Science.gov

Sample records for nm reactions zaselenie

  1. The photodissociation of oxetane at 193 nm as the reverse of the Paterno-Buchi reaction

    SciTech Connect

    Lee, Shih-Huang

    2009-12-14

    We investigated the photodissociation of oxetane (1,3-trimethylene oxide) at 193.3 nm in a molecular-beam apparatus using photofragment-translational spectroscopy and selective photoionization. We measured time-of-flight (TOF) spectra and angular anisotropy parameters {beta}(t) as a function of flight time of products at m/z=26-30 u utilizing photoionization energies from 9.8 to 14.8 eV. The TOF distributions of the products alter greatly with the employed photon energy, whereas their {beta}(t) distributions are insensitive to the photon energy. Dissociation to H{sub 2}CO+C{sub 2}H{sub 4} is the major channel in the title reaction. Three distinct dissociation paths with branching ratios 0.923:0.058:0.019 are responsible for the three features observed in the distribution of kinetic energy released in the channel H{sub 2}CO+C{sub 2}H{sub 4}. The observation of H{sub 2} and H atoms, {approx}1% in branching, indicates that products H{sub 2}CO and C{sub 2}H{sub 4} spontaneously decompose to only a small extent. Most HCO, C{sub 2}H{sub 3}, and C{sub 2}H{sub 2} ions originate from dissociative photoionization of products H{sub 2}CO and C{sub 2}H{sub 4}. Except atomic H and H{sub 2}, the photoproducts have large angular anisotropies, {beta}{>=}-0.8, which reflects rapid dissociation of oxetane following optical excitation at 193.3 nm. The mechanisms of dissociation of oxetane are addressed. Our results confirm the quantum-chemical calculations of Palmer et al. and provide profound insight into the Paterno-Buchi reaction.

  2. Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA.

    PubMed

    Noji, Tomoyasu; Kamidaki, Chihiro; Kawakami, Keisuke; Shen, Jian-Ren; Kajino, Tsutomu; Fukushima, Yoshiaki; Sekitoh, Takeshi; Itoh, Shigeru

    2011-01-18

    An oxygen-evolving photosynthetic reaction center complex (PSII) was adsorbed into nanopores in SBA, a mesoporous silica compound. We purified the dimer of PSII complex from a thermophilic cyanobacterium, Thermosynechococcus vulcanus, which grows optimally at 57 °C. The thermally stable PSII dimeric complex has a diameter of 20 nm and a molecular mass of 756 kDa and binds more than 60 chlorophylls. The SBA particles, with average internal pore diameters of 15 nm (SBA(15)) and 23 nm (SBA(23)), adsorbed 4.7 and 15 mg of PSII/g SBA, respectively. Measurement with a confocal laser-scanning microscope indicated the adsorption of PSII to the surface and the inner space of the SBA(23) particles, indicating the adsorption of PSII into the 23 nm silica nanopores. PSII did not bind to the inner pores of SBA(15). PSII bound to SBA(23) showed the high and stable activity of a photosynthetic oxygen-evolving reaction, indicating the light-driven electron transport from water to the quinone molecules added in the outer medium. The PSII-SBA conjugate can be a new material for photosensors and artificial photosynthetic systems.

  3. The strong catalytic effect of Pb(II) on the oxygen reduction reaction on 5 nm gold nanoparticles.

    PubMed

    Wang, Ying; Laborda, Eduardo; Plowman, Blake J; Tschulik, Kristina; Ward, Kristopher R; Palgrave, Robert G; Damm, Christine; Compton, Richard G

    2014-02-21

    Citrate-capped gold nanoparticles (AuNPs) of 5 nm in diameter are synthesized via wet chemistry and deposited on a glassy carbon electrode through electrophoresis. The kinetics of the oxygen reduction reaction (ORR) on the modified electrode is determined quantitatively in oxygen-saturated 0.5 M sulphuric acid solution by modelling the cathode as an array of interactive nanoelectrodes. Quantitative analysis of the cyclic voltammetry shows that no apparent ORR electrocatalysis takes place, the kinetics on AuNPs being effectively the same as on bulk gold. Contrasting with the above, a strong ORR catalysis is found when Pb(2+) is added to the oxygen saturated solution or when the modified electrode is cycled in lead alkaline solution such that lead dioxide is repeatedly electrodeposited and stripped off on the nanoparticles. In both cases, the underpotential deposition of lead on the gold nanoparticles is found to be related to the catalysis.

  4. Collision-induced desorption in 193-nm photoinduced reactions in (O{sub 2}+CO) adlayers on Pt(112)

    SciTech Connect

    Han Song; Ma Yunsheng; Matsushima, Tatsuo

    2005-09-01

    The spatial distribution of desorbing O{sub 2} and CO{sub 2} was examined in 193-nm photoinduced reactions in O{sub 2}+CO adlayers on stepped Pt (112)=[(s)3(111)x(001)]. The O{sub 2} desorption collimated in inclined ways in the plane along the surface trough, confirming the hot-atom collision mechanism. In the presence of CO(a), the product CO{sub 2} desorption also collimated in an inclined way, whereas the inclined O{sub 2} desorption was suppressed. The inclined O{sub 2} and CO{sub 2} desorption is explained by a common collision-induced desorption model. At high O{sub 2} coverage, the CO{sub 2} desorption collimated closely along the (111) terrace normal.

  5. Development of 1480 nm Photothermal High-Speed Real-Time Polymerase Chain Reaction System for Rapid Nucleotide Recognition

    NASA Astrophysics Data System (ADS)

    Terazono, Hideyuki; Hattori, Akihiro; Takei, Hiroyuki; Takeda, Kazuo; Yasuda, Kenji

    2008-06-01

    The polymerase chain reaction (PCR) is a key technology used in genome-based biological analysis; however, requests have been made to shorten the operation time for emergency tests such as medical diagnostics, and countermeasures against bioterrorism. We have developed a novel rapid real-time PCR system using the direct absorption of an IR laser beam by water droplets as the heating device. The advantage of this system is that only the target water droplet was heated photothermally without transmitting any heat to the surroundings, which is important for the production of fast thermal cycle intervals. The system consists of a fluorescent microscope, an oil chamber with a set of water droplets lined up at the bottom, a 1480 nm IR laser unit, which is absorbed by water and can be focused on the droplets on the stage of the microscope, and an image intensifier to quantify the PCR reaction within a water droplet by measuring the change of fluorescent intensity. Using the system, we examined the PCR procedure under the following conditions: initial heating to 95 °C, maintaining this temperature for 10 s, and the suggested here and in similar places throughout 50 cycles of 1 s at 95 °C for denaturation and 3 s at 60 °C for annealing/extension. The temperature increase and decrease between the two temperatures 95 and 60 °C, were within 1 and 0.8 s respectively, i.e., 32 K/s, which is 1.5 times faster than the conventional heat conduction-based system. Rapid PCR amplification was observed successfully by the rise change in the sigmoidal curvature of fluorescent intensity, and the procedure was accomplished within 3.5 min, including the initial heating and complete 50 PCR cycles. The results indicate that the direct absorption-based heating of water droplets photothermally could give us a faster temperature chnage than the conventional heat-conduction-based systems such as Peltier heating/cooling.

  6. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  7. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGES

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  8. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  9. Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub-10 nm resolution.

    PubMed

    Kumar, Amit; Leonard, Donovan; Jesse, Stephen; Ciucci, Francesco; Eliseev, Eugene A; Morozovska, Anna N; Biegalski, Michael D; Christen, Hans M; Tselev, Alexander; Mutoro, Eva; Crumlin, Ethan J; Morgan, Dane; Shao-Horn, Yang; Borisevich, Albina; Kalinin, Sergei V

    2013-05-28

    Spatial localization of the oxygen reduction/evolution reactions on lanthanum strontium cobaltite (LSCO) surfaces with perovskite and layered perovskite structures is studied at the sub-10 nm level. Comparison between electrochemical strain microscopy (ESM) and structural imaging by scanning transmission electron microscopy (STEM) suggests that small-angle grain boundaries act as regions with enhanced electrochemical activity. The ESM activity is compared across a family of LSCO samples, demonstrating excellent agreement with macroscopic behaviors. This study potentially paves the way for deciphering the mechanisms of electrochemical activity of solids on the level of single extended structural defects such as grain boundaries and dislocations.

  10. Does the singlet minus triplet spectrum with major photobleaching band near 680-682 nm represent an intact reaction center of Photosystem II?

    PubMed

    Chauvet, Adrien; Jankowiak, Ryszard; Kell, Adam; Picorel, Rafael; Savikhin, Sergei

    2015-01-15

    We use both frequency- and time-domain low-temperature (5-20 K) spectroscopies to further elucidate the shape and spectral position of singlet minus triplet (triplet-bottleneck) spectra in the reaction centers (RCs) of Photosystem II (PSII) isolated from wild-type Chlamydomonas reinhardtii and spinach. It is shown that the shape of the nonresonant transient hole-burned spectrum in destabilized RCs from C. reinhardtii is very similar to that typically observed for spinach. This suggests that the previously observed difference in transient spectra between RCs from C. reinhardtii and spinach is not due to the sample origin but most likely due to a partial destabilization of the D1 and D2 polypeptides. This supports our previous assignments that destabilized RCs (referred to as RC680) (Acharya, K. et al. J. Phys. Chem. B 2012, 116, 4860-4870), with a major photobleaching band near 680-682 nm and the absence of a photobleaching band near 673 nm, do not represent the intact RC residing within the PSII core complex. Time-resolved absorption difference spectra obtained for partially destabilized RCs of C. reinhardtii and for typical spinach RCs support the above conclusions. The absence of clear photobleaching bands near 673 and 684 nm (where the PD1 chlorophyll and the active pheophytin (PheoD1) contribute, respectively) in picosecond transient absorption spectra in both RCs studied in this work indicates that the cation can move from the primary electron donor (ChlD1) to PD1 (i.e., PD1ChlD1(+)PheoD1(-) → PD1(+)ChlD1PheoD1(-)). Therefore, we suggest that ChlD1 is the major electron donor in usually studied destabilized RCs (with a major photobleaching near 680-682 nm), although the PD1 path (where PD1 serves as the primary electron donor) is likely present in intact RCs, as discussed in Acharya, K. et al. J. Phys. Chem. B 2012, 116, 4860-4870.

  11. N(4S) formation following the 193.3-nm ArF laser irradiation of NO and NO2 and its application to kinetic studies of N(4S) reactions with NO and NO2.

    PubMed

    Nakayama, Tomoki; Takahashi, Kenshi; Matsumi, Yutaka; Shibuya, Kazuhiko

    2005-12-01

    Formation of the ground-state nitrogen atom, N((4)S), following 193.3-nm ArF laser irradiation of NO and NO(2) was detected directly by a technique of laser-induced fluorescence (LIF) spectroscopy at 120.07 nm. Tunable vacuum ultraviolet (VUV) laser radiation around 120.07 nm was generated by two-photon resonance four-wave sum frequency mixing in Hg vapor. Photoexcitation processes of NO and NO(2) giving rise to the N((4)S) formation are discussed on the basis of the Doppler profiles of the nascent N((4)S) atoms produced from the photolysis of NO and NO(2) and the photolysis laser-power dependence of the N((4)S) signal intensities. Using laser flash photolysis and vacuum ultraviolet laser-induced fluorescence detection, the kinetics of the reactions of N((4)S) with NO and NO(2) have been investigated at 295 +/- 2 K. The rate constants for the reactions of N((4)S) with NO and NO(2) were determined to be (3.8 +/- 0.2) x 10(-11) and (7.3 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), respectively, where the quoted uncertainties are 2sigma statistical uncertainty including estimated systematic error.

  12. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  13. Spatially Resolved Mapping of Oxygen Reduction/evolution Reaction on Solid-Oxide Fuel Cell Cathodes with sub-10 nm Resolution

    SciTech Connect

    Kumar, Amit; Leonard, Donovan N; Jesse, Stephen; Ciucci, Francesco; Eliseev, Eugene; Morozovska, A. N.; Biegalski, Michael D; Christen, Hans M; Tselev, Alexander; Mutoro, Eva; Crumlin, Ethan; Morgan, Dane; Shao-Horn, Yang; Borisevich, Albina Y; Kalinin, Sergei

    2013-01-01

    Spatial localization of the oxygen reduction/evolution reactions (ORR/OER) on lanthanum strontium cobaltite (LSCO) surfaces with perovskite and layered perovskite structures is studied on the sub-10 nanometer level. Comparison between Electrochemical Strain Microscopy (ESM) and structural imaging by scanning transmission electron microscopy (STEM) suggest that small-angle grain boundaries act as regions with enhanced electrochemical activity. The ESM activity is compared across a family of LSCO samples, demonstrating excellent agreement with macroscopic behaviors. This study potentially paves the way for deciphering the mechanisms of electrochemical activity of solids on the level of single extended structural defects such as grain boundaries and dislocations.

  14. Soft X-ray spectroscopy studies of adsorption and reaction of CO in the presence of H2 over 6 nm MnO nanoparticles supported on mesoporous Co3O4

    NASA Astrophysics Data System (ADS)

    Ralston, Walter T.; Musselwhite, Nathan; Kennedy, Griffin; An, Kwangjin; Horowitz, Yonatan; Cordones, Amy A.; Rude, Bruce; Ahmed, Musahid; Melaet, Gerome; Alayoglu, Selim

    2016-06-01

    MnO nanoparticles (6 nm) were supported on mesoporous spinel Co3O4 and studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and in situ X-ray absorption spectroscopy (XAS) during hydrogenation of CO. The nature and evolution of surface adsorbed species as well as the oxidation states of the metal oxide surfaces were evaluated under oxidizing, reducing, and H2 + CO (2:1) reaction atmospheres. From APXPS, MnO nanoparticle surfaces were found to be progressively reduced in H2 atmospheres with increasing temperature. Surface adsorbed CO was found to be formed at the expense of lattice O under H2 + CO reaction conditions. In situ XAS indicated that the dominant oxide species were Co(OH)2, Co (II) oxides, MnO, and Mn3O4 under reaction conditions. In situ XAS also indicated the formation of gas phase CO2, the disappearance of lattice O, and the further reduction of Mn3O4 to MnO upon prolonged reaction in H2 + CO. Mass spectroscopy measurements showed the formation of CO2 and hydrocarbons. The spent catalyst was investigated using scanning transmission X-ray microscopy and (scanning) transmission electron microscopy; the catalyst grains were found to be homogeneous.

  15. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms.

  16. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. PMID:25744186

  17. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  18. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  19. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  20. Photoinduced charge transfer reaction at surfaces. III. (HF){sub 2}{center_dot}{center_dot}{center_dot}Na{sub n}/LiF(001)+h{nu}(640 nm){yields}HFF{sup -}Na{sub n}{sup +}/LiF(001)+H(g)

    SciTech Connect

    Dobrin, Sergey; Giorgi, Javier B.; Naumkin, Fedor Y.; Polanyi, John C.

    2005-01-01

    A sub-monolayer of atomic sodium was deposited on a LiF(001) surface at 40 K. The adsorbed sodium exists at the surface as single atoms and clusters. The surface was dosed with 1 L of HF, to form adsorbed (HF){sub 2}{center_dot}{center_dot}{center_dot}Na{sub n} (n=1,2,3,...) complexes, which were then irradiated by 640 nm laser light, to induce charge-transfer reaction. The reaction-product atomic H(g) was observed leaving the surface by two-color Rydberg-atom time-of-flight (TOF) spectroscopy. The TOF spectrum of the desorbed H atoms contained two components; a 'fast' component with a maximum at {approx_equal}0.85 eV, and a 'slow' component with a maximum at 0.45 eV. These two components were attributed to photoreaction on adsorbed single atoms and clusters of sodium, respectively. The fast component exhibited a structure (48{+-}17 meV spacing) near the high-energy end of spectrum. This structure was attributed to vibration of NaFHF photoproduct residing on the surface. The cross section of the harpooning event in the Na{center_dot}{center_dot}{center_dot}(HF){sub 2} adsorbed complex was determined as (9.1{+-}2.0)x10{sup -19} cm{sup 2}. To interpret the experimental vibrational structure and the relative energies of the fast and slow components of the TOF spectrum, high-level ab initio calculations were performed for reactants Na{sub n}{center_dot}{center_dot}{center_dot}(HF){sub m} (n,m=1,2) and reaction products Na{sub n}F{sub m}H{sub m-1}. The calculated NaF-HF and Na-Na(HF){sub 2} bond dissociation energies indicated that photoexcitation of the precursor complexes led not only to ejection of H atoms, but also to dissociation of the Na{sub n}{center_dot}{center_dot}{center_dot}(HF){sub 2} (n=1,2) species through cleavage of the NaF-HF and Na-Na(HF){sub 2} bonds.

  1. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  2. 32nm overlay improvement capabilities

    NASA Astrophysics Data System (ADS)

    Eichelberger, Brad; Huang, Kevin; O'Brien, Kelly; Tien, David; Tsai, Frank; Minvielle, Anna; Singh, Lovejeet; Schefske, Jeffrey

    2008-03-01

    The industry is facing a major challenge looking forward on the technology roadmap with respect to overlay control. Immersion lithography has established itself as the POR for 45nm and for the next few nodes. As the gap closes between scanner capability and device requirements new methodologies need to be taken into consideration. Double patterning lithography is an approach that's being considered for 32 and below, but it creates very strict demands for overlay performance. The fact that a single layer device will need to be patterned using two sequential single processes creates a strong coupling between the 1st and 2nd exposure. The coupling effect during the double patterning process results in extremely tight tolerances for overlay error and scanner capabilities. The purpose of this paper is to explore a new modeling method to improve lithography performance for the 32nm node. Not necessarily unique for double patterning, but as a general approach to improve overlay performance regardless of which patterning process is implemented. We will achieve this by performing an in depth source of variance analysis of current scanner performance and project the anticipated improvements from our new modeling approach. Since the new modeling approach will involve 2nd and 3rd order corrections we will also provide and analysis that outlines current metrology capabilities and sampling optimizations to further expand the opportunities of an efficient implementation of such approach.

  3. Alternatives to chemical amplification for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Zhao, Meng; Yin, Ran; Xie, Peng; Scholz, Chris; Smith, Bruce; Smith, Thomas; Zimmerman, Paul

    2010-04-01

    Research has been conducted to develop alternatives to chemically amplified 193 nm photoresist materials that will be able to achieve the requirements associated with sub-32 nm device technology. New as well as older photoresist design concepts for non-chemically amplified 193 nm photoresists that have the potential to enable improvements in line edge roughness while maintaining adequate sensitivity, base solubility, and dry etch resistance for high volume manufacturing are being explored. The particular platforms that have been explored in this work include dissolution inhibitor photoresist systems, chain scissioning polymers, and photoresist systems based on polymers incorporating formyloxyphenyl functional groups. In studies of two-component acidic polymer/dissolution inhibitor systems, it was found that compositions using ortho-nitrobenzyl cholate (NBC) as the dissolution inhibitor and poly norbornene hexafluoro alcohol (PNBHFA) as the base resin are capable of printing 90 nm dense line/space patterns upon exposure to a 193 nm laser. Studies of chain scission enhancement in methylmethacrylate copolymers showed that incorporating small amounts of absorptive a-cleavage monomers significantly enhanced sensitivity with an acceptable increase in absorbance at 193 nm. Specifically, it was found that adding 3 mol% of α-methyl styrene (α-MS) reduced the dose to clear of PMMA-based resist from 1400 mJ/cm2 to 420 mJ/cm2. Preliminary data are also presented on a direct photoreactive design concept based on the photo-Fries reaction of formyloxyphenyl functional groups in acrylic copolymers.

  4. Novel fluoro copolymers for 157-nm photoresists: a progress report

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Hien, Stefan; Eschbaumer, Christian; Rottstegge, Joerg; Sebald, Michael

    2002-07-01

    Several fluoro-substituted polymers consisting of acid cleavable methacryoic or cinnamic acid tert.-butyl ester compounds copolymerized with maleic acid anhydride derivatives were synthesized by radical copolymerization. Vacuum ultraviolet transmission measurements of the samples reveal absorbances down to 5micrometers -1 despite of the strongly absorbing anhydride moiety which serves as silylation anchor for the application of the Chemical Amplification of Resist Lines (CARL) process, one of the promising approaches for sub-90nm pattern fabrication. Some of the samples exhibit resolutions down to 110nm dense at 157nm exposure using an alternating phase shift mask. The feasibility of the CARL principle including the silylation reaction after development has been demonstrated with selected fluorinated polymer samples.

  5. Synthesis of novel fluoropolymers for 157-nm photoresists by cyclopolymerization

    NASA Astrophysics Data System (ADS)

    Kodama, Shun-ichi; Kaneko, Isamu; Takebe, Yoko; Okada, Shinji; Kawaguchi, Yasuhide; Shida, Naomi; Ishikawa, Seiichi; Toriumi, Minoru; Itani, Toshiro

    2002-07-01

    Novel fluoropolymers having partially fluorinated monocyclic (5-membered and 6-membered ring) structure have been synthesized with radical cyclo-polymerization, which have C- F bond in the polymer main chain and also possess fluorocontaining acidic alcohol group. These polymers have excellent transparency lower than 1.0 μm-1 at 157nm wave length. The number-average molecular weight (Mn) of the polymers is 4000 to 20000, the glass transition temperature (Tg) is 130 to 155 °C and the decomposition temperature (Td) is about 400 °C. Copolymerization reaction with the other monomers (ex. fluoroolefins,(meth)acrylates and vinyl esters) were also examined. The introduction of protecting group (ex. methoxylmethly, and t-butoxycarbonyl group) to alcohol units of the polymer can be applied before or after polymerization reaction. We also evaluated fundamental resist performances. These have excellent transparency of 0.5 to 1.5 μm-1, good solubility in the standard alkaline solution (0.26N N-tetramethylammonium hydroxide aqueous solution) and relatively high sensitivities below than 10mJ/cm2. The imaging results of the above fluoropolymer based positive- working resists are presented. Under 100-nm line and space pattern are delineated in 200-nm thick film by using the phase shift mask.

  6. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  7. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  8. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  9. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  10. O(D-1) production in ozone photolysis near 310 nm

    NASA Technical Reports Server (NTRS)

    Lin, C.; Demore, W. B.

    1973-01-01

    Relative quantum yields of O(D-1)production, phi, in ozone photolysis from 275 nm to 334 nm were determined in the gas phase at 233 K. The O(D-1) was monitored by means of its reaction with isobutane to form isobutyl alcohol. The light source was a high pressure mercury lamp combined with a monochromator, with a bandwidth of 1.6 nm. The results show a constant phi below 300 nm, which is taken as unity on the basis of previous work. There is a very sharp fall-off in phi which is centered at 308 nm. At 313 nm phi is not greater than 0.1.

  11. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  12. Stochastic effects in 11 nm imaging of extreme ultraviolet lithography with chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2014-03-01

    The resolution of extreme ultraviolet (EUV) lithography with chemically amplified resist processes has reached 16 nm (half-pitch). The development of chemically amplified resists is ongoing toward the 11 nm node. However, the stochastic effects are increasingly becoming a significant concern with the continuing shrinkage of features. In this study, the fluctuation of protected unit distribution caused by the stochastic effects during image formation was investigated assuming line-and-space patterns with 11 nm half-pitch. Contrary to expectations, the standard deviation of the number of protected units connected to a polymer after postexposure baking (PEB) did not differ from that for 16 nm half-pitch. The standard deviation after PEB increased with the effective reaction radius for deprotection and the initial standard deviation before PEB. Because of the severe requirements for resist processes, the stochastic effects in chemical reactions should be taken into account in the design of next-generation resists.

  13. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  14. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  15. From the nm to the Mm

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2003-12-01

    Tectonic models for the evolution of an orogen start at the Mm scale, and use field work on smaller subunits at the km scale and rocks collected at the m scale. At the mm scale, minerals are identified, analyzed by mass spectrometry, their "cooling ages" assigned to a specific closure temperature, a cooling rate attributed to a particular tectonic regime, and a large body of self-referential literature is the product of an oiled machinery. Problems become apparent if one attempts to harmonize mm-scale science with the nasty little details at even smaller scales. Atoms are invisible to the naked eye (unlike the minerals mentioned above) and their actual behavior is, or was, only accessible to indirect argumentations and simplified calculations. Increased computing power now allows calculating the transport of atoms in a crystal from the Schr”dinger equation: results do not fit 19th century continuum physics for infinitely dilute solutions (Fick's and Arrhenius' "laws"). Moreover, improved nanochemical analyses allow characterizing the supposedly homogeneous mineral matrix. TEM images show how layers or chains in pristine minerals are substituted in a non-periodic way by alteration products. EMP analyses show the almost ubiquitous presence of razor-sharp boundaries rather than Erf profiles. Disequilibrium recrystallization textures thus prevail over diffusive reequilibration; diffusion sensu stricto is shown to be a much slower process than heterochemical replacement. Alterability sequences are well known to surface scientists: e.g. halite, olivine, biotite, muscovite, zircon. Such sequences are reflected in the isotopic retentivity. The link only becomes clear at the nm scale: isotopic exchange occurs during the replacement reactions that affect all rocks on their retrograde P-T evolution. This is sufficient to explain why zircons record higher isotopic ages than muscovites, which in turn undergo less isotope exchange than biotites etc. While there is a vague

  16. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  17. Resist materials for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Ishikawa, Seiichi; Miyoshi, Seiro; Naito, Takuya; Yamazaki, Tamio; Watanabe, Manabu; Itani, Toshiro

    2001-08-01

    Fluoropolymers are key materials for single layer resists of 157nm lithography. We have been studying fluoropolymers to identify their potential for base resins of 157nm photoresist. Many fluoropolymers showed high optical transparencies, with absorption coefficients of 0.01micrometers -1 to 2micrometers -1 at 157nm, and dry- etching resistance comparable to an ArF resist, and non- swelling solubility in the standard developer. Positive- tone resists were formulated using fluoropolymers that fulfill practical resist requirements. They showed good sensitivities, from 1 mJ/cm(superscript 2 to 10 mJ/cm2, and contrast in the sensitivity curves. They were able to be patterned using a F2 laser microstepper.

  18. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  19. Sub-10 nm carbon nanotube transistor.

    PubMed

    Franklin, Aaron D; Luisier, Mathieu; Han, Shu-Jen; Tulevski, George; Breslin, Chris M; Gignac, Lynne; Lundstrom, Mark S; Haensch, Wilfried

    2012-02-01

    Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

  20. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  1. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  2. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  3. MEPHISTO spectromicroscope reaches 20 nm lateral resolution

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Perfetti, Luca; Gilbert, B.; Fauchoux, O.; Capozi, M.; Perfetti, P.; Margaritondo, G.; Tonner, B. P.

    1999-03-01

    The recently described tests of the synchrotron imaging photoelectron spectromicroscope MEPHISTO (Microscope à Emission de PHotoélectrons par Illumination Synchrotronique de Type Onduleur) were complemented by further resolution improvements and tests, which brought the lateral resolution down to 20 nm. Images and line plot profiles demonstrate such performance.

  4. 1541nm GmAPD LADAR system

    NASA Astrophysics Data System (ADS)

    Kutteruf, Mary R.; Lebow, Paul

    2014-06-01

    The single photon sensitivity of Geiger-mode avalanche photo diodes (GmAPDs) has facilitated the development of LADAR systems that operate at longer stand-off distances, require lower laser pulse powers and are capable of imaging through a partial obscuration. In this paper, we describe a GmAPD LADAR system which operates at the eye-safe wavelength of 1541 nm. The longer wavelength should enhance system covertness and improve haze penetration compared to systems using 1064 nm lasers. The system is comprised of a COTS 1541 nm erbium fiber laser producing 4 ns pulses at 80 kHz to 450 kHz and a COTS camera with a focal plane of 32x32 InGaAs GmAPDs band-gap optimized for 1550 nm. Laboratory characterization methodology and results are discussed. We show that accurate modeling of the system response, allows us to achieve a depth resolution which is limited by the width of the camera's time bin (.25 ns or 1.5 inches) rather than by the duration of the laser pulse (4 ns or 2 ft.). In the presence of obscuration, the depth discrimination is degraded to 6 inches but is still significantly better than that dictated by the laser pulse duration. We conclude with a discussion of future work.

  5. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  6. 120 nm resolution and 55 nm structure size in STED-lithography.

    PubMed

    Wollhofen, Richard; Katzmann, Julia; Hrelescu, Calin; Jacak, Jaroslaw; Klar, Thomas A

    2013-05-01

    Two-photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.

  7. Photoresist outgassing at 157 nm exposure

    NASA Astrophysics Data System (ADS)

    Hien, Stefan; Angood, Steve; Ashworth, Dominic; Basset, Steve; Bloomstein, Theodore M.; Dean, Kim R.; Kunz, Roderick R.; Miller, Daniel A.; Patel, Shashikant; Rich, Georgia K.

    2001-08-01

    Contamination of optical elements during photoresist exposure is a serious issue in optical lithography. The outgassing of photoresist has been identified as a problem at 248nm and 193nm in production because the organic films that can be formed on an exposure lens can cause transmission loss and sever image distortion. At these exposure energies, the excitation of the photo acid generator, formation of acid, and cleavage of the protecting group are highly selective processes. At 157nm, the exposure energy is much higher (7.9 eV compared to 6.4 eV at 193nm) and it is known from laser ablation experiments that direct laser cleavage of sigma bonds occurs. The fragments formed during this irradiation can be considered as effective laser deposition precursors even in the mid ppb level. In this study, methods to quantify photoresist outgassing at 157 nm are discussed. Three criteria have been set up at International SEMATECH to protect lens contamination and to determine the severity of photoresist outgassing. First, we measured film thickness loss as a function of exposure dose for a variety of materials. In a second test we studied the molecular composition of the outgassing fragments with an exposure chamber coupled to a gas chromatograph and a mass spectrometer detector. Our third method was a deposition test of outgassing vapors on a CaF2 proof plate followed by analysis using VUV and X-ray photoelectron spectroscopies (XPS). With this technique we found deposits for many different resists. Our main focus is on F- and Si- containing resists. Both material classes form deposits especially if these atoms are bound to the polymer side chains. Whereas the F-containing films can be cleaned off under 157nm irradiation, cleaning of Si-containing films mainly produces SiO2. Our cleaning studies of plasma deposited F-containing organic films on SiO2 did not indicate damage of this surface by the possible formation of HF. Despite that we strongly recommend engineering

  8. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  9. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  10. 635nm diode laser biostimulation on cutaneous wounds

    NASA Astrophysics Data System (ADS)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2014-05-01

    Biostimulation is still a controversial subject in wound healing studies. The effect of laser depends of not only laser parameters applied but also the physiological state of the target tissue. The aim of this project is to investigate the biostimulation effects of 635nm laser irradiation on the healing processes of cutaneous wounds by means of morphological and histological examinations. 3-4 months old male Wistar Albino rats weighing 330 to 350 gr were used throughout this study. Low-level laser therapy was applied through local irradiation of red light on open skin excision wounds of 5mm in diameter prepared via punch biopsy. Each animal had three identical wounds on their right dorsal part, at which two of them were irradiated with continuous diode laser of 635nm in wavelength, 30mW of power output and two different energy densities of 1 J/cm2 and 3 J/cm2. The third wound was kept as control group and had no irradiation. In order to find out the biostimulation consequences during each step of wound healing, which are inflammation, proliferation and remodeling, wound tissues removed at days 3, 7, 10 and 14 following the laser irradiation are morphologically examined and than prepared for histological examination. Fragments of skin including the margin and neighboring healthy tissue were embedded in paraffin and 6 to 9 um thick sections cut are stained with hematoxylin and eosin. Histological examinations show that 635nm laser irradiation accelerated the healing process of cutaneous wounds while considering the changes of tissue morphology, inflammatory reaction, proliferation of newly formed fibroblasts and formation and deposition of collagen fibers. The data obtained gives rise to examine the effects of two distinct power densities of low-level laser irradiation and compare both with the non-treatment groups at different stages of healing process.

  11. Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions.

    PubMed

    Martínez, R V; Losilla, N S; Martinez, J; Huttel, Y; Garcia, R

    2007-07-01

    The miniaturization limits of electronic and mechanical devices depend on the minimum pattern periodicity that is stable in ambient conditions. Here we demonstrate an atomic force microscopy lithography that enables the patterning of 2 nm organic structures with 6 nm periodicities in air. We also demonstrate that the lithography can be up-scaled for parallel patterning. The method is based on the formation of a nanoscale octane meniscus between a sharp conductive protrusion and a silicon (100) surface. The application of a high electrical field ( approximately 10 V/nm) produces the polymerization and cross-linking of the octane molecules within the meniscus followed by their deposition. The resulting pattern periodicities are very close to the ultimate theoretical limits achievable in air ( approximately 3 nm). The chemical composition of the patterns has been characterized by photoemission spectroscopy.

  12. 981 nm Yb:KYW laser intracavity pumped at 912 nm and frequency-doubling for an emission at 490.5 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Chen, R.; Jin, G. Y.; Wang, J. G.; Li, C. L.; Ma, Z. Y.

    2010-05-01

    We present an Yb:KY(WO4)2 (Yb:KYW) laser emitting at 981 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:KYW laser emitting at 981 nm intracavity pumped at 912 nm. This configuration enabled us to indirectly diode-pump this ytterbium doped crystal, and to obtain 1.12 W output power at 981 nm for 19.6 W of incident pump power at 808 nm. Furthermore, intracavity second harmonic generation has also been demonstrated with a power of 106 mW at 490.5 nm by using a LBO nonlinear crystal.

  13. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  14. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

    PubMed Central

    Kodach, V. M.; Kalkman, J.; Faber, D. J.; van Leeuwen, T. G.

    2010-01-01

    One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content. PMID:21258456

  15. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  16. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  17. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  18. Electrically-pumped 850-nm micromirror VECSELs.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-02-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  19. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  20. Photodissociation of Methyl Iodide at 193 NM

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Pratt, Stephen

    2014-05-01

    A new measurement of the photodissociation of CH3I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I(2P3/2) . The relative I(2P3/2) and I*(2P1/2) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I(2P3/2) atoms is non-zero, and yield a value of 0.07 +/- 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I(2P3/2) fragments is significantly smaller than that of the I*(2P1/2) atoms. This observation indicates the internal rotational/vibrational energy of the CH3 co-fragment is very high in the I(2P3/2) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357.

  1. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  2. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  3. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  4. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  5. 1064-nm Nd:YAG laser nucleotomy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Shi, Wei-Qiang; Snyder, Wendy J.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    The high incidence of patients with clinical and neurological symptoms of lumbar disc herniation has spurred the development of less invasive and more cost efficient methods to treat patients. In this study we evaluated pulsed and continuous wave (cw) 1064 nm Nd:YAG laser ablation and induced thermal damage in sheep intervertebral disc. We used the Heraeus LaserSonics Hercules 5040 (Nd:YAG) laser system and 400 micrometers bare and 600 micrometers ball-tipped fibers in cw and pulsed mode. For the laser parameters and fibers used in this study, ablation of the intervertebral disc was successful and thermal damage did not exceed 0.5 mm. Varying beam diameters and focusing abilities (i.e., bare and ball) did not produce any difference in the coagulation thermal effect.

  6. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  7. Tracking the photodissociation dynamics of liquid nitromethane at 266 nm by femtosecond time-resolved broadband transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Honglin; Song, Yunfei; Yu, Guoyang; Wang, Yang; Wang, Chang; Yang, Yanqiang

    2016-05-01

    Femtosecond time-resolved transient grating (TG) technique was employed to get insight into the photodissociation mechanism of liquid nitromethane (NM). Broadband white-light continuum was introduced as the probe to observe the evolution of electronic excited states of NM molecules and the formation of photodissociation products simultaneously. The reaction channel of liquid NM under 266 nm excitation was obtained that NM molecules in excited state S2 relax through two channels: about 73% relax to low lying S1 state through S2/S1 internal conversion with a time constant of 0.24 ps and then go back to the ground state through S1/S0 internal conversion; the other 27% will dissociate with a time constant of 2.56 ps. NO2 was found to be one of the products from the experimental TG spectra, which confirmed that C-N bond rupture was the primary dissociation channel of liquid NM.

  8. Mutation of the nm23-H1 gene has a non-dominant role in colorectal adenocarcinoma

    PubMed Central

    JIN, YUELING; DAI, ZHENSHENG

    2016-01-01

    Nm23-H1 is a metastasis suppressor gene, which is has a reduced expression in patients with digestive system cancer. However, the mechanistic basis for the genetic instability remains unknown. To study the expression of the nm23-H1 gene in patients with colorectal cancer, polymerase chain reaction-single strand conformation polymorphism was used to analyze any point mutation, and immunohistochemistry was used to detect the expression of nm23-H1. Results revealed that all 63 specimens of Chinese human colorectal cancer tissues exhibit no point mutation. Among those 63 specimens, 19 (30%) exhibited positive immunostaining for the nm23-H1 protein and 44 (70%) exhibited negative immunostaining. These observations suggested that the protein and gene expression levels of nm23-H1 are reduced in colorectal cancer compared with the adjacent normal tissues, and the point mutation in the nm23-H1 gene is not the dominant cause of metastatic colorectal cancer. PMID:27330777

  9. 1.86 W cw single-frequency 1319 nm ring laser pumped at 885 nm.

    PubMed

    Li, M L; Zhao, W F; Zhang, S B; Guo, L; Hou, W; Li, J M; Lin, X C

    2012-03-20

    A 1.86 W cw single-frequency 1319 nm laser was produced by using an 885 nm-pumped Nd:YAG crystal with a compact four-mirror ring cavity, for the first time to our knowledge. The Nd:YAG produced a slope efficiency of 21% and an optical-to-optical efficiency of 18% with respect to the absorbed diode pump power. A near-diffraction-limited beam with M(2)=1.2 was achieved under the maximum output power. PMID:22441467

  10. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  11. The Doubling of 846 nm Light to Produce 423 nm Light for use in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Archibald, James; Birrell, Jeremey; Tang, Rebecca; Erickson, Chris; Goggins, Landon; Durfee, Dallin

    2009-10-01

    We present progress on a 423 nm fluorescence probe/cooling laser for use in our neutral calcium atom interferometer. The finished system will include an 846 nm diode laser that is coupled to a tapered amplifier. This light will be sent to a buildup cavity where we will achieve second-harmonic generation (SHG) using either a BBO non-linear crystal or a periodically-poled KTP crystal. We will discuss the theoretical considerations relating to the doubling of light in a crystal and the construction of our buildup cavity. We will also discuss its proposed application for use in atom interferometry.

  12. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  13. 1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm.

    PubMed

    Herault, Emilie; Balembois, François; Georges, Patrick; Georges, Thierry

    2008-07-15

    We present for the first time a Nd:YVO(4) laser emitting at 1064 nm intracavity pumped at 912 nm by a Nd:GdVO(4) laser. We carried out a model to design the system properly, and laser performance was experimentally investigated. Intracavity sum-frequency mixing at 912 and 1064 nm was then realized in a BiBO crystal to reach the blue range. We obtained a cw output power of 155 mW at 491 nm with a pump laser diode emitting 20 W at 808 nm. PMID:18628821

  14. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  15. Design and study of resist materials for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Yamada, Shintaro; Cho, Sungseo; Zampini, Anthony

    2003-06-01

    We investigated the structure-property relationships of several polymer platforms containing hexafluoroisopropanol (HFIP) and tertiary alkyl ester functionalities in order to identify and develop fluorine-containing polymers suitable for 157nm lithography. We observed that the aqueous base solubility of homopolymers containing HFIP was highly dependent on the monomer structure, number of HFIP group per monomer unit, substituent on the alcohol and the polymer architecture. Copolymers of tert-butyl acrylate (TBA), tert-butyl 2-fluoroacrylate (TBFA) and tert-butyl 2-trifluoromethylacrylate (TBTFMA) with styrene hexafluoroisopropanol (STYHFIP) or norborene hexafluoro-isopropanol (NBHFIP) were also investigated to determine the effect of substitution at the acrylate α-position. Under the same ration of STYHFIP, the transparency of the co-polymers improved in the or der of CF3>F>H while the dry etch stability decreased in the order of CF3>F>H. When exposed to 157 nm radiation, photoresists of P(STYHFIP-TBA), P(STYHFIP-TBFA) and P(STYHFIP-TBTFMA) showed an increase in E0 ni the order of Hreaction.

  16. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  17. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  18. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  19. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  20. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  1. 34 nm Charge Transport through DNA

    NASA Astrophysics Data System (ADS)

    Slinker, Jason; Muren, Natalie; Renfrew, Sara; Barton, Jacqueline

    2011-03-01

    Long-range charge transport through DNA has broad-reaching implications due to its inherent biological recognition capabilities and unmatched capacity to be patterned into precise, nanoscale shapes. We have observed charge transport through 34 nm DNA monolayers (100 base pairs) using DNA-mediated electrochemistry. Cyclic voltammetry of multiplexed gold electrodes modified with 100mer DNAs reveal sizable peaks from distally-bound Nile Blue redox probes for well matched duplexes but highly attenuated redox peaks from 100mer monolayers containing a single base pair mismatch, demonstrating that the charge transfer is DNA-mediated. The 100mers on the gold surface are efficiently cleaved by the restriction enzyme RsaI. The 100mers in the DNA film thus adopt conformations that are readily accessible to protein binding and restriction. The ability to assemble well-characterized DNA films with these 100mers permits the demonstration of charge transport over distances surpassing most reports of molecular wires. Supported by funding from the NIH/NIBIB.

  2. Illumination optimization for 65nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo; Hung, Chi-Yuan

    2006-10-01

    The most important task of the microlithography process is to make the manufacturable process latitude/window, including dose latitude and Depth of Focus, as wide as possible. Thus, to perform a thorough source optimization during process development is becoming more critical as moving to high NA technology nodes. Furthermore, Optical proximity correction (OPC) are always used to provide a common process window for structures that would, otherwise, have no overlapping windows. But as the critical dimension of the IC design shrinks dramatically, the flexibility for applying OPC also decreases. So a robust microlithography process should also be OPC-friendly. This paper demonstrates our work on the illumination optimization during the process development. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a real wafer level on our 90/65nm critical layers, such as Active, Poly, Contact and Metal. In conclusion, based on these results, a summary is provided highlighting how OPC can get benefit from proper illumination optimization.

  3. OPC structures for maskshops qualification for the CMOS65nm and CMOS45nm nodes

    NASA Astrophysics Data System (ADS)

    Sundermann, Frank; Trouiller, Yorick; Urbani, Jean-Christophe; Couderc, Christophe; Belledent, Jérôme; Borjon, Amandine; Foussadier, Franck; Gardin, Christian; LeCam, Laurent; Rody, Yves; Saied, Mazen; Yesilada, Emek; Martinelli, Catherine; Wilkinson, Bill; Vautrin, Florent; Morgana, Nicolo; Robert, Frederic; Montgomery, Patrick; Kerrien, Gurwan; Planchot, Jonathan; Farys, Vincent; Di Maria, Jean-Luc

    2007-02-01

    Several qualification stages are required for new maskshop tools, first step is done by the maskshop internally. Taking a new writer for example, the maskshop will review the basic factory and site acceptance tests, including CD uniformity, CD linearity, local CD errors and registration errors. The second step is to have dedicated OPC (Optical Proximity Correction) structures from the wafer fab. These dedicated OPC structures will be measured by the maskshop to get a reticle CD metrology trend line. With this trend line, we can: - ensure the stability at reticle level of the maskshop processes - put in place a matching procedure to guarantee the same OPC signature at reticle level in case of any internal maskshop process change or new maskshop evaluation. Changes that require qualification could be process changes for capacity reasons, like introducing a new writer or a new manufacturing line, or for capability reasons, like a new process (new developer tool for example) introduction. Most advanced levels will have dedicated OPC structures. Also dedicated maskshop processes will be monitored with these specific OPC structures. In this paper, we will follow in detail the different reticle CD measurements of dedicated OPC structures for the three advanced logic levels of the 65nm node: poly level, contact level and metal level. The related maskshop's processes are - for poly: eaPSM 193nm with a nega CAR (Chemically Amplified Resist) process for Clear Field L/S (Lines & Space) reticles - for contact: eaPSM 193nm with a posi CAR process for Dark Field Holes reticles - for metal1: eaPSM 193nm with a posi CAR process for Dark Field L/S reticles. For all these structures, CD linearity, CD through pitch, length effects, and pattern density effects will be monitored. To average the metrology errors, the structures are placed twice on the reticle. The first part of this paper will describe the different OPC structures. These OPC structures are close to the DRM (Design Rule

  4. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  5. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models.

  6. Reaction Kinetics of Nanostructured Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (< 30 nm) and carbon multi-walled nanotubes with diameter 60 - 100 nm at five different temperatures below the melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  7. FY09 assessment of mercury reduction at SNL/NM.

    SciTech Connect

    McCord, Samuel Adam

    2010-02-01

    This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

  8. 193-nm photoresist development at Union Chemical Labs., ITRI

    NASA Astrophysics Data System (ADS)

    Fang, Mao-Ching; Chang, Jui-Fa; Tai, Ming-Chia; Lin, Tzu-Yu; Liu, Ting-Chung; Liu, Chien-Hung

    2000-06-01

    Union Chemical Laboratories has designed and synthesized novel copolymers of norbornene-alt-derivatives, maleic anhydride and alicyclic acrylate for ArF excimer laser lithography. These polymers are prepared using a free-radical copolymerization process. Applying the resin for 193-nm single layer chemically amplified photoresist composed of cholate derivative with a PAG leads to a good resolution below 0.13 micrometer line/space patterns using an ArF stepper and 2.38 wt% tetramethylammonium hydroxide aqueous solution as a developer. Furthermore, alternating phase shift mask was used in combination with a feature size as small as 0.1 micrometer. To overcome post exposure delay (PED) effect caused by airborne contamination, three new base additives were used in the resist formulation. The etching-resist ability of resists by reaction ion etching (RIE) was showed better than conventional g-line and KrF excimer laser resists. Experimental results of CHF3/CF4 as etch gas, indicate that the etching rate selectivity with respect to SiO2 is about 0.5. The UCL photoresists also showed good shelf life stability.

  9. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  10. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  11. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  12. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  13. Synthesis of WS2 Nanowires as Efficient 808 nm-Laser-Driven Photothermal Nanoagents.

    PubMed

    Macharia, Daniel K; Yu, Nuo; Zhong, Runzhi; Xiao, Zhiyin; Yang, Jianmao; Chen, Zhigang

    2016-06-01

    A prerequisite for the development of photothermal ablation therapy for cancer is to obtain efficient photothermal nanoagents that can be irradiated by near-infrared (NIR) laser. Herein, we have reported the synthesis of WS2 nanowires as photothermal nanoagents by the reaction of WCl6 with CS2 in oleylamine at 280 degrees C. WS2 nanowires have the thickness of -2 nm and length of -100 nm. Importantly, the chloroform dispersion of WS2 nanowires exhibits strong photoabsorption in NIR region. The temperature of the dispersion (0.10-0.50 mg/mL) can increase by 12.8-23.9 degrees C in 5 min under the irradiation of 808 nm laser with a power density of 0.80 W/cm2. Therefore, WS2 nanowires have a great superiority as a new nanoagent for NIR-induced photothermal ablation of cancer, due to their small size and excellent photothermal performance.

  14. Developing multi-layer mirror technology near 45 nm using Sc/Si interfaces

    SciTech Connect

    Nilsen, J; Jankowski, A; Friedman, L; Walton, C C

    2004-02-12

    Given the existing X-ray laser sources near 45 nm it would be useful to produce efficient X-ray optics in the 35 to 50 nm wavelength range that could be utilized in new applications. In this work we are developing the process to stabilize the interfaces of nanolaminate structures using materials such as Sc and Si. These materials will enable us to develop new multi-layer mirror technology that can be used in the wavelength range near 45 nm. To obtain this objective, the interfacial structure and reaction kinetics must first be well understood and then controlled for design applications. In this work we fabricate several Sc/Si multi-layer mirrors with and without a B{sub 4}C barrier layer. The structure and reflectivity of the mirrors are analyzed.

  15. Synthesis of WS2 Nanowires as Efficient 808 nm-Laser-Driven Photothermal Nanoagents.

    PubMed

    Macharia, Daniel K; Yu, Nuo; Zhong, Runzhi; Xiao, Zhiyin; Yang, Jianmao; Chen, Zhigang

    2016-06-01

    A prerequisite for the development of photothermal ablation therapy for cancer is to obtain efficient photothermal nanoagents that can be irradiated by near-infrared (NIR) laser. Herein, we have reported the synthesis of WS2 nanowires as photothermal nanoagents by the reaction of WCl6 with CS2 in oleylamine at 280 degrees C. WS2 nanowires have the thickness of -2 nm and length of -100 nm. Importantly, the chloroform dispersion of WS2 nanowires exhibits strong photoabsorption in NIR region. The temperature of the dispersion (0.10-0.50 mg/mL) can increase by 12.8-23.9 degrees C in 5 min under the irradiation of 808 nm laser with a power density of 0.80 W/cm2. Therefore, WS2 nanowires have a great superiority as a new nanoagent for NIR-induced photothermal ablation of cancer, due to their small size and excellent photothermal performance. PMID:27427645

  16. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  17. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  18. Improved performance 1590 nm Er:YLF laser

    SciTech Connect

    Marchbanks, R.D.; Petrin, R.R.; Cockroft, N.J.

    1994-12-01

    We present an improvement in the performance of a 1590 nm ER:YLF laser through simultaneous laser operation at 2717 nm. A slope efficiency of 7.0% with an output of 13.2 mW has been achieved with 971 nm pumping.

  19. Immunosuppressive effects of ultraviolet (280-320 nm) radiation and psoralen plus ultraviolet (320-400 nm) radiation in mice.

    PubMed

    Kripke, M L

    1982-07-01

    Contact hypersensitivity (CHS), a cell-mediated immunologic reaction, can be induced in mice by application of a contact-sensitizing chemical to the shaved skin. Exposing the animals to UV radiation from FS40 sunlamps inhibits this immune response. This inhibition is systemic, since the sensitizer need not be applied to the irradiated site of the animal. The mechanism whereby UV radiation prevents CHS appears to involve the production of suppressor T-lymphocytes. Recent evidence suggests that UV exposure of mice alters the way in which certain antigens are processed, and this altered processing or presentation of antigen results in the activation of the suppressor cell pathway, rather than leading to immunization. Treatment of mice with a photosensitizer, psoralen, plus UV (320-400 nm) radiation also suppresses CHS systemically, but whether the cellular mechanisms are the same as those underlying the suppression from the shorter UV wavelengths remains to be determined. The possible role of these immunosuppressive events in photocarcinogenesis is discussed. PMID:6212709

  20. Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Lünstedt, K.; Pavel, N.; Petermann, K.; Huber, G.

    2007-01-01

    A continuous-wave, diode-pumped Nd:GdVO4 thin disk laser with simultaneous dual-wavelength emission at the 912 nm 4 F 3/2→4 I 9/2 quasi-three-level transition and the 1063 nm 4 F 3/2→4 I 11/2 four-level transition is demonstrated and analyzed. Output powers of 1.7 W at 912 nm and of 1.6 W at 1063 nm were achieved simultaneously from a 0.3-at.%, 300-μm thick Nd:GdVO4 crystal that was multi-pass excited with 26.8 W of available diode pump power. Second harmonic generation to 456 nm with LiB3O5 yielded 0.96 W in 912 nm single-wavelength operation and 0.73 W in 912 nm/1063 nm dual-wavelength operation.

  1. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    NASA Astrophysics Data System (ADS)

    Binetti, Simona; Le Donne, Alessia; Rolfi, Andrea; Jäggi, Beat; Neuenschwander, Beat; Busto, Chiara; Frigeri, Cesare; Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio

    2016-05-01

    Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p-n junction.

  2. Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm

    NASA Astrophysics Data System (ADS)

    Fuetterer, Gerald; Herbst, Waltraud; Rottstegge, Joerg; Ferstl, Margit; Sebald, Michael; Schwider, Johannes

    2002-07-01

    A system producing an optical pattern with a high spatial frequency at (lambda) equals 157 nm has been built to be used as a photoresist tool for the 157 nm lithography. In order to generate a test pattern with a high spatial frequency, two-beam interference was used to overcome the limits of existing mask-projection systems using numerical apertures up to 0.65. In order to work without phase lock techniques a e-beam phase grating was used for providing the two interfering wave fronts for the generation of 150 nm-structures. The phase grating is illuminated under the Bragg-angle. Only two diffraction orders propagate and the other orders are evanescent. The interference pattern resulting in the region of the overlap of the propagated orders is a true two-beam pattern of the same period as the e-beam mask. The photoresist coated wafer is placed in the plane of the interference pattern and is rigidly held by a mechanical fixture. The contrast of the interference pattern depends on the degree of spatial coherence of the excimer laser, on the coherence length, the polarization state of the beam used to illuminate the surface relief phase grating, and on the distance between the wafer and the surface relief phase grating. The degree of spatial coherence was increased by a restriction of the plane wave spectrum which has been attained at the cost of energy throughput. In addition, the TM-polarization was blocked. This was done by a polarizer and a spatial filter. The theoretical background of the experiment will be discussed as well as practical problems.

  3. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Roberts, Joseph J. P.

    and ZrO2 nanoparticles was also explored, but resulted in very low surface coverages. ZrO2 nanoparticles were also ferrocene tagged using previously discussed siloxane chemistry as well as a new route using click chemistry with an azo-phosphate ligand. A similar approach was taken with hydrolytically synthesized IrO 2 and is included for comparison. Chapter Five studies the multivalent electrochemistry of 4 nm magnetite nanoparticles. These nanoparticles are synthesized via thermal degradation and capped with citric acid to make them water soluble. pH dependent electrochemistry was discovered and characterized using cyclic voltammetry, chronoamperometry, and rotating disk electrode experiments. Two separate electrochemical species are present and undergo two irreversible, but separate electrochemical reactions; Fe(II) → Fe (III) and Fe(III) → Fe(II).

  4. Challenges in the Plasma Etch Process Development in the sub-20nm Technology Nodes

    NASA Astrophysics Data System (ADS)

    Kumar, Kaushik

    2013-09-01

    For multiple generations of semiconductor technologies, RF plasmas have provided a reliable platform for critical and non-critical patterning applications. The electron temperature of processes in a RF plasma is typically several electron volts. A substantial portion of the electron population is within the energy range accessible for different types of electron collision processes, such as electron collision dissociation and dissociative electron attachment. When these electron processes occur within a small distance above the wafer, the neutral species, radicals and excited molecules, generated from these processes take part in etching reactions impacting selectivity, ARDE and micro-loading. The introduction of finFET devices at 22 nm technology node at Intel marks the transition of planar devices to 3-dimensional devices, which add to the challenges to etch process in fabricating such devices. In the sub-32 nm technology node, Back-end-of-the-line made a change with the implementation of Trench First Metal Hard Mask (TFMHM) integration scheme, which has hence gained traction and become the preferred integration of low-k materials for BEOL. This integration scheme also enables Self-Aligned Via (SAV) patterning which prevents via CD growth and confines via by line trenches to better control via to line spacing. In addition to this, lack of scaling of 193 nm Lithography and non-availability of EUV based lithography beyond concept, has placed focus on novel multiple patterning schemes. This added complexity has resulted in multiple etch schemes to enable technology scaling below 80 nm Pitches, as shown by the memory manufacturers. Double-Patterning and Quad-Patterning have become increasingly used techniques to achieve 64 nm, 56 nm and 45 nm Pitch technologies in Back-end-of-the-line. Challenges associated in the plasma etching of these multiple integration schemes will be discussed in the presentation. In collaboration with A. Ranjan, TEL Technology Center, America

  5. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Bryniarski, Casey A.; Popescu, Gabriel; Goddard, Lynford L.

    2015-03-01

    We recently built a 405nm laser based optical interferometry system for 9nm node patterned wafer defect inspection. Defects with volumes smaller than 15nm by 90nm by 35nm have been detected. The success of defect detection relied on accurate mechanical scanning of the wafer and custom engineered image denoising post-processing. To further improve the detection sensitivity, we designed a higher precision XYZ scanning stage and replaced the laser source with an incoherent LED to remove the speckle noise. With these system modifications, we successfully detected both defects and surface contamination particles in bright-field imaging mode. Recently, we have upgraded this system for interferometric defect inspection.

  6. Polymer and Material Design for Lithography From 50 nm Node to the sub-16 nm Node

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter

    2012-02-01

    Microlithography is one of the technologies which enabled the Information Age. Developing at the intersection of optical physics, polymer science and photochemistry, the need for ever smaller high fidelity patterns to build integrated circuits is currently pushing the technology evolution from 193 nm immersion lithography to extreme ultraviolet lithography (13.5 nm) to alternate patterning technologies such as directed self assembly (DSA) of block copolymers. Essential to the success of this progression is a rapid application of new concepts and materials in polymer science. We will discuss the requirements for 193 immersion lithography and how advanced acrylic random polymers are being designed with chemical amplification functionality to meet these needs. The special requirements of a water immersion lithography led to the invention and rapid commercial application of surface assembled embedded barrier layer polymers. Design of polymers for EUV lithography is having to respond to much different challenges, prominent being the dearth of photons in the exposure step, and the other being how to maximize the efficiency of photoacid production. In parallel, alternative lithographic approaches are being developed using directed self assembly of block copolymers which realize pattern frequency multiplication. We will update with our progress in the applications of polymers designed for DSA.

  7. The OH + HBr reaction revisited

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.; Wells, J. R.

    1985-01-01

    Variable-temperature measurements of the rate coefficient /k(1)/ for the reaction OH + HBr yield Br + H2O are presented. The measurements are verified by two techniques: one involved a 266-nm pulsed-laser photolysis of O3/H2O/HBr/He mixtures in conjunction with time-resolved resonance fluorescence detection of OH, the second comprised pulsed laser-induced fluorescence detection of OH following 248-nm pulsed-laser photolysis of H2O2/HBr/Ar mixtures. It is reported that k(1) = (11.9 + or -1.4 x 10 to the -12th (cu cm)/(molecule)(s) independent of temperature. The measurements are compared with other available results.

  8. Comparison between HMME mediated photodynamic therapy using 413nm and 532nm for port wine stains: a mathematical simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gu, Y.; Chen, R.; Xu, L. Q.; Liao, X. H.; Huang, N. Y.; Wang, Y. Y.

    2007-11-01

    Introduction: As it is always difficult to find the optimal combination of photosensitizer and of laser wavelength to achieve selective vascular damage in PWS-PDT, the selective vascular effects of HMME (Hematoporphyrin monomethyl ether) mediated PDT with 413 nm and with 532 nm were compared by mathematical simulation in this study. Materials & Methods: Firstly, distribution of 413 nm, 532 nm light in PWS tissue was simulated by Monte Carlo model. Two energy density groups were set, one is 80mW/cm2x40min for both 413 nm and 532 nm, the other is 80mW/cm2x40min for 532 nm while 80mW/cm2x20min in for 413 nm. Secondly, the productivity of reactive oxygen species (ROS) in target vessels and normal tissue were simulated using a simulation system for PDT of PWS established in our lab, which considering the amount of light and photosensitizer in tissue, the molar extinction coefficient of photosensitizer, and quantum yield of ROS. Concentration of HMME for each wavelength were same. Finally, the productivity of ROS n in target vessels and normal tissue were compared between 413 nm PDT and 532 nm PDT under different energy density. Result: Under the same energy density, ROS productivity in target vessels of 413 nm PDT was significantly higher than that of 532 nm PDT. Moreover, it was still higher at low energy density than that of 532nm PDT with high energy density. Conclusion: HMME mediated PDT using 413 nm has the potential to increase the selective vascular effect of PDT for PWS by shortening treatment time.

  9. Degradation of a model naphthenic acid, cyclohexanoic acid, by vacuum UV (172 nm) and UV (254 nm)/H2O2.

    PubMed

    Drzewicz, Przemysław; Afzal, Atefeh; Gamal El-Din, Mohamed; Martin, Jonathan W

    2010-11-18

    The mechanism of hydroxyl radical initiated degradation of a typical oil sands process water (OSPW) alicyclic carboxylic acid was studied using cyclohexanoic acid (CHA) as a model compound. By use of vacuum ultraviolet irradiation (VUV, 172 nm) and ultraviolet irradiation in the presence of hydrogen peroxide UV(254 nm)/H(2)O(2), it was established that CHA undergoes degradation through a peroxyl radical. In both processes the decay of the peroxyl radical leads predominantly to the formation of 4-oxo-CHA, and minor amounts of hydroxy-CHA (detected only in UV/H(2)O(2)). In UV/H(2)O(2), additional 4-oxo-CHA may also have been formed by direct reaction of the oxyl radical with H(2)O(2). The oxyl radical can be formed during decay of the peroxyl-CHA radical or reaction of hydroxy-CHA with hydroxyl radical. Oxo- and hydroxy-CHA further degraded to various dihydroxy-CHAs. Scission of the cyclohexane ring was also observed, on the basis of the observation of acyclic byproducts including heptadioic acid and various short-chain carboxylic acids. Overall, the hydroxyl radical induced degradation of CHA proceeded through several steps, involving more than one hydroxyl radical reaction, thus efficiency of the UV/H(2)O(2) reaction will depend on the rate of generation of hydroxyl radical throughout the process. In real applications to OSPW, concentrations of H(2)O(2) will need to be carefully optimized and the environmental fate and effects of the various degradation products of naphthenic acids considered.

  10. Properties of photochemical reaction centers purified from Rhodopseudomonas gelatinosa.

    PubMed

    Clayton, B J; Clayton, R K

    1978-03-13

    Reaction centers were isolated from a carotenoidless mutant of Rhodopseudomonas gelatinosa by hydroxyapatite chromatography of purified chromatophores treated with lauryl dimethyl amine oxide. Absorption spectra and spectra of light-induced absorbance changes are similar to those of reaction centers from Rhodopseudomonas sphaeroides. The ratio of absorbance at 280 nm to that at 799 nm was 1.8 in the purest preparations. The extinction coefficient at the 799 nm absorption maximum was estimated to be 305 +/- 20 mM--1 . CM--1. The molecular weight based on protein and chromophore assays was found to be 1.5 . 10(5); the reaction center protein accounted for 6% of the total membrane protein. These reaction centers contained no cytochrome and showed just two components of apparent molecular weights 33 000 and 25 000 in polyacrylamide gel electrophoresis. The chromatophores contained 42 molecules of antenna bacteriochlorophyll for each reaction center.

  11. 9nm node wafer defect inspection using visible light

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford L.

    2014-04-01

    Over the past 2 years, we have developed a common optical-path, 532 nm laser epi-illumination diffraction phase microscope (epi-DPM) and successfully applied it to detect different types of defects down to 20 by 100 nm in a 22nm node intentional defect array (IDA) wafer. An image post-processing method called 2DISC, using image frame 2nd order differential, image stitching, and convolution, was used to significantly improve sensitivity of the measured images. To address 9nm node IDA wafer inspection, we updated our system with a highly stable 405 nm diode laser. By using the 2DISC method, we detected parallel bridge defects in the 9nm node wafer. To further enhance detectability, we are exploring 3D wafer scanning, white-light illumination, and dark-field inspection.

  12. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  13. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  14. 7nm logic optical lithography with OPC-Lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  15. Pulsed blue laser at 491 nm by nonlinear cavity dumping.

    PubMed

    Herault, Emilie; Lelek, Mickaël; Balembois, François; Georges, Patrick

    2008-11-24

    A nonlinear cavity dumping process is applied for the first time to generate kW peak power pulses at 491 nm. The system is based on efficient sum-frequency mixing of 1063 nm and 912 nm radiations in a BiBO nonlinear crystal placed inside a Nd:GdVO4 laser oscillator with a high finesse cavity at 912 nm. The nonlinear cavity dumping process is triggered by high peak power nanosecond pulses from a 1063 nm Q-switched Nd:GdVO4 laser operating at 10 kHz. To reach the kW range at 491 nm a key point is to Q-switch the high finesse 912 nm cavity instead of continuous wave operation. Thus, the peak power (9.3 kW for 3 ns pulses) and the average power (280 mW) obtained at 491 nm are 14 times higher than the one obtained when the 912 nm laser operated in continuous wave. PMID:19030029

  16. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  17. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  18. Autocatalysis-driven clock reaction II: kinetics of the pentathionate-periodate reaction.

    PubMed

    Xu, Li; Horváth, Attila K

    2014-10-23

    The pentathionate-periodate reaction has been investigated by spectrophotometrically monitoring the total amount of iodine evolved in the presence of phosphoric acid/dihydrogen phosphate buffer at 468 nm. The majority of the main characteristics of the title system is very reminiscent of that found recently in the pentathionate-iodate reaction, a system that led us to classify generally the clock reactions. Along with the pentathionate-iodate reaction the title system is proposed to belong to the autocatalysis-driven clock reactions as well. The kinetic model of the pentathionate-iodate system published recently was implemented by the necessary reactions of periodate to compose a 24-step kinetic model in which the mechanisms of the pentathionate-iodine, pentathionate-iodate, bisulfite-periodate, bisulfite-iodate, iodide-periodate, and the well-known Dushman reactions are combined. A thorough analysis revealed that the direct pentathionate-periodate reaction plays a role only to produce iodide ion via a finite sequence of reactions, and once its concentration reaches a certain level, the reaction is almost exclusively governed by the pentathionate-iodine, the iodide-periodate, and the Dushman reactions. As expected strong catalytic effect of the buffer composition is also found that can readily be explained by its well-known catalytic influence on the Dushman reaction. PMID:25268333

  19. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  20. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  1. 1319 nm and 1356 nm dual-wavelength operation of diode-side-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Zhi-chao; Zhang, Shen-jin; Yang, Feng; Zhang, Feng-feng; Yuan, Lei; He, Miao; Li, Jia-jia; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2016-05-01

    We report the first demonstration on a diode-side-pumped quasi continuous wave (QCW) dual-wavelength Nd:YAG laser operating at 1319 nm and 1356 nm. The resonator adopts symmetrical L-shaped flat-flat structure working in a thermally near unstable cavity. By precise coating on the cavity mirrors, the simultaneous oscillation at 1319 nm and 1356 nm is delivered. A maximum dual-wavelength output power of 9.4 W is obtained. The beam quality factor M2 is measured to be 1.9.

  2. Electric Field-Assisted Photochemical Water Splitting Should Operate with 287 nm Light.

    PubMed

    Bachler, Vinzenz; Gärtner, Wolfgang

    2016-05-01

    The major photoreaction of water is the homolytic splitting of one O-H bond starting from the 1(1) B1 excited state (λmax = 167 nm). This reaction produces H• and •OH radicals. The combination of two H• atoms leads to the potential energy carrier dihydrogen. However, the energy required to obtain the photoreactive 1(1) B1 electronic state is about 7.4 eV, which cannot be effectively provided by solar radiation. The sun light spectrum on earth comprises the visible and ultraviolet region, but shows vanishing intensity near 7 eV (177.1 nm). This work provides theoretical evidence that the photoreactive 1(1) B1 state of water can be shifted into the ultraviolet (UV-B) light region (≈287 nm) by including explicitly an electric field in the calculations of the water absorption spectrum. To accomplish such bathochromic shift, a large field strength of 3.08 VÅ(-1) is required. The field-dependent excitation energies were calculated by applying the symmetry-adapted cluster configuration interaction (SAC-CI) procedure. Based on this theoretical analysis, we propose that photochemical water splitting can be accomplished by means of 287 nm light provided the water molecule is favorably oriented by an external electric field and is subsequently activated by a reversal of the field orientation.

  3. Electric Field-Assisted Photochemical Water Splitting Should Operate with 287 nm Light.

    PubMed

    Bachler, Vinzenz; Gärtner, Wolfgang

    2016-05-01

    The major photoreaction of water is the homolytic splitting of one O-H bond starting from the 1(1) B1 excited state (λmax = 167 nm). This reaction produces H• and •OH radicals. The combination of two H• atoms leads to the potential energy carrier dihydrogen. However, the energy required to obtain the photoreactive 1(1) B1 electronic state is about 7.4 eV, which cannot be effectively provided by solar radiation. The sun light spectrum on earth comprises the visible and ultraviolet region, but shows vanishing intensity near 7 eV (177.1 nm). This work provides theoretical evidence that the photoreactive 1(1) B1 state of water can be shifted into the ultraviolet (UV-B) light region (≈287 nm) by including explicitly an electric field in the calculations of the water absorption spectrum. To accomplish such bathochromic shift, a large field strength of 3.08 VÅ(-1) is required. The field-dependent excitation energies were calculated by applying the symmetry-adapted cluster configuration interaction (SAC-CI) procedure. Based on this theoretical analysis, we propose that photochemical water splitting can be accomplished by means of 287 nm light provided the water molecule is favorably oriented by an external electric field and is subsequently activated by a reversal of the field orientation. PMID:26876336

  4. Next-generation 193-nm laser for sub-100-nm lithography

    NASA Astrophysics Data System (ADS)

    Duffey, Thomas P.; Blumenstock, Gerry M.; Fleurov, Vladimir B.; Pan, Xiaojiang; Newman, Peter C.; Glatzel, Holger; Watson, Tom A.; Erxmeyer, J.; Kuschnereit, Ralf; Weigl, Bernhard

    2001-09-01

    The next generation 193 nm (ArF) laser has been designed and developed for high-volume production lithography. The NanoLithTM 7000, offering 20 Watts average output power at 4 kHz repetition rates is designed to support the highest exposure tool scan speeds for maximum productivity and wafer throughput. Fundamental design changes made to the laser core technologies are described. These advancements in core technology support the delivery of highly line-narrowed light with

  5. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  6. Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation

    SciTech Connect

    Meinen, Jan; Leisner, Thomas; Khasminskaya, Svetlana; Eritt, Markus; Antonsson, Egill; Langer, Burkhard; Ruehl, Eckart

    2010-08-15

    A novel instrument is presented, which permits studies on singly charged free nanoparticles in the diameter range from 1 to 30 nm using synchrotron radiation in the soft x-ray regime. It consists of a high pressure nanoparticle source, a high efficiency nanoparticle beam inlet, and an electron time-of-flight spectrometer suitable for probing surface and bulk properties of free, levitated nanoparticles. We show results from x-ray photoelectron spectroscopy study near the Si L{sub 3,2}-edge on 8.2 nm SiO{sub 2} particles prepared in a nanoparticle beam. The possible use of this apparatus regarding chemical reactions on the surface of nanometer-sized particles is highlighted. This approach has the potential to be exploited for process studies on heterogeneous atmospheric chemistry.

  7. Biodegradation of 3,3',4,4'-tetrachlorobiphenyl by Sinorhizobium meliloti NM.

    PubMed

    Wang, Xiaomi; Teng, Ying; Luo, Yongming; Dick, Richard P

    2016-02-01

    A rhizobial strain, Sinorhizobium meliloti NM, could use 3,3',4,4'-tetrachloro-biphenyl (PCB 77) as the sole carbon and energy source for growth in mineral salt medium. The degradation efficiency of PCB 77 by strain NM and the bacterial growth increased with a decrease in PCB 77 concentration (5-0.25mgL(-1)). The addition of secondary carbon sources, phenolic acids and one surfactant influenced PCB 77 degradation, rhizobial growth and biofilm formation. The highest degradation efficiency was observed in the presence of caffeic acid. Benzoate and chloride ions were detected as the PCB 77 metabolites. The up-regulation of benzoate metabolism-related gene expression was also observed using quantitative reverse transcription-polymerase chain reaction. This report is the first to demonstrate Sinorhizobium using coplanar tetrachlorobiphenyl as a sole carbon and energy source, indicating the potential wide benefit to the field of rhizobia-assisted bioremediation. PMID:26679048

  8. 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Pavel, N.; Taira, T.

    2002-06-01

    Highly efficient 1064 nm continuous-wave laser emission under 885 nm diode pumping in concentrated Nd: Yttrium aluminum garnet (YAG) crystals (up to 3.5 at. % Nd) and ceramics (up to 3.8 at. % Nd) is reported. A highly doped (2.4 at. %) Nd:YAG laser, passively Q switched by a Cr4+:YAG saturable absorber, is demonstrated.

  9. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  10. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  11. Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Enghoff, M. B.; Svensmark, H.

    2012-12-01

    The role of ionization in the formation of clouds and aerosols has been debated for many years. A body of evidence exists that correlates cloud properties to galactic cosmic ray ionization; however these results are still contested. In recent years experimental evidence has also been produced showing that ionization can promote the nucleation of small aerosols at atmospheric conditions. The experiments showed that an increase in ionization leads to an increase in the formation of ultrafine aerosols (~3 nm), but in the real atmosphere such small particles have to grow by coagulation and condensation to become cloud condensation nuclei (CCN) in order to have an effect on clouds. However, numerical studies predict that variations in the count of ultra-fine aerosols will lead only to an insignificant change in the count of CCN. This is due to 1) the competition between the additional ultra-fine aerosols for the limited supply of condensable gases leading to a slower growth and 2) the increased loss rates of the additional particles during the longer growth-time. We investigated the growth of aerosols to CCN sizes using an 8 m3 reaction chamber made from electro-polished stainless steel. One side was fitted with a Teflon foil to allow ultraviolet light to illuminate the chamber, which was continuously flushed with dry purified air. Variable concentrations of water vapor, ozone, and sulfur dioxide could be added to the chamber. UV-lamps initiated photochemistry producing sulfuric acid. Ionization could be enhanced with two Cs-137 gamma sources (30 MBq), mounted on each side of the chamber. Figure 1 shows the evolution of the aerosols, following a nucleation event induced by the gamma sources. Previous to the event the aerosols were in steady state. Each curve represents a size bin: 3-10 nm (dark purple), 10-20 nm (purple), 20-30 nm (blue), 30-40 nm (light blue), 40-50 nm (green), 50-60 nm (yellow), and 60-68 nm (red). Black curves show a ~1 hour smoothing. The initial

  12. Transport of triplet excitons along continuous 100 nm polyfluorene chains

    SciTech Connect

    Xi, Liang; Bird, Matthew; Mauro, Gina; Asaoka, Sadayuki; Cook, Andrew R.; Chen, Hung -Cheng; Miller, John R.

    2014-12-03

    Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trapped triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a result, a

  13. Transport of triplet excitons along continuous 100 nm polyfluorene chains

    DOE PAGES

    Xi, Liang; Bird, Matthew; Mauro, Gina; Asaoka, Sadayuki; Cook, Andrew R.; Chen, Hung -Cheng; Miller, John R.

    2014-12-03

    Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a

  14. EUV reticle inspection with a 193nm reticle inspector

    NASA Astrophysics Data System (ADS)

    Broadbent, William; Inderhees, Gregg; Yamamoto, Tetsuya; Lee, Isaac; Lim, Phillip

    2013-06-01

    The prevailing industry opinion is that EUV Lithography (EUVL) will enter High Volume Manufacturing (HVM) in the 2015 - 2017 timeframe at the 16nm HP node. Every year the industry assesses the key risk factors for introducing EUVL into HVM - blank and reticle defects are among the top items. To reduce EUV blank and reticle defect levels, high sensitivity inspection is needed. To address this EUV inspection need, KLA-Tencor first developed EUV blank inspection and EUV reticle inspection capability for their 193nm wavelength reticle inspection system - the Teron 610 Series (2010). This system has become the industry standard for 22nm / 3xhp optical reticle HVM along with 14nm / 2xhp optical pilot production; it is further widely used for EUV blank and reticle inspection in R and D. To prepare for the upcoming 10nm / 1xhp generation, KLA-Tencor has developed the Teron 630 Series reticle inspection system which includes many technical advances; these advances can be applied to both EUV and optical reticles. The advanced capabilities are described in this paper with application to EUV die-to-database and die-to-die inspection for currently available 14nm / 2xhp generation EUV reticles. As 10nm / 1xhp generation optical and EUV reticles become available later in 2013, the system will be tested to identify areas for further improvement with the goal to be ready for pilot lines in early 2015.

  15. All-fibre ytterbium laser tunable within 45 nm

    SciTech Connect

    Abdullina, S R; Babin, S A; Vlasov, A A; Kablukov, S I; Shelemba, I S; Kurkov, A S

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  16. Spectropolarimetry of Atomic and Molecular Lines near 4135 nm

    NASA Astrophysics Data System (ADS)

    Penn, Matthew James; Uitenbroek, Han; Clark, Alan; Coulter, Roy; Goode, Phil; Cao, Wenda

    2016-10-01

    New spatially scanned spectropolarimetry sunspot observations are made of photospheric atomic and molecular absorption lines near 4135 nm. The relative splittings among several atomic lines are measured and shown to agree with values calculated with configuration interaction and intermediate coupling. Large splitting is seen in a line identified with Fe i at 4137 nm, showing multiple Stokes V components and an unusual linear polarization. This line will be a sensitive probe of quiet-Sun magnetic fields, with a magnetic sensitivity of 2.5 times higher than that of the well-known 1565 nm Fe i line.

  17. Spectropolarimetry of Atomic and Molecular Lines near 4135 nm

    NASA Astrophysics Data System (ADS)

    Penn, Matthew James; Uitenbroek, Han; Clark, Alan; Coulter, Roy; Goode, Phil; Cao, Wenda

    2016-09-01

    New spatially scanned spectropolarimetry sunspot observations are made of photospheric atomic and molecular absorption lines near 4135 nm. The relative splittings among several atomic lines are measured and shown to agree with values calculated with configuration interaction and intermediate coupling. Large splitting is seen in a line identified with Fe uc(i) at 4137 nm, showing multiple Stokes V components and an unusual linear polarization. This line will be a sensitive probe of quiet-Sun magnetic fields, with a magnetic sensitivity of 2.5 times higher than that of the well-known 1565 nm Fe uc(i) line.

  18. 80 nm tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  19. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  20. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  1. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  2. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  3. Absolute measurement of F2-laser power at 157 nm

    SciTech Connect

    Kueck, Stefan; Brandt, Friedhelm; Kremling, Hans-Albert; Gottwald, Alexander; Hoehl, Arne; Richter, Mathias

    2006-05-10

    We report a comparison of laser power measurements at the F2-laser wavelength oaf nm made at two facilities of the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute. At the PTB laboratory at the electron storage ring BESSY II in Berlin, the scale for laser power was directly traced to a cryogenic radiometer operating at 157 nm, whereas at the PTB laser radiometry facility in Braunschweig the calibration of transfer detectors was performed with a newly developed standard for laser power at 157 nm, which is traceable in several steps to a cryogenic radiometer operating at 633 nm. The comparison was performed under vacuum conditions with laser pulse energies of?10 {mu}J, however with different average powers because different primary standard radiometers were used. The relative deviation for the responsivity of the transfer detector was 4.8% and thus within the combined standard uncertainty.

  4. Immersion and 32nm lithography: now and future

    NASA Astrophysics Data System (ADS)

    Kameyama, Masaomi; McCallum, Martin

    2007-12-01

    The amazing growth of the semiconductor industry over the past decades has been supported, and in many cases driven, by miniaturization of devices. Behind this has been one strong backbone - lithography. In the 1970's, devices had geometries of several micrometers, but now we are about to enter 45nm device pre-production and shortly after move it into volume-production. Immersion lithography, although having a short development time, is already in production and will become the primary technology driver. What we need to do now is identify the solutions for 32nm lithography. There are several candidates for 32nm lithography, such as EUVL, High Index Immersion and Double Patterning / Double Exposure. Other more esoteric technologies such as nanoimprint and maskless lithography have also been mentioned. In this paper, the present status of Immersion lithography will be reviewed and each of the 32nm candidates are reviewed.

  5. Determination of complex index of immersion liquids at 193 nm

    NASA Astrophysics Data System (ADS)

    Stehle, Jean-Louis; Piel, Jean-Philippe; Campillo-Carreto, Jose

    2006-03-01

    The next nodes in immersion lithography will require the scanners to use the 193 nm ArF* laser line with a very large numerical aperture and a liquid between the optics and the resist. (1) Immersion lithography at 193 nm requests very specific parameters for the fluid. The first generation is using the deionized Water (DIW) very pure and not recycled, but when a new optical material for the last lens will be available with a refractive index (RI) larger than 1.85, a higher refractive index fluid could be used, enabling second and maybe third generation of immersion lithography at 193 nm. So the 45 and maybe the 32 nm nodes could be covered with this high Index fluids (HIF).

  6. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  7. Low-k/copper integration scheme suitable for ULSI manufacturing from 90nm to 45nm nodes

    NASA Astrophysics Data System (ADS)

    Nogami, T.; Lane, S.; Fukasawa, M.; Ida, K.; Angyal, M.; Chanda, K.; Chen, F.; Christiansen, C.; Cohen, S.; Cullinan, M.; Dziobkowski, C.; Fitzsimmons, J.; Flaitz, P.; Grill, A.; Gill, J.; Inoue, K.; Klymko, N.; Kumar, K.; Labelle, C.; Lane, M.; Li, B.; Liniger, E.; Madon, A.; Malone, K.; Martin, J.; McGahay, V.; McLaughlin, P.; Melville, I.; Minami, M.; Molis, S.; Nguyen, S.; Penny, C.; Restaino, D.; Sakamoto, A.; Sankar, M.; Sherwood, M.; Simonyi, E.; Shimooka, Y.; Tai, L.; Widodo, J.; Wildman, H.; Ono, M.; McHerron, D.; Nye, H.; Davis, C.; Sankaran, S.; Edelstein, D.; Ivers, T.

    2005-11-01

    This paper discusses low-k/copper integration schemes which has been in production in the 90 nm node, have been developed in the 65 nm node, and should be taken in the 45 nm node. While our baseline 65 nm BEOL process has been developed by extension and simple shrinkage of our PECVD SiCOH integration which has been in production in the 90 nm node with our SiCOH film having k=3.0, the 65 nm SiCOH integration has two other options to go to extend to lower capacitance. One is to add porosity to become ultra low-k (ULK). The other is to stay with low-k SiCOH, which is modified to have a "lower-k". The effective k- value attained with the lower-k (k=2.8) SiCOH processed in the "Direct CMP" scheme is very close to that with an ULK (k=2.5) SiCOH film built with the "Hard Mask Retention" scheme. This paper first describes consideration of these two damascene schemes, whose comparison leads to the conclusion that the lower-k SiCOH integration can have more advantages in terms of process simplicity and extendibility of our 90 nm scheme under certain assumptions. Then describing the k=2.8 SiCOH film development and its successful integration, damascene schemes for 45nm nodes are discussed based on our learning from development of the lower-k 65nm scheme. Capability of modern dry etchers to define the finer patterns, non-uniformity of CMP, and susceptibility to plasma and mechanical strength and adhesion of ULK are discussed as factors to hamper the applicability of ULK.

  8. Oxidative hemoglobin reactions: Applications to drug metabolism.

    PubMed

    Spolitak, Tatyana; Hollenberg, Paul F; Ballou, David P

    2016-06-15

    Hb is a protein with multiple functions, acting as an O2 transport protein, and having peroxidase and oxidase activities with xenobiotics that lead to substrate radicals. However, there is a lack of evidence for intermediates involved in these reactions of Hb with redox-active compounds, including those with xenobiotics such as drugs, chemical carcinogens, and sulfides. In particular, questions exist as to what intermediates participate in reactions of either metHb or oxyHb with sulfides. The studies presented here elaborate kinetics and intermediates involved in the reactions of Hb with oxidants (H2O2 and mCPBA), and they demonstrate the formation of high valent intermediates, providing insights into mechanistic issues of sulfur and drug oxidations. Overall, we propose generalized mechanisms that include peroxidatic reactions using H2O2 generated from the autooxidation of oxyHb, with involvement of substrate radicals in reactions of Hb with oxidizable drugs such as metyrapone or 2,4-dinitrophenylhydrazine and with sulfides. We identify ferryl intermediates (with a Soret band at 407 nm) in oxidative reactions with all of the above-mentioned reactions. These spectral properties are consistent with a protonated ferryl heme, such as Cpd II or Cpd ES-like species (Spolitak et al., JIB, 2006, 100, 2034-2044). Mechanism(s) of Hb oxidative reactions are discussed.

  9. High efficiency 1341 nm Nd:GdVO4 laser in-band pumped at 912 nm

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Liu, J. Y.; Zhang, Y. C.

    2012-03-01

    A high-efficiency 1341 nm Nd:GdVO4 laser in-band pumped at 912 nm is demonstrated for the first time. Using an all-solid-state Nd:GdVO4 laser operating at 912 nm as pump source, 542 mW output was obtained with 1.14 W absorbed pump power. The slope efficiency with respect to the absorbed pump power was 56.6%, and the fluctuation of the output power was better than 2.6% in the given 30 min. The beam quality factor M 2 is 1.15.

  10. Revisit pattern collapse for 14nm node and beyond

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kenji; Higgins, Craig; Raghunathan, Ananthan; Hartley, John G.; Goldfarb, Dario L.; Kato, Hirokazu; Petrillo, Karen; Colburn, Matthew E.; Schefske, Jeffrey; Wood, Obert; Wallow, Thomas I.

    2011-04-01

    In this study, we have analyzed new data sets of pattern collapse obtained from 300 mm wafers which were coated with a process-of-record (POR) EUV resist and exposed by an EUV Alpha-Demo tool (ADT) and a Vistec VB300 e-beam exposure tool. In order to minimize any processing effects on pattern collapse, the same POR EUV track process was applied to both exposures. A key metric of our analysis is the critical aspect ratio of collapse (CARC)1. We found that CARC of POR EUV resist decreases monotonically with spacing, in the range of ~1.8-2.2 at ~32-54 nm space (60-80 nm pitch) for EUV, and ~1.5-2.1 at ~16-50 nm space (~46-80 nm pitch) for e-beam. We also estimated an apparent Young's modulus of POR EUV resist by fitting a collapse model2 to the CARC data. The resulting modulus ~0.30 GPa was much smaller than the modulus of typical polymer glasses (~1.0-5.0 GPa). Our findings suggest that due to a significant decrease of resist mechanical properties and a sharp increase in capillary force, it will be challenging to maintain aspect ratios above 2.0 for sub-30 nm resist spacing (sub-60 nm pitches). For patterning at these dimensions, alternate processes and materials will become increasingly necessary, e.g. surfactant-based rinse solutions3 and other approaches.

  11. Defect inspection of imprinted 32 nm half pitch patterns

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; McMackin, Ian; Perez, Joseph; Sreenivasan, S. V.; Resnick, Douglas J.

    2008-10-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  12. Electron beam inspection methods for imprint lithography at 32 nm

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-01-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  13. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  14. Application of atomic force microscope to 65-nm node photomasks

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Itou, Yasutoshi; Yoshioka, Nobuyuki; Matsuyama, Katsuhiro; Dawson, Dean J.

    2004-08-01

    The technology node of semiconductor device production is progressing to 65nm generation. For the 65nm photomasks, the target specifications of defect size and repair accuracy are 52nm and 7nm, respectively. Especially, real defects on photomasks are not only simple two-dimensional patterns but also three-dimensional shapes such as phase shift defects and contamination, thus we need to recognize defect shapes accurately. Additionally, AAPSM's Cr patterns overhang, and we have to measure defects on three-dimensional shapes. To evaluate them, we use an AFM metrology system, Dimension X3D (Veeco), having both precise CD measurement repeatability (2nm) and high resolution for defects. In this report, we show the performance of the AFM metrology system. First, we evaluated CD metrology performance, CD repeatbility about four type photomasks: NEGA-BIM, POSI-BIM, KrF-HT and ArF-HT, and all masks met specifications. Next, we evaluated defect pattern shapes and AAPSM and CPL mask patterns. Consequently, we have confirmed that the AFM metrology system has high performance for 65nm photomasks.

  15. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  16. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel J

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  17. Highly efficient continuous-wave 912 nm Nd:GdVO4 laser emission under direct 880 nm pumping

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Zhang, A. F.; Yin, X. D.; Bao, L.

    2009-11-01

    The quasi-three-level 912 nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4F3/2 of Nd:GdVO4 have been demonstrated. An end-pumped Nd:GdVO4 crystal yielded 8.1 W of output power for 13.9 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 0.679. To the best of our knowledge this is the first demonstration of such a laser system. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.

  18. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range.

  19. The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database

    National Institute of Standards and Technology Data Gateway

    SRD 161 The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  20. High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications

    NASA Astrophysics Data System (ADS)

    Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao

    2012-03-01

    Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.

  1. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range. PMID:26421536

  2. Clinical Pearls: Leprosy Reactions.

    PubMed

    Wu, Jane; Boggild, Andrea K

    2016-09-01

    Leprosy reactions are acute inflammatory episodes that occur in the setting of Mycobacterium leprae infection. Precipitants of reactions can be pharmacologic and nonpharmacologic. Both type 1 and type 2 reactions typically occur before and during leprosy treatment but may also occur after treatment has been completed. Reactions cause morbidity due to nerve damage, and prompt corticosteroid therapy is warranted to minimize nerve damage due to reactions.

  3. Multicomponent reactions of cyclobutanones.

    PubMed

    Pirrung, Michael C; Wang, Jianmei

    2009-04-17

    Cyclobutanones are essentially unknown as reactants in isonitrile-based multicomponent reactions. Ugi reactions of cyclobutanone and Passerini reactions of tetramethylcyclobutane-1,3-dione have been performed in this work. These reactions are significantly enhanced by being conducted in water, a subject of recent interest whose basis is still in question but whose effects are beyond doubt. The Ugi reaction of cyclobutanone has been used in a brief synthesis of an aspartame analogue.

  4. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  5. Generation of Thermospheric OI 845 nm Emission by Bowen Fluorescence

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Sharpee, B. D.; Cosby, P. C.; Slanger, T. G.

    2006-12-01

    777 and 845 nm emissions from the 3p-3s multiplets of atomic oxygen are commonly observed at non-auroral latitudes in the terrestrial nightglow. By studying the relative strengths of these emissions we can learn something about the mechanisms that produce them and what they can teach us about the atmosphere. Recently [1] we have used intensity-calibrated sky spectra from the Keck telescopes to investigate the relative strengths of a wide range of O-atom Rydberg lines and have confirmed that electron-ion radiative recombination is a primary source of excitation for both the triplet and quintet systems. Following the intensity of the 777 and 845 nm lines during the night, we find that for most of the night the quintet 777 nm line is consistently stronger than the triplet 845 nm line, with a nearly constant intensity ratio I(777)/I(845) near 2.3, although both intensities fall rapidly as the night progresses. However, late in the night the 845 nm intensity levels off, while the 777 nm intensity continues to fall, and the I(777)/I(845) ratio plunges by a factor of 5-10. We interpret these observations as indicating that the O-atom quintet states are still being excited by the same mechanism as earlier in the night, i.e. radiative recombination, but some triplet states are also being excited by an additional mechanism. Such a mechanism has been proposed before [2-6] but not previously observed directly in the terrestrial nightglow. The oxygen triplet 3d-2p transition at 102.576 nm is in close coincidence with the solar hydrogen Lyman-β line at 102.572 nm. Radiative transport in the hydrogen geocorona will deliver Lyman-β intensity into the Earth's shadow and will produce triplet O(3d 3D) high in the atmosphere, even prior to direct solar illumination. The result is observable in a radiative cascade sequence 3d-3p(1129 nm) → 3p- 3s(845 nm) → 3s-2p(130 nm). A similar effect is observed in the H-α emission, which is also excited by Lyman-β absorption. This process

  6. Measurements of Photoabsorpton Cross Sections and their Temperature Dependence for CO2 in the 170nm to 200nm Region

    NASA Astrophysics Data System (ADS)

    Parkinson, W. H.; Yoshino, K.

    2001-11-01

    All the photochemical models for the predominately CO2 Martian atmosphere ar e very sensitive to the amount of CO2 and to the values and spectral details of the absorpton cross sections of CO2 in the region 170nm-200nm. Earlier we had measured and published absolute cross sections of CO2 in the region 118.0 nm-175.5 nm at 295K and 195K. We have recently extended these measurements from 170 nm to 200 nm at 300K and 1 95K. The new measurements have been carried out at high resolution with our 6.65 -m normal incidence , photoelectric spectrometer. To measure the weak photoabsorption of the CO2 bands in the wavelength region 170 --200 nm, we required a high column density of the gas. We obtained this by using a multi pass technique, a White cell. The White cell was designed to have a distance of 1.50 m between two main mirrors, and was set for four, double pas ses making a path length of 12.0 m. CO2 gas was frozen in a stainless cylinder immersed in liquid nitrogen, and t he frozen product (dryice) was pumped by the diffusion pump for purification. The CO2 was warmed up slowly and kept in the cylinder at high pressure. The CO2 pressure used in the White cell was varied from 1 to 1000 Torr depend ing on the wavelength region, and was measured with a a capacitance manometer (M KS Baratron, 10 Torr and 1000 Torr). We divided the spectral region into twenty sections of about 1.5 nm extent. At each scan range, another scan was obtained from the emission spectrum of the fourth positive bands of CO for wavelength calibration. We acknowledge funding from NASA, grant NAGS-7859 to Harvard College Observatory.

  7. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  8. A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng

    2009-11-23

    We demonstrate a self-Q-switched, all-fiber, tunable, erbium laser at 1530 nm with high pulse repetition rates of 0.9-10 kHz. Through the use of an auxiliary 10-mW, 1570 nm laser that shortened the relaxation time of erbium, sequentially Q-switched pulses with pulse energies between 4 and 6 microJ and pulse widths of 40 ns were steadily achieved. A peak pulse power of 165 W was obtained.

  9. The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm

    NASA Astrophysics Data System (ADS)

    Hao, Jing-Yu; Xu, Ying; Zhang, Yu-Pei; Chen, Shu-Fen; Li, Xing-Ao; Wang, Lian-Hui; Huang, Wei

    2015-04-01

    Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregular spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plasmon resonance peaks, respectively, at 525, 575, and 775 nm, are introduced into the hole extraction layer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic cells. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl-C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA·cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB932202 and 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), the Science Fund from the Ministry of Education of China (Grant No. IRT1148), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113223110005), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions (Grant No. YX03001), and the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and

  10. Considerations for fine hole patterning for the 7nm node

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei

    2016-03-01

    One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.

  11. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  12. Analysis of Cervical Supernatant Samples Luminescence Using 355 nm Laser

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Kurtinaitiene, R.; Stanikunas, R.; Rimiene, J.; Vaitkus, J.

    2010-05-01

    The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors represents one of the current challenges in clinical medicine. Laser induced autofluorescence spectra in cervical smear content were fitted to predict the cervical epithelium diagnosis as a lab off "optical biopsy" method. Liquid PAP supernatant sediment dried on Quartz plate spectroscopy was performed by 355 nm Nd YAG microlaser STA-1 (Standa, Ltd). For comparison a liquid supernatant spectroscopy was formed by laboratory "Perkin Elmer LS 50B spetrometer at 290, 300, 310 nm excitations. Analysis of spectrum was performed by approximation using the multi-peaks program with Lorentz functions for the liquid samples and with Gaussian functions for the dry samples. Ratio of spectral components area to the area under whole experimental curve (SPP) was calculated. The spectral components were compared by averages of SPP using Mann-Whitney U-test in histology groups. Results. Differentiation of Normal and HSIL/CIN2+ cases in whole supernatant could be performed by stationary laboratory lamp spectroscopy at excitation 290 nm and emission >379 nm with accuracy AUC 0,69, Sens 0,72, Spec 0,65. Differentiation Normal versus HSIL/CIN2+ groups in dried enriched supernatant could be performed by 355 nm microlaser excitation at emission 405-424 nm with accuracy (AUC 0,96, Sens 0,91, Spec 1.00). Diagnostic algorithm could be created for all histology groups differentiation under 355 nm excitation. Microlaser induced "optical biopsy "looks promising method for cervical screening at the point of care.

  13. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  14. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm

    NASA Astrophysics Data System (ADS)

    Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing

    2015-02-01

    Lasers in the eye-safe 2 μm spectral region are attracting significant interest due to a variety of applications such as atmospheric lidar sensing and medical treatment, which require laser sources matching the absorption lines of various molecules in the 2 μm wavelength region. We demonstrate an all-fiber Tm/Ho-codoped laser operating in the 2 μm wavelength region with a wide wavelength tuning range of more than 300 nm. The Tm/Ho-codoped fiber laser (THFL) was built in a ring cavity configuration with a fiberized grating-based tunable filter to select the operating wavelength. The tunable wavelength range of the THFL was from 1727 nm to 2030 nm. To the best of our knowledge, this is the widest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. Efficient short wavelength operation was also achieved. The output power of the THFL was further scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.

  15. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    NASA Astrophysics Data System (ADS)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  16. A 1.5-W frequency doubled semiconductor disk laser tunable over 40 nm at around 745 nm

    NASA Astrophysics Data System (ADS)

    Saarinen, Esa J.; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G.

    2016-03-01

    We report on a semiconductor disk laser emitting 1.5 W of output power at the wavelength of 745 nm via intracavity frequency doubling. The high power level and the < 40 nm tuning range make the laser a promising tool for medical treatments that rely on photosensitizing agents and biomarkers in the transmission window of tissue between 700 and 800 nm. The InP-based gain structure of the laser was wafer-fused with a GaAs-based bottom mirror and thermally managed with an intracavity diamond heat spreader. The structure was pumped with commercial low-cost 980 nm laser diode modules. Laser emission at 1490 nm was frequency-doubled with a bismuth borate crystal that was cut for type I critical phase matching. At the maximum output power, we achieved an optical-to-optical efficiency of 8.3% with beam quality parameter M2 below 1.5. The laser wavelength could be tuned with an intracavity birefringent plate from 720 to 764 nm.

  17. Extensive angiokeratoma circumscriptum - successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser.

    PubMed

    Baumgartner, Ján; Šimaljaková, Mária; Babál, Pavel

    2016-06-01

    Angiokeratomas are rare vascular mucocutaneous lesions characterized by small-vessel ectasias in the upper dermis with reactive epidermal changes. Angiokeratoma circumscriptum (AC) is the rarest among the five types in the current classification of angiokeratoma. We present a case of an extensive AC in 19-year-old women with Fitzpatrick skin type I of the left lower extremity, characterized by a significant morphological heterogeneity of the lesions, intermittent bleeding, and negative psychological impact. Histopathological examination after deep biopsy was consistent with that of angiokeratoma. The association with metabolic diseases (Fabry disease) was excluded by ophthalmological, biochemical, and genetic examinations. Nuclear magnetic resonance imaging has not detected deep vascular hyperplasia pathognomic for verrucous hemangioma. The combined treatment with 595-nm variable-pulse pulsed dye laser (VPPDL) and 755-nm long-pulse pulsed alexandrite laser (LPPAL) with dynamic cooling device led to significant removal of the pathological vascular tissue of AC. Only a slight degree of secondary reactions (dyspigmentations and texture changes) occurred. No recurrence was observed after postoperative interval of 9 months. We recommend VPPDL and LPPAL for the treatment of extensive AC.

  18. Extensive angiokeratoma circumscriptum - successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser.

    PubMed

    Baumgartner, Ján; Šimaljaková, Mária; Babál, Pavel

    2016-06-01

    Angiokeratomas are rare vascular mucocutaneous lesions characterized by small-vessel ectasias in the upper dermis with reactive epidermal changes. Angiokeratoma circumscriptum (AC) is the rarest among the five types in the current classification of angiokeratoma. We present a case of an extensive AC in 19-year-old women with Fitzpatrick skin type I of the left lower extremity, characterized by a significant morphological heterogeneity of the lesions, intermittent bleeding, and negative psychological impact. Histopathological examination after deep biopsy was consistent with that of angiokeratoma. The association with metabolic diseases (Fabry disease) was excluded by ophthalmological, biochemical, and genetic examinations. Nuclear magnetic resonance imaging has not detected deep vascular hyperplasia pathognomic for verrucous hemangioma. The combined treatment with 595-nm variable-pulse pulsed dye laser (VPPDL) and 755-nm long-pulse pulsed alexandrite laser (LPPAL) with dynamic cooling device led to significant removal of the pathological vascular tissue of AC. Only a slight degree of secondary reactions (dyspigmentations and texture changes) occurred. No recurrence was observed after postoperative interval of 9 months. We recommend VPPDL and LPPAL for the treatment of extensive AC. PMID:26736060

  19. Research of the Additional Losses Occurring in Optical Fiber at its Multiple Bends in the Range Waves 1310nm, 1550nm and 1625nm Long

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A.

    2016-01-01

    Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of “Kazaktelekom” AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment — the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.

  20. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate.

    PubMed

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-03-15

    Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC.

  1. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    SciTech Connect

    Yu H.; McGraw R.; Lee S.-H.

    2012-01-28

    Field observations and quantum chemical calculations suggest that amines can be important for formation of nanometer size particles. Amines and ammonia often have common atmospheric emission sources and the similar chemical and physical properties. While the effects of ammonia on aerosol nucleation have been previously investigated, laboratory studies of homogeneous nucleation involving amines are lacking. We have made kinetics studies of multicomponent nucleation (MCN) with sulfuric acid, water, ammonia and amines under conditions relevant to the atmosphere. Low concentrations of aerosol precursors were measured with chemical ionization mass spectrometers (CIMS) to provide constrained precursor concentrations needed for nucleation. Particle sizes larger than {approx}2 nm were measured with a nano-differential mobility analyzer (nano-DMA), and number concentrations of particles larger than {approx}1 nm were measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines indeed can participate in aerosol nucleation and growth at the molecular cluster level. The enhancement of particle number concentrations due to several atmospherically relevant amine compounds and ammonia were related to the basicity of these compounds, indicating that acid-base reactions may contribute to the formation of sub-3 nm particles.

  2. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    NASA Astrophysics Data System (ADS)

    Yu, Huan; McGraw, Robert; Lee, Shan-Hu

    2012-01-01

    Field observations and quantum chemical calculations suggest that amines can be important for formation of nanometer size particles. Amines and ammonia often have common atmospheric emission sources and the similar chemical and physical properties. While the effects of ammonia on aerosol nucleation have been previously investigated, laboratory studies of homogeneous nucleation involving amines are lacking. We have made kinetics studies of multicomponent nucleation (MCN) with sulfuric acid, water, ammonia and amines under conditions relevant to the atmosphere. Low concentrations of aerosol precursors were measured with chemical ionization mass spectrometers (CIMS) to provide constrained precursor concentrations needed for nucleation. Particle sizes larger than ˜2 nm were measured with a nano-differential mobility analyzer (nano-DMA), and number concentrations of particles larger than ˜1 nm were measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines indeed can participate in aerosol nucleation and growth at the molecular cluster level. The enhancement of particle number concentrations due to several atmospherically relevant amine compounds and ammonia were related to the basicity of these compounds, indicating that acid-base reactions may contribute to the formation of sub-3 nm particles.

  3. Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method.

    PubMed

    da Silva, Robson Rosa; Yang, Miaoxin; Choi, Sang-Il; Chi, Miaofang; Luo, Ming; Zhang, Chao; Li, Zhi-Yuan; Camargo, Pedro H C; Ribeiro, Sidney José Lima; Xia, Younan

    2016-08-23

    Essentially all of the Ag nanowires reported in the literature have sizes larger than 30 nm in diameter. In this article, we report a simple and robust approach to the synthesis of Ag nanowires with diameters below 20 nm and aspect ratios over 1000 using a one-pot polyol method. The Ag nanowires took a penta-twinned structure, and they could be obtained rapidly (<35 min) and in high morphology purity (>85% of the as-obtained solid product) under atmospheric pressure. The key to the success of this synthesis is to restrain the nanowires from lateral growth by employing both Br(-) ions and poly(vinylpyrrolidone) with a high molecular weight of 1 300 000 g/mol to cap the {100} side faces, together with the use of a syringe pump to slowly introduce AgNO3 into the reaction solution. By optimizing the ratios between the capping agents and AgNO3, we were able to slow down the reduction kinetics and effectively direct the Ag nanowires to grow along the longitudinal direction only. The nanowires showed great mechanical flexibility and could be bent with acute angles without breaking. Because of their small diameters, the transverse localized surface plasmon resonance peak of the Ag nanowires could be pushed down to the ultraviolet region, below 400 nm, making them ideal conductive elements for the fabrication of touch screens, solar cells, and smart windows. PMID:27483165

  4. Observation of Quiet Limb in He I 1083.0 nm, H Paschen alpha1281.8 nm and H Brackett gamma 2166.1 nm lines

    NASA Astrophysics Data System (ADS)

    Prasad Choudhary, Debi

    2016-05-01

    In this paper, we shall present the results of an observational study of the quiet solar limb in the near infrared lines using the New IR Array Camera (NAC) and the vertical spectrograph at the focal plane of McMath-Pierce telescope. The NAC, at the exit port of the spectrograph, was used to record the limb spectrum in HeI 1083.0 nm, Hydrogen Paschen 1281.8 nm and Brackett 2165.5 nm wavelength regions. The NAC is a 1024x1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. The limb spectrums were obtained by placing the spectrograph slit perpendicular to the limb at an interval of 10 degrees around the solar disk. We shall report the intensity profile, line-of-sight velocity and line width distribution around the sun derived from the spectra along the slit.

  5. [In vitro antimycobacterial activity of a new quinolone, NM394].

    PubMed

    Tomioka, H; Sato, K; Saito, H

    1993-08-01

    We evaluated the in vitro antimicrobial activity of NM394 and ofloxacin (OFLX) against representative pathogenic mycobacteria by the agar dilution method, using 7H11 agar medium. NM394 showed appreciable antimicrobial activity against Mycobacterium tuberculosis (MIC90 = 0.78 micrograms/ml), M. kansasii (MIC90 = 6.25 micrograms/ml), M. marinum (MIC90 = 3.13 micrograms/ml) and M. fortuitum (MIC90 = 3.13 micrograms/ml), whereas the agent was not active against M. scrofulaceum (MIC90 = > 100 micrograms/ml), M. avium (MIC90 = 50 micrograms/ml), M. intracellulare (MIC90 = > 100 micrograms/ml), M. chelonae subsp. abscessus (MIC90 = > 100 micrograms/ml) and M. chelonae subsp. chelonae (MIC90 = 25 micrograms/ml). The in vitro antimicrobial activity of the agent against M. fortuitum was a little more active than that of OFLX, whereas the activity of NM394 against the other mycobacteria was slightly inferior to that of OFLX. The antimycobacterial activity of NM394 against M. tuberculosis H37Rv (MIC:NM394 = 0.78 micrograms/ml, OFLX = 0.78 micrograms/ml) phagocytosed in murine peritoneal macrophages was less active than that of OFLX, when the macrophages were cultured in RPMI-1640 medium containing 1 microgram/ml or 10 micrograms/ml of these agents for up to 5 days. PMID:8397311

  6. Taking the X Architecture to the 65-nm technology node

    NASA Astrophysics Data System (ADS)

    Sarma, Robin C.; Smayling, Michael C.; Arora, Narain; Nagata, Toshiyuki; Duane, Michael P.; Shah, Santosh; Keston, Harris J.; Oemardani, Shiany

    2004-05-01

    The X Architecture is a new way of orienting the interconnect on an integrated circuit using diagonal pathways, as well as the traditional right-angle, or Manhattan, configuration. By enabling designs with significantly less wire and fewer vias, the X Architecture can provide substantial improvements in chip performance, power consumption and cost. Members of the X Initiative semiconductor supply chain consortium have demonstrated the production worthiness of the X Architecture at the 130-nm and 90-nm process technology nodes. This paper presents an assessment of the manufacturing readiness of the X Architecture for the 65-nm technology node. The extent to which current production capabilities in mask writing, lithography, wafer processing, inspection and metrology can be used is discussed using the results from a 65-nm test chip. The project was a collaborative effort amongst a number of companies in the IC fabrication supply chain. Applied Materials fabricated the 65-nm X Architecture test chip at its Maydan Technology Center and leveraged the technology of other X Initiative members. Cadence Design Systems provided the test structure design and chip validation tools, Dai Nippon Printing produced the masks and Canon"s imaging system was employed for the photolithography.

  7. Coronal Diagnostics from Narrowband Images Around 30.4 nm

    NASA Astrophysics Data System (ADS)

    Andretta, V.; Telloni, D.; Del Zanna, G.

    2012-07-01

    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He ii Ly α line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona, the contribution from the nearby Si xi 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines ( e.g. Mg x 62.5 nm, Si xii 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si xi line dominates the He ii line from just above the limb up to ≈ 2 R ⊙ in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ≈ 2 - 3 R ⊙, the precise value being strongly dependent on the coronal temperature profile.

  8. Ion Imaging Studies of CH_2I_2 Photodissociation at 248 NM

    NASA Astrophysics Data System (ADS)

    Lehman, Julia H.; Li, Hongwei; Lester, Marsha I.

    2013-06-01

    CH_2I_2 plays an important role in atmospheric chemistry as a significant natural source of organohalide compounds. The photodissociation dynamics of CH_2I_2 in the ultraviolet range of 277-305 nm via the two lowest B_1 excited states has been well studied using one-color velocity map ion imaging (VMI) and photofragment translational spectroscopy. In this two-color experimental study, CH_2I_2 is photodissociated by 248 nm via the B_2 or A_1 excited states to give rise to CH_2I and I (^2P_3_/_2) or I^* (^2P_1_/_2). The iodine atoms are then state selectively ionized using a (2+1) resonance-enhanced multiphoton ionization process near 310 nm and detected by VMI. Preliminary results show about 85% of the available energy is being funneled into the internal energy of the CH_2I fragment, consistent with prior infrared emission results of Baughcum and Leone. The anisotropy parameter derived from the image indicates this is a fast dissociation process and reflects the character of the electronic transition. The internal energy distribution of the CH_2I fragment is of particular interest because of its subsequent reaction with O_2 in a near thermo-neutral reaction to produce the smallest Criegee intermediate, CH_2OO. We anticipate that the internal energy contained in CH_2I will likely be carried into CH_2OO. S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).

  9. OH(A 2Sigma(+) - X 2Pi) emission from dissociative excitation of HO2 at 147 nm

    NASA Astrophysics Data System (ADS)

    Suto, M.; Lee, L. C.

    1984-01-01

    The photodissociation processes of the HO2 radical have been studied using the Xe resonance line at 147 nm as a light source. HO2 radical was produced by the reaction H + O2 + He HO2 + He in a flow tube, and the HO2 concentration was measured by a titration method HO2 + NO - OH + NO2. An observed emission in the 310 + or -10 nm region was found to be due solely to photodissociation and is attributed to the OH(A 2Sigma(+) - X 2Pi) system. This emission was studied as a function of O2 and H2 pressure added to the flow tube. Other possible photoemission processes were considered, including photoexcitation of OH, photodissociative excitation of H2O2, emission from the reaction O(D-1) + H, and metastable O2 produced from photodissociation of HO2. It is concluded that the emission intensities produced from these processes is negligible.

  10. Comparison of modeled NmE with NmE measured by the Boulder ionosonde near the spring equinox.

    NASA Astrophysics Data System (ADS)

    Pavlov, Anatoli; Pavlova, Nadezhda

    We present a comparison of the E-layer peak electron number densities, NmE, measured by the Boulder ionosonde during geomagnetically quiet conditions on 10 April 1996 at low solar activity, 2 April 1993 and 9 April 1978 during moderate solar activity conditions, and 10 April 1991 at high solar activity with numerical theoretical model calculations of NmE. Based on this comparison, the modified EUVAC model solar flux is necessary to increase by a factor of 2 at moderate and high solar activity in the wavelength range of 3.2-7.0 nm. If O (+) ( (4) S), O (+) ( (2) D), O (+) ( (2) P), and N (+) ions are not calculated, the value of NmE is decreased up to a factor of 1.12 at solar minimum and up to a factor of 1.23 for the moderate and high solar activity conditions. The production of N _{2} (+) ions by photoelectron-impact ionization of N _{2} increases the value of NmE up to a factor of 1.18 at low solar activity and up to a factor of 1.33 for the moderate and high solar activity levels. The increase in NmE due to the production of O _{2} (+) ions by photoelectron-impact ionization of O _{2} does not exceed 4 percent. A difference between the calculated electron, T _{e}, and neutral, T _{n}, temperatures is less than 1, 4, 20, 70, and 145 K at 105, 110, 120, 130, and 140 km altitude, respectively. Changes in NmE caused by this difference between T _{e} and T _{n} are negligible.

  11. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. PMID:19687946

  12. Guaranteed discovery of the NmSuGra model

    SciTech Connect

    Balazs, Csaba; Carter, Daniel

    2008-11-23

    We analyze the discovery potential of the next-to-minimal supergravity motivated model: NmSuGra. This model is an extension of mSuGra by a gauge singlet, and contains only one additional parameter: {lambda}, the Higgs-singlet-Higgs coupling. NmSuGra solves the {mu}-problem and reduces the fine tuning of mSuGra. After identifying parameter space regions preferred by present experimental data, we show that these regions of NmSuGra are amenable to detection by the combination of the Large Hadron Collider and an upgraded Cryogenic Dark Matter Search. This conclusion holds strictly provided that the more than three sigma discrepancy in the difference of the experimental and the standard theoretical values of the anomalous magnetic moment of the muon prevails in the future.

  13. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  14. New 223-nm excimer laser surgical system for photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.

    1999-02-01

    The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.

  15. Developmental Function of Nm23/awd - A Mediator of Endocytosis

    PubMed Central

    Nallamothu, Gouthami; Dammai, Vincent; Hsu, Tien

    2009-01-01

    The metastasis suppressor gene Nm23 is highly conserved from yeast to human, implicating a critical developmental function. Studies in cultured mammalian cells have identified several potential functions, but many have not been directly verified in vivo. Here we summarize the studies on the Drosophila homologue of the Nm23 gene, named abnormal wing discs (awd), which shares 78% amino acid identity with the human Nm23-H1 and H2 isoforms. These studies confirmed that awd gene encodes a nucleoside diphosphate kinase, and provided strong evidence of a role for awd in regulating cell differentiation and motility via regulation of growth factor receptor signaling. The latter function is mainly mediated by control of endocytosis. This review provides a historical account of the discovery and subsequent analyses of the awd gene. We will also discuss the possible molecular function of the Awd protein that underlies the endocytic function. PMID:19373545

  16. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  17. Defining the far-red limit of photosystem I: the primary charge separation is functional to 840 nm.

    PubMed

    Mokvist, Fredrik; Mamedov, Fikret; Styring, Stenbjörn

    2014-08-29

    The far-red limit of photosystem I (PS I) photochemistry was studied by EPR spectroscopy using laser flashes between 730 and 850 nm. In manganese-depleted spinach thylakoid membranes, the primary donor in PS I, P700, was oxidized simultaneously with tyrosine Z, the secondary donor in PS II. It was found that at 295 K PS I photochemistry, observed as P700 (+) formation, was functional up to 840 nm. This is 30 nm further to the red region than was reported for PS II photochemistry (Thapper, A., Mamedov, F., Mokvist, F., Hammarström, L., and Styring, S. (2009) Plant Cell 21, 2391-2401). The same far-red limit for the P700 (+) formation was observed in a PS I reaction center core preparation from Nostoc punctiforme. The reduction of the acceptor side of PS I, observed as reduction of the iron-sulfur centers FA and FB by low temperature EPR measurements, was also functional at 15 K with light up to >830 nm. Taken together, these results, obtained from both plants and cyanobacteria, most likely rule out involvement of the red-absorbing antenna chlorophylls in this reaction. Instead we propose the existence of weak charge transfer bands absorbing in the far-red region in the ensemble of excitonically coupled chlorophyll a molecules around P700 similar to what has been found in the reaction center of PS II. These charge transfer bands could be responsible for the far-red light absorption leading to PS I photochemistry at wavelengths up to 840 nm.

  18. 11nm logic lithography with OPC-lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Hara, Arisa

    2014-03-01

    CMOS logic at the 22nm node and below is being done with a highly regular layout style using Gridded Design Rules (GDR). Smaller nodes have been demonstrated using a "lines and cuts" approach with good pattern fidelity and process margin, with extendibility to ~7nm.[1] In previous studies, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective down to the 12nm node.[2,3,4,5,6] The transition from single- to double- and in some cases triple- patterning was evaluated for different layout styles, with highly regular layouts delaying the need for multiple-patterning compared to complex layouts. To address mask complexity and cost, OPC for the "cut" patterns was studied and relatively simple OPC was found to provide good quality metrics such as MEEF and DOF.[3,7,8] This is significant since mask data volumes of >500GB per layer are projected for pixelated masks created by complex OPC or inverse lithography; writing times for such masks are nearly prohibitive. In our present work, we extend the scaling using SMO with "OPC Lite" beyond 12nm. The focus is on the contact pattern since a "hole" pattern is similar to a "cut" pattern so a similar technique should be useful. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous studies. The contact pattern is a relatively dense layer since it connects two underlying layers - active and gate - to one overlying layer - metal-1. Several design iterations were required to get suitable layouts while maintaining circuit functionality. Experimental demonstration of the contact pattern using OPC-Lite will be presented. Wafer results have been obtained at a metal-1 half-pitch of 18nm, corresponding to the 11nm CMOS node. Additional results for other layers - FINs, local interconnect, and metal-1 - will also be discussed.

  19. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  20. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  1. A reversible nanoconfined chemical reaction.

    PubMed

    Nielsen, Thomas K; Bösenberg, Ulrike; Gosalawit, Rapee; Dornheim, Martin; Cerenius, Yngve; Besenbacher, Flemming; Jensen, Torben R

    2010-07-27

    Hydrogen is recognized as a potential, extremely interesting energy carrier system, which can facilitate efficient utilization of unevenly distributed renewable energy. A major challenge in a future "hydrogen economy" is the development of a safe, compact, robust, and efficient means of hydrogen storage, in particular, for mobile applications. Here we report on a new concept for hydrogen storage using nanoconfined reversible chemical reactions. LiBH4 and MgH2 nanoparticles are embedded in a nanoporous carbon aerogel scaffold with pore size Dmax approximately 21 nm and react during release of hydrogen and form MgB2. The hydrogen desorption kinetics is significantly improved compared to bulk conditions, and the nanoconfined system has a high degree of reversibility and stability and possibly also improved thermodynamic properties. This new scheme of nanoconfined chemistry may have a wide range of interesting applications in the future, for example, within the merging area of chemical storage of renewable energy.

  2. Determination of transition probability for the 655-nm Tl line.

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J. J.

    Studies of high-pressure Hg-Tl I a.c. (50 Hz) arc plasmas have been used to verify the validity of Boltzmann statistics at the moment of maximum electron density (5 ms) by applying LTE criteria. For a known plasma temperature, the transition probability of the optically-thin 655-nm line of Tl was derived from emission measurements by using the self-reversed 535-nm line of Tl as reference [A655 = (3.74±0.37)×106s-1].

  3. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  4. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  5. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  6. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  7. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  8. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  9. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  10. Analysis of line-and-space resist patterns with sub-20 nm half-pitch fabricated using high-numerical-aperture exposure tool of extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2016-09-01

    The resolution of resist processes for extreme ultraviolet (EUV) lithography has been steadily improved and has reached the sub-20 nm half-pitch region. Currently, the resist materials capable of resolving 11 nm half-pitch line-and-space patterns are being developed in industrial fields. In this study, the line-and-space resist patterns with sub-20 nm half-pitches were fabricated using a high-numerical-aperture (NA) EUV exposure tool and analyzed by the Monte Carlo simulation. The scanning electron microscopy (SEM) images of resist patterns after their development were compared with the latent images calculated on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. The approximate relationship between resist patterns and latent images was clarified for the sub-20 nm half-pitch region. For the realization of 11 nm half-pitch fabrication, the suppression of the stochastic effects in the development process is an important consideration.

  11. Isolation of Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512 as novel probiotics with immunomodulatory properties.

    PubMed

    Mansour, Nahla M; Heine, Holger; Abdou, Sania M; Shenana, Mohamed E; Zakaria, Mohamed K; El-Diwany, Ahmed

    2014-10-01

    Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full-term, breast-fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy-protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL-12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll-like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized.

  12. Size control in the synthesis of 1-6 nm gold nanoparticles using folic acid-chitosan conjugate as a stabilizer

    NASA Astrophysics Data System (ADS)

    Liu, Lili; Zhang, Xianwen; Chaudhuri, Jharna

    2014-09-01

    We report a simple and practical method for the preparation of folic acid (FA)-chitosan functionalized gold nanoparticles (AuNPs) with a very small size (1-6 nm). Sodium borohydride was used as a reducing agent. The size of the AuNPs was controlled by adjusting the mass fraction of FA-chitosan conjugate to Au. The AuNPs were characterized using UV-vis spectroscopy and transmission electron microscopy (TEM). The results indicated that the size distribution of AuNPs decreased ranging from 6 nm to 1 nm with increasing the fraction of FA-chitosan conjugate in the reaction systems.

  13. Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup

    NASA Astrophysics Data System (ADS)

    Cheng, Hui-Wen; Chang, Yuan-Chih; Tang, Song-Nien; Yuan, Chi-Tsu; Tang, Jau; Tseng, Fan-Gang

    2013-11-01

    This paper presents a novel method for the attachment of a 1.8-nm Au nanoparticle (Au-NP) to the tip of an atomic force microscopy (AFM) probe through the application of a current-limited bias voltage. The resulting probe is capable of picking up individual objects at the sub-4-nm scale. We also discuss the mechanisms involved in the attachment of the Au-NP to the very apex of an AFM probe tip. The Au-NP-modified AFM tips were used to pick up individual 4-nm quantum dots (QDs) using a chemically functionalized method. Single QD blinking was reduced considerably on the Au-NP-modified AFM tip. The resulting AFM tips present an excellent platform for the manipulation of single protein molecules in the study of single protein-protein interactions.

  14. Periodic nanostructures on titanium dioxide film produced using femtosecond laser with wavelengths of 388 nm and 775 nm.

    PubMed

    Shinonaga, Togo; Tsukamoto, Masahiro; Miyaji, Godai

    2014-06-16

    Titanium dioxide (TiO2) film is an important biomaterial used to improve the biocompatibility of titanium (Ti). We have used a film coating method with an aerosol beam and femtosecond laser irradiation to form periodic structures on biomaterials for control of the cell spreading. The control of cell spreading on biomaterials is important for the development of advanced biomaterials. In this study, nanostructures with periods of 130 and 230 nm were formed on a film using a femtosecond laser with wavelengths of 388 and 775 nm, respectively. The nanostructure period on the film was 30% of the laser wavelengths. Periods produced with wavelengths of 388 and 775 nm were calculated using a surface plasmon polariton (SPP) model and the experimental results for both wavelengths were in the range of the calculated periods, which suggests that the mechanism for the formation of the periodic nanostructures on the film with a femtosecond laser was due to the excitation of SPPs.

  15. Catalytic diastereoselective petasis reactions.

    PubMed

    Muncipinto, Giovanni; Moquist, Philip N; Schreiber, Stuart L; Schaus, Scott E

    2011-08-22

    Multicomponent Petasis reactions: the first diastereoselective Petasis reaction catalyzed by chiral biphenols that enables the synthesis of syn and anti β-amino alcohols in pure form has been developed. The reaction exploits a multicomponent approach that involves boronates, α-hydroxy aldehydes, and amines. PMID:21751322

  16. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    NASA Astrophysics Data System (ADS)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  17. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  18. 78 FR 67210 - Santa Clara Pueblo Disaster #NM-00038

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Santa Clara Pueblo Disaster NM-00038 AGENCY: U.S. Small Business Administration. ACTION: Notice...: Submit completed loan applications to: U.S. Small Business Administration, Processing and...

  19. 77 FR 62481 - Radio Broadcasting Services; Crownpoint, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Crownpoint, NM AGENCY: Federal Communications....415 and 1.420. List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications... preamble, the Federal Communications Commission proposes to amend 47 CFR Part 73 as follows: PART...

  20. Gain measurements at 5 nm in nickel-like ytterbium

    SciTech Connect

    MacGowan, B.J.; Bourgade, J.L.; Combis, P.; Keane, C.J.; Louis-Jacquet, M.; Matthews, D.L.; Naccache, D.; Stone, G.; Thiell, G.; Whelan, D.A.

    1988-03-01

    Soft x-ray gain has been demonstrated at 5.03 nm within a laser produced plasma of Ni-like ytterbium. Experiments will also be described with higher Z Ni-like ions which can produce even shorter wavelength x-ray laser transition. 3 refs.

  1. Corneal injury from 1318-nm single laser pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; Ketzenberger, Bryan K.; Burton, Margaret B.; Johnson, Thomas E.

    2002-06-01

    Threshold, median effective dose, and the mechanism of laser-tissue interaction are not well defined at the 1318-nm wavelength for human corneal exposures. The goals of this research effort are to identify at-risk groups, characterize the lesions imposed, and establish the ED50 for single pulse 1318-nm laser exposures on the cornea. A Neodymium: Yttrium Aluminum Garnet (Nd:YAG) laser was used to deliver 1318-nm wavelength pulses to the corneas of ten female Dutch Belted rabbits (Oryctolagus cuniculus). Single pulses of 0.5-ms duration and radiant beam energy ranging from 116 to 2250 joules/per square centimeter (J/cm2) were used. Exposure sites were clinically evaluated acutely, one hour and twenty-four hours post-exposure for the presence of a lesion. Results from the twenty-four hour evaluation were used to determine the ED50. Grossly, the lesions appeared as small, circular, well-demarcated, white, opaque lesions. Histologically, the lesions appeared as conical shaped coagulative necrosis with the base of the lesion at the epithelial surface of the cornea and extending to the apex at the endothelial border of the cornea. The ED50 for 1318-nm exposures to the rabbit cornea was determined to be 383 J/cm2 for a 0.1-mm spot size as measured at 1/e2.

  2. Pushing EUV lithography development beyond 22-nm half pitch

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; Montogomery, Warren; Wallow, Tom

    2009-06-30

    Microfield exposure tools (METs) have and continue to play a dominant role in the development of extreme ultraviolet (EUV) resists and masks. One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET. Here we investigate the possibilities and limitations of using the 0.3-NA MET for sub-22-nm half-pitch development. We consider mask resolution limitations and present a method unique to the centrally obscured MET allowing these mask limitations to be overcome. We also explore projection optics resolution limits and describe various illumination schemes allowing resolution enhancement. At 0.3-NA, the 0.5 k1 factor resolution limit is 22.5 nm meaning that conventional illumination is of limited utility for sub-22-nm development. In general resolution enhancing illumination encompasses increased coherence. We study the effect of this increased coherence on line-edge roughness, which along with resolution is another crucial factor in sub-22-nm resist development.

  3. Surface Photometry of the Southern Milky Way at 170 NM

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Schlosser, W.; Schmidtobreick, L.; Koczet, P.

    As part of the D2-Space-Shuttle-Mission in 1993, the GAUSS-Camera has obtained photographic images of the Milky Way in various passbands in the Ultraviolet. Each film covers an area of the sky of about 140^\\circ. Six images were obtained at 170 nm, but only three of them could be used. The calibration has been done using the catalogued intensities of stars and transforming them into surface brightnesses. Then the stars on the images have been filtered out and the Shuttle-Glow has been eliminated. The images finally have been transformed into maps of the Milky Way in galactic coordinates l, b. These maps cover the Milky Way between the Galactic Center and Vela (360^\\circ <= l <= 270^\\circ, - -25^\\circ <= b <= 35^\\circ) and include dark clouds, reflection nebulae and bright open clusters. They are a perfect tool to investigate the distribution of these objects and therefore the global structure of the Milky Way. The image of the Milky Way at 170 nm is heavily dominated by interstellar extinction, leading to high intensity gradients all over the galactic plane. The images at 217 nm and 280 nm, also obtained by the GAUSS-Camera, and previous photometries taken in U, B, V and R have been used for comparison.

  4. 76 FR 18289 - New Mexico Disaster #NM-00020

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00020 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 1962-DR), dated 03/24/2011. Incident: Severe Winter Storm and Extreme...

  5. 77 FR 55523 - New Mexico Disaster #NM-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4079-DR), dated 08/24/2012. Incident: Flooding. Incident Period:...

  6. 75 FR 57538 - New Mexico Disaster # NM-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00016 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 1936-DR), dated 09/13/2010. Incident: Severe Storms and Flooding....

  7. 77 FR 41874 - New Mexico Disaster #NM-00025

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... ADMINISTRATION New Mexico Disaster NM-00025 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of New Mexico dated 07/09... adversely affected by the disaster: Primary Counties: Lincoln. Contiguous Counties: New Mexico: Chaves,...

  8. 78 FR 61999 - New Mexico Disaster #NM-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00037 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4148-DR), dated 09/30/2013. Incident: Severe Storms and Flooding....

  9. 77 FR 63409 - New Mexico Disaster Number NM-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... ADMINISTRATION New Mexico Disaster Number NM-00029 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4079-DR), dated 08/24/2012. Incident: Flooding. Incident... Non-Profit organizations in the State of NEW MEXICO, dated 08/24/2012, is hereby amended to...

  10. 76 FR 2431 - New Mexico Disaster #NM-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... ADMINISTRATION New Mexico Disaster NM-00016 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1... Only for the State of New Mexico (FEMA-1936-DR), dated 09/13/2010. Incident: Severe Storms and Flooding... Private Non-Profit organizations in the State of NEW MEXICO, dated 09/13/2010, is hereby amended...

  11. 78 FR 66982 - New Mexico Disaster #NM-00035

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00035 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4152-DR), dated 10/29/2013. Incident: Severe storms, flooding, and...

  12. 78 FR 73581 - New Mexico Disaster Number NM-00035

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... ADMINISTRATION New Mexico Disaster Number NM-00035 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4152-DR), dated 10/29/2013. Incident: Severe Storms... disaster declaration for Private Non-Profit organizations in the State of New Mexico, dated 10/29/2013,...

  13. 76 FR 76801 - New Mexico Disaster #NM-00024

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00024 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4047-DR), dated 11/23/2011. Incident: Flooding. Incident Period:...

  14. 76 FR 81553 - New Mexico Disaster Number NM-00024

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... ADMINISTRATION New Mexico Disaster Number NM-00024 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4047-DR), dated 11/23/2011. Incident: Flooding. Incident... Non-Profit organizations in the State of New Mexico, dated 11/23/2011, is hereby amended to...

  15. 77 FR 47907 - New Mexico Disaster #NM-00025

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... ADMINISTRATION New Mexico Disaster NM-00025 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of a disaster for the State of NEW MEXICO...'s declaration for the State of New Mexico, dated 07/09/2012 is hereby amended to establish...

  16. 78 FR 72141 - New Mexico Disaster Number NM-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... ADMINISTRATION New Mexico Disaster Number NM-00037 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4148-DR), dated 09/30/2013. Incident: Severe Storms and... Private Non-Profit organizations in the State of New Mexico, dated 09/30/2013, is hereby amended...

  17. Ca II 854.2 nm BISECTORS AND CIRCUMFACULAR REGIONS

    SciTech Connect

    Pietarila, A.; Harvey, J. W.

    2013-02-20

    Active regions appear bright in Ca II 854.2 nm line core intensity while the surrounding areas, referred to as circumfacular regions, are darker than the active region or the quiet Sun. We use Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph Ca II 854.2 nm data (photospheric and chromospheric full disk magnetograms as well as high spectral resolution Stokes I and V profiles) to study the connection between magnetic canopies, circumfacular regions, and Ca II 854.2 nm bisector amplitudes (spans). The line bisector amplitude is reduced in circumfacular regions, where the 3 minute period power in chromospheric H{alpha} intensity oscillations is also reduced relative to the surrounding quiet Sun. The latter is consistent with magnetic canopies in circumfacular regions suppressing upward propagating steepening acoustic waves. Our results provide further strong evidence for shock waves as the cause of the inverse C-shaped bisector and explain the observed solar cycle variation of the shape and amplitude of Sun-as-a-star Ca II 854.2 nm bisectors.

  18. 850-nm oxide VCSEL development at Hewlett-Packard

    NASA Astrophysics Data System (ADS)

    Deng, Hongyu; Dudley, James J.; Lim, Sui F.; Lei, Chun; Liang, Bing; Tashima, M.; Hodge, Lee A.; Zhang, Xuemei; Herniman, John; Herrick, Robert W.

    1999-04-01

    Oxide confined VCSELs are being developed at Hewlett-Packard for the next-generation low cost fiber optics communication applications. Compared to the existing 850 nm implant confined VCSELs, the oxide VCSELs have lower operating voltages, higher slope efficiencies, and better modal bandwidth characteristics. Preliminary data on epitaxy and oxidation control uniformity, device performance, and reliability will be discussed.

  19. Novel main-chain-fluorinated polymers for 157-nm photoresists

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Koh, Meiten; Ishikawa, Takuji; Kodani, T.; Araki, Takayuki; Aoyama, Hirokazu; Yamashita, Tsuneo; Yamazaki, Tamio; Furukawa, Takamitsu; Itani, Toshiro

    2003-06-01

    Main-chain-fluorinated base-resins, including tetrafluoroethylene and norbornene derivatives, were synthesized and their fundamental properties, such as transparency at 157 nm and solubility in a standard alkaline developer, were characterized. A high transparency, i.e., absorbance of less then 0.5 μm-1, was achieved by optimizing the polymerization conditions with a variety of counter monomers. It was found that the polymerization conditions could also control the dissolution rates of the fluoropolymers and increased the dissolution rate of unprotected fluoropolymers by about three orders of magnitude, which was sufficient for the alkaline developability. Positive-working resists based on fluororesins were developed and showed good transparency of less than 1 μm-1 at 157 nm, and good solubility in a standard alkaline solution of 0.26-N tetramethylammonium (without any swelling behavior). And an acceptable etching rate as resistant as ArF resists was obtained and 65-nm dense lines could be delineated by the exposure at 157-nm wavelength.

  20. On the photochemistry of IONO2: absorption cross section (240-370 nm) and photolysis product yields at 248 nm.

    PubMed

    Joseph, D M; Ashworth, S H; Plane, J M C

    2007-11-01

    The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO)

  1. Kinetic analysis of the hydrolysis of methyl parathion using citrate-stabilized 10 nm gold nanoparticles.

    PubMed

    Nita, Rafaela; Trammell, Scott A; Ellis, Gregory A; Moore, Martin H; Soto, Carissa M; Leary, Dagmar H; Fontana, Jake; Talebzadeh, Somayeh F; Knight, D Andrew

    2016-02-01

    "Ligand-free" citrate-stabilized 10 nm gold nanoparticles (AuNPs) promote the hydrolysis of the thiophosphate ester methyl parathion (MeP) on the surface of gold as a function of pH and two temperature values. At 50 °C, the active surface gold atoms show catalytic turnover ∼4 times after 8 h and little turnover of gold surface atoms at 25 °C with only 40% of the total atoms being active. From Michaelis-Menten analysis, k(cat) increases between pH 8 and 9 and decreases above pH 9. A global analysis of the spectral changes confirmed the stoichiometric reaction at 25 °C and the catalytic reaction at 50 °C and mass spectrometry confirmed the identity of p-nitrophenolate (PNP) product. Additional decomposition pathways involving oxidation and hydrolysis independent of the formation of PNP were also seen at 50 °C for both catalyzed and un-catalyzed reactions. This work represents the first kinetic analysis of ligand-free AuNP catalyzed hydrolysis of a thiophosphate ester.

  2. Quantification of the 248 nm photolysis products of HCNO (fulminic acid).

    PubMed

    Feng, Wenhui; Hershberger, John F

    2014-02-01

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 248 nm. Five product channels are energetically possible at this photolysis wavelength: O + HCN, H + (NCO), CN + OH, CO + NH, and HNCO. In some experiments, isotopically labeled (18)O2, (15)N(18)O and C2D6 reagents were included into the photolysis mixture in order to suppress and/or isotopically label possible secondary reactions. HCN, OC(18)O, C(18)O, NCO, DCN, and NH molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ1a (O + HCN) = 0.39 ± 0.07, ϕ1b (H + (NCO)) = 0.21 ± 0.04, ϕ1c (CN + OH) = 0.16 ± 0.04, ϕ1d (CN + NH(a(1)Δ)) = 0.19 ± 0.03, and ϕ1e (HNCO) = 0.05 ± 0.02, respectively. The uncertainties include both random errors (1σ) and consideration of major sources of systematic error. In conjunction with the photolysis experiment, the H + HCNO reaction was investigated. Experimental data demonstrate that this reaction is very slow and does not contribute significantly to the secondary chemistry. PMID:24456406

  3. Resist materials for 157-nm microlithography: an update

    NASA Astrophysics Data System (ADS)

    Hung, Raymond J.; Tran, Hoang V.; Trinque, Brian C.; Chiba, Takashi; Yamada, Shintaro; Sanders, Daniel; Connor, Eric F.; Grubbs, Robert H.; Klopp, John M.; Frechet, Jean M. J.; Thomas, Brian H.; Shafer, Gregory J.; DesMarteau, Darryl D.; Conley, Will; Willson, C. Grant

    2001-08-01

    Fluorocarbon polymers and siloxane-based polymers have been identified as promising resist candidates for 157 nm material design because of their relatively high transparency at this wavelength. This paper reports our recent progress toward developing 157 nm resist materials based on the first of these two polymer systems. In addition to the 2-hydroxyhexafluoropropyl group, (alpha) -trifluoromethyl carboxylic acids have been identified as surprisingly transparent acidic functional groups. Polymers based on these groups have been prepared and preliminary imaging studies at 157 nm are described. 2-Trifluoromethyl-bicyclo[2,2,1] heptane-2-carboxylic acid methyl ester derived from methyl 2-(trifluoromethyl)acrylate was also prepared and gas-phase VUV measurements showed substantially improved transparency over norbornane. This appears to be a general characteristic of norbornane-bearing geminal electron-withdrawing substituents on the 2 carbon bridge. Unfortunately, neither the NiII nor PdII catalysts polymerize these transparent norbornene monomers by vinyl addition. However, several new approaches to incorporating these transparent monomers into functional polymers have been investigated. The first involved the synthesis of tricyclononene (TCN) monomers that move the bulky electron withdrawing groups further away from the site of addition. The hydrogenated geminally substituted TCN monomer still has far better transparency at 157 nm than norbornane. The second approach involved copolymerizing the norbornene monomers with carbon monoxide. The third approach involved free-radical polymerization of norbornene monomers with tetrafluoroethylene and/or other electron-deficient comonomers. All these approaches provided new materials with encouraging absorbance at 157 nm. The lithographic performance of some of these polymers is discussed.

  4. Self-propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness

    SciTech Connect

    Barron, S. C.; Kelly, S. T.; Kirchhoff, J.; Knepper, R.; Fisher, K.; Hufnagel, T. C.; Weihs, T. P.; Livi, K. J. T.; Dufresne, E. M.; Fezzaa, K.; Barbee, T. W.

    2013-12-14

    High temperature, self-propagating reactions are observed in vapor-deposited Al/Zr multilayered foils of overall atomic ratios 3 Al:1 Zr and 2 Al:1 Zr and nanoscale layer thicknesses; however, the reaction velocities do not exhibit the inverse dependence on bilayer thickness that is expected based on changes in the average diffusion distance. Instead, for bilayer thicknesses of 20-30 nm, the velocity is essentially constant at ∼7.7 m/s. We explore several possible explanations for this anomalous behavior, including microstructural factors, changes in the phase evolution, and phase transformations in the reactant layers, but find no conclusive explanations. We determine that the phase evolution during self-propagating reactions in foils with a 3 Al:1 Zr stoichiometry is a rapid transformation from Al/Zr multilayers to the equilibrium intermetallic Al{sub 3}Zr compound with no intermediate crystalline phases. This phase evolution is the same for foils of 90 nm bilayer thicknesses and foils of bilayer thicknesses in the range of 27 nm to 35 nm. Further, for foils with a bilayer thickness of 90 nm and a 3 Al:1 Zr overall chemistry, the propagation front is planar and steady, in contrast to unsteady reaction fronts in foils with 1 Al:1 Zr overall chemistry and similar bilayer thicknesses.

  5. Cytomorphological changes in buccal mucosa of patients treated with low-level 1,064-nm laser radiation.

    PubMed

    Sezer, Ufuk; Aras, Mutan Hamdi; Aktan, Ali Murat; Cengiz, Beyhan; Ozkul, Nadide; Ay, Sinan

    2012-01-01

    The aim of this study was to examine the cytomorphological changes occurring in the buccal mucosa in patients treated with low-level 1,064-nm laser radiation. Seventeen individuals (12 males, five females) 18-24 years of age were included in the study. Low-level 1,064-nm laser radiation was applied to the right buccal mucosa near the premolar region; this therapy was repeated for 10 days. Buccal epithelial cells were collected from the right and left premolar regions of the individuals with a brush before and after therapy. The specimens collected from the left side were measured cytomorphometrically and used for the control group. Student's t test was used for statistical comparison of the values of the buccal epithelial cells collected from individuals; a p value < 0.05 was considered statistically significant. None of the patients showed any adverse reactions to the low-level 1,064-nm laser radiation therapy during application. There was no cytogenetic damage to the therapied or non-therapied regions in the buccal mucosa cells, as determined cytomorphologically. The results suggest that low-level 1,064-nm laser radiation therapy has no genotoxic potential. Within the limitations of this study, it can be concluded that low-level 1,064-nm laser radiation therapy may be used safely in dental treatments.

  6. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser.

    PubMed

    Liu, Jukun; Jia, Tianqing; Zhou, Kan; Feng, Donghai; Zhang, Shian; Zhang, Hongxin; Jia, Xin; Sun, Zhenrong; Qiu, Jianrong

    2014-12-29

    We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.

  7. Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: immunohistochemical analysis.

    PubMed

    Kerppers, Ivo Ilvan; de Lima, Carlos José; Fernandes, Adriana Barrinha; Villaverde, Antonio Balbin

    2015-01-01

    Collagen I is not only responsible for maintaining the integrity of most tissues due to its mechanical properties, but also for its active participation in the functionality of tissues because of its interaction with cells present in the extracellular matrix. The synthesis of collagen begins with tissue injury and remains until the end of the healing process. The use of non-coherent light for healing processes is still understudied. This procedure stands out as a biostimulation method for tissue repair, which increases local circulation, cell proliferation, and collagen synthesis. This study sought to quantify collagen I in the healing process after the treatment of wounds with the light-emitting diode (LED) treatment. The histologic analysis with tissue samples stained with picrosirius red showed a statistical difference between the positive controls, LED 627 and LED 945 nm groups; the group treated with LED 627 nm showed a predominance of mature collagen. The immunohistochemical analysis showed a statistically significant high concentration of collagen I in the LED 945 nm group. The irradiation of wounds with the higher wavelength (945 nm) used in the study produced the best activity of collagen I formation in experimental model.

  8. Cryogenic Lifetime Studies of 130 nm and 65 nm CMOS Technologies for High-Energy Physics Experiments

    SciTech Connect

    Hoff, James R.; Deptuch, G. W.; Wu, Guoying; Gui, Ping

    2015-06-04

    The Long Baseline Neutrino Facility intends to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. Research is under way to place the electronics inside the cryostat. For reasons of efficiency and economics, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This, then, requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130 nm and 65 nm nMOS transistors operating at cryogenic temperatures are investigated. Our results show that both technologies achieve the lifetimes required by the experiment. Minimal design changes are necessary in the case of the 130 nm process and no changes whatsoever are necessary for the 65 nm process.

  9. Pattern generation requirements for mask making beyond 130 nm

    NASA Astrophysics Data System (ADS)

    Abboud, Frank E.; Gesley, Mark A.; Maldonado, Juan R.

    1998-06-01

    It is commonly accepted in the semiconductor industry that optical lithography will be the most cost-effective solution for 150 nm and 130 nm device generations. Some selected layers at the 130 nm device generation may be produced using electron-beam direct-write or x-ray during the development phase. However, for the production phase, it is expected that 193 nm optical lithography with reticle enhancement techniques such as optical proximity correction (OPC) and phase shift masks (PSM) will be the technology of choice. What about post 193 nm. The range of solutions is more diverse and a clear winner has not yet emerged. The topic, however, is becoming more visible and has taken a prominent place in technical conferences in the past year. The five leading potential alternatives to optical lithography are proximity x-ray, e-beam projection (EBP), extended UV (EUV), ion projection lithography (IPL), and e-beam direct write. The search for the right answer will most likely continue for a few years, and possibly more than one alternative will emerge as an effective solution at and below 100 nm. All of the alternatives, with the exception of e-beam direct write, have one thing in common, the mask. Except for proximity x- ray, all solutions at present envision a 4x reduction of the mask-to-wafer image plane. Instead of chrome-coated quartz, a silicon wafer substrate is used. Aside from patterning, mask fabrication varies depending on the lithography absorbing substrate, and EUV requires a reflective multilayer stack. Most key lithography requirements needed to pattern the imaging layer are common to all of the candidates, at least for the reduction methods. For x-ray lithography, the requirements are significantly more stringent but at a smaller field. This paper will consolidate the requirements of the various types of masks from a pattern generation point of view and will focus on the pattern generation tool requirements to meet those mask requirements. In addition, it

  10. Final report on the torque key komparison CCM.T-K1.2 measurand torque: 0 N.m, 500 N.m, 1000 N.m

    NASA Astrophysics Data System (ADS)

    Röske, Dirk

    2015-01-01

    The purpose of the CIPM subsequent bilateral comparison CCM.T-K1.2 was to link another participant, namely the National Institute of Metrology (Thailand), in short NIMT, to the CCM.T-K1 torque key comparison. The measuring capabilities up to 1000 N.m of dead-weight torque standard machines with supported lever were investigated. The pilot laboratory was the same in both comparisons—it was the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany). The same two very stable torque transducers with well-known properties were used as travelling standards. The measurements at the participating laboratory were carried out between November 2007 and February 2008. According to the technical protocol, torque steps of 500 N.m and 1000 N.m had to be measured both in clockwise and anticlockwise directions. Corrections had to be applied to the results reported by the participants taking into account the use of different amplifiers, the creep (due to different loading times of the machines) and the environmental conditions in the laboratories (temperature and relative humidity of the ambient air). The results of the pilot laboratory in this bilateral comparison are in very good agreement with the same results obtained in the CCM.T-K1 comparison. For each of the transducers, the two torque steps and both senses of direction of the torque vector, the key comparison reference value of the CCM.T-K1 was taken, and the results of participant NIMT were calculated with respect to these values. The agreement between the results is very good. The smallest expanded (k = 2) relative uncertainty of the machine stated by the participant is 1 × 10-4. The results of the comparison support this uncertainty statement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according

  11. Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift.

    PubMed

    Duan, Ying; Zhang, Mengxia; Gao, Jin; Li, Pengmin; Goltsev, Vasilij; Ma, Fengwang

    2015-11-01

    During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves.

  12. Performance of Thin Borosilicate Glass Sheets at 351-nm

    SciTech Connect

    Whitman, P K; Hahn, D; Soules, T; Norton, M; Dixit, S; Donohue, G; Folta, J; Hollingsworth, W; Mainschein-Cline, M

    2004-11-11

    Previously, we reported preliminary results for commercial thin borosilicate glass sheets evaluated for use as a frequently-replaced optic to separate the radiation and contamination produced by the inertial confinement fusion experiments in the National Ignition Facility target chamber from the expensive precision laser optics which focus and shape the 351-nm laser beam. The goal is identification of low cost substrates that can deliver acceptable beam energy and focal spots to the target. The two parameters that dominate the transmitted beam quality are the transmitted wave front error and 351-nm absorption. Commercial materials and fabrication processes have now been identified which meet the beam energy and focus requirements for all of the missions planned for the National Ignition Facility. We present the first data for use of such an optic on the National Ignition Facility laser.

  13. Enhanced performance of the iodine monofluoride (491 nm) laser

    NASA Astrophysics Data System (ADS)

    Eden, J. Gary; Kane, Karen Y.

    1990-09-01

    The impact of substituting HI for CF3I as the iodine donor in the discharge-pumped iodine monofluoride (IF) laser at 491 nm has been investigated. More than an order of magnitude improvement in output pulse energy has been observed and is attributed to more efficient production of low-lying (nu-prime less than 5) vibrational levels of the IF (D-prime) ion pair state. Preliminary evidence indicates that vibrational excitation of HI (X 1Sigma+) assists in the relaxation of the D-prime state population. The increased net small-signal gain of D-prime - A-prime (n-prime = 0 - nu-double prime) transitions in HI-containing gas mixtures has the effect of intensifying the 491 nm (0, 15) bandhead relative to the lower gain transitions.

  14. Enhanced performance of the iodine monofluoride (491 nm) laser

    SciTech Connect

    Knae, K.Y.; Eden, J.G. )

    1990-09-01

    The impact of substituting HI for CF{sub 3}I as the iodine donor in the discharge-pumped iodine monofluoride (IF) laser at 491 nm ha been investigated. More than an order of magnitude improvement in output pulse energy has been observed, which is attributed to more efficient production of low-lying ({ital v}{prime} {lt} 5) vibrational levels of the IF ({ital D}{prime}) ion pair state. Preliminary evidence indicates that vibrational excitation of HI ({ital X}{sup 1}{Sigma}{sup +}) assists in the relaxation of the {ital D}{prime} state population. The increased net small signal gain of {ital D}{prime} {r arrow} {ital A}{prime}({ital v}{prime} = 0 {r arrow} {ital v}{double prime}) transitions in HI-containing gas mixtures has the effect of intensifying the 491 nm (0,15) bandhead relative to the lower gain transitions.

  15. Resist reflow process for arbitrary 32 nm node pattern

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; An, Ilsin; Oh, Hye-Keun

    2008-03-01

    In order to shrink down the contact hole which is usually much larger than other patterns, the resist reflow process (RRP) has been widely used. Various types, shapes, and pitches of contact hole arrays are made by RRP, but RRP was limited to be used only for contact hole patterns. The same RRP method is expanded to 32 nm node arbitrary and complex patterns including dense line and space patterns. There might be simple 1-dimensional patterns, but 2-dimensional proximity conflict patterns are difficult to make in general. Specially, the data split with proximity correction needs a lot of attention for double patterning. 32 nm node arbitrary patterns can be easily made by using RRP without complex data split.

  16. Resist Reflow Process for 32 nm Node Arbitrary Pattern

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; An, Ilsin; Oh, Hye-Keun

    2009-04-01

    In order to decrease the size of contact holes, which is usually much larger than other patterns, the resist reflow process (RRP) has been widely used. Various types, shapes, and pitches of contact hole arrays are generated by RRP, but the use of RRP was limited to only contact hole patterns. The use of the same RRP method is expanded to 32 nm node arbitrary and complex patterns including dense line and space patterns. There might be simple one-dimensional patterns, but two-dimensional proximity conflict patterns are difficult to generate in general. In particular, the data split with proximity correction requires much attention for double patterning. 32 nm node arbitrary patterns could be generated using RRP without complex data splits when high-index fluid immersion lithography [numerical aperture (NA) 1.55] is used.

  17. Performance of Thin Borosilicate Glass Sheets at 351-nm

    SciTech Connect

    Whitman, P K; Staggs, M; Carr, W; Dixit, S; Sell, W; Milam, D

    2001-11-01

    Commercial thin borosilicate glass sheets have been evaluated for use as a single-shot optic ''debris shield'' to separate the radiation and contamination produced by the inertial confinement fusion (ICF) experiment from the expensive precision laser optics which focus and shape the 351-nm laser beam which irradiates the target. The goal of this work is identification of low cost materials that can deliver acceptable beam energy and focal spots to the target. The two parameters that dominate the transmitted beam quality are the transmitted wave front error and bulk absorption. This paper focuses on the latter. To date, the materials with the lowest linear 351-nm absorption have also generally demonstrated the lowest non-linear absorption. Commercial materials have been identified which approach the beam energy and focus requirements for many ICF missions.

  18. Optical responses of a metal with sub-nm gaps

    PubMed Central

    Park, Sang Jun; Kim, Tae Yun; Park, Cheol-Hwan; Kim, Dai-Sik

    2016-01-01

    If the size of a metallic structure is reduced to be comparable to or even smaller than the typical quantum-mechanical lengths such as the Fermi wavelength or Thomas-Fermi wavelength, the electronic structure and optical responses are modulated by quantum effects. Here, we calculate the optical responses of a metal with sub-nm gaps using the eigenstates obtained from an effective-mass quantum theory. According to our simulation, the dielectric responses can be significantly modified by tuning the inter-gap distances. Remarkably, sub-nm gaps occupying a 0.3% volumetric fraction can elongate the penetration depth by an order of magnitude in the terahertz regime. We find that the detailed dependences of electron-photon interaction matrix elements on the involved electronic wavefunctions play an important role in the optical responses. The results draw our attention to these recently fabricated systems. PMID:26964884

  19. Thermospheric O I 844.6-nm emission in twilight

    NASA Technical Reports Server (NTRS)

    Bahsoun-Hamade, F.; Wiens, R. H.; Shepherd, G. G.; Richards, P. G.

    1994-01-01

    The thermospheric O I 844.6-nm column emission rate was measured over Toronto, a midlatitude station, in the autumn of 1991 using an imaging Fabry-Perot spectrometer. Twilight decay curves were measured on four clear evenings when the solar zenith angle was between 95 degs and 104 degs, giving corresponding column emission rates between 874 R and 130 R at 20 degs elevation angle in the azimuth of the Sun. The expected decay curves were calculated from the field line interhemisperic plasma model assuming only photoelectron impact excitation as the production mechanism with a cross section appropriate to an optically thin atmosphere. The agreement was good when the solar and geomagnetic activity levels were low to moderate, but the emission rate was overestimated during high activity periods. The comparison indicates that the photoelectron impact mechanism with a thin-atmosphere cross section is sufficient to explain the twilight decay of the thermospheric O I 844.6-nm emission.

  20. Effect of 655-nm diode laser on dog sperm motility.

    PubMed

    Corral-Baqués, M I; Rigau, T; Rivera, M; Rodríguez, J E; Rigau, J

    2005-01-01

    Sperm motility depends on energy consumption. Low-level laser irradiation increases adenosin triphosphate (ATP) production and energy supply to the cell. The aim of this study is to analyse whether the irradiation affects the parameters that characterise dog sperm motility. Fresh dog sperm samples were divided into four groups and irradiated with a 655-nm continuous-wave diode laser with varying doses: 0 (control), 4, 6 and 10 J/cm(2). At 0, 15 and 45 min following irradiation, pictures were taken of all the groups in order to study motility with computer-aided sperm analysis (CASA). Functional tests were also performed. Average path velocity (VAP), linear coefficient (Lin) and beat cross frequency (BCF) were statistically and significantly different when compared to the control. The functional tests also showed a significant difference. At these parameters, the 655-nm continuous-wave diode laser improves the speed and linear coefficient of the sperm.

  1. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  2. 32 nm logic patterning options with immersion lithography

    NASA Astrophysics Data System (ADS)

    Lai, K.; Burns, S.; Halle, S.; Zhuang, L.; Colburn, M.; Allen, S.; Babcock, C.; Baum, Z.; Burkhardt, M.; Dai, V.; Dunn, D.; Geiss, E.; Haffner, H.; Han, G.; Lawson, P.; Mansfield, S.; Meiring, J.; Morgenfeld, B.; Tabery, C.; Zou, Y.; Sarma, C.; Tsou, L.; Yan, W.; Zhuang, H.; Gil, D.; Medeiros, D.

    2008-03-01

    The semiconductor industry faces a lithographic scaling limit as the industry completes the transition to 1.35 NA immersion lithography. Both high-index immersion lithography and EUV lithography are facing technical challenges and commercial timing issues. Consequently, the industry has focused on enabling double patterning technology (DPT) as a means to circumvent the limitations of Rayleigh scaling. Here, the IBM development alliance demonstrate a series of double patterning solutions that enable scaling of logic constructs by decoupling the pattern spatially through mask design or temporally through innovative processes. These techniques have been successfully employed for early 32nm node development using 45nm generation tooling. Four different double patterning techniques were implemented. The first process illustrates local RET optimization through the use of a split reticle design. In this approach, a layout is decomposed into a series of regions with similar imaging properties and the illumination conditions for each are independently optimized. These regions are then printed separately into the same resist film in a multiple exposure process. The result is a singly developed pattern that could not be printed with a single illumination-mask combination. The second approach addresses 2D imaging with particular focus on both line-end dimension and linewidth control [1]. A double exposure-double etch (DE2) approach is used in conjunction with a pitch-filling sacrificial feature strategy. The third double exposure process, optimized for via patterns also utilizes DE2. In this method, a design is split between two separate masks such that the minimum pitch between any two vias is larger than the minimum metal pitch. This allows for final structures with vias at pitches beyond the capability of a single exposure. In the fourth method,, dark field double dipole lithography (DDL) has been successfully applied to BEOL metal structures and has been shown to be

  3. Hard x-ray Zernike microscopy reaches 30 nm resolution.

    SciTech Connect

    Chen, Y.; Chen, T.; Yi, J.; Chu, Y.; Lee, W.-K.; Wang, C.; Kempson, I.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30?nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  4. Hard x-ray Zernike Microscopy Reaches 30 nm Resolution

    SciTech Connect

    Chen, Y.T.; Chu, Y.; Chen, T-Y.; Yi, J.; Lee, W-K.; Wang, C-L.; Kempson, I. M.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30 nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  5. The polarization properties of Fe II 614.9 nm

    NASA Technical Reports Server (NTRS)

    Lites, Bruce W.

    1993-01-01

    The anomalous Zeeman splitting of the Fe II line at 614.9 nm results in four unusual properties of the polarization signature of this line in the presence of magnetic fields: the absence of linear polarization, no magnetooptical effect, the independence of intensity at line center from the inclination of the field, and a depolarizing self-absorption. The origin of these properties is illustrated in terms of the transfer of line radiation in an idealized solar atmosphere.

  6. Portable field spectrometer for reflectance measurements 340-2500 nm.

    PubMed

    Myrabø, H K; Lillesaeter, O; Høimyr, T

    1982-08-01

    A portable field spectrometer designed for measuring the spectral reflectance signatures of terrain objects is described. The instrument employs a chopping technique rendering possible the simultaneous measurement of irradiance from sun and sky on one hand and radiance from the scene on the other. This enhances the applicability of the instrument during variable irradiance conditions caused by drifting clouds. The instrument operates over the 340-2500-nm spectral region. Examples of measuring results are given.

  7. Step and flash imprint lithography for sub-100-nm patterning

    NASA Astrophysics Data System (ADS)

    Colburn, Matthew; Grot, Annette; Amistoso, Marie N.; Choi, Byung J.; Bailey, Todd C.; Ekerdt, John G.; Sreenivasan, S. V.; Hollenhorst, James; Willson, C. Grant

    2000-07-01

    Step and Flash Imprint Lithography (SFIL) is an alternative to photolithography that efficiently generates high aspect-ratio, sub-micron patterns in resist materials. Other imprint lithography techniques based on physical deformation of a polymer to generate surface relief structures have produced features in PMMA as small as 10 nm, but it is very difficult to imprint large depressed features or to imprint a thick films of resist with high aspect-ratio features by these techniques. SFIL overcomes these difficulties by exploiting the selectivity and anisotropy of reactive ion etch (RIE). First, a thick organic 'transfer' layer (0.3 micrometer to 1.1 micrometer) is spin coated to planarize the wafer surface. A low viscosity, liquid organosilicon photopolymer precursor is then applied to the substrate and a quartz template applied at 2 psi. Once the master is in contact with the organosilicon solution, a crosslinking photopolymerization is initiated via backside illumination with broadband UV light. When the layer is cured the template is removed. This process relies on being able to imprint the photopolymer while leaving the minimal residual material in the depressed areas. Any excess material is etched away using a CHF3/He/O2 RIE. The exposed transfer layer is then etched with O2 RIE. The silicon incorporated in the photopolymer allows amplification of the low aspect ratio relief structure in the silylated resist into a high aspect ratio feature in the transfer layer. The aspect ratio is limited only by the mechanical stability of the transfer layer material and the O2 RIE selectivity and anisotropy. This method has produced 60 nm features with 6:1 aspect ratios. This lithography process was also used to fabricate alternating arrays of 100 nm Ti lines on a 200 nm pitch that function as efficient micropolarizers. Several types of optical devices including gratings, polarizers, and sub-wavelength structures can be easily patterned by SFIL.

  8. Sub-nm emittance lattice design for CANDLE storage ring

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Zanyan, G.; Sahakyan, V.; Tsakanov, V.

    2016-10-01

    The most effective way to increase the brilliance of synchrotron light sources is the reduction of beam emittance. Following the recent developments in low emittance lattice design, a new sub-nm emittance lattice based on implementation of multi-band achromat concept and application of longitudinal gradient bending magnets was developed for CANDLE storage ring. The paper presents the main design considerations, linear and non-linear beam dynamics aspects of the new lattice proposed.

  9. Photodissociation of vinyl cyanide at 193 nm: Nascent product distributions of the molecular elimination channels

    SciTech Connect

    Wilhelm, Michael J.; Nikow, Matthew; Letendre, Laura; Dai Hailung

    2009-01-28

    The photodissociation dynamics of vinyl cyanide (H{sub 2}CCHCN, acrylonitrile) and deuterated vinyl cyanide (D{sub 2}CCDCN) at 193 nm are examined using time-resolved Fourier transform infrared emission spectroscopy. Prior photofragment translational spectroscopy studies [D. A. Blank et al., J. Chem. Phys. 108, 5784 (1998)] of the dissociation have observed the presence of four main dissociation channels; two molecular and two radical in nature. However, with the exception of a<0.01 quantum yield determined for the CN radical loss channel, the branching ratios of the remaining three elimination channels were not measured. The time-resolved emission spectra, including those from the deuterated samples, revealed the presence of acetylene, hydrogen cyanide (HCN), as well as the energetically less stable isomer hydrogen isocyanide (HNC). Acetylene is found in two distinct energetic distributions, suggesting that both three- and four-centered elimination reactions are occurring significantly in the dissociation. In contrast to prior ab initio studies that have suggested the dominant nature of the three-center elimination of molecular hydrogen (H{sub 2}) and cyanovinylidene (:C=CHCN), we find this reaction channel to be of little importance as there is no evidence to support any significant presence of rovibrationally excited cyanoacetylene. Spectral modeling of the product distributions allows for the first experimental determination of the relative occurrence of the three-centered (resulting in HCN+vinylidene) versus four-centered (HNC+acetylene) elimination channels as 3.34 to 1.00, in contrast to the previously calculated value of 126:1. Rice-Ramsperger-Kassel-Marcus analysis depicts that the transition state energy of the four-centered reaction should be about 10 kcal mole{sup -1} lower than the three-centered reaction.

  10. Absolute measurements of nonlinear absorption near LIDT at 193 nm

    NASA Astrophysics Data System (ADS)

    Blaschke, Holger; Ristau, Detlev; Welsch, Eberhard; Apel, Oliver

    2001-04-01

    Previous investigations indicate that oxide coatings exhibit non-linear absorption phenomena below 200 nm. Hereby, absorption data of Al2O3 thin film coatings has been determined absolutely by laser calorimetry (LCA) at 193 nm in the low fluence regime. As an alternative, on the basis of the pulsed surface thermal lens technique (STL), photothermal measurements allow to determine the absorption relatively at fluence levels both in the subdamage fluence range far from the damage onset and close to the LIDT. By combining the two measurement techniques, the absolute determination of linear as well as multiphoton absorption can be achieved also in the vicinity of the laser damage fluences. This is of crucial interest because the initiation of damage onset can be observed immediately. Absolute absorption data of Al2O3 coatings at different laser fluences stating of some mJoule/cm2 will be presented for the wavelength 193 nm. Thus, the correlation between the increase of absorption and the onset of breakdown can be illustrated impressively. The evaluation and discussion of the experimental results are focused on the degree of non-linearity of the investigated absorption behavior of oxide single layers initiating the optical breakdown of UV oxide coatings.

  11. 450 nm diode laser: A new help in oral surgery

    PubMed Central

    Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta

    2016-01-01

    AIM To describe the performance of 450 nm diode laser in oral surgery procedures. METHODS The case described consisted of the removal of a lower lip fibroma through a blue diode laser (λ = 450 nm). RESULTS The efficacy of this device, even at very low power (1W, CW), allows us to obtain very high intra and postoperative comfort for the patient, even with just topical anaesthesia and without needing suture. The healing process was completed in one week and, during the follow-up, the patient did not report any problems, pain or discomfort even without the consumption of any kind of drugs, such as painkillers and antibiotics. The histological examination performed by the pathologist showed a large area of fibrous connective tissue with some portions of epithelium-connective detachments and a regular incision with very scanty areas of carbonization. CONCLUSION The 450 nm diode laser proved of being very efficient in the oral soft tissue surgical procedures, with no side effects for the patients.

  12. Brain lesion induced by 1319nm laser radiation

    NASA Astrophysics Data System (ADS)

    Yang, Zaifu; Chen, Hongxia; Wang, Jiarui; Chen, Peng; Ma, Ping; Qian, Huanwen

    2010-11-01

    The laser-tissue interaction has not been well defined at the 1319 nm wavelength for brain exposure. The goal of this research effort was to identify the behavioral and histological changes of brain lesion induced by 1319 nm laser. The experiment was performed on China Kunming mice. Unilateral brain lesions were created with a continuous-wave Nd:YAG laser (1319nm). The brain lesions were identified through behavioral observation and histological haematoxylin and eosin (H&E) staining method. The behavior change was observed for a radiant exposure range of 97~773 J/cm2. The histology of the recovery process was identified for radiant exposure of 580 J/cm2. Subjects were sacrificed 1 hour, 1 week, 2 weeks, 3 months, 7 months and 13 months after laser irradiation. Results showed that after laser exposure, behavioral deficits, including kyphosis, tail entasia, or whole body paralysis could be noted right after the animals recovered from anesthesia while gradually disappeared within several days and never recurred again. Histologically, the laser lesion showed a typical architecture dependent on the interval following laser treatment. The central zone of coagulation necrosis is not apparent right after exposure but becomes obvious within several days. The nerotic tissue though may persist for a long time, will finally be completely resorbed. No carbonization granules formed under our exposure condition.

  13. Photoelectron Emission Studies in CsBr at 257 nm

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.; /Stanford U., Elect. Eng. Dept. /SLAC, SSRL

    2006-09-28

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films.

  14. 450 nm diode laser: A new help in oral surgery

    PubMed Central

    Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta

    2016-01-01

    AIM To describe the performance of 450 nm diode laser in oral surgery procedures. METHODS The case described consisted of the removal of a lower lip fibroma through a blue diode laser (λ = 450 nm). RESULTS The efficacy of this device, even at very low power (1W, CW), allows us to obtain very high intra and postoperative comfort for the patient, even with just topical anaesthesia and without needing suture. The healing process was completed in one week and, during the follow-up, the patient did not report any problems, pain or discomfort even without the consumption of any kind of drugs, such as painkillers and antibiotics. The histological examination performed by the pathologist showed a large area of fibrous connective tissue with some portions of epithelium-connective detachments and a regular incision with very scanty areas of carbonization. CONCLUSION The 450 nm diode laser proved of being very efficient in the oral soft tissue surgical procedures, with no side effects for the patients. PMID:27672639

  15. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  16. Ion transport in sub-5-nm graphene nanopores

    SciTech Connect

    Suk, Myung E.; Aluru, N. R.

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  17. Scanning photorefractive keratectomy at 213 nm: PMMA ablations

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Rol, Pascal O.; Wosnitza, Martin; Maine, Patrick; Parel, Jean-Marie A.

    1999-06-01

    Purpose: In scanning photorefractive keratectomy, the corneal surface is reshaped by laser ablation with a scanning beam for the correction of myopia or astigmatism. A precise knowledge of the volume of corneal tissue removed by each laser pulse is necessary to be able to develop accurate ablation algorithms for scanning photorefractive keratectomy. The purpose of this study was to measure the ablation per pulse created on PMMA surfaces with a Q-switched frequency-quintupled Nd:YAG laser emitting at 213 nm. Methods: A frequency-quintupled Nd:YAG laser emitting at 213 nm with a pulse duration of 5 ns and a pulse energy of 1.2 to 1.5 mJ was used. The laser beam was focused on the surface of PMMA blocks and ablation craters were produced with 10, 50 and 100 pulses. The shape of the ablation craters was measured with an optical profilometer and compared with the beam profile measured with a laser beam diagnostic system. Results: The beam intensity distribution in the near-field consisted of two quasi-Gaussian peaks. The ablation craters contained two peaks. Assuming a Gaussian intensity distribution, the ablation per pulse in PMMA at 213 nm can be modeled by a parabolic function. Conclusions: Optical profilometry can be used to accurately measure the ablation per pulse and evaluate the homogeneity of the beam.

  18. Auditory nerve impulses induced by 980 nm laser.

    PubMed

    Guan, Tian; Zhu, Kai; Chen, Fei; He, Yonghong; Wang, Jian; Wu, Mocun; Nie, Guohui

    2015-08-01

    The discovery that a pulsed laser could trigger an auditory neural response inspired ongoing research on cochlear implants activated by optical stimulus rather than by electrical current. However, most studies to date have used visible light (532 nm) or long-wavelength near-infrared (>1840  nm ) and involved making a hole in the cochlea. This paper investigates the effect of optical parameters on the optically evoked compound action potentials (oCAPs) from the guinea pig cochlea, using a pulsed semiconductor near-infrared laser (980 nm) without making a hole in the cochlea. Synchronous trigger laser pulses were used to stimulate the cochlea, before and after deafening, upon varying the pulse duration (30–1000  μs ) and an amount of radiant energy (0–53.2  mJ/cm 2 ). oCAPs were successfully recorded after deafening. The amplitude of the oCAPs increased as the infrared radiant energy was increased at a fixed 50  μs pulse duration, and decreased with a longer pulse duration at a fixed 37.1  mJ/cm 2 radiant energy. The latency of the oCAPs shortened with increasing radiant energy at a fixed pulse duration. With a higher stimulation rate, the amplitude of the oCAPs’ amplitude decreased. PMID:26295178

  19. Characterization of 32nm node BEOL grating structures using scatterometry

    NASA Astrophysics Data System (ADS)

    Zangooie, Shahin; Sendelbach, Matthew; Angyal, Matthew; Archie, Charles; Vaid, Alok; Matthew, Itty; Herrera, Pedro

    2008-03-01

    Implementations of scatterometry in the back end of the line (BEOL) of the devices requires design of advanced measurement targets with attention to CMP ground rule constraints as well as model simplicity details. In this paper we outline basic design rules for scatterometry back end targets by stacking and staggering measurement pads to reduce metal pattern density in the horizontal plane of the device and to avoid progressive dishing problems along the vertical direction. Furthermore, important characteristics of the copper shapes in terms of their opaqueness and uniformity are discussed. It is shown that the M1 copper thicknesses larger than 100 nm are more than sufficient for accurate back end scatterometry implementations eliminating the need for modeling of contributions from the buried layers. AFM and ellipsometry line scans also show that the copper pads are sufficiently uniform with a sweet spot area of around 20 μm. Hence, accurate scatterometry can be done with negligible edge and/or dishing contributions if the measurement spot is placed any where within the sweet spot area. Reference metrology utilizing CD-SEM and CD-AFM techniques prove accuracy of the optical solutions for the develop inspect and final inspect grating structures. The total measurement uncertainty (TMU) values for the process of record line width are of the order of 0.77 nm and 0.35 nm at the develop inspect and final inspect levels, respectively.

  20. Photodissociation and Photoionization of Propanaldehyde at 355 nm. Theory and experiment.

    NASA Astrophysics Data System (ADS)

    Cisneros, Carmen; Muñoz-Rugeles, Leonardo; Guerrero, Alfonso; Alvarez, Ignacio

    2013-05-01

    Propanaldehyde is a large component in the atmosphere, finding in concentrations around 1-2 × 1010 molecules/cm3, motivating the characterization of photodissociation and photoionization dynamics by UV multiphoton absorption. In this work we present the study of photodissociation and photoionization dynamics by multiphoton absorption with 355 nm wavelength photons, using time of flight spectrometry in reflectron mode, R-TOF, and calculations of potential energy surfaces for the principal reaction coordinate using time dependent density functional theory, TD-DFT. The experimental and theoretical results suggest that the characteristics observed in the R-TOF spectra come from the generation of free radicals, by two photon absorption, that later are ionized by multiphoton absorption. This work is supported by grants DGAPA-UNAM IN-107-912, IN-102613 and CONACyT 165410.

  1. Measurement of tropospheric 300 nm solar ultraviolet flux for determination of O/1D/ photoproduction rate

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hanser, F. A.

    1978-01-01

    The tropospheric importance of the OH radical, and the reaction scheme that leads to its formation, are now being widely investigated. Ozone photolysis at wavelengths no greater than 318 nm produces O(1D), a small fraction of which then reacts with water vapor to yield OH. Although experimental data are available for the O(1D) quantum yield, as well as the O3 absorption cross section, all previous tropospheric photochemical models have had to use theoretical calculations to determine the UV flux. Discussed in this paper are aircraft spectral measurements of the solar UV flux at two altitudes - 2 and 6 km. These results have been compared with three theoretical approaches. The measured experimental fluxes have been combined here with recent quantum yield data to calculate the O(1D) photoproduction rate for various albedo values. This rate is larger than that used in models by about a factor of 2 for reasonable values of assumed albedo.

  2. Reaction mechanism of 3-chlorophenol with OH, H in aqueous solution.

    PubMed

    Zhu, Jie; Chen, Ye-Fei; Dong, Wen-Bo; Pan, Xun-Xi; Hou, Hui-Qi

    2003-01-01

    The reaction mechanism of 3-chlorophenol with OH, H in aqueous solution was studied by transient technology. The 3-chlorophenol aqueous solutions have been saturated with air or N2 previously. Under alkaline condition, the reaction of OH radical with 3-chlorophenol produces 3-chlorinated phenoxyl radical, with the absorption peaks at 400 nm and 417 nm. Under neutral condition, the reaction of OH radical with 3-chlorophenol produces OH-adduct with the maximal absorption at about 340 nm. And in acid solution, the reaction of H with 3-chlorophenol produces H-adduct with the maximal absorption at about 320 nm. 3-chlorophenol is compared with 4-and 2-chlorophenols from the free radical pathways. The results show that the positions of chlorine on the aromatic ring strongly influence the dehalogenation and degradation process.

  3. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-01-01

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  4. Anaphylactic reactions to cinoxacin.

    PubMed Central

    Stricker, B. H.; Slagboom, G.; Demaeseneer, R.; Slootmaekers, V.; Thijs, I.; Olsson, S.

    1988-01-01

    During 1981 to mid-1988 three cases of anaphylactic shock after treatment with the quinolone derivative cinoxacin were reviewed by the Netherlands Centre for Monitoring of Adverse Reactions to Drugs and 17 cases of an anaphylactic type of reaction notified to the World Health Organisation Collaborating Centre for International Drug Monitoring. In five out of six patients for whom data were available the reaction began shortly after taking a single capsule of a second or next course of treatment. Cinoxacin is related to nalidixic acid, and one patient previously treated with that agent subsequently had an anaphylactoid reaction to cinoxacin and later developed a skin reaction to nalidixic acid. There were no deaths, and patients treated as an emergency with plasma expanders or with adrenaline and corticosteroids generally recovered promptly and uneventfully. In view of the potentially fatal consequences of anaphylactic reactions to cinoxacin and other quinolones doctors should take care when prescribing these drugs. PMID:3147004

  5. Reaction spreading on graphs

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension ds, the important quantity for reaction spreading is found to be the connectivity dimension dl. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)˜tdl. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)˜eαt with α proportional to ln, where is the average degree of the graph.

  6. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  7. Immune reaction to propanidid.

    PubMed

    Christmas, D

    1984-05-01

    An adverse reaction to the intravenous anaesthetic agent propanidid is described in which the main features were hypotension, facial erythema, and abdominal pain. Changes in serum complement levels and differential white cell counts indicate that this was an immune reaction mediated by the classical complement pathway. The immune reaction apparently involved antibodies other than those of the IgE (reagin) class, and circumstantial evidence suggests that it was specific to propanidid rather than to the entire formulation or to Cremophor EL.

  8. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300

  9. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  10. Clinical use of the 193-nm excimer laser in the treatment of corneal scars.

    PubMed

    Sher, N A; Bowers, R A; Zabel, R W; Frantz, J M; Eiferman, R A; Brown, D C; Rowsey, J J; Parker, P; Chen, V; Lindstrom, R L

    1991-04-01

    Phototherapeutic keratectomy using a 193-nm excimer laser was performed at four centers on 33 sighted patients with corneal opacity and/or irregular astigmatism. Pathologic conditions included anterior stromal and superficial scarring from postinfectious and posttraumatic causes, including inactive herpes simplex virus, anterior corneal dystrophies, recurrent erosions, granular dystrophy, and band keratopathy. Most patients received peribulbar anesthesia and underwent removal of the epithelium prior to laser ablation. A majority of patients had a reduction in the amount of corneal scarring and approximately half had improved visual acuity. No intraocular reaction or changes in endothelial counts were seen, and some patients avoided the need for penetrating keratoplasty. Reepithelialization usually occurred within 4 or 5 days and we noted no significant scarring secondary to use of the laser. It was difficult to eliminate preexisting irregular astigmatism despite the use of surface modulators, such as methylcellulose. A hyperopic shift secondary to corneal flattening was encountered in approximately 50% of the patients. A combination of myopic ablation, followed immediately by a secondary hyperopic steepening, may minimize this refractive change. The 193-nm excimer laser is an effective new tool in the treatment of selected patients with superficial corneal opacity from a variety of conditions. PMID:2012547

  11. Latitudinal variation of 732.0 nm dayglow emission under geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Singh, Vir; Dharwan, Maneesha

    2016-07-01

    A comprehensive model is developed to study 732.0 nm dayglow emission. The Solar2000 EUV (extreme ultraviolet) flux model, neutral atmosphere model (NRLMSISE-00), latest transition probabilities and updated reaction rate coefficients are incorporated in the present model. The modeled volume emission rates (VER) are compared with the measurements as provided by Atmosphere Explorer-C satellite, Dynamics Explorer-2 spacecraft and WINDII measurements. The model is found in very good agreement with the measurements. This model is used to study the effects of geomagnetic storm on the 732.0 nm dayglow emission at various latitudes in northern hemisphere. It is found that the VER decreases as the latitude increases. The decrease in VER from low to mid latitudes is due to the decrease in atomic oxygen number density with latitude. The zenith intensity at the maximum geomagnetic activity is about 15% higher than the zenith intensity before the start of the geomagnetic storm in equatorial region. However, no appreciable change in the zenith intensity is found at higher latitudes (above 50° N). Further a negative correlation is found between the volume emission rate and DST index at all latitudes.

  12. Relativistic Calculation of Transition Probabilities for 557.7 nm and 297.2 nm Emission Lines in Oxygen

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.; Nguyen, T. V. B.; Lowe, J. A.; Grant, I. P.

    2013-05-01

    The 557.7 nm green line and the 297.2 nm ultraviolet line in oxygen have been studied extensively due to their importance in astrophysics and atmospheric science. Despite the enormous effort devoted to these two prominent transition lines over 30 years, and in fact going back to 1934, the ratio of their transition probabilities remains a subject of major discrepancies amongst various theoretical calculations for many decades. Moreover, theoretical results are inconsistent with available laboratory results, as well as recent spacecraft measurements of Earth's airglow. This work presents new relativistic theoretical calculations of the transition probabilities of these two photoemission lines from neutral oxygen using the multi-configuration Dirac-Hartree-Fock method. Our calculations were performed in both length and velocity gauges in order to check for accuracy and consistency, with agreement to 8%. Whilst remaining a challenging computation, these results directly bear upon interpretations of plasma processes and ionization regimes in the universe.

  13. KEY COMPARISON: Final report on CCPR K1-a: Spectral irradiance from 250 nm to 2500 nm

    NASA Astrophysics Data System (ADS)

    Woolliams, Emma R.; Fox, Nigel P.; Cox, Maurice G.; Harris, Peter M.; Harrison, Neil J.

    2006-01-01

    The CCPR K1-a key comparison of spectral irradiance (from 250 nm to 2500 nm) was carried out to meet the requirements of the Mutual Recognition Arrangement by 13 participating national metrology institutes (NMIs). Because of the fragile nature of the tungsten halogen lamps used as comparison artefacts, the comparison was arranged as a star comparison with three lamps per participant. NPL (United Kingdom) piloted the comparison and, by measuring all lamps, provided a link between participants' measurements. The other participants were BNM-INM (France), CENAM (Mexico), CSIRO (Australia), HUT (Finland), IFA-CSIC (Spain), MSL-IRL (New Zealand), NIM (China), NIST (United States of America), NMIJ (Japan), NRC (Canada), PTB (Germany) and VNIIOFI (Russian Federation). Before the analysis was completed and the results known, the pilot discussed with each participant which lamp measurements should be included as representative of their comparison. As a consequence of this check, at least one measurement was excluded from one third of the lamps because of changes due to transportations. The comparison thus highlighted the difficulty regarding the availability of suitable transfer standards for the dissemination of spectral irradiance. The use of multiple lamps and multiple measurements ensured sufficient redundancy that all participants were adequately represented. In addition, during this pre-draft A phase all participants had the opportunity to review the uncertainty budgets and methods of all other participants. This new process helped to ensure that all submitted results and their associated uncertainties were evaluated in a consistent manner. The comparison was analysed using a model-based method which regarded each lamp as having a stable spectral irradiance and the measurements made by an NMI as systematically influenced by a factor that applies to all that NMI's measurements. The aim of the analysis was to estimate the systematic factor for each NMI. Across the

  14. Successful use of 1064 Nm Nd:YAG in conjunction with 2790 Nm YSGG ablative laser for traumatic scarring.

    PubMed

    Nijhawan, Rajiv I; Perez, Maritza I

    2014-01-01

    Patients with traumatic scarring often seek both aesthetic and functional improvement and can be a challenge to treat; however, advances in laser and light technologies have helped to treat many of these patients with rather minimally invasive approaches. A nineteen year old girl with Fitzpatrick skin type III skin presented for the evaluation of extensive traumatic scarring involving her right cheek, right chin, and right oral commissure that she sustained after a motor vehicle accident. We report the successful use of the 1064 nm Nd:YAG laser in conjunction with the ablative 2790 nm YSGG laser for the treatment of traumatic scarring in this patient. Our patient noted a notable improvement in the appearance of her traumatic scarring in addition to decrease in contracture of the right oral commissure. The treatment regimen described provides an effective option for clinicians to utilize when treating traumatic scarring and skin textural changes.

  15. Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Eibl, Matthias; Pfeiffer, Tom; Wieser, Wolfgang; Huber, Robert

    2016-03-01

    We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.

  16. A nanosecond regenerative Ti:Sapphire amplifier for the simultaneous generation of 940 nm and of 320 nm pulses

    NASA Astrophysics Data System (ADS)

    Talluto, Vincenzo; Blochowicz, Thomas; Walther, Thomas

    2016-05-01

    Narrowband cw radiation at 940 and 960 nm is used to seed a Nd:YAG-pumped regenerative Ti:Sapphire amplifier. A Pockels cell traps a slice of the seed radiation inside the amplifier cavity, generating two synchronized pulses and releasing them after amplification. The total pulse energy is as high as 9 mJ at a pulse duration of 6.5 ns and a Fourier-transform-limited bandwidth. The timing jitter between the two pulses at the two wavelengths is less than ±300 ps. The relative pulse energy can be controlled by the relative seed laser power. Up to 1 mJ pulse energy at 320 nm was achieved by third-harmonic generation.

  17. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.

    PubMed

    Miyazaki, Hideki T; Kurokawa, Yoichi

    2006-03-10

    We demonstrate controlled squeezing of visible light waves into nanometer-sized optical cavities. The light is perpendicularly confined in a few-nanometer-thick SiO2 film sandwiched between Au claddings in the form of surface plasmon polaritons and exhibits Fabry-Perot resonances in a longitudinal direction. As the thickness of the dielectric core is reduced, the plasmon wavelength becomes shorter; then a smaller cavity is realized. A dispersion relation down to a surface plasmon wavelength of 51 nm for a red light, which is less than 8% of the free-space wavelength, was experimentally observed. Any obvious breakdowns of the macroscopic electromagnetics based on continuous dielectric media were not disclosed for 3-nm-thick cores.

  18. Comparison of the photothermal effects of 808nm gold nanorod and indocyanine green solutions using an 805nm diode laser

    NASA Astrophysics Data System (ADS)

    Hasanjee, Aamr M.; Zhou, Feifan; West, Connor; Silk, Kegan; Doughty, Austin; Bahavar, Cody F.; Chen, Wei R.

    2016-03-01

    Non-invasive laser immunotherapy (NLIT) is a treatment method for metastatic cancer which combines noninvasive laser irradiation with immunologically modified nanostructures to ablate a primary tumor and induce a systemic anti-tumor response. To further expand the development of NLIT, two different photosensitizing agents were compared: gold nanorods (GNR) with an optical absorption peak of 808 nm and indocyanine green (ICG) with an optical absorption peak of ~800 nm. Various concentrations of GNR and ICG solutions were irradiated at different power densities using an 805 nm diode laser, and the temperature of the solutions was monitored during irradiation using a thermal camera. For comparison, dye balls made up of a 1:1 volume ratio of gel solution to GNR or ICG solution were placed in phantom gels and were then irradiated using the 805 nm diode laser to imitate the effect of laser irradiation on in vivo tumors. Non-invasive laser irradiation of GNR solution for 2 minutes resulted in a maximum increase in temperature by 31.8 °C. Additionally, similar irradiation of GNR solution dye ball within phantom gel for 10 minutes resulted in a maximum temperature increase of 8.2 °C. Comparatively, non-invasive laser irradiation of ICG solution for 2 minutes resulted in a maximum increase in temperature by 28.0 °C. Similar irradiation of ICG solution dye ball within phantom gel for 10 minutes yielded a maximum temperature increase of only 3.4 °C. Qualitatively, these studies showed that GNR solutions are more effective photosensitizing agents than ICG solution.

  19. Reactions of halogens with surfaces stimulated by VUV light

    NASA Astrophysics Data System (ADS)

    Ney, Verena; Schwentner, Nikolaus

    2006-08-01

    Reactions of halogens (Cl2,XeF2) with metals (Cu) and semiconductors (Si, GaAs) are investigated. The main focus is put on light induced reactions, stimulated by synchrotron radiation in the spectral range from 200 to 50 nm, in comparison with the dark reaction. Growth of reaction products on the surface and the desorption of volatile compounds are studied. A set-up with a quartz microbalance was adopted to determine reaction rates in situ. The rates are very sensitive to sample preparation. In the system Cu/Cl2, oxygen was found to especially slow down the reaction and much higher reaction rates than reported previously were observed for pure samples. Measurements with masks show the possibility of using desorption (also called light induced dry etching) to microstructure materials. Analysis of the irradiations with different wavelengths reveals a high spectral dependence of the reactions, which can therefore be controlled. The efficiency of the light induced non-selective reaction follows the gas phase absorption of the etching gases, whereas selective reactions, which are used to structure the materials, are induced in adsorbed halogens at different wavelengths. High efficiencies of single-photon events, due to chain reactions, with multiplication factors of the order of 105, are observed. The resulting pit size has to be contrasted with the intended spatial resolution.

  20. Improved CD control for 45-40 nm CMOS logic patterning: anticipation for 32-28 nm

    NASA Astrophysics Data System (ADS)

    Le Gratiet, Bertrand; Sundermann, Frank; Massin, Jean; Decaux, Marianne; Thivolle, Nicolas; Baron, Fabrice; Ostrovsky, Alain; Monget, Cedric; Chapon, Jean Damien; Blancquaert, Yoann; Dabertrand, Karen; Thevenon, Lionel; Bry, Benedicte; Cluet, Nicolas; Borot, Bertrand; Bingert, Raphael; Devoivre, Thierry; Gourard, Pascal; Babaud, Laurène; Buttgereit, Ute; Birkner, Robert; Joyner, Mark; Graitzer, Erez; Cohen, Avi

    2010-03-01

    Since 2008, we have been presenting some papers regarding CMOS 45nm logic gate patterning activity to reduce CD dispersion. After a global CD budget evaluation at SPIE08, we have been focusing on Intrafield CD corrections using Dose MapperTM. The story continues and since then we have pursued our intrafield characterisation and focus on ways to get Dose MapperTM dose recipe created before the first silicon is coming. In fact 40nm technology is already more demanding and we must be ready with integrated solutions for 32/28nm node. Global CD budget can be divided in Lot to Lot, Wafer to Wafer, Intra wafer and Intra field component. We won't talk here about run to run solutions which are put in place for Lot to Lot and Wafer to Wafer. We will emphasize on the intrafield / intrawafer process corrections and outline process compensation control and strategy. A lot of papers regarding intrafield CD compensation are available in the litterature but they do not necesserally fit logic manufacturing needs or possibilities. We need to put similar solutions in place which are comprehensive and flexible. How can we correct upfront an Etch chamber CD profile combined with a mask and scanner CD signature? How can we get intrafield map from random logic devices? This is what we will develop in this paper.

  1. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  2. Generation of Coherent 19- and 38-nm Radiation at a Free-Electron Laser Directly Seeded at 38 nm

    NASA Astrophysics Data System (ADS)

    Ackermann, S.; Azima, A.; Bajt, S.; Bödewadt, J.; Curbis, F.; Dachraoui, H.; Delsim-Hashemi, H.; Drescher, M.; Düsterer, S.; Faatz, B.; Felber, M.; Feldhaus, J.; Hass, E.; Hipp, U.; Honkavaara, K.; Ischebeck, R.; Khan, S.; Laarmann, T.; Lechner, C.; Maltezopoulos, Th.; Miltchev, V.; Mittenzwey, M.; Rehders, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Schlarb, H.; Schreiber, S.; Schroedter, L.; Schulz, M.; Schulz, S.; Tarkeshian, R.; Tischer, M.; Wacker, V.; Wieland, M.

    2013-09-01

    Initiating the gain process in a free-electron laser (FEL) from an external highly coherent source of radiation is a promising way to improve the pulse properties such as temporal coherence and synchronization performance in time-resolved pump-probe experiments at FEL facilities, but this so-called “seeding” suffers from the lack of adequate sources at short wavelengths. We report on the first successful seeding at a wavelength as short as 38.2 nm, resulting in GW-level, coherent FEL radiation pulses at this wavelength as well as significant second harmonic emission at 19.1 nm. The external seed pulses are about 1 order of magnitude shorter compared to previous experiments allowing an ultimate time resolution for the investigation of dynamic processes enabling breakthroughs in ultrafast science with FELs. The seeding pulse is the 21st harmonic of an 800-nm, 15-fs (rms) laser pulse generated in an argon medium. Methods for finding the overlap of seed pulses with electron bunches in spatial, longitudinal, and spectral dimensions are discussed and results are presented. The experiment was conducted at FLASH, the FEL user facility at DESY in Hamburg, Germany.

  3. Mechanistic comparison of pulse laser induced phase separation of particulates from cellulose paper at 213 nm and 532 nm

    NASA Astrophysics Data System (ADS)

    Arif, S.; Forster, M.; Bushuk, S.; Kouzmouk, A.; Tatur, H.; Batishche, S.; Kautek, W.

    2013-02-01

    The laser-induced phase separation of charcoal particles on additive-free cotton linters cellulose paper was investigated by electron and optical microscopy, colorimetry, and diffuse reflectance FT-IR. The fibre bundles were vaporised in depth of several 10 μm above destruction fluence thresholds using visible 532 nm radiation. This is in contrast to mid-ultraviolet 213 nm radiation, where only the top fibre bundles were modified and partially evaporated. The colorimetric lightness results generally represented the cleaning status, whereas the colorimetric yellowing data represented irreversible chemical and/or photochemical changes. Charcoal-contaminated paper treated with visible and mid-ultraviolet radiation exhibited yellowing, whereas uncontaminated did not. This suggests that the electron-rich plasma generated by the evaporation of the particles heats the adjacent substrate and also excludes oxygen. Mid-ultraviolet, in contrast to visible radiation, shows particle removal always accompanied by paper destruction. IR spectroscopy results suggest cross-linking by ether bonds near the destruction threshold, but do not prove the formation of oxidation products and double bonds as the basis of the yellowing. A "cleaning window" between the cleaning threshold (0.1 J/cm2) and the paper destruction threshold (2.9 J/cm2) with a pulse number of 2 is provided by visible 532 nm laser treatment.

  4. Writing time estimation of EB mask writer EBM-9000 for hp16nm/logic11nm node generation

    NASA Astrophysics Data System (ADS)

    Kamikubo, Takashi; Takekoshi, Hidekazu; Ogasawara, Munehiro; Yamada, Hirokazu; Hattori, Kiyoshi

    2014-10-01

    The scaling of semiconductor devices is slowing down because of the difficulty in establishing their functionality at the nano-size level and also because of the limitations in fabrications, mainly the delay of EUV lithography. While multigate devices (FinFET) are currently the main driver for scalability, other types of devices, such as 3D devices, are being realized to relax the scaling of the node. In lithography, double or multiple patterning using ArF immersion scanners is still a realistic solution offered for the hp16nm node fabrication. Other lithography candidates are those called NGL (Next Generation Lithography), such as DSA (Directed-Self-Assembling) or nanoimprint. In such situations, shot count for mask making by electron beam writers will not increase. Except for some layers, it is not increasing as previously predicted. On the other hand, there is another aspect that increases writing time. The exposure dose for mask writing is getting higher to meet tighter specifications of CD uniformity, in other words, reduce LER. To satisfy these requirements, a new electron beam mask writer, EBM-9000, has been developed for hp16nm/logic11nm generation. Electron optical system, which has the immersion lens system, was evolved from EBM-8000 to achieve higher current density of 800A/cm2. In this paper, recent shot count and dose trend are discussed. Also, writing time is estimated for the requirements in EBM-9000.

  5. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    PubMed Central

    Gupta, Sanjiv K.; Kumar, Ajai; Agarwal, Swati; Pandey, Paritosh

    2012-01-01

    Background: Hypertrophic scarring may be a cause of failure after transcanalicular laser dacryocystorhinostomy (DCR) surgery. This hypertrophic scarring results from tissue charring and excessive coagulation, which may be caused by the high laser energy. We have evaluated the use of low energy settings to prevent hypertrophic scarring, for a successful outcome. Aims: To perform and evaluate transcanalicular laser DCR using low energy 810 nm diode laser. Design: Interventional, non-comparative, case series. Materials and Methods: Patients with nasolacrimal duct obstruction and chronic dacryocystitis, who needed DCR, and were fit for surgery under local anesthesia, were recruited to undergo transcanalicular laser DCR using a 810 nm diode laser. The outcome was measured by the patency of the lacrimal passage, as indicated by the relief in the symptoms and the patency on syringing at the last follow-up. The surgical time and surgical complications were noted. Statistical Analysis Used: Descriptive analysis. Results: The study included 94 patients. The average age was 30.1 years (range 15 - 69 years). Seventy (74.4%) patients were female. Eight patients had failed external DCR. Per-operative patency of the passage was obtained in all the patients. Average surgical time was seven minutes (5 – 18 minutes). At the end of the study period of one year, a successful outcome was seen in 85 patients (90.5%). There were eight patients of previous failed DCR surgeries, and six of them achieved a cure at the end of follow-up. Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate. PMID:23439888

  6. 28nm node process optimization: a lithography centric view

    NASA Astrophysics Data System (ADS)

    Seltmann, Rolf

    2014-10-01

    Many experts claim that the 28nm technology node will be the most cost effective technology node forever. This results from primarily from the cost of manufacturing due to the fact that 28nm is the last true Single Patterning (SP) node. It is also affected by the dramatic increase of design costs and the limited shrink factor of the next following nodes. Thus, it is assumed that this technology still will be alive still for many years. To be cost competitive, high yields are mandatory. Meanwhile, leading edge foundries have optimized the yield of the 28nm node to such a level that that it is nearly exclusively defined by random defectivity. However, it was a long way to go to come to that level. In my talk I will concentrate on the contribution of lithography to this yield learning curve. I will choose a critical metal patterning application. I will show what was needed to optimize the process window to a level beyond the usual OPC model work that was common on previous nodes. Reducing the process (in particular focus) variability is a complementary need. It will be shown which improvements were needed in tooling, process control and design-mask-wafer interaction to remove all systematic yield detractors. Over the last couple of years new scanner platforms were introduced that were targeted for both better productivity and better parametric performance. But this was not a clear run-path. It needed some extra affords of the tool suppliers together with the Fab to bring the tool variability down to the necessary level. Another important topic to reduce variability is the interaction of wafer none-planarity and lithography optimization. Having an accurate knowledge of within die topography is essential for optimum patterning. By completing both the variability reduction work and the process window enhancement work we were able to transfer the original marginal process budget to a robust positive budget and thus ensuring high yield and low costs.

  7. EUV mask blank: defect detection at 100 nm

    NASA Astrophysics Data System (ADS)

    Hue, Jean; Quesnel, Etienne; Pelle, Catherine; Muffato, Viviane; Carini, G.; Favier, Sylvie; Besson, Pascal

    2003-06-01

    The characteristics of a defect counting tool, COMNET< based on scattering light measurement, is presented. This prototype supports the development of defect-free EUV blanks. Thanks to new improvements, it becomes possible to detect PSL particles having a diameter as low as 100 nm, with a video CCD camera, on silicon substrates or on EUV blanks. To reach this sensitivity, one of the enhancements consists in a laser irradiation close to 65°. The present configuration and the use of a CCD camera, with a variable exposure time, should lead to the detection of 80 nm PSL particles deposited on silicon substrate. This extrapolation is based on experimental results and on a simple model. To detect 100 nm particle and smaller particles, it is essential to reduce the level of stray light and to increase the signal to noise ratio. In our application, the stray light essentially comes from three sources: the noise induced by the roughness of the sample, the Rayleigh scattering of the atmosphere, and the stray light in the room. The restrictions induced by these phenomena are described in some detail. All the improvements are not only available for the characterization of silicon substrates but also for transparent blank substrates and for EUV mask blanks. The additional noise induced by the tranparent substrate is analyzed. The defects, whatever the compoent sizes and the component shapes can be detected. A cross characterization achieved with a commercial tool on silicon substate is reported. Counting measurements performed on EUV blanks are shown. Furthermore, a more explicit definition of added defects is proposed.

  8. Quasi-cw tissue transillumination at 1064 nm

    NASA Astrophysics Data System (ADS)

    Bernini, Umberto; Ramaglia, Antonio; Russo, Paolo

    1997-08-01

    An extended series of transillumination experiments has been performed in vitro on animal samples (bovine muscle, up to 30- mm-thick; chicken wing and quail femur, 12-mm-thick) and in vivo on the human hand (thickness, about 20 mm), using a pulsed light source (7 ns, about 10-4 J/pulse, 10 Hz rep rate) from a collimated (1.2 m) Nd:YAG laser beam (1064 nm). A PIN photodiode connected to a digital oscilloscope was used to measure the maximum intensity of the beam pulse transmitted through the sample (i.e., no temporal discrimination of the output signal was attempted) while it was scanned across the source/detector assembly. One dimensional scans were performed on bovine muscle samples in which thin metallic test objects were embedded, in order to study the spatial resolution of the technique (for bovine muscle at 1064 nm, absorption and reduced scattering coefficients are reported to be about 1 cm-1 and 3 cm-1, respectively). The measured spatial resolution was as good as 3.6 mm in 30 mm of tissue thickness. In the two-dimensional scans of the chicken and quail sample, fat and bone tissues can be easily seen with good resolution, whereas imaging of the middle finger of a human hand shows cartilaginoid and bone tissue with 1 - 2 mm resolution. Hence, this simple collimated quasi-cw technique gives significantly better results for tissue imaging than pure cw transillumination. Use of (pulsed) light above 1000 nm and a high energy content per pulse are supposed to explain the positive experimental findings.

  9. A possible candidate to be classified as an autocatalysis-driven clock reaction: kinetics of the pentathionate-iodate reaction.

    PubMed

    Xu, Li; Horváth, Attila K

    2014-08-14

    The pentathionate-iodate reaction has been investigated by spectrophotometrically monitoring the formation of the total amount of iodine at 468 nm in the presence of phosphoric acid/dihydrogen phosphate buffer. We noticed that iodine forms only after a fairly long time lag, and the inverse of time necessary to produce a certain amount of iodine is linearly proportional to the initial concentration of iodate ion and the square of the hydrogen ion concentration, while depending complexly on the concentration of substrate pentathionate. This reaction can therefore be treated as a clock reaction but differs from the original Landolt reaction in the sense that substrate pentathionate and the clock species iodine coexist for a relatively long time--due to their relatively slow direct reaction--depending on the experimental circumstances. Furthermore, we also provided experimental evidence that iodide ion acts as an autocatalyst of the system. A 14-step kinetic model is proposed in which the mechanisms of the pentathionate-iodine, bisulfite-iodate, and the well-known Dushman reactions are combined. A thorough analysis revealed that the direct pentathionate-iodate reaction plays a role only to produce iodide ions via a finite sequence of reactions, and once its concentration reaches a certain level, the reaction is almost exclusively governed by the pentathionate-iodine and the Dushman reactions. As expected, a strong catalytic effect of the buffer composition is also found that can readily be explained by its well-known catalytic influence on the original Dushman reaction. PMID:25068832

  10. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  11. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  12. Oscillating Chemical Reactions

    ERIC Educational Resources Information Center

    Hawkins, M. D.; And Others

    1975-01-01

    Describes several oscillating chemical reactions which can be used in undergraduate chemistry laboratories. In one such reaction, ferroin oscillates from red (reducing solution) to blue (oxidizing solution) for about an hour at a frequency which can readily be shown to depend on such factors as the temperature, type of solvent, and concentration…

  13. REUSABLE REACTION VESSEL

    DOEpatents

    Soine, T.S.

    1963-02-26

    This patent shows a reusable reaction vessel for such high temperature reactions as the reduction of actinide metal chlorides by calcium metal. The vessel consists of an outer metal shell, an inner container of refractory material such as sintered magnesia, and between these, a bed of loose refractory material impregnated with thermally conductive inorganic salts. (AEC)

  14. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  15. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  16. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  17. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  18. nm structures produced by direct laser writing.

    PubMed

    Pavel, E; Jinga, S; Andronescu, E; Vasile, B S; Rotiu, E; Ionescu, L; Mazilu, C

    2011-01-14

    Here we present a new approach to overcome the optical diffraction limit by using novel materials. In the paper, we report experimental results obtained by high-resolution transmission electron microscopy (HRTEM) and optical absorption spectroscopy, for a fluorescent photosensitive glass-ceramic containing rare-earth ions such as samarium (Sm). Using a home built dynamic tester, with a low power laser, we recorded nanostructures having 5 nm line widths. In the line structure, measurements reveal the presence of silver nanocrystals with few nanometre sizes. HRTEM shows that there is a random orientation of the nanocrystals. A writing mechanism with three steps is proposed.

  19. Low-resistivity 10 nm diameter magnetic sensors.

    PubMed

    Maqableh, Mazin M; Huang, Xiaobo; Sung, Sang-Yeob; Reddy, K Sai Madhukar; Norby, Gregory; Victora, R H; Stadler, Bethanie J H

    2012-08-01

    Resistivities of 5.4 μΩ·cm were measured in 10-nm-diameter metallic wires. Low resistance is important for interconnections of the future to prevent heating, electromigration, high power consumption, and long RC time constants. To demonstrate application of these wires, Co/Cu/Co magnetic sensors were synthesized with 20-30 Ω and 19% magnetoresistance. Compared to conventional lithographically produced magnetic tunnel junction sensors, these structures offer facile fabrication and over 2 orders of magnitude lower resistances due to smooth sidewalls from in situ templated chemical growth.

  20. Propagation study of 850nm/58 GHz hybrid municipal system

    NASA Astrophysics Data System (ADS)

    Wilfert, Otakar; Kvicera, Vaclav; Kolka, Zdenek; Grabner, Martin; Fiser, Ondrej

    2010-08-01

    The paper deals with the results of a propagation study on a fixed hybrid Free Space Optical (FSO) and Radio Frequency (RF) system operating in 850 nm / 58 GHz bands. Propagation models for the availability assessment of both FSO and RF links were examined against a comprehensive database of meteorological attenuation events. The influences of individual hydrometeors were analyzed and the availability performances of the simulated FSO/MMW hybrid link were evaluated. The study pointed out that visibility and rainfall measurements can be only used for the raw assessment of availability performance due to the concurrent occurrence of different attenuation effect.

  1. Ocular safety limits for 1030nm femtosecond laser cataract surgery

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel V.

    2013-03-01

    Application of femtosecond lasers to cataract surgery has added unprecedented precision and reproducibility but ocular safety limits for the procedure are not well-quantified. We present an analysis of safety during laser cataract surgery considering scanned patterns, reduced blood perfusion, and light scattering on residual bubbles formed during laser cutting. Experimental results for continuous-wave 1030 nm irradiation of the retina in rabbits are used to calibrate damage threshold temperatures and perfusion rate for our computational model of ocular heating. Using conservative estimates for each safety factor, we compute the limits of the laser settings for cataract surgery that optimize procedure speed within the limits of retinal safety.

  2. EUV lithography optics for sub-9nm resolution

    NASA Astrophysics Data System (ADS)

    Kneer, Bernhard; Migura, Sascha; Kaiser, Winfried; Neumann, Jens Timo; van Schoot, Jan

    2015-03-01

    EUV lithography for resolution below 9 nm requires the numerical aperture of the projection optics to be significantly larger than 0.45. A configuration of 4x magnification, full field size and 6'' reticle is not feasible anymore. The increased chief ray angle and higher NA at reticle lead to non-acceptable shadowing effects, which can only be controlled by increasing the magnification, hence reducing the system productivity. We demonstrate that the best compromise in imaging, productivity and field split is a so-called anamorphic magnification and a half field of 26 x 16.5 mm². We discuss the optical solutions for anamorphic high-NA lithography.

  3. YSGG 2790-nm superficial ablative and fractional ablative laser treatment.

    PubMed

    Smith, Kevin C; Schachter, G Daniel

    2011-05-01

    The 2790-nm wavelength YSGG laser was introduced for aesthetic purposes under the trade name Pearl by Cutera in 2007. In clinical use, the Pearl superficial resurfacing laser has proved effective and well tolerated for the correction of superficial brown epidermal dyschromia and superficial fine lines and scars, and the Pearl Fractional laser produces excellent improvement in both dyschromia and improvement of deeper lines and moderately deep acne scarring. The two laser treatments can be combined in a single treatment session on different parts of the face or on the entire face, depending on patient needs and priorities. PMID:21763987

  4. Spectroscopy of Pluto at six longitudes, 380-930 nm

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Pinilla-Alonso, Noemi; Lorenzi, Vania; Grundy, Will M.; Licandro, Javier; Binzel, Richard P.

    2014-11-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution ~450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical pathlength through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 µm) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical pathlength through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 µm. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto’s spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto’s surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  5. Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Pinilla-Alonso, N.; Lorenzi, V.; Grundy, William; Licandro, J.; Binzel, R. P.

    2014-01-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  6. High bit rate germanium single photon detectors for 1310nm

    NASA Astrophysics Data System (ADS)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  7. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  8. Biochemical reaction engineering for redox reactions.

    PubMed

    Wandrey, Christian

    2004-01-01

    Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.

  9. Efficient 750-nm LED-pumped Nd:YAG laser.

    PubMed

    Huang, Kuan-Yan; Su, Cheng-Kuo; Lin, Meng-Wei; Chiu, Yu-Chung; Huang, Yen-Chieh

    2016-05-30

    We report an Nd:YAG laser pumped by light emission diodes (LEDs) at 750 nm. With 1% output coupling from a linear cavity containing a 2-cm long Nd:YAG crystal, the laser generated 37.5 μJ pulse energy at 1064 nm with M2 = 1.1 when pumped by 2.73-mJ LED energy in a 1-ms pulse at a 10 Hz rate. The measured optical and slope efficiencies for this linear-cavity laser are 1.36, and 9%, respectively. With 1 and 5% output couplings from a Z-cavity containing the same laser crystal, the lasers generated 346 and 288 μJ pulse energy with an optical efficiency of 3.4 and 2.8% and slope efficiency of 6.6 and 14%, respectively, for the same 1-ms pump pulse repeating at a 10 Hz rate. At the highest output from the Z-cavity, the measured M2 for the beam is 3.6. PMID:27410125

  10. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  11. 1125-nm quantum dot laser for tonsil thermal therapy

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen

    2011-03-01

    Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

  12. 650 nm Laser stimulated dating from Side Antique Theatre, Turkey

    NASA Astrophysics Data System (ADS)

    Doğan, M.; Meriç, N.

    2014-03-01

    Samples were taken from the archeological excavation site, which was at the backs of the Side Antique Theatre. Samples were taken from under the base rock in this area. Polymineral fine grains were examined to determine the ages of the sediments. Samples gathered from the Side Antique Theatre were investigated through using the SAR method. Firstly, one part of the samples were evaluated by using conventional IRSL reading head model of (ELSEC-9010) which is infrared (880±80 nm) stimulation source with Schott BG39 filter. The IRSL age dating with feldspar minerals, gives a number of overestimated or underestimated age values as a result. A new reading head was proposed with the following configuration attachments for overestimation of equivalent dose rates. Measurements were done with this newly designed red laser stimulating reading head which works with Elsec 9010 OSL age dating system. SAR measurements were performed by (650±10 nm) red laser light source with two Schott BG3 filters. With usage of the new designed reading head; closer results were obtained in comparision with the Antique Theatre's expected age range. Fading rates were taken into consideration and these corrections were also handled for true age results.

  13. Advanced metrology for the 14 nm node double patterning lithography

    NASA Astrophysics Data System (ADS)

    Carau, D.; Bouyssou, R.; Dezauzier, C.; Besacier, M.; Gourgon, C.

    2014-05-01

    In microelectronics the two crucial parameters for the lithography step are the critical dimension, which is the width of the smallest printable pattern, and the misalignment error of the reticle, called overlay. For the 14 nm node, the limit of scanner resolution can be overcome by the double patterning technique, which requires a maximum overlay error between the two reticles of 3 nm [1]. The current approach in the measurements of critical dimension and overlay is to treat them separately, but it has become much more complex in the double patterning context, since they are no longer independent. In this paper, a strategy of a common measurement is developed. The aim of the strategy is to measure simultaneously overlay and critical dimension in the metal level double patterning grating before the second etch process. The scatterometry technique is well known for critical dimension measurement. This study demonstrates that the overlay between the two gratings can also be deduced. Thanks to this original scatterometry-based method, it becomes possible to provide information on the lithography step quality before the second etch process; therefore the lithography can be reworked if it is necessary.

  14. 980-nm diode laser application in electroneurophysiology: a LEP study

    NASA Astrophysics Data System (ADS)

    Guelsoy, Murat; Durak, Kadir; Kurt, Adnan; Karamursel, Sacit; Cilesiz, Inci F.

    2001-01-01

    The aim of the present study was to test the feasibility of the 980 nm diode laser for LEP (Laser Evoked Potentials) studies. Human subjects were exposed to laser stimulation. After the pain thresholds of the subjects were determined with respect to laser power level, 1.5 times the threshold value was applied and laser evoked potentials were recorded using standard EEG techniques. LEPs were obtained due to right hand stimulation. Latency and amplitude values of LEPs were found in accordance with those reported in the literature. Statistical evaluation showed differences in the LEPs at C3 and C4 locations as a function of the sex of the subjects. The power levels used in the present study was three times less than the levels applied for Nd: YAG laser in the literature. The evoked potential parameters measured were in consistence with the data reported by earlier researchers. Moreover, it was found that, LEPs due to 980 nm wavelength irradiation can be recorded by applying less energy when compared to Nd:YAG laser. This result indicated the potential of diode laser for LEP studies.

  15. Fabrication of 70nm split ring resonators by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Sharp, Graham J.; Khokhar, Ali Z.; Johnson, Nigel P.

    2012-05-01

    We report on the fabrication of 70 nm wide, high resolution rectangular U-shaped split ring resonators (SRRs) using nanoimprint lithography (NIL). The fabrication method for the nanoimprint stamp does not require dry etching. The stamp is used to pattern SRRs in a thin PMMA layer followed by metal deposition and lift-off. Nanoimprinting in this way allows high resolution patterns with a minimum feature size of 20 nm. This fabrication technique yields a much higher throughput than conventional e-beam lithography and each stamp can be used numerous times to imprint patterns. Reflectance measurements of fabricated aluminium SRRs on silicon substrates show a so-called an LC resonance peak in the visible spectrum under transverse electric polarisation. Fabricating the SRRs by NIL rather than electron beam lithography allows them to be scaled to smaller dimensions without any significant loss in resolution, partly because pattern expansion caused by backscattered electrons and the proximity effect are not present with NIL. This in turn helps to shift the magnetic response to short wavelengths while still retaining a distinct LC peak.

  16. 946 nm Diode Pumped Laser Produces 100mJ

    NASA Technical Reports Server (NTRS)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  17. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  18. Holistic overlay control for multi-patterning process layers at the 10nm and 7nm nodes

    NASA Astrophysics Data System (ADS)

    Verstappen, Leon; Mos, Evert; Wardenier, Peter; Megens, Henry; Schmitt-Weaver, Emil; Bhattacharyya, Kaustuve; Adam, Omer; Grzela, Grzegorz; van Heijst, Joost; Willems, Lotte; Wildenberg, Jochem; Ignatova, Velislava; Chen, Albert; Elich, Frank; Rajasekharan, Bijoy; Vergaij-Huizer, Lydia; Lewis, Brian; Kea, Marc; Mulkens, Jan

    2016-03-01

    Multi-patterning lithography at the 10-nm and 7-nm nodes is driving the allowed overlay error down to extreme low values. Advanced high order overlay correction schemes are needed to control the process variability. Additionally the increase of the number of split layers results in an exponential increase of metrology complexity of the total overlay and alignment tree. At the same time, the process stack includes more hard-mask steps and becomes more and more complex, with as consequence that the setup and verification of the overlay metrology recipe becomes more critical. All of the above require a holistic approach that addresses total overlay optimization from process design to process setup and control in volume manufacturing. In this paper we will present the holistic overlay control flow designed for 10-nm and 7-nm nodes and illustrate the achievable ultimate overlay performance for a logic and DRAM use case. As figure 1 illustrates we will explain the details of the steps in the holistic flow. Overlay accuracy is the driver for target design and metrology tool optimization like wavelength and polarization. We will show that it is essential to include processing effects like etching and CMP which can result in a physical asymmetry of the bottom grating of diffraction based overlay targets. We will introduce a new method to create a reference overlay map, based on metrology data using multiple wavelengths and polarization settings. A similar approach is developed for the wafer alignment step. The overlay fingerprint correction using linear or high order correction per exposure (CPE) has a large amount of parameters. It is critical to balance the metrology noise with the ultimate correction model and the related metrology sampling scheme. Similar approach is needed for the wafer align step. Both for overlay control as well as alignment we have developed methods which include efficient use of metrology time, available for an in the litho-cluster integrated

  19. A Photo-Triggered Traceless Staudinger-Bertozzi Ligation Reaction.

    PubMed

    Hu, Peng; Feng, Tianshi; Yeung, Chi-Chung; Koo, Chi-Kin; Lau, Kai-Chung; Lam, Michael H W

    2016-08-01

    The use of light to control the course of a chemical/biochemical reaction is an attractive idea because of its ease of administration with high precision and fine spatial resolution. Staudinger ligation is one of the commonly adopted conjugation processes that involve a spontaneous reaction between azides and arylphosphines to form iminophosphoranes, which further hydrolyze to give stable amides. We designed an anthracenylmethyl diphenylphosphinothioester (1) that showed promising Staudinger ligation reactivity upon photo-excitation. Broadband photolysis at 360-400 nm in aqueous organic solvents induced heterolytic cleavage of its anthracenylmethyl-phosphorus bond, releasing a diphenylphosphinothioester (2) as an efficient traceless Staudinger-Bertozzi ligation reagent. The quantum yield of such a photo-induced heterolytic bond-cleavage at the optimal wavelength of photolysis (376 nm) at room temperature is ≥0.07. This work demonstrated the feasibility of photocaging arylphosphines to realize the photo-triggering of the Staudinger ligation reaction.

  20. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  1. A kinetics investigation of several reactions involving chlorine containing compounds

    NASA Technical Reports Server (NTRS)

    Davis, D. D.

    1978-01-01

    The technique of flash photolysis-resonance fluorescence was utilized to study nine reactions of stratospheric importance. The tropospheric degradation reactions of seven halogenated hydrocarbons were studied to assess their possible influx into the stratosphere. There are reactions of either Cl, OH, or O(3P) species with hydrogenated species, O3 or chlorinated compounds. Apart from the kinetic measurements, the quantum yield for the production of O(1D) from O3 in the crucial wavelength region of 293 to 316.5 nm was studied by utilizing a narrow wavelength laser as the photolysis source. The product formation was monitored by measuring the fluorescence of NO2 formed through O(1D) reaction with N2O followed by NO reaction with O3 to give NO2.

  2. Efficient generation of 1096 nm and 1572 nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal

    NASA Astrophysics Data System (ADS)

    Huang, H. T.; He, J. L.; Liu, S. D.; Yang, J. F.; Zhang, B. T.; Liu, F. Q.

    2011-04-01

    The simultaneous stimulated Raman scattering (SRS) and optical parametric oscillation (OPO) for the 1064 nm radiation were realized in one KTP crystal for the first time. At an incident diode laser power of 8.6 W, the maximum average output powers at 1096 nm and 1572 nm were 1.1 W and 0.36 W, respectively. The conversion efficiency to Stokes with respect to the incident diode power was as high as 12.8%. The corresponding minimum pulse widths at 1096 nm and 1572 nm were 2.8 and 1.1 ns, respectively.

  3. CCPR-S1 Supplementary comparison for spectral radiance in the range of 220 nm to 2500 nm

    NASA Astrophysics Data System (ADS)

    Khlevnoy, Boris; Sapritsky, Victor; Rougie, Bernard; Gibson, Charles; Yoon, Howard; Gaertner, Arnold; Taubert, Dieter; Hartmann, Juergen

    2009-08-01

    In 1997, the Consultative Committee for Photometry and Radiometry (CCPR) initiated a supplementary comparison of spectral radiance in the wavelength range from 220 nm to 2500 nm (CCPR-S1) using tungsten strip-filament lamps as transfer standards. Five national metrology institutes (NMIs) took part in the comparison: BNM/INM (France), NIST (USA), NRC (Canada), PTB (Germany) and VNIIOFI (Russia), with VNIIOFI as the pilot laboratory. Each NMI provided the transfer lamps that were used to transfer their measurements to the pilot laboratory. The intercomparison sequence began with the participant measurements, then the pilot measurements, followed by a second set of measurements by the participant laboratory. The measurements were carried out from 1998 to 2002, with the final report completed in 2008. This paper presents the descriptions of measurement facilities and uncertainties of the participants, as well as the comparison results that were analysed in accordance with the Guidelines for CCPR Comparisons Report Preparation, and a re-evaluation of the results taking into account the instability of some of the transfer lamps. Excluding a few wavelengths, all participants agree with each other within ±1.5%. The disagreement decreases to approximately ±1.0% when the anomalous data are excluded from the analysis.

  4. Isotope shift study in two visible lines: 500.6 nm and 520.3 nm of Pb I

    NASA Astrophysics Data System (ADS)

    Wasowicz, T. J.

    2005-06-01

    The isotope shift (IS) in two visible lines of neutral lead involving transitions 6s2 6p7s 1P1-6s2 6p2 1S0 (λ5OO.6 nm) and 6s2 6p8s 3P1-6s2 6p2 1S0 (λ520.3nm) have been measured using a Fabry-Perot interferometer. The isotope shifts between even isotopic pairs were found to be: v208-v206=73.3+/-0.9 mK and v208-v204=121.4+/-1.1 mK for 6p7s configuration and v208-v206=70.1+/-0.6 mK and v208-v204=135.7+/-0.8 mK for 6p8s configuration. The displacements of the centers of gravity of isotope 207 with respect to isotope 208 were determined to be v208-v207 CG=46.4+/-1.2 mK and v208-v207 CG=44.9+/-1.1 mK for 6p7s and 6p8s configurations, respectively.

  5. Final report on EUROMET PR-K2.b: Comparison on spectral responsivity (300 nm to 1000 nm)

    NASA Astrophysics Data System (ADS)

    Campos, Joaquin; Pons, Alicia; Blattner, Peter; Dubard, Jimmy; Bastie, Jean; Litwiniuk, Lukasz; Pietrzykowski, Jerzy; Smid, Marek; Mihai, Sim; Bos, Daniel; Gran, Jarle; Bazkir, Ozcan; Fäldt, Anne A.

    2013-01-01

    This report contains the results of the regional comparison EUROMET PR-K2.b (registered in the KCDB under the identifier EURAMET.PR-K2.b). Ten laboratories took part in it, including the pilot. In general the results are consistent, with a few exceptions as explained in the report. The comparison gives international linkage in spectral responsivity from 300 nm to 1000 nm to seven European laboratories: Bundesamt für Metrologie und Akkreditierung (METAS), Norwegian Metrology and Accreditation Service (Justervesenet), Central Office of Measures (GUM), National Institute of Metrology (INM-Romania), Optics Laboratory of TUBITAK-UME (UME), Czech Metrology Institute (CMI) and Swedish National Testing and Research Institute (SP). Three laboratories provided the link to CCPR-K2.b: Bureau National de Metrologie (BNM-INM/CNAM), Instituto de Optica 'Daza de Valdés' (IO-CSIC, acting as pilot) and NMi Van Swinden Laboratorium BV (NMi-VSL). Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  7. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons. PMID:25245394

  8. Contact reactions to food.

    PubMed

    Killig, Claudia; Werfel, Thomas

    2008-05-01

    Cutaneous adverse reactions to foods, spices, and food additives can occur both in occupational and nonoccupational settings in those who grow, handle, prepare, or cook food. Because spices are also utilized in cosmetics and perfumes, other exposures are encountered that can result in adverse cutaneous reactions. This article describes the reaction patterns that can occur upon contact with foods, including irritant contact dermatitis and allergic contact dermatitis. The ingestion of culprit foods by sensitized individuals can provoke a generalized eczematous rash, referred to as systemic contact dermatitis. Other contact reactions to food include contact urticaria and protein contact dermatitis provoked by high-molecular-weight food proteins often encountered in patients with atopic dermatitis. Phototoxic and photoallergic contact dermatitis are also considered.

  9. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  10. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.

  11. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  12. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  13. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770

  14. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  15. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  16. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  17. Total dose responses and reliability issues of 65 nm NMOSFETs

    NASA Astrophysics Data System (ADS)

    Dezhao, Yu; Qiwen, Zheng; Jiangwei, Cui; Hang, Zhou; Xuefeng, Yu; Qi, Guo

    2016-06-01

    In this paper, total dose responses and reliability issues of MOSFETs fabricated by 65 nm CMOS technology were examined. “Radiation-induced narrow channel effect” is observed in a narrow channel device. Similar to total dose responses of NMOSFETs, narrow channel NMOSFEs have larger hot-carrier-induced degradation than wide channel devices. Step Time-Dependent Dielectric Breakdown (TDDB) stresses are applied, and narrow channel devices have higher breakdown voltage than wide channel devices, which agree with “weakest link” theory of TDDB. Experimental results show that linear current, transconductance, saturated drain current and subthreshold swing are superposed degenerated by total dose irradiation and reliability issues, which may result in different lifetime from that considering total dose irradiation reliability issues separately. Project supported by “Light of West China” Program of CAS (No. XBBS201219).

  18. Megasonic cleaning: possible solutions for 22nm node and beyond

    NASA Astrophysics Data System (ADS)

    Shende, Hrishi; Singh, Sherjang; Baugh, James; Mann, Raunak; Dietze, Uwe; Dress, Peter

    2011-11-01

    Megasonic energy transfer to the photomask surface is indirectly controlled by process parameters that provide an effective handle to physical force distribution on the photomask surface. A better understanding of the influence of these parameters on the physical force distribution and their effect on pattern damage of fragile mask features can help optimize megasonic energy transfer as well as assist in extending this cleaning technology beyond the 22nm node. In this paper we have specifically studied the effect of higher megasonic frequencies (3 & 4MHz) and media gasification on pattern damage; the effect of cleaning chemistry, media volume flow rate, process time, and nozzle distance to the mask surface during the dispense is also discussed. Megasonic energy characterization is performed by measuring the acoustic energy as well as cavitation created by megasonic energy through sonoluminescence measurements.

  19. Fluorescence microscopy with 6 nm resolution on DNA origami.

    PubMed

    Raab, Mario; Schmied, Jürgen J; Jusuk, Ija; Forthmann, Carsten; Tinnefeld, Philip

    2014-08-25

    Resolution of emerging superresolution microscopy is commonly characterized by the width of a point-spread-function or by the localization accuracy of single molecules. In contrast, resolution is defined as the ability to separate two objects. Recently, DNA origamis have been proven as valuable scaffold for self-assembled nanorulers in superresolution microscopy. Here, we use DNA origami nanorulers to overcome the discrepancy of localizing single objects and separating two objects by resolving two docking sites at distances of 18, 12, and 6 nm by using the superresolution technique DNA PAINT(point accumulation for imaging in nanoscale topography). For the smallest distances, we reveal the influence of localization noise on the yield of resolvable structures that we rationalize by Monte Carlo simulations. PMID:24895173

  20. Wind Measurements with a 355 nm Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    A Doppler lidar system based on the molecular double edge technique is described. The system is mounted in a modified van to allow deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45cm aperture telescope and a matching azimuth-over-elevation scanner to allow full sky access. Validated atmospheric wind profiles have been measured from 1.8 km to 35 km with a 178 m vertical resolution. The range dependent rms deviation of the horizontal wind speed is 0.4 - 6 m/s. The results of wind speed and direction are in good agreement with balloon sonde wind measurements made simultaneously at the same location.

  1. Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.

    SciTech Connect

    McCord, Samuel Adam

    2005-12-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

  2. Fluorescence microscopy with 6 nm resolution on DNA origami.

    PubMed

    Raab, Mario; Schmied, Jürgen J; Jusuk, Ija; Forthmann, Carsten; Tinnefeld, Philip

    2014-08-25

    Resolution of emerging superresolution microscopy is commonly characterized by the width of a point-spread-function or by the localization accuracy of single molecules. In contrast, resolution is defined as the ability to separate two objects. Recently, DNA origamis have been proven as valuable scaffold for self-assembled nanorulers in superresolution microscopy. Here, we use DNA origami nanorulers to overcome the discrepancy of localizing single objects and separating two objects by resolving two docking sites at distances of 18, 12, and 6 nm by using the superresolution technique DNA PAINT(point accumulation for imaging in nanoscale topography). For the smallest distances, we reveal the influence of localization noise on the yield of resolvable structures that we rationalize by Monte Carlo simulations.

  3. NM-Scale Anatomy of an Entire Stardust Carrot Track

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  4. Multilayer reticles: advantages and challenges for 28nm chip making

    NASA Astrophysics Data System (ADS)

    Hotzel, Arthur; Seltmann, Rolf; Busch, Jens; Cotte, Eric

    2011-03-01

    Chip manufacturing with multilayer reticles offers the possibility to reduce reticle cost at the expense of scanner throughput, and is therefore an attractive option for small-volume production and test chips. Since 2010, GLOBALFOUNDRIES Fab 1 uses this option for the 28nm IP shuttles and test chips offered to their customers for development and advance testing of their products. This paper discusses the advantages and challenges of this approach and the practical experience gained during implementation. One issue that must be considered is the influence of the small image field and the asymmetric reticle illumination on the lithographic key parameters, namely layer to layer overlay. Theoretical considerations and experimental data concerning the effects of lens distortion, lens heating, and reticle heating on overlay performance are presented, and concepts to address the specific challenges of multilayer reticles for high-end chip production are discussed.

  5. Broadband terahertz generation and detection at 10 nm scale.

    PubMed

    Ma, Yanjun; Huang, Mengchen; Ryu, Sangwoo; Bark, Chung Wung; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    2013-06-12

    Terahertz (0.1-30 THz) radiation reveals a wealth of information that is relevant for material, biological, and medical sciences with applications that span chemical sensing, high-speed electronics, and coherent control of semiconductor quantum bits. To date, there have been no methods capable of controlling terahertz (THz) radiation at molecular scales. Here we report both generation and detection of broadband terahertz field from 10 nm scale oxide nanojunctions. Frequency components of ultrafast optical radiation are mixed at these nanojunctions, producing broadband THz emission. These same devices detect THz electric fields with comparable spatial resolution. This unprecedented control, on a scale of 4 orders of magnitude smaller than the diffraction limit, creates a pathway toward THz-bandwidth spectroscopy and control of individual nanoparticles and molecules.

  6. Search for solar neutrons using NM-64 equipment

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Reguerin, A.; Palenque, E.; Taquichiri, M. A.; Wada, M.; Inoue, A.; Takahashi, K.

    1985-01-01

    Two years (1980 to 1982) neutron monitor data from the Chacaltaya (geographic coordinates: N16.32 deg W68. 15 deg; cutoff rigidity: 13.1 GV; altitude: 5,300 m a.s.l.) station has been scanned; the sampling time of the 12NM-64 neutron monitor is 5 min. The nucleonic component increases have been correlated with 66 hard X-, gamma rays satellite data from solar origin, as reported by several groups. Typical neutron monitor time profiles of the events are presented. Chree-analysis was performed discriminating the events according to its solar coordinates. Ground data from solar limb locii are more enhanced at the time of the onset than other geometrically visible flares. Chree histograms of neutron monitor output profiles are also presented from geometrically invisible events from the Chacaltaya station.

  7. Photolithography reaches 6 nm half-pitch using EUV light

    NASA Astrophysics Data System (ADS)

    Fan, Daniel; Ekinci, Yasin

    2016-03-01

    EUV interference lithography records the interference pattern of two diffracted, coherent light beams, where the pattern resolution is half the diffraction grating resolution. The fabrication of diffraction grating masks by e-beam lithography is restricted by the electron proximity effect and pattern transfer limitations into diffraction efficient materials. By patterning HSQ lines at a relaxed pitch to avoid the electron proximity effect, depositing conformal iridium via atomic layer deposition, followed by ion milling the top and bottom iridium and HSQ removal, we fabricated iridium diffraction gratings at double the line spacing of the original HSQ lines. 6 nm half-pitch patterns were achieved using these masks marking a new record resolution in photolithography.

  8. Fabrication of sub-15 nm aluminum wires by controlled etching

    NASA Astrophysics Data System (ADS)

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; McQueen, T. M.; Marković, N.

    2014-04-01

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

  9. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  10. Lasing at 300 nm and below: Optical challenges and perspectives

    SciTech Connect

    Garzella, D.; Couprie, M.E. |; Billardon, M.

    1995-12-31

    The FEL experiment in the visible and near UV on the Super ACO storage ring has given, since 1989, important informations on the SRFEL dynamics and, furthermore, a very good beam stability has been achieved. In addition, the operation at 350 nm with this good stability and a long beam lifetime allowed us to perform the first user experiment in biology and to start with a campaign for using the laser as photons source for experiments in other domains, coupling FEL light and the Synchrotron Radiation. For this, FEL starts to be very competitive with respect to the other conventional laser sources, provided that it could oscillate further in the UV, say at 300 nm and below. So, the real challenge is now given by the lasing at shorter wavelengths and, for this, by the optical technology existing nowadays. Since 1992 the efforts have been concentrating to look for every kind of solution allowing us to overcome the problem of having a very low gain. From an optical point of view, in the range of wavelengths explored, there is a lack of transparents dielectric materials for substrates and coatings. Substrates are required at the same time to be relatively not absorbing (a few tens 10{sup -6}), to have a very good surface quality (RMS roughness below 10 {Angstrom}) because of scattering losses dramatically increasing in this spectral range and, due to the thermal load of the undulator emission, to have adequate thermal characteristics. In order to fulfill all these requirements, a good characterisation and modelisation of the substrates is needed, especially to correlate thermal loading and mechanical deformations from one hand, and roughness and scattering losses from the other hand. Coatings must be not absorbing too and, above all, the most amorphous as possible (this could be obtained with IBS deposition technique), in order to insure a good reproduction of the substrate roughness at the interfaces and on the top layer and an higher resistance to the XUV photons load.

  11. 5 W frequency stabilized 976 nm tapered diode lasers

    NASA Astrophysics Data System (ADS)

    Friedmann, Patrick; Gilly, Jürgen; Moritz, Stefan; Ostendorf, Ralf; Kelemen, Márc T.

    2008-02-01

    More and more applications, like tunable frequency doubling of diode lasers for blue-green outputs, non linear spectroscopy, or pump laser sources for fiber lasers necessitate diffraction-limited tunable narrow linewidths and high output powers in the multiwatt regime. For these applications, tapered lasers based on a tapered amplifier with gain-guided design can be used in an external cavity set up to guarantee both - frequency stabilization and tunability. We have realized frequency stabilized high-power ridge-waveguide tapered diode lasers with more than 4W of cw output power. These low modal gain, single quantum well InGaAs/AlGaAs devices emitting between 920nm and 1064nm were grown by molecular beam epitaxy. Tapered single emitters consist of an index-guided ridge section and a gain-guided taper section with an overall length of 3.5mm. The taper angle was 6°. With a high-reflectivity coating on the rear facet and an antireflection coating on the front facet more than 10W of output power have been demonstrated. To optimize the beam quality at higher output power the two different sections have been operated by different operation currents. For this purpose the tapered diodes have been mounted p-side down on structured submounts. For wavelength tunability and frequency stabilization the tapered diodes, provided with AR coatings on both facets, have been used in external cavity setup in Littrow configuration. The influence of the different operation currents on the electrooptical and beam characteristics has been carefully investigated in detail. Within this operation mode a nearly diffraction limited behavior up to 5W has been established.

  12. New Absorption Spectra of CH_2 Near 780 NM

    NASA Astrophysics Data System (ADS)

    Xin, Ju; Wang, Zhong; Sears, Trevor J.

    2009-06-01

    The near infrared and visible spectrum (tilde{b}^1B_1 - tilde{a}^1A_1) of singlet CH_2 has been the subject of much study. However, the region between the red end of the visible part of the spectrum and about 800 nm has not been recorded since the pioneering work of Herzberg and Johns. We have remeasured the absorption spectrum between approximately 769 and 806 nm at near shot-noise-limited sensitivity and Doppler-limited resolution using a frequency-modulated extended cavity diode laser source. Rotational branches in 7 vibronic bands involving K_a = 0-4 have been assigned using known ground state combination differences. Most of them have not previously been observed and some reassignments of the Herzberg and Johns analysis have been made. Comparison with the most complete available calculated ro-vibronic energy level structure helped considerably in making the assignments, and the observed vibronic levels are assigned to levels of both tilde{a} and tilde{b} electronic character. The calculated energy levels show moderate, up to 10 cm^{-1}, apparently random, differences from the observed levels The new data will certainly help to refine the singlet potential and also provide additional avenues for future kinetics and dynamics studies of the radical. G. Herzberg and J. W. C. Johns Proc. R. Soc. London Ser. A, 295, 107 (1966) J. -P. Gu, G. Hirsch, R J Buenker, M. Brumm, G. Osmann, P. R. Bunker and P. Jensen J. Molec. Struc., 517-8, 247 (2000) Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Ju Xin acknowledges support from the Faculty and Student Teams program of the Educational Programs Department at Brookhaven National Laboratory.

  13. Gigashot optical degradation in silica optics at 351 nm.

    PubMed

    Ly, Sonny; Laurence, Ted A; Shen, Nan; Hollingsworth, Bill; Norton, Mary; Bude, Jeff D

    2015-02-23

    As applications of lasers demand higher average powers, higher repetition rates, and longer operation times, optics will need to perform well under unprecedented conditions. We investigate the optical degradation of fused silica surfaces at 351 nm for up to 10(9) pulses with pulse fluences up to 12 J/cm(2). The central result is that the transmission loss from defect generation is a function of the pulse intensity, I(p), and total integrated fluence, φ(T), and is influenced by oxygen partial pressure. In 10(-6) Torr vacuum, at low I(p), a transmission loss is observed that increases monotonically as a function of number of pulses. As the pulse intensity increases above 13 MW/cm(2), the observed transmission losses decrease, and are not measureable for 130 MW/cm(2). A physical model which supports the experimental data is presented to describe the suppression of transmission loss at high pulse intensity. Similar phenomena are observed in anti-reflective sol-gel coated optics. Absorption, not scattering, is the primary mechanism leading to transmission loss. In 2.5 Torr air, no transmission loss was detected under any pulse intensity used. We find that the absorption layer that leads to transmission loss is less than 1 nm in thickness, and results from a laser-activated chemical process involving photo-reduction of silica within a few monolayers of the surface. The competition between photo-reduction and photo-oxidation explains the measured data: transmission loss is reduced when either the light intensity or the O(2) concentration is high. We expect processes similar to these to occur in other optical materials for high average power applications.

  14. Scatterometry measurement precision and accuracy below 70 nm

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Archie, Charles N.

    2003-05-01

    Scatterometry is a contender for various measurement applications where structure widths and heights can be significantly smaller than 70 nm within one or two ITRS generations. For example, feedforward process control in the post-lithography transistor gate formation is being actively pursued by a number of RIE tool manufacturers. Several commercial forms of scatterometry are available or under development which promise to provide satisfactory performance in this regime. Scatterometry, as commercially practiced today, involves analyzing the zeroth order reflected light from a grating of lines. Normal incidence spectroscopic reflectometry, 2-theta fixed-wavelength ellipsometry, and spectroscopic ellipsometry are among the optical techniques, while library based spectra matching and realtime regression are among the analysis techniques. All these commercial forms will find accurate and precise measurement a challenge when the material constituting the critical structure approaches a very small volume. Equally challenging is executing an evaluation methodology that first determines the true properties (critical dimensions and materials) of semiconductor wafer artifacts and then compares measurement performance of several scatterometers. How well do scatterometers track process induced changes in bottom CD and sidewall profile? This paper introduces a general 3D metrology assessment methodology and reports upon work involving sub-70 nm structures and several scatterometers. The methodology combines results from multiple metrologies (CD-SEM, CD-AFM, TEM, and XSEM) to form a Reference Measurement System (RMS). The methodology determines how well the scatterometry measurement tracks critical structure changes even in the presence of other noncritical changes that take place at the same time; these are key components of accuracy. Because the assessment rewards scatterometers that measure with good precision (reproducibility) and good accuracy, the most precise

  15. Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths

    PubMed Central

    Farsund, Øystein; Rustad, Gunnar; Skogan, Gunnar

    2012-01-01

    Standoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents’ fluorescence response were seen at the two wavelengths. The anthrax simulants’ fluorescence responses were almost an order of magnitude stronger at the shorter wavelength excitation. However, most importantly, the fluorescence spectra were significantly more dissimilar at 294 nm than at 355 nm excitation with ~7 nm spectral resolution. This indicates that classification of the substances should be possible with a lower error rate for standoff detection using 294 nm rather than 355 nm excitation wavelength, or even better, utilizing both. PMID:23162732

  16. Standoff detection of biological agents using laser induced fluorescence-a comparison of 294 nm and 355 nm excitation wavelengths.

    PubMed

    Farsund, Oystein; Rustad, Gunnar; Skogan, Gunnar

    2012-11-01

    Standoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents' fluorescence response were seen at the two wavelengths. The anthrax simulants' fluorescence responses were almost an order of magnitude stronger at the shorter wavelength excitation. However, most importantly, the fluorescence spectra were significantly more dissimilar at 294 nm than at 355 nm excitation with ~7 nm spectral resolution. This indicates that classification of the substances should be possible with a lower error rate for standoff detection using 294 nm rather than 355 nm excitation wavelength, or even better, utilizing both. PMID:23162732

  17. 22 nm node wafer inspection using diffraction phase microscopy and image post-processing

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Popescu, Gabriel; Goddard, Lynford L.

    2013-04-01

    We applied epi-illumination diffraction phase microscopy to measure the amplitude and phase of the scattered field from a SEMATECH 22 nm node intentional defect array (IDA) wafer. We used several imaging processing techniques to remove the wafer's underlying structure and reduce both the spatial and temporal noise and eliminate the system calibration error to produce stretched panoramic amplitude and phase images. From the stretched images, we detected defects down to 20 nm × 160 nm for a parallel bridge, 20 nm × 100 nm for perpendicular bridge, and 35 nm × 70 nm for an isolated dot.

  18. Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses

    SciTech Connect

    Piparia, Reema; Rothe, Erhard W.; Baird, R. J.

    2006-11-27

    Huang et al. [Appl. Phys. Lett. 86, 161911 (2005)] formed arrays of nanobumps on a silicon substrate. They applied a 248 nm laser pulse to a surface monolayer of 1-{mu}m-diameter polystyrene spheres. The authors first replicated their experiment with 248 nm light. But when 308 nm pulses were applied instead, the nanobumps had a different shape and composition. At 248 nm, much of the laser light is absorbed in the polystyrene, which serves to quickly distort, melt, and ablate the sphere. At 308 nm, very little light is absorbed. The nanobumps from 248 nm radiation are organic polymers, while those formed with 308 nm pulses are silicon based.

  19. Cosmetic tattoo pigment reaction.

    PubMed

    Greywal, Tanya; Cohen, Philip R

    2016-01-01

    BackgroundCutaneous reactions to tattoos are most commonly granulomatous or lichenoid.PurposeWe describe a woman who developed a lymphocytic reaction following a cosmetic tattoo procedure with black dye. The reaction occurred not only at the site of the tattoos (eyebrows and eyelash lines), but also in non-tattooed skin (bilateral malar cheeks).Methods and MaterialsWe reviewed PubMed for the following terms: cosmetic, dye, granuloma, granulomatous, lichenoid, lymphocytic, perivascular, pigment, pseudolymphoma, reaction, and tattoo. We also reviewed papers containing these terms and their references.ResultsHistopathologic examination of the left eyebrow and left cheek punch biopsies showed predominantly a perivascular lymphocytic reaction secondary to exogenous tattoo pigment.ConclusionsPerivascular lymphocytic reaction is an uncommonly described complication of tattooing. Our patient had an atypical presentation since she had no prior tattoos, became symptomatic only a few days after the procedure, reacted to black dye, and involved skin both within and outside the confines of the tattoos. Her symptoms and lesions resolved after treatment with systemic and topical corticosteroids and oral antihistamines. PMID:27617722

  20. A simultaneous one pot synthesis of two fractal structures via swapping two fractal reaction kinetic states.

    PubMed

    Ghosh, Subrata; Dutta, Mrinal; Ray, Kanad; Fujita, Daisuke; Bandyopadhyay, Anirban

    2016-06-01

    We introduce a new class of fractal reaction kinetics wherein two or more distinct fractal structures are synthesized as parts of a singular cascade reaction in a single chemical beaker. Two examples: sphere ↔ spiral & triangle ↔ square fractals, grow 10(6) orders from a single dendrimer (8 nm) to the visible scale. PMID:27166589

  1. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  2. UV 380 nm Reflectivity of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2000-01-01

    The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects

  3. NM counts in relation to CMEs and Magnetic fields

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar; Agarwal, Rekha

    2016-07-01

    The global network of neutron monitors (NMs) have provided data to the heliophysics community for over sixty years to study the time variations of the galactic cosmic ray (GCR) intensity. Simpson recommended a standard NM for worldwide use during the International Geophysical Year (IGY, 1957-58). NM data have been used extensively for the time variation studies ranging from minutes to decades. Coronal Mass Ejections are vast structures of plasma and magnetic fields that are expelled from the sun into the heliosphere, which is detected by remote sensing and in-situ spacecraft observations. The present study is related with behaviour of four types of CMEs namely Asymmetric 'Full' Halo CMEs, Partial Halo CMEs, Asymmetric and Complex 'Full' Halo CMEs and 'Full' Halo CMEs on cosmic ray neutron monitor intensity. The data of two different ground based neutron monitors having different cutoff rigidity threshold and CME events observed with instruments onboard and Wind spacecraft have been used in the present work. The superposed epoch (Chree) analysis has been applied to the arrival times of these CMEs. The occurrence frequency of three different types of CMEs used in the present analysis shows complex behavior. Significant fluctuations in cosmic ray intensity is observed few days after the onset of asymmetric full halo and few days after the onset of full halo CMEs. The fluctuations in cosmic ray intensity are more prior to the onset of both types of the CMEs. However, during Partial Halo CMEs the cosmic ray intensity peaks, 8- 9 days prior to the onset of CMEs and depressed 3 days prior to the onset of CMEs, whereas in case of asymmetric and complex full CMEs, the intensity depressed 2 days prior to the onset of CMEs and enhanced 2 days after the onset of CMEs. The deviations in cosmic ray intensity are more pronounced in case for asymmetric and complex full halo CMEs compared to other CMEs. The cosmic ray intensity shows nearly good anti-correlation with interplanetary

  4. Advanced CDU improvement for 22nm and below

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoharu; Toki, Tsuyoshi; Tanaka, Daishi; Kosugi, Junichi; Susa, Tomohiko; Sakasai, Naruo; Tokui, Akira

    2011-04-01

    ArF water immersion lithography is expected to be used down to the 22nm hp node or below. However, such advancements in technology nodes have led to extremely small process margins. This necessitates more accurate means of process control. CD uniformity of the photo-resist (PR) image is affected by many sources. In the case of the exposure tool-CD error on the reticle, as well as exposure dose and focus errors are the key factors. For the PR process, heterogeneity of the stacked PR film thickness, post exposure bake (PEB) plate temperature, and development have an impact. Further, the process wafer also has error sources that include under-layer uniformity and wafer flatness. Fortunately, the majority of these factors is quite stable in a volume production process and can be compensated for by adjusting exposure dose and focus in the scanner. A technique to calculate exposure dose and focus correction values simultaneously from the measured PR image feature was reported previously [1]. In addition, a demonstration of a correction loop using a neural network calculation model was reported in SPIE 2010 [2], and the corrected CD uniformity was less than 1.5 nm (3-sigma) within the wafer. In this paper, we will report the latest CD uniformity correction results achieved with the NSR-S620D ArF immersion scanner using correction values estimated by scatterometry and CD-SEM. The method of correction using CD-SEM is newly developed. A maximum of nine parameters extracted from the PR profile are used in this correction. In general, the CD variation of an isolated line pattern caused by focus error is more sensitive than that of a dense pattern. Thus, we estimate the focus error from the isolated pattern, with the dose error estimated using both isolated and dense patterns. The Nikon CDU Master then derives the optimal control parameters for each compensation function in the scanner using the exposure dose and focus correction data, and the NSR-S620D is able to control

  5. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  6. Measurements at 351 nm of temporal dispersion in fibers

    SciTech Connect

    Griffith, R; Milam, D; Sell, W; Thompson, C

    1998-11-04

    1. Temporal dispersion at 351-nm was measured in the following: a 35-m bundle of 19 each 50-µm-core fibers, a companion 35-m single fiber, a 100-µm-core single fiber (at 4 lengths), and a 50-µm-core single fiber (two samples, 7 lengths). The 50-µm-core fiber was from preform #24; the 100-µm-core fiber was a prototype version having a thick cladding. All of the fibers were developed and manufactured at the Vavilov State Optical Institute, St. Petersburg, Russia. 2. Dispersion measurements were made by propagating a 20-ps 351-nm pulse through the fiber under test and recording the output on an S20 streak camera. The width of the pulse transmitted by the fiber was compared to that of a fraction of the pulse that had propagated over an air path. Values of dispersion were calculated as, D = {radical}(F² - A²) , where F and A are the full widths at half maximum (FWHM) for, respectively, the fiber-path and the air-path streaks. 3. In each of the experiments, the measured dispersion increased with counts in the streak record, which in principle, are proportional to intensity in the fiber. Measured values of dispersion ranged from about 0.6 to 1.0 ps/m for the single fibers. 4. The measured FWHMs of both the fiber-path pulse and the air-path pulse increased with increase in counts in the streak record. The rate of broadening was greatest for the fiber-path pulse, and the broadening of that pulse was the primary cause for the dependence of dispersion on counts in the streak record. Pulse broadening with increase in counts is symptomatic of camera saturation, but it is difficult to understand why saturation should have effected the fiber-path pulses more strongly. 5. There were spatial anomalies in the streak records of the output pulses from some of the fibers. Emission by the bundle of a "doubled" pulse is a primary example. In streaks recorded at about 800 counts, the total duration for the pair of pulses was about 100 ps. The maxima of the pulses occurred in

  7. Visible Light Mediated Photoredox Catalytic Arylation Reactions.

    PubMed

    Ghosh, Indrajit; Marzo, Leyre; Das, Amrita; Shaikh, Rizwan; König, Burkhard

    2016-08-16

    anion of the organic dye perylenediimide is excited by a second photon allowing the one electron reduction of acceptor substituted aryl chlorides. The radical anion of the aryl halide fragments under the loss of a halide ion and the aryl radical undergoes C-H arylation with biologically important pyrrole derivatives or adds to a double bond. Rhodamine 6G as an organic photocatalyst allows an even higher degree of control of the reaction. The dye is photoreduced in the presence of an amine donor under irradiation with green light (e.g., 530 nm), yielding its radical anion, which is a mild reducing reagent. The hypsochromic shift of the absorption of the rhodamine 6G radical anion toward blue region of the visible light spectrum allows its selective excitation using blue light (e.g., 455 nm). The excited radical anion is highly reducing and able to activate even bromoanisole for C-H arylation reactions, although only in moderate yield. Photoredox catalytic C-H arylation reactions are valuable alternatives to metal catalyzed reactions. They have an excellent functional group tolerance, could potentially avoid metal containing catalysts, and use visible light as a traceless reagent for the activation of arylating reagents.

  8. Visible Light Mediated Photoredox Catalytic Arylation Reactions.

    PubMed

    Ghosh, Indrajit; Marzo, Leyre; Das, Amrita; Shaikh, Rizwan; König, Burkhard

    2016-08-16

    anion of the organic dye perylenediimide is excited by a second photon allowing the one electron reduction of acceptor substituted aryl chlorides. The radical anion of the aryl halide fragments under the loss of a halide ion and the aryl radical undergoes C-H arylation with biologically important pyrrole derivatives or adds to a double bond. Rhodamine 6G as an organic photocatalyst allows an even higher degree of control of the reaction. The dye is photoreduced in the presence of an amine donor under irradiation with green light (e.g., 530 nm), yielding its radical anion, which is a mild reducing reagent. The hypsochromic shift of the absorption of the rhodamine 6G radical anion toward blue region of the visible light spectrum allows its selective excitation using blue light (e.g., 455 nm). The excited radical anion is highly reducing and able to activate even bromoanisole for C-H arylation reactions, although only in moderate yield. Photoredox catalytic C-H arylation reactions are valuable alternatives to metal catalyzed reactions. They have an excellent functional group tolerance, could potentially avoid metal containing catalysts, and use visible light as a traceless reagent for the activation of arylating reagents. PMID:27482835

  9. Immediate reaction to clarithromycin.

    PubMed

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens.

  10. Non-reciprocal double-exposure materials for 193nm pitch division

    NASA Astrophysics Data System (ADS)

    Bristol, Robert; Roberts, Jeanette; Shykind, David; Blackwell, James M.

    2010-04-01

    indeed show the desired DE vs. SE contrast curve shift and pitch-divided imaging (k1 = 0.125). This system appears to operate on a scheme based on the creation of a photobase generator between the first and second exposures. Unfortunately, the quality of the pitch-divided images degrades quickly as the pitch is decreased, showing severe LER and bridging defects at a final pitch of 220nm. We postulate that this is caused by the diffusion of one or more key photoproducts. Accompanying papers report on both the photochemical details of the reaction pathways of these materials as well as modeling of the reaction kinetics.

  11. Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Herrmann, Ashley Ann Elizabeth

    In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and

  12. Reaction mechanism and kinetics of the NCN +NO reaction: Comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Liang; Tseng, Shiang Yang; Wang, Tzu Yi; Wang, Niann S.; Xu, Z. F.; Lin, M. C.

    2005-05-01

    The rate constants for the NCN +NO reaction have been measured by laser photolysis/laser-induced fluorescence technique in the temperature range of 254-353K in the presence of He (40-600Torr) and N2 (30-528Torr) buffer gases. The NCN radical was produced from the photodissociation of NCN3 at 193nm and monitored with a dye laser at 329.01nm. The reaction was found to be strongly positive-pressure dependent with negative-temperature dependence, as was reported previously. The experimental data could be reasonably accounted for by dual-channel Rice-Ramsperger-Kassel-Marcus calculations based on the predicted potential-energy surface using the modified Gaussian-2 method. The reaction is predicted to occur via weak intermediates, cis- and trans-NCNNO, in the A″2 state which crosses with the A'2 state containing more stable cis- and trans-NCNNO isomers. The high barriers for the fragmentation of these isomers and their trapping in the A'2 state by collisional stabilization give rise to the observed positive-pressure dependence and negative-temperature effect. The predicted energy barrier for the fragmentation of the cis-NCNNO (A'2) to CN +N2O also allows us to quantitatively account for the rate constant previously measured for the reverse process CN +N2O→NCN+NO.

  13. Reaction kinetics of non-reciprocal photo-base generator (NRPBG) patterning

    NASA Astrophysics Data System (ADS)

    Shykind, D.; Bristol, R.; Roberts, J.; Blackwell, J.; Borodovsky, Y.

    2010-04-01

    We present a simple reaction rate analysis of lithographic patterning using the Non-Reciprocal Photo Base Generation (NRPBG) scheme of Bristol (Bristol, et. al., to be published in Proceedings of the SPIE - The International Society for Optical Engineering, 2010, presentation 7639-4). Multistep reaction kinetics simulations demonstrate that the NRPBG scheme produces clear pitch division upon 193 nm double-exposure, over a range of photochemical reaction rate constants.

  14. High-power operation of silica-based Raman fiber amplifier at 2147 nm.

    PubMed

    Liu, Jiang; Tan, Fangzhou; Shi, Hongxing; Wang, Pu

    2014-11-17

    We demonstrated a 2147 nm silica-based Raman fiber amplifier with output power of 14.3 W directly pumped with a 1963 nm CW thulium-doped all-fiber MOPA. The 1963 nm thulium-doped all-fiber MOPA is seeded with a 2147 nm thulium-doped all-fiber laser at the same time. The Raman Stokes power shift from 1963 nm to 2147 nm is accomplished in a piece of 50 m silica-based highly nonlinear fiber (HNLF). The conversion efficiency was 38.5% from 1963 nm to 2147 nm in the HNLF. The output power achieved was only currently limited by available 1963 nm input power and the architecture has significant scaling potential. To the best of our knowledge, this is the highest power operation of a Raman fiber amplifier at >2 µm wavelength region. PMID:25402080

  15. Intracavity pumped sum-frequency mixing for an emission at 491.5 nm

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Duanmu, Q. D.; Li, S. T.; Dong, Y.

    2013-08-01

    We present an Nd:LuVO4 laser emitting at 1066 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 880 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Nd:LuVO4 laser emitting at 1066 nm intracavity pumped at 912 nm. Intracavity sum-frequency mixing at 912 and 1066 nm was realized in a lithium triborate crystal to reach the blue range. We obtained a continuous-wave output power of 2.35 W at 491.5 nm with a pump laser diode emitting 26.2 W at 880 nm. The power stability is better than 3.5% and the laser beam quality M2 factors are 1.31 and 1.23 in the horizontal and vertical dimensions respectively.

  16. Patterning challenges in the sub-10 nm era

    NASA Astrophysics Data System (ADS)

    Preil, Moshe E.

    2016-03-01

    Historically, progress in lithography has been driven by steady advances in exposure tool and optical technology; shorter wavelength, higher numerical aperture (NA) and resolution enhancement techniques to drive the k1 factor as close as possible to the physical limit. Over the past decade, however, the pace of progress has been gated more by patterning - what we do after the resist image is printed - than by higher resolution imaging. The emphasis on patterning rather than just printing has created new pressures in many parts of the overall process, beginning with the design itself. The breakdown of lithographic error budgets into CD and OL tolerances has given way to total edge placement error (EPE) budgets where CD, OL and edge roughness, as well as film and etch variations, must all be controlled to meet the required tolerances. Contact hole and cut mask placement have likewise been tightened to single digit EPE budgets. Collaborative research between technology specialists in multiple areas, such as metrology, etch, process control and simulation, will all be required to deliver these patterning solutions for some years to come. This paper will describe some of these challenges in more detail, and suggest directions for future research to keep optical lithography relevant even below the 10 nm node.

  17. Analysis of wafer heating in 14nm DUV layers

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, Woong Jae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Minghetti, Blandine; Lee, Shawn

    2016-03-01

    To further shrink the contact and trench dimensions, Negative Tone Development (NTD) has become the de facto process at these layers. The NTD process uses a positive tone resist and an organic solvent-based negative tone developer which leads to improved image contrast, larger process window and smaller Mask Error Enhancement Factor (MEEF)[1]. The NTD masks have high transmission values leading to lens heating and as observed here wafer heating as well. Both lens and wafer heating will contribute to overlay error, however the effects of lens heating can be mitigated by applying lens heating corrections while no such corrections exist for wafer heating yet. Although the magnitude of overlay error due to wafer heating is low relative to lens heating; ever tightening overlay requirements imply that the distortions due to wafer heating will quickly become a significant part of the overlay budget. In this work the effects, analysis and observations of wafer heating on contact and metal layers of the 14nm node are presented. On product wafers it manifests as a difference in the scan up and scan down signatures between layers. An experiment to further understand wafer heating is performed with a test reticle that is used to monitor scanner performance.

  18. Photodissociation dynamics of OCS near 214 nm using ion imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wallace, Colin J.; McBane, George C.; North, Simon W.

    2016-07-01

    The OCS photodissociation dynamics of the dominant S(1D2) channel near 214 nm have been studied using velocity map ion imaging. We report a CO vibrational branching ratio of 0.79:0.21 for v = 0:v = 1, indicating substantially higher vibrational excitation than that observed at slightly longer wavelengths. The CO rotational distribution is bimodal for both v = 0 and v = 1, although the bimodality is less pronounced than at longer wavelengths. Vector correlations, including rotational alignment, indicate that absorption to both the 21A' (A) and 11A″ (B) states is important in the lower-j part of the rotational distribution, while only 21A' state absorption contributes to the upper part; this conclusion is consistent with work at longer wavelengths. Classical trajectory calculations including surface hopping reproduce the measured CO rotational distributions and their dependence on wavelength well, though they underestimate the v = 1 population. The calculations indicate that the higher-j peak in the rotational distribution arises from molecules that begin on the 21A' state but make nonadiabatic transitions to the 11A' (X) state during the dissociation, while the lower-j peak arises from direct photodissociation on either the 21A' or the 11A″ states, as found in previous work.

  19. Photodissociation dynamics of OCS near 214 nm using ion imaging.

    PubMed

    Wei, Wei; Wallace, Colin J; McBane, George C; North, Simon W

    2016-07-14

    The OCS photodissociation dynamics of the dominant S((1)D2) channel near 214 nm have been studied using velocity map ion imaging. We report a CO vibrational branching ratio of 0.79:0.21 for v = 0:v = 1, indicating substantially higher vibrational excitation than that observed at slightly longer wavelengths. The CO rotational distribution is bimodal for both v = 0 and v = 1, although the bimodality is less pronounced than at longer wavelengths. Vector correlations, including rotational alignment, indicate that absorption to both the 2(1)A' (A) and 1(1)A″ (B) states is important in the lower-j part of the rotational distribution, while only 2(1)A' state absorption contributes to the upper part; this conclusion is consistent with work at longer wavelengths. Classical trajectory calculations including surface hopping reproduce the measured CO rotational distributions and their dependence on wavelength well, though they underestimate the v = 1 population. The calculations indicate that the higher-j peak in the rotational distribution arises from molecules that begin on the 2(1)A' state but make nonadiabatic transitions to the 1(1)A' (X) state during the dissociation, while the lower-j peak arises from direct photodissociation on either the 2(1)A' or the 1(1)A″ states, as found in previous work. PMID:27421408

  20. Damage thresholds of fluoride multilayers at 355 nm

    SciTech Connect

    Chow, R.; Kozlowski, M.R.; Loomis, G.E.; Rainer, F.

    1992-10-01

    Fluoride multilayer coatings were evaluated for use in 355 nm high reflector applications. The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]AlF[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had laser damage thresholds of 20, 17.9 and 7.4 (measured at 10-ns pulsewidths), respectively. High tensile stresses in the coatings restricted this evaluation to only 5-layer-pair partial reflectors (49--52%).The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]Al[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had tensile stresses of [approximately] 1.1 [times] 109, 1.3 [times] 109 and 9.3 [times] 10[sup 8] dynes/cm[sup 2], respectively. Substrate material and glow-discharge processing of the substrates were found to influence the density of stress-induced coating fractures and damage thresholds in some cases. If stress fracturing and scatter can be controlled, these fluoride material combinations are suited for 3[omega] applications.

  1. 10{times} reduction imaging at 13.4nm

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.

    1994-08-01

    A Schwarzschild imaging system has been designed to achieve 0.1 {mu}m resolution in a 0.4 mm diameter field of view when operated at a center wavelength of 13.4 nm. A decentered aperture is located on the convex primary resulting in an unobstructed numerical aperture of 0.08 and a corresponding depth of field of {plus_minus} 1 {mu}m. The Schwarzschild imaging objective is part of a five-reflection system containing the laser plasma source (LPS), condensing optics, turning mirror and reflection mask as shown in Figure 1. Extreme ultraviolet (EUV) radiation is generated by impinging a laser beam onto a copper target. The plasma source is driven by a Lambda Physik PLX 250 KrF excimer laser emitting 0.6 Joule, 20 ns pulses at a 200 Hz maximum repetition rate. Measurements of the source indicate that the full-width-half-maximum diameter is less than 100 {mu}m.

  2. Body contouring using 635-nm low level laser therapy.

    PubMed

    Nestor, Mark S; Newburger, Jessica; Zarraga, Matthew B

    2013-03-01

    Noninvasive body contouring has become one of the fastest-growing areas of esthetic medicine. Many patients appear to prefer nonsurgical less-invasive procedures owing to the benefits of fewer side effects and shorter recovery times. Increasingly, 635-nm low-level laser therapy (LLLT) has been used in the treatment of a variety of medical conditions and has been shown to improve wound healing, reduce edema, and relieve acute pain. Within the past decade, LLLT has also emerged as a new modality for noninvasive body contouring. Research has shown that LLLT is effective in reducing overall body circumference measurements of specifically treated regions, including the hips, waist, thighs, and upper arms, with recent studies demonstrating the long-term effectiveness of results. The treatment is painless, and there appears to be no adverse events associated with LLLT. The mechanism of action of LLLT in body contouring is believed to stem from photoactivation of cytochrome c oxidase within hypertrophic adipocytes, which, in turn, affects intracellular secondary cascades, resulting in the formation of transitory pores within the adipocytes' membrane. The secondary cascades involved may include, but are not limited to, activation of cytosolic lipase and nitric oxide. Newly formed pores release intracellular lipids, which are further metabolized. Future studies need to fully outline the cellular and systemic effects of LLLT as well as determine optimal treatment protocols.

  3. Nuclear magnetic resonance imaging with 90-nm resolution.

    PubMed

    Mamin, H J; Poggio, M; Degen, C L; Rugar, D

    2007-05-01

    Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of 19F nuclei in a patterned CaF(2) test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 x 10(6) T m(-1), and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.

  4. 850nm VCSEL with a liquid crystal overlay

    NASA Astrophysics Data System (ADS)

    Nair, Veena M.; Panajotov, Krassimir; Petrov, Mikov; Thienpont, Hugo; Xie, Yi; Beeckman, Jeroen; Neyts, Kristiaan

    2012-06-01

    We developed an in- house technology to overlay liquid crystal (LC) on top of a 850nm Vertical Cavity Surface Emitting Laser (VCSEL) creating a so-called LC-VCSEL. Prior to this, the effect of the cell thickness on the planar alignment of the E7 LC is investigated. It is observed that the LC orientation is planar, uniformly aligned over the whole cell with an average pre-tilt of 22.50 in a thin a cell of 13μm thickness; such alignment uniformity is not observed in a thick cell of 125μm. Nevertheless, several domains of good uniformity are still present. Further, the polarization resolved LI characteristics of LC-VCSEL are investigated with and without the insertion of LC in a cell glued directly onto VCSEL package. Before filling in the LC, the VCSEL emits linearly polarized light and this linear polarization is lost after LC filling. The output intensity as a function of polarizer angle shows partial planar alignment of the E7 LC, which is very important for the further advancement of the LC-VCSEL integrated system.

  5. Electrical control of antiferromagnetic metal up to 15 nm

    NASA Astrophysics Data System (ADS)

    Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng

    2016-08-01

    Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.

  6. Domain wall motion in sub-100 nm magnetic wire

    NASA Astrophysics Data System (ADS)

    Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc

    2015-03-01

    Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.

  7. High-speed low-current-density 850 nm VCSELs

    NASA Astrophysics Data System (ADS)

    Larsson, Anders; Westbergh, Petter; Gustavsson, Johan; Haglund, Åsa

    2010-02-01

    The design of an oxide confined 850 nm VCSEL has been engineered for high speed operation at low current density. Strained InGaAs/AlGaAs QWs, with a careful choice of In and Al concentrations based on rigorous band structure and gain calculations, were used to increase differential gain and reduce threshold carrier density. Various measures, including multiple oxide layers and a binary compound in the lower distributed Bragg reflector, were implemented for reducing capacitance and thermal impedance. Modulation bandwidths > 20 GHz at 25°C and > 15 GHz at 85°C were obtained. At room temperature, the bandwidth was found to be limited primarily by the still relatively large oxide capacitance, while at 85°C the bandwidth was also limited by the thermal saturation of the resonance frequency. Transmission up to 32 Gb/s (on-off keying) over multimode fiber was successfully demonstrated with the VCSEL biased at a current density of only 11 kA/cm2. In addition, using a more spectrally efficient modulation format (16 QAM subcarrier multiplexing), transmission at 40 Gb/s over 200 m multimode fiber was demonstrated.

  8. Radiation trapping of the Hg 185 nm resonance line

    NASA Astrophysics Data System (ADS)

    Menningen, K. L.; Lawler, J. E.

    2000-09-01

    The decay rate of the Hg 61P1 level was measured as a function of cold spot temperature (Hg density) and buffer gas pressure in cylindrical, sealed fused silica cells. The decay rates were obtained using a time-resolved laser-induced 185 nm fluorescence experiment with multi-step excitation. Cold spot temperatures from 25 to 100 °C were studied. The Hg densities for this temperature range and with no buffer gas yield the lowest possible decay rates due to radiation trapping with partial frequency redistribution. Decay rates with argon buffer gas pressures of 3 and 30 Torr were also studied. The results are in agreement with published data from a discharge afterglow experiment. Monte Carlo simulations of radiation transport in the cells, including the effects of hyperfine and isotope structure, the effects of foreign gas broadening, and partial frequency redistribution are compared to the experimental data. Reasonably good agreement is obtained, however there is evidence of quenching of Hg 61P1 atoms in collisions with ground state Hg and Ar atoms. An analytic formula for the fundamental mode trapped decay rate of the 61P1 level, which is applicable over a substantial region of parameter space, was devised from the Monte Carlo results.

  9. Observations of thunderstorm-related 630 nm airglow depletions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2015-12-01

    The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.

  10. Layout dependent effects analysis on 28nm process

    NASA Astrophysics Data System (ADS)

    Li, Helen; Zhang, Mealie; Wong, Waisum; Song, Huiyuan; Xu, Wei; Hurat, Philippe; Ding, Hua; Zhang, Yifan; Cote, Michel; Huang, Jason; Lai, Ya-ch

    2015-03-01

    Advanced process nodes introduce new variability effects due to increased density, new material, new device structures, and so forth. This creates more and stronger Layout Dependent effects (LDE), especially below 28nm. These effects such as WPE (Well Proximity Effect), PSE (Poly Spacing Effect) change the carrier mobility and threshold voltage and therefore make the device performances, such as Vth and Idsat, extremely layout dependent. In traditional flows, the impact of these changes can only be simulated after the block has been fully laid out, the design is LVS and DRC clean. It's too late in the design cycle and it increases the number of post-layout iteration. We collaborated to develop a method on an advanced process to embed several LDE sources into a LDE kit. We integrated this LDE kit in custom analog design environment, for LDE analysis at early design stage. These features allow circuit and layout designers to detect the variations caused by LDE, and to fix the weak points caused by LDE. In this paper, we will present this method and how it accelerates design convergence of advanced node custom analog designs by detecting early-on LDE hotspots on partial or fully placed layout, reporting contribution of each LDE component to help identify the root cause of LDE variation, and even providing fixing guidelines on how to modify the layout and to reduce the LDE impact.

  11. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    NASA Astrophysics Data System (ADS)

    Remer, Itay; Bilenca, Alberto

    2016-09-01

    We demonstrate a high-speed stimulated Brillouin scattering (SBS) spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (˜25 dB in water samples and ˜15 dB in tissue phantoms). These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  12. Ion exclusion by sub-2-nm carbon nanotube pores

    PubMed Central

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. PMID:18539773

  13. Photorefractive keratectomy at 193 nm using an erodible mask

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Brint, Stephen F.; Durrie, Daniel S.; Seiler, Theo; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.

    1992-08-01

    Clinical experience with more than ten thousand sighted eyes has demonstrated great promise for correcting myopia with photorefractive keratectomy (PRK). Previously reported techniques have incorporated computer-controlled irises, diaphragms, and apertures to regulate the desired distribution of 193 nm radiation onto the eye. This paper reports on an entirely new approach for performing PRK which utilizes an erodible mask to control the shape transfer process. Compared to the more traditional techniques, the erodible mask offers promise of correcting a broad range of refractive errors. In this paper the erodible mask and associated hardware are described in detail. We describe the shape transfer experiments used to predict the functional relationship between the desired refractive correction and the mask shape. We report on early clinical results from five patients with myopic astigmatism. We conclude that the early shape transfer experiments overestimated the spherical component of the correction by 1.25 diopters and underestimated the cylindrical component by approximately 0.85 diopters. The data suggest there may be biological effects which evoke different healing responses when myopic PRK corrections are performed with and without astigmatism. Clinical trials are proceeding with the mask shapes adjusted for these observations.

  14. 980nm diode laser pump modules operating at high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  15. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  16. Adverse reactions to cosmetics.

    PubMed

    Dogra, A; Minocha, Y C; Kaur, S

    2003-01-01

    Adverse reaction to cosmetics constitute a small but significant number of cases of contact dermatitis with varied appearances. These can present as contact allergic dermatitis, photodermatitis, contact irritant dermatitis, contact urticaria, hypopigmentation, hyperpigmentation or depigmentation, hair and nail breakage. Fifty patients were included for the study to assess the role of commonly used cosmetics in causing adverse reactions. It was found that hair dyes, lipsticks and surprisingly shaving creams caused more reaction as compared to other cosmetics. Overall incidence of contact allergic dermatitis seen was 3.3% with patients own cosmetics. Patch testing was also done with the basic ingredients and showed positive results in few cases where casual link could be established. It is recommended that labeling of the cosmetics should be done to help the dermatologists and the patients to identify the causative allergen in cosmetic preparation.

  17. Nanoparticle Reactions on Chip

    NASA Astrophysics Data System (ADS)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  18. Phototoxic reaction to xanthene dyes induced by visible light.

    PubMed

    Morikawa, F; Fukuda, M; Naganuma, M; Nakayama, Y

    1976-04-01

    Many dyes, for instance methylene blue, rose bengal, and eosin, are known as photosensitizers, and in the presence of molecular oxygen they induce cell lethality and skin photosensitivity (1-4). Several dyes are used in cosmetic products, particularly in lipsticks. Human lip skin is therefore exposed to potential danger from dye-sensitized phototoxic reactions. Using an in vivo system of mammalian skin, such as the abdominal skin of rabbits, we established screening tests for the phototoxic potential of synthetic dyes in two ways: (a) intracutaneous injection; (b) topical application with and without damaging the barrier property of the stratum corneum. In the intracutaneous injection assay, distinct phototoxic reactions were induced by rose bengal, eosin Y.S., and dibromofluorescein. When these dyes were applied topically to intact skin, no phototoxic reactions were observed. Phototoxic reactions were, however, elicited when the dye solutions were applied to abraded or scratched skin. The intensity of phototoxic reaction was found to be influenced by the vehicle in which the dyes were suspended. Phototoxic reaction to the dyes was induced by artificial light as well as by sunlight. By using commercially available fluorescent lamps with different spectral emissions, the action spectra for the phototoxic reaction to these dyes were investigated and it was found that the maximum phototoxicities of the dyes were manifested by light within a spectral range of 400-600 nm. Further studies on action spectra, using a monochromatic irradiation system, revealed a high correlation between the action spectra of the dyes and their absorption spectra. Maximum effective wavelength for the phototoxic reaction of eosin Y.S. was 525 nm. This topical as well as intradermal assay for assesing phototoxic reaction to synthetic dyes in living skin will be a practical and useful measure for studying the phototoxicity of the dyes.

  19. Quantum Diffusion Controlled Chemistry: the H + no Reaction

    NASA Astrophysics Data System (ADS)

    Balabanoff, Morgan E.; Anderson, David T.

    2016-06-01

    In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photochemistry of nitric oxide (NO) isolated in a parahydrogen (pH2) matrix over the 1.7 to 4.3 K temperature range. Back in 2003 Fushitani and Momose showed that hydrogen atoms (H atoms) are produced as by-products of the 193 nm photo-initiated reactions of NO trapped in solid pH2. We recently published a further study on the same NO/pH2 system where we showed that H atom reactions with NO produce both HNO and NOH even though the reaction that forms HNO is barrierless and the reaction that forms NOH has a sizeable barrier. Further, we measured the reaction kinetics at 1.8 K and 4.3 K and showed the rate constants follow an Arrhenius-behavior with a small activation energy (Ea=2.39(1) wn). In the present studies we are continuing this work using a 15NO enriched sample and are focusing on how we can adjust the experimental conditions to increase the yield of both the HNO/NOH reaction products. We are also performing kinetic experiments at more than just two temperatures to better characterize the temperature dependence of the extracted rate constants. We are conducting these additional experiments to benchmark the reaction kinetics for the H + NO reaction in solid pH2 to better understand what factors influence the rates of these low temperature chemical reactions. M. Fushitani, T. Momose, Low Temp. Phys. 29, 985-988 (2003) M. Ruzi, D.T. Anderson, J. Phys. Chem. A 119, 12270-12283 (2015)

  20. Delayed drug hypersensitivity reactions.

    PubMed

    Pichler, Werner J

    2003-10-21

    Immune reactions to small molecular compounds, such as drugs, can cause a variety of diseases involving the skin, liver, kidney, and lungs. In many drug hypersensitivity reactions, drug-specific CD4+ and CD8+ T cells recognize drugs through their alphabeta T-cell receptors in an MHC-dependent way. Drugs stimulate T cells if they act as haptens and bind covalently to peptides or if they have structural features that allow them to interact with certain T-cell receptors directly. Immunohistochemical and functional studies of drug-reactive T cells in patients with distinct forms of exanthema reveal that distinct T-cell functions lead to different clinical phenotypes. In maculopapular exanthema, perforin-positive and granzyme B-positive CD4+ T cells kill activated keratinocytes, while a large number of cytotoxic CD8+ T cells in the epidermis is associated with formation of vesicles and bullae. Drug-specific T cells also orchestrate inflammatory skin reactions through the release of various cytokines (for example, interleukin-5, interferon) and chemokines (such as interleukin-8). Activation of T cells with a particular function seems to lead to a specific clinical picture (for example, bullous or pustular exanthema). Taken together, these data allow delayed hypersensitivity reactions (type IV) to be further subclassified into T-cell reactions, which through the release of certain cytokines and chemokines preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd). Moreover, cytotoxic functions by either CD4+ or CD8+ T cells (type IVc) seem to participate in all type IV reactions.

  1. Hydrocarbon-free resonance transition 795-nm rubidium laser

    SciTech Connect

    Wu, S Q; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-01-09

    An optical resonance transition rubidium laser (5{sup 2}P{sub 1/2} {yields} 5{sup 2}S{sub 1/2}) is demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a 'clean' helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.

  2. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  3. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  4. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  5. Photolysis of Pure Solid O3 and O2 Films at 193nm

    NASA Technical Reports Server (NTRS)

    Raut, U.; Loeffler, M. J.; Fama, M.; Baragiola, R. A.

    2011-01-01

    We studied quantitatively the photochemistry of solid O3 and O2 films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O3, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O2 produced O3 in an amount that increased with photon fluence to a stationary level. For both O2 and O3 films, the O3:O2 ratio at large fluences is ?0.07, about two orders of magnitude larger than those obtained in gas phase photolysis. This enhancement is attributed to the increased photodissociation of O2 due to photoabsorption by O2 dimers, a process significant at solid-state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, phi (O3) = 0.24 0.06, and quantum yields for destruction of O3 and O2 in their parent solids, phi(-O3) = 1.0 0.2 and phi(-O2) = 0.36 0.1. Combined with known photoabsorption cross sections, we estimate probabilities for geminate recombination of 0.5 0.1 for O3 fragments and 0.88 0.03 for oxygen atoms from O2 dissociation. Using a single parameter kinetic model, we deduce the ratio of reaction cross sections for an O atom with O2 vs. O3 to be 0.1 0.2. The general good agreement of the model with the data suggests the validity of the central assumption of efficient energy and spin relaxation of photofragments in the solid prior to their reactions with other species.

  6. Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Ni, Weidou

    2015-08-01

    The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method. supported by National Natural Science Foundation of China (No. 51276100) and National Basic Research Program of China (973 Program) (No. 2013CB228501)

  7. Efficient CW Nd:GdVO4-BiBO deep-blue laser at 456 nm under direct 888 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, Y. L.; Wang, A. G.; Jiang, H. L.; Fu, X. H.

    2011-09-01

    We report an efficient laser emission on the 912 nm 4 F 3/2 to 4 I 9/2 transition in Nd:GdVO4 under the pump with diode lasers at 888 nm. Continuous wave (CW) 4.91 W output power at 912 nm is obtained under 18.3 W of incident pump power; the slope efficiency with respect to the incident pump power was 57.5%. Moreover, intracavity frequency doubling with BiB3O6 (BiBO) nonlinear crystal yielded 1.33 W of deep-blue light at 456 nm.

  8. The globular domain of histone H5 is internally located in the 30 nm chromatin fiber: an immunochemical study.

    PubMed Central

    Dimitrov, S I; Russanova, V R; Pashev, I G

    1987-01-01

    The location of the globular domain of histone H5 relative to the axis of the 30 nm chromatin fiber was investigated by following the accessibility of this region of the molecule in chicken erythrocyte chromatin to specific antibodies as a function of chromatin structure. Antibodies to the globular domain of H5 as well as their Fab fragments were found to react with chromatin at ionic strengths ranging from 1-80 mM NaCl, the reaction gradually decreasing upon increase of salt concentration. If, however, Fab fragments were conjugated to ferritin, no reaction of the complex with chromatin was observed at salt concentrations higher than 20 mM. The accessibility of the globular part of H5 in unfolded chromatin to the Fab-ferritin complex was also demonstrated with trypsin-digested chromatin. The experiments were carried out by both solid-phase immunoassay and inhibition experiments. The data obtained are consistent with a structure in which the globular domain of H5 is internally located in the 30 nm chromatin fiber. Images Fig. 1. Fig. 2. PMID:2444434

  9. Study on the mechanism of photo-degradation of p-nitrophenol exposed to 254 nm UV light.

    PubMed

    Zhao, Sufang; Ma, Hongjuan; Wang, Min; Cao, Changqing; Xiong, Jie; Xu, Yunshu; Yao, Side

    2010-08-15

    The degradation mechanism of p-nitrophenol (p-NP) exposed to 254 nm UV light was studied in the presence and the absence of oxygen respectively via both steady-state photolysis and time-resolved laser flash photolysis (LFP) experiments. It has been confirmed that p-NP can be photo-ionized to produce its radical cation (p-NP(+)) and hydrated electron (e(aq)(-)) with a quantum yield of 0.52. In neutral solution p-NP(+) will be quickly deprotonated to form its phenoxyl radical (p-NP) which will react with oxygen to promote the breakage of benzene ring of p-NP. The degradation efficiency of p-NP exposed to 254 nm UV is as low as commonly reported. However, oxygen could improve the photo-degradation efficiency, which is due to the reaction of oxygen with p-NP. The reaction between oxygen and p-NP has been experimentally confirmed both in LFP and in pulse radiolysis.

  10. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection.

    PubMed

    Hodáková, Júlia; Preisler, Jan; Foret, František; Kubáň, Petr

    2015-04-24

    A new sensitive capillary electrophoretic method with laser-induced fluorescence (LIF) was developed for quantitation of glutathione (GSH) in biological samples. Eosin-5-maleimide was used to label the GSH molecule and the formed conjugate was separated in a 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid electrolyte at pH 7.0 in less than 3 min. The conjugate was detected with an in-house built LIF system, utilizing an inexpensive 515 nm diode laser module. Studies were performed to optimize the derivatization (the ratio of reagent to analyte, the reaction time, pH, etc.) and separation conditions. Sensitive detection of GSH at concentrations as low as 0.18 nM was obtained. The method was applied in the analysis of biological fluids (exhaled breath condensate, saliva) and was found to be suitable for determination of GSH in these samples at trace levels below 1 nM. To the best of our knowledge, this is the first report on determination of GSH in exhaled breath condensate by capillary electrophoresis (CE).

  11. Reaction mechanism of Escherichia coli cystathionine gamma-synthase: direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent gamma-elimination and gamma-replacement reactions.

    PubMed

    Brzović, P; Holbrook, E L; Greene, R C; Dunn, M F

    1990-01-16

    Cystathionine gamma-synthase catalyzes a pyridoxal phosphate dependent synthesis of cystathionine from O-succinyl-L-homoserine (OSHS) and L-cysteine via a gamma-replacement reaction. In the absence of L-cysteine, OSHS undergoes an enzyme-catalyzed, gamma-elimination reaction to form succinate, alpha-ketobutyrate, and ammonia. Since elimination of the gamma-substituent is necessary for both reactions, it is reasonable to assume that the replacement and elimination reaction pathways diverge from a common intermediate. Previously, this partitioning intermediate has been assigned to a highly conjugated alpha-iminovinylglycine quininoid (Johnston et al., 1979a). The experiments reported herein support an alternative assignment for the partitioning intermediate. We have examined the gamma-replacement and gamma-elimination reactions of cystathionine gamma-synthase via rapid-scanning stopped-flow and single-wavelength stopped-flow UV-visible spectroscopy. The gamma-elimination reaction is characterized by a rapid decrease in the amplitude of the enzyme internal aldimine spectral band at 422 nm with a concomitant appearance of a new species which absorbs in the 300-nm region. A 485-nm species subsequently accumulates in a much slower relaxation. The gamma-replacement reaction shows a red shift of the 422-nm peak to 425 nm which occurs in the experiment dead time (approximately 3 ms). This relaxation is followed by a decrease in absorbance at 425 nm that is tightly coupled to the appearance of a species which absorbs in the 300-nm region. Reaction of the substrate analogues L-alanine and L-allylglycine with cystathionine gamma-synthase results in bleaching of the 422-nm absorbance and the appearance of a 300-nm species. In the absence of L-cysteine, L-allylglycine undergoes facile proton exchange; in the presence of L-cysteine, L-allylglycine undergoes a gamma-replacement reaction to form a new amino acid, gamma-methylcystathionine. No long-wavelength-absorbing species

  12. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  13. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  14. Quinoprotein-catalysed reactions.

    PubMed Central

    Anthony, C

    1996-01-01

    This review is concerned with the structure and function of the quinoprotein enzymes, sometimes called quinoenzymes. These have prosthetic groups containing quinones, the name thus being analogous to the flavoproteins containing flavin prosthetic groups. Pyrrolo-quinoline quinone (PQQ) is non-covalently attached, whereas tryptophan tryptophylquinone (TTQ), topaquinone (TPQ) and lysine tyrosylquinone (LTQ) are derived from amino acid residues in the backbone of the enzymes. The mechanisms of the quinoproteins are reviewed and related to their recently determined three-dimensional structures. As expected, the quinone structures in the prosthetic groups play important roles in the mechanisms. A second common feature is the presence of a catalytic base (aspartate) at the active site which initiates the reactions by abstracting a proton from the substrate, and it is likely to be involved in multiple reactions in the mechanism. A third common feature of these enzymes is that the first part of the reaction produces a reduced prosthetic group; this part of the mechanism is fairly well understood. This is followed by an oxidative phase involving electron transfer reactions which remain poorly understood. In both types of dehydrogenase (containing PQQ and TTQ), electrons must pass from the reduced prosthetic group to redox centres in a second recipient protein (or protein domain), whereas in amine oxidases (containing TPQ or LTQ), electrons must be transferred to molecular oxygen by way of a redox-active copper ion in the protein. PMID:9003352

  15. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  16. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  17. Adverse reactions to cosmetics.

    PubMed

    Gendler, E

    1987-06-01

    Adverse reactions to cosmetics can be irritant or allergic and are most often caused by fragrances or preservatives. Preservatives include formaldehyde, formaldehyde releasers, and parabens. Other agents that cause allergy are paraphenylenediamine in hair dyes and toluene sulfonamide formaldehyde resin in nail polishes.

  18. A Principal's Reaction

    ERIC Educational Resources Information Center

    Zaretsky, Lindy

    2004-01-01

    This article presents a principal's reaction to Catherine Marshall and Michael Ward's article on research on social justice and training for leadership. The author applauds Marshall and Ward's efforts to address what is undoubtedly among the most fundamentally important issues facing principals today. Marshall and Ward illuminate the importance of…

  19. Family reaction to homicide.

    PubMed

    Burgess, A N

    1975-04-01

    This pilot study identifies a two-phased syndrome experienced by families of homicide victims. The crisis phase consists of an acute grief process, including immediate reactions to the homicide, the funeral details, and police investigations. The long-term reorganization phase includes the psychological issues of bereavement and the socio-legal issues of the criminal justice process. PMID:1146971

  20. Reactions to Others' Intimacy.

    ERIC Educational Resources Information Center

    Neufeldt, David E.; Olinger, Evanelle J.

    Research using behavioral measures has indicated that men react less positively to the touch of a same sex individual than women, that both men and women react more positively to the touch of an opposite sex individual than to the touch of a same sex individual, and that men and women do not differ in their reactions to opposite sex touch. This…

  1. Introducing the Wittig Reaction.

    ERIC Educational Resources Information Center

    Armstead, D. E. F.

    1979-01-01

    An experiment is described which provides a simple example of the application of the Wittig reaction to the synthesis of unsaturated compounds. The experiment was designed with British HNC chemistry students in mind, but it is also suitable as a project-type exercise for final year GCE A-level students. (Author/BB)

  2. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  3. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  4. Reaction and Response.

    ERIC Educational Resources Information Center

    Armento, Beverly J.; And Others

    1993-01-01

    Provides a reaction by three economic educators to an article by Raymond C. Miller calling for the elimination of economics. Contends that traditional economics does not necessarily lead to the degradation of the environment. Argues that economics should not promote any set of social values. (CFR)

  5. Reaction Formulation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Reaction formation was studied by Sigmund Freud. This defense mechanism may be related to repression, substitution, reversal, and compensation (or over-compensation). Alfred Adler considered compensation a basic process in his individual psychology. Anna Freud discussed some defense mechanisms, and Bibring, Dwyer, Huntington, and Valenstein…

  6. The aromatic ene reaction

    PubMed Central

    Niu, Dawen; Hoye, Thomas R.

    2014-01-01

    The ene reaction is a pericyclic process in which an alkene having an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here we show efficient aromatic ene reactions in which a thermally generated aryne engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (i) hexadehydro-Diels-Alder (for aryne generation), (ii) intramolecular aromatic ene, and (iii) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multi-stage, reagent- and byproduct-free, single-pot transformations. PMID:24345944

  7. Enantioselective Vinylogous Organocascade Reactions.

    PubMed

    Hepburn, Hamish B; Dell'Amico, Luca; Melchiorre, Paolo

    2016-08-01

    Cascade reactions are powerful tools for rapidly assembling complex molecular architectures from readily available starting materials in a single synthetic operation. Their marriage with asymmetric organocatalysis has led to the development of novel techniques, which are now recognized as reliable strategies for the one-pot enantioselective synthesis of stereochemically dense molecules. In recent years, even more complex synthetic challenges have been addressed by applying the principle of vinylogy to the realm of organocascade catalysis. The key to the success of vinylogous organocascade reactions is the unique ability of the chiral organocatalyst to transfer reactivity to a distal position without losing control on the stereo-determining events. This approach has greatly expanded the synthetic horizons of the field by providing the possibility of forging multiple stereocenters in remote positions from the catalyst's point of action with high selectivity, while simultaneously constructing multiple new bonds. This article critically describes the developments achieved in the field of enantioselective vinylogous organocascade reactions, charting the ideas, the conceptual advances, and the milestone reactions that have been essential for reaching highly practical levels of synthetic efficiency. PMID:27256039

  8. [Ligase chain reaction (LCR)].

    PubMed

    Yamanishi, K; Yasuno, H

    1993-06-01

    Ligase chain reaction (LCR) is a ligation-mediated amplification technique of a target DNA sequence using oligonucleotides and thermostable ligase. LCR is useful for the detection of known DNA sequences and point mutations in a limited amount of DNA. We introduce the principle, development, and protocol of this simple and convenient technique for DNA analysis.

  9. Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780 nm/980 nm Excitation Wavelengths

    NASA Astrophysics Data System (ADS)

    Samir, E.; Shehata, N.; Aldacher, M.; Kandas, I.

    2016-06-01

    Up-conversion is a process of converting low energy light photons to higher energy ones, which can be extensively used in many applications. This paper presents a detailed parametric study of the up-conversion process under different wavelength excitations—780 nm and 980 nm—showing the optical conversion mechanisms that affect the emitted light quantum yield efficiencies. The studied material is erbium-doped β-NaYF4 material, which is one of the most recently studied materials due to its low phonon energy. The studied simulation considers most processes and possible transitions that can take place between Er3+ ions. Einstein coefficients, which are the main parameters that are responsible for the transitions probabilities, are discussed in detail using Judd-Ofelt analysis. In addition, the effect of changing some parametric values is discussed, showing their optimum values that could improve the quantum yield efficiency. This model is very promising, and generic, and can be applied for any host material under any excitation wavelengths by varying the material-dependent parameters.

  10. Photoneutron reactions in astrophysics

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A.

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  11. The photo-Nazarov reaction: scope and application.

    PubMed

    Cai, Shujun; Xiao, Zheming; Shi, Yingbo; Gao, Shuanhu

    2014-07-01

    The reaction conditions and scope of the photo-Nazarov reaction of aryl vinyl ketones were investigated. In contrast to the conventional acid-catalyzed methods, this photolytic electrocyclization proceeds in the neutral or basic conditions. Irradiating substrates bearing various aromatic rings, acid-sensitive groups, cyclohexenyl, cycloheptenyl, and unsaturated pyran with UV-light (254 nm) smoothly yielded hexahydrofluorenones and related structures. This photo-Nazarov reaction could also be applicable to the substrates carrying β-alkyl groups on the enone, which gave corresponding polycyclic rings containing quaternary centers. These photo-electrocyclized products may prove useful for synthesizing a variety of natural products and their derivatives. Further application of this mild photo-Nazarov reaction in the synthesis of taiwaniaquinol B was achieved. PMID:24920398

  12. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen II: Deuterated reaction studies.

    PubMed

    Wonderly, William R; Anderson, David T

    2014-09-11

    It is difficult to determine whether the measured rate constant for reaction of atomic hydrogen with formic acid reported in Part 1 reflects the H atom quantum diffusion rate or the rate constant for the tunneling reaction step. In Part 2 of this series, we present kinetic studies of the postphotolysis H atom reactions with deuterated formic acid (DCOOD) to address this ambiguity. Short duration 193 nm in situ photolysis of DCOOD trapped in solid parahydrogen results in partial depletion of the DCOOD precursor and photoproduction of primarily CO, CO2, DOCO, HCO and mobile H atoms. At 1.9 K we observe post-irradiation growth in the concentrations of DOCO and HCO that can be explained by H atom tunneling reactions with DCOOD and CO, respectively. Conducting experiments with different deuterium isotopomers of formic acid (DCOOD, DCOOH, HCOOD and HCOOH) provides strong circumstantial evidence the reaction involves H atom abstraction from the alkyl group of formic acid. Further, the anomalous temperature dependence measured for the H + HCOOH reaction in Part 1 is also observed for the analogous reactions with deuterated formic acid. The rate constants extracted for H atom reactions with DCOOD and HCOOH are equivalent to within experimental uncertainty. This lack of a kinetic isotope effect in the measured rate constant is interpreted as evidence the reactions are diffusion limited; the measured rate constant reflects the H atom diffusion rate and not the tunneling reaction rate. Whether or not H atom reactions with chemical species in solid parahydrogen are diffusion limited is one of the outstanding questions in this field, and this work makes significant strides toward showing the reaction kinetics with formic acid are diffusion limited.

  13. Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials.

    PubMed

    Watts, D C; Cash, A J

    1994-04-01

    The penetration of visible light into dental biomaterials is an essential factor in photoinitiation of setting reactions and in the optical aspects of dental aesthetics. Light of visible blue wavelengths, 400-500 nm, has been applied at normal angles to 0.2-5.0 mm sections of human dentine and representative ceramic, polymerceramic composites and hybrid glass-polyalkenoate materials. The integrated optical transmission has been determined for each material section. The data have been converted to absorbance values and analysed to check for mathematical conformity to the Beer-Lambert Law. It is found that conformity (typically, P < 0.01) to the linear Beer-Lambert Law is only attained by making a substantial correction for the intensity of light reflected from the surface of aesthetic biomaterials. This is otherwise expressed by distinguishing between true and apparent absorbance. From linear regression of apparent absorbance with section thickness, the intercept depends upon the logarithm of the surface-reflection ratio. This factor ranges from 30% to 90% in the materials investigated. It follows that there is a high degree of inefficiency in the transmission of visible light into and through aesthetic biomaterials for the purposes of photoactivation using existing technology. Means by which this limitation and inefficiency may be reduced are discussed. While the reflectivity of aesthetic biomaterials has been perceived by dental practitioners, the magnitude of this effect and its implications in connection with light-cured materials have not been analysed and emphasized hitherto. PMID:8195476

  14. Photodissociation of 2, 4, 6-trinitrotoluene with a Nd:YAG laser at 532nm

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shen, Ruiqi; Ye, Yinghua; Wu, Lizhi; Hu, Yan; Zhu, Peng

    2015-05-01

    2, 4, 6-Trinitrotoluene (TNT) belongs to the group of aromatic nitro compounds which have extended use in industrial applications, in particular as explosives or additives to explosives. Understanding the initial step of laser induced decomposition of common explosives is important to the reliability and safety of laser initiators and firing systems. Lasers coupled with mass spectrometer find wide application in photochemical studies for identification of different ions formed due to photoexcitation/ionization of molecules by laser. In this paper, a pulsed Nd: YAG (15ns, 532nm) laser was used for ionizating the condensed TNT sample, and the ions produced in the ionization process were detected by a time of flight mass spectrometer (TOFMS). The influence of laser fluence and the delay time to the decomposition was also studied. According to the assignment of both positive and negative ions, possible laser induced dissociation pathways were proposed. The results may tell much about the initiation process and the chemical reaction that may occur in TNT when exposed to laser pulse.

  15. Product channels in the 193-nm photodissociation of HCNO (fulminic acid)

    NASA Astrophysics Data System (ADS)

    Feng, Wenhui; Hershberger, John F.

    2016-06-01

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 193 nm. Six product channels are energetically possible at this photolysis wavelength: O + HCN, H + NCO/CNO, CN + OH, CO + NH, NO + CH and HNCO. In some experiments, isotopically labeled 15N18O, C2D6 or C6H12 reagents were included into the photolysis mixture in order to suppress and/or redirect possible secondary reactions. HCN, OC18O, 15N15NO, CO, DCN and HNCO molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ1a (O + HCN) = 0.38 ± 0.04, ϕ1b (H + (NCO)) = 0.07 ± 0.02, ϕ1c (CN + OH) = 0.24 ± 0.03, ϕ1d (CO + NH(a1Δ)) < 0.22 ± 0.1, ϕ1e (HNCO) = 0.02 ± 0.01 and ϕ1f (CH + NO) = 0.21 ± 0.1, respectively.

  16. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    A review covers the industrial applications of the water-gas shift reaction in hydrogen manufacturing, removing CO from ammonia synthesis feeds, and detoxifying town gas; and the catalyst characteristics, reaction kinetics, and reaction mechanisms of the water-gas shift reactions catalyzed by iron-based, copper-based, or sulfided cobalt-molybdenum catalysts.

  17. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  18. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  19. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    NASA Astrophysics Data System (ADS)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  20. UV spectroscopy of Titan's atmosphere, planetary organic chemistry and prebiological synthesis. II - Interpretation of new IUE observations in the 220-335 nm range

    NASA Technical Reports Server (NTRS)

    Courtin, Regis; Wagener, Richard; Mckay, Christopher P.; Caldwell, John; Fricke, Karl-Heinrich

    1991-01-01

    The theoretical model developed by McKay et al. (1989) to characterize the size distribution, thermal structure, and chemical composition of the stratospheric haze of Titan is applied to new 220-335-nm albedo measurements obtained with the long-wavelength prime camera of the IUE during August 1987. Data and model predictions are presented in extensive graphs and discussed in detail. It is shown that a simple model with particles of one size at a given altitude does not accurately reproduce the observed features in all spectral regions, but that good general agreement is obtained using a model with a uniformly mixed layer at 150-600 km and a bimodal distribution of small 'polymer' haze particles (radius less than 20 nm) and larger haze particles (radius 100-500 nm). The number densities implied by this model require, however, a mechanism such as electrostatic charging or reaction kinetics to inhibit coagulation of the smaller particles.

  1. Fabrication of 20 nm embedded longitudinal nanochannels transferred from metal nanowire patterns

    NASA Technical Reports Server (NTRS)

    Choi, D.; Yang, E. H.

    2003-01-01

    bstract we describe a technique for fabricating nanometer-scale channels embedded by dielectric materials. Longitudinal 'embedded ' nanochannels with an opening size 20 nm x 80 nm have been successfully fabricated on silicon wafer by transferring sacrificial nanowire structures.

  2. 75 FR 11194 - Notice of Filing of Plats of Survey, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ..., for Group 1096 NM. The plat representing the dependent resurvey and survey, in Township 11 ] South, Range 22 East, of the New Mexico Principal Meridian, accepted January 15, 2010, for Group 1096 NM. If...

  3. Plasmonic harvesting of light energy for Suzuki coupling reactions.

    PubMed

    Wang, Feng; Li, Chuanhao; Chen, Huanjun; Jiang, Ruibin; Sun, Ling-Dong; Li, Quan; Wang, Jianfang; Yu, Jimmy C; Yan, Chun-Hua

    2013-04-17

    The efficient use of solar energy has received wide interest due to increasing energy and environmental concerns. A potential means in chemistry is sunlight-driven catalytic reactions. We report here on the direct harvesting of visible-to-near-infrared light for chemical reactions by use of plasmonic Au-Pd nanostructures. The intimate integration of plasmonic Au nanorods with catalytic Pd nanoparticles through seeded growth enabled efficient light harvesting for catalytic reactions on the nanostructures. Upon plasmon excitation, catalytic reactions were induced and accelerated through both plasmonic photocatalysis and photothermal conversion. Under the illumination of an 809 nm laser at 1.68 W, the yield of the Suzuki coupling reaction was ~2 times that obtained when the reaction was thermally heated to the same temperature. Moreover, the yield was also ~2 times that obtained from Au-TiOx-Pd nanostructures under the same laser illumination, where a 25-nm-thick TiOx shell was introduced to prevent the photocatalysis process. This is a more direct comparison between the effect of joint plasmonic photocatalysis and photothermal conversion with that of sole photothermal conversion. The contribution of plasmonic photocatalysis became larger when the laser illumination was at the plasmon resonance wavelength. It increased when the power of the incident laser at the plasmon resonance was raised. Differently sized Au-Pd nanostructures were further designed and mixed together to make the mixture light-responsive over the visible to near-infrared region. In the presence of the mixture, the reactions were completed within 2 h under sunlight, while almost no reactions occurred in the dark.

  4. Sum frequency generation of UV laser radiation at 266  nm in LBO crystal.

    PubMed

    Nikitin, D G; Byalkovskiy, O A; Vershinin, O I; Puyu, P V; Tyrtyshnyy, V A

    2016-04-01

    We report experimental results of generation at 266 nm in LBO crystal by frequency mixing of the fundamental (1064 nm) and third harmonic (355 nm) of ytterbium pulsed fiber laser radiation. Deep ultraviolet (DUV) output power of 3.3 W at 266 nm was achieved with 14% IR-to-DUV conversion efficiency. UV-induced bulk degradation of LBO crystals was observed and visualized by the dark field method. PMID:27192312

  5. Preliminary report: comparison of 980-nm, 808-nm diode laser enhanced with indocyanine green to the Nd:YAG laser applied to equine respiratory tissue

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Blikslager, Anthony T.; Campbell, Nigel B.

    2001-05-01

    The Neodynium: Yttrium Aluminum Garnet (Nd:YAG) laser has been the mainstay of performing upper respiratory laser surgery in the equine since 1984. The 808-nm diode laser has also been applied transendoscopically as well as the 980-nm diode laser over recent years. It has been shown that Indocyanine Green (ICG) enhances the performance of the 808- nm laser because it is absorbed at 810 nm of light. The 808- nm laser's tissue interaction combined with ICG is equivalent to or greater than the Nd:YAG laser's cutting ability. The 980-nm diode laser performance was similar to that of the Nd:YAG as determined by the parameters of this study. This study compared the depths and widths of penetration achieved with the 808-nm diode laser after intravenous injection of ICG on equine respiratory tissue. It also compared depths and widths of penetration achieved by the non-contact application of the 980-nm diode laser delivering the same energy of 200 joules. The depths and widths of penetration of both diode lasers were compared to themselves and to the Nd:YAG laser with all factors remaining constant.

  6. RET-compliant cell generation for sub-130-nm processes

    NASA Astrophysics Data System (ADS)

    Torres, Juan Andres; Chow, David; de Dood, Paul; Albers, Daniel J.

    2002-07-01

    The use of Resolution Enhancement Technologies (RET) is becoming mainstream for sub-wavelength lithography processes. Optical tools will not likely meet the process requirements for sub-130nm designs on their own. Different RET are being explored and in some cases, heavily used in order to improve the process window of sub-wavelength imaging. Model-based OPC, sub-resolution assist feature and phase shift masks are some of the most common RET Methods used to achieve production-worthy imaging. Every RET has its own limitations and advantages for every specific one. Some designs will not be able to be subjected to a specific RET because the layout is not friendly to it. Manual redesign of such layouts becomes intractable for very complex design with multiple cell attractive from the process integration point of view. By analysis standard cell libraries from an RET compliance attractive from the process integration point of view. By analysis standard cell libraries from an RET compliance perspective, it is possible to envision a methodology that can find the most RET-friendly design while maintaining the functional specification of every cell. This investigation focuses on sub-resolution assist features, alternating phase shift masks and double dipole. For most common RET approaches, minimum spacing, placement, width and feature geometry can be extracted from the RET compliance analysis. Later, a set of enhanced design rules that incorporate RET specific constraints is used to re-derive the optimal feature arrangement within the cells, until the cell meets the level of RET compliance defined by the user. Eventually, the process can be extended to ful layout compliance when all the interactions between individual cells is accounted for, and modified accordingly. The advantage of having RET compliant cell sis that during lace and route, the use can concentrate on optimizing global placement parameters instead of focusing on each individual cell. The final results will

  7. Effects of nanophase materials (< or = 20 nm) on biological responses.

    PubMed

    Cheng, Meng-Dawn

    2004-01-01

    Nanophase materials have enhanced properties (thermal, mechanical, electrical, surface reactivity, etc.) not found in bulk materials. Intuitively, the enhancement of material properties could occur when the materials encounter biological specimens. Previous investigations of biological interactions with nanometer-scale materials have been very limited. With the ability to manipulate atoms and molecules, we now can create predefined nanostructures with unprecedented precision. In parallel with this development, improved understanding of the biological effects of the nanophase materials, whatever those may be, should also deserve attention. In this study, we have applied precision aerosol technology to investigate cellular response to nanoparticles. We used synthetic nanoparticles generated by an electrospray technique to produce nanoparticles in the size range of 8-13 nm with practically monodispersed aerosol particles and approximately the same number concentration. We report here on the potency of nano-metal particles with single or binary chemical components in eliciting interleukin-8 (IL-8) production from epithelial cell lines. For single-component nanoparticles, we found that nano-Cu particles were more potent in IL-8 production than nano-Ni and nano-V particles. However, the kinetics of IL-8 production by these three nanoparticles was different, the nano-Ni being the highest among the three. When sulfuric acid was introduced to form acidified nano-Ni particles, we found that the potency of such binary-component nanoparticles in eliciting IL-8 production was increased markedly, by about six times. However, the acidified binary nano-Na and -Mg nanoparticles did not exhibit the same effects as binary nano-Ni particles did. Since Ni, a transition metal, could induce free radicals on cell surfaces, while Na and Mg could not, the acidity might have enhanced the oxidative stress caused by radicals to the cells, leading to markedly higher IL-8 production. This result

  8. Subcomponent self-assembly of a 4 nm M4 L6 tetrahedron with Zn(II) vertices and perylene bisimide dye edges.

    PubMed

    Frischmann, Peter D; Kunz, Valentin; Stepanenko, Vladimir; Würthner, Frank

    2015-02-01

    Formation of a tetrahedron with >4 nm perylene bisimide (PBI) dye edges and Zn(II) vertices in a one-pot 22 component self-assembly reaction is reported. The luminescent polyhedron equilibrates to a Zn2 L3 helicate and disassembles upon dilution. Insights into the subcomponent self-assembly of extended PBI ligands help to refine design rules for constructing large photofunctional metallosupramolecular hosts.

  9. Photochromic reaction of the diarylethene derivative on Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryoji; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2015-03-01

    We have studied the photochromic reaction of the diarylethene derivative on Au nanoparticles using the incoherent excitation as a function of the wavelength of the irradiation light with the aim to clarify the effect of metal nanoparticles on the reaction yield. The photochemical reaction was suppressed by the Au nanoparticles under the irradiation of light whose wave length was shorter than 700 nm, while photochemical reaction was enhanced by the irradiation of light whose wavelength was longer than 750 nm via two-photon absorption process. The suppression of the photochemical reaction could be explained by the quenching of the excited state via radiative and non-radiative decay through energy or charge transfer to the metal substrate (e.g. electron-hole pair formation, surface plasmon excitation, formation of induced-dipole induced-dipole coupling), and the absorption of light by the Au nanoparticle. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  10. Hydrothermal Reaction of Silica Sand Contains Some Impurities with Lime

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu; Ishida, E. Hideki

    2006-05-01

    Tobermorite and xonotolite are the representative of calcium silicate materials and many studies have been made in the past regarding the methods of synthesis from relatively highly purified starting materials. From the point of preserving the global environment, procurement of pure raw materials for industrial use is likely to become difficult in the future, and the recycled use of various waste materials cannot be avoided. The hydrothermal reaction of slaked lime and silica sand containing feldspar and clay minerals as impurities have investigated. It was found that the flexural strength of the solidified bodies increased with increasing treatment temperature and treatment time, reaching values of up to 20MPa which was enough for building material and was proportional to the amount of reaction products but independent of their type. Hydrogarnet and C-S-H were formed in the initial stages of reaction and the amount of these phases tended to decrease and 1.1 nm tobermorite formed as the reaction progressed further. This indicates that hydrogarnet and C-S-H are precursors of 1.1 nm tobermorite. In this hydrothermal process, it was clarified that the reaction was controlled by the diffusion of Si fraction from kinetic study.

  11. Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1992-01-01

    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM.

  12. New optional photodynamic therapy laser wavelength for infantile port wine stains: 457 nm

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zuo, Zhaohui; Gu, Ying; Huang, Naiyan; Chen, Rong; Li, Buhong; Qiu, Haixia; Zeng, Jing; Zhu, Jianguo; Liang, Jie

    2012-06-01

    To expand the optional laser wavelengths of photodynamic therapy (PDT) for port wine stain (PWS), the feasibility of applying a 457 nm laser to the PDT for infantile PWS was analyzed by mathematical simulation and was validated by clinical experiment. Singlet oxygen yield of 457 nm PDT or 532 nm PDT in an infantile PWS model and an adult PWS model was theoretically simulated. Fifteen PWS patients (14 infants and 1 adult) with 40 spots were treated with 457 nm (20 spots) and 532 nm (20 spots), respectively, in two PDT courses. Simulation results showed that under the same power density and irradiation time, singlet oxygen yield of 457 nm PDT and 532 nm PDT are similar in infantile PWS vessels. Yet, in adult PWS vessels, singlet oxygen yield of 457 nm PDT is lower than 532 nm PDT. Clinical outcomes showed that no statistic difference existed between 457 nm PDT and 532 nm PDT for infantile PWS. The result of this study suggested that 457 nm wavelength laser has the potential to be applied in PDT for infantile PWS.

  13. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhixu; Yao, Chuanfei; Wang, Shunbin; Zheng, Kezhi; Xiong, Liangming; Luo, Jie; Lv, Dajuan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-04-01

    We report enhanced upconversion (UC) fluorescence in Tm3+ doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ˜1050 to ˜2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the 3H4 → 3H6 transition of Tm3+ was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ˜4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  14. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Zhou, P.; Wang, X. L.; Guo, S. F.; Xu, X. J.

    2012-10-01

    In this letter high power monolithic 1018 nm fiber laser and amplifier are presented. The output characteristics of 1018 nm laser with amplified spontaneous emission (ASE) feedback, fiber Bragg gratings (FBG) reflectivity, gain fiber length and other parameters are experimentally investigated. The difference between 1018 and 1064 nm amplification are also compared in experiment. Based on these experimental results, we find viable approaches to improve the laser and amplifier's performances. 85 W 1018 nm fiber laser with a slope efficiency of 71% and 110 W 1018 nm fiber amplifier with the slope efficiency of 77% are achieved, both of which we believe are the highest output at this wavelength that ever reported in open detail.

  15. Fractional Erbium laser in the treatment of photoaging: randomized comparative, clinical and histopathological study of ablative (2940nm) vs. non-ablative (1540nm) methods after 3 months*

    PubMed Central

    Borges, Juliano; Cuzzi, Tullia; Mandarim-de-Lacerda, Carlos Alberto; Manela-Azulay, Mônica

    2014-01-01

    BACKGROUND Fractional non-ablative lasers keep the epidermis intact, while fractional ablative lasers remove it, making them theoretically more effective. OBJECTIVES To evaluate the clinical and histological alterations induced by fractional photothermolysis for treating photoaging, comparing the possible equivalence of multiple sessions of 1540nm Erbium, to one session of 2940nm Erbium. METHODS Eighteen patients (mean age 55.9) completed the treatment with three sessions of 1540nm fractional Erbium laser on one side of the face (50 mJ/mB, 15ms, 2 passes), and one session of 2940nm on the other side (5mJ/mB, 0.25ms, 2 passes). Biopsies were performed before and 3 months after treatment. Clinical, histological and morphometric evaluations were carried out. RESULTS All patients presented clinical improvement with no statistically significant difference (p> 0.05) between the treated sides. Histopathology revealed a new organization of collagen and elastic fibers, accompanied by edema, which was more evident with the 2940nm laser. This finding was confirmed by morphometry, which showed a decrease in collagen density for both treatments, with a statistical significance for the 2940nm laser (p > 0.001). CONCLUSIONS Three 1540nm sessions were clinically equivalent to one 2940nm session. The edema probably contributed to the positive results after three months, togheter with the new collagen and elastic fibers organization. The greater edema after the 2940nm session indicates that dermal remodeling takes longer than with 1540nm. It is possible that this histological superiority relates to a more prolonged effect, but a cohort longer than three months is needed to confirm that supposition. PMID:24770501

  16. Reactions to dietary tartrazine.

    PubMed

    David, T J

    1987-02-01

    Double blind challenges with tartrazine and benzoic acid were performed in hospital in 24 children whose parents gave a definite history of a purely behavioural immediate adverse reaction to one of these substances. The patients, whose ages ranged from 1.6 to 12.4 years, were on a diet that avoided these items, and in all there was a clear history that any lapse of the diet caused an obvious adverse behavioural reaction within two hours. In no patient was any change in behaviour noted either by the parents or the nursing staff after the administration of placebo or active substances. Twenty two patients returned to a normal diet without problems, but the parents of two children insisted on continuing the diet. While popular belief has it that additives may have harmful behavioural effects, objective verification is required to prevent overdiagnosis. PMID:3548601

  17. Dearomatization through Halofunctionalization Reactions.

    PubMed

    Liang, Xiao-Wei; Zheng, Chao; You, Shu-Li

    2016-08-16

    Recent advances in dearomatization through halofunctionalization reactions are summarized in this Minireview. Two general categories of strategies are currently employed in this field. On one hand, the reaction can be initiated with electrophilic halogenation at an alkyne or alkene moiety. The resulting halonium ion intermediate is then captured by a pendant aromatic ring at the ipso position, affording the dearomatization product. On the other hand, electrophilic halogenation can directly take place at a substituted arene, and the final dearomatization product is furnished by deprotonation or intramolecular nucleophilic trap. Highly enantioselective variants have been realized in the latter case by organocatalysis or transition metal catalysis. By applying these methods, various valuable halogenated polycyclic molecular architectures have been obtained from readily available starting materials. PMID:27377184

  18. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  19. Cascade reactions in nanoreactors.

    PubMed

    van Oers, M C M; Rutjes, F P J T; van Hest, J C M

    2014-08-01

    In an attempt to mimic the biosynthetic efficiencies of nature and in a search for greener, more sustainable alternatives to nowadays ways of producing chemicals, one-pot cascade reactions have attracted a lot of attention in the past decade. Since most catalysts are not compatible with each other, compartmentalization techniques have often been applied to prevent catalyst inactivation. A various array of nanoreactors have been developed to meet the demand of having a site-isolated catalyst system, while maintaining the catalyst activity. Both multienzyme nanoreactors as well as enzyme/metal catalyst or organocatalyst systems have shown great potential in one-pot cascade reactions and hold promise for future developments in this field.

  20. Photochemical reaction dynamics

    SciTech Connect

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  1. Simultaneous operations at 1125 nm, 1161 nm, and 1567 nm from a single KTiOPO4 crystal pumped by a passively Q-switched Nd:GGG laser.

    PubMed

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Li, Yufei; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao

    2014-02-01

    A multiwavelength operation generated from an intracavity optical parametric oscillator (OPO) pumped by a passively Q-switched Nd:GGG laser with a Cr(4+):YAG saturable absorber is demonstrated. KTiOPO4 simultaneously worked as nonlinear OPO and Raman crystal. Maximum output powers of 302 mW at 1566.8 nm and 115 mW at 1124.9/1160.7 nm were obtained at a diode power of 10.5 W, corresponding to the optical-to-optical conversion efficiencies of 2.88% and 1.1%, respectively. The measured shortest pulse duration at 1566.8 nm was 1.61 ns, while the obtained minimum pulse duration at 1124.9/1160.7 nm was 2.88 ns. PMID:24487909

  2. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  3. Reaction kinetics of resveratrol with tert-butoxyl radicals

    NASA Astrophysics Data System (ADS)

    Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka

    2012-09-01

    The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.

  4. Reaction dynamics and photochemistry of divalent systems

    SciTech Connect

    Davis, H.F.

    1992-05-01

    Results are presented of molecular beam studies of bimolecular and unimolecular reactions of Ba. Chapter 1 discusses the reaction Ba + NO{sub 2}. Formation of the dominant BaO({sup 1}{Sigma}) + NO products resulted primarily from decay of long-lived Ba{sup +}NO{sub 2}{sup {minus}} collision complexes. Secondary mechanisms led to formation of forward scattered, internally excited BaO, and BaNO + O. D{sub o}(Ba-NO) = 65{plus_minus}20 kcal/mol. Reactions of ground state and electronically excited Ba with water and alcohols are examined in Chapter 2. Reaction of Ba({sup 1}S) + H{sup 2}O led to BaO + H{sub 2}, whereas excited state Ba({sup 1}D) + H{sub 2}O reacted to form BaOH + H. Collisions between Ba and CH{sub 3}OH led to BaOCH{sub 3} + H. Radical channels involve H-atom migration and are promoted by excitation of the incident Ba atom. In Chapter 3, reactions of Ba({sup 1}S) with ClO{sub 2}2 and O{sub 3} are discussed. Again, direct and complex mechanisms were observed. Formation of BaCl + O{sub 2} from decomposition of Ba{sup +}ClO{sub 2}{sup {minus}} accounted for 10% of total reaction crass section. Although Ba + O{sub 3} {yields} BaO + 0{sub 2} occurs primarily by direct reaction mechanisms, the secondary channel Ba + 0{sub 3} {yields} BaO{sub 2} + 0 involved decay of long lived Ba{sup +}O{sub 3}{sup {minus}} intermediates. D{sub o}(Ba{minus}O{sub 2}) = 120 {plus_minus}20 kcal/mol. Photodissociation dynamics of NO{sub 3} is explored in chapter 4. Visible excitation leads to formation of NO + 0{sub 2} and NO{sub 2} + O. Wavelength dependence of branching ratios is investigated. D{sub o}(O-NO{sub 2}) = 48.55 kcal/mole ;and calculate {Delta}H{sub f}(NO{sub 3}) = 17.75 kcal/mole (298K). Chapter 5 discusses the photodissociation of OClO in a molecular beam. Although ClO({sup 2}II) + O({sup 3}P) is dominant, Cl({sup 2}P) + O{sub 2} also forms, with a max yield of 3.9{plus_minus}0.8% near 404nm.

  5. Thin film reactions on alloy semiconductor substrates

    SciTech Connect

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  6. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    NASA Astrophysics Data System (ADS)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  7. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  8. Microwave kinetic spectroscopy of reaction intermediates: O+ethylene reaction at low pressure

    NASA Astrophysics Data System (ADS)

    Endo, Yasuki; Tsuchiya, Soji; Yamada, Chikashi; Hirota, Eizi; Koda, Seiichiro

    1986-10-01

    A microwave spectroscopic method has been developed to study elementary reactions in real time through in situ observation of rotational spectra of reaction intermediates such as free radicals with lifetime as short as 1 ms. This method was applied to the O(3P)+ethylene reaction in order to assess the roles of (a) vinoxy+H and (b) CH3+CHO channels in the initial process. The reaction was initiated by irradiating an N2O/C2H4 mixture containing a trace amount of mercury with the 253.7 nm mercury resonance line, and the time evolution of vinoxy, HCO, and H2CO was followed by measuring their microwave absorption intensities as functions of time. The branching ratio was thus determined to be 0.4±0.1 and 0.5±0.1 for (a) and (b), respectively, at the sample pressure of 30 mTorr. The present result agrees with those obtained by Hunziker et al. [J. Photochem. 17, 377 (1981)] using much higher pressures of samples, but is not compatible with the observation of Buss et al. [J. Photochem. 17, 389 (1981)] that (a) is dominant in collision-free conditions.

  9. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    PubMed Central

    Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  10. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals-A Literature Overview.

    PubMed

    Saydjari, Yves; Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  11. Effect of Substrate Character on Heterogeneous Ozone Reaction Rate with Individual PAHs and Their Reaction Mixtures

    NASA Astrophysics Data System (ADS)

    Holmen, B. A.; Stevens, T.

    2009-12-01

    Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dp<100nm), which are more toxic than larger particles and are linked to adverse health problems, including respiratory and cardiac disease. Once emitted into the atmosphere, particle-bound PAHs can undergo “aging” reactions with oxidants, such as ozone, to form more polar species. These polar reaction products include species such as quinones that can be more toxic than the parent PAH compounds. Here, 0.4ppm ozone was reacted over a 24-hour period with the 16 EPA priority PAHs plus coronene adsorbed to (i) a quartz fiber filter and (ii) NIST diesel PM. The difference in the PAH/O3 heterogeneous reaction rate resulting from the two substrates will be discussed. The experiments were completed by spiking a known PAH mixture to the solid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.

  12. Blockade of extracellular NM23 or its endothelial target slows breast cancer growth and metastasis

    PubMed Central

    Yokdang, Nucharee; Nordmeier, Senny; Speirs, Katie; Burkin, Heather R.; Buxton, Iain L. O.

    2015-01-01

    Background Nucleoside Diphosphate Kinase (NDPK), described as NM23 a metastasis suppressor, is found in the culture medium of cancer cells lines suggesting that the kinase may have an extracellular role. We propose that extracellular NM23 released from breast cancers in vivo stimulates tumor cell migration, proliferation and endothelial cell angiogenesis in support of metastasis development. Methods NM23 in the bloodstream of immunocompromised mice carrying human triple-negative breast cancers or in breast cancer patients was measured by ELISA. Primary and metastatic tumor development, the impact of blockade of NM23 and/or its stimulation of nucleotide receptors were measured using in vivo imaging. NM23 expression data in the Curtis breast dataset was examined to test our hypothesis that NM23 may play a mechanistic role in breast cancer development. Results SCID mice carrying metastatic MDA-MB-231Luc+ triple-negative human breast tumor cells elaborate NM23 into the circulation correlated with primary tumor growth. Treatment of mice with the NM23 inhibitor ellagic acid (EA) or the purinergic receptor antagonist MRS2179 slowed primary tumor growth. At 16 weeks following implantation, lung metastases were reduced in mice treated with EA, MRS2179 or the combination. Expression of NM23 in the Curtis breast dataset confirmed a likely role for NM23 in tumor metastasis. Conclusions Extracellular NM23 may constitute both a biomarker and a therapeutic target in the management of breast cancer. PMID:26413311

  13. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  14. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.

    PubMed

    Li, Bo; Zhang, Yuxin; Zou, Rujia; Wang, Qian; Zhang, Bingjie; An, Lei; Yin, Fei; Hua, Yingqi; Hu, Junqing

    2014-04-28

    Photothermal therapy (PTT) is limited by unsuitable photothermal agents and near-infrared (NIR) light. Herein, self-assembled PEGylated WO3-x hierarchical nanostructures, which could serve as excellent laser-cavity mirrors, were successfully prepared via a simple one-pot solvothermal route. The as-prepared WO3-x hierarchical nanostructures displayed strong near-infrared absorption. The absorption of pure water at 980 nm is 30 times higher than that at 915 nm, and the temperature of water only increased by 3.4 °C under the irradiation of a 915 nm laser with a power density of 1.0 W cm(-2) for 10 min, while the temperature of water increased as much as 15.1 °C for the 980 nm laser. With continuous excitation by 915 nm light, the photothermal conversion efficiency of these WO3-x hierarchical nanostructures was evaluated to be 28.1%. Thus, the WO3-x hierarchical nanostructures could serve as excellent laser-cavity mirrors of a 915 nm laser. The PTT study on cancer cells in vivo demonstrated that the WO3-x hierarchical nanostructures can generate enough heat for efficient photothermal therapy of cancer cells under the irradiation of a 915 nm laser with a power density of 1.2 W cm(-2) over a short period (5-10 min).

  15. Analysis of a photosensitive lesion induced by sunlamp UV greater than 315 nm exposure of 254-nm-irradiated human cells.

    PubMed

    Rosenstein, B S

    1988-11-01

    Normal human skin fibroblasts were exposed to 0-10 J m-2 of 254 nm UV, incubated 0-16 h and then treated with 0-150 kJ m-2 of sunlamp UV greater than 315 nm. For each treatment, the cells were subjected to alkaline elution in order to measure the yield of single strand breaks (ssb) produced. It was found that treatment of 254-nm-irradiated cells with sunlamp UV greater than 315 nm resulted in the production of a higher level of ssb than that produced by separate exposures. Hence, lesions are produced by the 254 nm irradiation that are photolyzed through exposure to sunlamp UV greater than 315 nm. Approximately 50% of these lesions are removed following a 2-4 h incubation of the 254-nm-irradiated cells and nearly complete removal is achieved by 16 h. In addition, the profiles for elutions performed at pH 12.8 with cells exposed to the combined treatment were indicative of the presence of alkali labile sites. The repair kinetics of this lesion and alkaline lability of the photolysis product suggest that this photosensitive lesion may represent pyrimidine(6-4)pyrimidone photoproducts. Hence, this approach may represent a relatively simple and sensitive assay for the measurement of this DNA damage.

  16. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    NASA Astrophysics Data System (ADS)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2016-07-01

    We report the preparation of narrow-linewidth 637.2 nm laser device by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding optical-optical conversion efficiency is 38.0%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  17. Sub-15nm patterning technology using directed self-assembly on nano-imprinting guide

    NASA Astrophysics Data System (ADS)

    Morita, Seiji; Kanno, Masahiro; Yamamoto, Ryousuke; Sasao, Norikatsu; Sugimura, Shinobu

    2016-04-01

    In next generation lithography to make sub-15nm pattern, Directed self-assembly (DSA) and Nano-imprint lithography (NIL) are proposed. The current DSA process is complicated and it is difficult to decrease width and line edge roughness of a guide pattern for sub-15nm patterning. In the case of NIL, it is difficult to make the master template having sub- 15nm pattern. This paper describes cost-effective lithography process for making sub-15nm pattern using DSA on a guide pattern replicated by Nano-imprinting (NIL + DSA). Simple process for making sub-15nm pattern is proposed. The quartz templates are made and line/space patterns of half pitch (hp) 12nm and hp9.5nm are obtained by NIL + DSA.

  18. A near-Infrared Fluorescent Chemodosimeter for Ratiometric Detecting Fluoride Based on Desilylation Reaction.

    PubMed

    Xie, Puhui; Guo, Fengqi; Gao, Guangqin; Fan, Wei; Yang, Guoyu; Xie, Lixia

    2016-09-01

    A new chemodosimeter based on dicyanomethylene-4H-chromene chromophore (probe 1) was developed as a ratiometric fluorescent probe in near-infrared range for F(-) with good selectivity in acetonitrile. Probe 1 could be used to directly visualize F(-) by the naked eye and showed more than 621-fold fluorescence enhancement at 715 nm upon reaction with F(-) upon excitation at 625 nm. The recognition of probe 1 to fluoride was featured by F(-)-induced red-shifts of both absorption (185 nm) and fluorescence peaks (132 nm) based on internal charge transfer (ICT) in acetonitrile. The desilylation reaction of 1 by F(-) was proposed for its dual absorption and emission ratiometric detection of fluoride. PMID:27365125

  19. Reactions of Pseudomonas aeruginosa pyocyanin with reduced glutathione.

    PubMed

    Cheluvappa, Rajkumar; Shimmon, Ronald; Dawson, Michael; Hilmer, Sarah N; Le Couteur, David G

    2008-01-01

    Pseudomonas aeruginosa is the most common cause of chronic and recurrent lung infections in patients with cystic fibrosis (CF) whose sputa contain copious quantities of P. aeruginosa toxin, pyocyanin. Pyocyanin triggers tissue damage mainly by its redox cycling and induction of reactive oxygen species (ROS). The reactions between reduced glutathione (GSH) and pyocyanin were observed using absorption spectra from spectrophotometry and the reaction products analysed by nuclear magnetic resonance imaging. Pyocyanin reacted with GSH non-enzymatically at 37 degrees C resulting in the production of red-brown products, spectophotometrically visible as a 480 nm maximum absorption peak after 24 h of incubation. The reaction was concentration-dependent on reduced glutathione but not on pyocyanin. Minimizing the accessibility of oxygen to the reaction decreased its rate. The anti-oxidant enzyme catalase circumvented the reaction. Proton-NMR analysis demonstrated the persistence of the original aromatic ring and the methyl-group of pyocyanin in the red-brown products. Anti-oxidant agents having thiol groups produced similar spectophotometrically visible peaks. The presence of a previously unidentified non-enzymatic GSH-dependent metabolic pathway for pyocyanin has thus been identified. The reaction between pyocyanin and GSH is concentration-, time-, and O(2)-dependent. The formation of H(2)O(2) as an intermediate and the thiol group in GSH seem to be important in this reaction. PMID:18797520

  20. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed

    Sipka, Gábor; Maróti, Péter

    2016-01-01

    Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1-2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH-M160LH-M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from (1)B* to (1)P- (either directly or indirectly by internal conversion from (1)P+) and to the oxidized dimer.