Sample records for nm surface layer

  1. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com

    2016-07-06

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seedmore » layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.« less

  2. Carbon buffer layers for smoothing superpolished glass surfaces as substrates for molybdenum /silicon multilayer soft-x-ray mirrors.

    PubMed

    Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U

    1997-03-01

    Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.

  3. Optical models for radio-frequency-magnetron reactively sputtered AlN films

    NASA Astrophysics Data System (ADS)

    Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.

    2005-10-01

    The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.

  4. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  5. Orthogonally superimposed laser-induced periodic surface structures (LIPSS) upon nanosecond laser pulse irradiation of SiO2/Si layered systems

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.

    2017-12-01

    In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.

  6. Optimum deposition conditions of ultrasmooth silver nanolayers

    PubMed Central

    2014-01-01

    Reduction of surface plasmon-polariton losses due to their scattering on metal surface roughness still remains a challenge in the fabrication of plasmonic devices for nanooptics. To achieve smooth silver films, we study the dependence of surface roughness on the evaporation temperature in a physical vapor deposition process. At the deposition temperature range 90 to 500 K, the mismatch of thermal expansion coefficients of Ag, Ge wetting layer, and sapphire substrate does not deteriorate the metal surface. To avoid ice crystal formation on substrates, the working temperature of the whole physical vapor deposition process should exceed that of the sublimation at the evaporation pressure range. At optimum room temperature, the root-mean-square (RMS) surface roughness was successfully reduced to 0.2 nm for a 10-nm Ag layer on sapphire substrate with a 1-nm germanium wetting interlayer. Silver layers of 10- and 30-nm thickness were examined using an atomic force microscope (AFM), X-ray reflectometry (XRR), and two-dimensional X-ray diffraction (XRD2). PACS 63.22.Np Layered systems; 68. Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization PMID:24685115

  7. Resistivity scaling due to electron surface scattering in thin metal layers

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  8. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  9. Spatial distribution of defect luminescence in GaN nanowires.

    PubMed

    Li, Qiming; Wang, George T

    2010-05-12

    The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.

  10. Zirconium oxide surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Bullock, James; Hettick, Mark; Xu, Zhaoran; Yan, Di; Peng, Jun; Javey, Ali; Cuevas, Andres

    2018-05-01

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum layer thickness and activation annealing conditions are determined to be 20 nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy imaging shows an approximately 1.6 nm thick SiOx interfacial layer underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements (˜20 nm). Capacitance-voltage measurements show that the annealed ZrOx film features a low interface defect density of 1.0 × 1011 cm-2 eV-1 and a low negative film charge density of -6 × 1010 cm-2. Effective lifetimes of 673 μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si wafers, respectively, corresponding to an implied open circuit voltage above 720 mV in both cases. The results demonstrate that surface passivation quality provided by ALD ZrOx is consistent with the requirements of high efficiency silicon solar cells.

  11. Study of first electronic transition and hydrogen bonding state of ultra-thin water layer of nanometer thickness on an α-alumina surface by far-ultraviolet spectroscopy

    NASA Astrophysics Data System (ADS)

    Goto, Takeyoshi; Kinugasa, Tomoya

    2018-05-01

    The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness < 4 nm indicate the formation of structured ice-like hydrogen bond (H-bond) layers for the higher energy shifts or the formation of slightly weaker H-bond layers as compared to those in the bulk liquid state for lower energy shifts. In either case, the H-bond structure of bulk liquid water is nearly lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.

  12. Triplex molecular layers with nonlinear nanomechanical response

    NASA Astrophysics Data System (ADS)

    Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.

    2002-06-01

    The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.

  13. Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina

    2002-07-01

    The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.

  14. Ultrafast optical measurements of surface waves on a patterned layered nanostructure

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Bjornsson, Matteo; Connolly, Aine; Mahat, Sushant; Rachmilowitz, Bryan; Antonelli, George; Myers, Alan; Yoo, Hui-Jae; Singh, Kanwal; King, Sean

    2015-03-01

    We report ultrafast optical pump-probe measurements of 12 - 54 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited TiN / 180 nm porous PECVD-grown a-SiOC:H dielectric / 12 nm non-porous PECVD-grown a-SiOC:H etch-stop / 100 nm CVD-grown a-SiO2 / Si (100) substrate. The TiN layer was dry plasma etched to form lines of rectangular cross section with pitches of 420 nm, 250 nm, 180 nm, and 168 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR) . In each of the four cases the SAW frequency increased with decreasing pitch, but not in a linear way as had been seen in previous experiments of this sort. By comparing the results with mechanical simulations, we present evidence for the detection of different types of SAWs in each case, including Rayleigh-like waves, Sezawa waves, and leaky or radiative waves. This work was supported by NSF Award DMR1206681.

  15. Indium oxide based fiber optic SPR sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  16. Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces

    NASA Astrophysics Data System (ADS)

    Chang, Houchen; Liu, Tao; Reifsnyder Hickey, Danielle; Janantha, P. A. Praveen; Mkhoyan, K. Andre; Wu, Mingzhong

    2017-12-01

    For the majority of previous work on Y3Fe5O12 (YIG)/normal metal (NM) bi-layered structures, the YIG layers were grown on Gd3Ga5O12 first and were then capped by an NM layer. This work demonstrates the sputtering growth of a Pt/YIG structure where the Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows well-oriented (111) texture, a surface roughness of 0.15 nm, and an effective Gilbert damping constant less than 4.7 × 10-4, and the YIG/Pt interface allows for efficient spin transfers. This demonstration indicates the feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics studies.

  17. Fabrication of nanocrystalline surface composite layer on Cu plate under ball collisions.

    PubMed

    Romankov, S; Park, Y C; Yoon, J M

    2014-10-01

    It was demonstrated that the severe plastic deformation of a surface induced by repeated ball collisions can be effectively used for fabrication of the nanocrystalline surface composite layers. The Cu disk was fixed at the top of a vibration chamber and ball treated. Al, Zr, Ni, Co and Fe were introduced into a Cu plate as contaminants from the grinding media one after the other by 15-min ball treatment. The composite structure was formed as a result of mechanical intermixing of the components. The particle size in as-fabricated layer ranged from 2 nm to 20 nm, with average values of about 7 nm. As-fabricated layer contained non-equilibrium multicomponent solid solution based on FCC Cu crystal structure, Zr-based phase, nanosized steel debris and amorphous phase. The hardness of the as-fabricated composite was almost ten times that of the initial Cu plate.

  18. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  19. Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study

    NASA Astrophysics Data System (ADS)

    Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.

    2018-02-01

    Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.

  20. Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.

    PubMed

    Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H

    2011-01-01

    Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.

  1. Fabrication of silicon-on-diamond substrate with an ultrathin SiO2 bonding layer

    NASA Astrophysics Data System (ADS)

    Nagata, Masahiro; Shirahama, Ryouya; Duangchan, Sethavut; Baba, Akiyoshi

    2018-06-01

    We proposed and demonstrated a sputter etching method to prepare both a flat surface (root-mean-square surface roughness of approximately 0.2–0.3 nm) and an ultrathin SiO2 bonding layer at an accuracy of approximately 5 nm in thickness to fabricate a silicon-on-diamond substrate (SOD). We also investigated a plasma activation method on a SiO2 surface using various gases. We found that O2 plasma activation is more suitable for the bonding between SiO2 and Si than N2 or Ar plasma activation. We speculate that the concentration of hydroxyl groups on the SiO2 surface was increased by O2 plasma activation. We fabricated the SOD substrate with an ultrathin (15 nm in thickness) SiO2 bonding layer using the sputter etching and O2 plasma activation methods.

  2. Photo-induced persistent inversion of germanium in a 200-nm-deep surface region.

    PubMed

    Prokscha, T; Chow, K H; Stilp, E; Suter, A; Luetkens, H; Morenzoni, E; Nieuwenhuys, G J; Salman, Z; Scheuermann, R

    2013-01-01

    The controlled manipulation of the charge carrier concentration in nanometer thin layers is the basis of current semiconductor technology and of fundamental importance for device applications. Here we show that it is possible to induce a persistent inversion from n- to p-type in a 200-nm-thick surface layer of a germanium wafer by illumination with white and blue light. We induce the inversion with a half-life of ~12 hours at a temperature of 220 K which disappears above 280 K. The photo-induced inversion is absent for a sample with a 20-nm-thick gold capping layer providing a Schottky barrier at the interface. This indicates that charge accumulation at the surface is essential to explain the observed inversion. The contactless change of carrier concentration is potentially interesting for device applications in opto-electronics where the gate electrode and gate oxide could be replaced by the semiconductor surface.

  3. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    PubMed Central

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  4. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    DOEpatents

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  5. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  6. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  7. Endothelial glycocalyx: permeability barrier and mechanosensor.

    PubMed

    Curry, F E; Adamson, R H

    2012-04-01

    Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.

  8. Unexpected behavior of ultra-thin films of blends of polystyrene/poly(vinyl methyl ether) studied by specific heat spectroscopy

    NASA Astrophysics Data System (ADS)

    Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas

    2017-05-01

    Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.

  9. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays.

    PubMed

    Visser, D; Choudhury, B Dev; Krasovska, I; Anand, S

    2017-05-29

    Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO 2 and Si 3 N 4 , respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.

  10. Intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Yoshida, Hideto; Takeda, Seiji; Liang, Jianbo; Shigekawa, Naoteru

    2018-02-01

    The intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature is examined by plane-view transmission electron microscopy (TEM) and cross-sectional scanning TEM using damage-free TEM specimens prepared only by mechanochemical etching. The bonded heterointerfaces include an As-deficient crystalline GaAs layer with a thickness of less than 1 nm and an amorphous Si layer with a thickness of approximately 3 nm, introduced by the irradiation of an Ar atom beam for surface activation before bonding. It is speculated that the interface resistance mainly originates from the As-deficient defects in the former layer.

  11. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A modelmore » of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.« less

  12. Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.

    2011-05-01

    Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.

  13. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    PubMed

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging from -64 to -12 mV at pH's of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from -25 to -5 mV. The shapes of the pH-dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple-layer model is used to fit the non-silanized glass surface and the silane film. The value of the surface-site density for Γ(Xglass) and Γ(Xsilane), in which X denotes the Al-O-Si group, differs by a factor of 10(-4), which suggests an effective coupling of the silane film. A soft-layer model is used to fit the silane-PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10% of the total length (27 nm), 2) the layer of the first PVA shell contributes 30% to the total length (81 nm), 3) the layer of the PVAc core contributes 30% to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30% of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low-order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane-PVA/PVAc complex film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interface layer to tailor the texture and surface morphology of Al-doped ZnO polycrystalline films on glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2017-06-01

    A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.

  15. Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Schüffelgen, Peter; Rosenbach, Daniel; Neumann, Elmar; Stehno, Martin P.; Lanius, Martin; Zhao, Jialin; Wang, Meng; Sheehan, Brendan; Schmidt, Michael; Gao, Bo; Brinkman, Alexander; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev

    2017-11-01

    Topological insulator (Bi0.06Sb0.94)2Te3 thin films grown by molecular beam epitaxy have been capped in-situ with a 2 nm Al film to conserve the pristine topological surface states. Subsequently, a shadow mask - structured by means of focus ion beam - was in-situ placed underneath the sample to deposit a thick layer of Al on well-defined microscopically small areas. The 2 nm thin Al layer fully oxidizes after exposure to air and in this way protects the TI surface from degradation. The thick Al layer remains metallic underneath a 3-4 nm thick native oxide layer and therefore serves as (super-) conducting contacts. Superconductor-Topological Insulator-Superconductor junctions with lateral dimensions in the nm range have then been fabricated via an alternative stencil lithography technique. Despite the in-situ deposition, transport measurements and transmission electron microscope analysis indicate a low transparency, due to an intermixed region at the interface between topological insulator thin film and metallic Al.

  16. Monoatomic layer removal mechanism in chemical mechanical polishing process: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun

    2010-03-01

    Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.

  17. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization.

    PubMed

    Han, Guang; Müller, Werner E G; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100-200 nm thickness and with a pore diameter of 10nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  19. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  20. Surface morphology and subsurface damaged layer of various glasses machined by 193-nm ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming

    2005-01-01

    Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.

  1. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagemann, Ulrich; Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent.more » Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.« less

  2. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    NASA Astrophysics Data System (ADS)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  3. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  4. Reaction products and oxide thickness formed by Ti out-diffusion and oxidization in poly-Pt/Ti/SiO 2/Si with oxide films deposited

    NASA Astrophysics Data System (ADS)

    Chen, Changhong; Huang, Dexiu; Zhu, Weiguang; Feng, Yi; Wu, Xigang

    2006-08-01

    In the paper, we present experimental results to enhance the understanding of Ti out-diffusion and oxidization in commercial poly-Pt/Ti/SiO 2/Si wafers with perovskite oxide films deposited when heat-treated in flowing oxygen ambient. It indicates that when heat-treated at 550 and 600 °C, PtTi 3+PtTi and PtTi are the reaction products from interfacial interaction, respectively; while heat-treated at 650 °C and above, the products become three layers of titanium oxides instead of the alloys. Confirmed to be rutile TiO 2, the first two layers spaced by 65 nm encapsulate the Pt surface by the first layer with 60 nm thick forming at its surface and by the next layer with 35 nm thick inserting its original layer. In addition, the next layer is formed as a barrier to block up continuous diffusion paths of Ti, and thus results in the last layer of TiO 2- x formed by the residual Ti oxidizing.

  5. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The maximum resistivity decrease that can be achieved by increasing the grain size of polycrystalline Cu layers with an average grain size approximately ˜2.5x the layer thickness is 20-26%.

  6. Atomic layer deposition of sub-10 nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Shu; Cheng, Po-Hsien; Huang, Kuei-Wen; Lin, Hsin-Chih; Chen, Miin-Jang

    2018-06-01

    Sub-10 nm high-K gate dielectrics are of critical importance in two-dimensional transition metal dichalcogenides (TMDs) transistors. However, the chemical inertness of TMDs gives rise to a lot of pinholes in gate dielectrics, resulting in large gate leakage current. In this study, sub-10 nm, uniform and pinhole-free Al2O3 high-K gate dielectrics on MoS2 were achieved by atomic layer deposition without surface functionalization, in which an ultrathin Al2O3 layer prepared with a short purge time at a low temperature of 80 °C offers the nucleation cites for the deposition of the overlaying oxide at a higher temperature. Conductive atomic force microscopy reveals the significant suppression of gate leakage current in the sub-10 nm Al2O3 gate dielectrics with the low-temperature nucleation layer. Raman and X-ray photoelectron spectroscopies indicate that no oxidation occurred during the deposition of the low-temperature Al2O3 nucleation layer on MoS2. With the high-quality sub-10 nm Al2O3 high-K gate dielectrics, low hysteresis and subthreshold swing were demonstrated on the normally-off top-gated MoS2 transistors.

  7. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2017-10-01

    We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.

  8. Nanomagnets La0.8Pb0.2(Fe0.8Co0.2)O3 assembled with a bonded surface graphene oxide: sensitive for sensing small gas molecules.

    PubMed

    Bhargav, K K; Ram, S; Majumder, S B

    2012-04-01

    Nanocrystallites La0.8Pb0.2(Fe0.8Co0.2)O3 (LPFC) when bonded through a surface layer (carbon) in small ensembles display surface sensitive magnetism useful for biological probes, electrodes, and toxic gas sensors. A simple dispersion and hydrolysis of the salts in ethylene glycol (EG) in water is explored to form ensembles of the nanocrystallites (NCs) by combustion of a liquid precursor gel slowly in microwave at 70-80 dgrees C (apparent) in a closed container in air. In a dilute sample, the EG molecules mediate hydrolyzed species to configure in small groups in process to form a gel. Proposed models describe how a residual carbon bridges a stable bonded layer of a graphene-oxide-like hybrid structure on the LPFC-NCs in attenuating the magnetic structure. SEM images, measured from a pelletized sample which was used to study the gas sensing features in terms of the electrical resistance, describe plate shaped NCs, typically 30-60 nm widths, 60-180 nm lengths and -50 m2/g surface area (after heating at -750 degrees C). These NCs are arranged in ensembles (200-900 nm size). As per the X-ray diffraction, the plates (a Pnma orthorhombic structure) bear only small strain -0.0023 N/m2 and oxygen vacancies. The phonon and electronic bands from a bonded surface layer disappear when it is etched out slowly by heating above 550 degrees C in air. The surface layer actively promotes selective H2 gas sensor properties.

  9. [Studies on the saliva adsorption and the salivary film property on the hydroxyapatite surface].

    PubMed

    Yao, Jiang-wu; Chen, Guo-yang; Lin, Feng; Lin, Chang-jian; Tao, Tao

    2012-07-01

    To evaluate the thickness and viscoelasticity of whole saliva (WS), parotid saliva (PS) and submandibular/sublingual gland saliva (SMSLS) film adsorption on the hydroxyapatite (HA) surface. Ultra-thin layer of HA nanocrystals was coated on the dissipation TiO(2) sensor of gold quartz crystal microbalance using electrophoretic deposition technique. The thickness of the HA layer was measured by the ellipsometer, and element analysis was conducted using X-ray photoelectron spectroscopy. Atomic force microscopy and scanning electron microscope were used to observe its morphology. The in-situ adsorption thickness, the shear elastic modulus and the shear viscosity of salivary layers (WS, PS and SMSLS) on HA surfaces were investigated. The statistical data were analysed by an one-way ANOVA analysis followed by a SNK-q test. The results show that the HA layer was a plate-like morphology with 1.53 ± 0.12 in Ca/P molar ratio, (19.1 ± 0.9) nm in the thickness and (6.5 ± 1.6) nm in the roughness. The thickness of salivary film was SMSLS [(21.84 ± 1.25) nm] > WS[(17.91 ± 1.35) nm] > PS [(14.30 ± 1.03 nm) (P < 0.05). The shear elastic modulus of salivary film was PS [(0.61 ± 0.01) MPa] > SMSLS [(0.31 ± 0.09) MPa] and WS [(0.25 ± 0.03) MPa] (P < 0.05). The trend of the shear viscosity was opposite to one of thickness. The characteristics of saliva adsorption on HA surface suggest that the thicker, softer and more hydrated properties for the SMSLS and WS films are likely to afford a stronger lubrication to protect oral surfaces from wear and dehydration. The viscoelasticity of the PS film is probably related to the retention covering the oral cavity.

  10. Inhibiting surface crystallization of amorphous indomethacin by nanocoating.

    PubMed

    Wu, Tian; Sun, Ye; Li, Ning; de Villiers, Melgardt M; Yu, Lian

    2007-04-24

    An amorphous solid (glass) may crystallize faster at the surface than through the bulk, making surface crystallization a mechanism of failure for amorphous pharmaceuticals and other materials. An ultrathin coating of gold or polyelectrolytes inhibited the surface crystallization of amorphous indomethacin (IMC), an anti-inflammatory drug and model organic glass. The gold coating (10 nm) was deposited by sputtering, and the polyelectrolyte coating (3-20 nm) was deposited by an electrostatic layer-by-layer assembly of cationic poly(dimethyldiallyl ammonium chloride) (PDDA) and anionic sodium poly(styrenesulfonate) (PSS) in aqueous solution. The coating also inhibited the growth of existing crystals. The inhibition was strong even with one layer of PDDA. The polyelectrolyte coating still permitted fast dissolution of amorphous IMC and improved its wetting and flow. The finding supports the view that the surface crystallization of amorphous IMC is enabled by the mobility of a thin layer of surface molecules, and this mobility can be suppressed by a coating of only a few nanometers. This technique may be used to stabilize amorphous drugs prone to surface crystallization, with the aqueous coating process especially suitable for drugs of low aqueous solubility.

  11. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  12. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  13. Effects of the PPy layer thickness on Co-PPy composite films

    NASA Astrophysics Data System (ADS)

    Haciismailoglu, Murside

    2015-11-01

    Co-PPy composite films were electrodeposited on ITO substrate from two different solutions potentiostatically. Firstly, the PPy layers with the thicknesses changing from 20 to 5000 nm were produced on ITO. Then Co was electrodeposited on these PPy/ITO substrates with a charge density of 1000 mC cm-2. The electrochemical properties were investigated by the current density-time transients and the variation of the elapsed time for the Co deposition depending on the PPy layer thickness. X-ray photoelectron (XPS) spectra indicated the presence of both Co metal and its oxides on the surface. The weak reflections of the Co3O4, CoO and hcp Co were detected by the X-ray diffraction (XRD) technique. According to scanning electron microscopy (SEM) images, the thickness of the PPy layer strongly affects the Co nucleation. The composite films with the PPy layer thinner than 200 nm and thicker than 2000 nm have an isotropic magnetic behavior due to the symmetrical crystal field. The composite films with the PPy layer thicknesses between 200 and 2000 nm have an anisotropic magnetic behavior attributable to the deterioration of this symmetrical crystal field by the PPy bubbles on the surface. All films are hard magnetic material, since the coercivities are larger than 125 Oe.

  14. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  15. Real time measurements of surface growth evolution in magnetron sputtered single crystal Mo/V superlattices using in situ reflection high energy electron diffraction analysis

    NASA Astrophysics Data System (ADS)

    Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.

    1999-07-01

    The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.

  16. Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi

    2018-05-01

    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.

  17. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-10-01

    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.

  18. Determination of carrier diffusion length in p- and n-type GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  19. Effect of N2 annealing on AlZrO oxide

    NASA Astrophysics Data System (ADS)

    Pétry, J.; Richard, O.; Vandervorst, W.; Conard, T.; Chen, J.; Cosnier, V.

    2003-07-01

    In the path to the introduction of high-k dielectric into integrated circuit components, a large number of challenges has to be solved. Subsequent to the film deposition, the high-k film is exposed to additional high-temperature anneals for polycrystalline Si activation but also to improve its own electrical properties. Hence, concerns can be raised regarding the thermal stability of these stacks upon annealing. In this study, we investigated the effect of N2 annealing (700 to 900 °C) of atomic layer chemical vapor deposition AlZrO layers using x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The effect of the Si surface preparation [H-Si, 0.5 nm rapid thermal oxide (RTO), Al2O3] on the modification of the high-k oxide and the interfacial layer upon annealing was also analyzed. Compositional changes can be observed for all temperature and surface preparations. In particular, we observe a segregation of Al(oxide) toward the surface of the mixed oxide. In addition, an increase of the Si concentration in the high-k film itself can be seen with a diffusion profile extending toward the surface of the film. On the other hand, the modification of the interfacial layer is strongly dependent on the system considered. In the case of mixed oxide grown on 0.5 nm RTO, no differences are observed between the as-deposited layer and the layer annealed at 700 °C. At 800 °C, a radical change occurs: The initial RTO layer seems to be converted into a mixed layer composed of the initial SiO2 and Al2O3 coming from the mixed oxide, however without forming an Al-silicate layer. A similar situation is found for anneals at 900 °C, as well. When grown on 1.5 nm Al2O3 on 0.5 nm RTO, the only difference with the previous system is the observation of an Al-silicate fraction in the interfacial layer for the as-deposited and 700 °C annealed samples, which disappears at higher temperatures. Finally, considering layers deposited on a H-Si surface, we observe a slight increase of the interfacial thickness after annealing at 700 °C and no further changes for a higher annealing temperature.

  20. Surface engineering with functional random copolymers for nanolithographic applications

    NASA Astrophysics Data System (ADS)

    Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Lupi, Federico Ferrarese; Giammaria, Tommaso Jacopo; Seguini, Gabriele; Perego, Michele; Laus, Michele

    2016-05-01

    Hydroxyl-terminated P(S-r-MMA) random copolymers with molecular weight ranging from 1.7 to 69 kg/mol and a styrene unit fraction of 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of domains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film.

  1. Determination of carrier diffusion length in GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  2. Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system

    NASA Astrophysics Data System (ADS)

    Meisner, S. N.; Yakovlev, E. V.; Semin, V. O.; Meisner, L. L.; Rotshtein, V. P.; Neiman, A. A.; D'yachenko, F.

    2018-04-01

    The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on "Ti70Ta30(1 μm) coating/NiTi substrate" system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α‧‧ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (<20 nm) average grain sizes which provide a gradual transition of the mechanical parameters to the values of the NiTi substrate.

  3. Morphology and structure of polymer layers protecting dental enamel against erosion.

    PubMed

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2012-10-01

    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of citric acid solutions on dental enamel surfaces. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  5. Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer

    DOEpatents

    Mandal, Krishna C.; Terry, J. Russell

    2016-12-06

    A detection device, along with methods of its manufacture and use, is provided. The detection device can include: a SiC substrate defining a substrate surface cut from planar to about 12.degree.; a buffer epitaxial layer on the substrate surface; a n-type epitaxial layer on the buffer epitaxial layer; and a top contact on the n-type epitaxial layer. The buffer epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.15 cm.sup.-3 to about 5.times.10.sup.18 cm.sup.-3 with nitrogen, boron, aluminum, or a mixture thereof. The n-type epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.13 cm.sup.-3 to about 5.times.10.sup.15 cm.sup.-3 with nitrogen. The top contact can have a thickness of about 8 nm to about 15 nm.

  6. Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules.

    PubMed

    Kozak, Halyna; Babchenko, Oleg; Artemenko, Anna; Ukraintsev, Egor; Remes, Zdenek; Rezek, Bohuslav; Kromka, Alexander

    2014-03-04

    We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.

  7. Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials.

    PubMed

    Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas

    2013-11-01

    Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Growth of silicon nanoclusters in thermal silicon dioxide under annealing in an atmosphere of nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, E. V., E-mail: Ivanova@mail.ioffe.ru; Sitnikova, A. A.; Aleksandrov, O. V.

    2016-06-15

    It is found for the first time that silicon nanoclusters are formed in the surface layer of thermal silicon dioxide under high-temperature annealing (T = 1150°C) in dried nitrogen. Analysis of the cathodoluminescence spectra shows that an imperfect surface layer appears upon such annealing of silicon dioxide, with silicon nanoclusters formed in this layer upon prolonged annealing. Transmission electron microscopy demonstrated that the silicon clusters are 3–5.5 nm in size and lie at a depth of about 10 nm from the surface. Silicon from the thermal film of silicon dioxide serves as the material from which the silicon nanoclusters aremore » formed. This method of silicon-nanocluster formation is suggested for the first time.« less

  9. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Mazur, Eric; Carey, James Edward

    2017-10-17

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  10. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Mazur, Eric [Concord, MA; Carey, III, James E.

    2011-02-08

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  11. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Mazur, Eric; Carey, III, James E.

    2010-08-24

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  12. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Mazur, Eric [Concord, MA; Carey, III, James Edward

    2009-03-17

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  13. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Carey, III, James Edward; Mazur, Eric [Concord, MA

    2011-12-20

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  14. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Carey, III, James Edward; Mazur, Eric

    2006-06-06

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  15. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Mazur, Eric; Carey, James Edward

    2016-03-01

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

  16. Silicon-based visible and near-infrared optoelectric devices

    DOEpatents

    Mazur, Eric; Carey, James Edward

    2013-12-10

    In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity great than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelenths, e.g., up to about 3.5 microns.

  17. Organic and inorganic passivation of p-type SnO thin-film transistors with different active layer thicknesses

    NASA Astrophysics Data System (ADS)

    Qu, Yunxiu; Yang, Jia; Li, Yunpeng; Zhang, Jiawei; Wang, Qingpu; Song, Aimin; Xin, Qian

    2018-07-01

    Bottom gated thin-film transistors (TFTs) with various sputtered SnO active layer thicknesses ranging from 10 to 30 nm and different passivation layers have been investigated. The device with 20 nm SnO showed the highest on/off ratio of 1.7 × 104 and the smallest subthreshold swing of 8.43 V dec‑1, and the mobility (0.76 cm2 V‑1 s‑1) was only slightly lower than in TFTs with a thicker SnO layer. However, both the mobility and the on/off ratio of the 15 nm SnO TFT dropped significantly by one order of magnitude. This indicated a strong influence of the top surface on the carrier transport, and we thus applied an organic or an inorganic encapsulation material to passivate the top surface. In the 20 nm TFT, the on/off ratio was doubled after passivation. The performance of the 15 nm TFT was improved even more dramatically with the on/off ratio increased by one order of magnitude and the mobility increased also significantly. Our experiment shows that polymethyl methacrylate passivation is more effective to reduce the shallow trap states, and Al2O3 is more effective in reducing the deep traps in the SnO channel.

  18. Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide

    NASA Astrophysics Data System (ADS)

    Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin

    2018-06-01

    This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.

  19. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system

    NASA Astrophysics Data System (ADS)

    Wainstein, D. L.; Vakhrushev, V. O.; Kovalev, A. I.

    2017-05-01

    The multilayer Ag/(Ti34Al66)N metal-insulator-metal (MIM) heterostructures with different thicknesses of individual layers varied from several to several hundred nanometers were fabricated by DC-magnetron sputtering on the surfaces of Si single crystal wafers. The coatings structure was determined by STEM. The phase composition and crystallography of individual layers were studied by X-ray diffraction. The reflection indexes were measured in the photons energies range from 1 to 5 eV, or from 1240 to 248 nm. The spectroscopy of plasmon losses and plasmon microscopy allowed us to measure the plasmons losses characteristic energies and their surface distribution. The energies of plasmons peaks and their locations are strongly depending on Ag layers thickness in the MIM nanocomposite. The surface plasmon with energy about 4 eV was observed in the middle of 20 nm Ag layer. The plasmons were localized at the metal/dielectric interface for Ag layers 5 nm and less. The reflectance spectral profiles edges positions at long and short waves are correlated with plasmons energies and features of their spatial distribution. The MIMs based on the TiAlN/Ag can find applications as optical filters, photovoltaic energy conversion devices, etc.

  20. Surface morphological evolution of epitaxial CrN(001) layers

    NASA Astrophysics Data System (ADS)

    Frederick, J. R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at Ts=600-800 °C by ultrahigh-vacuum magnetron sputter deposition in pure N2 discharges from an oblique deposition angle α=80°. Layers grown at 600 °C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 °C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 °C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as Ts is raised from 600 to 700 to 800 °C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 °C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent β>0.5. In contrast, kinetic roughening controls the surface morphology for Ts=800 °C, as well as the epitaxial fraction of the layers grown at 600 and 700 °C, yielding relatively smooth surfaces and β<=0.27.

  1. The eicosanoid, 15-(S)-HETE, stimulates secretion of mucin-like glycoprotein by the corneal epithelium.

    PubMed

    Jackson , R S; Van Dyken, S J; McCartney, M D; Ubels, J L

    2001-07-01

    The eicosanoid, 15-(S)-hydroxyeicosa-5Z, 8Z-11Z, 13E-tetraenoic acid (15-(S)-HETE), is known to stimulate production of mucin glycoprotein by airway epithelium. This study investigated the effect of 15-(S)-HETE on the mucin glycoprotein secretion by the corneal epithelium. To determine the effect of dose, corneas of anesthetized New Zealand White rabbits were treated with 50, 500, or 5,000 nM 15-(S)-HETE in artificial tears for 120 minutes. To determine the time to onset of the response, corneas were treated with 500 or 1,000 nM 15-(S)-HETE in balanced salt solution for periods ranging from 5 to 120 minutes. Corneas were fixed for electron microscopy in fixative containing 0.5% cetylpyridinium chloride (CPC) to stabilize the layer of mucin-like glycoprotein on the corneal surface. The mucin layer thickness was measured by image analysis of electron micrographs. The layer of CPC-fixed mucin-like glycoprotein on the surface of control corneas was 0.46 +/- 0.04 microm thick. After treatment with 15-(S)-HETE, the thickness of the mucin layer increased to 0.64 +/- 0.1 microm at 50 or 5,000 nM HETE and as much as 1.02 +/- 0.2 microm in response to 500 nM HETE. Mucin thickness reached a statistical maximum of 0.59 +/- 0.1 microm after only 5 minutes of exposure to 500 or 1,000 nM HETE. Exposure of the cornea to 15-(S)-HETE causes a rapid-onset increase in the thickness of a layer of mucin-like glycoprotein on the surface of the corneal epithelium. This supports previous reports that corneal epithelial cells produce mucin and suggests that treatment with topical 15-(S)-HETE may be effective in treating ocular surface mucin deficiency in dry eye syndrome.

  2. Self-assembling of 2,3-phenyl/thienyl-substituted acrylic acids over polycrystalline gold

    NASA Astrophysics Data System (ADS)

    Csankó, K.; Kozma, G.; Valkai, L.; Kukovecz, Á.; Kónya, Z.; Sipos, P.; Pálinkó, I.

    2013-07-01

    Self-assembling layers were formed from sulfur-containing cinnamic acid analogues over polycrystalline Au surface. The horizontal organising forces were strong O-H⋯O and weaker C-H⋯S hydrogen bonds (the former interaction kept together the acid dimers serving as the fundamental unit, while the latter was crucial in the construction of the 2D layers), while the vertical organisation forces were provided by Au-S covalent bonds. Measurements by atomic force, scanning electron, infrared and Raman microscopies attested that the dimers were situated in a nearly perpendicular fashion to the Au surface providing a ˜30-40 nm thick organic "carpet" and out of this layer occasionally, peaks with height of ˜100-120 nm grew out. The outgrowth of these surface structures were most probably governed by the defects of the polycrystalline metal surface.

  3. A comparative study of the influence of nickel oxide layer on the FTO surface of organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Saikia, Dhrubajyoti; Sarma, Ranjit

    2018-03-01

    The influence of thin layer of nickel oxide (NiO) over the fluorine-doped tin oxide (FTO) surface on the performance of Organic light-emitting diode (OLED) is reported. With an optimal thickness of NiO (10 nm), the luminance efficiency is found to be increased as compared to the single FTO OLED. The performance of OLED is studied by depositing NiO films at different thicknesses on the FTO surface and analyzed their J-V and L-V characteristics. Further analysis is carried out by measuring sheet resistance and optical transmittance. The surface morphology is studied with the help of FE-SEM images. Our results indicate that NiO (10 nm) buffer layer is an excellent choice to increase the efficiency of FTO based OLED devices within the charge tunneling region. The maximum value of current efficiency is found to be 7.32 Cd/A.

  4. Self assembly of magnetic nanoparticles at silicon surfaces.

    PubMed

    Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A

    2015-06-21

    Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.

  5. High Performance 50 nm InAlAs/In0.75GaAs Metamorphic High Electron Mobility Transistors with Si3N4 Passivation on Thin InGaAs Layer

    NASA Astrophysics Data System (ADS)

    Yeon, Seongjin; Seo, Kwangseok

    2008-04-01

    We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.

  6. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    PubMed

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  7. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    PubMed

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  8. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Mikac, Lara; Ivanda, Mile; Gotić, Marijan; Janicki, Vesna; Zorc, Hrvoje; Janči, Tibor; Vidaček, Sanja

    2017-10-01

    The silver (Ag) films were deposited on the monodispersed polystyrene spheres that were drop-coated on hydrophilic glass substrates in order to form a self-assembled 2D monolayer. Thus prepared Ag films over polystyrene nanospheres (AgFONs) were used to record the surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G (R6G) and pyridine (λex = 514.5 nm). AgFONs were prepared by depositing 120, 180 and 240 nm thick Ag layer on the 1000 nm polystyrene spheres and 80, 120, 160 and 200 nm thick Ag layer on the 350 nm spheres as well as on their mixture (350 + 1000 nm). The silver was deposited by electron beam evaporation technique. The best enhancement of the Raman signal for both test molecules was obtained using 180 nm Ag film deposited on the 1000 nm spheres and using 80 nm Ag film deposited on the 350 nm polystyrene spheres. The lowest detectable concentrations of R6G and pyridine were 10-9 mol L-1 and 1.2 × 10-3 mol L-1, respectively. This study has shown that AgFONs could be regarded as good and reproducible SERS substrate for analytical detection of various organic molecules.

  9. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    NASA Astrophysics Data System (ADS)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  10. Pulsed laser-assisted removal of powder coating from galvanised steel surface: a characterisation study

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Prasad, Manisha; Shail, Shailini; Bhatt, R. B.; Behere, P. G.; Afzal, Md.; Kumar, Arun; Kar, Rajib; Nilaya, J. P.; Biswas, D. J.

    2015-06-01

    Removal of pure polyester powder coating from galvanised steel surface is studied using the fundamental, second and third harmonic radiations obtained from a Q-switched Nd-YAG laser capable of delivering pulses of duration 10 ns. Removal of the coating was found to be most effective for 1064 nm radiation followed by 532 and 355 nm radiations. Measurement of absorption of the incident radiation by the paint layer carried out with an integrating sphere has helped to gain insight into the removal mechanisms operative at these wavelengths. Single shot removal of the entire thickness of the powder coating was successfully achieved using 1064 nm radiation. Characterisation study of the laser-treated surface revealed that the coating removal was achieved leaving the underneath zinc layer as before. Usage of pulsed emission at 1064 nm of fluence 0.7 J/cm2 and repetition rate 5 Hz allowed stripping of 60-micron-thick coating at the rate of ~35 cm2 per minute.

  11. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  12. Properties of Surface-Modification Layer Generated by Atomic Hydrogen Annealing on Poly(ethylene naphthalate) Substrate

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2008-01-01

    The surface of a poly(ethylene naphthalate) (PEN) substrate was modified by atomic hydrogen annealing (AHA). In this method, a PEN substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. The properties of the surface-modification layer by AHA were evaluated by spectroscopic ellipsometry. It is found that the thickness of the modified layer was 5 nm and that the modification layer has a low refractive index compared with the PEN substrate. The modification layer relates to the reduction reaction of the PEN substrate by AHA.

  13. Method for improving performance of high temperature superconductors within a magnetic field

    DOEpatents

    Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo

    2010-01-05

    The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

  14. Nano- and micro-structuring of fused silica using time-delay adjustable double flash ns-laser radiation

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing

    2018-02-01

    Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at Δτ >= 174 ns. That path the way for the high speed ultra-fast nanostructuring of dielectric surfaces by self-organizing processes. The different surface structures were analyzed by scanning electron microscopy (SEM) and white light interferometry (WLI).

  15. Chemical Composition of Surfaces of Polycrystalline Silver Held in Water Vapor

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Khubezhov, S. A.; Aleroev, M. A.; Grigorkina, G. S.; Ashkhotova, I. B.; Magkoev, T. T.; Bliev, A. P.; Ramonova, A. G.; Kibizov, D. D.

    2018-01-01

    The chemical composition of surfaces and near-surface layers of massive polycrystalline silver held in water vapor for 2 h at 1073 K is studied via Auger and X-ray photoelectron spectroscopy. It is shown that the oxygen on a surface is in the molecular state. In near-surface layers at depths of up to 8 nm, it is predominantly in the atomic state typical of chemisorbed Ag2O.

  16. MBE growth of highly reproducible VCSELs

    NASA Astrophysics Data System (ADS)

    Houng, Y. M.; Tan, M. R. T.

    1997-05-01

    Advances in the design of heterojunction devices have placed stringent demands on the epitaxial material technologies required to fabricate these structures. The increased demand for more stringent tolerance and complex device structures have resulted in a situation where acceptable growth yields will be realized only if epitaxial growth is directly monitored and controlled in real time. We report the growth of 980- and 850-nm vertical cavity surface emitting lasers (VCSEL's) by gas-source molecular beam epitaxy (GSMBE), in which the pyrometric interferometry technique is used for in situ monitoring and feedback control of layer thickness to obtain the highly reproducible distributed Bragg reflectors (DBR) for VCSEL structures. This technique uses an optical pyrometer to measure emissivity oscillations of the growing epi-layer surface. The growing layer thickness can then be related to the emissivity oscillation signals. When the layer reaches the desired thickness, the growth of the subsequent layer is initiated. By making layer thickness measurements and control in real-time throughout the entire growth cycle of the structure, the Fabry-Perot resonance at the desired wavelength is reproducibly obtained. The run-to-run variation of the Fabry-Perot wavelength of VCSEL structures is < ± 0.4%. Using this technique, the group III fluxes can also be calibrated and corrected for flux drifts, thus we are able to control the gain peak of the active region with a run-to-run variation of less than 0.3%. Surface emitting laser diodes were fabricated and operated CW at room temperature. CW threshold currents of 3 and 5 mA are measured at room temperature for 980- and 850-nm lasers, respectively. Output powers higher than 25 mW for 980-nm and 12 mW for 850-nm devices are obtained.

  17. Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli

    2018-03-01

    Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.

  18. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  19. High Bandwidth-Efficiency Resonant Cavity Enhanced Schottky Photodiodes for 800-850 nm Wavelength Operation

    DTIC Science & Technology

    1998-05-25

    at least 50 nm wide centered around 830 nm wavelength. The layers are grown by molecular beam epitaxy on a semi- insulating GaAs substrate. The...limited by the material properties. With the advent of GaAs vertical-cavity surface-emitting lasers ~ VCSEL !,2 the 800–850 nm wavelength range has recently

  20. Influence of magnesium fluoride (MgF2) layer on a conventional surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-05-01

    In this work, a numerical study of Surface Plasmon Resonance (SPR) sensor has been done by using Magnesium Fluoride (MgF2) layer on a conventional Kretschmann configuration. The prism was coated with smooth gold thin film of thickness 50 nm followed by MgF2 layer. To obtain the maximum reflection dips in the SPR modes, the thickness of MgF2 layer is optimized by varying it from 200-800 nm. Our calculations also reveal that SPR modes corresponding to gold-MgF2 layer are very sensitive to the changes in the surrounding medium as compared to the traditional SPR device. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such bilayer device (gold-MgF2) is expected to take an important role on the field of chemical and biological sensing.

  1. Reassembly of S-layer proteins

    NASA Astrophysics Data System (ADS)

    Pum, Dietmar; Sleytr, Uwe B.

    2014-08-01

    Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.

  2. Organic solar cells using a ZnO/Cu/ZnO anode deposited by ion beam sputtering at room temperature for flexible devices.

    PubMed

    El Hajj, Ahmad; Lucas, Bruno; Barbot, Anthony; Antony, Rémi; Ratier, Bernard; Aldissi, Matt

    2013-07-01

    The development of indium-free transparent conductive oxides (TCOs) on polymer substrates for flexible devices requires deposition at low temperatures and a limited thermal treatment. In this paper, we investigated the optical and electrical properties of ZnO/Cu/ZnO multi-layer electrodes obtained by ion beam sputtering at room temperature for flexible optoelectronic devices. This multilayer structure has the advantage of adjusting the layer thickness to favor antireflection and surface plasmon resonance of the metallic layer. We found that the optimal electrode is made up of a 10 nm-thick Cu layer between two 40 nm-thick ZnO layers, which results in a sheet resistance of 12 omega/(see symbol), a high transmittance of 85% in the visible range, and the highest figure of merit of 5.4 x 10(-3) (see symbol)/omega. A P3HT:PCBM-based solar cell showed a power conversion efficiency (PCE) of 2.26% using the optimized ZnO (40 nm)/Cu (10 nm)/ZnO (40 nm) anode.

  3. Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell

    NASA Astrophysics Data System (ADS)

    Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal

    2017-08-01

    Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.

  4. Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Shaw-Stewart, J.; Mattle, T.; Dinca, V.; Lippert, T.; Wokaun, A.; Dinescu, M.

    2013-08-01

    Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.

  5. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

  6. Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions

    NASA Astrophysics Data System (ADS)

    Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi

    2018-06-01

    We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.

  7. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Leighton, T; Wheeler, K

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less

  8. High photon-to-heat conversion efficiency in the wavelength region of 250–1200 nm based on a thermoelectric Bi2Te3 film structure

    PubMed Central

    Hu, Er-Tao; Yao, Yuan; Zang, Kai-Yan; Liu, Xin-Xing; Jiang, An-Qing; Zheng, Jia-Jin; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Zhang, Rong-Jun; Wang, Song-You; Zhao, Hai-Bin; Yoshie, Osamu; Lee, Young-Pak; Wang, Cai-Zhuang; Lynch, David W.; Guo, Jun-Peng; Chen, Liang-Yao

    2017-01-01

    In this work, 4-layered SiO2/Bi2Te3/SiO2/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250–1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO2 (66.6 nm)/Bi2Te3 (7.0 nm)/SiO2 (67.0 nm)/Cu (>100.0 nm) was deposited on a Si or K9-glass substrate by magnetron sputtering. The experimental results agree well with the simulated ones showing an average optical absorption of 96.5%, except in the shorter wavelength region, 250–500 nm, which demonstrates the superior absorption property of the 4-layered film due to the randomly rough surface of the Cu layer resulting from the higher deposition power. The high reflectance of the film structure in the long wavelength region of 2–20 μm will result in a low thermal emittance, 0.064 at 600 K. The simpler 4-layered structure with the thermoelectric Bi2Te3 used as the absorption layer may provide a straightforward way to obtain solar-thermal-electric conversion more efficiently through future study. PMID:28300178

  9. Fabrication of a nanometer thick nitrogen delta doped layer at the sub-surface region of (100) diamond

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Michaelson, Shaul; Saguy, Cecile; Hoffman, Alon

    2016-11-01

    In this letter, we report on the proof of a concept of an innovative delta doping technique to fabricate an ensemble of nitrogen vacancy centers at shallow depths in (100) diamond. A nitrogen delta doped layer with a concentration of ˜1.8 × 1020 cm-3 and a thickness of a few nanometers was produced using this method. Nitrogen delta doping was realized by producing a stable nitrogen terminated (N-terminated) diamond surface using the RF nitridation process and subsequently depositing a thin layer of diamond on the N-terminated diamond surface. The concentration of nitrogen on the N-terminated diamond surface and its stability upon exposure to chemical vapor deposition conditions are determined by x-ray photoelectron spectroscopy analysis. The SIMS profile exhibits a positive concentration gradient of 1.9 nm/decade and a negative gradient of 4.2 nm/decade. The proposed method offers a finer control on the thickness of the delta doped layer than the currently used ion implantation and delta doping techniques.

  10. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD.

    PubMed

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-04-22

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates.

  11. Aerosol characteristics in the entrainment interface layer in relation to the marine boundary layer and free troposphere

    NASA Astrophysics Data System (ADS)

    Dadashazar, Hossein; Braun, Rachel A.; Crosbie, Ewan; Chuang, Patrick Y.; Woods, Roy K.; Jonsson, Haflidi H.; Sorooshian, Armin

    2018-02-01

    This study uses airborne data from two field campaigns off the California coast to characterize aerosol size distribution characteristics in the entrainment interface layer (EIL), a thin and turbulent layer above marine stratocumulus cloud tops, which separates the stratocumulus-topped boundary layer (STBL) from the free troposphere (FT). The vertical bounds of the EIL are defined in this work based on considerations of buoyancy and turbulence using thermodynamic and dynamic data. Aerosol number concentrations are examined from three different probes with varying particle diameter (Dp) ranges: > 3 nm, > 10 nm, and 0.11-3.4 µm. Relative to the EIL and FT layers, the sub-cloud (SUB) layer exhibited lower aerosol number concentrations and higher surface area concentrations. High particle number concentrations between 3 and 10 nm in the EIL are indicative of enhanced nucleation, assisted by high actinic fluxes, cool and moist air, and much lower surface area concentrations than the STBL. Slopes of number concentration versus altitude in the EIL were correlated with the particle number concentration difference between the SUB and lower FT layers. The EIL aerosol size distribution was influenced by varying degrees from STBL aerosol versus subsiding FT aerosol depending on the case examined. These results emphasize the important role of the EIL in influencing nucleation and aerosol-cloud-climate interactions.

  12. Monitoring plasma treatment of thin films by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Laha, Ranjit; Manivannan, A.; Kasiviswanathan, S.

    2014-03-01

    We report the surface plasmon resonance (SPR) measurements during plasma treatment of thin films by an indigenously designed setup. From the measurements on Al (6.3 nm)/Ag (38 nm) bi-layer at a pressure of 0.02 mbar, the SPR position was found to be shifted by ˜20° after a plasma treatment of ˜7 h. The formation of oxide layers during plasma oxidation was confirmed by glancing angle x-ray diffraction (GXRD) measurements. Combined analysis of GXRD and SPR data confirmed that while top Al layer enables controlling plasma oxidation of Ag, the setup enables monitoring the same. The setup designed is a first of its kind for in situ SPR studies where creation of low pressure is a prerequisite.

  13. Monitoring plasma treatment of thin films by surface plasmon resonance.

    PubMed

    Laha, Ranjit; Manivannan, A; Kasiviswanathan, S

    2014-03-01

    We report the surface plasmon resonance (SPR) measurements during plasma treatment of thin films by an indigenously designed setup. From the measurements on Al (6.3 nm)/Ag (38 nm) bi-layer at a pressure of 0.02 mbar, the SPR position was found to be shifted by ~20° after a plasma treatment of ~7 h. The formation of oxide layers during plasma oxidation was confirmed by glancing angle x-ray diffraction (GXRD) measurements. Combined analysis of GXRD and SPR data confirmed that while top Al layer enables controlling plasma oxidation of Ag, the setup enables monitoring the same. The setup designed is a first of its kind for in situ SPR studies where creation of low pressure is a prerequisite.

  14. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  15. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    NASA Astrophysics Data System (ADS)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  16. Impact of UV irradiation on multiwall carbon nanotubes in nanocomposites: formation of entangled surface layer and mechanisms of release resistance

    PubMed Central

    Nguyen, Tinh; Petersen, Elijah J.; Pellegrin, Bastien; Gorham, Justin M.; Lam, Thomas; Zhao, Minhua; Sung, Lipiin

    2017-01-01

    Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed. PMID:28603293

  17. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  18. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.

    PubMed

    Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P

    2017-12-15

    We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  19. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    PubMed

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cascaded Ga1-xAlxAs/GaAs solar cell with graded i-region

    NASA Astrophysics Data System (ADS)

    Mil'shtein, Sam; Halilov, Samed

    2018-02-01

    In current study we designed p-i-n junction with extended intrinsic layer, where linearly graded Alx Ga1-x As presents variable energy gap so needed for effective harvesting of sun radiation. The design realization involves two regions of compositional structure in the stacking direction. The top AlxGa1-xAs layer of 1 um total thickness has stoichiometric structure x=0.3-0.2d, where depth d runs from 0 to 1 um, topmost 200 nm of which is Be-doped. Bottom AlxGa1-xAs layer of 3 um total thickness has a variable composition of x=0.133-0.033d, d runs from 1 to 4 um, the very bottom of which with 10 nm thickness is Si-doped. On the top surface, there is a 50 nm layer of p+ doped GaAs as a spacer for growing AuGe/Ni anode electrode of 20% surface area, the bottom is coated with AuGe/Ni cathode electrode. The designed cell demonstrates 89% fill factor and 30% conversion efficiency without anti-reflection coating.

  1. Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene

    2011-11-01

    The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.

  2. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.

    PubMed

    Wastl, Daniel S; Judmann, Michael; Weymouth, Alfred J; Giessibl, Franz J

    2015-01-01

    Characterization and imaging at the atomic scale with atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomically resolved imaging of the calcite (101̅4) surface plane using stiff quartz cantilevers ("qPlus sensors", stiffness k = 1280 N/m) equipped with sapphire tips in ambient conditions without any surface preparation. With 10 atoms in one surface unit cell, calcite has a highly complex surface structure comprising three different chemical elements (Ca, C, and O). We obtain true atomic resolution of calcite in air at relative humidity ranging from 20% to 40%, imaging atomic steps and single atomic defects. We observe a great durability of sapphire tips with their Mohs hardness of 9, only one step below diamond. Depending on the state of the sapphire tip, we resolve either the calcium or the oxygen sublattice. We determine the tip termination by comparing the experimental images with simulations and discuss the possibility of chemical tip identification in air. The main challenges for imaging arise from the presence of water layers, which form on almost all surfaces and have the potential to dissolve the crystal surface. Frequency shift versus distance spectra show the presence of at least three ordered hydration layers. The measured height of the first hydration layer corresponds well to X-ray diffraction data and molecular dynamic simulations, namely, ∼220 pm. For the following hydration layers we measure ∼380 pm for the second and third layer, ending up in a total hydration layer thickness of at least 1 nm. Understanding the influence of water layers and their structure is important for surface segregation, surface reactions including reconstructions, healing of defects, and corrosion.

  3. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si

    PubMed Central

    Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo

    2015-01-01

    Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099

  4. Preparation of stable silica surfaces for surface forces measurement

    NASA Astrophysics Data System (ADS)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  5. Determining the influential depth for surface reflectance of sediment by BRDF measurements.

    PubMed

    Zhang, H; Voss, K; Reid, R

    2003-10-20

    We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.

  6. In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.

    2017-09-01

    The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

  7. Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential.

    PubMed

    Kong, Desheng; Dang, Wenhui; Cha, Judy J; Li, Hui; Meister, Stefan; Peng, Hailin; Liu, Zhongfan; Cui, Yi

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi(2)Se(3), Bi(2)Te(3), and Sb(2)Te(3) are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi(2)Te(3) and Bi(2)Se(3) nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO(2)/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential.

  8. Preparation of silica stabilized biological templates for the production of metal and layered nanoparticles

    DOEpatents

    Culver, James N; Royston, Elizabeth; Brown, Adam; Harris, Michael

    2013-02-26

    The present invention relates to a system and method providing for increased silica growth on a bio-template, wherein the bio-template is pretreated with aniline to produce a uniform silica attractive surface and yielding a significant silica layers of at least 10 nm, and more preferably at least 20 nm in thickness, thereby providing for a high degree of stability to the bio-template.

  9. Pt thermal atomic layer deposition for silicon x-ray micropore optics.

    PubMed

    Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa

    2018-04-20

    We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10  nm and Pt ∼20  nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2  nm rms to 2.2±0.2  nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

  10. Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method

    NASA Astrophysics Data System (ADS)

    Gong, You-Pin; Li, Ai-Dong; Qian, Xu; Zhao, Chao; Wu, Di

    2009-01-01

    Ultrathin HfO2 films with about ~3 nm thickness were deposited on n-type (1 0 0) silicon substrates using hafnium chloride (HfCl4) source by the surface sol-gel method and post-deposition annealing (PDA). The interfacial structure and electrical properties of ultrathin HfO2 films were investigated. The HfO2 films show amorphous structures and smooth surface morphologies with a very thin interfacial oxide layer of ~0.5 nm and small surface roughness (~0.45 nm). The 500 °C PDA treatment forms stronger Hf-O bonds, leading to passivated traps, and the interfacial layer is mainly Hf silicate (HfxSiyOz). Equivalent oxide thickness of around 0.84 nm of HfO2/Si has been obtained with a leakage current density of 0.7 A cm-2 at Vfb + 1 V after 500 °C PDA. It was found that the current conduction mechanism of HfO2/Si varied from Schottky-Richardson emission to Fowler-Nordheim tunnelling at an applied higher positive voltage due to the activated partial traps remaining in the ultrathin HfO2 films.

  11. Effect of heat treatment on interface driven magnetic properties of CoFe films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kr.; Hsu, Jen-Hwa

    2017-06-01

    We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.

  12. Study of silicon doped with zinc ions and annealed in oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less

  13. Graphene based resonance structure to enhance the optical pressure between two planar surfaces.

    PubMed

    Hassanzadeh, Abdollah; Azami, Darya

    2015-12-28

    To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

  14. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less

  15. Comparison of four lasers (λ = 650, 808, 980, and 1075 nm) for noninvasive creation of deep subsurface lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Wilson, Christopher R.; Fried, Nathaniel M.

    2015-07-01

    Lasers have been used in combination with applied cooling methods to preserve superficial skin layers (100's μm's) during cosmetic surgery. Preservation of a thicker tissue surface layer (millimeters) may also allow development of other noninvasive laser procedures. We are exploring noninvasive therapeutic laser applications in urology (e.g. laser vasectomy and laser treatment of female stress urinary incontinence), which require surface tissue preservation on the millimeter scale. In this preliminary study, four lasers were compared for noninvasive creation of deep subsurface thermal lesions. Laser energy from three diode lasers (650, 808, and 980 nm) and a Ytterbium fiber laser (1075 nm) was delivered through a custom built, side-firing, laser probe with integrated cooling. An alcohol-based solution at -5 °C was circulated through a flow cell, cooling a sapphire window, which in turn cooled the tissue surface. The probe was placed in contact with porcine liver tissue, ex vivo, kept hydrated in saline and maintained at ~ 35 °C. Incident laser power was 4.2 W, spot diameter was 5.3 mm, and treatment time was 60 s. The optimal laser wavelength tested for creation of deep subsurface thermal lesions during contact cooling of tissues was 1075 nm, which preserved a surface layer of ~ 2 mm. The Ytterbium fiber laser provides a compact, low maintenance, and high power alternative laser source to the Neodymium:YAG laser for noninvasive thermal therapy.

  16. Laser damage threshold measurements of microstructure-based high reflectors

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.

    2008-10-01

    In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.

  17. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang

    2011-05-01

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.

  18. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    NASA Astrophysics Data System (ADS)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  19. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface

    NASA Astrophysics Data System (ADS)

    Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail

    2018-06-01

    Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.

  20. Nanoparticles based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Sharma, Navneet K.

    2018-05-01

    Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.

  1. Effect of oxygen plasma on nanomechanical silicon nitride resonators

    NASA Astrophysics Data System (ADS)

    Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan

    2017-08-01

    Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.

  2. Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-κ oxide/tungsten nitride gate stacks

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.

    2007-05-01

    Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.

  3. Effect of the seed layer on the Y0.5Gd0.5Ba2Cu3O7-σ film fabricated by PLD

    NASA Astrophysics Data System (ADS)

    Yao, Yanjie; Wang, Wei; Liu, Linfei; Lu, Saidan; Wu, Xiang; Zheng, Tong; Liu, Shunfan; Li, Yijie

    2018-06-01

    The surface morphology and internal residual stress have influence on the critical current density (Jc) of REBa2Cu3O7-σ (REBCO) coated conductor. In order to modulate them, a series of Y0.5Gd0.5Ba2Cu3O7-σ (YGBCO) films were prepared by pulsed laser deposition (PLD) through introducing a seed layer in this paper. The thicknesses of seed layer changes from about 2 nm to 30 nm. For comparison, a standard sample without seed layer was fabricated at the same deposition condition. The surface morphology was illustrated by Scanning electron microscopy (SEM). The surface roughness was scanned by Atomic force microscopy (AFM). The microstructure and internal strain were measured by X-ray Diffraction (XRD). DC four-probe method was used to measure the critical current of the samples at 77 K and self-field. As a result, all samples have high Jc of about 4 MA/cm2, while the self-field Jc of the YGBCO films can be promoted by the seed layer. The results of our research work are as follows. First of all, seed layer makes the deposition of the YGBCO layer much easier to control. By this way, we can decrease the surface roughness of the samples. Furthermore, the internal residual stress of the YGBCO films with seed layer decrease. Finally, the best thickness of the seed layer was found by summarizing and analyzing the conditions of seed layer.

  4. The threshold effects of Nd and Ho: YAG laser-induced surface modification on demineralization of dentin surfaces.

    PubMed

    Kinney, J H; Haupt, D L; Balooch, M; White, J M; Bell, W L; Marshall, S J; Marshall, G W

    1996-06-01

    Laser irradiation alters the structure of dentin and produces surface layers that give the appearance of being more enamel-like. The laser-modified surface may be more resistant to demineralization; hence, many investigators are proposing continued development of the laser as a possible preventive treatment for caries. The purpose of this study was to explore the morphological changes that occur in dentin when treated at threshold illuminance with two clinically interesting laser wavelengths, and to evaluate the effectiveness of the laser-treated surface at resisting demineralization in an acid-gel solution. The Nd: YAG laser (wavelength 1060 nm) produced significant recrystallization and grain growth of the apatite, without the formation of second phases such as beta-tricalcium phosphate. This recrystallized surface layer showed resistance to demineralization; however, the layer did not provide protection of the underlying dentin from demineralization because of cracks and macroscopic voids that allowed for penetration of the demineralizing gel. The Ho: YAG laser-treated surface (wavelength 2100 nm) did not show significant evidence of recrystallization and grain growth, and only a trace amount of an acid-resistant layer was observed with demineralization. It is speculated that the Ho:YAG laser is coupling with absorbed water, and that the heat transfer from the water to the mineral phase is inefficient. For the purposes of creating a demineralization-resistant layer, threshold illuminance with both Nd: YAG and Ho: YAG was ineffective.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL maskmore » blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.« less

  6. Applications of optical coherence tomography in the non-contact assessment of automotive paints

    NASA Astrophysics Data System (ADS)

    Lawman, Samuel; Zhang, Jinke; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun

    2017-06-01

    The multiple layer paint systems on modern cars serve two end purposes, they firstly protect against corrosion and secondly give the desired visual appearance. To ensure consistent corrosion protection and appearance, suitable Quality Assurance (QA) measures on the final product are required. Various (layer thickness and consistency, layer composition, flake statistics, surface profile and layer dryness) parameters are of importance, each with specific techniques that can measure one or some of them but no technique that can measure all or most of them. Optical Coherence Tomography (OCT) is a 3D imaging technique with micrometre resolution. Since 2016, OCT measurements of layer thickness and consistency, layer composition fingerprint and flake statistics have been reported. In this paper we demonstrate two more novel applications of OCT to automotive paints. Firstly, we use OCT to quantify unwanted surface texture, which leads to an "orange peel" visual defect. This was done by measuring the surface profiles of automotive paints, with an unoptimised precision of 37 nm over lateral range of 7 mm, to quantify texture of less than 500 nm. Secondly, we demonstrate that OCT can measure how dry a coating layer is by measuring how fast it is still shrinking quasiinstantaneously, using Fourier phase sensitivity.

  7. Ultrasound assisted deposition of silica coatings on titanium

    NASA Astrophysics Data System (ADS)

    Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür

    2012-10-01

    We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.

  8. Colloidal lithography with electrochemical nickel deposition as a unique method for improved silver decorated nanocavities in SERS applications

    NASA Astrophysics Data System (ADS)

    Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol

    2017-11-01

    Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.

  9. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Yang; Zhang, Guojing; Gullikson, Eric M.; Goldberg, Ken A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  10. Buried oxide and defects in oxygen implanted Si monitored by positron annihilation

    NASA Astrophysics Data System (ADS)

    Kruseman, A. C.; van Veen, A.; Schut, H.; Mijnarends, P. E.; Fujinami, M.

    2001-08-01

    One- and two-detector Doppler broadening measurements performed on low (˜1014 to 1015O+/cm2) and high dose (˜1017 to 1018O+/cm2) oxygen-irradiated Si using variable-energy slow positrons are analyzed in terms of S and W parameters. After annealing the low-dose samples at 800 °C, large VxOy complexes are formed at depths around 400 nm. These complexes produce a clear-cut signature when the ratio of S to that of defect-free bulk Si is plotted. Similar behavior is found for samples irradiated with 2 and 4×1017O+/cm2 and annealed at 1000 °C. After irradiation with 1.7×1018O+/cm2 and anneal at 1350 °C a 170 nm thick almost-bulk-quality Si surface layer is formed on top of a 430 nm thick buried oxide layer. This method of preparation is called separation by implantation of oxygen. S-W measurements show that the surface layer contains electrically inactive VxOy complexes not seen by electron microscopy. A method is presented to decompose the Doppler broadening line shape into contributions of the bulk, surface, and defect.

  11. Simulation of the ocean's spectral radiant thermal source and boundary conditions

    NASA Astrophysics Data System (ADS)

    Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra

    2013-05-01

    This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.

  12. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    NASA Astrophysics Data System (ADS)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  13. MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain

    NASA Astrophysics Data System (ADS)

    Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar

    2017-04-01

    A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF2) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree-1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree-1.

  14. MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain.

    PubMed

    Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar

    2017-04-12

    A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF 2 ) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree -1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree -1 .

  15. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less

  16. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  17. The efficacy of selective calculus ablation at 400 nm: comparison to conventional calculus removal methods

    NASA Astrophysics Data System (ADS)

    Schoenly, Joshua E.; Seka, Wolf; Romanos, Georgios; Rechmann, Peter

    A desired outcome of scaling and root planing is the complete removal of calculus and infected root tissue and preservation of healthy cementum for rapid healing of periodontal tissues. Conventional periodontal treatments for calculus removal, such as hand instrument scaling and ultrasonic scaling, often deeply scrape the surface of the underlying hard tissue and may leave behind a smear layer. Pulsed lasers emitting at violet wavelengths (specifically, 380 to 400 nm) are a potential alternative treatment since they can selectively ablate dental calculus without ablating pristine hard tissue (i.e., enamel, cementum, and dentin). In this study, light and scanning electron microscopy are used to compare and contrast the efficacy of in vitro calculus removal for several conventional periodontal treatments (hand instruments, ultrasonic scaler, and Er:YAG laser) to calculus removal with a frequency-doubled Ti:sapphire (λ = 400 nm). After calculus removal, enamel and cementum surfaces are investigated for calculus debris and damage to the underlying hard tissue surface. Compared to the smear layer, grooves, and unintentional hard tissue removal typically found using these conventional treatments, calculus removal using the 400-nm laser is complete and selective without any removal of pristine dental hard tissue. Based on these results, selective ablation from the 400-nm laser appears to produce a root surface that would be more suitable for successful healing of periodontal tissues.

  18. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-01

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  19. [Characterization of Chromophoric dissolved organic matter (CDOM) in Zhoushan fishery using excitation-emission matrix spectroscopy (EEMs) and parallel factor analysis (PARAFAC)].

    PubMed

    Zhou, Qian-qian; Su, Rong-guo; Bai, Ying; Zhang, Chuan-song; Shi, Xiao-yong

    2015-01-01

    The composition, distribution characteristics and sources of chromophoric dissolved organic matter(CDOM) in Zhoushan Fishery in spring were evaluated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEMs-PARAFAC). Three humic-like components [C1 (330/420 nm)], C2 [(290) 365/440 nm] and C3 [(260) 370/490 nm)] and two protein-like components [C4(285/340 nm) and C5 (270/310 nm)] were identified by EEMs-PARAFAC. The horizontal distribution patterns of the five components were almost the same with only slight differences, showing decreasing trends with increasing distance from shore. In the surface and middle layers, the high value areas were located in the north of Hangzhou Bay estuary and the outlet of Xiazhimen channel, and the former's was higher in the surface layer while the latter's was higher in the middle layer. In the bottom layer, CDOM decreased gradiently from the inshore to offshore, with higher CDOM near Zhoushan Island. The distributions of fluorescence components showed an opposite trend with salinity, and no significant linear relationship with Chl-a concentration was found, which indicated that CDOM in the surface and middle layers were dominated by terrestrial input and human activities of Zhoushan Island and that of the bottom layer was attribute to human activities of Zhoushan Island. The vertical distribution of five fluorescent components along 30.5 degrees N transect showed a decreasing trend from the surface and middle layers to bottom layer with high values in inshore and offshore areas, which were correlated with the lower salinity and higher Chl-a concentration, respectively. On this transect, CDOM was mainly affected by Yangtze River input in coastal area but by bioactivities in offshore waters. Along the 30 degrees N transect, the vertical distribution patterns of CDOM were similar to those of 30.5 degrees N transect but there was a high value area in the bottom layer near the shore, attributing to the CDOM release from the marine sediment pore water to the water body because of physical force role like tidal, the underlying upwelling and so on. A strong correlation occurred between C1 and C3, C4, indicating that they had similar sources; a weak correlation was found between C1 and C2, C5, reflecting some differences among their sources. CDOM in Zhoushan Fishery in spring had low humification index (HIX) values, which reflected a low degree of humification, poor stability and a short resident time in the environment. For biological index (BIX), its higher values appeared in the offshore waters and the lower values occurred in the inshore area, reflecting a greater influence of human and biological activities, respectively.

  20. S-Layer Protein Self-Assembly

    PubMed Central

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.

    2013-01-01

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479

  1. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.

    PubMed

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-10-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se 2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF 2 coated with a thin atomic layer deposited Al 2 O 3 layer, or direct current magnetron sputtering of Al 2 O 3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al 2 O 3 /CIGS rear interface. (MgF 2 /)Al 2 O 3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.

  2. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells

    PubMed Central

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-01-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells. PMID:26300619

  3. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    PubMed

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.

  4. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    NASA Astrophysics Data System (ADS)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  5. Atomic-order thermal nitridation of group IV semiconductors for ultra-large-scale integration

    NASA Astrophysics Data System (ADS)

    Murota, Junichi; Le Thanh, Vinh

    2015-03-01

    One of the main requirements for ultra-large-scale integration (ULSI) is atomic-order control of process technology. Our concept of atomically controlled processing for group IV semiconductors is based on atomic-order surface reaction control in Si-based CVD epitaxial growth. On the atomic-order surface nitridation of a few nm-thick Ge/about 4 nm-thick Si0.5Ge0.5/Si(100) by NH3, it is found that N atoms diffuse through nm-order thick Ge layer into Si0.5Ge0.5/Si(100) substrate and form Si nitride, even at 500 °C. By subsequent H2 heat treatment, although N atomic amount in Ge layer is reduced drastically, the reduction of the Si nitride is slight. It is suggested that N diffusion in Ge layer is suppressed by the formation of Si nitride and that Ge/atomic-order N layer/Si1-xGex/Si (100) heterostructure is formed. These results demonstrate the capability of CVD technology for atomically controlled nitridation of group IV semiconductors for ultra-large-scale integration. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  6. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayari, Taha; Li, Xin; Voss, Paul L.

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure tomore » be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.« less

  7. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Msmore » change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.« less

  8. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, I., E-mail: ia31@msstate.edu

    2016-10-15

    Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate whilemore » no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.« less

  9. Pigments, size and distribution of Synechococcus spp. in the Black Sea

    NASA Astrophysics Data System (ADS)

    Uysal, Zahit

    2000-03-01

    Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).

  10. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films

    NASA Astrophysics Data System (ADS)

    Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin

    2016-11-01

    In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).

  11. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    NASA Astrophysics Data System (ADS)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  12. Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

    PubMed Central

    Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo

    2015-01-01

    We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.

  13. Numerical study on refractive index sensor based on hybrid-plasmonic mode

    NASA Astrophysics Data System (ADS)

    Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho

    2017-04-01

    We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.

  14. Role of the endothelial surface layer in neutrophil recruitment.

    PubMed

    Marki, Alex; Esko, Jeffrey D; Pries, Axel R; Ley, Klaus

    2015-10-01

    Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed. © Society for Leukocyte Biology.

  15. Role of the endothelial surface layer in neutrophil recruitment

    PubMed Central

    Marki, Alex; Esko, Jeffrey D.; Pries, Axel R.; Ley, Klaus

    2015-01-01

    Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed. PMID:25979432

  16. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  17. Surface plasmon-assisted microscope.

    PubMed

    Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal; Joshi, Chaitanya R; Borgmann, Kathleen; Ghorpade, Anuja; Gryczynski, Ignacy

    2018-06-01

    Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Indium-free organic thin-film solar cells using a plasmonic electrode

    NASA Astrophysics Data System (ADS)

    Takatori, Kentaro; Nishino, Takayuki; Okamoto, Takayuki; Takei, Hiroyuki; Ishibashi, Koji; Micheletto, Ruggero

    2016-05-01

    We propose a new kind of organic solar cell (OSC) that substitutes the standard indium tin oxide (ITO) electrode with a silver layer with randomly arranged circular nanoholes (plasmonic electrode). The quasi-random structure in the silver layer efficiently converts wideband incident light into surface plasmon polaritons propagating along the surface of the silver film. In this way, the converted surface plasmon polaritons enhance light absorption in the active layer. We describe in detail the fabrication process we used and we give a thorough report of the resulting optical characteristics and performances. Although the transmittance of the plasmonic electrode is approximately one-third of that of the ITO electrodes, the power conversion efficiency of the OSCs with our plasmonic electrode is comparable to that of conventional inverted solar cells using ITO electrodes. Moreover, the obtained incident photon to current efficiency was better than that of the inverted solar cells in the wavelength regions around 400 nm and over 620 nm.

  19. Improved DC and RF performance of InAlAs/InGaAs InP based HEMTs using ultra-thin 15 nm ALD-Al2O3 surface passivation

    NASA Astrophysics Data System (ADS)

    Asif, Muhammad; Chen, Chen; Peng, Ding; Xi, Wang; Zhi, Jin

    2018-04-01

    Owing to the great influence of surface passivation on DC and RF performance of InP-based HEMTs, the DC and RF performance of InAlAs/InGaAs InP HEMTs were studied before and after passivation, using an ultra-thin 15 nm atomic layer deposition Al2O3 layer. Increase in Cgs and Cgd was significantly limited by scaling the thickness of the Al2O3 layer. For verification, an analytical small-signal equivalent circuit model was developed. A significant increase in maximum transconductance (gm) up to 1150 mS/mm, drain current (IDS) up to 820 mA/mm and fmax up to 369.7 GHz was observed, after passivation. Good agreement was obtained between the measured and the simulated results. This shows that the RF performance of InP-based HEMTs can be improved by using an ultra-thin ALD-Al2O3 surface passivation.

  20. Laser-induced periodic surface structures of thin, complex multi-component films

    NASA Astrophysics Data System (ADS)

    Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian

    2016-04-01

    Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.

  1. Effect of TiO 2 particle size and layer thickness on mesoscopic perovskite solar cells

    DOE PAGES

    Lee, Dong Geon; Kim, Min-cheol; Kim, Byeong Jo; ...

    2017-11-16

    Mesoporous TiO 2 (mp-TiO 2) layers are commonly used as electron transport layers in perovskite solar cells, which help to extract electrons from the perovskite light-absorbing layer and transport them to the electrodes. We investigated the effects of the layer thickness of mp-TiO 2 and particle size of TiO 2 on photovoltaic properties, in terms of the surface area of the mp-layer and the interfacial areas of the TiO 2 nanoparticles in the mp-layer. Various mp-TiO 2 layers with thicknesses of 150, 250, and 400 nm and particle sizes of 25 nm and 41 nm were prepared to compare themore » photovoltaic properties of such layer-containing perovskite solar cells. Time-resolved photoluminescence decay and impedance studies showed that interfacial resistance as well as perovskite-to-TiO 2 charge injection are important factors affecting photovoltaic performance. The deterioration of the photovoltaic parameters with increasing TiO 2/TiO 2 interfacial area also confirms that the interfacial series resistance that arises from these connections should be reduced to enhance the performance of mesoscopic perovskite solar cells.« less

  2. Effect of TiO 2 particle size and layer thickness on mesoscopic perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong Geon; Kim, Min-cheol; Kim, Byeong Jo

    Mesoporous TiO 2 (mp-TiO 2) layers are commonly used as electron transport layers in perovskite solar cells, which help to extract electrons from the perovskite light-absorbing layer and transport them to the electrodes. We investigated the effects of the layer thickness of mp-TiO 2 and particle size of TiO 2 on photovoltaic properties, in terms of the surface area of the mp-layer and the interfacial areas of the TiO 2 nanoparticles in the mp-layer. Various mp-TiO 2 layers with thicknesses of 150, 250, and 400 nm and particle sizes of 25 nm and 41 nm were prepared to compare themore » photovoltaic properties of such layer-containing perovskite solar cells. Time-resolved photoluminescence decay and impedance studies showed that interfacial resistance as well as perovskite-to-TiO 2 charge injection are important factors affecting photovoltaic performance. The deterioration of the photovoltaic parameters with increasing TiO 2/TiO 2 interfacial area also confirms that the interfacial series resistance that arises from these connections should be reduced to enhance the performance of mesoscopic perovskite solar cells.« less

  3. Nanoscopy reveals surface-metallic black phosphorus

    DOE PAGES

    Abate, Yohannes; Gamage, Sampath; Li, Zhen; ...

    2016-10-21

    Black phosphorus (BP) is an emerging two-dimensional material with intriguing physical properties. It is highly anisotropic and highly tunable by means of both the number of monolayers and surface doping. Here, we experimentally investigate and theoretically interpret the near-field properties of a-few-atomic-monolayer nanoflakes of BP. We discover near-field patterns of bright outside fringes and a high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared frequencies <1176 cm -1. We conclude that these fringes are caused by the formation of a highly polarizable layer at the BP surface. This layer has a thickness of ~1 nmmore » and exhibits plasmonic behavior. We estimate that it contains free carriers in a concentration of n≈1.1 × 10 20 cm -3. Surface plasmonic behavior is observed for 10–40 nm BP thicknesses but absent for a 4-nm BP thickness. This discovery opens up a new field of research and potential applications in nanoelectronics, plasmonics and optoelectronics.« less

  4. Study on charge carrier recombination zone with ultrathin rubrene layer as probe

    NASA Astrophysics Data System (ADS)

    Wen, Wen; Yu, Jungsheng; Li, Yi; Li, Lu; Jiang, Yadong

    2009-05-01

    The characteristic of charge carrier recombination zone in N,N'-bis-(1-naphthyl)-N,N'-biphenyl-1,1'-biphenyl-4,4'-diamine (NPB) based OLEDs is studied using an ultrathin 5,6,11,12-tetraphenylnaphthacene (rubrene) as a probe. By adjusting the rubrene thickness and location in NPB light-emitting layer, the luminescent spectra and electrical properties of the devices are investigated. The results show that when the thickness ranges from 0.2 to 0.8 nm, the surface morphology of rubrene exists as the discontinuous island-like state locating on the surface of NPB film and seldom affect the electrical characteristics. While the location of rubrene shifted from the interface of NPB/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) to NPB side, the maximum exciton concentration is found within 2 nm away from the interface, which is the main charge carrier recombination zone. With an optimized structure of indium-tin-oxide (ITO)/NPB (40nm)/rubrene (0.3nm)/NPB (7nm)/BCP (30nm)/Mg:Ag, the device exhibits a turn on voltage as low as 3 V and stable white light. The peaks of EL spectra are located at 431 and 555 nm corresponding to the Commissions Internationale De L'Eclairage (CIE) coordinates of (0.32, 0.32), which are relatively stable under the bias voltage from 5 to 15 V. A maximum luminance of 5630 cd/m2 and a maximum power efficiency of 0.6 lm/W is achieved. The balanced spectra are attributed to the stable confining of charge carriers and exciton by the thin emitting layers.

  5. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  6. Microstructural characterization of Ti-6Al-4V metal chips by focused ion beam (FIB) and transmission electron microscopy (TEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Judy; Dong, Lei; Howe, Jane Y

    2011-01-01

    The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less

  7. Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation

    NASA Astrophysics Data System (ADS)

    Ghica, Corneliu; Nistor, Leona Cristina; Teodorescu, Valentin Serban; Maraloiu, Adrian; Vizireanu, Sorin; Scarisoreanu, Nae Doinel; Dinescu, Maria

    2011-03-01

    We have studied by transmission electron microscopy the microstructural effects induced by pulsed laser annealing in comparison with thermal treatments of RF plasma hydrogenated Si wafers aiming for further application in the smart-cut procedure. While thermal annealing mainly produces a slight decrease of the density of plasma-induced planar defects and an increase of the size and number of plasma-induced nanocavities in the Si matrix, pulsed laser annealing of RF plasma hydrogenated Si wafers with a 355 nm wavelength radiation results in both the healing of defects adjacent to the wafer surface and the formation of a well defined layer of nanometric cavities at a depth of 25-50 nm. In this way, a controlled fracture of single crystal layers of Si thinner than 50 nm is favored.

  8. Defect-driven flexochemical coupling in thin ferroelectric films

    NASA Astrophysics Data System (ADS)

    Eliseev, Eugene A.; Vorotiahin, Ivan S.; Fomichov, Yevhen M.; Glinchuk, Maya D.; Kalinin, Sergei V.; Genenko, Yuri A.; Morozovska, Anna N.

    2018-01-01

    Using the Landau-Ginzburg-Devonshire theory, we considered the impact of the flexoelectrochemical coupling on the size effects in polar properties and phase transitions of thin ferroelectric films with a layer of elastic defects. We investigated a typical case, when defects fill a thin layer below the top film surface with a constant concentration creating an additional gradient of elastic fields. The defective surface of the film is not covered with an electrode, but instead with an ultrathin layer of ambient screening charges, characterized by a surface screening length. Obtained results revealed an unexpectedly strong effect of the joint action of Vegard stresses and flexoelectric effect (shortly flexochemical coupling) on the ferroelectric transition temperature, distribution of the spontaneous polarization and elastic fields, domain wall structure and period in thin PbTi O3 films containing a layer of elastic defects. A nontrivial result is the persistence of ferroelectricity at film thicknesses below 4 nm, temperatures lower than 350 K, and relatively high surface screening length (˜0.1 nm ) . The origin of this phenomenon is the flexoelectric coupling leading to the rebuilding of the domain structure in the film (namely the cross-over from c-domain stripes to a-type closure domains) when its thickness decreases below 4 nm. The ferroelectricity persistence is facilitated by negative Vegard effect. For positive Vegard effect, thicker films exhibit the appearance of pronounced maxima on the thickness dependence of the transition temperature, whose position and height can be controlled by the defect type and concentration. The revealed features may have important implications for miniaturization of ferroelectric-based devices.

  9. Smoke over haze: Aircraft observations of chemical and optical properties and the effects on heating rates and stability

    NASA Astrophysics Data System (ADS)

    Taubman, Brett F.; Marufu, Lackson T.; Vant-Hull, Brian L.; Piety, Charles A.; Doddridge, Bruce G.; Dickerson, Russell R.; Li, Zhanqing

    2004-01-01

    Airborne observations made on 8 July 2002 over five locations in Virginia and Maryland revealed the presence of two discrete layers of air pollution, one of a smoke plume between ˜2 and 3 km above mean sea level advected from Quebec forest fires and another, underlying plume from fossil fuel combustion. Within the smoke layer, large increases were observed in submicrometer particle numbers, scattering, and absorption as well as ozone (O3) and CO (but not SO2) mixing ratios. The single-scattering albedos (ω0) in the layer between ˜2 and 3 km (mean value at 550 nm = 0.93 ± 0.02) were consistently smaller than those below (mean value at 550 nm = 0.95 ± 0.01). Aerosol optical depth in the lower 3 km of the atmosphere was determined at each of the five locations, and the value at 550 nm varied between 0.42 ± 0.06 and 1.53 ± 0.21. Calculations of clear-sky aerosol direct radiative forcing by the smoke plume using an atmospheric radiative transfer code indicated that the forcing at the top of the atmosphere was small relative to the forcing at the surface. Thus atmospheric absorption of solar radiation was nearly equal to the attenuation at the surface. The net effect was to cool the surface and heat the air aloft. A morning subsidence inversion positioned the smoke in a dense enough layer above the planetary boundary layer that solar heating of the layer maintained the temperature inversion through the afternoon. This created a positive feedback loop that prevented vertical mixing and dilution of the smoke plume, thereby increasing the regional radiative impact.

  10. Hollow Rodlike MgF2 with an Ultralow Refractive Index for the Preparation of Multifunctional Antireflective Coatings.

    PubMed

    Bao, Lei; Ji, Zihan; Wang, Hongning; Chen, Ruoyu

    2017-06-27

    Antireflective coatings with superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength have important practical value. In this research, hollow nanorod-like MgF 2 sols with different void volumes were prepared by a template-free solvothermal method to further obtain hollow nanorod-like MgF 2 crystals with an ultralow refractive index of 1.14. Besides, a MgF 2 coating with an adjustable refractive index of 1.10-1.35 was also prepared by the template-free solvothermal method. Then through the combination of base/acid two-step-catalyzed TEOS and hydroxyl modification on the surface of nanosilica spheres, the SiO 2 coating with good mechanical strength, a flat surface, and a refractive index of 1.30-1.45 was obtained. Double-layer broadband antireflective coatings with an average transmittance of 99.6% at 400-1400 nm were designed using the relevant optical theory. After the coating thickness was optimized by the dip-coating method, the double-layer antireflective coatings, whose parameters were consistent with those designed by the theory, were obtained. The bottom layer was a SiO 2 coating with a refractive index of 1.34 and a thickness of 155 nm, and the top layer was a hollow rodlike MgF 2 coating with a refractive index of 1.10 and a thickness of 165 nm. The average transmittance of the obtained MgF 2 -SiO 2 antireflective coatings was 99.1% at 400-1400 nm, which was close to the theoretical value. The hydrophobic angle of the coating surface reached 119° at first, and the angle further reached 152° after conducting surface modification by PFOTES. In addition, because the porosity of the coating surface was only 10.7%, the pencil hardness of the coating surface was 5 H and the critical load Lc was 27.05 N. In summary, the obtained antireflective coatings possessed superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength.

  11. Cross-Sectional Imaging of Boundary Lubrication Layer Formed by Fatty Acid by Means of Frequency-Modulation Atomic Force Microscopy.

    PubMed

    Hirayama, Tomoko; Kawamura, Ryota; Fujino, Keita; Matsuoka, Takashi; Komiya, Hiroshi; Onishi, Hiroshi

    2017-10-10

    To observe in situ the adsorption of fatty acid onto metal surfaces, cross-sectional images of the adsorption layer were acquired by frequency-modulation atomic force microscopy (FM-AFM). Hexadecane and palmitic acid were used as the base oil and typical fatty acid, respectively. A Cu-coated silicon wafer was prepared as the target substrate. The solvation structure formed by hexadecane molecules at the interface between the Cu substrate and the hexadecane was observed, and the layer pitch was found to be about 0.6 nm, which corresponds to the height of hexadecane molecules. This demonstrates that hexadecane molecules physically adsorbed onto the surface due to van der Waals forces with lying orientation because hexadecane is a nonpolar hydrocarbon. When hexadecane with palmitic acid was put on the Cu substrate instead of pure hexadecane, an adsorption layer of palmitic acid was observed at the interface. The layer pitch was about 2.5-2.8 nm, which matches the chain length of palmitic acid molecules well. This indicates that the original adsorption layer was monolayer or single bilayer in the local area. In addition, a cross-sectional image captured 1 h after observation started to reveal that the adsorbed additive layer gradually grew up to be thicker than about 20 nm due to an external stimulus, such as cantilever oscillation. This is the first report of in situ observation of an adsorbed layer by FM-AFM in the tribology field and demonstrates that FM-AFM is useful for clarifying the actual boundary lubrication mechanism.

  12. Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; da Silva, Arlindo; Colarco, Peter; Castellanos, Patricia; Korenskiy, Mikhail; Hu, Qiaoyun; Whiteman, David N.; Pérez-Ramírez, Daniel; Augustin, Patrick; Fourmentin, Marc; Kolgotin, Alexei

    2018-02-01

    Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

  13. Fundamental studies of glucose oxidase deposition on a Pt electrode.

    PubMed

    Matsumoto, Norio; Chen, Xiaohong; Wilson, George S

    2002-01-15

    The direct electrodeposition of glucose oxidase (EC 1.1.3.4) on a platinum electrode was investigated as a means for controlled immobilization. The presence of a nonionic detergent, Triton X-100, was found essential to produce a multilayered deposit. Moreover, to work properly, the detergent must be present above its critical micelle concentration. Under these conditions, a deposit of approximately 50 enzyme layers (480 nm), with surface uniformity of +/-20 nm, was verified using an electrochemical quartz crystal microbalance and by atomic force microscopy. In the absence of detergent, a layer of 25 nm is formed. Contrary to most previous claims, the deposition, which is potential dependent but optimal at 1.3 V versus AgCl/Ag electrode, is not electrophoretically driven, but is instead controlled by a lowering of the pH at the electrode surface due to concomitant oxygen evolution.

  14. Extracting and focusing of surface plasmon polaritons inside finite asymmetric metal/insulator/metal structure at apex of optical fiber by subwavelength holes

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2013-09-01

    We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.

  15. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors

    PubMed Central

    Khosroabadi, Akram A.; Gangopadhyay, Palash; Hernandez, Steven; Kim, Kyungjo; Peyghambarian, Nasser; Norwood, Robert A.

    2015-01-01

    We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO) structures, with feature sizes below 100 nm and a controlled surface architecture. The optical and electrical properties of these core shell electrodes, including the surface plasmon frequency, can be tuned by suitably changing the order and thickness of the dielectric layers. By varying the dimensions of the nanopillars, the surface plasmon wavelength of the nanopillar Ag can be tuned from 650 to 690 nm. Adding layers of ITO to the structure further shifts the resonance wavelength toward the IR region and, depending on the sequence and thickness of the layers within the structure, we show that such structures can be applied in sensing devices including enhancing silicon as a photodetection material. PMID:28793489

  16. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  17. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  18. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    PubMed

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  19. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination.

    PubMed

    Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian

    2016-09-01

    Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m -2 h -1 bar -1 and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improved performance of organic light-emitting diode with vanadium pentoxide layer on the FTO surface

    NASA Astrophysics Data System (ADS)

    Saikia, D.; Sarma, R.

    2017-06-01

    Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED). With 12 nm optimal thickness of V2O5, the luminance efficiency is increased by 1.66 times compared to the single FTO-based OLED. The improvement of current efficiency implies that there is a better charge injection and better controlling of hole current. To investigate the performance of OLED by the buffer layer, V2O5 films of different thicknesses were deposited on the FTO anode and their J- V and L- V characteristics were studied. Further analysis was carried out by measuring sheet resistance, optical transmittance and surface morphology with the FE-SEM images. This result indicates that the V2O5 (12 nm) buffer layer is a good choice for increasing the efficiency of FTO-based OLED devices within the tunnelling region. Here the maximum value of current efficiency is found to be 2.83 cd / A.

  1. Alkali-resistant low-temperature atomic-layer-deposited oxides for optical fiber sensor overlays

    NASA Astrophysics Data System (ADS)

    Kosiel, K.; Dominik, M.; Ściślewska, I.; Kalisz, M.; Guziewicz, M.; Gołaszewska, K.; Niedziółka-Jonsson, J.; Bock, W. J.; Śmietana, M.

    2018-04-01

    This paper presents an investigation of properties of selected metallic oxides deposited at a low temperature (100 °C) by atomic layer deposition (ALD) technique, relating to their applicability as thin overlays for optical fiber sensors resistant in alkaline environments. Hafnium oxide (Hf x O y with y/x approx. 2.70), tantalum oxide (Ta x O y with y/x approx. 2.75) and zirconium oxide (Zr x O y with y/x approx. 2.07), which deposition was based, respectively, on tetrakis(ethylmethyl)hafnium, tantalum pentachloride and tetrakis(ethylmethyl)zirconium with deionized water, were tested as thin layers on planar Si (100) and glass substrates. Growth per cycle (GPC) in the ALD processes was 0.133-0.150 nm/cycle. Run-to-run GPC reproducibility of the ALD processes was best for Hf x O y (0.145 ± 0.001 nm/cycle) and the poorest for Ta x O y (0.133 ± 0.003 nm/cycle). Refractive indices n of the layers were 2.00-2.10 (at the wavelength λ = 632 nm), with negligible k value (at λ for 240-930 nm). The oxides examined by x-ray diffractometry proved to be amorphous, with only small addition of crystalline phases for the Zr x O y . The surfaces of the oxides had grainy but smooth topographies with root-mean square roughness ˜0.5 nm (at 10 × 10 μm2 area) according to atomic force microscopy. Ellipsometric measurements, by contrast, suggest rougher surfaces for the Zr x O y layers. The surfaces were also slightly rougher on the glass-based samples than on the Si-based ones. Nanohardness and Young modules were 4.90-8.64 GPa and 83.7-104.4 GPa, respectively. The tests of scratch resistance revealed better tribological properties for the Hf x O y and the Ta x O y than for the Zr x O y . The surfaces were hydrophilic, with wetting angles of 52.5°-62.9°. The planar oxides on Si, being resistive even to concentrated alkali (pH 14), proved to be significantly more alkali-resistive than Al2O3. The Ta x O y overlay was deposited on long-period grating sensor induced in optical fiber. Thanks to such an overlay the sensor proved to be long-lasting resistant when exposed to alkaline environment with a pH 9. Thereby, it also proved that it has a potential to be repeatedly reused as a regenerable optical fiber biosensor.

  2. Evidence of a Transition Layer between the Free Surface and the Bulk.

    PubMed

    Ogieglo, Wojciech; Tempelman, Kristianne; Napolitano, Simone; Benes, Nieck E

    2018-03-15

    The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.

  3. Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium

    PubMed Central

    Beveridge, T. J.; Murray, R. G. E.

    1974-01-01

    Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219

  4. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation

    PubMed Central

    Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben

    2010-01-01

    In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592

  5. The two-dimensional hybrid surface plasma micro-cavity

    NASA Astrophysics Data System (ADS)

    Kai, Tong; Mei-yu, Wang; Fu-cheng, Wang; Jia, Guo

    2018-07-01

    A hybrid surface plasma micro-cavity structure with a defect cavity is formed based on the two-dimensional surface plasmon resonance photonic crystal waveguide structure. A cell defect is introduced in the centre of the photonic crystal layer to build the hybrid surface plasma micro-cavity structure. This work is numerical based on the finite-difference time-domain method. The photon energy is confined to the micro-cavity and the photon energy is strongest at the interface between the insulating layer and the metal layer. The micro-cavity structure has a very small mode volume of sub-wavelength scale in the 1550 nm communication band. The value of Q/V is up to 7132.08 λ/n-3.

  6. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    NASA Astrophysics Data System (ADS)

    Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.

  7. Solid oxide fuel cell cathode with oxygen-reducing layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous filmmore » or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.« less

  8. Clustering of gold particles in Au implanted CrN thin films: The effect on the SPR peak position

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Schmidt, E.; Mitrić, M.; Bibić, N.; Rakočević, Z.; Ronning, C.

    2017-12-01

    We report on the formation of gold particles in 280 nm thin polycrystalline CrN layers caused by Au+ ion implantation. The CrN layers were deposited at 150 °C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 150 keV Au+ ions to fluences of 2 × 1016 cm-2 to 4.1 × 1016 cm-2. The implanted layers were analysed by the means of Rutherford backscattering spectrometry, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry measurements. The results revealed that the Au atoms are situated in the near-surface region of the implanted CrN layers. At the fluence of 2 × 1016 cm-2 the formation of Au particles of ∼200 nm in diameter has been observed. With increasing Au ion fluence the particles coalesce into clusters with dimensions of ∼1.7 μm. The synthesized particles show a strong absorption peak associated with the excitation of surface plasmon resonances (SPR). The position of the SPR peak shifted in the range of 426.8-690.5 nm when the Au+ ion fluence was varied from 2 × 1016 cm-2 to 4.1 × 1016 cm-2. A correlation of the shift in the peak wavelength caused by the change in the particles size and clustering has been revealed, suggesting that the interaction between Au particles dominate the surface plasmon resonance effect.

  9. Femtosecond laser induced periodic surface structures on multi-layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltaos, Angela, E-mail: abeltaos@ualberta.ca; Kovačević, Aleksander G.; Matković, Aleksandar

    2014-11-28

    In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength λ of 840 nm, pulse duration τ of ∼150 fs, and a fluence F of ∼4.3–4.4 mJ/cm{sup 2}. The observed LIPSS were perpendicular tomore » the laser polarization and had dimensions of width w of ∼30–40 nm and length l of ∼0.5–1.5 μm, and spatial periods Λ of ∼70–100 nm (∼λ/8–λ/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications.« less

  10. Retention in porous layer pillar array planar separation platforms

    DOE PAGES

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; ...

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  11. Retention in porous layer pillar array planar separation platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  12. Surface passivation of InP solar cells with InAlAs layers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  13. Seasonal changes in Fe along a glaciated Greenlandic fjord.

    NASA Astrophysics Data System (ADS)

    Hopwood, Mark; Connelly, Douglas; Arendt, Kristine; Juul-Pedersen, Thomas; Stinchcombe, Mark; Meire, Lorenz; Esposito, Mario; Krishna, Ram

    2016-03-01

    Greenland's ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m), outflowing, low-salinity surface layer. Dissolved (<0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.

  14. Strain relaxation of thin Si{sub 0.6}Ge{sub 0.4} grown with low-temperature buffers by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Hansson, G. V.; Ni, W.-X.

    A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less

  15. Ultrathin phase-change coatings on metals for electrothermally tunable colors

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu

    2016-08-01

    Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

  16. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.

    2017-10-01

    Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.

  17. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe 2O 3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  18. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  19. Water and oil wettability of anodized 6016 aluminum alloy surface

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA < 10°). These results indicate that the capillary-pressure balance model, described for wettability mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA < OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  20. Fabrication and electrodynamic properties of all-carbon terahertz planar metamaterials by laser direct-write

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Lebedev, S. P.; Komandin, G. A.; Piqué, A.; Konov, V. I.

    2018-03-01

    A new approach to THz metamaterial structures is proposed and experimentally realized. It is based on metal-less conductive subwavelength structures on diamond surfaces generated by laser direct-write. 200 nm thick graphitized layers with DC conductivity of 730 Ω-1 cm-1 are formed on a chemical vapour deposited polycrystalline diamond surface after irradiation with an excimer KrF laser (τ l  =  20 ns, λ  =  248 nm). The optical properties of such layers are determined and simulated according to the Drude model. A polarizer with a graphitized subwavelength grating is fabricated and tested in the THz range (0.9-1.2 THz), and shows different transmission losses for orthogonal polarizations.

  1. Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing.

    PubMed

    Sze, Jasmine Y Y; Kumar, Shailabh; Ivanov, Aleksandar P; Oh, Sang-Hyun; Edel, Joshua B

    2015-07-21

    Nanopipettes are an attractive single-molecule tool for identification and characterisation of nucleic acids and proteins in solutions. They enable label-free analysis and reveal individual molecular properties, which are generally masked by ensemble averaging. Having control over the pore dimensions is vital to ensure that the dimensions of the molecules being probed match those of the pore for optimization of the signal to noise. Although nanopipettes are simple and easy to fabricate, challenges exist, especially when compared to more conventional solid-state analogues. For example, a sub-20 nm pore diameter can be difficult to fabricate and the batch-to-batch reproducibility is often poor. To improve on this limitation, atomic layer deposition (ALD) is used to deposit ultrathin layers of alumina (Al2O3) on the surface of the quartz nanopipettes enabling sub-nm tuning of the pore dimensions. Here, Al2O3 with a thickness of 8, 14 and 17 nm was deposited onto pipettes with a starting pore diameter of 75 ± 5 nm whilst a second batch had 5 and 8 nm Al2O3 deposited with a starting pore diameter of 25 ± 3 nm respectively. This highly conformal process coats both the inner and outer surfaces of pipettes and resulted in the fabrication of pore diameters as low as 7.5 nm. We show that Al2O3 modified pores do not interfere with the sensing ability of the nanopipettes and can be used for high signal-to-noise DNA detection. ALD provides a quick and efficient (batch processing) for fine-tuning nanopipettes for a broad range of applications including the detection of small biomolecules like RNA, aptamers and DNA-protein interactions at the single molecule level.

  2. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  3. Wide-band 'black silicon' with atomic layer deposited NbN.

    PubMed

    Isakov, Kirill; Perros, Alexander Pyymaki; Shah, Ali; Lipsanen, Harri

    2018-08-17

    Antireflection surfaces are often utilized in optical components to reduce undesired reflection and increase absorption. We report on black silicon (b-Si) with dramatically enhanced absorption over a broad wavelength range (250-2500 nm) achieved by applying a 10-15 nm conformal coating of NbN with atomic layer deposition (ALD). The improvement is especially pronounced in the near infrared (NIR) range of 1100-2500 nm where absorption is increased by >90%. A significant increase of absorption is also observed over the ultraviolet range of 200-400 nm. Preceding NbN deposition with a nanostructured ALD Al 2 O 3 (n-Al 2 O 3 ) coating to enhance the NbN texture was also examined. Such texturing further improves absorption in the NIR, especially at longer wavelengths, strong absorption up to 4-5 μm wavelengths has been attested. For comparison, double side polished silicon and sapphire coated with 10 nm thick NbN exhibited absorption of only ∼55% in the NIR range of 1100-2500 nm. The results suggest a positive correlation between the surface area of NbN coating and optical absorption. Based on the wide-band absorption, the presented NbN-coated b-Si may be an attractive candidate for use in e.g. spectroscopic systems, infrared microbolometers.

  4. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography.

    PubMed

    Stehlin, Fabrice; Bourgin, Yannick; Spangenberg, Arnaud; Jourlin, Yves; Parriaux, Olivier; Reynaud, Stéphanie; Wieder, Fernand; Soppera, Olivier

    2012-11-15

    Deep-UV lithography using high-efficiency phase mask has been developed to print 100 nm period grating on sol-gel based thin layer. High efficiency phase mask has been designed to produce a high-contrast interferogram (periodic fringes) under water immersion conditions for 244 nm laser. The demonstration has been applied to a new developed immersion-compatible sol-gel layer. A sol-gel photoresist prepared from zirconium alkoxides caped with methacrylic acids was developed to achieve 50 nm resolution in a single step exposure. The nanostructures can be thermally annealed into ZrO(2). Such route considerably simplifies the process for elaborating nanopatterned surfaces of transition metal oxides, and opens new routes for integrating materials of interest for applications in the field of photocatalysis, photovoltaic, optics, photonics or microelectronics.

  5. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment

    NASA Astrophysics Data System (ADS)

    Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik

    2015-07-01

    We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively.

  6. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  7. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  8. New approach for pattern collapse problem by increasing contact area at sub-100nm patterning

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Koo; Jung, Jae Chang; Lee, Min Suk; Lee, Sung K.; Kim, Sam Young; Hwang, Young-Sun; Bok, Cheol K.; Moon, Seung-Chan; Shin, Ki S.; Kim, Sang-Jung

    2003-06-01

    To accomplish minimizing feature size to sub 100nm, new light sources for photolithography are emerging, such as ArF(193nm), F2(157nm), and EUV(13nm). However as the pattern size decreases to sub 100nm, a new obstacle, that is pattern collapse problem, becomes most serious bottleneck to the road for the sub 100 nm lithography. The main reason for this pattern collapse problem is capillary force that is increased as the pattern size decreases. As a result there were some trials to decrease this capillary force by changing developer or rinse materials that had low surface tension. On the other hands, there were other efforts to increase adhesion between resists and sub materials (organic BARC). In this study, we will propose a novel approach to solve pattern collapse problems by increasing contact area between sub material (organic BARC) and resist pattern. The basic concept of this approach is that if nano-scale topology is made at the sub material, the contact area between sub materials and resist will be increased. The process scheme was like this. First after coating and baking of organic BARC material, the nano-scale topology (3~10nm) was made by etching at this organic BARC material. On this nano-scale topology, resist was coated and exposed. Finally after develop, the contact area between organic BARC and resist could be increased. Though nano-scale topology was made by etching technology, this 20nm topology variation induced large substrate reflectivity of 4.2% and as a result the pattern fidelity was not so good at 100nm 1:1 island pattern. So we needed a new method to improve pattern fidelity problem. This pattern fidelity problem could be solved by introducing a sacrificial BARC layer. The process scheme was like this. First organic BARC was coated of which k value was about 0.64 and then sacrificial BARC layers was coated of which k value was about 0.18 on the organic BARC. The nano-scale topology (1~4nm) was made by etching of this sacrificial BARC layer and then as the same method mentioned above, the contact area between sacrificial layer and resist could be increased. With this introduction of sacrificial layer, the substrate reflectivity of sacrificial BARC layer was decreased enormously to 0.2% though there is 20nm topology variation of sacrificial BARC layer. With this sacrificial BARC layer, we could get 100nm 1:1 L/S pattern. With conventional process, the minimum CD where no collapse occurred, was 96.5nm. By applying this sacrificial BARC layer, the minimum CD where no collapse occurred, was 65.7nm. In conclusion, with nano-scale topology and sacrificial BARC layer, we could get very small pattern that was strong to pattern collapse issue.

  9. Formation of nickel germanides from Ni layers with thickness below 10 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossa, Nathan; Chaurand, Perrine; Levard, Clément

    Nanomaterials are increasingly being used to improve the properties and functions of common building materials. A new type of self-cleaning cement incorporating TiO 2 nanomaterials (TiO 2-NMs) with photocatalytic properties is now marketed. This promising cement might provide air pollution-reducing properties but its environmental impact must be validated. During cement use and aging, an altered surface layer is formed that exhibits increased porosity. The surface layer thickness alteration and porosity increase with the cement degradation rate. The hardened cement paste leaching behavior has been fully documented, but the fate of incorporated TiO 2-NMs and their state during/after potential release ismore » currently unknown. In this study, photocatalytic cement pastes with increasing initial porosity were leached at a lab-scale to produce a range of degradation rates concerning the altered layer porosity and thickness. No dissolved Ti was released during leaching, only particulate TiO 2-NM release was detected. The extent of release from this batch test simulating accelerated worst-case scenario was limited and ranged from 18.7 ± 2.1 to 33.5 ± 5.1 mg of Ti/m 2 of cement after 168 h of leaching. TiO 2-NMs released into neutral aquatic media (simulate pH of surface water) were not associated or coated by cement minerals. The TiO 2-NM release mechanism is suspected to start from freeing of TiO 2-NMs in the altered layer pore network due to partial cement paste dissolution followed by diffusion into the bulk pore solution to the surface. The extent of TiO 2-NM release was not solely related to the cement degradation rate.« less

  11. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  12. Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers

    NASA Astrophysics Data System (ADS)

    Gobble, Kyle; Stark, Amelia; Stagon, Stephen P.

    2016-09-01

    The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.

  13. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chenglong; Xin Yunchang; Tian Xiubo

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has threemore » layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.« less

  14. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less

  15. UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.

    PubMed

    Simone, Giuseppina; Perozziello, Gerardo

    2011-03-01

    Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.

  16. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOEpatents

    Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  17. Fatigue resistance, electrochemical corrosion and biological response of Ti-15Mo with surface modified by amorphous TiO2 nanotubes layer.

    PubMed

    Campanelli, Leonardo C; Oliveira, Nilson T C; da Silva, Paulo Sergio C P; Bolfarini, Claudemiro; Palmieri, Annalisa; Cura, Francesca; Carinci, Francesco; Motheo, Artur J

    2018-03-04

    The objective of this work was a systemic evaluation of the anodizing treatment in a β-type Ti-15Mo alloy to grow a TiO 2 nanostructured layer for osseointegration improvement. The technical viability of the surface modification was assessed based on the resistance to mechanical fatigue, electrochemical corrosion, and biological response. By using an organic solution of NH 4 F in ethylene glycol, a well-organized array of 90 nm diameter nanotubes was obtained with a potential of 40 V for 6 h, while undefined nanotubes of 25 nm diameter were formed with a potential of 20 V for 1 h. Nevertheless, the production of the 90 nm diameter nanotubes was followed by micrometer pits that significantly reduced the fatigue performance. The undefined nanotubes of 25 nm diameter, besides the greater cell viability and improved osteoblastic cell differentiation in comparison to the as-polished surface, were not deleterious to the fatigue and corrosion properties. This result strengthens the necessity of an overall evaluation of the anodizing treatment, particularly the fatigue resistance, before suggesting it for the design of implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  18. Surface modification of paper on a continuous atmospheric-pressure-plasma system

    NASA Astrophysics Data System (ADS)

    Cruz-Barba, Luis Emilio

    Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.

  19. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  20. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  1. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMAmore » layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.« less

  2. Uranium passivation by C + implantation: A photoemission and secondary ion mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Felter, T. E.; Wu, K. J.; Evans, C.; Ferreira, J. L.; Siekhaus, W. J.; McLean, W.

    2006-03-01

    Implantation of 33 keV C + ions into polycrystalline U 238 with a dose of 4.3 × 10 17 cm -2 produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C + ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  3. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  4. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.

    PubMed

    Liu, Yang; Hudak, Nicholas S; Huber, Dale L; Limmer, Steven J; Sullivan, John P; Huang, Jian Yu

    2011-10-12

    Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al(2)O(3) surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al(2)O(3) layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al(2)O(3) layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium-alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al(2)O(3) onto the active materials or electrodes.

  5. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    NASA Astrophysics Data System (ADS)

    Komonov, A. I.; Prinz, V. Ya.; Seleznev, V. A.; Kokh, K. A.; Shlegel, V. N.

    2017-07-01

    Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi2Se3 and ZnWO4 layered single crystals. It was shown that the conducting surface of Bi2Se3 crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi2Se3 surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO4 crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  6. Thermal and Photochemical Reactions of NO2 on a Chromium (III) Oxide Surface

    NASA Astrophysics Data System (ADS)

    Nishino, N.; Finlayson-Pitts, B. J.

    2011-12-01

    Chromium oxide (Cr2O3) is a major component of the oxide layer on stainless steel surfaces. It is also widely used as pigment in paints and roofs and as a protective coating on various surfaces. While many studies have focused on the catalytic activity of Cr2O3 surfaces for selective catalytic reduction (SCR), less attention has been paid to its surface chemistry involving atmospherically important species such as NO2 under atmospheric conditions. In this study, we have investigated thermal and photochemical reactions of NO2 in the presence and the absence of water vapor, using a thin layer of Cr2O3 as a model for the surface of stainless steel as well as other similarly coated surfaces in the boundary layer. A 30 nm thick Cr2O3 film was deposited on a germanium attenuated total reflectance (ATR) crystal, and the changes in the surface species were monitored by Fourier Transform Infrared (FTIR) spectroscopy. Upon NO2 adsorption, nitrate (NO3-) ions appeared likely coordinated to Cr3+ ion(s). The NO3- peaks reversibly shifted when water vapor was added, suggesting that NO3- become solvated. Irradiation at 311 nm led to a decrease in NO3- ions under both dry and humid conditions. The major gas-phase species formed by the irradiation was NO under dry conditions, while NO2 was mainly formed in the presence of H2O. Possible mechanisms and the implications for heterogeneous NO2 chemistry in the boundary layer will be discussed. The results will also be compared to similar chemistry on other surfaces.

  7. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.

  8. Sub-Micrometer Epitaxial Josephson Junctions for Quantum Circuits

    DTIC Science & Technology

    2011-10-31

    that the surface morphology of the Re base-electrode is independent of furnace treatment and miscut angle. At first we used a 165 nm thick rhenium ...substrate. Using this technique, we obtain crystalline rhenium films. We find that these film are characterized by ...... 100 nm diameter hexagonal islands...energy (1.9 J /m2) than rhenium (2.2 J /m2) and acts as a wetting layer, resulting in a significantly smoother surface, as shown in figures 1 (a) and

  9. Formation of nitrile species on Ag nanostructures supported on a-Al2O3: a new corrosion route for silver exposed to the atmosphere.

    PubMed

    Peláez, R J; Espinós, J P; Afonso, C N

    2017-04-28

    The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al 2 O 3 ) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al 2 O 3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.

  10. Surface desensitization of polarimetric waveguide interferometers

    NASA Astrophysics Data System (ADS)

    Worth, Colin

    Non-specific binding of small molecules to the surface of waveguide biosensors presents a major obstacle to surface-sensing techniques that attempt to detect very low concentrations (<1 g/mm2) of large (500 nm to 3 mum) biological objects. Interferometric waveguide biosensors use the interaction of an evanescent light field outside of the guiding layer with a biological sample to detect a particular type of cell or bacteria at some distance from the sensor surface. In such experiments, binding of small proteins close to the surface can be a significant source of noise. It is possible to significantly improve the signal-to-noise ratio by varying the properties of the biosensor, in order to reduce or eliminate the biosensor's response to a thin protein layer at the waveguide surface, without significantly reducing the response to larger target particles. In many biosensing applications, specifically bound particles, such as bacteria, are much larger than non-specifically bound particles such as proteins. In addition, due to laminar flow conditions at the sensor surface, the latter smaller particles tend to accumulate on the sensor surface. By varying the waveguide parameters, it is possible to vary the sensitivity of the detector response as a function of sample distance from the detector, by changing the properties of the TE0 and TM0 guided modes. This results in a signal reduction of more than 85%, for thin (30 nm or less) layers adjacent to the waveguide surface.

  11. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    NASA Astrophysics Data System (ADS)

    Daix, N.; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Hartmann, J. M.; Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D.; Fompeyrine, J.

    2014-08-01

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In0.53Ga0.47As (InGaAs) active layer is equal to 3.5 × 109 cm-2, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm2/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000-3000 cm2/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  12. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation.

    PubMed

    Ristau, Detlev; Günster, Stefan; Bosch, Salvador; Duparré, Angela; Masetti, Enrico; Ferré-Borrull, Josep; Kiriakidis, George; Peiró, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  13. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate

    NASA Astrophysics Data System (ADS)

    Yosenick, Timothy James

    2005-11-01

    Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a <111> zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the <111> direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface suitable for the use of a cationic dispersant, polyethylenimine (PEI). Rheological properties indicate the presence of an oxalate-PEI interaction which can be detrimental to dispersion. With a better understanding of the aqueous surface chemistry of BaTiO3 the surface chemistry was manipulated to control the adsorption of aqueous soluble complexes of Co, Nb, and Bi, three common dopants in the processing of BaTiO3 Surface charge, TEM, and EDS analysis showed that while in suspension the dopants selectively absorbed onto the particle surface forming an engineered coating. (Abstract shortened by UMI.)

  14. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulopoulos, P., E-mail: poulop@upatras.gr; Materials Science Department, University of Patras, 26504 Patras; Goschew, A.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  15. SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    PubMed Central

    Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun

    2017-01-01

    A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618

  16. Highly scaled equivalent oxide thickness of 0.66 nm for TiN/HfO2/GaSb MOS capacitors by using plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Li; Wang, Shin-Yuan; Chien, Chao-Hsin

    2017-08-01

    Through in situ hydrogen plasma treatment (HPT) and plasma-enhanced atomic-layer-deposited TiN (PEALD-TiN) layer capping, we successfully fabricated TiN/HfO2/GaSb metal-oxide-semiconductor capacitors with an ultrathin equivalent oxide thickness of 0.66 nm and a low density of states of approximately 2 × 1012 cm-2 eV-1 near the valence band edge. After in situ HPT, a native oxide-free surface was obtained through efficient etching. Moreover, the use of the in situ PEALD-TiN layer precluded high-κ dielectric damage that would have been caused by conventional sputtering, thereby yielding a superior high-κ dielectric and low gate leakage current.

  17. Study on the Adsorption Phenomenon in Shale with the Combination of Molecular Dynamic Simulation and Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Liehui; Li, Jianchao; Jia, Du; Zhao, Yulong; Xie, Chunyu; Tao, Zhengwu

    As one of the key status of gas in shale reservoir, adsorption gas accounts for considerable percentage of total gas amount. Due to the complexity and nanostructure of shale gas reservoir, it is very challenging to represent adsorption gas through traditional methods. However, the integration of the fractal theory and molecular dynamics (MD) simulation may provide a new perspective of understanding such nanostructure and the micro-phenomenon happening in it. The key purpose of this paper is to investigate the adsorption phenomenon in shale kerogen. By using MD simulation and grand canonical Monte Carlo (GCMC) algorithm, the adsorption of methane in 2, 5 and 10nm slit-like pores is simulated for different temperature and pressure status. According to the results, the average gas density in smaller pores is higher than that in bigger pores, and multilayer adsorption presents on some areas of pore surfaces. Then, the simulation results are analyzed using the multilayer fractal adsorption model. The analysis indicates that the number of adsorption layer increases with pressure increase: four-layer adsorption presents in 10nm pores while three-layer adsorption shows up in 2nm and 5nm pores due to pore volume limit. Fractal dimension of pore wall surface generated in this study is in the range of 2.31-2.63. Moreover, high temperature could decrease the adsorption behavior in reservoir condition.

  18. Interfacial Surface Modification via Nanoimprinting to Increase Open-Circuit Voltage of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Emah, Joseph B.; George, Nyakno J.; Akpan, Usenobong B.

    2017-08-01

    The low-cost patterning of poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT:PSS) interfacial layers inserted between indium tin oxide and poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid ester blends leads to an improvement in organic photovoltaics (OPV) device performance. Significantly, improvements in all device parameters, including the open-circuit voltage, are achieved. The nanoimprinted devices improved further as the pattern period and imprinting depth was reduced from 727 nm and 42 nm to 340 nm and 10 nm, respectively. A residue of poly(dimethylsiloxane) (PDMS) is found on the interfacial PEDOT:PSS film following patterning and can be used to explain the increase in OPV performance. Ultraviolet photoelectron spectroscopy measurements of the PEDOT:PSS interfacial layer demonstrated a reduction of the work function of 0.4 eV following nanoimprinting which may originate from chemical modification of the PDMS residue or interfacial dipole formation supported by x-ray photoelectron spectroscopy analysis. Ultimately, we have demonstrated a 39% improvement in OPV device performance via a simple low-cost modification of the anode interfacial layer. This improvement can be assigned to two effects resulting from a PDMS residue on the PEDOT:PSS surface: (1) the reduction of the anode work function which in turn decreases the hole extraction barrier, and (2) the reduction of electron transfer from the highest occupied molecular orbital of PCBM to the anode.

  19. Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes

    DOE PAGES

    Wang, Siming; Antonakos, C.; Bordel, C.; ...

    2016-11-07

    Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less

  20. Effects of a capping oxide layer on polycrystalline-silicon thin-film transistors fabricated by continuous-wave laser crystallization

    NASA Astrophysics Data System (ADS)

    Li, Yi-Shao; Wu, Chun-Yi; Chou, Chia-Hsin; Liao, Chan-Yu; Chuang, Kai-Chi; Luo, Jun-Dao; Li, Wei-Shuo; Cheng, Huang-Chung

    2018-06-01

    A tetraethyl-orthosilicate (TEOS) capping oxide was deposited by low-pressure chemical vapor deposition (LPCVD) on a 200-nm-thick amorphous Si (a-Si) film as a heat reservoir to improve the crystallinity and surface roughness of polycrystalline silicon (poly-Si) formed by continuous-wave laser crystallization (CLC). The effects of four thicknesses of the capping oxide layer to satisfy an antireflection condition, namely, 90, 270, 450, and 630 nm, were investigated. The largest poly-Si grain size of 2.5 × 20 µm2 could be achieved using a capping oxide layer with an optimal thickness of 450 nm. Moreover, poly-Si nanorod (NR) thin-film transistors (TFTs) fabricated using the aforementioned technique exhibited a superior electron field-effect mobility of 1093.3 cm2 V‑1 s‑1 and an on/off current ratio of 2.53 × 109.

  1. Diffusion and interface evolution during the atomic layer deposition of TiO{sub 2} on GaAs(100) and InAs(100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Liwang; Gougousi, Theodosia, E-mail: gougousi@umbc.edu

    2016-01-15

    Atomic layer deposition is used to form TiO{sub 2} films from tetrakis dimethyl amino titanium and H{sub 2}O on native oxide GaAs(100) and InAs(100) surfaces. The evolution of the film/substrate interface is examined as a function of the deposition temperature (100–325 °C) using ex situ x-ray photoelectron spectroscopy. An increase in the deposition temperature up to 250 °C leads to enhancement of the native oxide removal. For depositions at 300 °C and above, interface reoxidation is observed during the initial deposition cycles but when the films are thicker than 3 nm, the surface oxides are removed steadily. Based on these observations, two distinct filmmore » growth regimes are identified; up to 250 °C, layer-by-layer dominates while at higher temperatures island growth takes over. Angle resolved x-ray photoelectron spectroscopy measurements performed on 3 nm TiO{sub 2} film deposited at 325 °C on both surfaces demonstrates a very important difference between the two substrates: for GaAs the native oxides remaining in the stack are localized at the interface, while for InAs(100), the indium oxides are mixed in the TiO{sub 2} film.« less

  2. Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps

    PubMed Central

    Hong, Seokjun; Lee, Minjae; Kwon, Yeong-Dae; Cho, Dong-il "Dan"; Kim, Taehyun

    2017-01-01

    Ions trapped in a quadrupole Paul trap have been considered one of the strong physical candidates to implement quantum information processing. This is due to their long coherence time and their capability to manipulate and detect individual quantum bits (qubits). In more recent years, microfabricated surface ion traps have received more attention for large-scale integrated qubit platforms. This paper presents a microfabrication methodology for ion traps using micro-electro-mechanical system (MEMS) technology, including the fabrication method for a 14 µm-thick dielectric layer and metal overhang structures atop the dielectric layer. In addition, an experimental procedure for trapping ytterbium (Yb) ions of isotope 174 (174Yb+) using 369.5 nm, 399 nm, and 935 nm diode lasers is described. These methodologies and procedures involve many scientific and engineering disciplines, and this paper first presents the detailed experimental procedures. The methods discussed in this paper can easily be extended to the trapping of Yb ions of isotope 171 (171Yb+) and to the manipulation of qubits. PMID:28872137

  3. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less

  4. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  5. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  6. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films. Electronic supplementary information (ESI) available: Figure S1, the SEM images and photograph of the films prepared from 10 ml, 20 nm gold nanoparticles. Scheme S1, the vibrations of 1534 and 1594 cm-1 of R6G. See DOI: 10.1039/c1nr10578g

  7. The development of self-expanding peripheral stent with ion-modified surface layer

    NASA Astrophysics Data System (ADS)

    Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.

    2016-11-01

    In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.

  8. Characterization of Cu(In,Ga)Se 2 (CIGS) films with varying gallium ratios

    DOE PAGES

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; ...

    2015-09-05

    Cu(In 1–x,Ga x)Se 2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In + Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In + Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. Themore » Ga grading in the CIGS layer has the effect causing a higher band gap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In + Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In + Ga) ratios. Moreover, it was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In + Ga) ratios. Furthermore, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  9. Effect of antimony incorporation on the density, shape, and luminescence of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, J. F.; Chiang, C. H.; Wu, Y. H.; Chang, L.; Chi, J. Y.

    2008-07-01

    This work investigates the surfactant effect on exposed and buried InAs quantum dots (QDs) by incorporating Sb into the QD layers with various Sb beam equivalent pressures (BEPs). Secondary ion mass spectroscopy shows the presence of Sb in the exposed and buried QD layers with the Sb intensity in the exposed layer substantially exceeding that in the buried layer. Incorporating Sb can reduce the density of the exposed QDs by more than two orders of magnitude. However, a high Sb BEP yields a surface morphology with a regular periodic structure of ellipsoid terraces. A good room-temperature photoluminescence (PL) at ˜1600 nm from the exposed QDs is observed, suggesting that the Sb incorporation probably improves the emission efficiency by reducing the surface recombination velocity at the surface of the exposed QDs. Increasing Sb BEP causes a blueshift of the emission from the exposed QDs due to a reduction in the dot height as suggested by atomic force microscopy. Increasing Sb BEP can also blueshift the ˜1300 nm emission from the buried QDs by decreasing the dot height. However, a high Sb BEP yields a quantum well-like PL feature formed by the clustering of the buried QDs into an undulated planar layer. These results indicate a marked Sb surfactant effect that can be used to control the density, shape, and luminescence of the exposed and buried QDs.

  10. NASA Astrophysics Data System (ADS)

    Wang, Mao-Hua; Zhang, Bo; Zhou, Fu

    2014-07-01

    Silica was homogeneously coated on the surface of CaCu3Ti4O12 (CCTO) particles via the sol-gel method. The obtained powders were characterized by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy, scanning electron microscopy, and zeta potential analysis. The results demonstrate that there were silica layers on the surface of the CCTO particles. Physical and dielectric properties of silica-coated CCTO were also studied. TEM imaging showed that the thickness of the silica layer on the CCTO particles was about 20 nm to 35 nm. The specimen coated with 1.0 wt.% silica showed the maximum relative density of 96.7% with high dielectric constant (12.78 × 104) and low dielectric loss (0.005) at 20°C after sintering at 1000°C for 6 h.

  11. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  12. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiko, M.; Nose, K.; Suenaga, R.

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed thatmore » the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. K.; Mohan, S.; Bysakh, S.

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletionmore » of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.« less

  14. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    PubMed

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  15. Nonspecular reflection of light at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadomsky, O. N., E-mail: gadomsky@mail.ru; Gadomskaya, I. V.

    2015-02-15

    We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range frommore » 450 to 1000 nm.« less

  16. Stable azodye photo-alignment layer for liquid crystal devices achieved by "turning off" dye photosensitivity

    NASA Astrophysics Data System (ADS)

    McGinty, C.; Finnemeyer, V.; Reich, R.; Clark, H.; Berry, S.; Bos, P.

    2017-11-01

    We have previously proposed a low cost, versatile process for stabilizing azodye photo-alignment layers for liquid crystal devices by utilizing a surface localized reactive mesogen (RM) layer. The RM is applied by dissolving the monomer in a liquid crystal material prior to filling the cell. In this paper, we show the significant effect of azodye layer thickness on the long term stability of these alignment layers when exposed to polarized light. We demonstrate, surprisingly, that thin azodye layers (˜3 nm) provide improved stability over thicker (˜40 nm) layers. Using this process, we show cells which have been stable to exposure with polarized light through one month. Additionally, we demonstrate the use of a photo-alignment layer to align the liquid crystals that afterwards can be rendered insensitive to polarized light. This was accomplished by using the process described above with the additional step of eliminating the photosensitivity of the azodye layer through photo-bleaching; the result is an RM alignment layer that will be stable when exposed to polarized light in the dye absorption band.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoen, Kyu Hyoek; Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul 136-791; Song, Jin Dong, E-mail: jdsong@kist.re.kr

    Highlights: • GaSb/Al{sub 0.33}GaSb MQW layer was grown on Si (1 0 0) by MBE. • The effect of miscut angle of Si substrate was studied. • A lot of twins were removed by Al{sub 0.66}Ga{sub 0.34}Sb/AlSb SPS layers. • Good quality of GaSb/Al{sub 0.33}Ga{sub 0.67}Sb MQW layers were proved by PL spectra. • Optimum growth temperature of the AlSb buffer layer was studied. - Abstract: GaSb/Al{sub 0.33}Ga{sub 0.67}Sb multi-quantum well (MQW) film on n-Si (1 0 0) substrates is grown by molecular beam epitaxy. The effects of a miscut angle of the Si substrate (0°, 5°, and 7°) onmore » the properties of an AlSb layer were also studied. The suppression of the anti-phase domains (APD) was observed at a miscut angle of 5° on Si (1 0 0). It was found that the growth temperature in the range of 510–670 °C affects the quality of AlSb layers on Si. Low root-mean-square surface (RMS) roughness values of 3–5 nm were measured by atomic force microscopy at growth temperatures ranging from 550 °C to 630 °C. In addition, Al{sub 0.66}Ga{sub 0.34}Sb/AlSb short period superlattice (SPS) layers were used to overcome problems associated with a large lattice mismatch. The RMS values of samples with a SPS were partially measured at approximately ∼1 nm, showing a larger APD surface area than samples without a SPS layer. Bright-field cross-sectional transmission electron microscopy images of the GaSb/Al{sub 0.33}Ga{sub 0.67}Sb MQW, the AlSb buffer layer and the Al{sub 0.66}Ga{sub 0.34}Sb/AlSb SPS layers show that numerous twins from the AlSb/Si interface were removed by the AlSb buffer layer and the Al{sub 0.66}Ga{sub 0.34}Sb/AlSb SPS. The GaSb/Al{sub 0.33}Ga{sub 0.67}Sb MQW PL spectra were obtained at 300 K and 10 K with a fixed excitation power of 103 mW. Emission peaks appeared at 1758 nm and 1620 nm, respectively.« less

  18. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    NASA Astrophysics Data System (ADS)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin

    2017-02-01

    This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm2/V·s) compared with the ITZO-only TFTs (∼34 cm2/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and -2.39 V compared with 6.10 and -6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of EA were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO2 reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  19. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses.

    PubMed

    Li, Xian-Feng; Zhang, Cheng-Yun; Li, Hui; Dai, Qiao-Feng; Lan, Sheng; Tie, Shao-Long

    2014-11-17

    Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 μm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.

  20. Insights into the structure of covalently bound fatty acid monolayers on a simplified model of the hair epicuticle from molecular dynamics simulations.

    PubMed

    Cheong, Daniel W; Lim, Freda C H; Zhang, Liping

    2012-09-11

    The epicuticle is the outermost layer of the human hair, and consists of a monolayer of fatty acids that is predominantly 18-methyleicosanoic acid (18-MEA) covalently bound to a protein matrix. Surprisingly, despite the clear scientific and industrial importance, the detailed molecular structure of this fatty acid layer is still poorly understood. In this work, we aim to gain insight into the structure of this so-called F-layer by performing molecular dynamics simulations on a simplified hair surface model consisting of a monolayer of 18-MEA covalently attached to graphene sheets at various separation distances. The relative free energy of the fatty acid layer was calculated as a function of separation distance in order to obtain the optimal packing density of the fatty acids. Conformational properties such as the thickness, tilt angle, and order parameter of the fatty acid layers were also calculated to characterize the structure of the F-layer. Simulations of the structurally similar eicosanoic acid (EA) were also performed as a comparison and to investigate the role of the anteiso-methyl side chain at the 18th position of 18-MEA. The degree of water penetration into the fatty acid layer at the various separation distances was also investigated. Our simulations suggest that the optimal spacing for the fatty acids is between 0.492 and 0.651 nm, in contrast to the generally accepted literature value of around 0.9-1.0 nm. This results in a packing density of between 0.21 and 0.37 nm(2) per fatty acid molecule and a thickness of around 2.01-2.64 nm. We also show that, at larger separation distances, the 18-MEA fatty acid provides a slightly better hydrophobic layer than the EA fatty acid, suggesting that the 18-MEA fatty acid may have been naturally selected to provide better protection for the hair when it loses some of the fatty acids due to daily wear and tear. To our knowledge, this is the first attempt to systematically investigate the hair surface structure and properties with molecular simulations.

  1. Thermal stability and specular reflection behaviour of CoNbZr-based bottom spin valves with nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Lee, Seong-Rae

    2004-06-01

    The thermal stability and specularity aspects of a CoNbZr-based bottom spin valve (SV) employing a nano-oxide layer (NOL) were investigated. The magnetoresistance (MR) ratio of the as-deposited CoNbZr-based bottom SV increased by 62% (from 6.3 to 10.2%) with incorporation of the NOL. The enhancement of the MR ratio was considered to be due to the specular effect ( increased from 0.722 to 1.363 cm) of the NOL. The MR ratio of a Ta-based bottom SV decreased by about 45% (from 6.9 to 3.8%) when the samples were annealed at 300 °C for 240 min. By contrast, the MR ratio of the CoNbZr-based bottom SV with NOL increase d by 14 % (from 10.2 to 11.7%). The root mean square roughness value of the CoNbZr layer (0.07 nm) was superior to that of the Ta layer (0.43 nm). Although Mn in IrMn diffused out to the surface through the active layers resulting in the formation of Mn oxide at the surface in the CoNbZr-based bottom SV, no trace of Mn was found in the active layers and no significant degradation occurred.

  2. Growth rate dependence of boron incorporation into BxGa1-xAs layers

    NASA Astrophysics Data System (ADS)

    Detz, H.; MacFarland, D.; Zederbauer, T.; Lancaster, S.; Andrews, A. M.; Schrenk, W.; Strasser, G.

    2017-11-01

    This work provides a comprehensive study of the incorporation behavior of B in growing GaAs under molecular beam epitaxy conditions. Structural characterization of superlattices revealed a strong dependence of the BAs growth rate on the GaAs growth rate used. In general, higher GaAs growth rates lead to a higher apparent BAs growth rate, although lower B cell temperatures showed saturation behavior. Each B cell temperature requires a minimum GaAs growth rate for producing smooth films. The B incorporation into single thick layers was found to be reduced to 75-80% compared to superlattice structures. The p-type carrier densities in 1000 nm thick layers were found to be indirectly proportional to the B content. Furthermore, 500 nm thick BxGa1-xAs layers showed significantly lower carrier concentrations, indicating B segregation on the surface during growth of thicker layers.

  3. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    NASA Astrophysics Data System (ADS)

    Steitz, Roland; Schemmel, Sebastian; Shi, Hongwei; Findenegg, Gerhard H.

    2005-03-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle \\theta_{\\mathrm {w}} \\approx 90^\\circ ), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (\\theta_{\\mathrm {w}} \\approx 63^\\circ ). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic CmEn surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO2/C8E4/D2O reveal that there is no preferred lateral organization of the C8E4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without subsequent rinsing, surface patterns of the presumably crystalline polymer on top of the primary adsorption layer develop upon drying under controlled conditions. The morphology depends mainly on the nominal surface coverage with the triblock copolymer. Similar morphologies are found on bare and polystyrene-coated silicon substrates, indicating that the surface patterning is mainly driven by segregation forces within the polymer layers and not by interactions with the substrate.

  4. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.

    PubMed

    Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni

    2015-01-07

    In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.

  5. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation

    NASA Astrophysics Data System (ADS)

    Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun

    2017-03-01

    The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.

  6. Dissolved DMSO production via biological and photochemical oxidation of dissolved DMS in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    del Valle, Daniela A.; Kieber, David J.; Toole, Dierdre A.; Bisgrove, John; Kiene, Ronald P.

    2009-02-01

    Dimethylsulfoxide (DMSO) is an important degradation product of the climate-influencing gas dimethylsulfide (DMS). In the Ross Sea, Antarctica, dissolved DMSO (DMSOd) concentrations exhibited substantial seasonal and vertical variations. Surface water DMSOd concentrations in pre-bloom waters were very low (<1 nM) but increased rapidly up to 41 nM during the spring Phaeocystis antarctica bloom (late November). Increases in DMSOd concentrations lagged by several days increases in DMS concentrations. Although DMSOd concentrations reached relatively high levels during the spring bloom, concentrations were generally higher (36.3-60.6 nM) during summer (January), even though phytoplankton biomass and DMS concentrations had decreased by that time. During both seasons, DMSOd concentrations were substantially higher within the surface mixed layer than below it. DMSOd production from biological DMS consumption (BDMSC) was higher during late November (3.4-5.2 nM d -1) than during the summer (0.7-2.4 nM d -1); therefore, production via BDMSC alone could not explain the higher DMSOd concentrations encountered during the summer. Mixed layer-integrated DMSOd production from BDMSC was 2.5-13.7 times greater than production from dissolved DMS photolysis during the P. antarctica bloom, while photolysis contributed 1.3 times more DMSO than BDMSC before the bloom. The DMSO yield from BDMSC was consistently higher within the upper mixed layer than at depths below. Experimental incubations with water from the mixed layer showed that exposure to full spectrum sunlight for 72 h caused an increase in the DMSO yield whereas exposure to only photosynthetically active radiation did not. This suggests that ultraviolet radiation is a potential factor shifting the fate of biologically consumed DMS toward DMSO. In general, the highest DMSO yields from BDMSC were in samples with slow biological DMS turnover, whereas fast turnover favored sulfate rather than DMSO as a major end-product. This study provides the first detailed information about DMSOd distribution and production in the Ross Sea and points to DMSOd as an important biological and photochemical degradation product of DMS and a major reservoir of methylated sulfur in these polar surface waters.

  7. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE PAGES

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore » the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  8. Revealing spatially heterogeneous relaxation in a model nanocomposite.

    PubMed

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y; Bocharova, Vera; Sumpter, Bobby G; Schweizer, Kenneth S; Sokolov, Alexei P

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  9. Fabrication of Refractive Index Tunable Coating with Moisture-Resistant Function for High-Power Laser Systems Based on Homogeneous Embedding of Surface-Modified Nanoparticles.

    PubMed

    Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran

    2018-05-07

    Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.

  10. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2014-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Revealing spatially heterogeneous relaxation in a model nanocomposite

    DOE PAGES

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y.; ...

    2015-11-18

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no glassy layer, but the -relaxation time near the nanoparticle grows with cooling faster than the -relaxation time in the bulk and is ~20 times longer at low temperatures. The interfacial layer thickness increases from ~1.8 nm at higher temperatures to ~3.5 nm upon cooling to near bulk T g. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory.more » Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. As a result, the theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.« less

  12. Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bruzewicz, Derek A.; Checco, Antonio; Ocko, Benjamin M.; Lewis, Ernie R.; McGraw, Robert L.; Schwartz, Stephen E.

    2011-01-01

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) has been characterized using non-contact environmental atomic force microscopy (e-AFM) to measure the heights of particles deposited on a prepared hydrophobic surface. Cubic NaCl nanoparticles with sides of 35 and 80 nm were found to take up water reversibly with increasing RH well below the bulk deliquescence relative humidity (DRH) of 75% at 23° C, and to form a liquid-like surface layer of thickness 2 to 5 nm, with measurable uptake ( >2 nm increase in particle height) beginning at 70% RH. The maximum thickness of the layer increased with increasing RH and increasing particle size over the range studied. The liquid-like behavior of the layer was indicated by a reversible rounding at the upper surface of the particles, fit to a parabolic cross-section, where the ratio of particle height to maximum radius of curvature increases from zero (flat top) at 68% RH to 0.7 ± 0.3 at 74% RH. These observations, which are consistent with a reorganization of mass on the solid NaCl nanocrystal at RH below the DRH, suggest that the deliquescence of NaCl nanoparticles is more complex than an abrupt first-order phase transition. The height measurements are consistent with a phenomenological model that assumes favorable contributions to the free energy of formation of a liquid layer on solid NaCl due both to van der Waals interactions, which depend partly upon the Hamaker constant, A_{{film}}, of the interaction between the thin liquid film and the solid NaCl, and to a longer-range electrostatic interaction over a characteristic length of persistence, ξ; the best fit to the data corresponded to A_{{film}} = 1 kT and ξ = 2.33 nm.

  13. Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen

    2018-03-01

    A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.

  14. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Oreshko, A. P.

    2016-03-15

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2–5)-keV helium ions to a dose of D = 6 × 10{sup 15}–5 × 10{sup 17} cm{sup –2} have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ(z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 10{sup 16} cm{sup –2} leads to the formation of a 20- to 30-nm-thick amorphizedmore » surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.« less

  15. Mechanisms of the formation of low spatial frequency LIPSS on Ni/  Ti reactive multilayers

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Cavaleiro, André J.; Morgiel, Jerzy; Vilar, Rui

    2016-09-01

    The present paper aims at investigating the mechanisms of imprinting LIPSS (laser-induced periodic surface structures), arrangements of parallel ripples with a periodicity slightly smaller than the radiation wavelength, on metallic surfaces. To this end, Ni/Ti multi-layered samples produced by magnetron sputtering were textured with LIPSS using a 1030 nm, 560 fs pulse duration laser and pulse frequency of 1 kHz, and the resulting surfaces were investigated by scanning and transmission electron microscopies. The results obtained show that the core of the ripples remains in the solid state during the laser treatment, except for a layer of material about 30 nm thick at the valleys and 65-130 nm thick at the top of the crests, which melts and solidifies forming NiTi with an amorphous structure. A layer of ablation debris composed of amorphous NiTi nanoparticles was redeposited on the LIPSS crests. The results achieved indicate that the periodic variation of the absorbed radiation intensity leads to a variation of the predominant ablation mechanisms and, consequently, of the ablation rate, thus explaining the rippled surface topography. The comparison with theoretical predictions suggests that in the intensity maxima (corresponding to the valleys) the material is removed by liquid spallation, while at its minima (the crests) the predominant material removal mechanism is melting and vaporization. These results support Sipe et al LIPSS formation theory and are in contradiction with the theories that explain the formation of LIPSS by convective fluid flow or self-organized mass transport of a laser-induced instability.

  16. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  17. Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid

    2014-06-16

    Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less

  18. The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Zheng, Pengyuan; Pandey, Sumeet C.; Sundararaman, Ravishankar; Gall, Daniel

    2018-04-01

    The effect of the surface roughness on the electrical resistivity of metallic thin films is described by electron reflection at discrete step edges. A Landauer formalism for incoherent scattering leads to a parameter-free expression for the resistivity contribution from surface mound-valley undulations that is additive to the resistivity associated with bulk and surface scattering. In the classical limit where the electron reflection probability matches the ratio of the step height h divided by the film thickness d, the additional resistivity Δρ = √{3 /2 } /(g0d) × ω/ξ, where g0 is the specific ballistic conductance and ω/ξ is the ratio of the root-mean-square surface roughness divided by the lateral correlation length of the surface morphology. First-principles non-equilibrium Green's function density functional theory transport simulations on 1-nm-thick Cu(001) layers validate the model, confirming that the electron reflection probability is equal to h/d and that the incoherent formalism matches the coherent scattering simulations for surface step separations ≥2 nm. Experimental confirmation is done using 4.5-52 nm thick epitaxial W(001) layers, where ω = 0.25-1.07 nm and ξ = 10.5-21.9 nm are varied by in situ annealing. Electron transport measurements at 77 and 295 K indicate a linear relationship between Δρ and ω/(ξd), confirming the model predictions. The model suggests a stronger resistivity size effect than predictions of existing models by Fuchs [Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)], Sondheimer [Adv. Phys. 1, 1 (1952)], Rossnagel and Kuan [J. Vac. Sci. Technol., B 22, 240 (2004)], or Namba [Jpn. J. Appl. Phys., Part 1 9, 1326 (1970)]. It provides a quantitative explanation for the empirical parameters in these models and may explain the recently reported deviations of experimental resistivity values from these models.

  19. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhou, Y. H.; Lin, S. F.; Hou, Y. H.; Wang, D. W.; Zhou, P.; Han, P. L.; Li, Y. L.; Yan, M.

    2018-05-01

    Ti45Al8Nb alloy (in at.%) is designed to be an important high-temperature material. However, its fabrication through laser-based additive manufacturing is difficult to achieve. We present here that a good understanding of the surface structure of raw material (i.e. Ti45Al8Nb powder) is important for optimizing its process by selective laser melting (SLM). Detailed X-ray photoelectron spectroscopy (XPS) depth profiling and transmission electron microscopy (TEM) analyses were conducted to determine the surface structure of Ti45Al8Nb powder. An envelope structure (∼54.0 nm in thickness) was revealed for the powder, consisting of TiO2 + Nb2O5 (as the outer surface layer)/Al2O3 + Nb2O5 (as the intermediate layer)/Al2O3 (as the inner surface layer)/Ti45Al8Nb (as the matrix). During SLM, this layered surface structure interacted with the incident laser beam and improved the laser absorptivity of Ti45Al8Nb powder by ∼32.21%. SLM experiments demonstrate that the relative density of the as-printed parts can be realized to a high degree (∼98.70%), which confirms good laser energy absorption. Such layered surface structure with appropriate phase constitution is essential for promoting SLM of the Ti45Al8Nb alloy.

  20. Spatial resolution in thin film deposition on silicon surfaces by combining silylation and UV/ozonolysis

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zaera, Francisco

    2014-12-01

    A simple procedure has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with hexamethyldisilazane, trichloro(octadecyl)silane, or trimethylchlorosilane was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces (as determined by x-ray photoelectron spectroscopy and ellipsometry). Residual film growth was still detected on the latter if the ALD was carried out at high temperatures (250 °C), because the silylation layer deteriorates under such harsh conditions and forms surface defects that act as nucleation sites for the growth of oxide grains (as identified by electron microscopy and scanning electron microscopy). We believe that the silylation-UV/O3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.

  1. First-principles study of stability of helium-vacancy complexes below tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Yang, L.; Bergstrom, Z. J.; Wirth, B. D.

    2018-05-01

    Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.

  2. Atomically Precise Surface Engineering for Producing Imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Jones, Todd J. (Inventor)

    2015-01-01

    High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

  3. FAST TRACK COMMUNICATION: Graphene based quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, H. G.; Hu, H.; Pan, Y.; Mao, J. H.; Gao, M.; Guo, H. M.; Du, S. X.; Greber, T.; Gao, H.-J.

    2010-08-01

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  4. Formation of BaSi2 heterojunction solar cells using transparent MoOx hole transport layers

    NASA Astrophysics Data System (ADS)

    Du, W.; Takabe, R.; Baba, M.; Takeuchi, H.; Hara, K. O.; Toko, K.; Usami, N.; Suemasu, T.

    2015-03-01

    Heterojunction solar cells that consist of 15 nm thick molybdenum trioxide (MoOx, x < 3) as a hole transport layer and 600 nm thick unpassivated or passivated n-BaSi2 layers were demonstrated. Rectifying current-voltage characteristics were observed when the surface of BaSi2 was exposed to air. When the exposure time was decreased to 1 min, an open circuit voltage of 200 mV and a short circuit current density of 0.5 mA/cm2 were obtained under AM1.5 illumination. The photocurrent density under a reverse bias voltage of -1 V reached 25 mA/cm2, which demonstrates the significant potential of BaSi2 for solar cell applications.

  5. Graphene based quantum dots.

    PubMed

    Zhang, H G; Hu, H; Pan, Y; Mao, J H; Gao, M; Guo, H M; Du, S X; Greber, T; Gao, H-J

    2010-08-04

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  6. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Craciun, V.; Singh, R. K.

    2000-04-01

    Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.

  7. Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation

    NASA Astrophysics Data System (ADS)

    Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge

    2018-03-01

    To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.

  8. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

    PubMed

    Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich

    2014-01-28

    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.

  9. Atomic Layer Deposition of HfO2 and Si Nitride on Ge Substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyang; Nakajima, Anri

    2007-12-01

    Hafnium oxide (HfO2) thin films were deposited on Ge substrates at 300 °C using atomic layer deposition (ALD) with tetrakis(diethylamino)hafnium (termed as TDEAH) as a precursor and water as an oxidant. The deposition rate was estimated to be 0.09 nm/cycle and the deposited HfO2 films have a smooth surface and an almost stoichiometric composition, indicating that the growth follows a layer-by-layer kinetics, similarly to that on Si substrates. Si nitride thin films were also deposited on Ge by ALD using SiCl4 as a precursor and NH3 as an oxidant. Si nitride has a smaller deposition rate of about 0.055 nm/cycle and a larger gate leakage current than HfO2 deposited on Ge by ALD.

  10. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    PubMed

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .

  11. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  12. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    PubMed

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  13. Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval

    2016-04-01

    A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.

  14. Optical characteristics of composites obtained by ion implantation of silver ions in polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Bumai, Yu. A.; Volobuev, V. S.; Valeev, V. F.; Dolgikh, N. I.; Lukashevich, M. G.; Khaibullin, R. I.; Nuzhdin, V. I.; Odzhaev, V. B.

    2012-11-01

    Metal-polymer composites are obtained by implantation of 30 keV silver ions at doses D = 1•1016-1.5•1017 cm-2 and ion current densities j = 4.0 μA/cm2 in films of polyethylene terephthalate. The spectral dependences of the reflection, transmission, and extinction coefficients for wavelengths of 190-1100 nm are studied. The reflection bands at λ1 = 205 nm and λ2 = 260 nm are found to be enhanced for light incident on the unimplanted side. Surface plasmon resonances on the silver nanoparticles are investigated. The refractive index of the modified layer is calculated and the sizes of the silver nanoparticles are estimated using a two-layer model of this structure together with the optical measurements. Depending on the implantation dose, these are found to vary over 1.3-2.8 and 5-20 nm, respectively.

  15. TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre.

    PubMed

    Ramachandran, Dhanya; Egoavil, Ricardo; Crabbe, Amandine; Hauffman, Tom; Abakumov, Artem; Verbeeck, Johan; Vandendael, Isabelle; Terryn, Herman; Schryvers, Dominique

    2016-11-01

    The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe 2 O 3 , an intermediate layer rich in Cr 2 O 3 with a mixture of FeO.Fe 2 O 3 and an inner oxide layer rich in nickel. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. Passivation of uranium towards air corrosion by N 2+ and C + ion implantation

    NASA Astrophysics Data System (ADS)

    Arkush, R.; Mintz, M. H.; Shamir, N.

    2000-10-01

    The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.

  17. Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C22C1im]+[NTf2].

    PubMed

    Mars, Julian; Hou, Binyang; Weiss, Henning; Li, Hailong; Konovalov, Oleg; Festersen, Sven; Murphy, Bridget M; Rütt, Uta; Bier, Markus; Mezger, Markus

    2017-10-11

    Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA 2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ 1 ) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.

  18. Impact of a boron rich layer on minority carrier lifetime degradation in boron spin-on dopant diffused n-type crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-03-01

    In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm-150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron-methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered.

  19. Atomistic study of the graphene nanobubbles

    NASA Astrophysics Data System (ADS)

    Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander

    2017-11-01

    A two-dimensional (2D) heterostructures can be created using 2D crystals stacking method. Substance can be trapped between the layers which leads to formation of the surface nanobubbles. We study nanobubbles trapped between graphene layers with argon atoms inside using molecular dynamics approach. For bubbles with radius in range 7-34 nm the solid close-packed state of argon is found, although according to bulk argon phase diagram the fluid phase must be observed. The universal shape scaling (constant ratio of height to radius), which is found experimentally and proved by the theory of elasticity of membranes, is also observed in our atomistic simulations. An unusual pancake shape (extremely small height to radius ratio) is found for smallest nanobubble with radius 7 nm. The nanobubbles with similar shape were experimentally observed at the interface between water and hydrophobic surface.

  20. Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.

    2008-05-01

    The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baidus, N. V.; Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru; Zvonkov, B. N.

    As a result of theoretical and experimental analyses, the parameters of heterostructures with InAs quantum dots in a GaAs matrix are determined, which provide the development of high-speed and efficient plasmon-polariton near-infrared light-emitting Schottky diodes based on such structures. The quantum dots should be arranged on a heavily doped (to a dopant concentration of 10{sup 19} cm{sup –3}) GaAs buffer layer and be separated from the metal by a thin (10–30 nm thick) undoped GaAs cap layer. The interface between the metal (e.g., gold) and GaAs provides the efficient scattering of surface plasmon-polaritons to ordinary photons if it contains inhomogeneitiesmore » shaped as metal-filled cavities with a characteristic size of ~30 nm and a surface concentration above 10{sup 10} cm{sup –2}.« less

  2. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  3. Nanoscale in-depth modification of CrOSi layers

    NASA Astrophysics Data System (ADS)

    Bertóti, I.; Tóth, A.; Mohai, M.; Kelly, R.; Marletta, G.; Farkas-Jahnke, M.

    1997-02-01

    In-depth modification of CrOSi layers on a nanoscale has been performed by low energy inert (Ar +, He +) and reactive (N 2+) ions. Chemical and short range structural investigations were done by XPS. Cr and Si were essentially oxidised in the as-prepared (i.e. virgin) samples. Ar + bombardment led to a nearly complete reduction of Cr to Cr 0. At the same time, about one third of the oxidised Si was converted to Si 0, which was shown to form SiCr bonds. Also, silicide type clusters, predicted earlier by XPS, have been identified by glancing angle electron diffraction. He + bombardment led to an increase of the surface O concentration. This was manifested also in the disruption of SiCr bonds formed by the preceding Ar + bombardment and conversion of Cr and Si predominantly to Cr 3+O, Cr 6+O and Si 4+O. With N 2+ bombardment formation of CrN and SiN bonds was observed. The thickness of the transformed surface layers were about 5 nm, 9 nm and 30 nm for Ar, N and He projectiles as estimated by TRIM calculations. The observed transformations were interpreted in terms of the relative importance of sputtering or ion induced mixing for Ar + and He +, and also by the role of thermodynamic driving forces.

  4. Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties.

    PubMed

    Emadzadeh, D; Ghanbari, M; Lau, W J; Rahbari-Sisakht, M; Rana, D; Matsuura, T; Kruczek, B; Ismail, A F

    2017-06-01

    In this study, nanoporous titanate (NT) nanoparticle synthesized by the solvothermal method was used to modify polyamide layer of thin film composite membranes with the aim of improving membrane resistances against organic and inorganic fouling. Thin film nanocomposite membranes (NMs) were synthesized by adding mNTs (modified nanoparticles) into polyamide selective layer followed by characterization using different analytical instruments. The results of XPS and XRD confirmed the presence of mNTs in the polyamide layer of NMs, while FESEM, AFM, zeta potential and contact angle measurement further supported the changes in physical and chemical properties of the membrane surface upon mNTs incorporation. Results of fouling showed that NM1 (the membrane incorporated with 0.01w/v% mNTs) always demonstrated lower degree of flux decline compared to the control membrane when membranes were tested with organic, inorganic and multicomponent synthesized water, brackish water or seawater. Besides showing greater antifouling resistance, the NM also displayed significantly higher water flux compared to the control M membrane. The findings of this work confirmed the positive impact of mNTs in improving the properties of NM with respect to fouling mitigation and flux improvement. Copyright © 2017. Published by Elsevier B.V.

  5. Article coated with flash bonded superhydrophobic particles

    DOEpatents

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  6. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  7. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  8. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  9. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  10. Coatings for FEL optics: preparation and characterization of B4C and Pt

    PubMed Central

    Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz

    2018-01-01

    Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30–100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B4C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments. PMID:29271760

  11. Coatings for FEL optics: preparation and characterization of B4C and Pt.

    PubMed

    Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz

    2018-01-01

    Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30-100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B 4 C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments.

  12. Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching

    NASA Astrophysics Data System (ADS)

    McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.

    2016-10-01

    The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 < x < 0.17) layers. SPV measurements reveal significant deviation from previous SPV studies on p-GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.

  13. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    NASA Astrophysics Data System (ADS)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-05-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  14. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  15. Influence of long-range forces and capillarity on the function of underwater superoleophobic wrinkled surfaces.

    PubMed

    Owais, Ahmed; Smith-Palmer, Truis; Gentle, Angus; Neto, Chiara

    2018-06-26

    Underwater superoleophobic surfaces can be considered a particular type of lubricant-infused surface, that have anti-fouling properties by virtue of a trapped water layer that repels oils. However, as their function relies on a water layer being trapped in the surface roughness, it is crucial to understand the factors that determine the layer stability. In this work, the forces that are responsible for the stability of thin liquid films within structured surfaces were quantified, and the conclusions were tested against the performance of wrinkled surfaces as underwater superoleophobic coatings. Here, the system studied was a family of wrinkled surfaces made of hydrophilic poly(4-vinylpyridine) (P4VP), whereby the wrinkle width could be controllably tuned in the range 90 nm to 8000 nm. The van der Waals free energy was quantified and the capillary forces trapping water in the surface micro- and nano-wrinkle structure were estimated. P4VP surfaces with micro-scale wrinkles had underwater superoleophobic properties, and low adhesion to different oils with droplet roll-off angle below 6° ± 1°. Despite the van der Waals free energy of the system pointing to the dewetting of a water film under oil on top of a smooth P4VP film, the wrinkled structure is sufficient to induce a Cassie state with a trapped water layer. The micro-scale wrinkles (average width 4-12 μm) were found to be particularly effective in the trapping of the water in a Cassie non-adhesive state. The P4VP wrinkled surfaces are superamphiphobic, as when they were first infused with oil, and then exposed to a droplet of water under oil, they exhibited superhydrophobic behavior. The P4VP wrinkles have the additional useful feature of being transparent underwater, which makes them useful candidates for the protection of underwater cameras and sensors.

  16. Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.

    A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napari, Mari, E-mail: mari.napari@jyu.fi; Malm, Jari; Lehto, Roope

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{submore » 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.« less

  18. Surface hole gas enabled transparent deep ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min

    2018-07-01

    The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.

  19. Mechanical, Chemical and Microstructural Characterization of Monazite-Coated Silicon Carbide Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Wheeler, D. R.; Chen, Y. L.

    2000-01-01

    Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure.

  20. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  1. Exploring Mercury's Surface in UltraViolet from Orbit

    NASA Astrophysics Data System (ADS)

    Izenberg, N.

    2017-12-01

    The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.

  2. The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry.

    PubMed

    Nabok, Alexei; Tsargorodskaya, Anna; Davis, Frank; Higson, Séamus P J

    2007-10-31

    The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA was studied using a novel sensitive optical method of total internal reflection ellipsometry (TIRE), which combines spectroscopic ellipsometry with surface plasmon resonance (SPR). Single strands of DNA of two species of fish (herring and salmon) were electrostatically adsorbed on top of polyethylenimine films deposited upon gold coated glass slides. The ellipsometric spectra were recorded and data fitting utilized to extract optical parameters (thickness and refractive index) of adsorbed DNA layers. The further adsorption of single stranded DNA from an identical source, i.e. herring ss-DNA on herring ss-DNA or salmon ss-DNA on salmon ss-DNA, on the surface was observed to give rise to substantial film thickness increases at the surface of about 20-21 nm. Conversely adsorption of DNA from alternate species, i.e. salmon ss-DNA on herring ss-DNA or herring ss-DNA on salmon ss-DNA, yielded much smaller changes in thickness of 3-5 nm. AFM studies of the surface roughness of adsorbed layers were in line with the TIRE data.

  3. Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift

    NASA Astrophysics Data System (ADS)

    Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li

    2018-03-01

    A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Pengyuan; Ozsdolay, Brian D.; Gall, Daniel, E-mail: galld@rpi.edu

    Smooth single crystal W(001) layers were grown on MgO(001) substrates by magnetron sputtering at 900 °C. X-ray diffraction ω–2θ scans, ω-rocking curves, pole figures, and reciprocal space maps indicate a 45°-rotated epitaxial relationship: (001){sub W}‖(001){sub MgO} and [010]{sub W}‖[110]{sub MgO}, and a relaxed lattice constant of 3.167 ± 0.001 nm. A residual in-plane biaxial compressive strain is primarily attributed to differential thermal contraction after growth and decreases from −0.012 ± 0.001 to −0.001 ± 0.001 with increasing layer thickness d = 4.8–390 nm, suggesting relaxation during cooling by misfit dislocation growth through threading dislocation glide. The in-plane x-ray coherence length increases from 3.4 to 33.6 nm for d = 4.8–390 nm, while the out-of-plane x-raymore » coherence length is identical to the layer thickness for d ≤ 20 nm, but is smaller than d for d ≥ 49.7 nm, indicating local strain variations along the film growth direction. X-ray reflectivity analyses indicate that the root-mean-square surface roughness increases from 0.50 ± 0.05 to 0.95 ± 0.05 nm for d = 4.8–19.9 nm, suggesting a roughness exponent of 0.38, but remains relatively constant for d > 20 nm with a roughness of 1.00 ± 0.05 nm at d = 47.9 nm.« less

  5. Adsorbed water and thin liquid films on Mars

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.

    2012-07-01

    At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10-6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.

  6. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail

    2017-08-01

    We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.

  7. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    PubMed

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  9. Determination of the magnetic contribution to the heat capacity of cobalt oxide nanoparticles and the thermodynamic properties of the hydration layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2011-01-01

    We present low temperature (11 K) inelastic neutron scattering (INS) data on four hydrated nanoparticle systems: 10 nm CoO 0.10H2O (1), 16 nmCo3O4 0.40H2O (2), 25 nm Co3O4 0.30H2O (3) and 40 nmCo3O4 0.026H2O (4). The vibrational densities of states were obtained for all samples and from these the isochoric heat capacity and vibrational energy for the hydration layers confined to the surfaces of these nanoparticle systems have been elucidated. The results show that water on the surface of CoO nanoparticles is more tightly bound than water confined to the surface of Co3O4, and this is reflected in the reducedmore » heat capacity and vibrational entropy for water on CoO relative to water on Co3O4 nanoparticles. This supports the trend, seen previously, for water to be more tightly bound in materials with higher surface energies. The INS spectra for the antiferromagnetic Co3O4 particles (2 4) also show sharp and intense magnetic excitation peaks at 5 meV, and from this the magnetic contribution to the heat capacity of Co3O4 nanoparticles has been calculated; this represents the first example of use of INS data for determining the magnetic contribution to the heat capacity of any magnetic nanoparticle system.« less

  10. Pulsed laser ablation of dental calculus in the near ultraviolet.

    PubMed

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2014-02-01

    Pulsed lasers emitting wavelengths near 400 nm can selectively ablate dental calculus without damaging underlying and surrounding sound dental hard tissue. Our results indicate that calculus ablation at this wavelength relies on the absorption of porphyrins endogenous to oral bacteria commonly found in calculus. Sub- and supragingival calculus on extracted human teeth, irradiated with 400-nm, 60-ns laser pulses at ≤8  J/cm2, exhibits a photobleached surface layer. Blue-light microscopy indicates this layer highly scatters 400-nm photons, whereas fluorescence spectroscopy indicates that bacterial porphyrins are permanently photobleached. A modified blow-off model for ablation is proposed that is based upon these observations and also reproduces our calculus ablation rates measured from laser profilometry. Tissue scattering and a stratified layering of absorbers within the calculus medium explain the gradual decrease in ablation rate from successive pulses. Depending on the calculus thickness, ablation stalling may occur at <5  J/cm2 but has not been observed above this fluence.

  11. Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Zhao, Li; Wei, Shoubin; Xiao, Meng; Dong, Binghai; Wan, Li; Wang, Shimin

    2018-05-01

    In this work, perovskite solar cells (PSCs) were fabricated in the ambient air, with a scaffold layer composed of TiO2/ZrO2 double layer as the mesoscopic layer and carbon as the counter electrode. The effect of ZrO2 thin film thickness on the photovoltaic performances of PSCs was also studied in detail. Results showed that the photoelectric properties of as-prepared PSCs largely depend on the thin film thickness due to a series of factors, including surface roughness, charge transport resistance, and electron-hole recombination rate. The power conversion efficiency of PSCs increased from 8.37% to 11.33% by varying the thin film thickness from 75 nm to 305 nm, and the optimal power conversion efficiency was realized up to the 11.33% with a thin film thickness of 167 nm. This research demonstrates a promising route for the high-efficiency and low-cost photovoltaic technology.

  12. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  13. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; hide

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms such as CALIOP.

  14. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    NASA Astrophysics Data System (ADS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  15. Modification of surfaces of silver nanoparticles for controlled deposition of silicon, manganese, and titanium dioxides

    NASA Astrophysics Data System (ADS)

    Apostolova, Tzveta; Obreshkov, B. D.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Mel'nik, N. N.; Rudenko, A. A.

    2018-01-01

    In this work we show that nanometric-thick layers of SiO2, MnO2, and TiO2 may be effectively deposited on various silver nanoparticles (including cubic Ag nanoparticles) covered by a very thin (below 0.4 nm) layer of silver sulphide. The background in Raman measurements generated by sulphide-protected Ag nanoparticles is significantly smaller than that for analogous Ag nanoparticles protected by a monolayer formed from alkanethiols - depositing alkanethiols on a surface of anisotropic silver nanoparticles is the current standard method used for protecting a surface of Ag nanoparticles before depositing a layer of silica. Because of significantly smaller generated Raman background, Ag@SiO2 nanostructures with an Ag2S linkage layer between the silver core and the silica shell are very promising low-background electromagnetic nanoresonators for carrying out Raman analysis of various surfaces - especially using what is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Sample SHINERS analyses of various surfaces (including pesticide-contaminated surfaces of tomatoes) using cubic-Ag@SiO2 nanoparticles as electromagnetic nanoresonators are also presented.

  16. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  17. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    PubMed Central

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan

    2018-01-01

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379

  18. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation.

    PubMed

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng

    2018-04-06

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

  19. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    PubMed

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  20. Side-polished fiber immunosensor based on surface plasmon resonance for detection of Legionella pneumophila

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Chia; Yang, Yi-Wen; Tsai, Woo-Hu; Yan, Tsong-Rong

    2008-02-01

    Side-polished fiber immunosensor based on surface plasmon resonance (SPR) onto self-assembled protein A layer was proposed for the detection of Legionella pneumophila. A self-assembled protein A layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and activated by N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS). The formation of self-assembled protein A and gold layer on side-polished surface and the binding of antibody and antigen in series were confirmed by SPR response on spectrum. The binding protein A layer can improve the sensitivity, which indirectly supports the configurations that antibody layer is immobilized on the binding protein A layer with a well-ordered orientation. The surface morphology analyses of self-assembled protein A layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein A were demonstrated by SPR dip shifts on optical spectrum analyzer. The SPR fiber immunosensor for detection of L. pneumophila was developed and the detection limit was 10 CFU/ml with the SPR dip shift in wavelength from 1070 to 1105nm. The current fabrication technique of a SPR immunosensor using optical fiber for the detection of Legionella pneumophila could be applied to construct other biosensor.

  1. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  2. Biomimetic whisker-shaped apatite coating of titanium powder.

    PubMed

    Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.

  3. UV/visible albedos from airborne measurements

    NASA Astrophysics Data System (ADS)

    Webb, A.; Kylling, A.; Stromberg, I.

    2003-04-01

    During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.

  4. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  5. Field effect transistor with HfO2/Parylene-C bilayer hybrid gate insulator

    NASA Astrophysics Data System (ADS)

    Kumar, Neeraj; Kito, Ai; Inoue, Isao

    2015-03-01

    We have investigated the electric field control of the carrier density and the mobility at the surface of SrTiO3, a well known transition-metal oxide, in a field effect transistor (FET) geometry. We have used a Parylene-C (8 nm)/HfO2 (20 nm) double-layer gate insulator (GI), which can be a potential candidate for a solid state GI for the future Mott FETs. So far, only examples of the Mott FET used liquid electrolyte or ferroelectric oxides for the GI. However, possible electrochemical reaction at the interface causes damage to the surface of the Mott insulator. Thus, an alternative GI has been highly desired. We observed that even an ultra thin Parylene-C layer is effective for keeping the channel surface clean and free from oxygen vacancies. The 8 nm Parylene-C film has a relatively low resistance and consequentially its capacitance does not dominate the total capacitance of the Parylene-C/HfO2 GI. The breakdown gate voltage at 300 K is usually more than 10 V (~ 3.4 MV/cm). At gate voltage of 3 V the carrier density measured by the Hall effect is about 3 ×1013 cm-2, competent to cause the Mott transition. Moreover, the field effect mobility reaches in the range of 10 cm2/Vs indicating the Parylene-C passivated surface is actually very clean.

  6. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.

    PubMed

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.

  7. Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS

    DOE PAGES

    Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine; ...

    2018-04-17

    Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less

  8. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  9. Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine

    Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less

  10. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    PubMed

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  11. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of ferrihydrite can be rationalized based on the estimated proton affinity constant for singly-coordinated surface groups. Nanoparticles have an enhanced surface charge. The charging behavior of Fh nanoparticles can be described satisfactory using the capacitance of a spherical Stern layer condenser in combination with a diffuse double layer for flat plates.

  12. The behavior of silicon and boron in the surface of corroded nuclear waste glasses : an EFTEM study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E. C.; Smith, K. L.; Blackford, M. G.

    1999-11-23

    Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51,more » although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials.« less

  13. Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode

    NASA Astrophysics Data System (ADS)

    Chen, Sy-Hann; Jhong, Jhen-Yu

    2011-08-01

    This study achieved a substantial enhancement in electroluminescence by coupling localized surface plasmons in a single layer of Ag nanoparticles. Thermal evaporation was used to fabricate 20-nm Ag particles sandwiched between a gallium-doped zinc oxide film and a glass substrate to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly(9,9-di-n-octyl-2,7-fluorene) (PFO) emissive layer. In addition to low cost, this novel fabrication method can effectively prevent interruption or degradation of the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the surface-plasmon-enhanced emission, the electroluminescence intensity was increased by nearly 1-fold, compared to that of the same PLED without the interlayer of Ag nanoparticles.

  14. Surface chemistry and wear behavior of single-crystal silicon carbide sliding against iron at temperatures to 1500 C in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analyses and morphological studies of wear and metal transfer were conducted with a single-crystal silicon carbide 0001 surface in contact with iron at various temperatures to 1500 C in a vacuum of 10 to the minus 8th power pascal. The results indicate that below 800 C, carbide-carbon and silicon are primarily seen on the silicon carbide surface. Above 800 C the graphite increases rapidly with increase in temperature. The outermost surficial layer, which consists mostly of graphite and little silicon at temperatures above 1200 C is about 2 nm thick. A thicker layer, which consists of a mixture of graphite, carbide, and silicon is approximately 100 nm thick. The closer the surface sliding temperature is to 800 C, the more the metal transfer produced. Above 800 C, there was a transfer of rough, discontinuous, and thin iron debris instead of smooth, continuous and thin iron film which was observed to transfer below 800 C. Two kinds of fracture pits were observed on the silicon carbide surface: (1) a pit with a spherical asperity; and (2) multiangular shaped pits.

  15. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  16. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    NASA Astrophysics Data System (ADS)

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  17. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang

    2016-09-01

    An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.

  18. An Evaluation of a Borided Layer Formed on Ti-6Al-4V Alloy by Means of SMAT and Low-Temperature Boriding

    PubMed Central

    Yao, Quantong; Sun, Jian; Fu, Yuzhu; Tong, Weiping; Zhang, Hui

    2016-01-01

    In this paper, a nanocrystalline surface layer without impurities was fabricated on Ti-6Al-4V alloy by means of surface mechanical attrition treatment (SMAT). The grain size in the nanocrystalline layer is about 10 nm and grain morphology displays a random crystallographic orientation distribution. Subsequently, the low-temperature boriding behaviors (at 600 °C) of the SMAT sample, including the phase composition, microstructure, micro-hardness, and brittleness, were investigated in comparison with those of coarse-grained sample borided at 1100 °C. The results showed that the boriding kinetics could be significantly enhanced by SMAT, resulting in the formation of a nano-structured boride layers on Ti-6Al-4V alloy at lower temperature. Compared to the coarse-grained boriding sample, the SMAT boriding sample exhibits a similar hardness value, but improved surface toughness. The satisfactory surface toughness may be attributed to the boriding treatment that was carried out at lower temperature. PMID:28774115

  19. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  20. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  1. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  2. Development of optical WGM resonators for biosensors

    NASA Astrophysics Data System (ADS)

    Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.

    2017-12-01

    Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.

  3. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface.

    PubMed

    Lu, Xiaoyuan; Zhang, Tongyi; Wan, Rengang; Xu, Yongtao; Zhao, Changhong; Guo, Sheng

    2018-04-16

    Metasurfaces are investigated intensively for biophotonics applications due to their resonant wavelength flexibly tuned in the near infrared region specially matching biological tissues. Here, we present numerically a metasurface structure combining dielectric resonance with surface plasmon mode of a metal plane, which is a perfect absorber with a narrow linewidth 10 nm wide and quality factor 120 in the near infrared regime. As a sensor, its bulk sensitivity and bulk figure of merit reach respectively 840 nm/RIU and 84/RIU, while its surface sensitivity and surface figure of merit are respectively 1 and 0.1/nm. For different types of adsorbate layers with the same thickness of 8 nm, its surface sensitivity and figure of merit are respectively 32.3 and 3.2/RIU. The enhanced electric field is concentrated on top of dielectric patch ends and in the patch ends simultaneously. Results show that the presented structure has high surface (and bulk) sensing capability in sensing applications due to its narrow linewidth and deep modulation depth. This could pave a new route toward dielectric-metal metasurface in biosensing applications, such as early disease detections and designs of neural stem cell sensing platforms.

  4. Formation of mono-layered gold nanoparticles in shallow depth of SiO 2 thin film by low-energy negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Arai, N.; Ueno, K.; Matsumoto, T.; Gotoh, N.; Adachi, K.; Kotaki, H.; Gotoh, Y.; Ishikawa, J.

    2006-01-01

    Mono-layered gold nanoparticles just below the surface of silicon oxide film have been formed by a gold negative-ion implantation at a very low-energy, where the deviation of implanted atoms was sufficiently narrow comparing to the size of nanoparticles. Gold negative ions were implanted into SiO2 thin films on Si substrate at energies of 35, 15 and 1 keV. The samples were annealed in Ar flow for 1 h at 900 or 1000 °C. Cross-sectional TEM observation for the implantation at 1 keV showed existence of Au nanoparticles aligned in the same depth of 5 nm from the surface. The nanoparticles had almost same diameter of 7 nm. The nanoparticles were found to be gold single crystal from a high-resolution TEM image.

  5. Domain Growth Kinetics in Stratifying Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.

  6. Effects of excess oxygen on the 4.5-6.3 eV absorption spectra of oxygen-rich high purity silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Robinson, S. J.

    2016-05-01

    Type III silica samples were implanted with O using a multi-energy process that produced a layer of constant concentration to within ±5% beginning ∼80 nm from the surface and extending to ∼640 nm below the surfaces of the samples. The concentrations of excess oxygen in the layer ranged from 0.035 to ∼2.1at.%. In these samples we show that E‧ centers and NBOHCs, as well as the normal cadre of ODC (II) centers, were suppressed, and the optical absorption from 4.7 to 6.4 eV was primarily due to oxygen excess defects. Using Gaussian fitting techniques to examine the optical difference spectra, we have been able to identify four defect centers that are related to excess oxygen defect bands at 4.76 eV, 5.42 eV, 5.75 eV and 6.25 eV.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  8. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.

    PubMed

    Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.

  9. Work Function Variations in Twisted Graphene Layers

    DOE PAGES

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...

    2018-01-31

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  10. Work Function Variations in Twisted Graphene Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  11. Correlations between Crystallite Size, Shape, Surface, and Infrared Spectra Using the Ti-C System

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Ikegami, A.; Kurumada, M.; Kamitsuji, K.; Kaito, C.

    2004-06-01

    TiC crystallites less than 10 nm in size showed an absorption feature at 14.3 μm. This 14.3 μm absorption was rarely seen in specimens ranging from bulk material to grains of 50 nm in size. The 14.3 μm feature was weakened as a result of the growth of TiC crystallites by heat treatment. When the carbide grains were covered with a carbon layer, the absorption peaks were considerably weakened, i.e., the absorption intensity depended on the grain surface state. A possible explanation is that the effects of size and shape on the spectra depend on the surface anisotropy.

  12. Growth of well-defined metal and oxide nanoparticles on biological surfaces

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir

    2009-03-01

    We present a brief overview of our recent studies in the field of bio-enabled surface-mediated growth of inorganic nanoparticles at room temperature and ambient conditions. We demonstrate that all titania, gold, and silver nanoparticles can be grown with relatively monodisperse diameter within 4-6 nm surrounded by biological shells of 1-2 nm thick. As biological templates we utilized ultrathin, molecular uniform and micropatterned surface layers of two different proteins: silk fibroin (for growth of gold and silver nanoparticles) and silaffin (for growth of titania nanoparticles). To identify the grown nanophases and chemical composition/secondary structure of biological templates we applied combined AFM, SEM, TEM, XPS, SERS, UV-vis, and ATR-FTIR techniques.

  13. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.

    PubMed

    Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo

    2018-06-12

    Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.

  14. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  15. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    NASA Astrophysics Data System (ADS)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-12-01

    A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 104 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the rational design and material versatility, the FUN-membrane thus could be transferred to either rigid or flexible substrate, even curved surface, such as the skin of bio-robot's arm or leg. Additionally, the FUN-membrane composed of MRA with extremely high aspect ratio of insulator-metal sidewall, also provides potential applications in optical devices, lightweight and flexible display devices, and electronic eye imagers.

  16. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    NASA Astrophysics Data System (ADS)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  17. Laser treatment of a neodymium magnet and analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  18. Growth and characterization of single crystalline Zn0.8-xMg0.2AlxO films with UV band gap on GaN/Al2O3 template by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, Min-Sung; Lee, Byung-Teak

    2013-02-01

    Single crystalline Zn0.8-xMg0.2AlxO thin films were grown on a GaN/Al2O3 template. As the Al content is increased from 0 to 0.06, the optical band gap increased from 3.6 eV to 4.0 eV, growth rate decreased from 6 nm/min to 3 nm/min, and the surface roughness decreased from 17 nm to 0.8 nm. It was observed that interfacial layers were formed between the thin films and the substrates, identified as cubic MgAl2O4 in the case of ZnMgAlO/GaN and cubic MgO in the case of ZnMgO/GaN. It was proposed that the MgAl2O4 layer, with low lattice mismatch of ˜7% against the GaN substrate, acted as the buffer layer to correlate the film and the substrate, resulting in growth of the single crystalline thin films in the case of the ZnMgAlO/GaN system.

  19. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  20. Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.

    2017-02-01

    Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.

  1. Lithography-free glass surface modification by self-masking during dry etching

    NASA Astrophysics Data System (ADS)

    Hein, Eric; Fox, Dennis; Fouckhardt, Henning

    2011-01-01

    Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.

  2. Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.

    PubMed

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja

    2018-06-26

    nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  3. Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques

    NASA Astrophysics Data System (ADS)

    Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu

    2007-04-01

    The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.

  4. Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel

    NASA Astrophysics Data System (ADS)

    Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.

    2018-04-01

    Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.

  5. Communication: Local energetic analysis of the interfacial and surface energies of graphene from the single layer to graphite

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi S.; Krajina, Brad A.; Overney, René M.

    2015-12-01

    Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ˜3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

  6. Communication: Local energetic analysis of the interfacial and surface energies of graphene from the single layer to graphite.

    PubMed

    Kocherlakota, Lakshmi S; Krajina, Brad A; Overney, René M

    2015-12-28

    Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

  7. Facile fabrication of uniaxial nanopatterns on shape memory polymer substrates using a complete bottom-up approach

    NASA Astrophysics Data System (ADS)

    Chen, Zhongbi; Krishnaswamy, Sridhar

    2014-03-01

    In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.

  8. Ultra-hard amorphous AlMgB14 films RF sputtered onto curved substrates

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Putrolaynen, V. V.; Yuzvyuk, M. H.

    2017-03-01

    Recently, hard AlMgB14 (BAM) coatings were deposited for the first time by RF magnetron sputtering using a single stoichiometric ceramic target. High target sputtering power and sufficiently short target-to-substrate distance were found to be critical processing conditions. They enabled fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth in 2 µm thick film (Grishin et al 2014 JETP Lett. 100 680). The narrow range of sufficiently short target-to-substrate distance makes impossible to coat non flat specimens. To achieve ultimate BAM films’ characteristics onto curved surfaces we developed two-step sputtering process. The first thin layer is deposited as a template at low RF power that facilitates a layered Frank van der Merwe mode growth of smooth film occurs. The next layer is grown at high RF target sputtering power. The affinity of subsequent flow of sputtered atoms to already evenly condensed template fosters the development of smooth film surface. As an example, we made BAM coating onto hemispherical 5 mm in diameter ball made from a hard tool steel and used as a head of a special gauge. Very smooth (6.6 nm RMS surface roughness) and hard AlMgB14 films fabricated onto commercial ball-shaped items enhance hardness of tool steel specimens by a factor of four.

  9. Interfacial and topological effects on the glass transition in free-standing polystyrene films

    NASA Astrophysics Data System (ADS)

    Lyulin, Alexey V.; Balabaev, Nikolay K.; Baljon, Arlette R. C.; Mendoza, Gerardo; Frank, Curtis W.; Yoon, Do Y.

    2017-05-01

    United-atom molecular-dynamics computer simulations of atactic polystyrene (PS) were performed for the bulk and free-standing films of 2 nm-20 nm thickness, for both linear and cyclic polymers comprised of 80 monomers. Simulated volumetric glass-transition temperatures (Tg) show a strong dependence on the film thickness below 10 nm. The glass-transition temperature of linear PS is 13% lower than that of the bulk for 2.5 nm-thick films, as compared to less than 1% lower for 20 nm films. Our studies reveal that the fraction of the chain-end groups is larger in the interfacial layer with its outermost region approximately 1 nm below the surface than it is in the bulk. The enhanced population of the end groups is expected to result in a more mobile interfacial layer and the consequent dependence of Tg on the film thickness. In addition, the simulations show an enrichment of backbone aliphatic carbons and concomitant deficit of phenyl aromatic carbons in the interfacial film layer. This deficit would weaken the strong phenyl-phenyl aromatic (π -π ) interactions and, hence, lead to a lower film-averaged Tg in thin films, as compared to the bulk sample. To investigate the relative importance of the two possible mechanisms (increased chain ends at the surface or weakened π -π interactions in the interfacial region), the data for linear PS are compared with those for cyclic PS. For the cyclic PS, the reduction of the glass-transition temperature is also significant in thin films, albeit not as much as for linear PS. Moreover, the deficit of phenyl carbons in the film interface is comparable to that observed for linear PS. Therefore, chain-end effects alone cannot explain the observed pronounced Tg dependence on the thickness of thin PS films; the weakened phenyl-phenyl interactions in the interfacial region seems to be an important cause as well.

  10. Effect of the Conditions of the Nanostructuring Frictional Treatment Process on the Structural and Phase States and the Strengthening of Metastable Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Makarov, A. V.; Skorynina, P. A.; Yurovskikh, A. S.; Osintseva, A. L.

    2017-12-01

    The effect of the multiplicity of frictional loading with a sliding synthetic diamond indenter at room temperature in an argon medium and the temperature of loading in the range of -196 to +250°C on the phase composition, fine structure, and micromechanical properties of the surface layer of metastable austenitic chromium-nickel steel has been studied. It has been established that the completeness of the strain-induced martensitic γ → α' transformation in the surface layer of steel is determined by the loading multiplicity and temperature, as well as the level of strengthening grows with an increase in the frictional loading multiplicity, but weakly depends on the frictional treatment temperature. According to the microindentation data, the characteristics of the surface layer strength and resistance to elastic and plastic deformation are improved with an increase in the frictional loading multiplicity. Frictional treatment by scanning with a synthetic diamond indenter at room and negative temperatures provides high quality for the treated surface with a low roughness parameter ( Ra = 80.115 nm), and an increase in the frictional loading temperature to 150-250°C leads to the development of a seizure and growth in Ra to 195-255 nm. Using transmission electron microscopy (TEM), it has been shown that frictional treatment results in the formation of nanocrystalline and fragmented submicrocrystalline structures of strain-induced α'-martensite (at a loading temperature of -196°C) and austenite (at a loading temperature of +250°C) in the surface layer of steel alongside with two-phase martensitic-austenitic structures (at a loading temperature of +20°C).

  11. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  12. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  13. The Synthesis, Structures, and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clearfield, Abraham

    2014-11-01

    In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above andmore » below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.« less

  14. Rapid Aluminum Nanoparticle Production by Milling in NH₃ and CH₃NH₂ Atmospheres: An Experimental and Theoretical Study.

    PubMed

    McMahon, Brandon W; Yu, Jiang; Boatz, Jerry A; Anderson, Scott L

    2015-07-29

    Ball milling of aluminum in gaseous atmospheres of ammonia and monomethylamine (MMA) was found to produce particles in the 100 nm size range with high efficiency. A combination of mass spectrometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis with mass spectrometric product analysis (TGA-MS), scanning electron microscopy (SEM), infrared spectroscopy, and dynamic light scattering (DLS) was used to study the particles and the chemical interactions responsible for particle production. To help understand the nature of the surface chemistry, high level quantum chemical calculations were performed to predict the structures and energetics for binding and reactions of NH3 and MMA on aluminum surfaces. Both NH3 and MMA react with aluminum under milling conditions, producing H2 and other gaseous products, and leaving the surfaces functionalized. The surface functionalization enhances size reduction by reducing the surface free energy and the tendency toward mechanochemical welding. For both NH3 and MMA, the particle cores are metallic aluminum, but the surface chemical properties are quite different. The ammonia-milled particles are capped by an AlNxOyHz layer ∼10 nm thick, which passivates the particles. The MMA-milled particles are capped with a thinner passivating layer, such that they are pyrophoric in air and react with N2 at elevated temperatures.

  15. Surface modification of tooth root canal after application of an X-ray opaque waveguide

    NASA Astrophysics Data System (ADS)

    Dostálová, T.; Jelínková, H.; Šulc, J.; Němec, M.; Koranda, P.; Bartoňová, M.; Radina, P.; Miyagi, M.; Shi, Y.-W.; Matsuura, Y.

    The interest in endodontic use of dental laser systems has been increasing. With the development of thin and flexible delivery systems for various wavelengths, laser applications in endodontics may become even more desirable. The aim of this study is to check the X-ray opacity of a hollow waveguide and to observe the results after laser root canal treatment. The root canal systems of 10 molars were treated endodontically by laser. For the laser radiation source, an Er:YAG laser system generating a wavelength of 2940 nm and an Alexandrite laser system generating a wavelength of 375 nm were used. The hollow waveguide used was checked under X-ray . A root canal surface treated by laser radiation was analyzed by a scanning electron microscope (SEM). The special hollow glass waveguide used was visible in the root canal system under X-ray imaging. Surface modification of the root canal after laser treatment was not found. After conventional treatment the root canal was enlarged. The surface was covered with a smear layer. After application of both laser systems, the smear layer was removed. The resulting canal surface was found to be clean and smooth. Under SEM observation open dentinal tubules were visible. No cracks were present, nor were surface modifications observed.

  16. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water.

    PubMed

    Song, Lei; Yang, Kun; Jiang, Wei; Du, Peng; Xing, Baoshan

    2012-06-01

    In this work, the influence of particle size and surface functional groups on the adsorption behavior of bovine serum albumin (BSA) by three types of oxide nanoparticles (NPs), TiO(2) (50±5 nm), SiO(2) (30±5 nm), and Al(2)O(3) (150±5 nm for α type and 60±5 nm for γ type) was investigated in deionized water, in order to explore their interaction mechanisms without competitive influence of other ions. Bulkparticles (BPs) were also used for comparison with NPs. BSA adsorption maxima on oxide particles were controlled by the surface area and hydrogen content, while adsorption process was primarily induced by electrostatic interaction, hydrophobic interaction and ligand exchange between BSA and oxide surfaces. With the increase of hydrogen content, the BSA adsorption mechanism switched from mainly hydrophobic interaction to hydrogen bonding and ligand exchange. Calculations, based on surface area and BSA size, suggested that a multilayer of BSA covered on α-Al(2)O(3), and single layer on the other oxide particle surfaces. BPs led to greater conformational change of BSA molecules after the adsorption on the surfaces of oxide particles though NPs adsorbed more BSA than BPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Observation of Electron-Beam-Induced Phase Evolution Mimicking the Effect of the Charge–Discharge Cycle in Li-Rich Layered Cathode Materials Used for Li Ion Batteries

    DOE PAGES

    Lu, Ping; Yan, Pengfei; Romero, Eric; ...

    2015-01-27

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less

  18. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  19. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  20. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    NASA Technical Reports Server (NTRS)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  1. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

    NASA Astrophysics Data System (ADS)

    Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu

    2011-12-01

    Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.

  2. Synthesis and characterization of amorphous yttrium oxide layers by metal organic chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A.

    2014-02-01

    The Solution Deposition Planarization method was successfully used for smoothing Ni-alloy tapes with initial surface roughness of 26.7 nm (on 40×40 μm2 area) and 12.6 nm (on 5×5 μm2 area). New precursor solutions were prepared from yttrium acetate and diethylenetriamine or ethylenediamine in MeOH and i-PrOH-alcohols with different viscosities. Using those solutions yttria films with the residual roughness Sa=0.4 nm (on 5×5 μm2 area) and Sa=7.6 nm (on 40×40 μm2 area) were deposited on the Ni-alloy tapes.

  3. Thickness effect of Gd2Zr2O7 buffer layer on performance of YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Qiu, Wenbin; Fan, Feng; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2014-12-01

    Bilayer buffer architecture of Gd2Zr2O7 (GZO)/Y2O3 was prepared on the biaxially textured tape of Ni-5 at% W (NiW) by reactive sputtering deposition technique. The buffer layer of GZO films were deposited with different thicknesses on Y2O3 seeding layer with a given thickness of 20 nm. According to the results of φ-scan, the in-plane FWHMs of GZO films decreased and then reversed with increasing thickness of GZO, which corresponded with the in-plane FWHMs and superconducting properties of YBa2Cu3O7-δ (YBCO) films. Reflection High-Energy Electron Diffraction (RHEED) was carried out to examine the surface texture of GZO films and the deteriorated surface alignment was found for thicker films. The thickness effect of GZO on performance of YBCO is the coupling result of surface texture and blocking effect caused by thickness. With the balance of these two factors, the YBCO/GZO(120 nm)/Y2O3/NiW architecture exhibit relatively high performance with the transition temperature Tc of 92 K, a transition width ΔTc below 1 K, and a critical current density Jc of 0.65 MA/cm2.

  4. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films

    PubMed Central

    Shi, Xuesong; Li, Xin; Jiang, Lan; Qu, Liangti; Zhao, Yang; Ran, Peng; Wang, Qingsong; Cao, Qiang; Ma, Tianbao; Lu, Yongfeng

    2015-01-01

    We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough for large-area patterning. The graphene films were composed of layer-by-layer graphene nanosheets separated by nanogaps (~10–50 nm), and graphene monolayers with an interlayer spacing of ~0.37 nm constituted each of the graphene nanosheets. This unique hierarchical layering structure of graphene films provides great possibilities for generation of tensile stress during femtosecond laser ablation to roll up the nanoflakes, which contributes to the formation of microflowers. By a simple scanning technique, patterned surfaces with controllable densities of flower patterns were obtained, which can exhibit adhesive superhydrophobicity. More importantly, this technique enables fabrication of the large-area patterned surfaces at centimeter scales in a simple and efficient way. This study not only presents new insights of ultrafast laser processing of novel graphene-based materials but also shows great promise of designing new materials combined with ultrafast laser surface patterning for future applications in functional coatings, sensors, actuators and microfluidics. PMID:26615800

  5. X-Ray diffraction and resonance shear measurement of nano-confined ionic liquids.

    PubMed

    Tomita, Kazuhito; Mizukami, Masashi; Nakano, Shinya; Ohta, Noboru; Yagi, Naoto; Kurihara, Kazue

    2018-05-23

    X-ray diffraction measurement at the SPring-8 synchrotron was employed to investigate the structures of two types of imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTF2]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), confined between silica surfaces by varying the surface separation distances of ca. 500 nm (bulk liquid), ca. 10 nm, and ca. 2 nm (hard wall thickness). The obtained diffraction profiles and intensities were discussed by considering the structures and properties of the nano-confined ILs between the silica surfaces investigated by resonance shear measurement (RSM) and molecular dynamics simulation (MD) in our previous reports. [C4mim][NTf2] showed two diffraction peaks at q = 8.8 nm-1 (spacing d = 0.71 nm) and at q = 14.0 nm-1 (spacing d = 0.45 nm) at the greatest distance (D = ca. 500 nm), which were assigned to the interval between the same ions (anion-anion or cation-cation) within the polar network of [C4mim][NTf2] and the interval between the neighboring anion-cation, respectively. The positions of these two peaks remained the same at D = ca. 10 nm and at the hard wall (D = ca. 2 nm) and their intensity factor increased, indicating that both the cation and anion existed in the same layer. This result was consistent with the checkerboard structure of [C4mim][NTf2] on the silica surface computer simulated in our previous studies. On the other hand, [C4mim][BF4] showed a peak at q = 15.4 nm-1 (spacing d = 0.41 nm) corresponding to the anion-cation interval at the greatest distance (D = ca. 500 nm). This peak became broader and weaker at D = ca. 12 nm and at D = ca. 2 nm.

  6. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis.

    PubMed

    Gamage, Pubudu; Basel, Matthew T; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael; Bossmann, Stefan H

    2009-09-17

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8+/-4.4 nm for P[(NIPAM)(95.5)-co-(AA)(4.5)] (PDI (polydispersity index)=1.55) and 21.8+/-4.2 nm for P[(NIPAM)(95.3)-co-(AA)(4.7)] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)(95)-co-(AA)(2.8)-AAC(8)F(17 2.2)] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8+/-7.1 nm, with a depth of only 2 nm.

  7. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis

    PubMed Central

    Gamage, Pubudu; Basel, Matthew T.; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael

    2009-01-01

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8±4.4 nm for P[(NIPAM)95.5-co-(AA)4.5] (PDI (polydispersity index)=1.55) and 21.8±4.2 nm for P[(NIPAM)95.3-co-(AA)4.7] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)95-co-(AA)2.8-AAC8F17 2.2] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8±7.1 nm, with a depth of only 2 nm. PMID:20161351

  8. The early growth and interface of YBa 2Cu 3O y thin films deposited on YSZ substrates

    NASA Astrophysics Data System (ADS)

    Gao, J.; Tang, W. H.; Yau, C. Y.

    2001-11-01

    Epitaxial thin films of YBa 2Cu 3O y (YBCO) have been prepared on yttrium-stabilized zirconia substrates with and without a buffer layer. The early growth, crystallinity and surface morphology of these thin films have been characterized by X-ray diffraction, rocking curves, scanning electron microscope, in situ conductance measurements, and surface step profiler. The full width at half maximum of the ( 0 0 5 ) peak of rocking curve was found to be less than 0.1°. Over a wide scanning range of 2000 μm the average surface roughness is just 5 nm, indicating very smooth films. Grazing incident X-ray reflection and positron annihilation spectroscopy shows well-defined interfaces between layers and substrate. By applying a new Eu 2CuO 4 (ECO) buffer layer the initial formation of YBCO appears to grow layer-by-layer rather than the typical island growth mode. The obtained results reveal significant improvements at the early formation and crystallinity of YBCO by using the 214-T ‧ ECO as a buffer layer.

  9. Demonstrating antiphase domain boundary-free GaAs buffer layer on zero off-cut Si (0 0 1) substrate for interfacial misfit dislocation GaSb film by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2017-08-01

    High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1  ×  106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.

  10. Size-Selective Synthesis and Stabilization of Small Silver Nanoparticles on TiO 2 Partially Masked by SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Zhenyu; Eaton, Todd R.; Gallagher, James R.

    Controlling metal nanoparticle size is one of the principle challenges in developing new supported catalysts. Typical methods where a metal salt is deposited and reduced can result in a polydisperse mixture of metal nanoparticles, especially at higher loading. Polydispersity can exacerbate the already significant challenge of controlling sintering at high temperatures, which decreases catalytic surface area. Here, we demonstrate the size-selective photoreduction of Ag nanoparticles on TiO2 whose surface has been partially masked with a thin SiO2 layer. To synthesize this layered oxide material, TiO2 particles are grafted with tert-butylcalix[4]arene molecular templates (~2 nm in diameter) at surface densities ofmore » 0.05–0.17 templates.nm–2, overcoated with ~2 nm of SiO2 through repeated condensation cycles of limiting amounts of tetraethoxysilane (TEOS), and the templates are removed oxidatively. Ag photodeposition results in uniform nanoparticle diameters ≤ 3.5 nm (by transmission electron microscopy (TEM)) on the partially masked TiO2, whereas Ag nanoparticles deposited on the unmodified TiO2 are larger and more polydisperse (4.7 ± 2.7 nm by TEM). Furthermore, Ag nanoparticles on the partially masked TiO2 do not sinter after heating at 450 °C for 3 h, while nanoparticles on the control surfaces sinter and grow by at least 30%, as is typical. Overall, this new synthesis approach controls metal nanoparticle dispersion and enhances thermal stability, and this facile synthesis procedure is generalizable to other TiO2-supported nanoparticles and sizes and may find use in the synthesis of new catalytic materials.« less

  11. Crystalline Stratification in Semiconducting Polymer Thin Film Quantified by Grazing Incidence X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.

    The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.

  12. POx/Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge

    NASA Astrophysics Data System (ADS)

    Black, Lachlan E.; Kessels, W. M. M. Erwin

    2018-05-01

    Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.

  13. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    PubMed

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  14. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    NASA Astrophysics Data System (ADS)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  15. High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure

    NASA Astrophysics Data System (ADS)

    Albrecht, Alexander R.; Rotter, Thomas J.; Hains, Christopher P.; Stintz, Andreas; Xin, Guofeng; Wang, Tsuei-Lian; Kaneda, Yushi; Moloney, Jerome V.; Malloy, Kevin J.; Balakrishnan, Ganesh

    2011-03-01

    We compare an InAs quantum dot (QD) vertical external-cavity surface-emitting laser (VECSEL) design consisting of 4 groups of 3 closely spaced QD layers with a resonant periodic gain (RPG) structure, where each of the 12 QD layers is placed at a separate field antinode. This increased the spacing between the QDs, reducing strain and greatly improving device performance. For thermal management, the GaAs substrate was thinned and indium bonded to CVD diamond. A fiber-coupled 808 nm diode laser was used as pump source, a 1% transmission output coupler completed the cavity. CW output powers over 4.5 W at 1250 nm were achieved.

  16. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-11-01

    Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.

  17. Thickness driven spin reorientation transition of epitaxial LaCrO3 films

    NASA Astrophysics Data System (ADS)

    Park, Junho; Kim, Dong-Hwan; Lee, Doopyo; Ko, Kyung-Tae; Hyun Song, Jong; Kim, Jae-Young; Koo, Tae-Yeong; Lee, Seung Ran; Park, Jae-Hoon

    2018-03-01

    We grew fully strained epitaxial LaCrO3 (LCO) films on SrTiO3(001) under layer-by-layer control up to the film thickness of t = 130 nm using a pulsed laser deposition method. The spin axis of the antiferromagnetic LCO film was systematically examined as a function of t by using Cr L2,3-edge x-ray magnetic linear dichroism (XMLD). The XMLD results manifest a spin reorientation transition (SRT) across a transition thickness of tT ˜ 60 nm. This SRT is well explained in terms of two competing magnetic anisotropy energies of the surface/interface (KS) and the LCO film itself (KV).

  18. Multimodal imaging of ocular surface of dry eye subjects

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhong; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Aquavella, James V.; Zavislan, James M.

    2016-03-01

    To study the relationship between the corneal lipid layer and the ocular surface temperature (OST), we conducted a clinical trial for 20 subjects. Subjects were clinically screened prior to the trial. Of the 20 subjects, 15 have Meibomian gland dysfunction (MGD), and 5 have aqueous-deficient dry eye (ADDE). A custom, circularly polarized illumination video tearscope measured the lipid layer thickness of the ocular tear film. A long-wave infrared video camera recorded the dynamic thermal properties of the ocular team film. The results of these two methods were analyzed and compared. Using principal component analysis (PCA) of the lipid layer distribution, we find that the 20 subjects could be categorized into five statistically significant groups, independent of their original clinical classification: thin (6 subjects), medium (5 subjects), medium and homogenous (3 subjects), thick (4 subjects), and very thick (2 subjects) lipids, respectively. We also conducted PCA of the OST data, and recategorized the subjects into two thermal groups by k-means clustering: one includes all ADDE subjects and some MGD subjects; the other includes the remaining MGD subjects. By comparing these two methods, we find that dry eye subjects with thin (<= 40 nm) lipids have significantly lower OST, and a larger OST drop range, potentially due to more evaporation. However, as long as the lipid layer is not thin (> 40 nm), there is no strong correlation between the lipid layer thickness and heterogeneity and the OST patterns.

  19. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  20. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection

    NASA Astrophysics Data System (ADS)

    Long, Mingzhu; Chen, Zefeng; Zhang, Tiankai; Xiao, Yubin; Zeng, Xiaoliang; Chen, Jian; Yan, Keyou; Xu, Jianbin

    2016-03-01

    We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure composite (PMC) HTM in combination with the conformal Au electrode could promote the absorption through the enhanced cavity effects, leading to comparable absorption even using much thinner perovskite (240 nm). We identified that the cavity was the combination of Fabry-Pérot interferometer and surface plasmonic resonance, with light harvesting enhancement through surface plasmon polariton or waveguide modes that propagate in the plane of the perovskite layer. On the other hand, the PMC HTM increased hole conductivity by one order of magnitude with respect to standard spiro-OMeTAD HTM due to molecular packing and self-assembly, embodying traceable hole mobility and density elevation up to 3 times, and thus the hysteresis was greatly avoided. Owing to dual optical and electronic enhancement, the PMC PSC afforded high efficiency PSC using as thin as 240 nm perovskite layer, delivering a Voc of 1.05 V, Jsc of 22.9 mA cm-2, FF of 0.736, and efficiency amounting to 17.7% PCE, the highest efficiency with ultrathin perovskite layer.We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure composite (PMC) HTM in combination with the conformal Au electrode could promote the absorption through the enhanced cavity effects, leading to comparable absorption even using much thinner perovskite (240 nm). We identified that the cavity was the combination of Fabry-Pérot interferometer and surface plasmonic resonance, with light harvesting enhancement through surface plasmon polariton or waveguide modes that propagate in the plane of the perovskite layer. On the other hand, the PMC HTM increased hole conductivity by one order of magnitude with respect to standard spiro-OMeTAD HTM due to molecular packing and self-assembly, embodying traceable hole mobility and density elevation up to 3 times, and thus the hysteresis was greatly avoided. Owing to dual optical and electronic enhancement, the PMC PSC afforded high efficiency PSC using as thin as 240 nm perovskite layer, delivering a Voc of 1.05 V, Jsc of 22.9 mA cm-2, FF of 0.736, and efficiency amounting to 17.7% PCE, the highest efficiency with ultrathin perovskite layer. Electronic supplementary information (ESI) available: XRD patterns corresponding to the perovskite; AFM images of 3D PMC HTM perovskite solar cells; performance statistics for 3D PMC HTM; ultraviolet photoelectron spectra (UPS) of HTMs on FTO. See DOI: 10.1039/c5nr05042a

  1. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  2. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  3. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  4. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Abrams, T.; Bell, R. E.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.

    2015-08-01

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li2O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  5. Noble metal free photocatalytic H 2 generation on black TiO 2: On the influence of crystal facets vs. crystal damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Steinrück, Hans-Georg; Osvet, Andres

    In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation and hydrogen ion-implantation. Here, we find that on the natural, intact low index planes, photocatalytic H 2 evolution (in the absence of a noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching and miscut in the crystal, or by implantation damage. X-ray reflectivity, Raman, and optical reflection measurements showmore » that plain hydrogenation leads to a ≈ 1 nm thick black titania surface layer without activity, while a colorless, density modified, and ≈7 nm thick layer with broken crystal symmetry is present on the ion implanted surface. These results demonstrate that (i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation and (ii) activation does not necessarily coincide with the presence of black color.« less

  6. Rapid fabrication of a silicon modification layer on silicon carbide substrate.

    PubMed

    Bai, Yang; Li, Longxiang; Xue, Donglin; Zhang, Xuejun

    2016-08-01

    We develop a kind of magnetorheological (MR) polishing fluid for the fabrication of a silicon modification layer on a silicon carbide substrate based on chemical theory and actual polishing requirements. The effect of abrasive concentration in MR polishing fluid on material removal rate and removal function shape is investigated. We conclude that material removal rate will increase and tends to peak value as the abrasive concentration increases to 0.3 vol. %, and the removal function profile will become steep, which is a disadvantage to surface frequency error removal at the same time. The removal function stability is also studied and the results show that the prepared MR polishing fluid can satisfy actual fabrication requirements. An aspheric reflective mirror of silicon carbide modified by silicon is well polished by combining magnetorheological finishing (MRF) using two types of MR polishing fluid and computer controlled optical surfacing (CCOS) processes. The surface accuracy root mean square (RMS) is improved from 0.087λ(λ=632.8  nm) initially to 0.020λ(λ=632.8  nm) in 5.5 h total and the tool marks resulting from MRF are negligible. The PSD analysis results also shows that the final surface is uniformly polished.

  7. Noble metal free photocatalytic H 2 generation on black TiO 2: On the influence of crystal facets vs. crystal damage

    DOE PAGES

    Liu, Ning; Steinrück, Hans-Georg; Osvet, Andres; ...

    2017-02-13

    In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation and hydrogen ion-implantation. Here, we find that on the natural, intact low index planes, photocatalytic H 2 evolution (in the absence of a noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching and miscut in the crystal, or by implantation damage. X-ray reflectivity, Raman, and optical reflection measurements showmore » that plain hydrogenation leads to a ≈ 1 nm thick black titania surface layer without activity, while a colorless, density modified, and ≈7 nm thick layer with broken crystal symmetry is present on the ion implanted surface. These results demonstrate that (i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation and (ii) activation does not necessarily coincide with the presence of black color.« less

  8. Femtosecond laser induced nanostructuring of graphite for the fabrication of quasi-periodic nanogratings and novel carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Saikiran, V.; Dar, Mudasir H.; Rao, D. Narayana

    2018-01-01

    Here we have experimentally studied ultrafast femtosecond laser ablation of graphite in air and water environments for the fabrication of promising nanostructures on the graphite surface and also nanographite flakes, graphene quantum dots in water. After the fs laser irradiation in air quasi-periodic nanogratings were found on the graphite surface and when the irradiation is done in water we observed graphene quantum dots (GQDs) and graphitic flakes dispersed in the solution. The sheets consist of few layers of spongy kind of porous graphene, which form an irregular 3D porous structure. The field emission scanning electron microscopy reveals the formation of fluence dependent quasi-periodic deep-subwavelength nanogratings (Ʌ = 130-230 nm) on the surface. Several characterization methods have confirmed the formation of layered graphene and quantum dots. The studies on the solution confirmed the presence of GQDs with dimensions ranging about 2-4 nm. It is found that the formation of subwavelength structures and GQDs depends on the fs-laser energy and vary with different laser parameters such as fluence, energy, laser polarization.

  9. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.

    PubMed

    Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh

    2017-10-15

    PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular application by tuning the PEG grafting density, chain length, and particle size. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    PubMed

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  11. Using TiO2 as a conductive protective layer for photocathodic H2 evolution.

    PubMed

    Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib

    2013-01-23

    Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.

  12. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer.

    PubMed

    Wang, Qingkai; Chen, Yu; Miao, Lili; Jiang, Guobao; Chen, Shuqing; Liu, Jun; Fu, Xiquan; Zhao, Chujun; Zhang, Han

    2015-03-23

    Topological insulators have been theoretically predicted as promising candidates for broadband photonics devices due to its large bulk band gap states in association with the spin-momentum-locked mass-less Dirac edge/surface states. Unlike the bulk counterpart, few-layer topological insulators possess some intrinsic optical advantages, such as low optical loss, low saturation intensity and high concentration of surface state. Herein, we use a solvothermal method to prepare few-layer Bi₂Te₃ flakes. By sandwiching few-layer Bi₂Te₃ flakes with polymethyl methacrylate (PMMA) polymer, a novel light modulation device had been successfully fabricated with high chemical and thermal stabilities as well as excellent mechanical durability, originating from the contribution of PMMA acting as buffer layers that counteract excessive mechanical bending within the fragile Bi₂Te₃ flakes. The incorporation of the as-fabricated PMMA-TI-PMMA as saturable absorber, which could bear long-term mechanical loadings, into the fiber laser cavity generated the stable dissipative soliton mode-locking with a 3-dB spectral bandwidth up to 51.62 nm and tunable wavelength range of 22 nm. Our work provides a new way of fabricating PMMA-TI-PMMA sandwiched composite structure as saturable absorber with promising applications for laser operation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Yan, Pengfei; Romero, Eric

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Yan, Pengfei; Romero, Eric

    Capacity loss, and voltage fade upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2 , TM = Ni, Co or Fe) have recently been identified to be correlated to the gradual phase transformation, featuring the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5 nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LMR) particles, which are identical to those reported due to the charge-dischargemore » cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200 kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by energy dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LMR is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. This study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less

  15. Gravity and the membrane-solution interface: theoretical investigations.

    PubMed

    Schatz, A; Linke-Hommes, A

    1989-01-01

    The theory of concentration and potential variations at interfaces is applied to the membrane-solution interface to calculate density variations. The theory is modified to take care of the finite ion volumes in electrolytes. Our model is a phospholipid membrane with a surface charge density of -4.824*10(-6)(As/cm2) in contact with solutions of KCl, NaCl, CaCl2, and mixtures. Maximal density variations of about 4*10(-2)(G/cm3) were found in surface layers between the membrane and the solutions. The extension of the layers is in the range of 1 to 6 nm.

  16. Engineered biomimicry: polymeric replication of surface features found on insects

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  17. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOEpatents

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  18. Investigation of sacrificial layer and building block for layered nanofabrication (LNF)

    NASA Astrophysics Data System (ADS)

    Shih, Ting-Yu

    Layered Nanoscale Fabrication (LNF) is a "bottom-up" procedure that uses multiple layers to build 3-dimensional nanoscale structures. Here, in this dissertation, several candidates for sacrificial layers were explored, The thermal stability of gold nanoparticles and simple patterns are also reported. In order to obtain information on layer thickness and film quality; the samples were characterized using atomic force microscopy (AFM) and ellipsometry. Octadecyltrichlorosilane (OTS) was first investigated for use as a sacrificial layer and we studied filth growth by targeted self-replication of silane multilayers with and without the presence of thiolated gold nanoparticles on silicon oxide substrates. The particles adhered to the substrate during layer grafting. The film grew selectively on the substrate, without covering the particles. AFM was used to investigate the growth mechanism and the process of embedding the nanoparticles. OTS multilayer films up to 9 layers were grown in a linear, bilayer-by bilayer mode, free of islands and defects. We also report on studies of monolayer and multilayer formation of Methyl-11-dimethylmonochlorosilyl-undecanoate films. Flat multilayers up to 3-layers thick were grown. AFM was used to measure the height of an observable "edge" of the multilayer film and this provides and independent determination of the MOSUD layer height of 1.5 nm: However, the particles detached from the surface when we attempted to grow multilayer. One strategy of linking the particles to form 2D arrays, thermal activation in ambient air, was investigated. The morphological properties of flaked nanoparticles and structures on silicon oxide substrates before and after heating were characterized by using AFM. For widely separated 5 nm gold nanoparticles height decreased over 50% at 600 °C. Further heating to 630 °C caused most particles to completely disappear, with small amount of particle residue left on the surface. Particles positioned near to other particles first formed a neck-like structure at 570 °C and then deformed into one wide particle with tail-shape residue at 650 °C. Clusters of Au nanoparticles rearranged and became one large collide with particles residues left on the surface at 630 °C.

  19. Ejection of nanoclusters from gold nanoislet layers by 38 keV Au ions in the elastic stopping mode.

    PubMed

    Baranov, I A; Della-Negra, S; Domaratsky, V P; Chemezov, A V; Kirillov, S N; Novikov, A C; Obnorsky, V V; Pautrat, M; Urbassek, H M; Wien, K; Yarmiychuk, S V; Zhurkin, E E

    2009-07-01

    Total absolute yields of the ejected gold were obtained regardless of the type of the particles are--atoms, clusters, nanoclusters,--as well as absolute yields of gold nanoclusters, from nanoislet gold targets under bombardment by monoatomic gold ions at 45 degrees to the target surface with the energy 38 keV, i.e., in the "purely" elastic stopping mode -6 keV/nm up to the fluence of 4 x 10(12) cm2. Three targets had gold nanoislets on the substrate surface: 2-12 nm; -18 nm; -35 nm, the most probable sizes being 7.1; 9.4; 17.5 nm respectively. The part of the surface area covered with gold was known. Total transfer of gold was determined by means of the neutron-activation analysis and decreased from 450 to 20 at/ion. The number of the ejected gold nanoclusters was determined using TEM and decreased from approximately 0.06 to < 0.01 per one 38 keV Au ion with the increase of the most probable sizes of the nanoislets on the target from 7.1 to 17.5 nm. The yields appeared to be surprisingly high, which is of scientific and practical importance. Tentative estimations were made using molecular dynamics simulations.

  20. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    NASA Astrophysics Data System (ADS)

    Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)

    2014-11-01

    Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  1. Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.

    2011-12-01

    This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.

  2. The role of ion irradiation in activating silent Raman modes via tuning in plasmonic behaviour and surface disorder of Au/ZnO/Pt NFG system

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Ojha, Sunil; Ghosh, Santanu; Singh, Fouran

    2017-09-01

    The perceptible progression of Raman modes of zinc oxide (ZnO) is studied in nanostructures film gap (Au (10 nm)/ZnO (70 nm)/Pt (50 nm)) system with 1.2 MeV Xe ion irradiation. Unattainable silent Raman modes of ZnO turn out to be strongly visible after ion irradiation. The creation of ion-beam-induced lattice disorder, defects, and impurities in a ZnO layer leads to breakdown the translational crystal symmetry that results in the origin of silent modes. The formation of hot-spots in the ZnO layer of the NFG system also supports the enhancement of the intensity of Raman modes. Overall results are attributed to combined effects of lattice disorder, defects, and impurities along with plasmonic effect and explained in the framework of elastic-thermal-spike formation.

  3. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix

    NASA Astrophysics Data System (ADS)

    Bagratashvili, V. N.; Rybaltovsky, A. O.; Minaev, N. V.; Timashev, P. S.; Firsov, V. V.; Yusupov, V. I.

    2010-05-01

    Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 - 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 - 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film.

  4. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.

    2014-05-01

    Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm2V-1s-1, a subthreshold swing of 0.29 V/decade and an on/off current ratio of 109.

  5. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Inmore » addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less

  6. Enhanced cell attachment and hemocompatibility of titanium by nanoscale surface modification through severe plastic integration of magnesium-rich islands and porosification.

    PubMed

    Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali

    2017-10-11

    Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.

  7. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    NASA Astrophysics Data System (ADS)

    Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic

    2014-06-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.

  8. Polarization independent asymmetric light absorption in plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Franco Rêgo, Davi; Rodriguez-Esquerre, Vitaly Felix

    2017-08-01

    The directional dependency of the optical coefficients, such as absorbance and reflectance, of a periodic hole plasmonic structure is numerically simulated and investigated. The tridimensional structure, which is composed of a metallic thin layer on a semiconductor matrix, is polarization independent and exhibits wide angle tolerance. It is found that the optical coefficients of the simulated structure have strong dependency to the radii of the holes due to cavity modes resonance and surface plasmon resonance. Simulations were carried out using gold and silver, varying the holes radii ranging from 40 to 70nm, as well as its depth, from 30 to 60nm of the metallic thin layer and from 100 to 200nm of the semiconductor matrix. A maximum contrast ratio of a unit was obtained. The resonant modes excited in the structure and excitation of surface plasmon polaritons in the metallic side illumination favors absorption, which explains the asymmetric behavior. We also investigate the structure's fabrication sensitivity by randomizing the generation of center of the holes in a supercell. These findings are significant for a diverse range of applications, ranging from optical integrated circuits to solar and thermovoltaics energy harvesting.

  9. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.

    2017-10-01

    In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.

  10. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Andersson, Thorvald; Ive, Tommy

    2015-04-01

    Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO (0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C-445°C and an O2 flow rate of 2.0-2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(10bar 15) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature > 450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm-3 and a Hall mobility of 50 cm2·V-1·s-1.

  11. On-stack two-dimensional conversion of MoS2 into MoO3

    NASA Astrophysics Data System (ADS)

    Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin

    2017-03-01

    Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.

  12. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  13. Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted.

    PubMed

    Zhai, Ke; He, Qing; Li, Liang; Ren, Yi

    2017-09-01

    Chemical mechanical polishing (CMP) is the primary method to realize the global planarization of silicon wafer. In order to improve this process, a novel method which combined megasonic vibration to assist chemical mechanical polishing (MA-CMP) is developed in this paper. A matching layer structure of polishing head was calculated and designed. Silicon wafers are polished by megasonic assisted chemical mechanical polishing and traditional chemical mechanical polishing respectively, both coarse polishing and precision polishing experiments were carried out. With the use of megasonic vibration, the surface roughness values Ra reduced from 22.260nm to 17.835nm in coarse polishing, and the material removal rate increased by approximately 15-25% for megasonic assisted chemical mechanical polishing relative to traditional chemical mechanical polishing. Average Surface roughness values Ra reduced from 0.509nm to 0.387nm in precision polishing. The results show that megasonic assisted chemical mechanical polishing is a feasible method to improve polishing efficiency and surface quality. The material removal and finishing mechanisms of megasonic vibration assisted polishing are investigated too. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Brötzmann, M.; Hofsäss, H.

    2012-09-01

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.

  15. Chiral permselectivity in surface-modified nanoporous opal films.

    PubMed

    Cichelli, Julie; Zharov, Ilya

    2006-06-28

    Nanoporous 7 mum thin opal films comprising 35 layers of 200 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with chiral selector moieties on the silica surface. Diffusion of chiral redox species through the opals was studied by cyclic voltammetry. The chiral opal films demonstrate high selectivity for transport of one enantiomer over the other. This chiral permselectivity is attributed to the surface-facilitated transport utilizing noncovalent interactions between the chiral permeant molecules and surface-bound chiral selectors.

  16. Debris- and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.

    2007-05-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  17. In-situ vacuum deposition technique of lithium on neutron production target for BNCT

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-10-01

    For the purpose of avoiding the radiation blistering of the lithium target for neutron production in BNCT (Boron Neutron Capture Therapy) device, trilaminar Li target, of which palladium thin layer was inserted between cupper substrate and Li layer, was newly designed. In-situ vacuum deposition and electrolytic coating techniques were applied to validate the method of fabrication of the Li/Pd/Cu target, and the layered structures of the synthesized target were characterized. In-situ vacuum re-deposition technique was also established for repairing and maintenance for lithium target damaged. Following conclusions were derived; (1) Uniform lithium layers with the thickness from 1.6 nm to a few hundreds nanometer were formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. (2) Re-deposition of lithium layer on Li surface can be achieved by in situ vacuum deposition technique. (3) Small amount of water and carbonate was observed on the top surface of Li. But the thickness of the adsorbed layer was less than monolayer, which will not affect the quality of the Li target. (4) The formation of Pd-Li alloy layer was observed at the Pd and Li interface. The alloy layer would contribute to the stability of the Li layer.

  18. Plasmon-enhanced tilted fiber Bragg gratings with oriented silver nanowire coatings

    NASA Astrophysics Data System (ADS)

    Renoirt, J.-M.; Debliquy, M.; Albert, J.; Ianoul, A.; Caucheteur, C.

    2014-05-01

    (TFBG) covered by silver nanowires aligned perpendicularly to the fiber axis. TBFGs are a convenient way to measure surrounding refractive index, as they provide intrinsic temperature-insensitivity and preserve the optical fiber structural integrity. With bare TFBGs, sensitivity is about 60 nm/RIU (refractive index unit) while when coated with a gold thin film, surface plasmon resonance can be excited leading to a sensitivity about 600 nm/RIU. In our case, we show that localized plasmon resonances can be excited on silver nanowires. These nanowires (100 nm diameter and about 2.5 µm length) were synthetized by polyol process (ethylene glycol reducing silver nitrate in the presence of poly (vinyl pyrrolidone and sodium chloride). The nanowires were aligned and deposited perpendicularly to the fiber axis on the gratings using the Langmuir-Blodgett technique in order to maximise the coupling between azimuthally polarized light modes and the localized plasmons. Excitation of surface plasmons at wavelengths around 1.5 µm occurred, leading to a dip in the polarization dependent losses of the grating. This dip is highly dependent of the surrounding refractive index, leading to a sensitivity of 650 nm/RIU, which is a 10-fold increase compared to bare gratings. We obtain results equal or slightly higher than those obtained using a gold layer on TFBGs. In spite of the comparable bulk refractometric sensitivity, the use of these oriented nanowire layers provide significantly higher contact surface area for biochemical analysis using bioreceptors, and benefit from stronger polarization selectivity between azimuthal and radially polarized modes.

  19. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  20. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  1. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique

    PubMed Central

    Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi

    2017-01-01

    We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH. PMID:28531106

  2. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer.

    PubMed

    Zhao, Rui; Sun, Ying

    2018-02-03

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10 -7 nm -1 , respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.

  3. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique.

    PubMed

    Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi

    2017-05-20

    We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.

  4. Morphological alterations of radicular dentine pretreated with different irrigating solutions and irradiated with 980-nm diode laser.

    PubMed

    Alfredo, Edson; Souza-Gabriel, Aline E; Silva, Silvio Rocha C; Sousa-Neto, Manoel D; Brugnera-Junior, Aldo; Silva-Sousa, Yara T C

    2009-01-01

    The topographical features of intraradicular dentine pretreated with sodium hypochlorite (NaOCl) or ethylenediamine tetraacetic acid (EDTA) followed by diode laser irradiation have not yet been determined. To evaluate the alterations of dentine irradiated with 980-nm diode laser at different parameters after the surface treatment with NaOCl and EDTA. Roots of 60 canines were biomechanically prepared and irrigated with NaOCl or EDTA. Groups were divided according to the laser parameters: 1.5 W/CW; 1.5 W/100 Hz; 3.0 W/CW; 3.0 W/100 Hz and no irradiation (control). The roots were splited longitudinally and analyzed by scanning electron microscopy (SEM) in a quali-quatitative way. The scores were submitted to two-way Kruskal-Wallis and Dunn's tests. The statistical analysis demonstrated that the specimens treated only with NaOCl or EDTA (control groups) were statistically different (P < 0.05) from the laser-irradiated specimens, regardless of the parameter setting. The specimens treated with NaOCl showed a laser-modified surface with smear layer, fissures, and no visible tubules. Those treated with EDTA and irradiated by laser presented absence of smear layer, tubules partially exposed and melting areas. The tested parameters of 980-nm diode laser promoted similar alterations on dentine morphology, dependent to the type of surface pretreatment. Copyright 2008 Wiley-Liss, Inc.

  5. High-temperature effects on the light transmission through sapphire optical fiber

    DOE PAGES

    Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.

    2018-03-13

    Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less

  6. High-temperature effects on the light transmission through sapphire optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.

    Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less

  7. Effect of absorbing coating on ablation of diamond by IR laser pulses

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  8. Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2016-11-01

    To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.

  9. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2018-01-01

    Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.

  10. Correlation between surface morphology and surface forces of protein A adsorbed on mica.

    PubMed Central

    Ohnishi, S; Murata, M; Hato, M

    1998-01-01

    We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves. PMID:9449346

  11. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  12. All-Aluminum Thin Film Transistor Fabrication at Room Temperature.

    PubMed

    Yao, Rihui; Zheng, Zeke; Zeng, Yong; Liu, Xianzhe; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Chen, Jianqiu; Cai, Wei; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2017-02-23

    Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al₂O₃) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al₂O₃ heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al₂O₃ layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al₂O₃/AZO multilayered channel and AlO x :Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al₂O₃/AZO heterojunction units exhibited a mobility of 2.47 cm²/V·s and an I on / I off ratio of 10⁶. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials.

  13. Redox properties of undoped 5 nm diamond nanoparticles.

    PubMed

    Holt, Katherine B; Ziegler, Christoph; Caruana, Daren J; Zang, Jianbing; Millán-Barrios, Enrique J; Hu, Jingping; Foord, John S

    2008-01-14

    This paper demonstrates the promoting effects of 5 nm undoped detonation diamond nanoparticles on redox reactions in solution. An enhancement in faradaic current for the redox couples Ru(NH(3))(6)(3+/2+) and Fe(CN)(6)(4-/3-) was observed for a gold electrode modified with a drop-coated layer of nanodiamond (ND), in comparison to the bare gold electrode. The ND layer was also found to promote oxygen reduction. Surface modification of the ND powders by heating in air or in a hydrogen flow resulted in oxygenated and hydrogenated forms of the ND, respectively. Oxygenated ND was found to exhibit the greatest electrochemical activity and hydrogenated ND the least. Differential pulse voltammetry of electrode-immobilised ND layers in the absence of solution redox species revealed oxidation and reduction peaks that could be attributed to direct electron transfer (ET) reactions of the ND particles themselves. It is hypothesised that ND consists of an insulating sp(3) diamond core with a surface that has significant delocalised pi character due to unsatisfied surface atoms and C[double bond, length as m-dash]O bond formation. At the nanoscale surface properties of the particles dominate over those of the bulk, allowing ET to occur between these essentially insulating particles and a redox species in solution or an underlying electrode. We speculate that reversible reduction of the ND may occur via electron injection into available surface states at well-defined reduction potentials and allow the ND particles to act as a source and sink of electrons for the promotion of solution redox reactions.

  14. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability.

    PubMed

    Peters, J; Nitsch, M; Kühlmorgen, B; Golbik, R; Lupas, A; Kellermann, J; Engelhardt, H; Pfander, J P; Müller, S; Goldie, K

    1995-01-27

    The surface (S-) layer of the hyperthermophilic archaebacterium Staphylothermus marinus was isolated, dissected into separate domains by chemical and proteolytic methods, and analyzed by spectroscopic, electron microscopic and biochemical techniques. The S-layer is formed by a poorly ordered meshwork of branched, filiform morphological subunits resembling dandelion seed-heads. A morphological subunit (christened by us tetrabrachion) consists of a 70 nm long, almost perfectly straight stalk ending in four straight arms of 24 nm length that provide lateral connectivity by end-to-end contacts. At 32 nm from the branching point, tetrabrachion carries two globular particles of 10 nm diameter that have both tryptic and chymotryptic protease activity. Tetrabrachion is built by a tetramer of M(r) 92,000 polypeptides that form a parallel, four-stranded alpha-helical rod and separate at one end into four strands. These strands interact in a 1:1 stoichiometry with polypeptides of M(r) 85,000 to form the arms. The arms are composed entirely of beta-sheets. All S-layer components contain bound carbohydrates (glucose, mannose, and glucosamine) at a ratio of 38 g/100 g protein for the complete tetrabrachion-protease complex. The unique structure of tetrabrachion is reflected in an extreme thermal stability in the presence of strong denaturants (1% (w/v) SDS of 6M guanidine): the arms, which are stabilized by intramolecular disulphide bridges, melt around 115 degrees C under non-reducing conditions, whereas the stalk sustains heating up to about 130 degrees C. Complete denaturation of the stalk domain requires treatment with 70% (v/v) sulfuric acid or with fuming trifluoromethanesulfonic acid. The globular protease can be heated to 90 degrees C in 6M guanidine and to 120 degrees C in 1% SDS and represents one of the most stable proteases characterized to date.

  15. Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.; hide

    2002-01-01

    ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.

  16. Laser-driven hydrothermal process studied with excimer laser pulses

    NASA Astrophysics Data System (ADS)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  17. STM/STS study of superconducting properties in Ca10(Pt4As8)(Fe2As2)5

    NASA Astrophysics Data System (ADS)

    Kim, Jisun; Nam, Hyoungdo; Li, Guorong; Karki, Amar; Shih, Chih-Kang; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.

    2014-03-01

    Newly discovered iron-based superconductor, Ca10(Pt4As8)(Fe2As2)5 (Tc = 34 K) is studied using scanning tunneling microscopy/spectroscopy (STM/S). Given the symmetry of the crystal structure, several surface terminations are expected with roughly same probability: 1) Ca or partial Ca layer on top Fe2As2; 2) Ca or partial Ca layer on top Pt4As8 layer; 3) A Fe2As2 layer, and; 4) A Pt4As8layer.Surprisingly,Fe2As2 related layers (1 & 3) are rarely observed (less than 1%). Instead, we observe Pt4As8 layers separated by unit-cell-high (~ 1 nm) steps accompanied with Ca or partial Ca layer on top Pt4As8 layer (1 - 2 Å step height). Scanning tunneling spectroscopy reveals different spectra for each surface, with superconducting coherence peaks seen only on Ca layers. We argue that intermediary layers are proximity-coupled to superconducting Fe2As2 layers. The results from Ca10(Pt4As8)(Fe2As2)5 are discussed with the properties observed in other iron-based superconductors. Funded by NSF

  18. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  19. Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua

    2012-03-01

    The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.

    Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less

Top