Sample records for nm semiconductor laser

  1. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  2. Efficiency of soft tissue incision with a novel 445-nm semiconductor laser.

    PubMed

    Braun, Andreas; Kettner, Moritz; Berthold, Michael; Wenzler, Johannes-Simon; Heymann, Paul Günther Baptist; Frankenberger, Roland

    2018-01-01

    Using a 445-nm semiconductor laser for tissue incision, an effective cut is expected due to the special absorption properties of blue laser light in soft tissues. The aim of the present study was the histological evaluation of tissue samples after incision with a 445-nm diode laser. Forty soft tissue specimens were obtained from pork oral mucosa and mounted on a motorized linear translation stage. The handpiece of a high-frequency surgery device, a 970-nm semiconductor laser, and a 445-nm semiconductor laser were connected to the slide, allowing a constant linear movement (2 mm/s) and the same distance of the working tip to the soft tissue's surface. Four incisions were made each: (I) 970-nm laser with conditioned fiber tip, contact mode at 3-W cw; (II-III): 445-nm laser with non-conditioned fiber tip, contact mode at 2-W cw, and non-contact mode (1 mm) at 2 W; and (IV): high-frequency surgery device with straight working tip, 90° angulation, contact mode at 50 W. Histological analysis was performed after H&E staining of the embedded specimens at 35-fold magnification. The comparison of the incision depths showed a significant difference depending on the laser wavelength and the selected laser parameters. The highest incision depth was achieved with the 445-nm laser contact mode (median depth 0.61 mm, min 0.26, max 1.17, interquartile range 0.58) (p < 0.05) with the lowest amount of soft tissue denaturation (p < 0.05). The lowest incision depth was measured for the high-frequency surgical device (median depth 0.36 mm, min 0.12, max 1.12, interquartile range 0.23) (p < 0.05). Using a 445-nm semiconductor laser, a higher cutting efficiency can be expected when compared with a 970-nm diode laser and high-frequency surgery. Even the 445-nm laser application in non-contact mode shows clinically acceptable incision depths without signs of extensive soft tissue denaturation.

  3. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  4. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  5. Tunable semiconductor laser at 1025-1095 nm range for OCT applications with an extended imaging depth

    NASA Astrophysics Data System (ADS)

    Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej

    2015-03-01

    Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.

  6. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

  7. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier

  8. Semiconductor cylinder fiber laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp

    2015-12-01

    We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.

  9. Nanocrystal structures

    DOEpatents

    Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  10. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  11. FIBER OPTICS. ACOUSTOOPTICS: Amplification of semiconductor laser radiation in the wavelength range 1.24-1.3 μm by stimulated Raman scattering in an optical fiber

    NASA Astrophysics Data System (ADS)

    Belotitskiĭ, V. I.; Kuzin, E. A.; Ovsyannikov, D. V.; Petrov, Mikhail P.

    1990-07-01

    An investigation was made of the influence of weak semiconductor laser radiation on the spectrum of stimulated Raman scattering in a single-mode optical waveguide pumped by a YAG:Nd3+ laser emitting at 1.06 μm. The scattered radiation power increased by a factor exceeding 10 at the semiconductor laser wavelength. A small-signal dynamic gain reached 47 dB. Simultaneous amplification was observed of several modes of multimode semiconductor laser radiation with an intermode spectral interval of 1.3 nm.

  12. Effect of the waveguide layer thickness on output characteristics of semiconductor lasers with emission wavelength from 1500 to 1600 nm

    NASA Astrophysics Data System (ADS)

    Marmalyuk, A. A.; Ryaboshtan, Yu L.; Gorlachuk, P. V.; Ladugin, M. A.; Padalitsa, A. A.; Slipchenko, S. O.; Lyutetskiy, A. V.; Veselov, D. A.; Pikhtin, N. A.

    2018-03-01

    The effect of the waveguide layer thickness on output characteristics of AlGaInAs/InP quantum-well semiconductor lasers is analysed. The samples of semiconductor lasers with narrow and wide waveguides are experimentally fabricated. Their comparison is carried out and the advantages of particular constructions depending on the current pump are demonstrated.

  13. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  14. White random lasing in mixture of ZnSe, CdS and CdSSe micropowders

    NASA Astrophysics Data System (ADS)

    Alyamani, A. Y.; Leanenia, M. S.; Alanazi, L. M.; Aljohani, M. M.; Aljariwi, A. A.; Rzheutski, M. V.; Lutsenko, E. V.; Yablonskii, G. P.

    2016-03-01

    Room temperature random lasing with white light emission in a mixture of AIIBVI semiconductor powders was achieved for the first time. The scattering gain media was formed by the mixture of closely packed active micron sized crystallites of ZnSe, CdS, CdSSe semiconductors. The micropowders were produced by grinding bulk crystals of each compound. Optical excitation was performed by 10-nanosecond pulses of tuned Ti:Al2O3-laser at 390 nm. The lasing in the mixture of semiconductor powders was achieved simultaneously at four wavelengths in blue, green, yellow and red spectral regions after exceeding the threshold excitation power density. A drastic integral intensity increase, spectrum narrowing and appearance of mode structure accompanied the laser action. ZnSe crystallites produce the laser light at about 460 nm while CdS particles - at about 520 nm. Two types of CdSSe semiconductor micropowders with different sulfur content lase at 580 nm and 660 nm. The threshold excitation power densities for all laser lines in the emission spectrum are approximately the same of about 0.9 MW/cm2. The sum of the emission spectrum of the mixture of the micropowders forms white light with high brightness. Lasing is due to an appearance of random feedback for amplified radiation in the active medium of closely packed light scattering crystallites. The presented results may find their applications for visualization systems, lighting technology, data transmission, medicine as biosensors and in identification systems. The key feature of random lasers is low cost of its production and possibility to be deposited on any type of surface.

  15. Study of the pulse characteristics of semiconductor lasers with a broadened waveguide at low temperatures (110–120 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. A.; Shashkin, I. S.; Bobretsova, Yu. K.

    2016-10-15

    Pulse-pumped MOVPE-fabricated (metal-organic vapor-phase epitaxy) semiconductor lasers emitting in the spectral ranges 1000–1100 and 1400–1600 nm at temperatures of 110–120 K are studied. It is found that cooling the lasers for both spectral ranges to low temperature results in their light–current curves approaching linearity, and an optical power of, respectively, 110 and 20 W can be attained. The low-temperature effect is reduced for lasers emitting in the spectral range 1400–1600 nm. The processes affecting a rise in the internal optical loss in semiconductor lasers are considered. It is shown that an increase in the carrier concentration in the waveguide ofmore » a laser structure greatly depends on temperature and is determined by the noninstantaneous capture (capture rate) of carriers from the waveguide into the active region. It is demonstrated that, upon lowering the temperature to 115K, the concentration of electrons and holes in the waveguide becomes lower, which leads to a significant decrease in the internal optical loss and to an increase in the output optical power of the semiconductor laser.« less

  16. Group III-arsenide-nitride long wavelength laser diodes

    NASA Astrophysics Data System (ADS)

    Coldren, Christopher W.

    Semiconductor laser diodes transmitting data over silica optical fiber form the backbone of modern day communications systems, enabling terabit per second data transmission over hundreds to thousands of kilometers of distance. The wavelength of emission of the transmission semiconductor laser diode is a critical parameter that determines the performance of the communications system. In high performance fiber optic communications systems, lasers emitting at 1300nm and 1550nm are used because of the low loss and distortion properties of the fiber in these spectral windows. The available lasers today that operate in these fiber optic transmission windows suffer from high cost and poor performance under the typical environmental conditions and require costly and unreliable cooling systems. This dissertation presents work that demonstrates that it is possible to make lasers devices with 1300nm laser emission that are compatible with low cost and operation under extreme operating conditions. The key enabling technology developed is a novel semiconductor material based structure. A group III-Arsenide-Nitride quantum well structure was developed that can be grown expitaxially on GaAs substrates. The properties of this group III-Arsenide-Nitride structure allowed high performance edge emitting and vertical cavity surface emitting lasers to be fabricated which exhibited low threshold currents and low sensitivity to operating temperature.

  17. All-semiconductor high-speed akinetic swept-source for OCT

    NASA Astrophysics Data System (ADS)

    Minneman, Michael P.; Ensher, Jason; Crawford, Michael; Derickson, Dennis

    2011-12-01

    A novel swept-wavelength laser for optical coherence tomography (OCT) using a monolithic semiconductor device with no moving parts is presented. The laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) structure exhibiting a single longitudinal mode. All-electronic wavelength tuning is achieved at a 200 kHz sweep repetition rate, 20 mW output power, over 100 nm sweep width and coherence length longer than 40 mm. OCT point-spread functions with 45- 55 dB dynamic range are demonstrated; lasers at 1550 nm, and now 1310 nm, have been developed. Because the laser's long-term tuning stability allows for electronic sample trigger generation at equal k-space intervals (electronic k-clock), the laser does not need an external optical k-clock for measurement interferometer sampling. The non-resonant, allelectronic tuning allows for continuously adjustable sweep repetition rates from mHz to 100s of kHz. Repetition rate duty cycles are continuously adjustable from single-trigger sweeps to over 99% duty cycle. The source includes a monolithically integrated power leveling feature allowing flat or Gaussian power vs. wavelength profiles. Laser fabrication is based on reliable semiconductor wafer-scale processes, leading to low and rapidly decreasing cost of manufacture.

  18. Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser

    NASA Astrophysics Data System (ADS)

    Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa

    2018-02-01

    A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.

  19. High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications

    NASA Astrophysics Data System (ADS)

    Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao

    2012-03-01

    Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.

  20. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  1. Determination of the effective refractive index spectrum of a quantum-well semiconductor laser diode from the measured modal gain spectrum

    NASA Astrophysics Data System (ADS)

    Wu, Linzhang; Tian, Wei; Gao, Feng

    2004-09-01

    This paper presents a self-consistent method to directly determine the effective refractive-index spectrum of a semiconductor quantum-well (QW) laser diode from the measured modal gain spectrum for a given current. The dispersion spectra of the optical waveguide confinement factor and the strongly carrier-density-dependent refractive index of the QW active layer of the test laser are also accurately obtained. The experimental result from a single QW GaInP/AlGaInP laser diode, which has 6 nm thick compressively strained Ga0.4InP active layer sandwiched by two 80 nm thick Al0.33GaInP, is presented.

  2. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.

    PubMed

    Liu, Xin; Lebedkin, Sergei; Besser, Heino; Pfleging, Wilhelm; Prinz, Stephan; Wissmann, Markus; Schwab, Patrick M; Nazarenko, Irina; Guttmann, Markus; Kappes, Manfred M; Lemmer, Uli

    2015-01-27

    Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.

  3. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    PubMed Central

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  4. The changes in the electronic spectra of ascorbic acid induced by laser radiation

    NASA Astrophysics Data System (ADS)

    Danyaeva, J. S.; Kutsenko, S. A.

    2018-04-01

    The results of research the changes in the absorption spectra of aqueous solutions of ascorbic acid under the influence of laser radiation are presented. The solutions were irradiated with the radiation of semiconductor lasers with wavelengths of 408 and 532 nm, YAG: Nd3+ laser with a wavelength of 1064 nm and a nitrogen laser with a wavelength of 337.1 nm. The photoinduced changes in the spectrum are revealed, which indicate the breakage of π -> π bonds in the molecule of ascorbic acid during its destruction.

  5. Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.

    PubMed

    Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki

    2007-09-15

    We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.

  6. Solid-state semiconductor optical cryocooler based on CdS nanobelts.

    PubMed

    Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua

    2014-08-13

    We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.

  7. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    PubMed

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-02

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  8. High-power diode laser modules from 410 nm to 2200 nm

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Kissel, Heiko; Flament, Marco; Wolf, Paul; Brand, Thomas; Biesenbach, Jens

    2010-02-01

    In this work we report on high-power diode laser modules covering a wide spectral range from 410 nm to 2200 nm. Driven by improvements in the technology of diode laser bars with non-standard wavelengths, such systems are finding a growing number of applications. Fields of application that benefit from these developments are direct medical applications, printing industry, defense technology, polymer welding and pumping of solid-sate lasers. Diode laser bars with standard wavelengths from 800 - 1000 nm are based on InGaAlAs, InGaAlP, GaAsP or InGaAs semiconductor material with an optical power of more than 100 W per bar. For shorter wavelengths from 630 - 690 nm InGaAlP semiconductor material is used with an optical power of about 5 W per bar. Extending the wavelength range beyond 1100 nm is realized by using InGaAs on InP substrates or with InAs quantum dots embedded in GaAs for wavelengths up to 1320 nm and (AlGaIn)(AsSb) for wavelengths up to 2200 nm. In these wavelength ranges the output power per bar is about 6 - 20 W. In this paper we present a detailed characterization of these diode laser bars, including measurements of power, spectral data and life time data. In addition, we will show different fiber coupled modules, ranging from 638 nm with 13 W output power (400 μm fiber, NA 0.22) up to 1940 nm with more than 50 W output power (600 μm fiber NA 0.22).

  9. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  10. Blue-green upconversion laser

    DOEpatents

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  11. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  12. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  13. [Dynamic Wavelength Characteristics of Semiconductor Laser in Electric Current Tuning Process].

    PubMed

    Liu, Jing-wang; Li, Zhong-yang; Zhang, Wei-zhong; Wang, Qing-chuan; An, Ying; Li, Yong-hui

    2015-11-01

    In order to measure the dynamic wavelength of semiconductor lasers under current tuning, an improved method of fi- ber delay self-heterodyne interferometer was proposed. The measurement principle, as well the beat frequency and dynamic wavelength of recursive relations are theoretically analyzed. The application of the experimental system measured the dynamic wavelength characteristics of distributed feedback semiconductor laser and the static wavelength characteristics measurement by the spectrometer. The comparison between the two values indicates that both dynamic and static wavelength characteristic with the current tuning are the similar non-linear curve. In 20-100 mA current tuning range, the difference of them is less than 0.002 nm. At the same time, according to the absorption lines of CO2 gas, and HITRAN spectrum library, we can identify the dynamic wavelength of the laser. Comparing it with dynamic wavelength calculated by the beat signal, the difference is only 0.001 nm, which verifies the reliability of the experimental system to measure the dynamic wavelength.

  14. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    semi- conductor lasers, demonstrated here with a spectral linewidth of 18 kHz. Our approach circumvents historical limitations of laser design and it...Oxford 380). To turn the passive resonator into a high-Q hybrid laser, we smooth the waveguide sidewalls to improve Qsc by growing 15 nm of dry thermal ...oxide (oxidation times calculated using the Massoud model). We strip the oxide with HF (Transene Buffer HF- Improved), and regrow 20 nm of dry oxide

  15. Single-mode very wide tunability in laterally coupled semiconductor lasers with electrically controlled reflectivities

    NASA Astrophysics Data System (ADS)

    Griffel, Giora; Chen, Howard Z.; Grave, Ilan; Yariv, Amnon

    1991-04-01

    The operation of a novel multisection structure comprised of laterally coupled gain-guided semiconductor lasers is demonstrated. It is shown that tunable single longitudinal mode operation can be achieved with a high degree of frequency selectivity. The device has a tuning range of 14.5 nm, the widest observed to date in a monolithic device.

  16. Self-injection locked blue laser

    NASA Astrophysics Data System (ADS)

    Donvalkar, Prathamesh S.; Savchenkov, Anatoliy; Matsko, Andrey

    2018-04-01

    We demonstrate a 446.5 nm GaN semiconductor laser with sub-MHz linewidth. The linewidth reduction is achieved by locking the laser to a magnesium fluoride whispering gallery mode resonator characterized with 109 quality factor. Self-injection locking ensures single longitudinal mode operation of the laser.

  17. Hybrid semiconductor fiber lasers for telecommunications

    NASA Astrophysics Data System (ADS)

    Khalili, Alireza

    2006-12-01

    Highly stable edge emitting semiconductor lasers are of utmost importance in most telecommunications applications where high-speed data transmission sets strict limits on the purity of the laser signal. Unfortunately, most edge emitting semiconductor lasers, unlike gaseous or solid-state laser sources, operate with many closely spaced axial modes, which accounts for the observed instability and large spikes in the output spectrum of such lasers. Consequently, in most telecom applications distributed feedback (DFB) or distributed Bragg reflector (DBR) techniques are used to ensure stability and single-frequency operation, further adding to the cost and complexity of such lasers. Additionally, coupling of the highly elliptical output beam of these lasers to singlemode fibers complicates the packaging procedure and sub-micron alignment of various optical components is often necessary. Utilizing the evanescent coupling between a semiconductor antiresonant reflecting optical waveguide (ARROW) and a side polished fiber, this thesis presents an alternative side-coupled laser module that eliminates the need for the cumbersome multi-component alignment processes of conventional laser packages, and creates an inherent mode selection mechanism that guarantees singlemode radiation into the fiber without any gratings. We have been able to demonstrate the first side-coupled fiber semiconductor laser in this technology, coupling more than 3mW of power at 850nm directly into a 5/125mum singlemode fiber. This mixed-cavity architecture yields a high thermal stability (˜0.06nm/°C), and negligible spectral spikes are observed. Theoretical background and simulation results, as well as several supplementary materials are also presented to further rationalize the experimental data. A side-coupled light-emitter and pre-amplifier are also proposed and discussed. We also study different architectures for attaining higher efficiency, higher output power, and wavelength tunability in such lasers. Finally, we discuss possible venues for integration of these side-coupled devices in a telecommunication system. Approved for publication.

  18. A compact semiconductor digital interferometer and its applications

    NASA Astrophysics Data System (ADS)

    Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.

    2015-05-01

    The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.

  19. The intravascular low level laser irradiation (ILLLI) in treatment of psoriasis clinically

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Nie, Fan; Shi, Hong-Min

    2005-07-01

    Objective: The title is research curative effect of intravascular low level laser irradiation (ILLLI) in treatment of psoriasis. Method: 478 patients with psoriasis from five groups to observe their efficacy. Group1 were treated by He-Ne laser combined with drug. Group 2 were treated by semi-conductor laser combined with drug. Group 3 were treated only by He-He laser. Group 4 were treated by semi-conductor laser. Group 5 were treated only by drug. The Ridit statistical analysis was applied to all of these data. The treatment of intravascular low level laser irradiation is as follow: laser power:4-5mw, 1 hour per day and 10 days as a period combined with vit C 2.0 g iv and inhalation of O2. Results: The clinical results: the near efficient rate was 100%, in group1-4, if combined with drugs it would be better. Ridit statistical analysis showed no significant difference between group1-4, p>0.05. The efficient rate 72.97% in group5.There were showed very significant difference with group1-4, p<0.01. 2.There were no significant differences between He-Ne laser (632.8nm) and semiconductor laser(650nm); 3.The efficacy of ILLLI in psoriasis was positive correlation to the ILLLI times. Conclusions: It can improve curative effect of intravascular low levellaser irradiation (ILLLI) in treatment of psoriasis.

  20. New semiconductor laser technology for gas sensing applications in the 1650nm range

    NASA Astrophysics Data System (ADS)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris

    2017-08-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  1. Organization of the Topical Meeting on Tunable Solid State Lasers Held in North Falmouth, Massachusetts on 1-3 May 1989

    DTIC Science & Technology

    1989-08-30

    nm to produce blue light at 455 nm (Figure 1). A 20 Hz doubled Nd:YAG pump laser emitting up to 150 mJ at 532 nm 147 WA4-2 was used to resonantly...pumped by a diode laser, then in addition to the processes of Fig. 1, excited state absorption of the pump light from both 4I13,/z and 4I3112 may be...are visible and UV systems pumped at wavelengths that are available from semiconductor diode lasers and infrared emitting systems having high slope

  2. Low threshold distributed Bragg reflector surface emitting laser diode with semiconductor air-bridge-supported top mirror

    NASA Astrophysics Data System (ADS)

    Hsin, W.; Du, G.; Gamelin, J. K.; Malloy, K. J.; Wang, S.

    1990-03-01

    A surface emitting laser diode (SELD) with two distributed Bragg reflectors (DBR) and semiconductor multilayer air-bridge-supported top mirror is fabricated. A low threshold current of 1.5 mA is achieved under room temperature CW operation. The spectrum shows a strong peak at 891 nm with a FWHM of 10 A. With light emission from the top Bragg reflector instead of from the back side of the substrate, laser arrays are easily formed with this novel structure.

  3. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.

    PubMed

    Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli

    2012-03-12

    The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.

  4. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  5. Frequency-doubled vertical-external-cavity surface-emitting laser

    DOEpatents

    Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.

    2002-01-01

    A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

  6. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    PubMed

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  7. Passively mode-locked pulse generation in a c-cut Nd:LuVO4 laser at 1086 nm with a semiconductor saturable-absorber mirror

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Yang, Pao-Keng; Lin, Wei-Cheng

    2012-04-01

    We demonstrate a diode-pumped passively mode-locked (ML) c-cut Nd:LuVO4 laser with central wavelength at 1086 nm by shifting the reflectance band of the SESAM into a longer wavelength to result in larger loss around 1068 nm. At 15 W absorbed pump power, the highest output power of the ML pulse was about 2.6 W that corresponded to the 17.3% optical-to-optical conversion efficiency and the slope efficiency of laser was about 22.9%. Using our ML laser as the light source, we have also successfully measured the saturation fluence of the SESAM at 1086 nm.

  8. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  9. Picosecond pulsed micro-module emitting near 560 nm using a frequency doubled gain-switched DBR ridge waveguide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther

    2017-02-01

    A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.

  10. Two-state semiconductor laser self-mixing velocimetry exploiting coupled quantum-dot emission-states: experiment, simulation and theory

    PubMed Central

    Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan

    2014-01-01

    We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809

  11. Carbon nanotube mode-locked vertical external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Seger, K.; Meiser, N.; Choi, S. Y.; Jung, B. H.; Yeom, D.-I.; Rotermund, F.; Okhotnikov, O.; Laurell, F.; Pasiskevicius, V.

    2014-03-01

    Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.

  12. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkifli, M Z; Ahmad, H; Hassan, N A

    2011-07-31

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less

  13. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    NASA Astrophysics Data System (ADS)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  14. Inactivation pathogenic microorganisms in water by laser methods

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Grishkanich, Aleksandr; Kascheev, Sergey; Ruzankina, Julia; Afanasyev, Mikhail; Hafizov, Nail

    2017-02-01

    As a result of the research the following methods have been proposed for controlling harmful microorganisms: sterilization of water by laser radiation at wavelengths of 425 nm, 355 nm and 308 nm. The results of theoretical and experimental studies on the development and establishment of a system of ultraviolet disinfection of water for injection (UFOVI) intended for research sterilized water for injections. The pipe created a strong turbulent water flow. Performance irradiation laminar flow of 1.5 liters per second. Irradiation was carried out at three wavelengths 425 nm, 355 nm and 308 nm with energies semiconductor laser diode arrays to 4 MJ / cm3. Wavelength tuning implemented current in the range of 10 nm. For large capacities, we have developed a miniature solid state laser, which was used in fluid microorganisms inactivator. In the water treatment process breaks up to 98% of microbes, but can be left among pathogenic viruses destruction which requires special handling.

  15. Classifying the Basic Parameters of Ultraviolet Copper Bromide Laser

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S. G.; Iliev, I. P.; Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.

    2009-10-01

    The performance of deep ultraviolet copper bromide lasers is of great importance because of their applications in medicine, microbiology, high-precision processing of new materials, high-resolution laser lithography in microelectronics, high-density optical recording of information, laser-induced fluorescence in plasma and wide-gap semiconductors and more. In this paper we present a statistical study on the classification of 12 basic lasing parameters, by using different agglomerative methods of cluster analysis. The results are based on a big amount of experimental data for UV Cu+ Ne-CuBr laser with wavelengths 248.6 nm, 252.9 nm, 260.0 nm and 270.3 nm, obtained in Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences. The relevant influence of parameters on laser generation is also evaluated. The results are applicable in computer modeling and planning the experiments and further laser development with improved output characteristics.

  16. Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers

    NASA Astrophysics Data System (ADS)

    Richter, A.; Pavel, N.; Heumann, E.; Huber, G.; Parisi, D.; Toncelli, A.; Tonelli, M.; Diening, A.; Seelert, W.

    2006-04-01

    We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source.Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.

  17. InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady

    2018-02-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.

  18. Electrically driven deep ultraviolet MgZnO lasers at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit

    Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less

  19. Electrically driven deep ultraviolet MgZnO lasers at room temperature

    DOE PAGES

    Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit; ...

    2017-06-01

    Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less

  20. Bipolar resistive switching in metal-insulator-semiconductor nanostructures based on silicon nitride and silicon oxide

    NASA Astrophysics Data System (ADS)

    Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.

    2018-03-01

    Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.

  1. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-14

    the EOPM (~1 mW) was amplified by injection locking of a high power diode laser and further amplified to ~300 mW with a semiconductor optical ...The spectra of 8 GHz CW phase modulated signals in cascaded injection locking system from (a) master laser ; (b) the first slave, and (c) the second...cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients, Spatial

  2. Laser damage mechanisms in conductive widegap semiconductor films

    DOE PAGES

    Yoo, Jae-Hyuck; Menor, Marlon G.; Adams, John J.; ...

    2016-07-25

    Here, laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN,more » carbon complexes were proposed as potential damage precursors or markers.« less

  3. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  4. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  5. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses ballistic electron beam injection directly into the active region of a wide bandgap semiconductor material.

  6. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    NASA Astrophysics Data System (ADS)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  7. Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm.

    PubMed

    Lagatsky, A A; Fusari, F; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W

    2009-09-01

    We report the first demonstration, to our knowledge, of passive mode locking in a Tm(3+), Ho(3+)-codoped KY(WO(4))(2) laser operating in the 2000-2060 nm spectral region. An InGaAsSb-based quantum well semiconductor saturable absorber mirror is used for the initiation and stabilization of the ultrashort pulse generation. Pulses as short as 3.3 ps were generated at 2057 nm with average output powers up to 315 mW at a pulse repetition frequency of 132 MHz for 1.15 W of absorbed pump power at 802 nm from a Ti:sapphire laser.

  8. Mode-locked Tm,Ho:KLu(WO(4))(2) laser at 2060 nm using InGaSb-based SESAMs.

    PubMed

    Aleksandrov, Veselin; Gluth, Alexander; Petrov, Valentin; Buchvarov, Ivan; Steinmeyer, Günter; Paajaste, Jonna; Suomalainen, Soile; Härkönen, Antti; Guina, Mircea; Mateos, Xavier; Díaz, Francesc; Griebner, Uwe

    2015-02-23

    Passive mode-locking of a Tm,Ho:KLu(WO(4))(2) laser operating at 2060 nm using different designs of InGaAsSb quantum-well based semiconductor saturable absorber mirrors (SESAMs) is demonstrated. The self-starting mode-locked laser delivers pulse durations between 4 and 8 ps at a repetition rate of 93 MHz with maximum average output power of 155 mW. Mode-locking performance of a Tm,Ho:KLu(WO(4))(2) laser is compared for usage of a SESAM to a single-walled carbon nanotube saturable absorber.

  9. Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Zhaojun; Cong, Zhenhua; Shen, Hongbin; Li, Yongfu; Wang, Qingpu; Fang, Jiaxiong; Xu, Xiaodong; Xu, Jun; Zhang, Xingyu

    2015-12-01

    We systematically investigated a laser diode (LD) pumped Nd:GYSO (Nd3+:Gd0.6Y1.4SiO5) laser. The output power of the continuous wave laser was as high as 3.5 W with a slope efficiency of 31.8%. In the Q-switched operation; the laser exhibited dual-wavelengths output (1073.6 nm and 1074.7 nm) synchronously with a Cr4+:YAG as the saturable absorber (SA). Additionally, a passively mode-locked laser was demonstrated using a semiconductor SA mirror with a maximum average output power of 510 mW at a central wavelength of 1074 nm, while the pulse width of the laser was as short as 5 ps. Our experiment proved that the Nd:GYSO mixed crystal was a promising material for a solid-state laser.

  10. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    NASA Astrophysics Data System (ADS)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  11. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  12. Reliable high-power injection locked 6kHz 60W laser for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Hidenori; Komae, Shigeo; Tanaka, Satoshi; Nohdomi, Ryoichi; Yamazaki, Taku; Nakarai, Hiroaki; Fujimoto, Junichi; Matsunaga, Takashi; Saito, Takashi; Kakizaki, Kouji; Mizoguchi, Hakaru

    2007-03-01

    Reliable high power 193nm ArF light source is desired for the successive growth of ArF-immersion technology for 45nm node generation. In 2006, Gigaphoton released GT60A, high power injection locked 6kHz/60W/0.5pm (E95) laser system, to meet the demands of semiconductor markets. In this paper, we report key technologies for reliable mass production GT laser systems and GT60A high durability performance test results up to 20 billion pulses.

  13. Development of optically pumped DBR-free semiconductor disk lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor

    2017-03-01

    Semiconductor disk lasers (SDLs) are attractive for applications requiring good beam quality, wavelength versatility, and high output powers. Typical SDLs utilize the active mirror geometry, where a semiconductor DBR is integrated with the active region by growth or post-growth bonding. This imposes restrictions for the SDL design, like material system choice, thermal management, and effective gain bandwidth. In DBR-free geometry, these restrictions can be alleviated. An integrated gain model predicts DBR-free geometry with twice the gain bandwidth of typical SDLs, which has been experimentally verified with active regions near 1 μm and 1.15 μm. The lift-off and bonding technique enables the integration of semiconductor active regions with arbitrary high quality substrates, allowing novel monolithic geometries. Bonding an active region onto a straight side of a commercial fused silica right angle prism, and attaching a high reflectivity mirror onto the hypotenuse side, with quasi CW pumping at 780 nm, lasing operation was achieved at 1037 nm with 0.2 mW average power at 1.6 mW average pump power. Laser dynamics show that thermal lens generation in the active region bottlenecks the laser efficiency. Investigations on total internal reflection based monolithic ring cavities are ongoing. These geometries would allow the intracavity integration of 2D materials or other passive absorbers, which could be relevant for stable mode locking. Unlike typical monolithic microchip SDLs, with the evanescent wave coupling technique, these monolithic geometries allow variable coupling efficiency.

  14. High temperature heat source generation with quasi-continuous wave semiconductor lasers at power levels of 6 W for medical use.

    PubMed

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Ito, Shinobu; Kanazawa, Hideko; Yamaguchi, Shigeru

    2014-01-01

    We investigate a technology to create a high temperature heat source on the tip surface of the glass fiber proposed for medical surgery applications. Using 4 to 6 W power level semiconductor lasers at a wavelength of 980 nm, a laser coupled fiber tip was preprocessed to contain a certain amount of titanium oxide powder with a depth of 100 μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus, the laser treatment can be performed without suffering from any optical characteristic of the material. A semiconductor laser was operated quasi-continuous wave mode pulse time duration of 180 ms and >95% of the laser energy was converted to thermal energy in the fiber tip. Based on two-color thermometry, by using a gated optical multichannel analyzer with a 0.25 m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be in excess 3100 K.

  15. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars lander and perhaps find its own niche in terrestrial applications due to its potential low cost an small size.

  16. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers

    NASA Astrophysics Data System (ADS)

    Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter

    2015-04-01

    We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.

  17. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  18. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  19. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  20. Tunable ring laser with internal injection seeding and an optically-driven photonic crystal reflector.

    PubMed

    Zheng, Jie; Ge, Chun; Wagner, Clark J; Lu, Meng; Cunningham, Brian T; Hewitt, J Darby; Eden, J Gary

    2012-06-18

    Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.

  1. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts

    PubMed Central

    Choi, Eun-Jeong; Yim, Ju-Young; Koo, Ki-Tae; Seol, Yang-Jo; Lee, Yong-Moo; Ku, Young; Rhyu, In-Chul; Chung, Chong-Pyoung

    2010-01-01

    Purpose It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs. Methods Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 J/cm2. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05). Results At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 J/cm2 (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 J/cm2 energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 J/cm2 energy fluency than in the control. Conclusions The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs. PMID:20607054

  2. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    DOEpatents

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  3. Advances in 750 nm VECSELs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saarinen, Esa J.; Ranta, Sanna; Lyytikäinen, Jari; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Guina, Mircea

    2017-03-01

    Lasers operating in the transmission window of tissue at wavelengths between 700 and 800 nm are needed in numerous medical and biomedical applications, including photodynamic therapy and fluorescence microscopy. However, the performance of diode lasers in this spectral range is limited by the lack of appropriate compound semiconductors. Here, we review our recent research on 750 nm VECSELs. Two approaches to reaching the 750 nm wavelength will be discussed. The first approach relies on intra-cavity frequency doubling a wafer-fused 1500 nm VECSEL. The VECSEL gain chip comprises a GaAs-based DBR and an InP-based gain section, which allows for optical pumping with low-cost commercial diodes at 980 nm. With this scheme we have achieved watt-level output powers and tuning of the laser wavelength over a 40 nm band at around 750 nm. The second approach is direct emission at 750 nm using the AlGaAs/GaAs material system. In this approach visible wavelengths are required for optical pumping. However, the consequent higher costs compared to pumping at 980 nm are mitigated by the more compact laser setup and prospects of doubling the frequency to the ultraviolet range.

  4. Low-cost, single-mode diode-pumped Cr:Colquiriite lasers.

    PubMed

    Demirbas, Umit; Li, Duo; Birge, Jonathan R; Sennaroglu, Alphan; Petrich, Gale S; Kolodziejski, Leslie A; Kaertner, Franz X; Fujimoto, James G

    2009-08-03

    We present three Cr3+:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with approximately 520 mW of absorbed pump power, up to 257, 269 and 266 mW of output power and slope efficiencies of 53%, 62% and 54% were demonstrated for Cr:LiSAF, Cr:LiSGaF and Cr:LiCAF, respectively. Record cw tuning ranges from 782 to 1042 nm for Cr:LiSAF, 777 to 977 nm for Cr:LiSGaF, and 754 to 871 nm for Cr:LiCAF were demonstrated. In cw mode-locking experiments using semiconductor saturable absorber mirrors at 800 and 850 nm, Cr:Colquiriite lasers produced approximately 50-100 fs pulses with approximately 1-2.5 nJ pulse energies at approximately 100 MHz repetition rate. Electrical-to-optical conversion efficiencies of 8% in mode-locked operation and 12% in cw operation were achieved.

  5. Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser

    NASA Astrophysics Data System (ADS)

    Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas

    2018-02-01

    We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.

  6. Comparative study of the thermal effects of four semiconductor lasers on the enamel and pulp chamber of a human tooth.

    PubMed

    Arrastia, A M; Machida, T; Smith, P W; Matsumoto, K

    1994-01-01

    An in vitro thermometric study was conducted on various GaAlAs semiconductor lasers emitting at wavelengths between 750 nm and 905 nm, to verify whether these lasers produce significant heating during application to tooth structure. Measurements were conducted in vitro, using a thermal camera and a thermocouple during a 60, 120, and 180 s laser exposure at energy densities between 1.5 and 2,400 J/cm2. Mean temperature changes on surface enamel were statistically significant in all groups at P < or = .05 and P < or = .01. The higher the energy density applied to a surface area, the greater the temperature rise observed using the same spot size, operation mode, and wavelength. Intrapulpal temperature elevations measured > or = 3 degrees C. An in vivo study was also conducted to determine whether perceptible stimuli are experienced by patients during this time of laser treatment and to verify results of the in vitro study. The results did not conform well with the in vitro study because of uncontrollable variables. None of the patients who received irradiation treatment described any perceptible stimuli.

  7. Low-power-laser therapy used in tendon damage

    NASA Astrophysics Data System (ADS)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  8. Characterization of a High-SpeedHigh-Power Semiconductor Master-Oscillator Power-Amplifier (MOPA) Laser as a Free-Space Transmitter

    NASA Astrophysics Data System (ADS)

    Wright, M. W.

    2000-04-01

    Semiconductor lasers offer promise as high-speed transmitters for free-space optical communication systems. This article examines the performance of a semiconductor laser system in a master-oscillator power-amplifier (MOPA) geometry developed through a Small Business Innovation Research (SBIR) contract with SDL, Inc. The compact thermo-electric cooler (TEC) packaged device is capable of 1-W output optical power at greater than 2-Gb/s data rates and a wavelength of 960 nm. In particular, we have investigated the effects of amplified spontaneous emission on the modulation extinction ratio and bit-error rate (BER) performance. BERs of up to 10^(-9) were possible at 1.4 Gb/s; however, the modulation extinction ratio was limited to 6 dB. Other key parameters for a free-space optical transmitter, such as the electrical-optical efficiency (24 percent) and beam quality, also were measured.

  9. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  10. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.

  11. Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications

    NASA Astrophysics Data System (ADS)

    Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.

    2018-02-01

    We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.

  12. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V

    2013-05-31

    The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible tomore » use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)« less

  13. A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Leszczyński, M.; Slight, T. J.; Meredith, W.; Schemmann, M.; Moseley, H.; Woods, J. A.; Valentine, R.; Kalra, S.; Mossey, P.; Theaker, E.; Macluskey, M.; Mimnagh, G.; Mimnagh, W.

    2015-03-01

    A multi-wavelength (360nm - 440nm), real-time Photonic Cancer Detector (PCD) optical system based on GaN semiconductor laser technology is outlined. A proof of concept using blue laser technology for early detection of cancer has already been tested and proven for esophageal cancer. This concept is expanded to consider a wider range of wavelengths and the PCD will initially be used for early diagnosis of oral cancers. The PCD creates an image of the oral cavity (broad field white light detection) and maps within the oral cavity any suspicious lesions with high sensitivity using a narrow field tunable detector.

  14. Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.

    PubMed

    Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S

    2017-04-01

    Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.

  15. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less

  16. Broadband tunable integrated CMOS pulser with 80-ps minimum pulse width for gain-switched semiconductor lasers.

    PubMed

    Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi

    2017-07-31

    High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.

  17. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation.

    PubMed

    Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong

    2009-09-14

    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.

  18. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  19. Fabrication and room temperature operation of semiconductor nano-ring lasers using a general applicable membrane transfer method

    NASA Astrophysics Data System (ADS)

    Fan, Fan; Yu, Yueyang; Amiri, Seyed Ebrahim Hashemi; Quandt, David; Bimberg, Dieter; Ning, C. Z.

    2017-04-01

    Semiconductor nanolasers are potentially important for many applications. Their design and fabrication are still in the early stage of research and face many challenges. In this paper, we demonstrate a generally applicable membrane transfer method to release and transfer a strain-balanced InGaAs quantum-well nanomembrane of 260 nm in thickness onto various substrates with a high yield. As an initial device demonstration, nano-ring lasers of 1.5 μm in outer diameter and 500 nm in radial thickness are fabricated on MgF2 substrates. Room temperature single mode operation is achieved under optical pumping with a cavity volume of only 0.43λ03 (λ0 in vacuum). Our nano-membrane based approach represents an advantageous alternative to other design and fabrication approaches and could lead to integration of nanolasers on silicon substrates or with metallic cavity.

  20. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Reid, Ray D. (Inventor); Hug, William F. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  1. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  2. High precision AlGaAsSb ridge-waveguide etching by in situ reflectance monitored ICP-RIE

    NASA Astrophysics Data System (ADS)

    Tran, N. T.; Breivik, Magnus; Patra, S. K.; Fimland, Bjørn-Ove

    2014-05-01

    GaSb-based semiconductor diode lasers are promising candidates for light sources working in the mid-infrared wavelength region of 2-5 μm. Using edge emitting lasers with ridge-waveguide structure, light emission with good beam quality can be achieved. Fabrication of the ridge waveguide requires precise etch stop control for optimal laser performance. Simulation results are presented that show the effect of increased confinement in the waveguide when the etch depth is well-defined. In situ reflectance monitoring with a 675 nm-wavelength laser was used to determine the etch stop with high accuracy. Based on the simulations of laser reflectance from a proposed sample, the etching process can be controlled to provide an endpoint depth precision within +/- 10 nm.

  3. High Efficiency, Room Temperature Mid-Infrared Semiconductor Laser Development for IR Countermeasures

    DTIC Science & Technology

    2009-05-01

    voltage (I-V) characteristics of several infrared LEDs, including a type-II W-well laser grown by Molecular Beam Epitaxy at Naval Research Laboratory...Injection Cavity (OPIC) lasers includes >4 um emission from a broadband laser and the measurement of spatial and temporal beam profiles. From August 2006...argon) at 15 mTorr, 400W ICP, and 70W RIE power, with an etch rate of 300 nm/min. Epitaxial ZnO layers were plasma etched using BCl3/SF0gas mixtures

  4. Curved grating fabrication techniques for concentric-circle grating, surface-emitting semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Jordan, Rebecca H.; King, Oliver; Wicks, Gary W.; Hall, Dennis G.; Anderson, Erik H.; Rooks, Michael J.

    1993-01-01

    We describe the fabrication and operational characteristics of a novel, surface-emitting semiconductor laser that makes use of a concentric-circle grating to both define its resonant cavity and to provide surface emission. A properly fabricated circular grating causes the laser to operate in radially inward- and outward-going circular waves in the waveguide, thus, introducing the circular symmetry needed for the laser to emit a beam with a circular cross-section. The basic circular-grating-resonator concept can be implemented in any materials system; an AlGaAs/GaAs graded-index, separate confinement heterostructure (GRINSCH), single-quantum-well (SQW) semiconductor laser, grown by molecular beam epitaxy (MBE), was used for the experiments discussed here. Each concentric-circle grating was fabricated on the surface of the AlGaAs/GaAs semiconductor laser. The circular pattern was first defined by electron-beam (e-beam) lithography in a layer of polymethylmethacrylate (PMMA) and subsequently etched into the semiconductor surface using chemically-assisted (chlorine) ion-beam etching (CAIBE). We consider issues that affect the fabrication and quality of the gratings. These issues include grating design requirements, data representation of the grating pattern, and e-beam scan method. We provide examples of how these techniques can be implemented and their impact on the resulting laser performance. A comparison is made of the results obtained using two fundamentally different electron-beam writing systems. Circular gratings with period lambda = 0.25 microns and overall diameters ranging from 80 microns to 500 microns were fabricated. We also report our successful demonstration of an optically pumped, concentric-circle grating, semiconductor laser that emits a beam with a far-field divergence angle that is less than one degree. The emission spectrum is quite narrow (less than 0.1 nm) and is centered at wavelength lambda = 0.8175 microns.

  5. Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm

    NASA Astrophysics Data System (ADS)

    Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu

    2017-11-01

    We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.

  6. Design of 6 kw fiber-coupled system for semiconductor laser

    NASA Astrophysics Data System (ADS)

    Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yunfei; Ding, Lushuang; Zhao, Pengfei; Zou, Yonggang; Xu, Li; Lin, Xuechun

    2016-10-01

    In this paper, we present the design of a 6 kW fiber-coupled laser diode system by using ZEMAX, and power scaling and fiber coupling techniques for high-power laser diode stacks were introduced in detail. Beams emitted from eight laser diode stacks comprised of four 960 W stacks with center wavelength of 938 nm and four 960 W stacks with center wavelength of 976 nm are combined and coupled into a standard fiber with a core diameter of 800 μm and numerical aperture of 0.22. Simulative result shows that the final power came out of the fiber could reach 6283.9 W, the fiber-coupling efficiency is 87%, and the brightness is 8.2 MW/ (cm2·sr).

  7. Development of a broadband reflectivity diagnostic for laser driven shock compression experiments

    DOE PAGES

    Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...

    2015-04-16

    Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less

  8. Vertical cavity surface-emitting semiconductor lasers with injection laser pumping

    NASA Astrophysics Data System (ADS)

    McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.

    1990-05-01

    Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.

  9. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  10. Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

    PubMed Central

    Voigt, Fabian F.; Emaury, Florian; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-01-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging. PMID:28717563

  11. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  12. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  13. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    PubMed Central

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  14. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharps, J.A.

    1996-12-31

    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with highmore » intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.« less

  15. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  16. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben

    2016-04-11

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  17. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    PubMed

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  18. 700 W blue fiber-coupled diode-laser emitting at 450 nm

    NASA Astrophysics Data System (ADS)

    Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.

    2018-02-01

    A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.

  19. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  20. Rapid disinfection of E-Coliform contaminated water using WO3 semiconductor catalyst by laser-induced photo-catalytic process.

    PubMed

    Gondal, Mohammed A; Khalil, Amjad

    2008-04-01

    Laser-induced photo-catalysis process using WO(3) semiconductor catalyst was applied for the study of disinfection effectiveness of E-coliform-contaminated water. For this purpose, wastewater polluted with E-coliform bacteria was exposed to 355 nm UV radiations generated by third harmonic of Nd: YAG laser in special glass cell with and without WO(3) catalyst. E-Coliform quantification was performed by direct plating method to obtain the efficiency of each disinfection treatment. The dependence of disinfection process on laser irradiation energy, amount of catalyst and duration of laser irradiation was also investigated. The disinfection with WO(3) was quite efficient inactivating E-coliforms. For inactivation of E-coliforms, less than 8 minutes' laser irradiation was required, so that, the treated water complies with the microbial standards for drinking water. This study opens the possibility of application of this simple method in rural areas of developing countries using solar radiation.

  1. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  2. 100μJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing

    2017-02-01

    We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.

  3. Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror.

    PubMed

    Yamazoe, Shogo; Katou, Masaki; Adachi, Takashi; Kasamatsu, Tadashi

    2010-03-01

    We report a palm-top-size femtosecond diode-pumped mode-locked Yb(+3):KY(WO(4))(2) solid-state laser with a semiconductor saturable absorber mirror utilizing soliton mode locking for shortening the cavity to 50 mm. An average output power of 680 mW and a pulse width of 162 fs were obtained at 1045 nm with a repetition rate of 2.8 GHz, which led to a peak power of 1.5 kW. Average power fluctuations of a modularized laser source were found to be +/-10% for the free-running 3000 h operation and +/-1% for the power-controlled 2000 h operation.

  4. Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry

    NASA Astrophysics Data System (ADS)

    Minh, Tuan Pham; Hucl, Václav; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Řeřucha, Šimon; Číp, Ondřej; Lazar, Josef

    2015-05-01

    Semiconductor lasers found a foothold in many fields of human activities, mainly thanks to its small size, low cost and high energy efficiency. Recent methods for accurate distance measurement in industrial practice use principles of laser interferometry, which are based on lasers operating in the visible spectrum. When the laser beam is visible the alignment of the industrial interferometer makes the measuring process easier. Traditional lasers for these purposes for many decades - HeNe gas laser - have superb coherence properties but small tunable range. On the other hand laser diodes are very useful lasers but only if the active layer of the semiconductor equips with a passive selective element that will increase the quality of their own resonator and also prevents the structure of its higher longitudinal modes. The main aim of the work is a design of the laser source based on a new commercial available laser diode with Distributed Bragg Reflector structure, butterfly package and fibre coupled output. The ultra-low noise injection current source, stable temperature controller and supply electronic equipment were developed with us and experimentally tested with this laser for the best performances required of the industrial interferometry field. The work also performs a setup for frequency noise properties investigation with an unbalanced fibre based Mach-Zehnder interferometer and 10 m long fibre spool inserted in the reference arm. The work presents the way to developing the narrow-linewidth operation the DBR laser with the wide tunable range up to more than 1 nm of the operation wavelength at the same time. Both capabilities predetermine this complex setup for the industrial interferometry application as they are the long distance surveying or absolute scale interferometry.

  5. Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm.

    PubMed

    Lagatsky, A A; Han, X; Serrano, M D; Cascales, C; Zaldo, C; Calvez, S; Dawson, M D; Gupta, J A; Brown, C T A; Sibbett, W

    2010-09-15

    We report, for the first time to our knowledge, femtosecond-pulse operation of a Tm,Ho:NaY(WO(4))(2) laser at around 2060 nm. Transform-limited 191 fs pulses are produced with an average output power of 82 mW at a 144 MHz pulse repetition frequency. Maximum output power of up to 155 mW is generated with a corresponding pulse duration of 258 fs. An ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror is used for passive mode-locking maintenance.

  6. Spectral characteristics of multimode semiconductor lasers with a high-order surface diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A

    2014-10-31

    We have studied the spectral characteristics of multimode semiconductor lasers with high-order surface diffraction gratings based on asymmetric separate-confinement heterostructures grown by metalorganic vapour phase epitaxy (λ = 1070 nm). Experimental data demonstrate that, in the temperature range ±50 °C, the laser emission spectrum is ∼5 Å in width and contains a fine structure of longitudinal and transverse modes. A high-order (m = 15) surface diffraction grating is shown to ensure a temperature stability of the lasing spectrum dλ/dT = 0.9 Å K{sup -1} in this temperature range. From analysis of the fine structure of the lasing spectrum, we havemore » evaluated the mode spacing and, thus, experimentally determined the effective length of the Bragg diffraction grating, which was ∼400 μm in our samples. (lasers)« less

  7. Approaches toward a blue semiconductor laser

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1989-01-01

    Possible approaches for obtaining semiconductor diode laser action in the blue region of the spectrum are surveyed. A discussion of diode lasers is included along with a review of the current status of visible emitters, presently limited to 670 nm. Methods are discussed for shifting laser emission toward shorter wavelengths, including the use of II-IV materials, the increase in the bandgap of III-V materials by addition of nitrogen, and changing the bandstructure from indirect to direct by incorporating interstitial atoms or by constructing superlattices. Non-pn-junction injection methods are surveyed, including avalanche breakdown, Langmuir-Blodgett diodes, heterostructures, carrier accumulation, and Berglund diodes. Prospects of inventing new multinary semiconducting materials are discussed, and a number of novel materials described in the literature are tabulated. New approaches available through the development of quantum wells and superlattices are described, including resonant tunneling and the synthesis of arbitrary bandgap materials through multiple quantum wells.

  8. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang

    2001-10-01

    Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.

  9. Mode locking of a ring cavity semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Desbiens, Louis; Yesayan, Ararat; Piche, Michel

    2000-12-01

    We report new results on the generation and characterization of picosecond pulses from a self-mode-locked semiconductor diode laser. The active medium (InGaAs, 830-870 nm) is a semiconductor optical amplifier whose facets are cut at angle and AR coated. The amplifier is inserted in a three-minor ring cavity. Mode locking is purely passive; it takes place for specific alignment conditions. Trains of counterpropagating pulses are produced, with pulse duration varying from 1 .2 to 2 ps. The spectra of the counterpropagatmg pulses do not fully overlap; their central wavelengths differ by a few nm. The pulse repetition rate has been varied from 0.3 to 3 GHz. The pulses have been compressed to less than 500-fs duration with a grating pair. We discuss some of the potential physical mechanisms that could be involved in the dynamics of the mode-locked regime. Hysteresis in the LI curve has been observed. To characterize the pulses, we introduce the idea of a Pulse Quality Factor, where the pulse duration and spectral width are calculated from the second-order moments of the measured intensity autocorrelation and power spectral density.

  10. Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.

    PubMed

    Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y

    2012-04-15

    A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America

  11. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  12. Gain-Controlled Erbium-Doped Fiber Amplifier Using Mode-Selective Photonic Lantern

    DTIC Science & Technology

    2016-01-01

    schematic diagram of the MSPL integrated with the FM-EDFA is shown in Fig. 3. Two laser diodes (LDs) at λp = 976 nm are connected to the MSPL through a...to co-directionally core pump the FM-EDFA. A tunable semiconductor laser (Santec TSL-210) was used to provide the signal. An optical isolator was...placed in the signal path to avoid spurious optical reflections that could destabilize the laser . In a similar configuration, the delivered signal was

  13. Intensity noise properties of a compact laser device based on a miniaturized MOPA system for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Baumgärtner, S.; Juhl, S.; Opalevs, D.; Sahm, A.; Hofmann, J.; Leisching, P.; Paschke, K.

    2018-02-01

    We present a novel compact laser device based on a semiconductor master-oscillator power-amplifier (MOPA) emitting at 772 nm, suitable for quantum optic and spectroscopy. The optical performance of the laser device is characterized. For miniaturized lasers the thermal management is challenging, we therefore perform thermal simulations and measurements. The first demonstrator is emitting more than 3 W optical power with a linewidth below 2lMHz. Using this MOPA design also compact devices for quantum optics (e.g. rubidium atomic clock) and seed lasers for frequency conversion can be realized [1].

  14. 193nm high power lasers for the wide bandgap material processing

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  15. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  16. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Luo, Hongyu; He, Yulian; Liu, Yong; Luo, Binbin; Sun, Zhongyuan; Zhang, Lin; Turitsyn, Sergei K.

    2014-05-01

    A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.

  17. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Luo, H. Y.; He, Y. L.; Liu, Y.; Zhang, L.; Zhou, K. M.; Rozhin, A. G.; Turistyn, S. K.

    2014-06-01

    A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 µJ with a pulse width of 1.68 µs and signal-to-noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 µm. To the best of our knowledge, this is the first 3 µm region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.

  18. Tunable high-power blue external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  19. In-Situ Analysis System for Correlated Electron Heterostructures

    DTIC Science & Technology

    2014-11-20

    semiconductor materials and elemental metals. Specifically, films must be pristine and ideally remain intact during analytical procedure [1]. In addition...involves a rather complex engineering design described below. A laser heater ! (a) ! (b) ! 1 Figure 1. (a) An empty Neocera’s sample holder rack...the center of the analytical chamber. (fiber-coupled, high-power 808 nm diode laser JOLD -100-CPXF-2P, Jenoptik), is free of such limitations because

  20. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  1. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  2. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    NASA Astrophysics Data System (ADS)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  3. Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum.

    PubMed

    Heck, Martijn J R; Bente, Erwin A J M; Smalbrugge, Barry; Oei, Yok-Siang; Smit, Meint K; Anantathanasarn, Sanguan; Nötzel, Richard

    2007-12-10

    First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 mum is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip.

  4. Nanoscale surface characterization using laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  5. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  6. Development of a red diode laser system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Halkiotis, Konstantinos N.; Yova, Dido M.; Uzunoglou, Nikolaos K.; Papastergiou, Georgios; Matakias, Sotiris; Koukouvinos, Ilias

    1998-07-01

    The effectiveness of photodynamic treatment modality has been proven experimentally for a large variety of tumors, during the last years. This therapy utilizes the combined action of light and photosensitizing drug. Until now, a disadvantage of PDT has be the low tissue penetration of light, at the wavelengths of most commonly available lasers, for clinical studies. The red wavelength offers the advantage of increased penetration depth in tissue, in addition several new wavelength offers the advantage of increased penetration depth in tissue, in addition several new photosensitizers present absorption band at the region 630nm to 690nm. The development of high power red diode laser system for photodynamic therapy, has provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the system design, development and performance of a diode laser system, connected with a fiber optic facility, to be used for PDT. The system was based on a high power semiconductor diode laser emitting at 655nm. The laser output power was approximately 60mW at the output of a 62.5/125/900 micron fiber optic probe. FUll technical details and optical performance characteristics of the system will be discussed in this paper.

  7. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  8. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms

    PubMed Central

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I.C.O; Artigas, David; Loza-Alvarez, Pablo

    2011-01-01

    We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser—VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices. PMID:21483599

  9. Modeling of Optoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Ultrafast modulation of semiconductor quantum well (QW) laser is of technological importance for information technology. Improvement by order(s) of magnitude in data transfer rate is possible as terahertz (THz) radiation is available for heating the laser at picosecond time scale. Optical gain modulation in the QW is achieved via temperature modulation of electron-hole plasma (EHP). Applications include free-space THz communication, optical switching, and pulse generation. The EHP in the semiconductor QW is described with a two-band model. Semiconductor Bloch equations with many-body effects are used to derive a hydrodynamical model for the active QW region. Because of ultrafast carrier-carrier scatterings in the order of 50 fs, EHP follows quasiequilibrium Fermi-Dirac distributions and THz field interacts incoherently with it. Carrier-longitudinal optical (LO) phonon scatterings and coherent laser-EHP interaction are treated microscopically in our physical model. A set of hydrodynamical equations for plasma density, temperature, and laser envelop amplitude are derived and Runge-Kutta method is adopted for numerical simulation. A typical 8 nm GaAs/Al(0.3)Ga(0.7) As single QW at 300 K is used. Additional information is contained in the original extended abstract.

  10. Diode injection - seeded, 940 nanometer (nm), titanium - sapphire laser for H2O DIAL (differential absorption lidar), measurements

    NASA Technical Reports Server (NTRS)

    Miller, George E.

    1992-01-01

    Differential absorption of laser radiation by various molecular species represents both a selective and a sensitive method of measuring specific atmospheric constituents. DIAL measurements can be carried out via two different means. Both involve using two laser pulses with slightly different wavelengths (lambda), (one lambda at a strong absorption line of the molecule of interest, the other detuned into the wing of the line), and comparing the attenuation of the pulses. One approach relies on scattering of the radiation from some conveniently located topographical target. In the other technique elastic scattering from atmospheric aerosols and particulates is used to return the radiation to the lidar receiver system. This case is referred to as the differential absorption and scattering technique, and is the technique we are interested in to measure water vapor at 940 nm. The 940 nm wavelength is extremely desirable to atmospheric scientist interested in accurate DIAL measurements of H2O in the upper and lower troposphere. Simulated measurements using approximately 940 nm and 815 nm lasers at a range of altitudes and experimental conditions are shown. By offering access to larger absorption cross-sections, injected seeded, 940 nm DIAL laser transmitters would allow for more accurate water profile measurements at altitudes from 6 to 16 km than is currently possible with 730 nm and 815 nm DIAL laser transmitters. We have demonstrated the operation of an injected seeded titanium-sapphire (TS) laser operating at approximately 940 nm with an energy of more than 90 mJ per pulse. The TS laser is pumped by a commercial, 600 mJ, 532 nm, 10 Hz Nd:YAG laser. The slope efficiency of the laser using a flat 50 percent R output coupler and a 10 m end-mirror is shown. The laser was injected seeded with a CW, AlGaAs, semiconductor diode laser which had an output of 83 mW. The CW diode seed beam was introduced into the TS laser cavity through a HR end-mirror. When the diode beam is aligned to the TS resonator, it controls the TS laser output wavelength and its spectral line width with the required resolution for DIAL applications. This work supports the need for the development of 940 nm, titanium-sapphire DIAL transmitters.

  11. High temperature heat source generation with a very low power level quasi-cw(continuous wave) semiconductor laser for medical use

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Fujioka, Tomoo; Yamaguchi, Shigeru

    2013-03-01

    In most of medical and dental laser treatments, high power pulsed laser have been used as desirable light sources employing with an optical fiber delivery system. The treatment process involves high temperature thermal effect associated with direct laser absorption of the materials such as hard and soft tissues, tooth, bones and so on. Such treatments sometimes face technical difficulties suffering from their optical absorption properties. We investigate a new technology to create high temperature heat source on the tip surface of the glass fiber proposed for the medical surgery applications. Using a low power level (4 6W) semiconductor laser at a wavelength of 980nm, a laser coupled fiber tip was pre-processed to contain certain amount of TiO2 powder with a depth of 400μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus the laser treatment can be performed without suffering from any optical characteristic of the material. Semiconductor laser was operated quasi-CW mode pulse time duration of 180ms and more than 95% of the laser energy was converted to thermal energy in the fiber tip. by Based on twocolor thermometry by using a gated optical multichannel analyzer with 0.25m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be approximately 3000K. Demonstration of laser processing employing this system was successfully carried out drilling through holes in ceramic materials simulating bone surgery.

  12. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect.

    PubMed

    Liu, Xinfeng; Zhang, Qing; Yip, Jing Ngei; Xiong, Qihua; Sum, Tze Chien

    2013-01-01

    Wavelength tunable semiconductor nanowire (NW) lasers are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we present a demonstration of utilizing the surface plasmon polariton (SPP) enhanced Burstein-Moss (BM) effect to tune the lasing wavelength of a single semiconductor NW. The photonic lasing mode of the CdS NW (with length ~10 μm and diameter ~220 nm) significantly blue shifts from 504 to 483 nm at room temperature when the NW is in close proximity to the Au film. Systematic steady state power dependent photoluminescence (PL) and time-resolved PL studies validate that the BM effect in the hybrid CdS NW devices is greatly enhanced as a consequence of the strong coupling between the SPP and CdS excitons. With decreasing dielectric layer thickness h from 100 to 5 nm, the enhancement of the BM effect becomes stronger, leading to a larger blue shift of the lasing wavelength. Measurements of enhanced exciton emission intensities and recombination rates in the presence of Au film further support the strong interaction between SPP and excitons, which is consistent with the simulation results.

  13. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto

    2017-03-01

    We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.

  14. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus

    2016-01-01

    We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.

  15. Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser

    NASA Astrophysics Data System (ADS)

    Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro

    2011-09-01

    To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.

  16. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Bagaev, T. A.; Andreev, A. Yu.; Telegin, K. Yu.; Lobintsov, A. V.; Davydova, E. I.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Ivanova, E. B.; Simakov, V. A.

    2017-05-01

    The results of the development and fabrication of laser diode bars (λ = 800 - 810 nm) based on AlGaAs/GaAs quantum-well heterostructures with a high efficiency are presented. An increase in the internal quantum and external differential efficiencies together with a decrease in the working voltage and the series resistance allowed us to improve the output parameters of the semiconductor laser under quasi-cw pumping. The output power of the laser diode bars with a 5-mm transverse length reached 210 W, and the efficiency was ~70%.

  17. Modeling of light propagation in canine gingiva

    NASA Astrophysics Data System (ADS)

    Mrotek, Marcin

    2017-08-01

    This study is a preliminary evaluation of the effectivenes of laser-based surgery of maxillary and mandibular bone in dogs. Current methods of gingivial surgery in dogs require the use of general anaesthesia.1, 2 The proposed methods of laser surgery can be performed on conscious dogs, which substantially reduces the associated risks. Two choices of lasers, Nd:YAG and a 930 nm semiconductor lasers were evaluated. The former is already widely used in human laser surgery, while the latter provides an opportunity of decreasing the size of the optical setup. The results obtained from the simulations warrant further experiments with the evaluated wavelengths and animal tissue samples.

  18. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.

    PubMed

    Kim, Jimyung; Delfyett, Peter J

    2009-12-07

    The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.

  19. Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm

    NASA Astrophysics Data System (ADS)

    Gabrysch, M.; Corsi, C.; Pavone, F. S.; Inguscio, M.

    1997-07-01

    One single semiconductor distributed-feedback (DFB) laser is used to demonstrate the possibility of simultaneous detection of two different molecular species. Direct absorption and low-wavelength modulation (LWM) spectroscopy were employed to investigate weak overtone transitions of CO2 and CO at a wavelength of 5=1578 nm. Sensitivity measurements under different conditions have been performed and the detection limit of the apparatus was measured to be less than 10 mTorr over a 1-m path length. In addition, we measured for the first time environmentally and spectroscopically relevant self-broadening and nitrogen-broadening coefficients for CO2 and CO in this spectral region and we discuss different possibilities for increasing the sensitivity of the apparatus.

  20. Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz

    NASA Astrophysics Data System (ADS)

    Santarelli, G.; Clairon, A.; Lea, S. N.; Tino, G. M.

    1994-01-01

    In order to stimulate atomic velocity-selective Raman transitions on the 852 nm caesium D 2 line in an atomic fountain clock, two extended-cavity diode lasers have been optically phase-locked at a frequency offset of 9.192 GHz. The measured linewidth (fwhm) of the free-running lasers is 50 kHz. The phase-locked loop bandwidth, evaluated by observing the frequency noise spectrum, is 3.7 MHz and the phase error variance is found to be no more than 4 × 10 -3 rad 2.

  1. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    PubMed

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

  2. Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Filippidis, G.; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-03-01

    Ultrashort pulsed laser systems (such as Ti:sapphire) have been used in nonlinear microscopy during the last years. However, its implementation is not straight forward as they are maintenance-intensive, bulky and expensive. These limitations have prevented their wide-spread use for nonlinear imaging, especially in "real-life" biomedical applications. In this work we present the suitability of a compact ultrafast semiconductor disk laser source, with a footprint of 140x240x70 mm, to be used for nonlinear microscopy. The modelocking mechanism of the laser is based on a quantumdot semiconductor saturable absorber mirror (SESAM). The laser delivers an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. Its center wavelength is 965 nm which is ideally suited for two-photon excitation of the widely used Green Fluorescent Protein (GFP) marker as it virtually matches its twophoton action cross section. We reveal that it is possible to obtain two photon excited fluorescence images of GFP labeled neurons and secondharmonic generation images of pharynx and body wall muscles in living C. elegans nematodes. Our results demonstrate that this compact laser is well suited for long-term time-lapse imaging of living samples as very low powers provide a bright signal. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its wide-spread adoption in "real-life" applications.

  3. High channel count and high precision channel spacing multi-wavelength laser array for future PICs.

    PubMed

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H; Qiu, Bocang

    2014-12-09

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.

  4. Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong

    2017-04-01

    In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.

  5. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  6. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  7. Highly efficient quantum dot-based photoconductive THz materials and devices

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  8. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    NASA Astrophysics Data System (ADS)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  9. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    PubMed

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.

  10. Laser guidance of mesoscale particles

    NASA Astrophysics Data System (ADS)

    Underdown, Frank Hartman, Jr.

    Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.

  11. An integrated parity-time symmetric wavelength-tunable single-mode microring laser

    PubMed Central

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2017-01-01

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784

  12. An integrated parity-time symmetric wavelength-tunable single-mode microring laser.

    PubMed

    Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping

    2017-05-12

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.

  13. Supermode-noise-free eighth-order femtosecond soliton from a backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser.

    PubMed

    Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang

    2006-03-15

    A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.

  14. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less

  16. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.

    PubMed

    Choma, Michael A; Hsu, Kevin; Izatt, Joseph A

    2005-01-01

    The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.

  17. Photon synthesis of iron oxide thin films for thermo-photo-chemical sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.; Petrov, Yu. N.; Gorbachuk, N. T.

    2012-09-01

    Ultraviolet photons of KrF-laser (248 nm) and of photodiode (360 nm) were used for the synthesis of iron oxide thin films with variable thickness, stoichiometry and electrical properties. The reactive pulsed laser deposition (RPLD) method was based on KrF-laser and photon-induced chemical vapor deposition (PCVD) was based on a photodiode. Deposited films demonstrated semiconductor properties with variable band gap (Eg). The film thickness (50-140 nm) and Eg depended on the laser pulse number, oxygen and iron carbonyl vapor pressure in the deposition chamber, and exposure time to the substrate surface with ultraviolet (UV) radiation. Sensing characteristics strongly depended on electrical and structural properties of such thin films. Iron oxide films were deposited on <1 0 0> Si substrate and had large thermo electromotive force (e.m.f.) coefficient (S) and high photosensitivity (F). The largest value of the S coefficient obtained by RPLD was about 1.65 mV/K in the range 270-290 K and by PCVD was about 1.5 mV/K in the range 280-322 K. The largest value F obtained by RPLD and PCVD was about 44 Vc/W and 40 Vc/W, accordingly, for white light at power density (I ≅ 0.006 W/cm2). It was shown that the S coefficient and F strongly depended on Eg. Moreover, these films were tested as chemical sensors: the largest sensitivity of NO molecules was at the level of 3 × 1012 cm-3. Our results showed that RPLD and PCVD were used to synthesize semiconductor iron oxide thin films with different sensing properties. So iron oxide thin films synthesized by UV photons are up-to-date materials for multi-parameter sensors: thermo-photo-chemical sensors operating at moderate temperature.

  18. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  19. 120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method

    NASA Astrophysics Data System (ADS)

    Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.

    2018-02-01

    We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.

  20. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    NASA Astrophysics Data System (ADS)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  1. OPS laser EPI design for different wavelengths

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.

    2009-02-01

    Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.

  2. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  3. Dispersion characteristic of photoluminescence decay times of phosphor YAG: Ce, Gd

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.

    2017-05-01

    The dispersion of the characteristic decay times of gadolinium co-doped yttrium aluminum garnet doped with cerium phosphors were studied. In the present work, an ultraviolet semiconductor laser (λem=375 nm, τ = 1 ns) was used as excitation source for measuring kinetics characteristics of phosphor groups based on YAG with different content of cerium.

  4. Characterization of the absorbance bleaching in AllnAs/AlGaInAs multiple-quantum wells for semiconductor saturable absorbers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael Clement; Cederberg, Jeffrey George; Alliman, Darrell L.

    2010-05-01

    Semiconductor saturable absorbers (SESAs) introduce loss into a solid-state laser cavity until the cavity field bleaches the absorber producing a high-energy pulse. Multiple quantum wells (MQWs) of AlGaInAs grown lattice-matched to InP have characteristics that make them attractive for SESAs. The band gap can be tuned around the target wavelength, 1064 nm, and the large conduction band offset relative to the AlInAs barrier material helps reduces the saturation fluence, and transparent substrate reduces nonsaturable losses. We have characterized the lifetime of the bleaching process, the modulation depth, the nonsaturable losses, and the saturation fluence associated with SESAs. We compare differentmore » growth conditions and structure designs. These parameters give insight into the quality of the epitaxy and effect structure design has on SESA performance in a laser cavity. AlGaInAs MQWs were grown by MOVPE using a Veeco D125 machine using methyl-substituted metal-organics and hydride sources at a growth temperature of 660 C at a pressure of 60 Torr. A single period of the basic SESA design consists of approximately 130 to 140 nm of AlInAs barrier followed by two AlGaInAs quantum wells separated by 10 nm AlInAs. This design places the QWs near the nodes of the 1064-nm laser cavity standing wave. Structures consisting of 10-, 20-, and 30-periods were grown and evaluated. The SESAs were measured at 1064 nm using an optical pump-probe technique. The absorbance bleaching lifetime varies from 160 to 300 nsec. The nonsaturable loss was as much as 50% for structures grown on n-type, sulfur-doped InP substrates, but was reduced to 16% when compensated, Fe-doped InP substrates were used. The modulation depth of the SESAs increased linearly from 9% to 30% with the number of periods. We are currently investigating how detuning the QW transition energy impacts the bleaching characteristics. We will discuss how each of these parameters impacts the laser performance.« less

  5. 760 nm high-performance VCSEL growth and characterization

    NASA Astrophysics Data System (ADS)

    Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer

    2006-04-01

    High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.

  6. Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep

    2017-08-01

    Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.

  7. Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis.

    PubMed

    de Morais, Núbia Cristina Rodrigues; Barbosa, Ana Maria; Vale, Mariana Lima; Villaverde, Antonio Balbin; de Lima, Carlos José; Cogo, José Carlos; Zamuner, Stella Regina

    2010-04-01

    The aim of this work was to investigate the effect of low-level laser therapy (LLLT) and light-emitting diode (LED) on formation of edema, increase in vascular permeability, and articular joint hyperalgesia in zymosan-induced arthritis. It has been suggested that low-level laser and LED irradiation can modulate inflammatory processes. Arthritis was induced in male Wistar rats (250-280 g) by intra-articular injection of zymosan (1 mg in 50 microL of a sterile saline solution) into one rear knee joint. Animals were irradiated immediately, 1 h, and 2 h after zymosan administration with a semiconductor laser (685 nm and 830 nm) and an LED at 628 nm, with the same dose (2.5 J/cm(2)) for laser and LED. In the positive control group, animals were injected with the anti-inflammatory drug dexamethasone 1 h prior to the zymosan administration. Edema was measured by the wet/dry weight difference of the articular tissue, the increase in vascular permeability was assessed by the extravasation of Evans blue dye, and joint hyperalgesia was measured using the rat knee-joint articular incapacitation test. Irradiation with 685 nm and 830 nm laser wavelengths significantly inhibited edema formation, vascular permeability, and hyperalgesia. Laser irradiation, averaged over the two wavelengths, reduced the vascular permeability by 24%, edema formation by 23%, and articular incapacitation by 59%. Treatment with LED (628 nm), with the same fluence as the laser, had no effect in zymosan-induced arthritis. LLLT reduces inflammatory signs more effectively than LED irradiation with similar irradiation times (100 sec), average outputs (20 mW), and energy doses (2 J) in an animal model of zymosan-induced arthritis. The anti-inflammatory effects of LLLT appear to be a class effect, which is not wavelength specific in the red and infrared parts of the optical spectrum.

  8. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  9. Broad emission band of Yb3+ in the nonlinear Nb:RbTiOPO4 crystal: origin and applications.

    PubMed

    Carvajal, J J; Ciatto, G; Mateos, X; Schmidt, A; Griebner, U; Petrov, V; Boulon, G; Brenier, A; Peña, A; Pujol, M C; Aguiló, M; Díaz, F

    2010-03-29

    By means of micro-structural and optical characterization of the Yb:Nb:RbTiOPO(4) crystal, we demonstrated that the broad emission band of Yb(3+) in these crystals is due to the large splitting of the ytterbium ground state only, and not to a complex multisite occupation by the ytterbium ions in the crystals. We used this broad emission band to demonstrate wide laser tuning range and generation of femtosecond laser pulses. Passive mode-locked laser operation has been realized by using a semiconductor saturable absorber mirror, generating ultra short laser pulses of 155 fs, which were very stable in time, under Ti:sapphire laser pumping at 1053 nm.

  10. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime.

    PubMed

    Nodop, D; Limpert, J; Hohmuth, R; Richter, W; Guina, M; Tünnermann, A

    2007-08-01

    We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.

  11. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.

    PubMed

    Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo

    2011-12-05

    We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akparov, V V; Dmitriev, Valentin G; Duraev, V P

    A semiconductor ring laser (SRL) with a radiation wavelength of 1540 nm and a fibre ring cavity is developed and studied in several main lasing regimes. An SRL design based on a semiconductor optical travelling-wave amplifier and a ring cavity, composed of a single-mode polarisation-maintaining fibre, is considered. The SRL is studied in the regime of a rotation speed sensor, in which the frequency shift of counterpropagating waves in the SRL is proportional to its rotation speed. The minimum rotation speed that can be detected using the SRL under consideration depends on the cavity length; in our experiment it turnedmore » to be 1deg s{sup -1}. The changes in the threshold current, emission spectrum, and fundamental radiation wavelength upon closing and opening the SRL ring cavity and with a change in its radius are also investigated. (lasers)« less

  13. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    PubMed Central

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-01-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated. PMID:25749635

  14. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    NASA Astrophysics Data System (ADS)

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-03-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  15. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  16. Bibliography of Soviet Laser Developments, No. 18, October - December 1974

    DTIC Science & Technology

    1975-04-25

    IIV Lasers, Laser Theory , Laser Biological Effects, Laser Communications, Laser Computer Technology, Holography, Laser Chemical Effects...spectros.copy of laser materials; ultrashort pulse generation; crystal growing; theoretical aspects of advanced lasers; and general laser theory Laser...Semiconductor: Mixed Junction 5 6. Semiconductor: Heterojunction ^ 7. Semiconductor: Theory 8. Nd:Glass B. Liquid Lasers 1

  17. Fiber Bragg grating interrogation using a wavelength modulated 1651-nm tunable distributed feedback laser and a fiber ring resonator for wearable biomedical sensors

    NASA Astrophysics Data System (ADS)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-01

    This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.

  18. Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang

    2005-10-31

    Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

  19. Infrared and Terahertz Lasers on SI Using Novel Group-IV Alloys

    DTIC Science & Technology

    2011-11-30

    gain at 2,883 nm is comparable with those of many conventional III-V semiconductor lasers. On the other hand, a waveguide design was also presented ...other conduction-band valleys (", X) are above the L-valley band edge of the Ge0.76Si0.19Sn0.05 barrier. This band alignment presents a desirable...the QCL structure based upon Ge/ Ge0.76Si0.19Sn0.05 QWs. Only L-valley conduction- band lineups are shown in the potential diagram under an applied

  20. Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.

    PubMed

    Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying

    2017-04-01

    We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.

  1. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.

    PubMed

    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Balgarkashi, Akshay; Huffaker, Diana L

    2017-09-13

    Semiconductor nanowire lasers are considered promising ultracompact and energy-efficient light sources in the field of nanophotonics. Although the integration of nanowire lasers onto silicon photonic platforms is an innovative path toward chip-scale optical communications and photonic integrated circuits, operating nanowire lasers at telecom-wavelengths remains challenging. Here, we report on InGaAs nanowire array lasers on a silicon-on-insulator platform operating up to 1440 nm at room temperature. Bottom-up photonic crystal nanobeam cavities are formed by growing nanowires as ordered arrays using selective-area epitaxy, and single-mode lasing by optical pumping is demonstrated. We also show that arrays of nanobeam lasers with individually tunable wavelengths can be integrated on a single chip by the simple adjustment of the lithographically defined growth pattern. These results exemplify a practical approach toward nanowire lasers for silicon photonics.

  2. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  3. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  4. Lasing from lead halide perovskite semiconductor microcavity system.

    PubMed

    Wang, Jun; Da, Peimei; Zhang, Zhe; Luo, Song; Liao, Liming; Sun, Zeyuan; Shen, Xuechu; Wu, Shiwei; Zheng, Gengfeng; Chen, Zhanghai

    2018-06-07

    Organic-inorganic halide perovskite semiconductors are ideal gain media for fabricating laser and photonic devices due to high absorption, photoluminescence (PL) efficiency and low nonradiative recombination losses. Herein, organic-inorganic halide perovskite CH3NH3PbI3 is embedded in the Fabry-Perot (FP) microcavity, and a wavelength-tunable excitonic lasing with a threshold of 12.9 μJ cm-2 and the spectral coherence of 0.76 nm are realized. The lasing threshold decreases and the spectral coherence enhances as the temperature decreases; these results are ascribed to the suppression of exciton irradiative recombination caused by thermal fluctuation. Moreover, both lasing and light emission below threshold from the perovskite microcavity (PM) system demonstrate a redshift with the decreasing temperature. These results provide a feasible platform based on the PM system for the study of light-matter interaction for quantum optics and the development of optoelectronic devices such as polariton lasers.

  5. Group IIB-VIA semiconductor oxide cluster ions

    NASA Astrophysics Data System (ADS)

    Jayasekharan, Thankan

    2018-05-01

    Metal oxide cluster ions, MnOm± (M = Zn, Cd) and HgnOm- of various stoichiometry have been generated from solid IIB-VIA semiconductor oxides targets, (ZnO(s), CdO(s), and HgO(s)) by using pulse laser desorption ionization time of flight mass spectrometry with a laser of λ = 355 nm. Analysis of mass spectral data indicates the formation of stoichiometric cluster ions viz., (ZnO)n=1-30+ and (CdO)n=1-40+ along with -O bound anions, (ZnO)n=1-30O-, (CdO)n=1-40O- and (HgO)n=1-36O- from their respective solids. Further, metal oxoanions such as ZnOn=2,3-, CdOn=2,3,6-, and HgOn=2,3,6,7- have also been noted signifying the higher coordination ability of both Cd and Hg with O/O2/O3 species.

  6. Temperature profiles for laser-induced heating of nanocrystals embedded in glass matrices

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Promod K.; Nagpal, Swati

    2001-05-01

    Quantum confined nanostructures are very important because of their application towards optoelectronic devices. Commercial colored glass filters, which have large semiconductor particles, are being used to manufacture nanocrystals by suitable heat treatments. The progress in this area has been hampered by high size dispersion of these dots in the glass matrix which leads to reduction in higher order susceptibility thereby reducing non-linearity. In the present paper attempt has been made to theoretically model the temperature profiles of a laser irradiated CdS doped Borosilicate sample. Laser being used has a beam diameter of 1.5 mm and energy for 10 nsec pulse is 10 mJ. Two different particle radii of 5 nm and 10 nm have been considered. It is found that larger particles reach higher temperatures for the same pulse characteristics. This is because smaller particles have larger surface to volume ratio and hence dissipates out heat faster to the surrounding. Hence bigger particles will reach dissolution temperature faster than smaller particle and particle beyond a certain size should dissolve in the glass matrix when a sample is heat treated by laser. This could lead to a reduction in size dispersion of the nanocrystals. Also photodarkening effect found in semiconductor doped glasses is a big handicap for practical application of these materials in fast optical switching and non-linear optical devices. Photodarkening effect has been established to be a photochemical effect and it is important to study the temperature profiles around a particle since it will effect the impurity migration.

  7. Semiconductor laser applications in rheumatology

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Suteanu, S.

    1996-01-01

    Two types of laser diode (LD) based equipment for rheumatology are introduced. The first is a portable device which contains single LD emitting at 890 nm laser pulses (time full width 100 nsec) of reprate tunable within (0.5 - 1.5) kHz; the laser beam average power is 0.7 mW at 1 kHz reprate. The second is computer controlled, contains one HeNe laser and 5 LD allowing 6 modes of patient irradiation (placebo effect evaluation included). HeNe laser works in cw at 632.8 nm; the LD works each as described for the portable equipment. HeNe and LD beams are superposed so that HeNe laser spot in the irradiation plane has a 60 mm diameter and the LD spots covers a 50 mm diameter disc centered on the HeNe laser spot. Clinical applications using the second type of equipment are reported; 1287 patients were treated between October 1991 and October 1994. Female/male ratio was 4:1 and their age distribution was between 18 and 85 years. The average number of exposures was 10 and the mean exposure time was 7 minutes. Studies were made on the treatment of rheumatoid arthritis, seronegative arthritis, degenerative joint diseases, abarticular rheumatism, osteoporosis pain and pains and edema after fractures.

  8. Laser heating dynamics and glow spectra of carbon-, titanium- and erbium-containing optothermal fibre converters for laser medicine

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.

    2017-07-01

    Titanium- and erbium-containing optothermal fibre converters of laser radiation mounted at the distal end of quartz-quartz optical fibre are discussed for the first time. Technology of fabricating such converters is described. Carbon-containing converters are also considered. The laser heating dynamics of the converters and the glow spectra are studied by irradiating converters of each type by a 980 ± 10 nm semiconductor laser with an average power up to 4 W. It is shown that alongside with broadband thermal radiation accompanying the laser heating of all three types of converters in the temperature range 600-1100 °C, only in the spectrum of the erbium-containing converter the intense bands with the maxima at wavelengths 493, 523, 544, 660, and 798 nm, corresponding to the erbium radiative transitions 4F7/2 → 4I15/2, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2 and 4I9/2 → 4I15/2, respectively, are present. Such converters can be used in laser medicine for tissue surgery as well as in procedures combining laser, thermal, biostimulation or photodynamic action.

  9. Generation of programmable temporal pulse shape and applications in micromachining

    NASA Astrophysics Data System (ADS)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  10. Semiconductor diode laser device adjuvanting intradermal vaccine

    PubMed Central

    Kimizuka, Yoshifumi; Callahan, John J.; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P. K.; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y. Y.; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C.; Bean, David; Kashiwagi, Satoshi

    2017-01-01

    A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301 nm light that costs less than $4,000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. PMID:28365253

  11. Semiconductor diode laser device adjuvanting intradermal vaccine.

    PubMed

    Kimizuka, Yoshifumi; Callahan, John J; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P K; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y Y; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C; Bean, David; Kashiwagi, Satoshi

    2017-04-25

    A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application. Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301nm light that costs less than $4000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid-infrared laser sources for integrated photonics.

  13. Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers

    NASA Astrophysics Data System (ADS)

    Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla

    2018-02-01

    In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.

  14. Portable semiconductor disk laser for in vivo tissue monitoring: a platform for the development of clinical applications

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-07-01

    Long term in vivo observations at large penetration depths and minimum sample disturbance are some of the key factors that have enabled the study of different cellular and tissue mechanisms. The continuous optimization of these aspects is the main driving force for the development of advanced microscopy techniques such as those based on nonlinear effects. Its wide implementation for general biomedical applications is however, limited as the currently used nonlinear microscopes are based on bulky, maintenance-intensive and expensive excitation sources such as Ti:sapphire ultrafast lasers. We present the suitability of a portable (140x240x70 mm) ultrafast semiconductor disk laser (SDL) source, to be used in nonlinear microscopy. The SDL is modelocked by a quantum-dot semiconductor saturable absorber mirror (SESAM). This enables the source to deliver an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. The laser center wavelength (965 nm) virtually matches the two-photon absorption cross-section of the widely used Green Fluorescent Protein (GFP). This property greatly relaxes the required peak powers, thus maximizing sample viability. This is demonstrated by presenting two-photon excited fluorescence images of GFP labeled neurons and second-harmonic generation images of pharyngeal muscles in living C. elegans nematodes. Our results also demonstrate that this compact laser is well suited for efficiently exciting different biological dyes. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its widespread adoption in biomedical applications.

  15. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  16. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    NASA Astrophysics Data System (ADS)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  17. Method and system for powering and cooling semiconductor lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telford, Steven J; Ladran, Anthony S

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  18. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  19. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  20. A webcam in Bayer-mode as a light beam profiler for the near infra-red

    PubMed Central

    Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas

    2013-01-01

    Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique. PMID:23645943

  1. A webcam in Bayer-mode as a light beam profiler for the near infra-red.

    PubMed

    Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas

    2013-05-01

    Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique.

  2. Semiconductor light sources for near- and mid-infrared spectral ranges

    NASA Astrophysics Data System (ADS)

    Karachinsky, L. Ya; Babichev, A. V.; Gladyshev, A. G.; Denisov, D. V.; Filimonov, A. V.; Novikov, I. I.; Egorov, A. Yu

    2017-11-01

    1550 nm band wafer-fused vertical-cavity surface-emitting lasers (VCSELs) and 5-10 μm band multi-stages quantum-cascade lasers (QCL) grown by molecular beam epitaxy (MBE) were fabricated and studied. VCSELs show high output optical power up to 6 mW in single-mode regime (SMSR > 40 dB) and open-eye diagrams at 30 Gbps of standard NRZ at 20°C. QCL heterostructures show high structural quality (fluctuations of composition and thickness < 1%). 20-μm-stripe width QCLs mounted on copper heatsinks show lasing at ∼ 6, 7.5 and 9 μm.

  3. Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi

    2017-04-01

    A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.

  4. Coherent electron{endash}hole correlations in quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, L.; Steiner, M.M.; Wilkins, J.W.

    1997-03-01

    Using numerical time propagation of the electron{endash}hole wave function, we demonstrate how various coherent correlation effects can be observed by laser excitation of a nanoscale semiconductor quantum dot. The lowest-lying states of an electron{endash}hole pair, when appropriately excited by a laser pulse, give rise to charge oscillations that are manifested by beatings in the optical or intraband polarizations. A GaAs 5{times}25{times}25 nm{sup 3} dot in the effective-mass approximation, including the screened Coulomb interaction between the electron and a heavy or light hole, is simulated. {copyright} {ital 1997 American Institute of Physics.}

  5. Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature.

    PubMed

    Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R

    2012-10-08

    We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.

  6. Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs.

    PubMed

    Han, Liangshun; Liang, Song; Wang, Huitao; Qiao, Lijun; Xu, Junjie; Zhao, Lingjuan; Zhu, Hongliang; Wang, Baojun; Wang, Wei

    2014-12-01

    We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45 µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13 nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30 mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3 dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.

  7. Self-mode-locked AlGaInP-VECSEL

    NASA Astrophysics Data System (ADS)

    Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.

    2017-10-01

    We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.

  8. Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure

    DOE PAGES

    Liu, Sheng; Li, Changyi; Figiel, Jeffrey J.; ...

    2015-04-27

    In this paper, we report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ~7 GPa. The GaN NW lasers, with heights of 4–5 μm and diameters ~140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ~40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values,more » revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. Finally, this approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.« less

  9. Single steady frequency and narrow-linewidth external-cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng

    2003-11-01

    A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.

  10. Solution-processed PCDTBT capped low-voltage InGaZnO{sub x} thin film phototransistors for visible-light detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Xiao, Yubin; Chen, Zefeng

    The effects of visible-light detection based on solution processed poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′benzothiadiazole) (PCDTBT) capped InGaZnOx (IGZO) phototransistors with Al{sub 2}O{sub x} serving as gate dielectric are investigated in this paper. The high-k dielectric is used to lower the device operating voltage down to 2 V. Photons emitted from laser sources with the wavelengths (λ) of 532 nm and 635 nm are absorbed through the layer of PCDTBT to generate electron-hole-pairs (EHPs). After the separation of EHPs, electrons are injected into IGZO layer through the p-n junction formed between the IGZO (n-type semiconductor) and the PCDTBT (p-type semiconductor). The photo-generated carriers boost the drain currentmore » of the transistors as well as bring about the negative threshold voltage shift. Significant enhanced detection performance is achieved under the laser wavelength of 532 nm. The highest photoresponsivity reaches up to 20 A/W, while the photoresponse rise time comes to 10 ms and the fall time comes to approximate 76 ms, which is much faster than trap assisted IGZO visible light detection. The fabricated phototransistors favor the application of visible-light detectors and/or optical switches.« less

  11. Thermionic field emission in gold nitride Schottky nanodiodes

    NASA Astrophysics Data System (ADS)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  12. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    PubMed

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.

  13. Ultrafast Modulation of Semiconductor Lasers Through a Terahertz Field

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Hughes, Steven; Citrin, David

    1998-01-01

    We demonstrate, by means of numerical simulation, a new mechanism to modulate and switch semiconductor lasers at THz and sub-THz frequency rates. A sinusoidal terahertz field applied to a semiconductor laser heats the electron-hole plasma and consequently modifies the optical susceptibility. This allows an almost linear modulation of the output power of tile semiconductor laser and leads to a faithful reproduction of the terahertz-field waveform in the emitted laser intensity.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399more » nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.« less

  15. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Influence of spontaneous fluctuations on the emission spectrum of an injection semiconductor laser

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yurii V.; Suris, Robert A.; Tager, A. A.; Élenkrig, B. B.

    1988-11-01

    A theoretical investigation is made of fluctuation-induced excitation of side longitudinal modes in the emission spectra of semiconductor lasers, including those with an external mirror. It is shown that nonlinear refraction of light in the active region of a semiconductor laser may result in a noise redistribution of the radiation between longitudinal resonator modes and can be responsible for the multimode nature of the average emission spectrum. An analysis is made of the influence of selectivity of an external mirror on the stability of cw operation, minimum line width, and mode composition of the emission spectra of semiconductor lasers. The conditions for maximum narrowing of the emission spectrum of a semiconductor laser with an external selective mirror are identified.

  16. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.

    PubMed

    Lee, Sang-Won; Song, Hyun-Woo; Jung, Moon-Youn; Kim, Seung-Hwan

    2011-10-24

    In this study, we demonstrated a wide tuning range wavelength-swept laser with a single semiconductor optical amplifier (SOA) at 1020 nm for ultrahigh resolution, Fourier-domain optical coherence tomography (UHR, FD-OCT). The wavelength-swept laser was constructed with an external line-cavity based on a Littman configuration. An optical wavelength selection filter consisted of a grating, a telescope, and a polygon scanner. Before constructing the optical wavelength selection filter, we observed that the optical power, the spectrum bandwidth, and the center wavelength of the SOA were affected by the temperature of the thermoelectric (TE) cooler in the SOA mount as well as the applied current. Therefore, to obtain a wide wavelength tuning range, we adjusted the temperature of the TE cooler in the SOA mount. When the temperature in the TE cooler was 9 °C, our swept source had a tuning range of 142 nm and a full-width at half-maximum (FWHM) of 121.5 nm at 18 kHz. The measured instantaneous spectral bandwidth (δλ) is 0.085 nm, which was measured by an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. This value corresponds to an imaging depth of 3.1 mm in air. Additionally, the averaged optical power of our swept source was 8.2 mW. In UHR, FD/SS-OCT using our swept laser, the measured axial resolution was 4.0 μm in air corresponding to 2.9 μm in tissue (n = 1.35). The sensitivity was measured to be 93.1 dB at a depth of 100 μm. Finally, we obtained retinal images (macular and optic disk) and a corneal image. © 2011 Optical Society of America

  17. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    PubMed

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  18. Electrically-pumped 850-nm micromirror VECSELs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission ismore » employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.« less

  19. Electrically pumped 850-nm micromirror VECSELs

    NASA Astrophysics Data System (ADS)

    Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Mar, Alan

    2005-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  20. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers

    PubMed Central

    Tandoi, Giuseppe; Ironside, Charles N.; Marsh, John H.; Bryce, A. Catrina

    2013-01-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers. PMID:23843678

  1. Femtosecond Optical and X-Ray Measurement of the Semiconductor-to-Metal Transition in VO2

    NASA Astrophysics Data System (ADS)

    Cavalleri, Andrea; Toth, Csaba; Squier, Jeff; Siders, Craig; Raksi, Ferenc; Forget, Patrick; Kieffer, Jean-Claude

    2001-03-01

    While the use of ultrashort visible pulses allows access to ultrafast changes in the optical properties during phase transitions, measurement of the correlation between atomic movement and electronic rearrangement has proven more elusive. Here, we report on the conjunct measurement of ultrafast electronic and structural dynamics during a semiconductor-to-metal phase transition in VO2. Rearrangement of the unit cell from monoclinic to rutile (measured by ultrafast x-ray diffraction) is accompanied by a sharp increase in the electrical conductivity and perturbation of the optical properties (measured with ultrafast visible spectroscopy). Ultrafast x-ray diffraction experiments were performed using femtosecond bursts of Cu-Ka from a laser generated plasma source. A clear rise of the diffraction signal originating from the impulsively generated metallic phase was observable on the sub-picosecond timescale. Optical experiments were performed using time-resolved microscopy, providing temporally and spatially resolved measurements of the optical reflectivity at 800 nm. The data indicate that the reflectivity of the low-temperature semiconducting solid is driven to that of the equilibrium, high-temperature metallic phase within 400 fs after irradiation with a 50-fs laser pulse at fluences in excess of 10 mJ/cm2. In conclusion, the data presented in this contribution suggest that the semiconductor-to-metal transition in VO2 occurs within 500 fs after laser-irradiation. A nonthermal physical mechanism governs the re-arrangement.

  2. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2017-03-01

    In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach-Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation.

  3. Physical mechanism of coherent acoustic phonons generation and detection in GaAs semiconductor

    NASA Astrophysics Data System (ADS)

    Babilotte, P.; Morozov, E.; Ruello, P.; Mounier, D.; Edely, M.; Breteau, J.-M.; Bulou, A.; Gusev, V.

    2007-12-01

    We first describe the picosecond acoustic interferometry study of GaAs with two-colors pump-probe laser pulses. The dependence of the generation process on the pump wavelength and the detection process on the probe wavelength both can cause the shift in the phase of the Brillouin signal. Secondly, in order to distinguish the short high frequency wideband acoustic pulse from low frequency Brillouin contribution, we accomplished experiments with (100)GaAs semiconductor coated by a transparent and photoelastically inactive thin film, serving a delay line for the acoustic pulse. Even with highly penetrating pump light (approx 680nm), short acoustic disturbances of approx 7ps of duration have been registered.

  4. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  5. A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.

    2017-03-01

    The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.

  6. Semiconductor Surface Emitting Laser Diodes

    DTIC Science & Technology

    1989-03-30

    the finesse of the resonator, thus broadening the emission linewidth. GW C 50 rnA 1.6mA 3 nm 0: !,rI . m l ... 40 MA 1.Om 0~ A O "O - .SmA "On( - I...8217 825 850 875 900 30 mA M WAVELENGTH (nm) C- I- 0 20 mA z 10 mA 5 MA 800 850 900 WAVELENGTH (nm) Figure 8. Typical SEL emission spectrum 15 Additional...Waeent ( m 0 8250 86-8 0 2 27.5 w o 25.0 0 z 7.25.5 F BAOKWAD, 42 A j F ii~ -p Ai ~ B~i (2-4) 2P / B i A i + Bi (2-5)3. j 20 j Fi j = (.)1/2) - Hii

  7. 18-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser

    NASA Astrophysics Data System (ADS)

    Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo

    2017-10-01

    We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.

  8. A new telescope concept for space communication

    NASA Astrophysics Data System (ADS)

    Henneberg, Peter; Schubert, Hermann

    1990-07-01

    The design concept of an optical transmit-receive antenna telescope developed in the framework of the ESA SILEX program is presented. SILEX involves optical communication between satellites in GEO, using semiconductor laser diodes operating at 825 nm as the light source. The telescope requirements include entrance diameter 250 mm, exit pupil 8 mm, acquisition FOV 8500 microrad, communication FOV 2000 microrad, angular magnification -31.25, retroreflection 3 microW/sq m nm or less, stray light 1.05 microW/sq m nm or less, and alignment stability 10 years with no refocusing in orbit. The present compact two-mirror configuration employs the glass-ceramic Zerodur for all of the major components (primary mirror/baseplate, secondary mirror, tube, front ring, and ocular) for a total mass of only 5760 g. The prototype manufacturing process gave surface errors of 25 nm rms-WF for the primary and 15 nm rms-WF for the secondary.

  9. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature

    NASA Astrophysics Data System (ADS)

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S.; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-01

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibility for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode room-temperature lasing from 890 nm to 990 nm utilizing a novel design of single nanowires with GaAsSb-based multiple superlattices as gain medium under optical pumping. The wavelength tunability with comprehensively enhanced lasing performance is shown to result from the unique nanowire structure with efficient gain materials, which delivers a lasing quality factor as high as 1250, a reduced lasing threshold ~ 6 kW cm-2 and a high characteristic temperature ~ 129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way towards future nanoscale integrated optoelectronic systems with stunning performance.

  10. Two-photon equivalent weighting of spatial excimer laser beam profiles

    NASA Astrophysics Data System (ADS)

    Eva, Eric; Bauer, Harry H.; Metzger, K.; Pfeiffer, A.

    2001-04-01

    Damage in optical materials for semiconductor lithography applications caused by exposure to 248 or 193 nm light is usually two-photon driven, hence it is a nonlinear function of incident intensity. Materials should be tested with flat- topped temporal and spatial laser beam profiles to facilitate interpretation of data, but in reality this is hard to achieve. Sandstrom provided a formula that approximates any given temporal pulse shape with a two- photon equivalent rectangular pulse (Second Symposium on 193 nm Lithography, Colorado Springs 1997). Known as the integral-square pulse duration, this definition has been embraced as an industry standard. Originally faced with the problem of comparing results obtained with pseudo-Gaussian spatial profiles to literature data, we found that a general solution for arbitrarily inhomogeneous spatial beam profiles exists which results in a definition much similar to Sandstrom's. In addition, we proved the validity of our approach in experiments with intentionally altered beam profiles.

  11. Laser a balayage spectral double-bande pour l'imagerie biomedicale multimodale

    NASA Astrophysics Data System (ADS)

    Goulamhoussen, Nadir

    A novel swept laser providing simultaneous dual-band (780nm and 1 300 nm) wavelength scanning has been designed for use in multimodal imaging systems. The swept laser is based on two gain media : a fibered semiconductor optical amplifier (SOA) centered at 1 300nm and a free-space laser diode centered at 780 nm. Simultaneous wavelength tuning for both bands is obtained by separate wavelength filters set up around the same rotating polygonal mirror. For each band, a telescope in an infinite conjugate setup converges the wavelengths dispersed by a grating on the polygon. The polygon reflects back a narrow band of wavelengths for amplification in the gain medium. Rotating the polygon enables wavelength tuning and imaging at a rate of 6 000 to 30 000 spectral lines/s, or A-lines/s in Optical Coherence Tomography (OCT). The 780nm source has a bandwidth of 37 nm, a fibered output power of 54 mW and a coherence length of 11 mm. The 1 300nm source has a bandwidth of 75 nm, a fibered output power of 17mW and a coherence length of 7.2 mm. Three multimodal systems were designed to test the potential of the swept laser in biomedical imaging. A two color OCT which allows three-dimensional in depth imaging of biological tissues with good morphological contrast was first designed, including a novel arrangement for balanced detection in both bands. A simultaneous OCT and SECM instrument was also built in which spectrally encoded confocal microscopy (SECM) provides en face images of subcellular features with high resolution on top of the 3D high penetration image obtained by OCT. Finally, a system combining OCT with fluorescence was designed, thus adding functional imaging to structural OCT images. There are many prospective paths for these three modalities, first among them the adaptation of the systems such that they may be used with imaging probes. One potential solution would be the development of novel fiber components to combine the illumination of theses modalities while demultiplexing their detection, and as would be the development of new optomechanics to enable 3D real-time in vivo imaging.

  12. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1990-02-01

    semiconductors at the samefrequency. Large-signal computer simulations show that diamond IMPATTs can operate at 35 GHZ with 8.26 W, at 60 GHz producing...been the most extensively utilized substrates to date. Submitted to -Proceedings of NATO Advanced Rc.carch Wwkshop on the Physics and Chemitry of...backscatter configuration using 514.5nm I Ar ion laser radiation. The scattered light was dispersed with a computer controlled triple monochromator and

  13. Light-controlled plasmon switching using hybrid metal-semiconductor nanostructures.

    PubMed

    Paudel, Hari P; Leuenberger, Michael N

    2012-06-13

    We present a proof of concept for the dynamic control over the plasmon resonance frequencies in a hybrid metal-semiconductor nanoshell structure with Ag core and TiO(2) coating. Our method relies on the temporary change of the dielectric function ε of TiO(2) achieved through temporarily generated electron-hole pairs by means of a pump laser pulse. This change in ε leads to a blue shift of the Ag surface plasmon frequency. We choose TiO(2) as the environment of the Ag core because the band gap energy of TiO(2) is larger than the Ag surface plasmon energy of our nanoparticles, which allows the surface plasmon being excited without generating electron-hole pairs in the environment at the same time. We calculate the magnitude of the plasmon resonance shift as a function of electron-hole pair density and obtain shifts up to 126 nm at wavelengths around 460 nm. Using our results, we develop the model of a light-controlled surface plasmon polariton switch.

  14. Time Resolved Near Field Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Stark, J. B.

    1996-03-01

    We use broadband pulses to image the carrier dynamics of semiconductor microstructures on a 150 nm spatial scale, with a time resolution of 60 femtoseconds. Etched disks of GaAs/AlGaAs multiple quantum well material, 10 microns in diameter, are excited with a 30 fs pump from a Ti:Sapphire laser, and probed using a near-field optical microscope. The nonlinear transmission of the microdisks is measured using a double-modulation technique, sensitive to transmission changes of 0.0005 within a 150 nm diameter spot on the sample. This spot is scanned to produce an image of the sample. The nonlinear response is produced by the occupation of phase space by the excited distribution. Images of this evolving distribution are collected at time intervals following excitation, measuring the relaxation of carriers at each point in the microdisk. The resulting data can be viewed as a movie of the carrier dynamics of nonequilibrium distributions in excited semiconductor structures. Work done in collaboration with U. Mohideen and R. E. Slusher.

  15. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    NASA Astrophysics Data System (ADS)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  16. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    NASA Astrophysics Data System (ADS)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  17. 1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung

    2005-02-07

    Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.

  18. CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.

    PubMed

    Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P

    2010-03-15

    We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.

  19. Use of the immunomodulative influence of low-level laser radiation in the treatment of an autoimmune thyroiditis

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. A.; Alexandrova, O. A.; Denisov, I. N.

    2000-06-01

    Use of LLLT for 42 patients with an autoimmune thyroiditis has shown that the helper function of lymphocytes has decreased, the suppressive activity has increased, the quantity of B-lymphocytes has decreased and the immunoregulative index has been normalized. The effect of LLLT application was active about 4 months in 78 percent of the patients. Soft semiconductor laser was used. The radiation was in the IR range of spectrum, wavelength - 890 nm. The technique included cutaneous irradiation of the thymus projection zones, vascular junction and thyroid gland. The total doze was made 2.42 J/cm2.

  20. Monte Carlo simulation of cutaneous absorption and reflectance for clear, matt and dark biological tissue with varicosities: an investigation for dermatological laser

    NASA Astrophysics Data System (ADS)

    Klouch, Nawel; Riane, Houaria; Hamdache, Fatima; Addi, Djamel

    2013-05-01

    We are interested in modeling the interaction between light and biological tissue from the Monte Carlo method which is an approach used to solve modeling problems in different physical domains. Through the Monte Carlo approach we are going to try to interpret the spectral response absorption, reflectance, transmittance of normal human tissue under its three dominant tints in the visible range (350-700) nm. Then we will focus on the spectral response of the human tissue with varicosities in order to determinate the optimal conditions of operating the semiconductor laser for esthetic aim.

  1. Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang

    2017-02-01

    We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.

  2. A 12.1-W SESAM mode-locked Yb:YAG thin disk laser

    NASA Astrophysics Data System (ADS)

    Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei

    2016-05-01

    Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).

  3. Estimation of Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We evaluate mechanical thermal noise in semiconductor lasers, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Our simple model determines an underlying fundamental limit for the frequency noise of free-running semiconductor laser, and provides a framework: where the noise may be potentially reduced with improved design.

  4. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  5. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  6. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav

    2016-12-01

    In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.

  7. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures.

    PubMed

    Feng, Pin; Jiang, Lan; Li, Xin; Rong, Wenlong; Zhang, Kaihu; Cao, Qiang

    2015-02-20

    A simple, repeatable approach is proposed to fabricate large-area, uniform periodic surface structures by a femtosecond laser. 20 nm gold films are coated on semiconductor surfaces on which large-area, uniform structures are fabricated. In the case study of silicon, cross-links and broken structures of laser induced periodic surface structures (LIPSSs) are significantly reduced on Au-coated silicon. The good consistency between the scanning lines facilitates the formation of large-area, uniform LIPSSs. The diffusion of hot electrons in the Au films increases the interfacial carrier densities, which significantly enhances interfacial electron-phonon coupling. High and uniform electron density suppresses the influence of defects on the silicon and further makes the coupling field more uniform and thus reduces the impact of laser energy fluctuations, which homogenizes and stabilizes large-area LIPSSs.

  8. Laser synthesis of hybrid nanoparticles for biomedicine

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Lalayan, A. A.

    2018-04-01

    The extraordinary properties of size-tunable nanoparticles (NPs) have given rise to their widespread applications in Nanophotonics, Biomedicine, Plasmonics etc. Semiconductor and metal NPs have found a number of significant applications in the modern biomedicine due to ultrasmall sizes (1-10 nm) and the size-dependent flexibility of their optical properties. In the present work passive Q-switched Nd:YAG pulsed laser was used to synthesize NPs by method of laser ablation in different liquids. For cases of hybrid metal NPs we have demonstrated that plasmon resonance can be modified and tuned from the plasmon resonances of pure metal NPs. The shifted plasmon resonance frequency at 437 nm for Au-Ag hybrid NPs, and 545 nm for Au-Cu hybrid NPs have been observed. Effectiveness of biotissue ablation in the case of the tissue sample that colored with metal NPs was approximately on 4-5 times larger than for the sample with non-colored area. Laser welding for deep-located biotissue layers colored by metal NPs has been realized. The luminescence properties of the colloidal hybrid Si-Ni nanoparticles' system fabricated by pulsed laser ablation are also considered. The red-shifted photoluminescence of this system has been registered in the blue range of the spectrum because of the Stark effect in the Coulomb field of the charged Ni nanoparticles. Summarizing, the knowledge of peculiarities of optical properties of hybrid NPs is very important for biomedical applications. More complex nanoassemblies can be easily constructed by the presented technique of laser synthesis of colloidal QDs including complexes of NPs of different materials.

  9. Fundamental research on the action mechanism of the 800 nm semiconductor laser on skin blackheads and coarse pores.

    PubMed

    Lin, Jie; Jing, Li; Zhu, Hao; Dong, Fu-Sheng

    2017-01-01

    The aim of the study was to determine the mechanism of action of the 800 nm semiconductor laser on skin blackheads and coarse pores. A total of 24 healthy purebred short-haired male guinea pigs, weighing 350-400 g, were selected and smeared with 0.5 ml coal tar suspension evenly by injector once daily. Treatment was continued for 14 days to form an experimental area of 8×3 cm on the back of the guinea pigs. The animals were divided into the following groups: Normal control group (NC), low-dose laser treatment group (L-LS), high-dose laser treatment group (H-LS), and Q-switched Nd:YAG treatment group (QC). Samples were extracted 1, 7 and 14 days after surgery and hematoxylin and eosin staining was used to identify the following: Epidermis, dermis, sebaceous gland change and hair follicle damage; the expression of proliferating cell nuclear antigen (PCNA) of sebaceous gland cells using immunohistochemistry; sebaceous gland cell apoptosis using TUNEL; and the protein expression of caspase-3, Bax and Bcl-2 using western blot analysis. With the extension of time, we observed inflammatory cell infiltration, an increase in hair follicle distortion and necrosis of the surrounding hair follicles. The expression levels of PCNA of the L-LS, H-LS and QC groups decreased with time. Regarding the respective time points, the NC group was highest, the L-LS and H-LS groups were next highest and the H-LS group was lowest. The difference was statistically significant (P<0.05). The apoptotic rate of the L-LS, H-LS and QC groups increased with time. With regard to the respective time points, the NC group was lowest, the L-LS and QC groups were next lowest and the H-LS group was highest. The difference was statistically significant (P<0.05). The protein expression of caspase-3, Bax and Bcl-2 of the L-LS, H-LS and QC groups increased with time. Regarding the respective time points, caspase-3 and Bax protein expression of the NC group was lowest, the L-LS and QC groups were next lowest and the H-LS group was highest. Bcl-2 protein expression of the NC group was highest, protein expression of the NC group was next highest and the H-LS group was lowest. The difference was statistically significant (P<0.05). In conclusion, the low-dose 800 nm semiconductor laser is an effective treatment on skin blackheads and coarse pores, and promotes hair follicle cell apoptosis without reducing the expression of PCNA.

  10. Bidirectional chaos communication between two outer semiconductor lasers coupled mutually with a central semiconductor laser.

    PubMed

    Li, Ping; Wu, Jia-Gui; Wu, Zheng-Mao; Lin, Xiao-Dong; Deng, Dao; Liu, Yu-Ran; Xia, Guang-Qiong

    2011-11-21

    Based on a linear chain composed of a central semiconductor laser and two outer semiconductor lasers, chaos synchronization and bidirectional communication between two outer lasers have been investigated under the case that the central laser and the two outer lasers are coupled mutually, whereas there exists no coupling between the two outer lasers. The simulation results show that high-quality and stable isochronal synchronization between the two outer lasers can be achieved, while the cross-correlation coefficients between the two outer lasers and the central laser are very low under proper operation condition. Based on the high performance chaos synchronization between the two outer lasers, message bidirectional transmissions of bit rates up to 20 Gbit/s can be realized through adopting a novel decoding scheme which is different from that based on chaos pass filtering effect. Furthermore, the security of bidirectional communication is also analyzed. © 2011 Optical Society of America

  11. Control of the Diameter and Chiral Angle Distributions during Production of Single-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  12. RF switching network: a novel technique for IR sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  13. Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu

    2010-03-01

    Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).

  14. Reduction of B-integral accumulation in lasers

    DOEpatents

    Meyerhofer, David D.; Konoplev, Oleg A.

    2000-01-01

    A pulsed laser is provided wherein the B-integral accumulated in the laser pulse is reduced using a semiconductor wafer. A laser pulse is generated by a laser pulse source. The laser pulse passes through a semiconductor wafer that has a negative nonlinear index of refraction. Thus, the laser pulse accumulates a negative B-integral. The laser pulse is then fed into a laser amplification medium, which has a positive nonlinear index of refraction. The laser pulse may make a plurality of passes through the laser amplification medium and accumulate a positive B-integral during a positive non-linear phase change. The semiconductor and laser pulse wavelength are chosen such that the negative B-integral accumulated in the semiconductor wafer substantially cancels the positive B-integral accumulated in the laser amplification medium. There may be additional accumulation of positive B-integral if the laser pulse passes through additional optical mediums such as a lens or glass plates. Thus, the effects of self-phase modulation in the laser pulse are substantially reduced.

  15. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  16. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously considered inaccessible.

  17. Apparatus For Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers Using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    2000-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.

  18. Method and Apparatus for Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    1998-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.

  19. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  20. Two-Photon-Absorption Scheme for Optical Beam Tracking

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  1. A Laser-Induced Fluorescence Instrument for Aircraft Measurements of Sulfur Dioxide in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Rollins, Andrew W.; Thornberry, Troy D.; Ciciora, Steven J.; McLaughlin, Richard J.; Watts, Laurel A.; Hanisco, Thomas F.; Baumann, Esther; Giorgetta, Fabrizio R.; Bui, Thaopaul V.; Fahey, David W.

    2016-01-01

    This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UTLS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5 nm to excite SO2 at 216.9 nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UTLS at background (non-volcanic) conditions with a precision of 2 ppt at 10 s and an overall uncertainty determined primarily by instrument drifts of +/- (16% + 0.9 ppt).

  2. Picosecond Nd:BaY2F8 laser discretely tunable around 1 μm

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Pirzio, F.; Reali, G.; Toncelli, A.; Tonelli, M.

    2010-09-01

    Passive mode-locking of a diode-pumped Nd:BaY2F8 (Nd:BaYF) was achieved on four lines in the range 1040-1074 nm, employing a semiconductor saturable absorber mirror (SAM). Nearly Fourier-limited pulses with durations of 2.6 to 7.2 ps and output power ≈50 mW were generated in a dispersion-controlled resonator using a single prism for wavelength selection, tuning and dispersion management.

  3. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  4. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer.

    PubMed

    Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi

    2012-06-04

    Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations - Postprint

    DTIC Science & Technology

    2014-09-01

    Squeezed light from injection- locked quantum well lasers ,” Phys. Rev. Lett., vol. 71, pp. 3951–3954, 1993. [30] A. E. Siegman , Lasers , 1st ed...AFRL-RY-WP-TP-2014-0297 TUNABLE OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS -POSTPRINT...OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS - POSTPRINT 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER

  6. High temperature semiconductor diode laser pumps for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  7. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    NASA Astrophysics Data System (ADS)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  8. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication.

    PubMed

    Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael

    2018-04-02

    We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.

  9. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy.

    PubMed

    Yu, Xujiang; Yang, Kai; Chen, Xiaoyuan; Li, Wanwan

    2017-10-01

    Semiconductor nanoparticles with localized surface plasmon resonance (LSPR) have gained increasing interest due to their potential for use in nanomedicine, particularly in the area of cancer photothermal therapy. In this study, we have synthesized non-stoichiometric hollow silicon oxide nanoparticles (H-SiO x NPs) using a magnesiothermic reduction process. The black NPs generated a desired LSPR in the second near-infrared (NIR-II) window, as was demonstrated by a photothermal conversion efficiency of up to 48.6% at 1064 nm. Such an efficiency is the highest reported among the noble metal and semiconductor-based NPs as NIR-II PTT photothermal agents. In addition, H-SiO x NPs exhibited excellent in vivo photoacoustic (PA) imaging properties, and thus can be used for highly efficient in vivo cancer treatment via irradiation with a 1064 nm laser, even at 0.6 W cm -2 . The findings described are the first to demonstrate the existence of LSPR in non-stoichiometric silicon-based nanoparticles with a low-toxicity degradation pathway for in vivo application, and provide new insights towards understanding the role of new semiconductor nanoparticles in nanomedicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fundamental Limit of 1/f Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, K.; Camp, J.

    2011-01-01

    So-called 1/f noise has power spectral density inversely proportional to frequency, and is observed in many physical processes. Single longitudinal-mode semiconductor lasers, used in variety of interferometric sensing applications, as well as coherent communications, exhibit 1/f frequency noise at low frequency (typically below 100kHz). Here we evaluate mechanical thermal noise due to mechanical dissipation in semiconductor laser components and give a plausible explanation for the widely-observed 1/f frequency noise, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Semiconductor-laser's short cavity, small beam radius, and lossy components are expected to emphasize thermal-noise-limited frequency noise. Our simple model largely explains the different 1/f noise levels observed in various semiconductor lasers, and provides a framework where the noise may be reduced with proper design.

  11. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  12. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    PubMed

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  13. Strained-layer indium gallium arsenide-gallium arsenide- aluminum galium arsenide photonic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Osowski, Mark Louis

    With the arrival of advanced growth technologies such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), research in III-V compound semiconductor photonic devices has flourished. Advances in fabrication processes have allowed the realization of high-performance quantum well lasers which emit over a wide spectral range and operate with low threshold currents. As a result, semiconductor lasers are presently employed in a wide variety of applications, including fiber-optic telecommunications, optical spectroscopy, solid-state laser pumping, and photonic integrated circuits. The work in this dissertation addresses three photonic device structures which are currently receiving a great deal of attention in the research community: integrable quantum well laser devices, distributed feedback (DFB) laser devices, and quantum wire arrays. For the realization of the integrable and integrated photonic devices described-in Chapter 2, a three-step selective-area growth technique was utilized. The selective epitaxy process was used to produce discrete buried-heterostructure Fabry Perot lasers with threshold currents as low as 2.6 mA. Based on this process, broad- spectrum edge-emitting superluminescent diodes are demonstrated which display spectral widths of over 80 nm. In addition, the monolithic integration of a multiwavelength emitter is demonstrated in which two distinct laser sources are coupled into a single output waveguide. The dissertation also describes the development of a single-growth-step ridge waveguide DFB laser. The DFB laser utilizes an asymmetric cladding waveguide structure to enhance the interaction of the optical mode with the titanium surface metal to promote single frequency emission via gain coupling. These lasers exhibit low threshold currents (11 mA), high side mode suppression ratios (50 dB), and narrow linewidths (45 kHz). In light of the substantial performance advantages of quantum well lasers relative to double heterostructure lasers, extensive efforts have been directed toward producing quantum wire systems. In view of this, the final subject of this dissertation details the fabrication and characterization of quantum wire arrays by selective-area MOCVD. The method employs a silicon dioxide grating mask with sub-micron oxide dimensions to achieve selective deposition of high-quality buried layers in the open areas of the patterned substrate. This allows the fabrication of embedded nanostructures in a single growth step, and the crystallographic nature of the growth allows for control of their lateral size. Using this process, the growth of strained InGaAs wires with a lateral dimension of less than 50 nm are obtained. Subsequent characterization by photoluminescence, scanning electron microscopy and transmission electron microscopy is also presented.

  14. Lasers, their development, and applications at M.I.T. Lincoln Laboratory

    NASA Technical Reports Server (NTRS)

    Rediker, R. H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.

  15. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Continuous-wave distributed-feedback InGaAsP (λ = 1.55 μm) injection heterolasers

    NASA Astrophysics Data System (ADS)

    Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.

    1988-11-01

    A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.

  16. Electro-optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1996-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.

  17. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, Willliam; Solakiewicz, Richard

    1998-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.

  18. Electro-Optic Lighting Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1999-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.

  19. Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si

    NASA Astrophysics Data System (ADS)

    Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie

    2010-02-01

    We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.

  20. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-09

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

  1. Modulation Effects in Multi-Section Semiconductor Lasers (Postprint)

    DTIC Science & Technology

    2013-01-01

    resonant modulation of semiconductor lasers beyond relaxation oscillation frequency,” Appl. Phys. Lett., 63, 1459–1461 (1993). [26] J. Helms and K. Petermann ...5, 4–6 (1993). [28] K. Petermann , “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Elec- tron., 1, 480–489

  2. Gold-reflector-based semiconductor saturable absorber mirror for femtosecond mode-locked Cr4+:YAG lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Nakagawa, T.; Torizuka, K.; Sugaya, T.; Kobayashi, K.

    We developed a gold reflector based semiconductor saturable absorber mirror that has a sufficiently high reflectivity and a broad bandwidth and has been used to initiate the mode locking in a Cr4+:YAG laser. The laser achieved a similar efficiency to the lasers with Bragg-reflector-based semiconductor saturable absorber mirrors, but delivered a much broader spectrum and a shorter pulse.

  3. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  4. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.

    Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.

  6. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    NASA Astrophysics Data System (ADS)

    Calvez, S.; Adams, M. J.

    2012-09-01

    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early achievements in the June 1987 Special Issue of IEEE Journal of Quantum Electronics. The Millennium Issue of IEEE Journal of Selected Topics in Quantum Electronics presented a further set of articles on historical aspects of the subject as well as a 'snapshot' of current research in June 2000. It is not the intention here to duplicate any of this historical material that is already available, but rather to complement it with personal recollections from researchers who were involved in laser development in the USA, France, Russia and the UK. Hence, in addition to fascinating accounts of the discovery of the theoretical condition for stimulated emission from semiconductors and of the pioneering work at IBM, there are two complementary views of the laser research at the Lebedev Institute, and personal insights into the developments at STL and at Bell Laboratories. These are followed by an account of the scientific and technological connections between the early pioneering breakthroughs and the commercialisation of semiconductor laser products. Turning to the papers from today's researchers, there is coverage of many of the current 'hot' topics including quantum cascade lasers, mid-infrared lasers, high-power lasers, the exciting developments in understanding and exploiting the nonlinear dynamics of lasers, and photonic integrated circuits with extremely high communication data capacity, as well as reports of recent progress on laser materials such as dilute nitrides and bismides, photonic crystals, quantum dots and organic semiconductors. Thanks are due to Jarlath McKenna for sterling support from IOP Publishing and to Peter Blood for instigating this Special Issue and inviting us to serve as Guest Editors.

  7. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  8. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    PubMed

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  9. Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers

    NASA Astrophysics Data System (ADS)

    Bou Sanayeh, Marwan

    2017-05-01

    The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.

  10. The 2-6 semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Otsuka, N.

    1992-12-01

    The first operational semiconductor diode lasers were demonstrated in the summer of 1991 independently by two U.S. groups, one at 3M and the other a team effort shared by Purdue and Brown Universities. As a result of the close collaboration between MBE and TEM groups within the grant, the structures for lasing and LED (as well as display device) operation were realized with the lowest defect concentrations ever reported for 2-6 structures grown on GaAs by MBE. The reduction of the dislocation levels resulted from an iterative process where the growth could be modified in response to the TEM analysis. The AFOSR funded interface studies have led to our appreciation of the electrical and microstructural considerations obtaining at 2-6/3-5 heterovalent interfaces. As a result the Purdue/Brown group has had equal success in making laser diodes with substrates of both doping types. The Purdue/Brown collaboration has obtained CW operations at 77 K as well as pulsed operation at room temperature using a Zn(S,Se)-based device configuration emitting in the blue (490 nm at room temperature).

  11. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition.

    PubMed

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-03-11

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices.

  12. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  13. Semiconductor laser multi-spectral sensing and imaging.

    PubMed

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  14. Light-activated resistance switching in SiOx RRAM devices

    NASA Astrophysics Data System (ADS)

    Mehonic, A.; Gerard, T.; Kenyon, A. J.

    2017-12-01

    We report a study of light-activated resistance switching in silicon oxide (SiOx) resistive random access memory (RRAM) devices. Our devices had an indium tin oxide/SiOx/p-Si Metal/Oxide/Semiconductor structure, with resistance switching taking place in a 35 nm thick SiOx layer. The optical activity of the devices was investigated by characterising them in a range of voltage and light conditions. Devices respond to illumination at wavelengths in the range of 410-650 nm but are unresponsive at 1152 nm, suggesting that photons are absorbed by the bottom p-type silicon electrode and that generation of free carriers underpins optical activity. Applied light causes charging of devices in the high resistance state (HRS), photocurrent in the low resistance state (LRS), and lowering of the set voltage (required to go from the HRS to LRS) and can be used in conjunction with a voltage bias to trigger switching from the HRS to the LRS. We demonstrate negative correlation between set voltage and applied laser power using a 632.8 nm laser source. We propose that, under illumination, increased electron injection and hence a higher rate of creation of Frenkel pairs in the oxide—precursors for the formation of conductive oxygen vacancy filaments—reduce switching voltages. Our results open up the possibility of light-triggered RRAM devices.

  15. Formation and characterization of microcrystalline semiconductor particles on bilayer lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baral, S.; Zhao, X.K.; Rolandi, R.

    Microcrystalline cadmium, indium, copper, and zinc sulfides were generated in situ on the surface of bilayer lipid membranes (BLMs) prepared from bovine-brain phosphatidylserine (PS), glyceryl monooleate (GMO), and a synthetic, polymerizable surfactant (n-C/sub 15/H/sub 31/CO/sub 2/(CH/sub 2/)/sub 2/)/sub 2/N/sup +/(CH/sub 3/)CH/sub 2/C/sub 6/H/sub 4/CH double bond CH/sub 2/, Cl/sup -/ (STYRS). Semiconductor-containing BLMs remained stable for days. Semiconductor formation on the BLM surface was monitored by optical microscopy, voltage-dependent capacitance measurements, and absorption and intracavity-laser-absorption spectroscopy. Band gap excitation of GMO- BLM-incorporated CdS resulted in the development of photovoltage. Irradiation of CdS incorporated into BLMs formed from STYRS (using amore » 350-nm cutoff filter) led to absorption losses due to the styrene moiety in the surfactant. Apparently, CdS sensitized the photopolymerization of STRYS BLMs.« less

  16. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  17. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of amore » GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.« less

  18. Ultra-Shallow Junctions Fabrication by Plasma Immersion Implantation on PULSION registered Followed by Laser Thermal Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume

    In order to achieve the requirements for P+/N junctions for <45 nm ITRS nodes, ultra low energy and high dose implantations are needed. Classical beamline implantation is now limited in low energies, compared to Plasma Immersion Ion Implantation (PIII) which efficiency is no more to prove for the realization of Ultra-Shallow Junctions (USJ) in semiconductor applications : this technique allows to get ultimate shallow profiles (as implanted) due to no lower limitation of energy and high dose rate. Electrical activation is also a big issue since it has to afford high electrical activation rate with very low diffusion. Laser annealingmore » is one of the candidates for the 45 nm node. This paper presents electrical and physico-chemical characterizations of junctions realized with BF3 PIII followed by laser thermal processing with aim to obtain ultra-shallow junctions. Different implantation conditions (acceleration voltage/dose) and laser conditions (laser types, fluence/number of shots) are used for this study. Pre-amorphization is also used to confine the junction depth, and is shown to have a positive effect on junction depth but leads in higher junction leakage due to the remaining of EOR defects. The characterization is done using Optical characterization tool (SEMILAB) for sheet resistance and junction leakage measurements. SIMS is used for Boron profile and junction depth.« less

  19. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors.

    PubMed

    Wang, Kangpeng; Feng, Yanyan; Chang, Chunxia; Zhan, Jingxin; Wang, Chengwei; Zhao, Quanzhong; Coleman, Jonathan N; Zhang, Long; Blau, Werner J; Wang, Jun

    2014-09-21

    A series of layered molybdenum dichalcogenides, i.e., MoX₂ (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX₂ dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS₂ and MoSe₂ dispersions after higher speed centrifugation (10,000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.

  20. Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Pérot interferometer.

    PubMed

    Bahoura, Messaoud; Clairon, André

    2003-11-01

    We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Pérot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.

  1. Design and analysis of InN - In0.25Ga0.75N single quantum well laser for short distance communication wavelength

    NASA Astrophysics Data System (ADS)

    Polash, Md. Mobarak Hossain; Alam, M. Shah; Biswas, Saumya

    2018-03-01

    A single quantum well semiconductor laser based on wurtzite-nitride is designed and analyzed for short distance communication wavelength (at around 1300 nm). The laser structure has 12 Å well layer of InN, 15 Å barrier layer of In0.25Ga0.75N, and 54 Å separate confinement heterostructure layer of GaN. To calculate the electronic characteristics of the structure, a self-consistent method is used where Hamiltonian with effective mass approximation is solved for conduction band while six-bands Hamiltonian matrix with k · p formalism including the polarization effect, valence-band mixing effect, and strain effect is solved for valence band. The interband optical transition elements, optical gain, differential gain, radiative current density, spontaneous emission rate, and threshold characteristics have been calculated. The wave function overlap integral is found to be 45.93% for TE-polarized structure. Also, the spontaneous emission rate is found to be 6.57 × 1027 s - 1 cm - 3 eV - 1 at 1288.21 nm with the carrier density of 5 × 1019 cm - 3. Furthermore, the radiative current density and the radiative recombination rate are found to be 121.92 A cm - 2 and 6.35 × 1027 s - 1 cm - 3, respectively, while the TE-polarized optical gain of the structure is 3872.1 cm - 1 at 1301.7 nm.

  2. Measurements of Effective Schottky Barrier in Inverse Extraordinary Optoconductance Structures

    NASA Astrophysics Data System (ADS)

    Tran, L. C.; Werner, F. M.; Solin, S. A.; Gilbertson, Adam; Cohen, L. F.

    2013-03-01

    Individually addressable optical sensors with dimensions as low as 250nm, fabricated from metal semiconductor hybrid structures (MSH) of AuTi-GaAs Schottky interfaces, display a transition from resistance decreasing with intensity in micron-scale sensors (Extraordinary Optoconductance, EOC) to resistance increasing with intensity in nano-scale sensors (Inverse Extraordinary Optoconductance I-EOC). I-EOC is attributed to a ballistic to diffusive crossover with the introduction of photo-induced carriers and gives rise to resistance changes of up to 9462% in 250nm devices. We characterize the photo-dependence of the effective Schottky barrier in EOC/I-EOC structures by the open circuit voltage and reverse bias resistance. Under illumination by a 5 mW, 632.8 nm HeNe laser, the barrier is negligible and the Ti-GaAs interface becomes Ohmic. Comparing the behavior of two devices, one with leads exposed, another with leads covered by an opaque epoxy, the variation in Voc with the position of the laser can be attributed to a photovoltaic effect of the lead metal and bulk GaAs. The resistance is unaffected by the photovoltaic offset of the leads, as indicated by the radial symmetry of 2-D resistance maps obtained by rastering a laser across EOC/IEOC devices. SAS has a financial interest in PixelEXX, a start-up company whose mission is to market imaging arrays.

  3. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Simple pulsed semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Hulicius, E.; Abrahám, A.; Sĭmeček, T.

    1988-11-01

    A brief review is given of the main characteristics of pulsed GaAlAs/GaAs lasers made in Czechoslovakia. A description is given of laser structures with large optical cavities and their electrical, optical, and service life characteristics are reported.

  4. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.

    PubMed

    Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng

    2012-04-23

    An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America

  5. Semiconductor lasers for versatile applications from global communications to on-chip interconnects

    NASA Astrophysics Data System (ADS)

    Arai, Shigehisa

    2015-01-01

    Since semiconductor lasers were realized in 1962, various efforts have been made to enrich human life thorough novel equipments and services. Among them optical fiber communications in global communications have brought out marvelous information technology age represented by the internet. In this paper, emerging topics made on GaInAsP/InP based long-wavelength lasers toward ultra-low power consumption semiconductor lasers for optical interconnects in supercomputers as well as in future LSIs are presented.

  6. Gain Coupling of Class A Semiconductor Lasers (Postprint)

    DTIC Science & Technology

    2010-09-01

    Circuits (Wiley, 1995). 15. SimuLase Version 1.4.0.0 by Nonlinear Control Strategies, Inc. (2009). 16. A. Siegman , Lasers (University Science, 1986). 3062 OPTICS LETTERS / Vol. 35, No. 18 / September 15, 2010 3 ...AFRL-RY-WP-TP-2010-1250 GAIN COUPLING OF CLASS A SEMICONDUCTOR LASERS (POSTPRINT) Chris Hessenius, Mahmoud Fallahi, and Jerome Moloney...June 2010 4. TITLE AND SUBTITLE GAIN COUPLING OF CLASS A SEMICONDUCTOR LASERS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  7. Transient lateral photovoltaic effect in synthetic single crystal diamond

    NASA Astrophysics Data System (ADS)

    Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.

    2017-10-01

    A transient lateral photovoltaic effect (LPE) is reported for a metal-semiconductor structure of synthetic single crystal diamond (SCD). A SCD Schottky photodiode was specifically designed to measure a LPE under collimated irradiation from a tunable pulsed laser. A transient lateral photovoltage parallel to the Schottky junction was indeed detected. LPE on the p-type doped SCD side showed a non-linearity of 2% and a fast response time, with a rise time of 2 μs and a decay time of 12 μs. The position sensitivity (up to 30 mV/mm at a laser wavelength of 220 nm and a pulse energy density of 2.9 μJ/mm2) was measured as a function of laser wavelength, and an ultraviolet (UV)-to-visible contrast ratio of about four orders of magnitude with a sharp cutoff at 225 nm was observed. Our results demonstrate that a large LPE at UV wavelengths is achievable in synthetic single crystal diamond, potentially opening opportunities for the study and application of LPE in diamond and for the fabrication of high performance visible blind UV position sensitive detectors with high sensitivity and microsecond scale response time.

  8. Comparative study of the photodynamic effect in tumor and nontumor animal cell lines

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi

    2004-09-01

    In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.

  9. Semiconductor laser using multimode interference principle

    NASA Astrophysics Data System (ADS)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  10. Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity.

    PubMed

    Luo, X; Tseng, L T; Lee, W T; Tan, T T; Bao, N N; Liu, R; Ding, J; Li, S; Lauter, V; Yi, J B

    2017-07-24

    Room temperature ferromagnetism has been observed in the Cu doped ZnO films deposited under an oxygen partial pressure of 10 -3 and 10 -5 torr on Pt (200 nm)/Ti (45 nm)/Si (001) substrates using pulsed laser deposition. Due to the deposition at relatively high temperature (873 K), Cu and Ti atoms diffuse to the surface and interface, which significantly affects the magnetic properties. Depth sensitive polarized neutron reflectometry method provides the details of the composition and magnetization profiles and shows that an accumulation of Cu on the surface leads to an increase in the magnetization near the surface. Our results reveal that the presence of the copper at Zn sites induces ferromagnetism at room temperature, confirming intrinsic ferromagnetism.

  11. Computer laser system for prevention and treatment of dental diseases: new methods and results

    NASA Astrophysics Data System (ADS)

    Fedyai, S. G.; Prochonchukov, Alexander A.; Zhizhina, Nina A.; Metelnikov, Michael A.

    1995-05-01

    We report results of clinical application of the new computer-laser system. The system includes hardware and software means, which are applied for new efficient methods of prevention and treatment of main dental diseases. The hardware includes a laser physiotherapeutic device (LPD) `Optodan' and a fiberoptic laser delivery system with special endodontic rigging. The semiconductor AG-AL-AG laser diode with wavelengths in the spectral range of 850 - 950 nm (produced by Scientific-Industrial Concern `Reflector') is used as a basic unit. The LPD `Optodan' and methods of treatment are covered by Russian patent No 2014107 and certified by the Russian Ministry of Health. The automated computer system allows us to examine patients quickly and to input differential diagnosis, to determine indications (and contraindications), parameters and regimen of laser therapy, to control treatment efficacy (for carious -- through clinical indexes of enamel solubles, velocity of demineralization and other tests; for periodontal diseases trough complex of the periodontal indexes with automated registry and calculation). We present last results of application of the new technique and methods in treatment of dental diseases in Russian clinics.

  12. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Huang, H.

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carriermore » populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.« less

  13. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    PubMed

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  14. N.G. Basov and early works on semiconductor lasers at P.N. Lebedev Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, P G

    2012-12-31

    A survey is presented of works on creation and investigation of semiconductor lasers during 1957 - 1977 at the P.N. Lebedev Physics Institute. Many of these works were initiated by N.G. Basov, starting from pre-laser time, when N.G. Basov and his coworkers formulated principal conditions of creation of lasers on interband transitions in semiconductors. Main directions of further works were diode lasers based on various materials and structures, their characteristics of output power, high-speed operation and reliability. (special issue devoted to the 90th anniversary of n.g. basov)

  15. External Cavity Coherent Transmitter Modules

    DTIC Science & Technology

    1990-11-01

    Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory

  16. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  17. Integrated InAs/InP quantum-dot coherence comb lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Zhenguo; Liu, Jiaren; Poole, Philip J.; Song, Chun-Ying; Webber, John; Mao, Linda; Chang, Shoude; Ding, Heping; Barrios, Pedro J.; Poitras, Daniel; Janz, Siegfried

    2017-02-01

    Current communication networks needs to keep up with the exponential growth of today's internet traffic, and telecommunications industry is looking for radically new integrated photonics components for new generation optical networks. We at National Research Council (NRC) Canada have successfully developed nanostructure InAs/InP quantum dot (QD) coherence comb lasers (CCLs) around 1.55 μm. Unlike uniform semiconductor layers in most telecommunication lasers, in these QD CCLs light is emitted and amplified by millions of semiconductor QDs less than 60 nm in diameter. Each QD acts like an isolated light source acting independently of its neighbours, and each QD emits light at its own unique wavelength. The end result is a QD CCL is more stable and has ultra-low timing jitter. But most importantly, a single QD CCL can simultaneously produce 50 or more separate laser beams at distinct wavelengths over the telecommunications C-band. Utilizing those unique properties we have put considerable effort well to design, grow and fabricate InAs/InP QD gain materials. After our integrated packaging and using electrical feedback-loop control systems, we have successfully demonstrated ultra-low intensity and phase noise, frequency-stabilized integrated QD CCLs with the repetition rates from 10 GHz to 100 GHz and the total output power up to 60 mW at room temperature. We have investigated their relative intensity noises, phase noises, RF beating signals and other performance of both filtered individual channel and the whole CCLs. Those highly phase-coherence comb lasers are the promising candidates for flexible bandwidth terabit coherent optical networks and signal processing applications.

  18. Direct solar pumping of semiconductor lasers: A feasibility study

    NASA Technical Reports Server (NTRS)

    Anderson, Neal G.

    1991-01-01

    The primary goals of the feasibility study are the following: (1) to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space directly focused sunlight; and (2) to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or battery electrically pumping a current injection laser. With external modulation, such lasers may prove to be efficient sources for intersatellite communications. We proposed to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation for operation at low pump intensities. This report outlines our progress toward these goals. Discussion of several technical details are left to the attached summary abstract.

  19. 3D hybrid integrated lasers for silicon photonics

    NASA Astrophysics Data System (ADS)

    Song, B.; Pinna, S.; Liu, Y.; Megalini, L.; Klamkin, J.

    2018-02-01

    A novel 3D hybrid integration platform combines group III-V materials and silicon photonics to yield high-performance lasers is presented. This platform is based on flip-chip bonding and vertical optical coupling integration. In this work, indium phosphide (InP) devices with monolithic vertical total internal reflection turning mirrors were bonded to active silicon photonic circuits containing vertical grating couplers. Greater than 2 mW of optical power was coupled into a silicon waveguide from an InP laser. The InP devices can also be bonded directly to the silicon substrate, providing an efficient path for heat dissipation owing to the higher thermal conductance of silicon compared to InP. Lasers realized with this technique demonstrated a thermal impedance as low as 6.2°C/W, allowing for high efficiency and operation at high temperature. InP reflective semiconductor optical amplifiers were also integrated with 3D hybrid integration to form integrated external cavity lasers. These lasers demonstrated a wavelength tuning range of 30 nm, relative intensity noise lower than -135 dB/Hz and laser linewidth of 1.5 MHz. This platform is promising for integration of InP lasers and photonic integrated circuits on silicon photonics.

  20. Mode Hopping in Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Heumier, Timothy Alan

    Semiconductor lasers have found widespread use in fiberoptic communications, merchandising (bar-code scanners), entertainment (videodisc and compact disc players), and in scientific inquiry (spectroscopy, laser cooling). Some uses require a minimum degree of stability of wavelength which is not met by these lasers: Under some conditions, semiconductor lasers can discontinuously switch wavelengths in a back-and-forth manner. This is called mode hopping. We show that mode hopping is directly correlated to noise in the total intensity, and that this noise is easily detected by a photodiode. We also show that there are combinations of laser case temperature and injection current which lead to mode hopping. Conversely, there are other combinations for which the laser is stable. These results are shown to have implications for controlling mode hopping.

  1. Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing

    NASA Astrophysics Data System (ADS)

    Huang, Hang; Hu, Hailong; Zhu, Jingguang; Guo, Tailiang

    2017-07-01

    Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film transistors (TFTs) have been fabricated at low temperature using laser spike annealing (LSA) treatment. Coffee-ring effects during the printing process were eliminated to form uniform IGZO films by simply increasing the concentration of solute in the ink. The impact of LSA on the TFT performance was studied. The field-effect mobility, threshold voltage, and on/off current ratio were greatly influenced by the LSA treatment. With laser scanning at 1 mm/s for 40 times, the 30-nm-thick IGZO TFT baked at 200°C showed mobility of 1.5 cm2/V s, threshold voltage of -8.5 V, and on/off current ratio >106. Our findings demonstrate the feasibility of rapid LSA treatment of low-temperature inkjet-printed oxide semiconductor transistors, being comparable to those obtained by conventional high-temperature annealing.

  2. Performance of Planar-Waveguide External Cavity Laser for Precision Measurements

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew

    2010-01-01

    A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry

  3. Frequency offset locking of AlGaAs semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Kuboki, Katsuhiko; Ohtsu, Motoichi

    1987-04-01

    Frequency offset locking is proposed as a technique for tracking and sweeping of a semiconductor laser frequency to improve temporal coherence in semiconductor lasers. Experiments were carried out in which a frequency stabilized laser (of residual frequency fluctuation value of 140 Hz at the integration time between 100 ms and 100 s) was used as a master laser, using a digital phase comparator of a large dynamic range (2 pi x 10 to the 11th rad) in the feedback loop to reduce the phase fluctuations of the beat signal between the master laser and the slave laser. As a result, residual frequency fluctuations of the beat signal were as low as 11 Hz at the integration time of 100 s (i.e., the residual frequency fluctuations of the slave laser were almost equal to those of the master laser).

  4. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    PubMed

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  5. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    PubMed

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.

  6. Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate.

    PubMed

    Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd

    2014-05-15

    We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.

  7. Hybrid organic semiconductor lasers for bio-molecular sensing.

    PubMed

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  8. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  9. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  10. Semiconductor ring lasers subject to both on-chip filtered optical feedback and external conventional optical feedback

    NASA Astrophysics Data System (ADS)

    Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy

    2016-05-01

    It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.

  11. Study on the characteristic and application of DFB semiconductor lasers under optical injection for microwave photonics

    NASA Astrophysics Data System (ADS)

    Pu, Tao; Wang, Wei wei

    2018-01-01

    In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.

  12. Action of a 904-nm diode laser in orthopedics and traumatology: a clinical study on 447 cases

    NASA Astrophysics Data System (ADS)

    Tam, Giuseppe

    2001-10-01

    Objective: The evidence in medical literature is that a beneficial analgesic effect can only be obtained by employing laser radiation of relatively low power density and wavelengths which are able to penetrate tissue. For this reason the semiconductor, or laser diode (GaAs, 904 nm), is the most appropriate choice in pain-reduction therapy. Summary Background Data: Low power laser (or LLL) acts on the Prostaglandins synthesis, increases the endorphins synthesis in the Rolando gelatinous substance and in the dorsal horn of the spinal cord. The L-Arginine, which is the classic substrate of nitric oxide, carries on vasodilatory and anti- inflammatory action. Methods: Treatment was carried out on 447 cases and 435 patients (250 women and 185 men) between 20th May 1987 and 31st December 1999. The patients, whose age ranged from 25 to 70, were suffering from rheumatic, degenerative and traumatic pathologies as well as cutaneous ulcers. The majority of patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scan, etc. All patients had previously received drug-based treatment and/or physiotherapy, with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs emitting at 904 nm. Frequency of treatment: 1 application per day for 5 consecutive days, followed by a 2-day interval. The percentage reduction in symptoms or improvement in functional status were determined on the basis of objective analysis as it happens in the Legal and Insurance Medicine field. Results: Very good results were achieved especially with cases of symptomatic osteoarthritis of the cervical vertebrae, with sport-related injuries, epicondylitis, osteoarthritis of the knee, periarthritis and with cutaneous ulcers. The beneficial action of the LLLT in the latter pathology is linked to the increase in collagen and to fibroblast proliferation. The total relief of the pain was achieved in 80% of acute and 65% of chronic cases. Conclusions: Treatment with 904 nm IR diode laser has substantially reduced the symptoms as well as improved the quality of life of the patient, thus postponing the need for surgery.

  13. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  14. Carrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM.

    PubMed

    Hakobyan, Sargis; Wittwer, Valentin J; Gürel, Kutan; Mayer, Aline S; Schilt, Stéphane; Südmeyer, Thomas

    2017-11-15

    We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250  kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.

  15. High-pulse-energy mode-locked picosecond oscillator

    NASA Astrophysics Data System (ADS)

    Chao, Yang; Chen, Meng; Li, Gang

    2014-02-01

    We report on a high-pulse-energy solid-state picosecond Nd:YVO4 oscillator with cavity-dumping. The laser is end-pumped by an 808 nm laser diode and passively mode-locked with a semiconductor saturable absorption mirror (SESAM). In pure cw-mode-locking, this laser produced 2.5 W of average power at a pulse repetition rate of 40 MHz and pulse duration around 12 ps. A cavity dumping technique using an intra-cavity BBO electro-optic crystal to which bidirectional voltage was applied was adopted, effectively improving the cavity-dumping rate. Tunable high repetition rate from 100 kHz to 1 MHz was achieved. With electro-optic cavity dumper working at 1 MHz repetition rate, we achieved average power 594 mW. The laser includes a 5 mm long, a-cut, 0.5% doped Nd:YVO4 crystal with a 5-degree angle at one end face. Laser radiation is coupled out from the crystal end face with a 5-degree angle, without requiring insertion of a thin-film polarizer (TFP), thus simplifying the laser structure. This picosecond laser system has the advantages of compact structure and high stability, providing a good oscillator for regenerative amplifiers.

  16. Adjustable supercontinuum laser source with low coherence length and low timing jitter

    NASA Astrophysics Data System (ADS)

    Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe

    2010-04-01

    This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.

  17. Visible-wavelength semiconductor lasers and arrays

    DOEpatents

    Schneider, Jr., Richard P.; Crawford, Mary H.

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  18. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  19. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and productionmore » capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.« less

  20. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  1. Direct solar pumping of semiconductor lasers: A feasibility study

    NASA Technical Reports Server (NTRS)

    Anderson, Neal G.

    1992-01-01

    This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is summarized in Section 5, and information on publications resulting from this work is provided in Section 6.

  2. TiOx-based thin-film transistors prepared by femtosecond laser pre-annealing

    NASA Astrophysics Data System (ADS)

    Shan, Fei; Kim, Sung-Jin

    2018-02-01

    We report on thin-film transistors (TFTs) based on titanium oxide (TiOx) prepared using femtosecond laser pre-annealing for electrical application of n-type channel oxide transparent TFTs. Amorphous TFTs using TiOx semiconductors as an active layer have a low-temperature process and show remarkable electrical performance. And the femtosecond laser pre-annealing process has greater flexibility and development space for semiconductor production activity, with a fast preparation method. TFTs with a TiOx semiconductor pre-annealed via femtosecond laser at 3 W have a pinhole-free and smooth surface without crystal grains.

  3. Generation of diluted magnetic semiconductor nanostructures by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Savchuk, Ol. A.; Savchuk, A. I.; Stolyarchuk, I. D.; Tkachuk, P. M.; Garasym, V. I.

    2015-11-01

    Results of study of two members of diluted magnetic semiconductor (DMS) family, namely Cd1-xMnxTe and Zn1-xMnxO, which are in form of micro- and nanoparticles generated by pulsed laser ablation in liquid medium (PLAL), have been presented. The structural analysis using X-ray diffraction (XRD) of nanocrystals indicated that Mn has entered the AIIBVI lattice without changing the crystal structure and systematically substituted the A2+ ions in the lattice. Atomic force microscopy (AFM) gives information about surface morphology of the formed nanostructures. The scanning electron microscopy (SEM) clearly illustrates flower-like particles of Zn1-xMnxO, which consist of nanosheets and nanoleaves with average thickness about (5-8) nm. Obviously, these nanoobjects are responsible for the observed blue shift of the absorption edge in DMS nanostructures. In magneto-optical Faraday rotation spectra of both Cd1-xMnxTe and Zn1-xMnxO nanostructures there were exhibited peculiarities associated with s,p-d spin exchange interactions and confinement effect. It was observed almost linear dependence of the Faraday rotation as function of magnetic field strength for nanoparticles in contrast to the dependence with saturation in bulk case.

  4. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG.

    PubMed

    Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang

    2017-05-15

    Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.

  5. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling

    DOE PAGES

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.; ...

    2016-12-19

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  6. Theoretical analysis of a method for extracting the phase of a phase-amplitude modulated signal generated by a direct-modulated optical injection-locked semiconductor laser

    NASA Astrophysics Data System (ADS)

    Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee

    2017-05-01

    The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.

  7. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  8. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  9. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  10. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    NASA Astrophysics Data System (ADS)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  11. On the possibility of using the dynamic Franz - Keldysh effect to detect the parameters of high-power IR laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigor'ev, A M

    2011-05-31

    The increase in the absorption of light by a semiconductor (when the light photon energy is somewhat smaller than the semiconductor bandgap or equals it) in the presence of a strong light wave (for which the semiconductor is transparent) has been investigated. The possibility of designing novel light detectors for measuring the energy parameters and spatial and temporal characteristics of high-power IR laser radiation is demonstrated. (measurement of laser radiation parameters)

  12. Semiconductor laser technology for remote sensing experiments

    NASA Technical Reports Server (NTRS)

    Katz, Joseph

    1988-01-01

    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  13. Quantifying stochasticity in the dynamics of delay-coupled semiconductor lasers via forbidden patterns.

    PubMed

    Tiana-Alsina, Jordi; Buldú, Javier M; Torrent, M C; García-Ojalvo, Jordi

    2010-01-28

    We quantify the level of stochasticity in the dynamics of two mutually coupled semiconductor lasers. Specifically, we concentrate on a regime in which the lasers synchronize their dynamics with a non-zero lag time, and the leader and laggard roles alternate irregularly between the lasers. We analyse this switching dynamics in terms of the number of forbidden patterns of the alternate time series. The results reveal that the system operates in a stochastic regime, with the level of stochasticity decreasing as the lasers are pumped further away from their lasing threshold. This behaviour is similar to that exhibited by a single semiconductor laser subject to external optical feedback, as its dynamics shifts from the regime of low-frequency fluctuations to coherence collapse. This journal is © 2010 The Royal Society

  14. Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback.

    PubMed

    Shahin, S; Vallini, F; Monifi, F; Rabinovich, M; Fainman, Y

    2016-11-15

    Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.

  15. Etching of semiconductors and metals by the photonic jet with shaped optical fiber tips

    NASA Astrophysics Data System (ADS)

    Pierron, Robin; Lecler, Sylvain; Zelgowski, Julien; Pfeiffer, Pierre; Mermet, Frédéric; Fontaine, Joël

    2017-10-01

    The etching of semiconductors and metals by a photonic jet (PJ) generated with a shaped optical fiber tip is studied. Etched marks with a diameter of 1 μm have been realized on silicon, stainless steel and titanium with a 35 kHz pulsed laser, emitting 100 ns pulses at 1064 nm. The selection criteria of the fiber and its tip are discussed. We show that a 100/140 silica fiber is a good compromise which takes into account the injection, the working distance and the energy coupled in the higher-order modes. The energy balance is performed on the basis of the known ablation threshold of the material. Finally, the dependence between the etching depth and the number of pulses is studied. Saturation is observed probably due to a redeposition of the etched material, showing that a higher pulse energy is required for deeper etchings.

  16. Athermal Annealing of Silicon

    NASA Astrophysics Data System (ADS)

    Fischer, R. P.; Grun, J.; Ting, A.; Felix, C.; Peckerar, M.; Fatemi, M.; Manka, C. K.

    1999-11-01

    Current semiconductor annealing methods are based on thermal processes which are accompanied by diffusion that degrades the definition of device features or causes other problems. This will be a serious obstacle for the production of next-generation ultra-high density, low power semiconductor devices. Experiments underway at NRL utilize a new annealing method which is much faster than thermal annealing and does not depend upon thermal energy (J. Grun, et al)., Phys. Rev. Letters 78, 1584 (1997).. A 10 J, 30 nsec, 1.053 nm wavelength laser pulse is focussed to approximately 1 mm diameter on a silicon sample. Acoustic and shock waves propagate from the impact region, which deposit mechanical energy into the material and anneal the silicon. Experimental results will be presented on annealing neutron-transmutation-doped (NTD) and ion implanted silicon samples with impurity concentrations from 1 × 10^15-3 × 10^20/cm^3.

  17. Morpho-Structural Effects Caused by 660 nm Laser Diode in Epimastigotes Forms of Trypanosoma cruzi: In Vitro Study

    NASA Astrophysics Data System (ADS)

    Barbosa, Artur F. S.; Soares, Luiz G. P.; Aciole, Jouber M. S.; Aciole, Gilberth T. S.; Pitta, Ivan R.; Galdino, Suely L.; Pinheiro, Antonio L. B.

    2011-08-01

    Parasitic diseases represent a major public health problems in Latin America, in particular, Chagas disease or American trypanosomiasis, caused by the protozoan parasite Trypanosoma cruzi, infects more than 18 million people in all countries of Latin America. Visible light induces a photochemical reaction, that induces the activation of enzymes used mainly in the respiratory chain, and that light has the primary targets lysosomes and mitochondria of cells, increasing, the mitochondrial ATP production. The purpose of this study was to assess the morpho-structural generated in the epimastigote form of Trypanosoma cruzi, after irradiation with a semiconductor laser InGaAlP, at a wavelength (λ) equal to 660 nm±10 nm, 40 mW optical Power, emitting red light in the visible spectrum, with a dose of 6 J/cm2 in continuous mode. Then the parasites that have undergone irradiation were analyzed by optical microscopy and compared to untreated. It found the increase in size of the kinetoplast (structure with high concentration of extracellular DNA-kDNA, whose main function is to encode the respiratory chain enzymes such as ATPase and citocromoxidase), the cell nucleus and the cell volume of the parasite, leaving the more rounded.

  18. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment

    NASA Astrophysics Data System (ADS)

    Coe, P. A.; Howell, D. F.; Nickerson, R. B.

    2004-11-01

    ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.

  19. Temperature changes induced by 809-nm GaAlAs laser at the implant-bone interface during simulated surface decontamination.

    PubMed

    Kreisler, Matthias; Al Haj, Haitham; D'Hoedt, Bernd

    2003-02-01

    The aim of the study was to investigate temperature changes at the implant-bone interface during simulated implant surface decontamination with a 809-nm gallium-aluminium-arsenid (GaAlAs) semiconductor laser. Stepped cylinder implants with a diameter of 3.8 mm and a length of 11 mm with two different surfaces (sand-blasted and acid etched, and hydroxyapatite-coated) were inserted into bone blocks cut from freshly resected pig femurs. Access holes of 0.5 mm were drilled into the bone, to allow K-type thermocouples to contact periimplant bone in different parts of the cavity. An artificial periimplant bone defect provided access for laser irradiation in the coronal third. A 600-micrometer optic fiber was used at a distance of 0.5 mm from the implant surface. Power output varied between 0.5 and 2.5 W in the continuous wave mode. The bone block was placed into a 37 degrees C water bath in order to simulate in vivo thermal conductivity and diffusitivity of heat. Temperature elevations during irradiation were registered for a period of 120 s. In mean, the critical threshold of 47 degrees C was exceeded after 9.0 s at 2.5 W, 12.5 s at 2.0 W, 18.0 s at 1.5 W and 30.5 s at 1.0 W. Surface characteristics did not have a significant effect on temperature elevations. In an energy-dependent manner, implant surface decontamination with an 809-nm GaAlAs laser must be limited in time to allow the implant and bone to cool down. Clinical guidelines are presented to avoid tissue damage.

  20. MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance

    DTIC Science & Technology

    2017-02-01

    MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance (Invited paper) Christine A...epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL operation, and establishing correlations between epitaxial growth and materials...QCLs emitting in this range. Index terms – Quantum cascade lasers, semiconductor growth, semiconductor epitaxial layers, infrared emitters. I

  1. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Kangpeng; Feng, Yanyan; Chang, Chunxia; Zhan, Jingxin; Wang, Chengwei; Zhao, Quanzhong; Coleman, Jonathan N.; Zhang, Long; Blau, Werner J.; Wang, Jun

    2014-08-01

    A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc. Electronic supplementary information (ESI) available: Electron scattering patterns from TEM characterizations of MX2 nanosheets; CA Z-scan results of graphene dispersions in the ps region. See DOI: 10.1039/c4nr02634a

  2. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    NASA Astrophysics Data System (ADS)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  3. High Speed Laser with 100 Ghz Resonance Frequency

    DTIC Science & Technology

    2014-02-28

    applications, such as opto - electronic oscillators . Recently, however, by optimizing the detuning frequency and injection ratio, we have shown enhanced...semiconductor lasers has been limited by relaxation oscillation frequency to < 40 GHz. By using strong optical injection locking, we report resonance...direct modulation bandwidth of semiconductor lasers. In a typical laser, the relaxation oscillation [resonance] frequency is a figure-of-merit that is a

  4. Development of high yielding photonic light delivery system for photodynamic therapy of esophageal carcinomas

    NASA Astrophysics Data System (ADS)

    Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye

    2007-02-01

    Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.

  5. Integrated semiconductor twin-microdisk laser under mutually optical injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due tomore » strong optical interaction between the two microdisks.« less

  6. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    PubMed

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences.

  7. Design, fabrication, and analysis of miniature reflective oxygen monitoring system for use in PDT of esophageal carcinoma

    NASA Astrophysics Data System (ADS)

    Premasiri, Amaranath; Happawana, Gemunu

    2008-02-01

    Photodynamic therapy (PDT) is an effective and minimally invasive treatment modality with relatively less side effects, which is approved by FDA for the treatment of esophageal cancer. Maximum therapeutic outcome of the PDT protocol for each individual patient requires optimization of the components of PDT operating at their highest efficacy. Tumor necrosis, the method of malignant tissue destruction by PDT, is carried out by the toxic singlet oxygen molecules that are being formed from the molecular oxygen in the tumor. The availability of molecular oxygen, hence being the rate limiting step for PDT plays a key role in the treatment protocol. Currently the PDT of esophageal carcinoma is rather a blind process since there is no method to monitor the tumor oxygen level during the treatment. In this paper we present an optical technique to monitor molecular oxygen level in the PDT milieu. The technique described herein is a reflection oximetry technique designed with small semiconductor lasers and a silicon photodiode. The light used for monitoring system comes from two semiconductor diode lasers of 650 nm and 940 nm wavelengths. The two lasers and the photodiode are mounted onto a small package which is to be imprinted onto a balloon catheter containing the PDT light delivery system. Lasers and the photodiode are powered and controlled by a control box that is connected via a cable. Light sources and the respective photodiode output are controlled by the LabVIEW virtual instrumentation. The sequential on and off light source and the respective reflective signal are processed with MATLAB. The latter code integrates with LabVIEW to make an automatic calculation of the corresponding light absorption by each chromophore and to calculate the change in oxygen level as well as the amount of blood and oxygen present in the treatment area. The designed system is capable of monitoring the change in oxygen level and the blood flow in any part of the human body where the package is possible to place.

  8. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.

    PubMed

    Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo

    2011-04-25

    Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.

  9. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    PubMed Central

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-01-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769

  10. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  11. SEMICONDUCTOR MATERIALS: White light photoluminescence from ZnS films on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Caifeng, Wang; Qingshan, Li; Bo, Hu; Weibing, Li

    2010-03-01

    ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.

  12. Mode selection and tuning of single-frequency short-cavity VECSELs

    DOE PAGES

    Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.; ...

    2018-03-05

    Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.

  13. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  14. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.

  15. Method for manufacturing electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1988-11-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  16. Electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  17. III-Nitride Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less

  18. Development of Room Temperature Excitonic Lasing From ZnO and MgZnO Thin Film Based Metal-Semiconductor-Metal Devices

    NASA Astrophysics Data System (ADS)

    Suja, Mohammad Zahir Uddin

    Room temperature excitonic lasing is demonstrated and developed by utilizing metal-semiconductor-metal devices based on ZnO and MgZnO materials. At first, Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films and the best conductivity is achieved with a high hole concentration of 1.54x1018 cm-3, a low resistivity of 0.6 O cm and a moderate mobility of 6.65 cm2 V -1 s-1 at room temperature. Metal oxide semiconductor (MOS) capacitor devices have been fabricated on the Cu-doped ZnO films and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as XRD, XPS, Raman and absorption are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. To overcome the stability issue of p-type ZnO film, alternate devices other than p-n junction has been developed. Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum efficiency up to 6 times is demonstrated. Threshold current for lasing is decreased by as much as 30% while the output power is increased up to 350% at an injection current of 40 mA. A numerical simulation study reveals that hole carriers are generated in the ZnO MSM devices from impact ionization processes for subsequent plasmon-exciton coupled lasing. Our results suggest that plasmon-enhanced ZnO MSM random lasers can become a competitive candidate of efficient ultraviolet light sources. Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. In this thesis, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM) random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29 33 A/cm2 are achieved. Numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.

  19. Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications.

    PubMed

    Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E

    2006-03-15

    Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.

  20. REVIEW ARTICLE: Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.

    2009-10-01

    Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.

  1. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thinmore » film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.« less

  2. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  3. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  4. Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback.

    PubMed

    Freire, Joana G; Gallas, Jason A C

    2010-09-01

    Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feedback. We show here that such a laser contains cascades of spirals of periodic oscillations and hubs which look identical to the familiar ones observed in complete homoclinic scenarios. This means that hubs are far more general than presumed so far, being not limited by Shilnikov's theorem. Laser hubs open the possibility of measuring complex distributions of non-Shilnikov laser oscillations, and we briefly discuss how to do it.

  5. Transmission in near-infrared optical windows for deep brain imaging.

    PubMed

    Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  7. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  8. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui

    2016-09-01

    Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.

  9. WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers.

    PubMed

    Wu, Kan; Zhang, Xiaoyan; Wang, Jun; Li, Xing; Chen, Jianping

    2015-05-04

    Two-dimensional (2D) nanomaterials, especially the transition metal sulfide semiconductors, have drawn great interests due to their potential applications in viable photonic and optoelectronic devices. In this work, 2D tungsten disulfide (WS2) based saturable absorber (SA) for ultrafast photonic applications was demonstrated. WS2 nanosheets were prepared using liquid-phase exfoliation method and embedded in polyvinyl alcohol (PVA) thin film for the practical usage. Saturable absorption was discovered in the WS2-PVA SA at the telecommunication wavelength near 1550 nm. By incorporating WS2-PVA SA into a fiber laser cavity, both stable mode locking operation and Q-switching operation were achieved. In the mode locking operation, the laser obtained femtosecond output pulse width and high spectral purity in the radio frequency spectrum. In the Q-switching operation, the laser had tunable repetition rate and output pulse energy of a few tens of nano joule. Our findings suggest that few-layer WS2 nanosheets embedded in PVA thin film are promising nonlinear optical materials for ultrafast photonic applications as a mode locker or Q-switcher.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  11. Photodynamic therapy of acne vulgaris.

    NASA Astrophysics Data System (ADS)

    Ershova, Ekaterina Y.; Karimova, Lubov N.; Kharnas, Sergey S.; Kuzmin, Sergey G.; Loschenov, Victor B.

    2003-06-01

    Photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) was tested for the treatment of acne vulgaris. Patients with acne were treated with ALA plus red light. Ten percent water solution of ALA was applied with 1,5-2 h occlusion and then 18-45 J/cm2 630 nm light was given. Bacterial endogenous porphyrins fluorescence also was used for acne therapy. Treatment control and diagnostics was realized by fluorescence spectra and fluorescence image. Light sources and diagnostic systems were used: semiconductor laser (λ=630 nm, Pmax=1W), (LPhT-630-01-BIOSPEC); LED system for PDT and diagnostics with fluorescent imager (λ=635 nm, P=2W, p=50 mW/cm2), (UFPh-630-01-BIOSPEC); high sensitivity CCD video camera with narrow-band wavelength filter (central wavelength 630 nm); laser electronic spectrum analyzer for fluorescent diagnostics and photodynamic therapy monitoring (LESA-01-BIOSPEC). Protoporphyrin IX (PP IX) and endogenous porphyrins concentrations were measured by fluorescence at wavelength, correspondingly, 700 nm and 650 nm. It was shown that topical ALA is converted into PP IX in hair follicles, sebaceous glands and acne scars. The amount of resulting PP IX is sufficient for effective PDT. There was good clinical response and considerable clearance of acne lesion. ALA-PDT also had good cosmetic effect in treatment acne scars. PDT with ALA and red light assist in opening corked pores, destroying Propionibacterium acnes and decreasing sebum secretion. PDT treatment associated with several adverse effects: oedema and/or erytema for 3-5 days after PDT, epidermal exfoliation from 5th to 10th day and slight pigmentation during 1 month after PDT. ALA-PDT is effective for acne and can be used despite several side effects.

  12. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    NASA Astrophysics Data System (ADS)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.

  13. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.

  14. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  15. Optically stimulated luminescence in an imaging plate using BaFi:Eu.

    PubMed

    Nanto, H; Araki, T; Daimon, M; Kusano, E; Kinbara, A; Kawabata, K; Nakano, Y

    2002-01-01

    BaFI:Eu phosphors are fabricated using a new method of synthesis: liquid phase synthesis, in which the phosphor particles are formed through the association of Ba2+ ions, F-ions and Eu2+ ions in solution. An intense optically stimulated luminescence (OSL) peak at about 410 nm is observed by stimulating X ray irradiated BaFI:Eu phosphor with about 550-750 nm light. It is found that the peak wavelength of the optically stimulation spectrum is about 690 nm. This result suggests that the semiconductor laser can be used as the stimulating light source. It is also found that the OSL intensity is increased with increasing the X ray dose. The BaFI:Eu phosphor as a photostimulable material for the imaging plate of a computed radiography system provides the following advantages; (1) high X ray absorption coefficient, (2) high monodispersion in size which would contribute to sharp images, (3) high OSL and thus low luminescence mottle and (4) high DQE (detective quantum efficiency).

  16. Yb:YAG disc for high energy laser systems

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Kubát, Jan; Å ulc, Jan; Jelínková, Helena

    2017-02-01

    Large Yb:YAG crystals were grown using of new improved technology enabling to produce YAG crystals without central growth defect. The crystals diameter reached 115-120mm and their central part was used for manufacturing of discs with the diameter larger than 55 mm. Both sides of this discs were polished and coated. Doping concentration of Yb3+ ions in Yb:YAG crystals was measured using of X-ray fluorescence spectrometry. Absorption coefficient of Yb:YAG was measured for different doping concentration of Yb3+ ions. Fluorescence decay time of Yb:YAG was measured at temperatures of 300K and 80 K. We found the fluorescence decay time of the values of 0.95-1 ms at both temperatures stable and independent on the Yb3+ doping concentration in the range of 1-10 at.% Yb/Y demonstrating high chemical purity of grown crystals. Optical homogeneity as measured using of Fizeau double pass interferometer at 633nm resulted with PV values lower than 0.15 λ on clear aperture of 35 mm. Polished surfaces were ideally parallel with the wedge lower than 2 arcsec. Uniformity of laser properties of Yb:YAG was verified by scanning of the disc as active media in plan-convex pulsed laser resonator pumped by semiconductor diode (wavelength 969 nm, pumping beam diameter 100 μm). It was confirmed, that newly developed technology allows to manufacture very large high quality Yb:YAG discs suitable for high power lasers and amplifiers.

  17. Spectral gain measurements of quantum confined emitters, and design and fabrication of intersubband quantum box laser structures

    NASA Astrophysics Data System (ADS)

    Tsvid, Gene

    Semiconductor laser active regions are commonly characterized by photo- and electro-luminescence (PL, EL) and cavity length analysis. However quantitative spectral information is not readily extracted from PL and EL data and comparison of different active region materials can be difficult. More quantifiable spectral information is contained in the optical gain spectra. This work reports on spectral gain studies, using multi-segmented interband devices, of InGaAs quantum well and quantum dot active regions grown by metalorganic chemical vapor deposition (MOCVD). Using the fundamental connection between gain and spontaneous emission spectra, the spontaneous radiative current and spontaneous radiative efficiency is evaluated for these active regions. The spectral gain and spontaneous radiative efficiency measurements of 980 nm emitting InGaAs quantum well (QW) material provides a benchmark comparison to previous results obtained on highly-strained, 1200 nm emitting InGaAs QW material. These studies provide insight into carrier recombination and the role of the current injection efficiency in InGaAs QW lasers. The spectral gain of self-assembled MOCVD grown InGaAs quantum dots (QD) active regions are also investigated, allowing for comparison to InGaAs QW material. The second part of my talk will cover intersubband-transition QW and quantum-box (QB) lasers. Quantum cascade (QC) lasers have emerged as compact and technologically important light sources in the mid-infrared (IR) and far-IR wavelength ranges infringing on the near-IR and terahertz spectral regions respectively. However, the overall power conversion efficiency, so-called wallplug efficiency, of the best QC lasers, emitting around 5 microns, is ˜9% in CW operation and very unlikely to exceed 15%. In order to dramatically improve the wallplug efficiency of mid-IR lasers (i.e., to about 50%), intersubband QB (IQB) lasers have been proposed. The basic idea, the optimal design and the progress towards the fabrication of IQB lasers will be presented.

  18. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  19. Free electron lasers for 13nm EUV lithography: RF design strategies to minimise investment and operational costs

    NASA Astrophysics Data System (ADS)

    Keens, Simon; Rossa, Bernhard; Frei, Marcel

    2016-03-01

    As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.

  20. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Laser generation of dislocations and mechanism of anisotropic melting of semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Volodin, B. L.; Emel'yanov, Vladimir I.

    1990-05-01

    An analysis is made of a vacancy-deformation mechanism of generation of dislocations by laser radiation involving condensation of laser-induced vacancies when the vacancy concentration exceeds a certain critical value. The theory can be used to estimate the radius of the resultant dislocation loops and their density. It is used to interpret anisotropic laser melting of semiconductor surfaces.

  1. Power- or frequency-driven hysteresis for continuous-wave optically injected distributed-feedback semiconductor lasers.

    PubMed

    Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud

    2009-05-25

    Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.

  2. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  3. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis

    PubMed Central

    Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen

    2013-01-01

    Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422

  4. Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Jayaprasath, E.; Sivaprakasam, S.

    2017-11-01

    Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.

  5. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  6. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films.

    PubMed

    Chen, Songtao; Roh, Kwangdong; Lee, Joonhee; Chong, Wee Kiang; Lu, Yao; Mathews, Nripan; Sum, Tze Chien; Nurmikko, Arto

    2016-04-26

    Perovskite semiconductors are actively investigated for high performance solar cells. Their large optical absorption coefficient and facile solution-based, low-temperature synthesis of thin films make perovskites also a candidate for light-emitting devices across the visible and near-infrared. Specific to their potential as optical gain medium for lasers, early work has demonstrated amplified spontaneous emission and lasing at attractively low thresholds of photoexcitation. Here, we take an important step toward practically usable perovskite lasers where a solution-processed thin film is embedded within a two-dimensional photonic crystal resonator. We demonstrate high degree of temporally and spatially coherent lasing whereby well-defined directional emission is achieved near 788 nm wavelength at optical pumping energy density threshold of 68.5 ± 3.0 μJ/cm(2). The measured power conversion efficiency and differential quantum efficiency of the perovskite photonic crystal laser are 13.8 ± 0.8% and 35.8 ± 5.4%, respectively. Importantly, our approach enables scalability of the thin film lasers to a two-dimensional multielement pixelated array of microlasers which we demonstrate as a proof-of-concept for possible projection display applications.

  7. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    PubMed Central

    Elia, Angela; Lugarà, Pietro Mario; Di Franco, Cinzia; Spagnolo, Vincenzo

    2009-01-01

    The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques. PMID:22303143

  8. Recent Results With Coupled Opto-Electronic Oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.

    1998-07-01

    We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  9. Recent results with the coupled opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-11-01

    We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  10. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  11. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Computer model for quasioptic waveguide lasers

    NASA Astrophysics Data System (ADS)

    Wenzel, H.; Wünsche, H. J.

    1988-11-01

    A description is given of a numerical model of a semiconductor laser with a quasioptic waveguide (index guide). This model can be used on a personal computer. The model can be used to find the radiation field distributions in the vertical and lateral directions, the pump currents at the threshold, and also to solve dynamic rate equations.

  12. Photonic Arbitrary Waveform Generation Technology

    DTIC Science & Technology

    2006-06-01

    locked external- cavity semiconductor diode ring laser “, Optics Letters, Vol. 27, No. 9 , 719-721, (2002). [22] S. Gee, F. Quinlan, S. Ozharar... optical pulses that one is accustomed to. Modelocked semiconductor lasers are used to generate a set of phase locked optical frequencies on a periodic...The corresponding optical spectrum of the laser consists of a comb of periodically spaced, phase - locked

  13. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  14. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    PubMed Central

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-01-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492

  15. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, John P.

    1994-01-01

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  16. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, J.P.

    1994-06-07

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.

  17. Theory of active mode locking of a semiconductor laser in an external cavity

    NASA Technical Reports Server (NTRS)

    Yeung, J. A.

    1981-01-01

    An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.

  18. Recent Vertical External Cavity Surface Emitting Lasers (VECSELs) Developments for Sensor Applications (POSTPRINT)

    DTIC Science & Technology

    2013-02-01

    edge-emitting strained InxGa1−xSb/AlyGa1−ySb quantum well struc- tures using solid-source molecular beam epitaxy (MBE) with varying barrier heights...intersubband quantum wells. The most common high-power edge-emitting semiconductor lasers suffter from poor beam quality, due primarily to the linewidth...reduces the power scalability of semiconductor lasers. In vertical cavity surface emitting lasers ( VCSELs ), light propagates parallel to the growth

  19. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOEpatents

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  20. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  1. Semiconductor laser-based optoelectronics oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-08-01

    We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  2. Thermo-optic locking of a semiconductor laser to a microcavity resonance.

    PubMed

    McRae, T G; Lee, Kwan H; McGovern, M; Gwyther, D; Bowen, W P

    2009-11-23

    We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.

  3. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, Raymond J.; Benett, William J.; Mills, Steven T.

    1997-01-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

  4. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  5. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals

    PubMed Central

    2013-01-01

    In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the formation of nanocones is the mechanical compressive stresses due to the atoms’ redistribution caused by the gradient of temperature induced by strongly absorbed laser radiation. According to our investigation, the nanocone formation mechanism in semiconductors is characterized by two stages. The first stage is characterized by formation of a p-n junction for elementary semiconductors or of a Ge/Si heterojunction for SiGe solid solution. The generation and redistribution of intrinsic point defects in elementary semiconductors and Ge atoms concentration on the irradiated surface of SiGe solid solution in temperature gradient field take place at this stage due to the thermogradient effect which is caused by strongly absorbed laser radiation. The second stage is characterized by formation of nanocones due to mechanical plastic deformation of the compressed Ge layer on Si. Moreover, a new 1D-graded band gap structure in elementary semiconductors due to quantum confinement effect was formed. For the formation of microcones Ni/Si structure was used. The mechanism of the formation of microcones is characterized by two stages as well. The first stage is the melting of Ni film after irradiation by laser beam and formation of Ni islands due to surface tension force. The second step is the melting of Ni and subsequent manifestations of Marangoni effect with the growth of microcones. PMID:23735193

  6. Designing new classes of high-power, high-brightness VECSELs

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Zakharian, A. R.; Hader, J.; Koch, Stephan W.

    2005-10-01

    Optically-pumped vertical external cavity semiconductor lasers offer the exciting possibility of designing kW-class solid state lasers that provide significant advantages over their doped YAG, thin-disk YAG and fiber counterparts. The basic VECSEL/OPSL (optically-pumped semiconductor laser) structure consists of a very thin (approximately 6 micron thick) active mirror consisting of a DBR high-reflectivity stack followed by a multiple quantum well resonant periodic (RPG) structure. An external mirror (reflectivity typically between 94%-98%) provides conventional optical feedback to the active semiconductor mirror chip. The "cold" cavity needs to be designed to take into account the semiconductor sub-cavity resonance shift with temperature and, importantly, the more rapid shift of the semiconductor material gain peak with temperature. Thermal management proves critical in optimizing the device for serious power scaling. We will describe a closed-loop procedure that begins with a design of the semiconductor active epi structure. This feeds into the sub-cavity optimization, optical and thermal transport within the active structure and thermal transport though the various heat sinking elements. Novel schemes for power scaling beyond current record performances will be discussed.

  7. Electron transfer dynamics and yield from gold nanoparticle to different semiconductors induced by plasmon band excitation

    NASA Astrophysics Data System (ADS)

    Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.

    2018-06-01

    Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.

  8. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.

  9. Metal-optic and Plasmonic Semiconductor-based Nanolasers

    DTIC Science & Technology

    2012-05-07

    provides a means to integrate laser sources for silicon photonics technology. Using wafer bonding techniques, the metal- clad nanocavity can be integrated...SUPPLEMENTARY NOTES 14. ABSTRACT Over the past few decades, semiconductor lasers have relentlessly followed the path towards miniaturization...Smaller lasers are more energy e cient, are cheaper to make, and open up new applications in sensing and displays, among many other things. Yet, up until

  10. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    PubMed

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  11. Antimicrobial photodynamic therapy (aPDT) and photobiomodulation (PBM - 660nm) in a dog with chronic gingivostomatitis.

    PubMed

    Abreu Villela, Paula; Souza, Naiá de Carvalho de; Baia, Juliana Durigan; Gioso, Marco Antonio; Aranha, Ana Cecília Corrêa; de Freitas, Patrícia Moreira

    2017-12-01

    Chronic gingivostomatitis in dogs is an inflammatory syndrome of the oral cavity, which treatment and control of concomitant periodontitis allow healing in most of the cases. In the presence of recurrent lesions, invasive methods are necessary to treat lesions and pain. As a conservative adjuvant method, photobiomodulation (PBM) with low power laser is able to promote reduction of tissue pain and tissue inflammation besides increasing vascularization and healing, restoring the normal function of the irradiated organ in a shorter time. In veterinary medicine, there is no standardization of technique for its use in oral tissue for treating gingivostomatitis in dogs. In the present case, a dog was submitted to aPDT (7.2J/point, 3min/point, 180J/cm 2 ) and PBM (1.6J/point, 40s/point, 25J/cm 2 ), using a semiconductor diode laser, with wavelength of 660nm, spot size of ​​0.04cm 2 and output power of 40mW. The established protocol proved to be effective as coadjutant treatment for chronic gingivostomatitis, restoring the integrity of dog's affected mucosa and gingiva. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Laser-induced damage thresholds of bulk and coating optical materials at 1030  nm, 500  fs.

    PubMed

    Gallais, Laurent; Commandré, Mireille

    2014-02-01

    We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crystals. The samples were tested in comparable conditions at 1030 nm, 375 to 600 fs, under single-pulse irradiation. A large number of different samples prepared by different deposition techniques have been tested, involving classical materials used in the fabrication of optical thin film components (Ag, AlF3, Al2O3, HfO2, MgF2, Nb2O5, Pt, Sc2O3, SiO2, Ta2O5, Y2O3, and ZrO2) and their combination with codeposition processes. Their behaviors are compared with the surfaces of bulk materials (Al2O3, BaF2, CaF2, Ge, KBr, LiF, MgF2, NaCl, Quartz, Si, ZnS, ZnSe, and different silica glasses). Tabulated values of results are presented and discussed.

  13. Effect of laser cavity parameters on saturation of light – current characteristics of high-power pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D A; Pikhtin, N A; Lyutetskiy, A V

    2015-07-31

    We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmikko, Arto V

    Synthesis of semiconductor nanomaterials by low-cost, solution-based methods is shown to lead to new classes of thin film light emitting materials. These materials have been integrated to demonstrative compact laser device testbeds to illustrate their potential for coherent emitters across the visible spectrum to disrupt established photonics technologies, particularly semiconductor lasers?

  15. ARPA solid state laser and nonlinear materials program

    NASA Astrophysics Data System (ADS)

    Moulton, Peter F.

    1994-06-01

    The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.

  16. Toward continuous-wave operation of organic semiconductor lasers

    PubMed Central

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  17. Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.

    PubMed

    Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2017-10-24

    We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.

  18. Toward continuous-wave operation of organic semiconductor lasers.

    PubMed

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  19. Integrated high-order surface diffraction gratings for diode lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A

    2015-12-31

    High-order surface diffraction gratings acting as a distributed Bragg reflector (DBR) in mesa stripe semiconductor lasers (λ = 1030 nm) have been studied theoretically and experimentally. Higher order interfering radiation modes (IRMs), which propagate off the plane of the waveguide, have been shown to have a crucial effect on the reflection and transmission spectra of the DBR. The decrease in the reflectivity of the DBR in response to the increase in the diffraction efficiency of these modes may reach 80% and more. According to theoretical analysis results, the intensity of the higher order IRMs is determined by the geometry ofmore » the DBR groove profile. Experimental data demonstrate that the noncavity modes are responsible for parasitic light leakage losses in the laser cavity. It has been shown that, in the case of nonoptimal geometry of the grating groove profile, the overall external differential quantum efficiency of the parasitic laser emission may exceed 45%, which is more than half of the laser output power. The optimal geometry of the DBR groove profile is trapezoidal, with the smallest possible lower base. Experimental evidence has been presented that this geometry considerably reduces the power of the higher order IRMs and minimises the parasitic light leakage loss. (lasers)« less

  20. Auto-locking waveguide amplifier system for lidar and magnetometric applications

    NASA Astrophysics Data System (ADS)

    Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.

    2018-02-01

    We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.

  1. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOEpatents

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  2. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  3. Accuracy of Petermann's K-factor in the theory of semiconductor lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Mashade, M.B.; Arnaud, J.

    1986-04-01

    Petermann has proposed that the classical formula for the linewidth of a laser be multiplied by a factor K >> 1 in the case of gain-guided semiconductor lasers. The concept of power in the mode used by that author, however, is not well defined in a waveguide with gain, and his theory is therefore opened to question. The analysis given here avoids this difficulty and nevertheless agrees with Petermann's result. This is because spatial mode filtering is strong in oscillating lasers.

  4. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  5. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  6. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.

    PubMed

    Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-05-28

    An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Real Time Imaging Analysis Using a Terahertz Quantum Cascade Laser and a Microbolometer Focal Plane Array

    DTIC Science & Technology

    2008-12-01

    evident from Figure 7 that, if the applied bias is not correct, it is very likely that electrons will not tunnel into their intended energy state...the theoretical laser contrasts sharply to that of semiconductor lasers. Semiconductor lasers rely on electron hole recombination or interband ...the active layer of a forward- biased pn junction [26]. In contrast to this, the QCL is a unipolar device that uses a quantum well (QW) structure

  8. Experimental study on rat NK cell activity improvement by laser acupoint irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng

    1998-08-01

    To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.

  9. Digital optical signal processing with polarization-bistable semiconductor lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jai-Ming Liu,; Ying-Chin Chen,

    1985-04-01

    The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked optical S-R, D, J-K, and T flip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarizationswitchable mode, the output of the laser can be directly switched between the TM00 and TE00 modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved powermore » versus current characteristics. When the laser is biased in the middle of the hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarizationbistable laser to <1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.« less

  10. Quantum weak turbulence with applications to semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri Victorovich

    Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.

  11. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  12. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    NASA Astrophysics Data System (ADS)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I second harmonic generation in a V- cavity is presented. Tens of watts of output power for both blue and green wavelengths prove the viability for VECSELs to replace the other types of lasers currently used for applications in laser light shows, for Ti:Sapphire pumping, and for medical applications such as laser skin resurfacing. The novel, recently patented, two-chip T-cavity configuration allowing for spatial overlap of two, separate VECSEL cavities is described in detail. This type of setup is further used to demonstrate type II sum frequency generation to green with multi-watt output, and the full potential of the T-cavity is utilized by achieving type II difference frequency generation to the mid-IR spectral region. The tunable output around 5.4 microm with over 10 mW power is showcased. In the same manner the first attempts to generate THz radiation are discussed. Finally, a slightly modified T-cavity VECSEL is used to reach the UV spectral regions thanks to type I fourth harmonic generation. Over 100 mW at around 265 nm is obtained in a setup which utilizes no stabilization techniques. The dissertation demonstrates the flexibility of the VECSEL in achieving broad spectral coverage and thus its potential for a wide range of applications.

  13. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOEpatents

    Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  14. Bioengineered II-VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells

    NASA Astrophysics Data System (ADS)

    Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.

    2018-01-01

    Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.

  15. Spontaneous emission in semiconductor laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnaud, J.; Coste, F.; Fesqueet, J.

    1985-06-01

    In a mode matched configuration, spontaneous emission in semiconductor laser amplifiers is enhanced by a factor which is larger than unity but which is significantly smaller than the K-factor calculated by Petermann. Using thin-slab model, we find that in typical situations, the factor is about K/2.

  16. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  17. Optimization of passively mode-locked quasi-continuously diode-pumped Nd:GdVO4 laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav

    2015-01-01

    In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.

  18. Applications of ultrashort laser pulses in science and technology; Proceedings of the Meeting, The Hague, Netherlands, Mar. 12, 13, 1990

    NASA Technical Reports Server (NTRS)

    Antonetti, Andre (Editor)

    1990-01-01

    Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.

  19. Luminescent and lasing characteristics of heavily doped Yb{sup 3+}:KY(WO{sub 4}){sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisel', V E; Troshin, A E; Shcherbitskii, V G

    The luminescence decay times are measured taking into account reabsorption for KY(WO{sub 4}){sub 2}:Yb(KYW:Yb) crystals with atomic concentrations of active ions from 0.2% to 30%. The radiative lifetime of Yb{sup 3+} ions was measured to be 233 {mu}s. The cw output power of 1.46 and 1.62 W was achieved with the slope efficiency 52% and 47% for Yb:KYW lasers with the atomic concentration of Yb{sup 3+} ions equal to 10% and 30%, respectively. Using a semiconductor mirror with a saturable absorber (SESAM) in the passive mode-locking regime, pulses of duration 194 and 180 fs were obtained at wavelengths of 1042more » and 1039 nm for crystals with Yb{sup 3+} concentrations equal to 10% and 30%, respectively, the average output power being 0.63 and 0.75 W. (lasers and amplifiers)« less

  20. Electroluminescence of ZnO-based semiconductor heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novodvorskii, O A; Lotin, A A; Panchenko, Vladislav Ya

    2011-01-31

    Using pulsed laser deposition, we have grown n-ZnO/p-GaN, n-ZnO/i-ZnO/p-GaN and n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN light-emitting diode (LED) heterostructures with peak emission wavelengths of 495, 382 and 465 nm and threshold current densities (used in electroluminescence measurements) of 1.35, 2, and 0.48 A cm{sup -2}, respectively. Because of the spatial carrier confinement, the n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN double heterostructure LED offers a higher electroluminescence intensity and lower electroluminescence threshold in comparison with the n-ZnO/p-GaN and n-ZnO/i-ZnO/p-GaN LEDs. (lasers)

  1. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: High-frequency impedance and spontaneous carrier lifetime in narrow-stripe semiconductor injection lasers

    NASA Astrophysics Data System (ADS)

    Hoernlein, W.

    1988-11-01

    Measurements were made of the complex reflection coefficient of hf (10-400 MHz) signals from semiconductor injection lasers supplied with a direct bias current ranging from several milliamperes up to the threshold value or higher. The hf impedance was calculated. The parameters of the equivalent electrical circuit made it possible to predict the modulation characteristics. The impedance corresponding to currents below the lasing threshold was used to find the differential carrier lifetime from the RC constant of the p-n junction of a laser diode. A description of the apparatus is supplemented by an account of the method used in calculation of the electrical parameters and carrier lifetimes. The first results obtained using this apparatus and method are reported.

  2. Beam collimation and focusing and error analysis of LD and fiber coupling system based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Qiao, Lvlin; Zhou, Dejian; Xiao, Lei

    2017-10-01

    Laser diodde has many advantages, such as high efficiency, small volume, low cost and easy integration, so it is widely used. Because of its poor beam quality, the application of semiconductor laser has also been seriously hampered. In view of the poor beam quality, the ZEMAX optical design software is used to simulate the far field characteristics of the semiconductor laser beam, and the coupling module of the semiconductor laser and the optical fiber is designed and optimized. And the beam is coupled into the fiber core diameter d=200µm, the numerical aperture NA=0.22 optical fiber, the output power can reach 95%. Finally, the influence of the three docking errors on the coupling efficiency during the installation process is analyzed.

  3. Semiconductor laser devices having lateral refractive index tailoring

    DOEpatents

    Ashby, Carol I. H.; Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1990-01-01

    A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.

  4. Dynamics of a multimode semiconductor laser with optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koryukin, I. V.

    A new model of a multi-longitudinal-mode semiconductor laser with weak optical feedback is proposed. This model generalizes the well-known Tang-Statz-deMars equations, which are derived from the first principles and adequately describe solid-state lasers to a semiconductor active medium. Steady states of the model and the spectrum of relaxation oscillations are found, and the laser dynamics in the chaotic regime of low-frequency fluctuations of intensity is investigated. It is established that the dynamic properties of the proposed model depend mainly on the carrier diffusion, which controls mode-mode coupling in the active medium via spread of gratings of spatial inversion. The resultsmore » obtained are compared with the predictions of previous semiphenomenological models and the scope of applicability of these models is determined.« less

  5. Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding.

    PubMed

    Yu, Huiwu; Li, Xiangyou; Hao, Zhongqi; Xiong, Wei; Guo, Lianbo; Lu, Yongfeng; Yi, Rongxing; Li, Jiaming; Yang, Xinyan; Zeng, Xiaoyan

    2017-06-01

    A green and simple method to prepare metal/semiconductor nanocomposites by selective laser nano-welding metal and semiconductor nanoparticles was presented, in which the sizes, phases, and morphologies of the components can be maintained. Many types of nanocomposites (such as Ag/TiO 2 , Ag/SnO 2 , Ag/ZnO 2 , Pt/TiO 2 , Pt/SnO 2 , and Pt/ZnO) can be prepared by this method and their corresponding performances were enhanced.

  6. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    PubMed Central

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  7. Comparison of distributed Bragg reflector ridge waveguide diode lasers and monolithic master oscillator power amplifiers

    NASA Astrophysics Data System (ADS)

    Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther

    2018-02-01

    Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.

  8. Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.

    PubMed

    Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J

    2006-10-01

    We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.

  9. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods

    NASA Astrophysics Data System (ADS)

    Simon, Thomas; Bouchonville, Nicolas; Berr, Maximilian J.; Vaneski, Aleksandar; Adrović, Asmir; Volbers, David; Wyrwich, Regina; Döblinger, Markus; Susha, Andrei S.; Rogach, Andrey L.; Jäckel, Frank; Stolarczyk, Jacek K.; Feldmann, Jochen

    2014-11-01

    Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g-1 h-1, respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

  10. Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto

    2017-10-01

    Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.

  11. Wurtzite Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Xu, Gaofeng; Faria Junior, Paulo E.; Sipahi, Guilherme M.; Zutic, Igor

    Lasers in which spin-polarized carriers are injected provide paths to different practical room temperature spintronic devices, not limited to magnetoresistive effects. While theoretical studies of such spin-lasers have focused on zinc-blende semiconductors as their active regions, the first electrically injected carriers at room temperature were recently demonstrated in GaN-based wurtzite semiconductors, recognized also for the key role as highly-efficient light emitting diodes. By focusing on a wurtzite quantum well-based spin-laser, we use accurate electronic structure calculations to develop a microscopic description for its lasing properties. We discuss important differences between wurtzite and zinc-blende spin-lasers.

  12. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  13. Low Level Laser Therapy for chronic knee joint pain patients.

    PubMed

    Nakamura, Takashi; Ebihara, Satoru; Ohkuni, Ikuko; Izukura, Hideaki; Harada, Takashi; Ushigome, Nobuyuki; Ohshiro, Toshio; Musha, Yoshiro; Takahashi, Hiroshi; Tsuchiya, Kazuaki; Kubota, Ayako

    2014-12-27

    Chronic knee joint pain is one of the most frequent complaints which is seen in the outpatient clinic in our medical institute. In previous studies we have reported the benefits of low level laser therapy (LLLT) for chronic pain in the shoulder joints, elbow, hand, finger and the lower back. The present study is a report on the effects of LLLT for chronic knee joint pain. Over the past 5 years, 35 subjects visited the outpatient clinic with complaints of chronic knee joint pain caused by the knee osteoarthritis-induced degenerative meniscal tear. They received low level laser therapy. A 1000 mW semi-conductor laser device was used to deliver 20.1 J/cm(2) per point in continuous wave at 830nm, and four points were irradiated per session (1 treatment) twice a week for 4 weeks. A visual analogue scale (VAS) was used to determine the effects of LLLT for the chronic pain and after the end of the treatment regimen a significant improvement was observed (p<0.001). After treatment, no significant differences were observed in the knee joint range of motion. Discussions with the patients revealed that it was important for them to learn how to avoid postures that would cause them knee pain in everyday life in order to have continuous benefits from the treatment. The present study demonstrated that 830 nm LLLT was an effective form of treatment for chronic knee pain caused by knee osteoarthritis. Patients were advised to undertake training involving gentle flexion and extension of the knee.

  14. Liquid Drop Actuation by Photoelectrowetting

    NASA Astrophysics Data System (ADS)

    Palma, Cesar

    In electrowetting an electric potential is applied between a droplet of electrolyte and a conductor separated by an insulator. The repulsion of like charges deforms and spreads the droplet until capillary and electric forces are in equilibrium. Photoelectrowetting is a light-triggered version of electrowetting where the conductor is replaced by a moderately-doped semiconductor. The electrolyte-insulator-semiconductor stack resembles a metal-insulator-semiconductor capacitor, which has the special property that the amount of charge that can be injected into it increases when exposed to light. Thus in photoelectrowetting the exposure of light spreads the droplet further than in unilluminated conditions. In this thesis a scheme is presented for moving drops on a surface using photoelectrowetting. In order to understand photoelectrowetting I conducted a study of electrowetting with semiconductors. Devices were constructed using moderately-doped p-type silicon wafers (Na = 8.6 x 1014 cm-3) coated with a bilayer composed of thermal oxide (100 nm) and teflon (265 nm). Electric biases (< 40 V) were applied between droplets of electrolyte (10 microliter, 10 mM NaCl) and the silicon wafer, resulting in deformations of the droplet. These changes were quantified with contact angle measurements which varied from 120° at zero bias to 90° at 40V depending on the conditions of the experiment. Three regimes were observed depending on the polarity of the bias and above-bandgap illumination impinging on the droplet, corresponding to the charge regimes of an MIS capacitor: accumulation, inversion and deep-depletion. I present a model for these wetting changes based on a balance of capillary and electrostatic forces. After accounting for various non-ideal effects, I find that the model agrees with the data. I demonstrate that it is essential to account for interface traps in our devices (1.8 x 1011 cm-2) in the deep-depletion regime, leading to a 33% (4?) correction to the prediction at 40V. I elucidate the nature of the photoelectrowetting effect and find that contrary to reports in the literature the transition is not reversible by light alone. In the next phase of my thesis, I demonstrate how photoelectrowetting triggered with a light beam on one side moves the droplet along a surface. Comparable with traditional electrowetting-based devices, I achieve speeds of up to 12 mm/s with 10 microliter drops of electrolyte (1% w/w NaCl) with a surfactant (5 mM NaCl) using an oscillating electric potential composed of an AC bias of magnitude 32.5 Vpp and a DC offset of -7 V cycled at a frequency of 15 kHz and a laser intensity of 40 mW/cm2 (lambda = 660nm). I measure the speed for varying magnitude and frequency of the bias, laser intensity, droplet size and viscosity. The optimal cycling frequency is set by competing effects: on the low frequency side (< 15 kHz) the speed is limited by migration of carriers from the illuminated to the non-illuminated regions under the drop, and on the high frequency side (> 15 kHz) the speed is limited by the laser intensity. I present a model for the speed incorporating these effects that compares favorably with experiment. I present results of simulations of minority charge carrier concentrations in depletion regions. These exhibit self-similarity in space and time. The front of the concentrations follows a power law in time with an exponent that depends on the dopant concentration. Predictions from the power laws compare favorably with experiment.

  15. Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang

    2017-03-01

    Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.

  16. Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2000-01-01

    Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.

  17. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    PubMed

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  18. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficient long-pulse XeCl laser with a prepulse formed by an inductive energy storage device

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    2000-06-01

    An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.

  19. Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.

    PubMed

    Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A

    1987-11-01

    Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.

  20. Widely tunable semiconductor lasers with three interferometric arms.

    PubMed

    Su, Guan-Lin; Wu, Ming C

    2017-09-04

    We present a comprehensive study for a new three-branch widely tunable semiconductor laser based on a self-imaging, lossless multi-mode interference (MMI) coupler. We have developed a general theoretical framework that is applicable to all types of interferometric lasers. Our analysis showed that the three-branch laser offers high side-mode suppression ratios (SMSRs) while maintaining a wide tuning range and a low threshold modal gain of the lasing mode. We also present the design rules for tuning over the dense-wavelength division multiplexing grid over the C-band.

Top