. In DBR-free geometry, these restrictions can be alleviated. An integrated gain model predicts DBR-free geometry with twice the gain bandwidth of typical SDLs, which has been experimentally verified with active regions near 1 μm and 1.15 μm. The lift-off and bonding technique enables the integration of semiconductor active regions with arbitrary high quality substrates, allowing novel monolithic geometries. Bonding an active region onto a straight side of a commercial fused silica right angle prism, and attaching a high reflectivity mirror onto the hypotenuse side, with quasi CW pumping at 780 nm, lasing operation was achieved at 1037 nm with 0.2 mW average power at 1.6 mW average pump power. Laser dynamics show that thermal lens generation in the active region bottlenecks the laser efficiency. Investigations on total internal reflection based monolithic ring cavities are ongoing. These geometries would allow the intracavity integration of 2D materials or other passive absorbers, which could be relevant for stable mode locking. Unlike typical monolithic microchip SDLs, with the evanescent wave coupling technique, these monolithic geometries allow variable coupling efficiency.
Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A
2018-07-01
We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1980-11-30
differentially pumped drift tube as shown in Figure 1. However, even the lOI of gas pressure in the drift space is sufficient to establish an equilibrium...pumped drift tube concept are five-fold: 1) Lower energy attenuation of the beam by neutral gas 2) Lower lateral spread of the beam caused by multiple...relatively low gas pressure through the use of a differentially pumped drift tube . The path makes it possible to observe ion energies to considerably lower
Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Liu, Dongfeng; Wang, Chinhua
2010-01-01
We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.
Theoretical and experimental investigations on high peak power Q-switched Nd:YAG laser at 1112 nm
NASA Astrophysics Data System (ADS)
He, Miao; Yang, Feng; Wang, Zhi-Chao; Gao, Hong-Wei; Yuan, Lei; Li, Chen-Long; Zong, Nan; Shen, Yu; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-07-01
We report on the experimental measurement and theoretical analysis on a Q-switched high peak power laser diode (LD) side-pumped 1112 nm Nd:YAG laser by means of special mirrors coating design in cavity. In theory, a numerical model, based on four-wavelength rate equations, is performed to analyze the competition process of different gain lines and the output characteristics of the Q-switched Nd:YAG laser. In the experiment, a maximum output power of 25.2 W with beam quality factor M2 of 1.46 is obtained at the pulse repetition rate of 2 kHz and 210 ns of pulse width, corresponding to a pulse energy and peak power of 12.6 mJ and 60 kW, respectively. The experimental data agree well with the theoretical simulation results.
Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring
NASA Astrophysics Data System (ADS)
Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés
2016-12-01
Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.
CW molecular iodine laser pumped with a low power DPSSL
NASA Astrophysics Data System (ADS)
Luhs, W.; Wellegehausen, B.; Goyal, M.
2017-04-01
Cw oscillation of molecular iodine on many lines in the range of 557-802 nm pumped with a low power common diode pumped and frequency doubled solid state laser DPSSL is reported. The DPSSL is temperature stabilized, operates in single frequency and can be tuned by about 2 nm at 532 nm. Operation conditions of this simple and low cost iodine ring laser will be described and possible applications will be discussed.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.
Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J
2010-06-21
We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.
1989-08-30
nm to produce blue light at 455 nm (Figure 1). A 20 Hz doubled Nd:YAG pump laser emitting up to 150 mJ at 532 nm 147 WA4-2 was used to resonantly...pumped by a diode laser, then in addition to the processes of Fig. 1, excited state absorption of the pump light from both 4I13,/z and 4I3112 may be...are visible and UV systems pumped at wavelengths that are available from semiconductor diode lasers and infrared emitting systems having high slope
Alfano, Robert R.; Wang, Wubao
2003-05-06
A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Anand Kumar; Boyd, Robert W.
2010-01-15
We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less
Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.
Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O
2016-11-14
We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.
Scoby, Cheyne M; Li, R K; Musumeci, P
2013-04-01
In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers
NASA Astrophysics Data System (ADS)
Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey
1995-02-01
We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.
Optical Nonlinearities in Semiconductors for Limiting.
NASA Astrophysics Data System (ADS)
Wu, Yuan-Yen
I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 10 ^5 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe. Material nonlinear optical parameters, such as the two-photon absorption coefficient beta _2 = 5.5 cm/GW, the refraction per unit carrier density sigma_{rm n} = -0.8cdot 10^ {-21}cm^3 and the bound electronic refraction n_2 = -4cdot 10^{ -11}esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the previously mentioned material parameters. In addition, I have performed time-resolved distortion measurements that provide an intuitive picture of the carrier generation process via two-photon absorption. I also characterized the optical nonlinearities in a ZnSe Fabry-Perot thin film structure (an interference filter). I concluded that the nonlinear absorption alone in the thin film is insufficient to build an effective optical limiter, as it did not show a net change in refraction using psec pulses. An innovative numerical program was developed to simulate the nonlinear beam propagation inside the Fabry-Perot structure. For comparison, pump-probe experiments were performed using both thin film and bulk ZnSe. The results showed relatively long carrier lifetimes (>300 psec) in both samples. A numerical code was written to fit the pump-probe experimental results. The fitting yielded that carrier lifetimes (recombination through traps), radiative decay rate, two-photon absorption coefficient as well as the free carrier absorption coefficient for ZnSe bulk material.
All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror
NASA Astrophysics Data System (ADS)
Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.
1996-02-01
At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.
Effect of crystal length on the thermal characteristic in Nd: YLF laser with 20W diode pumped
NASA Astrophysics Data System (ADS)
Yahya, K. A.; Hussein, O. A.; Mustafa, O. H.
2016-03-01
Theoretical results are reported on thermal effects along the π- 1047nm and σ- 1053nm polarizations in a cut Nd: YLF rod crystal by using 20W Diode -End-pumped. The crystal length effects on the fraction of absorbed pump radiation converted into heat, radial temperature distribution, and the change in a radial refractive index. The result from this study has shown that a maximum fraction converted into heat is calculated to be around 24% and thermal effects of π-polarized 1047 nm stronger than σ-polarized 1053 nm.
End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal
NASA Astrophysics Data System (ADS)
Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.
2010-01-01
We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.
NASA Astrophysics Data System (ADS)
Broslavets, Y. Y.; Fomitchev, A. A.
1996-11-01
We report on investigation of mode-locked regime in tunable Cr4+:YAG laser. Our experiments have been performed using Nd:YAG laser for pumping Cr4+:Y3Al5O12 laser. We have obtained mode-locked generation of tunable radiation in the range from 1,350 to 1,550 nm. There was a generation with pulse duration in ps range and repetition rate of 320 MHz. Using a 0.5 percent transmitting output mirror, as high as 305 mW of useful output power at 1.5 micrometers was obtained from the laser with 5.5 W of absorbed pump power. The laser has threshold for mode-locked regime near 7 W for synchronous mode locking and 5 W for active mode locking. We have analyzed the laser system with Kerr lens feedback in the phase trajectory of five-dimensional space. The computer simulation have shown the presence of asymptotically stable stationary point in behavior of temporal Gaussian beam similar spatial mode structure in the resonators, when the temporal mode does not change passing through all dispersion element in laser. Our calculations show that the sign of dispersion is very important for formation of phase portrait in our laser system. In conclusion, we have demonstrated Cr4+:YAG laser operation in mode-locked regime on the edge of stability region. The analysis of the solutions in our model reveals that chaotic instabilities can be reached through increasing of non-linear interaction temporal and spatial Gaussian beam. The characteristics of this laser systems can provide the source of laser radiation for diagnostics and therapy.
Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.
Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen
2007-01-20
A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
A plasma amplifier to combine multiple beams at NIF
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.
2018-05-01
Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
Islam, Samiha Ishrat; Islam, Arnob; Islam, Saiful
2014-01-01
In this work, an integrated single chip dual cavity VCSEL has been designed which comprises an electrically pumped 980 nm bottom VCSEL section fabricated using GaInAs/AlGaAs MQW active region and a 1550 nm top VCSEL section constructed using GaInAs/AlGaInAs MQW active region but optically pumped using half of the produced 980 nm light entering into it from the electrically pumped bottom cavity. In this design, the active region of the intracavity structure 980 nm VCSEL consists of 3 quantum wells (QWs) using Ga0.847In0.153As, 2 barriers using Al0.03Ga0.97As, and 2 separate confinement heterostructures (SCH) using the same material as the barrier. The active region of the top emitting 1550 nm VCSEL consists of 3 QWs using Ga0.47In0.52As, 2 barriers using Al0.3Ga0.17In0.53As, and 2 SCHs using the same material as the barrier. The top DBR and the bottom DBR mirror systems of the 1550 nm VCSEL section plus the top and bottom DBR mirror systems of the 980 nm VCSEL section have been formed using GaAs/Al0.8Ga0.2As. Computations show that the VCSEL is capable of producing 8.5 mW of power at 980 nm from the bottom side and 2 mW of power at the 1550 nm from top side. PMID:27379335
Energy scaling of terahertz-wave parametric sources.
Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun
2015-02-23
Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.
980 nm tapered lasers with photonic crystal structure for low vertical divergence
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua
2016-10-01
High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.
Spatial Combining of Laser-Diode Beams for Pumping an NPRO
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco
2008-01-01
A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivaram, Niranjan; Champenois, Elio G.; Cryan, James P.
We demonstrate a technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface of the VMI electrodes which creates a gradient in flight time for particles born at different points along the beam. By suitably pulsing our microchannel plate detector, we can select particles born only where the laser beams overlap. Furthermore, this spatialmore » gating in velocity map imaging can benefit nearly all photo-ion pump-probe VMI experiments especially when extreme-ultraviolet light or X-rays are involved which produce large background signals on their own.« less
Shivaram, Niranjan; Champenois, Elio G.; Cryan, James P.; ...
2016-12-19
We demonstrate a technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface of the VMI electrodes which creates a gradient in flight time for particles born at different points along the beam. By suitably pulsing our microchannel plate detector, we can select particles born only where the laser beams overlap. Furthermore, this spatialmore » gating in velocity map imaging can benefit nearly all photo-ion pump-probe VMI experiments especially when extreme-ultraviolet light or X-rays are involved which produce large background signals on their own.« less
Compact, flexible, frequency agile parametric wavelength converter
Velsko, Stephan P.; Yang, Steven T.
2002-01-01
This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.
Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.
2013-10-15
We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less
Clad-pumped Er-nanoparticle-doped fiber laser (Conference Presentation)
NASA Astrophysics Data System (ADS)
Baker, Colin C.; Friebele, E. Joseph; Rhonehouse, Daniel L.; Marcheschi, Barbara A.; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder S.; Zhang, Jun; Chen, Youming; Pattnaik, Radha K.; Dubinskii, Mark
2017-03-01
Erbium-doped fiber lasers are attractive for directed energy weapons applications because they operate in a wavelength region that is both eye-safer and a window of high atmospheric transmission. For these applications a clad-pumped design is desirable, but the Er absorption must be high because of the areal dilution of the doped core vs. the pump cladding. High Er concentrations typically lead to Er ion clustering, resulting in quenching and upconversion. Nanoparticle (NP) doping of the core overcomes these problems by physically surrounding the Er ions with a cage of Al and O in the NP, which keeps them separated to minimize excited state energy transfer. A significant issue is obtaining high Er concentrations without the NP agglomeration that degrades the optical properties of the fiber core. We have developed the process for synthesizing stable Er-NP suspension which have been used to fabricate EDFs with Er concentrations >90 dB/m at 1532 nm. Matched clad fibers have been evaluated in a core-pumped MOPA with pump and signal wavelengths of 1475 and 1560 nm, respectively, and efficiencies of 72% with respect to absorbed pump have been obtained. We have fabricated both NP- and solution-doped double clad fibers, which have been measured in a clad-pumped laser testbed using a 1532 nm pump. The 1595 nm laser efficiency of the NP-doped fiber was 47.7%, which is high enough for what is believed to be the first laser experiment with the cladding pumped, NP-doped fiber. Further improvements are likely with a shaped cladding and new low-index polymer coatings with lower absorption in the 1500 - 1600 nm range.
2008-03-15
numbers make the observation of non -Poissonian features easier, which calls for higher pump power and better mode matching of the pump beam , more...heralded two-photon NOON states, we rely on the local photon- bunching effect of two heralded single photons at a beam splitter , as sketched in Fig. 1. Two...heralded single photons are sent to separate input ports of a 50:50 beam splitter (BS1). The photons bunch at the beam splitter , exiting together from
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing
2014-07-01
We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun
2009-02-01
This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.
Yin, Ke; Zhu, Rongzhen; Zhang, Bin; Jiang, Tian; Chen, Shengping; Hou, Jing
2016-09-05
Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.
Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm
NASA Astrophysics Data System (ADS)
Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian
2018-05-01
We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.
Power scaling of diode-pumped neodymium yttrium aluminum borate laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1991-01-01
Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.
NASA Astrophysics Data System (ADS)
Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas
2018-03-01
We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.
High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser
NASA Astrophysics Data System (ADS)
Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan
2015-12-01
High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.
Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang
2007-10-15
We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuaibov, A K; Minya, A I; Hrytsak, R V
2015-02-28
We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)
1059 and 1328nm LD pumped Nd:S-FAP solid state laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Lianke; Zhang Shaojun; Zhao Shengzhi
In this paper the authors introduce a new laser crystal--Nd{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F, Nd:S-FAP, and present its optical and physical characteristics. Based on the experiment lasing performance of CW LD pumped Nd:S-FAP crystal is reported here: the threshold and slope efficiency of 1059 nm Nd:S-FAP laser pumped by CW LD at 805nm are 7mW and 41%, and that of 1328nm Nd:S-FAP laser are 19mW and 35%. The comparison between experimental result and theoretical calculation is also discussed in this paper.
30-W Yb3+-pulsed fiber laser with wavelength tuning
NASA Astrophysics Data System (ADS)
Davydov, B. L.; Krylov, A. A.
2007-12-01
We have investigated various pulsed operation regimes of a diode-pumped Yb3+-doped fiber laser with both an acoustooptic filter and a shutter inside the resonator. To imbed the polarization-sensitive acoustooptic-tunable spectral filter into the polarization-nonmaintaining resonator, based on an “isotropic” single-mode fiber without “polarization’ losses, we have used a CaCO3 single-crystal nondispersive thermostable polarization splitter. Stable smooth bell-shaped laser pulses were obtained in the Q-switch generation regime across the entire wavelength tuning band. Their duration depended on the resonator travel time and their repetition rate was determined exclusively by the outer high-frequency generator controlling the acoustooptic shutter. A pulsed laser radiation tuning bandwidth of more than 20-nm at a repetition rate band of 10-100 kHz was observed in the amplification band of the Yb3+-doped fiber. A stable average power of 30 W of the pulsed 70-ns 100-kHz laser radiation in a near Gaussian beam was reached by means of the two-stage amplifier based on Yb3+-doped fibers with an enlarged mode field diameter (14 μm). The amplifier was pumped by λ = 975 nm CW multimode laser diodes with a maximum average power of 42 W.
A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.
2017-03-01
The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.
Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei
2018-04-15
Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.
Rejection of fluorescence background in resonance and spontaneous Raman microspectroscopy.
Smith, Zachary J; Knorr, Florian; Pagba, Cynthia V; Wachsmann-Hogiu, Sebastian
2011-05-18
Raman spectroscopy is often plagued by a strong fluorescent background, particularly for biological samples. If a sample is excited with a train of ultrafast pulses, a system that can temporally separate spectrally overlapping signals on a picosecond timescale can isolate promptly arriving Raman scattered light from late-arriving fluorescence light. Here we discuss the construction and operation of a complex nonlinear optical system that uses all-optical switching in the form of a low-power optical Kerr gate to isolate Raman and fluorescence signals. A single 808 nm laser with 2.4 W of average power and 80 MHz repetition rate is split, with approximately 200 mW of 808 nm light being converted to < 5 mW of 404 nm light sent to the sample to excite Raman scattering. The remaining unconverted 808 nm light is then sent to a nonlinear medium where it acts as the pump for the all-optical shutter. The shutter opens and closes in 800 fs with a peak efficiency of approximately 5%. Using this system we are able to successfully separate Raman and fluorescence signals at an 80 MHz repetition rate using pulse energies and average powers that remain biologically safe. Because the system has no spare capacity in terms of optical power, we detail several design and alignment considerations that aid in maximizing the throughput of the system. We also discuss our protocol for obtaining the spatial and temporal overlap of the signal and pump beams within the Kerr medium, as well as a detailed protocol for spectral acquisition. Finally, we report a few representative results of Raman spectra obtained in the presence of strong fluorescence using our time-gating system.
Optical preparation of H2 rovibrational levels with almost complete population transfer.
Dong, Wenrui; Mukherjee, Nandini; Zare, Richard N
2013-08-21
Using stimulated Raman adiabatic passage (SARP), it is possible, in principle, to transfer all the population in a rovibrational level of an isolated diatomic molecule to an excited rovibrational level. We use an overlapping sequence of pump (532 nm) and dump (683 nm) single-mode laser pulses of unequal fluence to prepare isolated H2 molecules in a molecular beam. In a first series of experiments we were able to transfer more than half the population to an excited rovibrational level [N. Mukherjee, W. R. Dong, J. A. Harrison, and R. N. Zare, J. Chem. Phys. 138(5), 051101-1-051101-4 (2013)]. Since then, we have achieved almost complete transfer (97% ± 7%) of population from the H2 (v = 0, J = 0) ground rovibrational level to the H2 (v = 1, J = 0) excited rovibrational level. An explanation is presented of the SARP process and how these results are obtained.
Optical preparation of H2 rovibrational levels with almost complete population transfer
NASA Astrophysics Data System (ADS)
Dong, Wenrui; Mukherjee, Nandini; Zare, Richard N.
2013-08-01
Using stimulated Raman adiabatic passage (SARP), it is possible, in principle, to transfer all the population in a rovibrational level of an isolated diatomic molecule to an excited rovibrational level. We use an overlapping sequence of pump (532 nm) and dump (683 nm) single-mode laser pulses of unequal fluence to prepare isolated H2 molecules in a molecular beam. In a first series of experiments we were able to transfer more than half the population to an excited rovibrational level [N. Mukherjee, W. R. Dong, J. A. Harrison, and R. N. Zare, J. Chem. Phys. 138(5), 051101-1051101-4 (2013)], 10.1063/1.4790402. Since then, we have achieved almost complete transfer (97% ± 7%) of population from the H2 (v = 0, J = 0) ground rovibrational level to the H2 (v = 1, J = 0) excited rovibrational level. An explanation is presented of the SARP process and how these results are obtained.
Spectroscopic chemical analysis methods and apparatus
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Reid, Ray D. (Inventor)
2009-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.
Xu, Caixia; Zhang, Jingwen; Zou, Yingyin K; Zhao, Hua
2016-03-21
The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.
Spectroscopic chemical analysis methods and apparatus
NASA Technical Reports Server (NTRS)
Reid, Ray D. (Inventor); Hug, William F. (Inventor)
2010-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.
2017-05-01
A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.
Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.
Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting
2010-11-08
We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.
NASA Astrophysics Data System (ADS)
Fu, S. C.; Wang, X.; Chu, H.
2013-02-01
We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.
Fine-pitched microgratings encoded by interference of UV femtosecond laser pulses.
Kamioka, Hayato; Miura, Taisuke; Kawamura, Ken-ichi; Hirano, Masahiro; Hosono, Hideo
2002-01-01
Fine-pitched microgratings are encoded on fused silica surfaces by a two-beam laser interference technique employing UV femtosecond pulses from the third harmonics of a Ti:sapphire laser. A pump and prove method utilizing a laser-induced optical Kerr effect or transient optical absorption change has been developed to achieve the time coincidence of the two pulses. Use of the UV pulses makes it possible to narrow the grating pitches to an opening as small as 290 nm, and the groove width of the gratings is of nanoscale size. The present technique provides a novel opportunity for the fabrication of periodic nanoscale structures in various materials.
A 12.1-W SESAM mode-locked Yb:YAG thin disk laser
NASA Astrophysics Data System (ADS)
Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei
2016-05-01
Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).
Rovibrational optical pumping of a molecular beam
NASA Astrophysics Data System (ADS)
Cournol, A.; Pillet, P.; Lignier, H.; Comparat, D.
2018-03-01
The preparation of molecules in well-defined internal states is essential for various studies in fundamental physics and physical chemistry. It is thus of particular interest to find methods that increase the brightness of molecular beams. Here, we report on rotational and vibrational pumpings of a supersonic beam of barium monofluoride molecules. With respect to previous works, the time scale of optical vibrational pumping has been greatly reduced by enhancing the spectral power density in the vicinity of the appropriate molecular transitions. We demonstrate a complete transfer of the rovibrational populations lying in v″=1 -3 into the vibrational ground-state v″=0 . Rotational pumping, which requires efficient vibrational pumping, has been also demonstrated. According to a Maxwell-Boltzmann description, the rotational temperature of our sample has been reduced by a factor of ˜8 . In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude.
Design and Characterization of Optically Pumped Vertical Cavity Surface Emitting Lasers
1992-12-01
technology to make VCSELs (e.g. Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD)) motivated the research in this area over the...Resistances for Current Injected VCSELs 3-14 4.1. Equipment Configuration used for Output Beam Characterization . . . 4-1 4.2. Optical Pump Beam and Focusing...pursued over the past few years because VCSELs have ad- ditional inherent advantages. The VCSEL design exhibits better exit beam quality, is of smaller
Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin
2016-01-25
In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.
Control of the coherence behavior in a SFG interferometer through the multipump phases command.
Darré, P; Lehmann, L; Grossard, L; Delage, L; Reynaud, F
2018-03-19
In this paper, we report on a novel method to control the coherence behavior in a sum frequency generation interferometer powered by two independent pump lines. At the output of the interferometer, the two incoherent fringe patterns must be superimposed to maximize the contrast. The first step consists in canceling the differential group delay. The second one uses the phase control on one pump to synchronize the fringe patterns. This innovative method is experimentally demonstrated with a setup involving a 1544 nm signal and two pump lines around 1064 nm leading to a converted signal around 630 nm. It can be easily extended to a greater number of pump lines.
Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm
NASA Astrophysics Data System (ADS)
Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.
2013-07-01
Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.
Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P
2014-05-01
A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.
High efficiency laser-pumped emerald lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, S.T.
1987-09-25
Highly efficient laser operation has been achieved in emerald. In a quasi-cw laser-pumped emerald laser, 64% output slope efficiency has been measured at 768 nm, corresponding to a laser quantum yield of 76%. An output power of 1.6 W was reached at 3.6 W of pump power at 647.1 nm from a krypton laser, and was pump power limited. The emerald laser has a tuning range of 720 to 842 nm. The round trip loss excluding the excited state absorption (ESA) is 0.4%/cm. These results indicate the high laser efficiency and the high optical quality of the emerald attainable inmore » the present laser.« less
Laser performance of in-band pumped Er : LiYF4 and Er : LiLuF4 crystals
NASA Astrophysics Data System (ADS)
Gorbachenya, K. N.; Kurilchik, S. V.; Kisel, V. E.; Yasukevich, A. S.; Kuleshov, N. V.; Nizamutdinov, A. S.; Korableva, S. L.; Semashko, V. V.
2016-02-01
Spectroscopic properties of Er : LiLuF4 and Er : LiYF4 crystals in the spectral region near 1.5 μm and the lasing characteristics of these crystals under in-band pumping at a wavelength of 1522 nm are studied. With the Er : LiLuF4 crystal, the maximum slope efficiency with respect to the absorbed pump power was 44% at a wavelength of 1609 nm. Continuous-wave operation of an inband pumped Er : LiYF4 laser is obtained for the first time. The output power at a wavelength of 1606 nm was 58 mW with a slope efficiency of 21%.
Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.
Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan
2014-12-10
High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1 nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.
All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2012-06-01
We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.
Monolithic dye laser amplifier
Kuklo, T.C.
1993-03-30
A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.
Monolithic dye laser amplifier
Kuklo, Thomas C.
1993-01-01
A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.
Artificial optical emissions in the thermosphere induced by powerful radio waves: A review
NASA Astrophysics Data System (ADS)
Kosch, M.; Senior, A.; Gustavsson, B.; Grach, S.; Pedersen, T.; Rietveld, M.
High-power high-frequency radio waves beamed into the ionosphere with O-mode polarization cause plasma turbulence which can accelerate electrons These electrons collide with the F-layer neutrals causing artificial optical emissions identical to natural aurora The brightest optical emissions are O 1D 630 nm with a threshold of 2 eV and O 1S 557 7 nm with a threshold of 4 2 eV The optical emissions give direct evidence of electron acceleration by plasma turbulence as well as their non-Maxwellian energy spectrum HF pumping of the ionosphere also causes electron temperature enhancements but these alone are not sufficient to explain the optical emissions EISCAT plasma-line measurements indicate that the enhanced electron temperatures are consistent with the bulk of the electrons having a Maxwellian energy spectrum Novel discoveries include 1 Very large electron temperature enhancements of several 1000 K which maximise along the magnetic field line direction 2 Ion temperature enhancements of a few 100 K 3 Large ion outflows exceeding 200 m s 4 The F-layer optical emission maximizes sharply near the magnetic zenith with clear evidence of self-focusing 5 The optical emission generally appears below the HF pump reflection altitude as well as the upper-hybrid resonance height 6 The optical emission and HF coherent radar backscatter generally minimize when pumping on the third or higher electron gyro-harmonic frequency suggesting upper-hybrid waves as the primary mechanism 7 The optical emissions and HF coherent backscatter are enhanced on the
An overview of high-latitude hf induced aurora from EISCAT
NASA Astrophysics Data System (ADS)
Kosch, M.; Gustavsson, B.; Rietveld, M.
The EISCAT HF facility is capable of transmitting over 200 MW into the ionosphere below 5.423 MHz using the low-gain antenna array. Over 1000 MW above 5.423 MHz is available using the high-gain antenna array. During O-mode pumping in the hours after sunset, F-region electrons can be accelerated sufficiently to excite the oxygen atoms and nitrogen molecules, resulting in observable optical emissions at 844.6 (O), 630 (O1D), 557.7 (O1S) and 427.8 (N2) nm above EISCAT. Initial success came in February 1999 with optical recordings by ALIS (Auroral Large Imaging System) from various Swedish locations south of EISCAT and DASI (Digital All-Sky Imager) from Skibotn, Norway, 50 km south-east of EISCAT. Several observations have features unique to high latitudes. Novel discoveries include: (1) Very large electron temperature enhancements of a few 1000 K, which maximise along the magnetic field line direction (2) Ion temperature enhancements of a few 100 K accompanied by large ion outflows, (3) The optical emission usually appears near the magnetic field line direction regardless of the HF transmitter beam pointing direction, (4) The optical emission appears below the HF pump reflection altitude as well as the upper-hybrid resonance height, (5) The optical emission and HF coherent radar backscatter disappears when pumping on the 3rd, 4th or 5th gyro-harmonic frequency, (6) The first artificial optical observations at 844.6 (O) and 427.8 (N2) nm and (7) Annular optical structures, which subsequently collapse into blobs.
Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers.
Booth, I J; Archambault, J L; Ventrudo, B F
1996-03-01
Photodegradation has been observed in Tm(3+)-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below ~650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C.
Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm
NASA Astrophysics Data System (ADS)
Wu, Z. H.; Sun, D. L.; Wang, S. Z.; Luo, J. Q.; Li, X. L.; Huang, L.; Hu, A. L.; Tang, Y. Q.; Guo, Q.
2013-05-01
We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance.
Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.
Castaing, Marc; Balembois, François; Georges, Patrick
2008-09-01
We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.
Time dependent temperature distribution in pulsed Ti:sapphire lasers
NASA Technical Reports Server (NTRS)
Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.
1988-01-01
An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.
Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level
NASA Astrophysics Data System (ADS)
Liu, J. H.
2012-10-01
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.
300 mW of coherent light at 488 nm using a generic approach
NASA Astrophysics Data System (ADS)
Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter
2008-02-01
We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.
Design of a solar-pumped frequency-doubled 532 nm Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Kittiboonanan, P.; Putchana, W.; Deeudomand, M.; Ratanavis, A.
2017-09-01
During the last year we have made progresson a development of a frequency-doubled 532 nm Nd:YVO4 laser pumped by solar light. The research aimed to demonstrate solar pumped lasers consisting of the optically contracted Nd:YVO4 crystal and KTP crystal with a system of laser mirrors deposited onto crystal sides. The Cassegrain reflector is used as the configuration. This solar pumped laser system is appealing for a variety applications including laser communication, imaging and defense applications.
NASA Astrophysics Data System (ADS)
Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.
2018-05-01
A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.
Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.
Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H
2009-12-07
We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.
LED-pumped Alexandrite laser oscillator and amplifier
NASA Astrophysics Data System (ADS)
Pichon, Pierre; Blanchot, Jean-Philippe; Balembois, François; Druon, Frédéric; Georges, Patrick
2018-02-01
In this paper, we report the first LED-pumped transition-metal-doped laser oscillator and amplifier based on an alexandrite crystal (Cr3+:BeAl2O4). A Ce:YAG luminescent concentrator illuminated by blue LEDs is used to reach higher pump powers than with LEDs alone. The luminescent 200-mm-long-composit luminescent concentrator involving 2240 LEDs can delivers up to 268 mJ for a peak irradiance of 8.5 kW/cm2. In oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation is demonstrated. In the cavity, we measured a double pass small signal gain of 1.28, in good agreement with numerical simulations. As amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in 8 passes with a large tuning range from 710 nm to 800 nm.
Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance
NASA Astrophysics Data System (ADS)
Marason, E. G.
1981-04-01
Laser dye DCM exhibits a tuning range of 605 to 725 nm with a lasing efficiency as high as 34% when pumped by the 488 nm line of the argon ion laser, placing it among the most efficient and broadly tunable dyes known. Performance of the dye is characterized for four laser systems: 1) continuous wave, 2) synchronously pumped (SP), 3) cavity dumped synchrompously pumped (SPCD) and 4) single-frequency ring dye laser. Pulse peak powers were as high as 520 W and 2.8 kW for SP and SPCD systems respectively.