Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiyan; Wang, Wenliang; Yang, Weijia
2015-05-14
AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr
2014-09-15
AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less
Optical models for radio-frequency-magnetron reactively sputtered AlN films
NASA Astrophysics Data System (ADS)
Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.
2005-10-01
The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.
Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng
2017-01-01
We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu
2017-10-01
We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.
NASA Astrophysics Data System (ADS)
Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du
2016-05-01
We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).
NASA Astrophysics Data System (ADS)
Noorprajuda, Marsetio; Ohtsuka, Makoto; Fukuyama, Hiroyuki
2018-04-01
The effect of oxygen partial pressure (PO2) on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC) reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (-c)-polarity to aluminum (+c)-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002) and (10-12) X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Lei; Wang, Lei; Li, Ding; Song, Jie; Liu, Ningyang; Chen, Weihua; Wang, Yuzhou; Yang, Zhijian; Hu, Xiaodong
2012-09-01
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109 cm-2 without AlN IL to the maximum of 1×1010 cm-2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1- x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70 meV with a 10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.
AlN/GaN heterostructures grown by metal organic vapor phase epitaxy with in situ Si 3N 4 passivation
NASA Astrophysics Data System (ADS)
Cheng, Kai; Degroote, S.; Leys, M.; Medjdoub, F.; Derluyn, J.; Sijmus, B.; Germain, M.; Borghs, G.
2011-01-01
AlN/GaN heterostructures are very attractive because their theoretical two-dimensional electron gas (2DEG) density may exceed 5×10 13/cm 2[1]. However, there are very few reports on AlN/GaN heterostructures grown by MOVPE. In this work, we show that good quality AlN layers can be grown on GaN at a relatively low growth temperature when TMIn is added to the carrier gas flow as a surfactant. Analysis by RBS revealed that at a growth temperature of 900 °C or higher no Indium is actually incorporated. Various thicknesses of AlN are grown, from 2 to 8 nm. Finally, 2-3 nm in situ Si 3N 4 is deposited in order to protect the AlN surface and thus prevent stress relaxation. AFM revealed that the root-mean-square (RMS) roughness in a 1×1 μm 2 area is 0.25 nm. When the AlN thickness reaches 8 nm, the sheet resistance can be as low as 186±3 Ω/□. Van der Pauw-Hall measurements show that the electron density is about 2.5×10 13/cm 2 with electron mobility exceeding 1140 cm 2/V s when extra 50 nm PECVD SiN is deposited.
Low temperature aluminum nitride thin films for sensory applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarar, E.; Zamponi, C.; Piorra, A.
2016-07-15
A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/Vmore » up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alden, D.; Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin; Guo, W.
Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with amore » root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.« less
MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality
NASA Astrophysics Data System (ADS)
Lemettinen, J.; Okumura, H.; Kim, I.; Kauppinen, C.; Palacios, T.; Suihkonen, S.
2018-04-01
We present the effect of miscut angle of SiC substrates on N-polar AlN growth. The N-polar AlN layers were grown on C-face 4H-SiC substrates with a miscut towards 〈 1 bar 1 0 0 〉 by metal-organic vapor phase epitaxy (MOVPE). The optimal V/III ratios for high-quality AlN growth on 1 ° and 4 ° miscut substrates were found to be 20,000 and 1000, respectively. MOVPE grown N-polar AlN layer without hexagonal hillocks or step bunching was achieved using a 4H-SiC substrate with an intentional miscut of 1 ° towards 〈 1 bar 1 0 0 〉 . The 200-nm-thick AlN layer exhibited X-ray rocking curve full width half maximums of 203 arcsec and 389 arcsec for (0 0 2) and (1 0 2) reflections, respectively. The root mean square roughness was 0.4 nm for a 2 μm × 2 μm atomic force microscope scan.
Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface
NASA Astrophysics Data System (ADS)
Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang
2018-03-01
High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.
Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering
NASA Astrophysics Data System (ADS)
Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu
2018-02-01
A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.
NASA Astrophysics Data System (ADS)
Loser, Stephen C.
(Al,Ga,In)N semiconductor materials are widely used in high-frequency, high-power electronics due to their wide bandgaps. Both metal- and N-polar AlGaN/GaN high-electron-mobility transistors (HEMTs) demonstrated excellent performances as high-frequency signal amplifiers. While the majority of today's III-N transistors are based on metal-polar heterostructures, N-polar materials have gained attention following the breakthrough in the deposition of high quality films. Compared to their metal-polar counterparts, N-polar HEMT structures improve the scalability of devices, increase the electron confinement and reduce contact resistance, exhibiting great potentials in high-frequency device fabrications. In order to suppress alloy scattering in the HEMT structures, a thin AlN interlayer is usually introduced between the AlGaN barrier and the GaN channel. However, a significant amount of unintentional Ga incorporation was observed in AlN films grown by metal-organic chemical vapor deposition (MOCVD), one of the major techniques to produce the HEMT epi structures. In the first part of my thesis, the impact of impure AlN interlayers on HEMTs was examined, explaining the significant improvement in electron mobility despite of the high Ga concentration of ˜ 50%. Moreover, both metal-polar and N-polar AlN films grown by MOCVD under various conditions were investigated, the results of which indicated that the major source of unintentional Ga was the former Ga deposition on the susceptor in the same run. It was also observed that N-polar AlN films contained less Ga compared to metal-polar ones when they were grown under same conditions. Methods to suppress the Ga were also discussed. In addition, the morphological and electrical properties of the GaN/AlN/GaN heterostructures with AlN films grown under different conditions were analyzed by atomic force microscopy (AFM) and room temperature Van der Pauw hall measurement. Following the study of AlN interlayers in the HEMT structures, the development of N-polar HEMT epitaxial structures with highly-scaled channel thicknesses was discussed in detail. Small channel thickness is critical to prevent short channel effects when scaling down the lateral size of N-polar HEMT devices. By modifying the Si doping level in the back-barrier and the Al composition of the AlGaN cap, the channel thickness of the conventional N-polar HEMT structure with pure GaN channel was successfully scaled down to 8 nm. To further reduce the channel thickness, a thin InGaN layer was introduced between the channel and the AlGaN cap, leading to a decrease of the electric field in the channel and an increase of the distance between the centroid of the 2DEG and the AlN/GaN interface, which suppressed the scattering at the interface and significantly improved the electron mobility. The sheet charge density also increased due to the net positive polarization charge at the GaN/InGaN interface. The design was demonstrated by MOCVD. An increase of 73% in electron mobility from 606 to 1141 cm2/(V˙s) was observed when the 6 nm thick pure GaN channel was replaced by a 4 nm GaN / 2 nm In0.1Ga0.9N composite channel. The smallest applicable channel thickness was decreased to 4 nm with the composite channel design.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin
2013-06-01
We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.
Establishment of design space for high current gain in III-N hot electron transistors
NASA Astrophysics Data System (ADS)
Gupta, Geetak; Ahmadi, Elaheh; Suntrup, Donald J., III; Mishra, Umesh K.
2018-01-01
This paper establishes the design space of III-N hot electron transistors (HETs) for high current gain by designing and fabricating HETs with scaled base thickness. The device structure consists of GaN-based emitter, base and collector regions where emitter and collector barriers are implemented using AlN and InGaN layers, respectively, as polarization-dipoles. Electrons tunnel through the AlN layer to be injected into the base at a high energy where they travel in a quasi-ballistic manner before being collected. Current gain increases from 1 to 3.5 when base thickness is reduced from 7 to 4 nm. The extracted mean free path (λ mfp) is 5.8 nm at estimated injection energy of 1.5 eV.
Inclined dislocation arrays in AlGaN/AlGaN quantum well structures emitting at 290 nm
NASA Astrophysics Data System (ADS)
Chang, T. Y.; Moram, M. A.; McAleese, C.; Kappers, M. J.; Humphreys, C. J.
2010-12-01
We report on the structural and optical properties of deep ultraviolet emitting AlGaN/AlGaN multiple quantum wells (MQWs) grown on (0001) sapphire by metal-organic vapor phase epitaxy using two different buffer layer structures, one containing a thin (1 μm) AlN layer combined with a GaN interlayer and the other a thick (4 μm) AlN layer. Transmission electron microscopy analysis of both structures showed inclined arrays of dislocations running through the AlGaN layers at an angle of ˜30°, originating at bunched steps at the AlN surface and terminating at bunched steps at the surface of the MQW structure. In all layers, these inclined dislocation arrays are surrounded by AlGaN with a relatively higher Ga content, consistent with plan-view cathodoluminescence maps in which the bunched surface steps are associated with longer emission wavelengths. The structure with the 4 μm-thick AlN buffer layer had a dislocation density lower by a factor of 2 (at (1.7±0.1)×109 cm-2) compared to the structure with the 1 μm thick AlN buffer layer, despite the presence of the inclined dislocation arrays.
AlGaN materials for semiconductor sensors and emitters in 200- to 365-nm range
NASA Astrophysics Data System (ADS)
Usikov, Alexander S.; Shapvalova, Elizaveta V.; Melnik, Yuri V.; Ivantsov, Vladimir A.; Dmitriev, Vladimir A.; Collins, Charles J.; Sampath, Anand V.; Garrett, Gregory A.; Shen, Paul H.; Wraback, Michael
2004-12-01
In this paper we report on the fabrication and characterization of GaN, AlGaN, and AlN layers grown by hydride vapor phase epitaxy (HVPE). The layers were grown on 2-inch and 4-inch sapphire and 2-inch silicon carbide substrates. Thickness of the GaN layers was varied from 2 to 80 microns. Surface roughness, Rms, for the smoothest GaN layers was less than 0.5 nm, as measured by AFM using 10 μm x 10 μm scans. Background Nd-Na concentration for undoped GaN layers was less than 1x1016 cm-3. For n-type GaN layers doped with Si, concentration Nd-Na was controlled from 1016 to 1019 cm-3. P-type GaN layers were fabricated using Mg doping with concentration Na-Nd ranging from 4x1016 to 3x1018 cm-3, for various samples. Zn doping also resulted in p-type GaN formation with concnetration ND-NA in the 1017 cm-3 range. UV transmission, photoluminescence, and crystal structure of AlGaN layers with AlN concentration up to 85 mole.% were studied. Dependence of optical band gap on AlGaN alloy composition was measured for the whole composition range. Thick (up to 75 microns) crack-free AlN layers were grown on SiC substrates. Etch pit density for such thick AlN layers was in the 107 cm-2 range.
Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation
NASA Astrophysics Data System (ADS)
Muneshwar, Triratna; Cadien, Ken
2018-03-01
In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.
AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Chen, Bingzhang; Chu, Futong; Liu, Xingzhao; Li, Yanrong; Rong, Jian; Jiang, Huabei
2013-07-01
We report on the fabrication of a piezoelectric micromachined ultrasonic transducer (pMUT) and its application to photoacoustic imaging. With c-axis orientation, AlN was grown on a 300 nm-thick SiO2 film and a 200 nm-thick bottom electrode at room temperature. The device consists of SiO2, bottom electrode, AlN films, upper electrode, and polyimide protective layer. An area ratio of 0.45 was used between the upper electrode and the vibration area of the pMUT to provide an optimal sensitivity of transducer. Its resonant frequency was measured to be 2.885 MHz, and the coupling coefficient in the range of 2.38%-3.71%. The fabricated pMUT was integrated with a photoacoustic imaging system and photoacoustic image of a phantom was obtained. The resolution of the system was measured to be about 240 μm.
Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC
NASA Astrophysics Data System (ADS)
Volkova, Anna; Ivantsov, Vladimir; Leung, Larry
2011-01-01
The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.
Protective capping and surface passivation of III-V nanowires by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko
2016-01-15
Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less
Piezoelectric thin films and their applications for electronics
NASA Astrophysics Data System (ADS)
Yoshino, Yukio
2009-03-01
ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha
2015-01-01
The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less
NASA Astrophysics Data System (ADS)
Macchi, Carlos; Bürgi, Juan; García Molleja, Javier; Mariazzi, Sebastiano; Piccoli, Mattia; Bemporad, Edoardo; Feugeas, Jorge; Sennen Brusa, Roberto; Somoza, Alberto
2014-08-01
It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.
2016-06-17
AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less
Growth of crack-free GaN films on Si(111) substrate by using Al-rich AlN buffer layer
NASA Astrophysics Data System (ADS)
Lu, Yuan; Cong, Guangwei; Liu, Xianglin; Lu, Da-Cheng; Zhu, Qinsheng; Wang, Xiaohui; Wu, Jiejun; Wang, Zhanguo
2004-11-01
GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 μm thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 μm thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously.
Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Williams, O A; Lebedev, V; Nebel, C E; Ambacher, O
2013-01-18
Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10(8) cm(-2)), in the case of hydrogen-treated ND seeding particles, to very high values of 10(11) cm(-2) for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young's moduli of more than 1000 GPa.
Gettering of Residual Impurities by Ion Implantation Damage in Poly-AlN UV Diode Detectors
NASA Astrophysics Data System (ADS)
Khan, A. H.; Stacy, T.; Meese, J. M.
1996-03-01
UV diode detectors have been fabricated from oriented polycrystalline AlN grown on (111) n-type 3-15Ω-cm Si substrates by CVD using AlCl3 and ammonia with a hydrogen carrier gas at 760-800C, 40-45 torr and gas flow rates of 350, 120, and 120 sccm for hydrogen, ammonia and hydrogen over heated AlCl_3. Half of the AlN film of thickness 1.5-2.0 microns was masked off prior to ion implantation. Samples were ion-implanted at 5 kV with methane, nitrogen and argon to a dose of 5-6 x 10^18 ions/cm^2. The AlN was contacted with sputtered Au while the Si was contacted with evaporated Al. No annealing was performed. Rectification was obtained as a result of radiation damage in the AlN. SIMs analysis showed a reduction of oxygen, hydrogen, chlorine and carbon by several orders of magnitude and to a depth of several microns in the ion implanted samples compared to the masked samples. The quantum efficiency was 16nm uncorrected for reflection from the AlN and thin metal contact.
Electron microscopy of AlN-SiC interfaces and solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.; Tanaka, S.; Davis, R.F.
In a 2H AlN-SiC solid solution grown by MBE on {alpha}(6H)-SiC (3{degrees} from [0001]), the epilayer contained a high density of basal faults related to {approximately}5 nm steps on the growth surface: no compositional inhomogeneity was detected by PEELS. In diffusion couples of polycrystalline, sintered AlN on SiC annealed at 1600 and 1700{degrees}C. 8H sialon [nominally (AlN){sub 2}Al{sub 2}O{sub 3}] formed at the interface of SiC and recrystallized epitactic AlN grains, and Si{sub 3}N{sub 4}-rich {beta}{prime} sialon particles formed in the SiC. No interdiffusion was detected by PEELS in diffusion couples of MBE-grown AlN on SiC annealed at 1700 andmore » 1850{degrees}C. Irregular epilayer thickness explains companion Auger depth profile results.« less
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-03
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-01
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075
Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature
Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong
2015-01-01
Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969
Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy
Choi, Sukwon; Griffin, Benjamin A.
2016-01-06
Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory
2009-10-01
AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.
Kim, Kyeong Heon; Lee, Tae Ho; Kim, Tae Geun
2017-07-19
A hybrid-type transparent conductive electrode (H-TCE) structure comprising an AlN rod array with conducting filaments (CFs) and indium tin oxide (ITO) films is proposed to improve both current injection and distribution as well as optical transmittance in the UV region. These CFs, generated in UV-transparent AlN rod areas using an electric field, can be used as conducting paths for carrier injection from a metal to a semiconductor such as p-(Al)GaN, which allows perfect Ohmic behavior with high transmittance (>95% at 365 nm) to be obtained. In addition, conduction across AlN rods and Ohmic conduction mechanisms are investigated by analyzing AlN rods and AlN rod/p-AlGaN film interfaces. We apply these H-TCEs to three near-UV light-emitting diodes (LEDs) (385 nm LEDs with p-GaN and p-AlGaN terminated surfaces and 365 nm LED with p-AlGaN terminated surface). We confirm that the light power outputs increase by 66%, 79%, and 103%, whereas the forward voltages reduce by 5.6%, 10.2%, and 8.6% for 385 nm p-GaN terminated, 385 nm p-AlGaN terminated, and 365 nm p-AlGaN terminated LEDs with H-TCEs, respectively, compared to LEDs with reference ITOs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Meei-Ru; Chen, Hou-Guang; Kao, Hui-Ling, E-mail: hlkao@cycu.edu.tw
2015-05-15
AlN thin films have been deposited directly on c-plane sapphire substrates at low temperatures by a helicon sputtering system. The structural quality of AlN epitaxial films was characterized by x-ray diffractometry and transmission electron microscopy. The films exhibit smooth surface with root-mean-square roughness as small as 0.7 nm evaluated by atomic force microscope. The optical transmittance spectra show a steep absorption edge at the wavelength of 200 nm and a high transmittance of over 80% in the visible range. The band-edge transition (6.30 eV) of AlN film was observed in the cathodoluminescence spectrum recorded at 11 K. The spectral response of metal–semiconductor–metal photodetectors constructedmore » with AlN/sapphire reveals the peak responsivity at 200 nm and a UV/visible rejection ratio of about two orders of magnitude. The results of this low temperature deposition suggest the feasibility of the epitaxial growth of AlN on sapphire substrates and the incorporation of the AlN films in the surface acoustic wave devices and the optical devices at deep ultraviolet region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Young, Travis R.; Griffin, Ben
Here, this work reports the utilization of a recently developed film, ScAlN, as a silicon etch mask offering significant improvements in high etch selectivity to silicon. Utilization of ScAlN as a fluorine chemistry based deep reactive ion etch mask demonstrated etch selectivity at 23 550:1, four times better than AlN, 11 times better than Al 2O 3, and 148 times better than silicon dioxide with significantly less resputtering at high bias voltage than either Al 2O 3 or AlN. Ellipsometry film thickness measurements show less than 0.3 nm/min mask erosion rates for ScAlN. Micromasking of resputtered Al for Al 2Omore » 3, AlN, and ScAlN etch masks is also reported here, utilizing cross-sectional scanning electron microscope and confocal microscope roughness measurements. With lower etch bias, the reduced etch rate can be optimized to achieve a trench bottom surface roughness that is comparable to SiO 2 etch masks. Etch mask selectivity enabled by ScAlN is likely to make significant improvements in microelectromechanical systems, wafer level packaging, and plasma dicing of silicon.« less
NASA Astrophysics Data System (ADS)
Bläsing, J.; Krost, A.; Hertkorn, J.; Scholz, F.; Kirste, L.; Chuvilin, A.; Kaiser, U.
2009-02-01
This paper presents an x-ray study of GaN, which is grown on nominally undoped and oxygen-doped AlN nucleation layers on sapphire substrates by metal organic vapor phase epitaxy. Without additional oxygen doping a trimodal nucleation distribution of AlN is observed leading to inhomogeneous in-plane strain fields, whereas in oxygen-doped layers a homogeneous distribution of nucleation centers is observed. In both types of nucleation layers extremely sharp correlation peaks occur in transverse ω-scans which are attributed to a high density of edge-type dislocations having an in-plane Burgers vector. The correlation peaks are still visible in the (0002) ω-scans of 500 nm GaN which might mislead an observer to conclude incorrectly that there exists an extremely high structural quality. For the undoped nucleation layers depth-sensitive measurements in grazing incidence geometry reveal a strong thickness dependence of the lattice parameter a, whereas no such dependence is observed for doped samples. For oxygen-doped nucleation layers, in cross-sectional transmission electron microscopy images a high density of stacking faults parallel to the substrate surface is found in contrast to undoped nucleation layers where a high density of threading dislocations is visible. GaN of 2.5 μm grown on top of 25 nm AlN nucleation layers with an additional in situ SiN mask show full widths at half maximum of 160″ and 190″ in (0002) and (10-10) high-resolution x-ray diffraction ω-scans, respectively.
Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong
2014-12-21
Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.
C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
NASA Astrophysics Data System (ADS)
Lin, Jianliang; Chistyakov, Roman
2017-02-01
Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.
Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites
Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane
2015-01-01
Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkerk, B. E.; Soussou, A.; Carette, M.
This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1}more » K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.« less
ScAlN etch mask for highly selective silicon etching
Henry, Michael David; Young, Travis R.; Griffin, Ben
2017-09-08
Here, this work reports the utilization of a recently developed film, ScAlN, as a silicon etch mask offering significant improvements in high etch selectivity to silicon. Utilization of ScAlN as a fluorine chemistry based deep reactive ion etch mask demonstrated etch selectivity at 23 550:1, four times better than AlN, 11 times better than Al 2O 3, and 148 times better than silicon dioxide with significantly less resputtering at high bias voltage than either Al 2O 3 or AlN. Ellipsometry film thickness measurements show less than 0.3 nm/min mask erosion rates for ScAlN. Micromasking of resputtered Al for Al 2Omore » 3, AlN, and ScAlN etch masks is also reported here, utilizing cross-sectional scanning electron microscope and confocal microscope roughness measurements. With lower etch bias, the reduced etch rate can be optimized to achieve a trench bottom surface roughness that is comparable to SiO 2 etch masks. Etch mask selectivity enabled by ScAlN is likely to make significant improvements in microelectromechanical systems, wafer level packaging, and plasma dicing of silicon.« less
Camargos G. V.; Bhattacharya P.; van Lenthe G. H.; Del Bel Cury A. A.; Naert I.; Duyck J.; Vandamme K.
2015-01-01
Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness. PMID:26027958
NASA Astrophysics Data System (ADS)
Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.
2007-05-01
Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.
Gallium nitride photocathodes for imaging photon counters
NASA Astrophysics Data System (ADS)
Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.
2010-07-01
Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.
Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD
NASA Astrophysics Data System (ADS)
O'Connell, J. H.; Lee, M. E.; Westraadt, J.; Engelbrecht, J. A. A.
2018-04-01
High resolution transmission electron microscopy (TEM) has been used to characterize defects structures in AlN/AlGaN epilayers grown by metal-organic chemical vapour deposition (MOCVD) on c-plane sapphire (Al2O3) substrates. The AlN buffer layer was shown to be epitaxially grown on the sapphire substrate with the two lattices rotated relatively through 30°. The AlN layer had a measured thickness of 20-30 nm and was also shown to contain nano-sized voids. The misfit dislocations in the buffer layer have been shown to be pure edge with a spacing of 1.5 nm. TEM characterization of the AlGaN epilayers was shown to contain a higher than expected threading dislocation density of the order 1010 cm-2 as well as the existence of "nanopipes". TEM analysis of the planar lamella for AlGaN has presented evidence for the possibility of columnar growth. The strain and misorientation mapping in the AlGaN epilayer by transmission Kikuchi diffraction (TKD) using the FIB lamella has also been demonstrated to be complimentary to data obtained by TEM imaging.
The electronic structures of AlN and InN wurtzite nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen; Li, Dong-Xiao
2017-07-01
We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.
JPRS Report, Science and Technology Japan, 3rd Microelectronics Symposium
1990-04-20
Electric Power Insulating Substrate; Degree of Sintering, Thermal Conductivity of Aluminum Nitride Ultrafine Particles ; Effect of Baking Pressure on AlN Sintering; Thick Film Resistor for Use in AlN Ceramics.
AlN grown on Si(1 1 1) by ammonia-molecular beam epitaxy in the 900-1200 °C temperature range
NASA Astrophysics Data System (ADS)
Tamariz, Sebastian; Martin, Denis; Grandjean, Nicolas
2017-10-01
We present a comprehensive study of AlN growth on Si(1 1 1) substrate by gas source molecular beam epitaxy with ammonia as nitrogen precursor in the high temperature range. We first demonstrate that the observation of the silicon 7 × 7 surface reconstruction by reflection high energy electron diffraction can be misleading as this technique is not sensitive to low density surface defects like SiC crystallites. A careful in situ cleaning procedure with annealing cycles at 1100 °C allows getting rid of any surface defects, as shown by atomic force microscopy imaging. Then, we explore the effect of the growth temperature on the surface morphology and structural properties of 100 nm thick AlN epilayers. At 1200 °C, the growth proceeds with the step flow mode regime, which induces spiral-growth around screw-type dislocations and therefore surface roughening. On the other hand, a smooth surface morphology can be achieved by setting the temperature at 1100 °C, which corresponds to the growth mode transition from two-dimensional nucleation to step flow. A further decrease of the growth temperature to 900 °C leads to surface defects ascribed to polarity inversion domains. Similar defects are observed for growths performed at 1100 °C when the NH3 flow is reduced below 100 sccm. This points out the sensitivity of AlN to the surface stoichiometry.
NASA Astrophysics Data System (ADS)
Deen, D. A.; Storm, D. F.; Bass, R.; Meyer, D. J.; Katzer, D. S.; Binari, S. C.; Lacis, J. W.; Gougousi, T.
2011-01-01
AlN/GaN heterostructures with a 3.5 nm AlN cap have been grown by molecular beam epitaxy followed by a 6 nm thick atomic layer deposited Ta2O5 film. Transistors fabricated with 150 nm length gates showed drain current density of 1.37 A/mm, transconductance of 315 mS/mm, and sustained drain-source biases up to 96 V while in the off-state before destructive breakdown as a result of the Ta2O5 gate insulator. Terman's method has been modified for the multijunction capacitor and allowed the measurement of interface state density (˜1013 cm-2 eV-1). Small-signal frequency performance of 75 and 115 GHz was obtained for ft and fmax, respectively.
Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition
NASA Astrophysics Data System (ADS)
France, Ryan; Xu, Tao; Chen, Papo; Chandrasekaran, R.; Moustakas, T. D.
2007-02-01
The authors report on the formation and evaluation of V-based Ohmic contacts to n-AlGaN films in the entire alloy composition. The films were produced by plasma assisted molecular beam epitaxy and doped n-type with Si. The conductivity of the films was determined to vary from 103to10-2(Ωcm )-1 as the AlN mole fraction increases from 0% to 100%. Ohmic contacts were formed by e-beam evaporation of V(15nm )/Al(80nm)/V(20nm)/Au(100nm). These contacts were rapid thermal annealed in N2 for 30s at various temperatures. The optimum annealing temperature for this contact scheme to n-GaN is about 650°C and increases monotonically to about 1000°C for 95%-100% AlN mole fraction. The specific contact resistivity was found to be about 10-6Ωcm2 for all films up to 70% AlN mole fraction and then increases to 0.1-1Ωcm2 for films from 95%-100% AlN mole fraction. These results were accounted for by hypothesizing that vanadium, upon annealing, interacts with the nitride film and forms vanadium nitride, which is consistent with reports that it is a metal with low work function.
MOVPE growth of nitrogen- and aluminum-polar AlN on 4H-SiC
NASA Astrophysics Data System (ADS)
Lemettinen, J.; Okumura, H.; Kim, I.; Rudzinski, M.; Grzonka, J.; Palacios, T.; Suihkonen, S.
2018-04-01
We present a comprehensive study on metal-organic vapor phase epitaxy growth of N-polar and Al -polar AlN on 4H-SiC with 4° miscut using constant growth parameters. At a high temperature of 1165 °C, N-polar AlN layers had high crystalline quality whereas the Al-polar AlN surfaces had a high density of etch pits. For N-polar AlN, the V/III ratio below 1000 forms hexagonal hillocks, while the V/III ratio over 1000 yields step bunching without the hillocks. 1-μm-thick N-polar AlN layer grown in optimal conditions exhibited FWHMs of 307, 330 and 337 arcsec for (0 0 2), (1 0 2) and (2 0 1) reflections, respectively.
Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia
2015-03-15
Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width atmore » half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.« less
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Zeng, Jianping; Geng, Chong; Cong, Peipei; Sun, Lili; Wei, Tongbo; Zhao, Lixia; Yan, Qingfeng; He, Chenguang; Qin, Zhixin; Li, Jinmin
2014-06-01
We report high-performance AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates (NPSS) using metal-organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth on NPSS, 4-μm AlN buffer layer has shown strain relaxation and a coalescence thickness of only 2.5 μm. The full widths at half-maximum of X-ray diffraction (002) and (102) ω-scan rocking curves of AlN on NPSS are only 69.4 and 319.1 arcsec. The threading dislocation density in AlGaN-based multi-quantum wells, which are grown on this AlN/NPSS template with a light-emitting wavelength at 283 nm at room temperature, is reduced by 33% compared with that on flat sapphire substrate indicated by atomic force microscopy measurements, and the internal quantum efficiency increases from 30% to 43% revealed by temperature-dependent photoluminescent measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302
2015-05-15
Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performedmore » by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachiv, Ivo, E-mail: stachiv@fzu.cz; Institute of Physics, Czech Academy of Sciences, Prague; Kuo, Chih-Yun
2016-04-15
Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluatedmore » from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO{sub 2} with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.« less
Micromachined ultrasonic transducers with piezoelectric aluminum nitride thin films
NASA Astrophysics Data System (ADS)
Wang, Qianghua
In this research, a laboratory prototype of micromachined ultrasonic transducer (MUT) has been designed and fabricated with the application of piezoelectric aluminum nitride (AlN) thin films. The fabrication process of MUT device, especially the deposition of AlN thin film, is compatible with a standard integrated circuits (IC) technology. Preliminary results have demonstrated the feasibility of AlN thin film applied in MUT for medical ultrasonic detection. AlN thin film was grown on aluminum metal layer by plasma source molecular beam epitaxy (PSMBE) system. X-ray diffraction (XRD) shows the films exhibit a high c-axis texture for a thickness of 1.2 mum grown at a temperature of 450°C. For the AlN film of 1.20 mum, residual stress was a compressive stress of 883 Mpa, which reduced with increasing thickness of the film. Based on the fundamentals of vibration and piezoelectricity, MUT device including silicon resonator and AlN sandwich structure has been designed. A prototype of 8 x 8 devices on a 3″ silicon (100) wafer has been fabricated. A series of experiments were conducted to find the process flow and the optimum process parameters. MUT devices were characterized by optical, electrical, and acoustic measurements. The measured resonant frequencies AlN MUT and PVDF MUT devices were larger than the calculated value in order of 5% to 12%. The ratios of the flexural frequencies to the fundamental frequency were much close to the MUT design model within a 3% error for AlN MUT devices. Resonant frequencies of AlN MUT devices were also verified by the reflection coefficient with a network analyzer and the electrical impedance with an impendence analyzer. Effective coupling factors of AlN MUT devices were determined to be 0.18 from the resonant frequency and the antiresonant frequency. Fractional bandwidth of an AlN MUT was 8.30% at the center frequency of 2.65 MHz. Pressure sensitivity was stable between 14 mV/MPa and 18 mV/MPa independent on the pressure intensity and the distance from the ultrasonic source to the AlN MUT device. Immersion measurement, device linear characteristics, and performance of AlN MUT device exhibit a great potential for the state-of-art ultrasonic camera.
NASA Astrophysics Data System (ADS)
Kaun, Stephen W.; Mazumder, Baishakhi; Fireman, Micha N.; Kyle, Erin C. H.; Mishra, Umesh K.; Speck, James S.
2015-05-01
When grown at a high temperature (820 °C) by ammonia-based molecular beam epitaxy (NH3-MBE), the AlN layers of metal-polar AlGaN/AlN/GaN heterostructures had a high GaN mole fraction (∼0.15), as identified by atom probe tomography in a previous study (Mazumder et al 2013 Appl. Phys. Lett. 102 111603). In the study presented here, growth at low temperature (<740 °C) by NH3-MBE yielded metal-polar AlN layers that were essentially pure at the alloy level. The improved purity of the AlN layers grown at low temperature was correlated to a dramatic increase in the sheet density of the two-dimensional electron gas (2DEG) at the AlN/GaN heterointerface. Through application of an In surfactant, metal-polar AlN(3.5 nm)/GaN and AlGaN/AlN(2.5 nm)/GaN heterostructures grown at low temperature yielded low 2DEG sheet resistances of 177 and 285 Ω/□, respectively.
Method and apparatus for aluminum nitride monocrystal boule growth
Wang, Shaoping
2009-04-28
A crystal growth setup within a physical vapor transport growth furnace system for producing AlN monocrystal boules at high temperatures includes a crucible effective to contain an AlN source material and a growing AlN crystal boule. This crucible has a thin wall thickness in at least that portion housing the growing AlN crystal boule. Other components include a susceptor, in case of an inductive heating, or a heater, in case of a resistive heating, a thermal insulation enclosing the susceptor or heater effective to provide a thermal gradient inside the crucible in the range of 5-100.degree. C./cm and a furnace chamber capable of being operated from a vacuum (<0.1 torr) to a gas pressure of at least 4000 torr through filling or flowing a nitrogen gas or a mixture of nitrogen gas and argon gas. The high temperatures contribute to a high boule growth rate and the thin wall thickness contributes to reduced imparted stress during boule removal.
Enhancement of indium incorporation to InGaN MQWs on AlN/GaN periodic multilayers
NASA Astrophysics Data System (ADS)
Monavarian, Morteza; Hafiz, Shopan; Das, Saikat; Izyumskaya, Natalia; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy
2016-02-01
The effect of compressive strain in buffer layer on strain relaxation and indium incorporation in InGaN multi-quantum wells (MQWs) is studied for two sets of samples grown side by side on both relaxed GaN layers and strained 10-pairs of AlN/GaN periodic multilayers. The 14-nm AlN layers were utilized in both multilayers, while GaN thickness was 4.5 and 2.5 nm in the first and the second set, respectively. The obtained results for the InGaN active layers on relaxed GaN and AlN/GaN periodic multilayers indicate enhanced indium incorporation for more relaxed InGaN active layers providing a variety of emission colors from purple to green.
NASA Astrophysics Data System (ADS)
Zeimer, Ute; Jeschke, Joerg; Mogilatenko, Anna; Knauer, Arne; Kueller, Viola; Hoffmann, Veit; Kuhn, Christian; Simoneit, Tino; Martens, Martin; Wernicke, Tim; Kneissl, Michael; Weyers, Markus
2015-11-01
The effects of the template on the optical and structural properties of Al0.75Ga0.25N/Al0.8Ga0.2N multiple quantum well (MQWs) laser active regions have been investigated. The laser structures for optical pumping were grown on planar c-plane AlN/sapphire as well as on thick epitaxially laterally overgrown (ELO) AlN layers on patterned AlN/sapphire. Two ELO AlN/sapphire templates were investigated, one with a miscut of the sapphire surface to the m-direction with an angle of 0.25°, the other with a miscut angle of 0.25° to the sapphire a-direction. The MQWs are studied by atomic force microscopy, plan-view cathodoluminescence (CL) at room temperature and 83 K as well as transmission electron microscopy using high-angle annular dark-field imaging and energy-dispersive x-ray spectroscopy. The results are compared to optical pumping measurements. It was found that the surface morphology of the templates determines the lateral wavelength distribution in the MQWs observed by spectral CL mappings. The lateral wavelength spread is largest for the laser structures grown on ELO AlN with miscut to sapphire a-direction caused by the local variation of the MQW thicknesses and the Ga incorporation at macrosteps on the ELO-AlN. A CL peak wavelength spread of up to 7 nm has been found. The MQWs grown on planar AlN/sapphire templates show a homogeneous wavelength distribution. However, due to the high threading dislocation density and the resulting strong nonradiative recombination, laser operation could not be achieved. The laser structures grown on ELO AlN/sapphire show optically pumped lasing with a record short wavelength of 237 nm.
Chawla, Vipin; Holec, David; Mayrhofer, Paul H.
2012-01-01
The development of interfacial coherency stresses in TiN/AlN bilayer and multilayer films was investigated by finite element method (ABAQUS) using the four-node bilinear quadrilateral axisymmetric element CAX4R. The TiN and AlN layers are always in compression and tension at the interface, respectively, as may be expected from the fact TiN has larger lattice parameter than AlN. Both, the bi-layer and the multilayer stacks bend due to the coherency stresses. For the TiN/AlN bilayer system, the curvature of the bending is largest for the TiN/AlN thickness ratios ∼0.5 and ∼2 (at which one of the two layers is fully in compression or tension), while it is smaller for the layers with the same thickness (at which both layers posses regions with compressive as well as tensile stresses). This stress distribution over the bi-layer thickness is shown to be strongly influenced by the presence and the properties of a substrate. Furthermore, the coherency stress profile and specimen curvature of a TiN/AlN multilayer system was studied as a function of the top-most layer thickness. The curvature is maximum for equal number of TiN and AlN layers, and decreases with increasing the number of TiN/AlN periods. Within the growth of an additional TiN/AlN bilayer, the curvature first decreases to zero for a vertically symmetrical geometry over the layers when the TiN layer growth is finished (e.g. for (n + 1) layers of TiN and n layers of AlN). At this stage, the coherency stresses in TiN and AlN are same in each layer type (independent on the layer position). The growth of the second half of the TiN/AlN bi-layer (i.e. the AlN) to finish the period, again bends the specimen, and generates a non-uniform stress distribution. This suggests that the top layer as well as the overall specimen geometry plays a critical role on the actual coherency stress profile. PMID:27570370
NASA Astrophysics Data System (ADS)
Cao, Ye; Xu, Haixian; Zhan, Jun; Zhang, Hao; Wei, Xin; Wang, Jianmin; Cui, Song; Tang, Wenming
2018-05-01
Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.
Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan
2018-01-16
In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.
NASA Astrophysics Data System (ADS)
Bryan, Zachary A.
The identification and role of point defects in AlN thin films and bulk crystals are studied. High-resolution photoluminescence studies on doped and undoped c-plane and mplane homoepitaxial films reveal several sharp donor-bound exciton (DBX) peaks with a full width at half maximum (FWHM) as narrow as 500 microeV. Power dependent photoluminescence distinguish DBXs tied to the Gamma5 free exciton (FX) from those tied to the Gamma 1 FX. The DBX transitions at 6.012 and 6.006 eV are identified as originating from the neutral-donor-silicon (Si0X) and neutral-donor-oxygen (O0X) respectively. With multiple DBXs and their respective two electron satellite peaks identified, a Haynes Rule plot is developed for the first time for AlN. While high quality AlN homoepitaxy is achievable by metalorganic chemical vapor deposition (MOCVD) growth, current commercially available AlN wafers are typically hindered by the presence of a broad below bandgap optical absorption band centered at 4.7 eV ( 265 nm) with an absorption coefficient of well over 1000 cm-1. Through density functional theory calculations, it is determined that substitutional carbon on the nitrogen site causes this absorption. Further studies reveal a donor-acceptor pair (DAP) recombination between substitutional carbon on the nitrogen site and a nitrogen vacancy with an emission energy of 2.8 eV. Lastly, co-doping bulk AlN with Si or O is explored and found to suppress the unwanted 4.7 eV absorption band. A novel Fermi level control scheme for point defect management during MOCVD growth in III-nitride materials by above bandgap illumination is proposed and implemented for Mg-doped GaN and Si-doped AlGaN materials as a proof of concept. The point defect control scheme uses photo-generated minority charge carriers to control the electro-chemical potential of the system and increase the formation energies of electrically charged compensating point defects. The result is a lower incorporation of compensating point defects in the films due to the increase in their formation energies during growth. This method improved the electrical properties of p-type GaN and n-type AlGaN and reduced stress thereby preventing films from cracking. The optical and structural quality of high Al-content AlGaN multiple quantum wells, light emitting diodes (LEDs), and laser diodes (LDs) grown on single crystalline AlN substrates are investigated. The use of bulk AlN substrates enabled the undoubtable distinction between the effect of growth conditions, such as V/III ratio, on the optical quality from the influence of dislocations. At a high V/III ratio and the proper MQW design, a record high IQE of 80% at a carrier density of 1018 cm-3 is achieved at 258 nm. With these structures, true sub-300 nm lasing is realized and distinguished from super luminescence for the first time by the observations of lasing characteristics such as longitudinal cavity modes, 100% polarized emission, and an elliptically shaped far-field pattern. A transverse electric to transverse magnetic polarization crossover at 245 nm is found. Lasing is observed in both asymmetric and symmetric waveguide structures with and without the presence of Si- and Mg-doping in the waveguide layer. The lowest measurable lasing threshold is 50 kW/cm2 and potentially a lower threshold is obtained in a symmetric waveguide structure while the lowest measured lasing wavelength is 237 nm. Gain measurements reveal a net modal gain greater than 100 cm-1 which is the highest reported value for sub-300 nm lasers. Furthermore, a lowest reported FWHM of 0.012 nm is observed indicating the high quality of the laser structure. Finally, electrically injected LED and LD structures are studied showing great potential for the realization of the first sub-300 nm LD.
NASA Astrophysics Data System (ADS)
Kojima, Kazunobu; Furusawa, Kentaro; Yamazaki, Yoshiki; Miyake, Hideto; Hiramatsu, Kazumasa; Chichibu, Shigefusa F.
2017-01-01
A strategy for increasing the square of an overlap integral of electron and hole wavefunctions (I 2) in polar c-plane Al x Ga1- x N multiple quantum wells (MQWs) is proposed. By applying quadratic modulation to AlN mole fractions along the c-axis, local bandgap energies and concentrations of immobile charges induced by polarization discontinuity are simultaneously controlled throughout the MQW structure, and optimized band profiles are eventually achieved. The I 2 value can be substantially increased to 94% when the well width (L w) is smaller than 4.0 nm. In addition, I 2 greater than 80% is predicted even for thick MQWs with L w of 10 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Takeshi, E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, Noboru; Osada, Takenori
2015-08-15
This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resultingmore » MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.« less
Cubic GaN quantum dots embedded in zinc-blende AlN microdisks
NASA Astrophysics Data System (ADS)
Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.
2013-09-01
Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng
Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less
GaN membrane MSM ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.
2006-12-01
GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.
NASA Astrophysics Data System (ADS)
Shida, K.; Takeuchi, S.; Tohei, T.; Miyake, H.; Hiramatsu, K.; Sumitani, K.; Imai, Y.; Kimura, S.; Sakai, A.
2018-04-01
This work quantitatively assessed the three-dimensional distribution of crystal lattice distortions in an epitaxial AlN thick film grown on a trench-patterned template, using nanobeam X-ray diffraction. Position-dependent ω-2θ-φ mapping clearly demonstrated local tilting, spacing and twisting of lattice planes as well as fluctuations in these phenomena on a sub-micrometer scale comparable to the pitch of the trench-and-terrace patterning. Analysis of the crystal lattice distortion in the depth direction was performed using a newly developed method in which the X-ray nanobeam diffracted from the sample surface to specific depths can be selectively detected by employing a Pt wire profiler. This technique generated depth-resolved ω-2θ-φ maps confirming that fluctuations in lattice plane tilting and spacing greatly depend on the dislocation distribution and the history of the AlN epitaxial growth on the trench-patterned structure. It was also found that both fluctuations were reduced on approaching the AlN surface and, in particular, were sharply reduced at specific depths in the terrace regions. These sharp reductions are attributed to the formation of sacrificial zones with degraded crystal quality around the trenches and possibly lead to raising the crystal quality near the surface of the AlN film.
Ogawa, Koko; Hori, Masayuki; Takao, Ryoko; Sakurada, Toyozo
2005-01-01
We examined the combined effects of elcatonin (ECT) and alendronate (ALN) on bone mass, architecture, and strength in ovariectomized (OVX) rats. Fifty female Sprague Dawley rats, aged 13 weeks, were divided into Sham, OVX, OVX+ECT, OVX+ALN, and OVX+ECT+ALN groups (n = 10). Immediately after ovariectomy, ECT was administered at a dose of 15 units (U)/kg three times a week, and ALN was administered daily at a dose of 2.0 microg/kg, subcutaneously for 12 weeks. The three-dimensional architecture of the bone in the distal femoral metaphysis was analyzed using a microfocus X-ray computed tomography system (microCT), and bone strength was measured using a material-testing machine. Trabecular bone volume (BV/TV) and number (Tb.N) were significantly greater in the OVX+ECT and OVX+ALN groups than in the OVX group. In the OVX+ECT+ALN group, BV/TV and Tb.N were significantly greater when compared with those in the OVX+ECT and OVX+ALN groups. Trabecular thickness (Tb.Th) was significantly greater in the OVX+ECT+ALN group than in the OVX+ALN group. With regard to bone strength, the compression strength in the femoral metaphysis was significantly lower in the OVX group than in the Sham group. The reduction of compression strength was slightly lower in the OVX+ECT and OVX+ALN groups. In the OVX+ECT+ALN group, the compression strength in the femoral metaphysis significantly increased when compared with the OVX and OVX+ECT groups. These results suggest that the combined treatment of ECT and ALN does not alter the individual effects of each drug and that it exerts an additive effect on trabecular architecture and bone strength in OVX rats.
Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor
NASA Astrophysics Data System (ADS)
Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason
2014-10-01
Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).
High-quality AlN grown on a thermally decomposed sapphire surface
NASA Astrophysics Data System (ADS)
Hagedorn, S.; Knauer, A.; Brunner, F.; Mogilatenko, A.; Zeimer, U.; Weyers, M.
2017-12-01
In this study we show how to realize a self-assembled nano-patterned sapphire surface on 2 inch diameter epi-ready wafer and the subsequent AlN overgrowth both in the same metal-organic vapor phase epitaxial process. For this purpose in-situ annealing in H2 environment was applied prior to AlN growth to thermally decompose the c-plane oriented sapphire surface. By proper AlN overgrowth management misoriented grains that start to grow on non c-plane oriented facets of the roughened sapphire surface could be overcome. We achieved crack-free, atomically flat AlN layers of 3.5 μm thickness. The layers show excellent material quality homogeneously over the whole wafer as proved by the full width at half maximum of X-ray measured ω-rocking curves of 120 arcsec to 160 arcsec for the 002 reflection and 440 arcsec to 550 arcsec for the 302 reflection. The threading dislocation density is 2 ∗ 109 cm-2 which shows that the annealing and overgrowth process investigated in this work leads to cost-efficient AlN templates for UV LED devices.
Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei
2016-12-01
Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.
Understanding the growth of micro and nano-crystalline AlN by thermal plasma process
NASA Astrophysics Data System (ADS)
Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.
2012-01-01
We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.
Microwave annealing of Mg-implanted and in situ Be-doped GaN
NASA Astrophysics Data System (ADS)
Aluri, Geetha S.; Gowda, Madhu; Mahadik, Nadeemullah A.; Sundaresan, Siddarth G.; Rao, Mulpuri V.; Schreifels, John A.; Freitas, J. A.; Qadri, S. B.; Tian, Y.-L.
2010-10-01
An ultrafast microwave annealing method, different from conventional thermal annealing, is used to activate Mg-implants in GaN layer. The x-ray diffraction measurements indicated complete disappearance of the defect sublattice peak, introduced by the implantation process for single-energy Mg-implantation, when the annealing was performed at ≥1400 °C for 15 s. An increase in the intensity of Mg-acceptor related luminescence peak (at 3.26 eV) in the photoluminescence spectra confirms the Mg-acceptor activation in single-energy Mg-implanted GaN. In case of multiple-energy implantation, the implant generated defects persisted even after 1500 °C/15 s annealing, resulting in no net Mg-acceptor activation of the Mg-implant. The Mg-implant is relatively thermally stable and the sample surface roughness is 6 nm after 1500 °C/15 s annealing, using a 600 nm thick AlN cap. In situ Be-doped GaN films, after 1300 °C/5 s annealing have shown Be out-diffusion into the AlN layer and also in-diffusion toward the GaN/SiC interface. The in-diffusion and out-diffusion of the Be increased with increasing annealing temperature. In fact, after 1500 °C/5 s annealing, only a small fraction of in situ doped Be remained in the GaN layer, revealing the inadequateness of using Be-implantation for forming p-type doped layers in the GaN.
Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi
2015-01-01
Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203
Growth and characterization of MnAu2 films
NASA Astrophysics Data System (ADS)
Cheng, S. F.; Bussmann, K. M.
2017-01-01
MnAu2 films ranging from 60 to 200 nm thickness are deposited by co-sputtering from elemental targets. X-ray diffraction confirmed these films to be nearly single phase with tetragonal lattice parameters of a=0.336 nm and c=0.872 nm that compare well to the bulk values of a=0.336 nm and c=0.876 nm. The density of the films is analyzed using x-ray reflectivity to be 14.95 g/cm3 and within experimental error of previously determined value of 15.00 g/cm3. The films grown on c-plane sapphire, (100)MgO and (100)MgF2 are randomly oriented polycrystalline, while the films grown on a-plane sapphire, (111)MgO and (111)Si/(0001)AlN showed that the (110) plane is parallel to the film plane and there are three sets of domains in equal amount differing by 60° in-plane rotation. Magnetic order is found to become paramagnetic near 360 K which is in close proximity to the bulk value. There are deviations in the slope of hysteresis loops observed at 10 K around 10 kOe that indicate complex magnetic switching.
NASA Astrophysics Data System (ADS)
Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.
2017-04-01
Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.
NASA Astrophysics Data System (ADS)
Zhao, Lu; Zhang, Shuo; Zhang, Yun; Yan, Jianchang; Zhang, Lian; Ai, Yujie; Guo, Yanan; Ni, Ruxue; Wang, Junxi; Li, Jinmin
2018-01-01
We demonstrate AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) grown by metalorganic chemical vapor deposition (MOCVD) on sputter-deposited AlN templates upon sapphire substrates. An AlN/AlGaN superlattices structure is inserted as a dislocation filter between the LED structure and the AlN template. The full width at half maximum values for (0002) and (10 1 bar 2) X-ray rocking curves of the n-type Al0.56Ga0.44N layer are 513 and 1205 arcsec, respectively, with the surface roughness of 0.52 nm. The electron concentration and mobility measured by Hall measurement are 9.3 × 1017cm-3 and 54 cm2/V·s at room temperature, respectively. The light output power of a 282-nm LED reaches 0.28 mW at 20 mA with an external quantum efficiency of 0.32%. And the values of leakage current and forward voltage of the LEDs are ∼3 nA at -10 V and 6.9 V at 20 mA, respectively, showing good electrical performance. It is expected that the cost of the UV-LED can be reduced by using sputter-deposited AlN template.
NASA Astrophysics Data System (ADS)
Mayboroda, I. O.; Knizhnik, A. A.; Grishchenko, Yu. V.; Ezubchenko, I. S.; Zanaveskin, Maxim L.; Kondratev, O. A.; Presniakov, M. Yu.; Potapkin, B. V.; Ilyin, V. A.
2017-09-01
The growth kinetics of AlGaN in NH3 MBE under significant Ga desorption was studied. It was found that the addition of gallium stimulates 2D growth and provides better morphology of films compared to pure AlN. The effect was experimentally observed at up to 98% desorption of the impinging gallium. We found that under the conditions of significant thermal desorption, larger amounts of gallium were retained at lateral boundaries of 3D surface features than at flat terraces because of the higher binding energy of Ga atoms at specific surface defects. The selective accumulation of gallium resulted in an increase in the lateral growth component through the formation of the Ga-enriched AlGaN phase at boundaries of 3D surface features. We studied the temperature dependence of AlGaN growth rate and developed a kinetic model analytically describing this dependence. As the model was in good agreement with the experimental data, we used it to estimate the increase in the binding energy of Ga atoms at surface defects compared to terrace surface sites using data on the Ga content in different AlGaN phases. We also applied first-principles calculations to the thermodynamic analysis of stable configurations on the AlN surface and then used these surface configurations to compare the binding energy of Ga atoms at terraces and steps. Both first-principles calculations and analytical estimations of the experimental results gave similar values of difference in binding energies; this value is 0.3 eV. Finally, it was studied experimentally whether gallium can act as a surfactant in AlN growth by NH3 MBE at elevated temperatures. Gallium application has allowed us to grow a 300 nm thick AlN film with a RMS surface roughness of 2.2 Å over an area of 10 × 10 μm and a reduced density of screw dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M.; Schneider, M.; Bittner, A.
2015-02-14
Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 hmore » in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.« less
Reflectivity of the AL-N coating: results of mechanical and environmental tests
NASA Astrophysics Data System (ADS)
Anisimov, Vladimir P.; Anisimova, Irina A.; Kashirin, Victor A.; Moldosanov, Kamil A.; Skrynnikov, Alexander M.
2002-09-01
This paper concerns a behavior of the total hemispherical reflectance (THR) of the Al-N coating in the course of mechanical and environmental tests. The Al-N coating has been designed to reduce the stray sunlight background in the satellite-borne optical instruments and charge-particles-analyzing apparatus operating in open space under intensive solar radiation. Usually, this problem arises when a density of instruments installed on the satellite is high and it is difficult to avoid getting to instrument the light reflected by neighboring devices. Resolution of this problem is also important in connection with development of the extra-atmosphere Far UV astronomy. The THR measurement results are presented for 10 wavelengths wihtin a range from 400 to 927 nm, and also at 121.6 nm, the most intensive line of the solar UV spectrum able to result in considerable contribution to the detector noise in space devices. The samples of the Al-N coating were exposed to standard mechanical loads including the vibratory loads, linear overloads, and impacts, to which the space equipment may be subjected when shipping to the space-vehicle launching site and also when lauching. The samples were also exposed to environmental tests simulating the vacuum, humidity, and cyclic temperature conditions, which may influence the space instruments while shipping, storing, launching, in flight, and under operating conditions. The THR measurements of the samples were made following exposure to each test. The THRs of tested samples at the wavelength of 121.6 nm were as low as 1.5-2%.
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying
2017-02-01
Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.
Next Generation Ceramic Substrate Fabricated at Room Temperature.
Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong
2017-07-26
A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.
Ding, Ming; Danielsen, Carl Christian; Hvid, Ivan
2008-01-01
We assessed whether increase of subchondral bone density enhances cartilage stress during impact loading, leading to progressive cartilage degeneration and accelerated osteoarthrosis (OA) progression. Sixty-six male guinea pigs were randomly divided into six groups. During a 9-week treatment period, four groups received twice-weekly subcutaneous injections of alendronate (ALN) in two doses: two groups received 10 microg/kg and two groups received 50 microg/kg. The two control groups received vehicle. After 9 weeks, one 10 microg/kg ALN group, one 50 microg/kg ALN group, and one control group were killed. The remaining three groups (17-week groups) were left for an additional 8 weeks, receiving the same treatment regimen before death. The left proximal tibiae were scanned by micro-computed tomography to quantify the microarchitecture of subchondral bone, followed by mechanical testing and determination of collagen and mineral. The control groups had typical OA-related cartilage degeneration at 9 and 17 weeks, whereas the 50 microg/kg ALN group had even worse degeneration in the medial condyle. It is unclear whether there is a direct or a secondary effect of ALN on the cartilage. The 9-week ALN group had significantly greater subchondral plate thickness. The 9- and 17-week groups had similar changes of cancellous bone microarchitecture, with greater volume fraction and connectivity and an extremely plate-like structure. The 9-week ALN group had greater bone mineral concentration, and the 17-week ALN group had reduced collagen concentration and greater mineral concentration. Treatment with ALN did not significantly change the mechanical properties of the cancellous bone.
Fabrication and characterization of III-nitride nanophotonic devices
NASA Astrophysics Data System (ADS)
Dahal, Rajendra Prasad
III-nitride photonic devices such as photodetectors (PDs), light emitting diode (LEDs), solar cells and optical waveguide amplifiers were designed, fabricated and characterized. High quality AlN epilayers were grown on sapphire and n-SiC substrates by metal organic chemical vapor deposition and utilized as active deep UV (DUV) photonic materials for the demonstration of metal-semiconductor-metal (MSM) detectors, Schottky barrier detectors, and avalanche photodetectors (APDs). AlN DUV PDs exhibited peak responsivity at 200 nm with a very sharp cutoff wavelength at 207 nm and extremely low dark current (<10 fA), very high breakdown voltages, high responsivity, and more than four orders of DUV to UV/visible rejection ratio. AlN Schottky PDs grown on n-SiC substrates exhibited high zero bias responsivity and a thermal energy limited detectivity of about 1.0 x 1015 cm Hz 1/2 W-1. The linear mode operation of AlN APDs with the shortest cutoff wavelength (210 nm) and a photocurrent multiplication of 1200 was demonstrated. A linear relationship between device size and breakdown field was observed for AlN APDs. Photovoltaic operation of InGaN solar cells in wavelengths longer than that of previous attainments was demonstrated by utilizing In xGa1-xN/GaN MQWs as the active layer. InxGa1-xN/GaN MQWs solar cells with x =0.3 exhibited open circuit voltage of about 2 V, a fill factor of about 60% and external quantum efficiency of 40% at 420 nm and 10% at 450 nm. The performance of InxGa1-xN/GaN MQWs solar cell was found to be highly correlated with the crystalline quality of the InxGa 1-xN active layer. The possible causes of poorer PV characteristics for higher In content in InGaN active layer were explained. Photoluminescence excitation studies of GaN:Er and In0.06Ga 0.94N:Er epilayers showed that Er emission intensity at 1.54 mum increases significantly as the excitation energy is tuned from below to above the energy bandgap of these epilayers. Current-injected 1.54 mum LEDs based on heterogeneous integration of Er-doped III-nitride epilayers with III-nitride UV LEDs were demonstrated. Optical waveguide amplifiers based on AlGaN/GaN:Er/AlGaN heterostructures was designed, fabricated, and characterized. The measured optical loss of the devices was ˜3.5 cm-1 at 1.54 mum. A relative signal enhancement of about 8 dB/cm under the excitation of a broadband 365 nm nitride LED was achieved. The advantages and possible applications of 1.54 mum emitters and optical amplifiers based on Er doped III-nitrides in optical communications have been discussed.
Surface hole gas enabled transparent deep ultraviolet light-emitting diode
NASA Astrophysics Data System (ADS)
Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min
2018-07-01
The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.
Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H
2014-09-01
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. Copyright © 2014 Elsevier Inc. All rights reserved.
An array of Eiffel-tower-shape AlN nanotips and its field emission properties
NASA Astrophysics Data System (ADS)
Tang, Yongbing; Cong, Hongtao; Chen, Zhigang; Cheng, Huiming
2005-06-01
An array of Eiffel-tower-shape AlN nanotips has been synthesized and assembled vertically with Si substrate by a chemical vapor deposition method at 700 °C. The single-crystalline AlN nanotips along [001] direction, including sharp tips with 10-100 nm in diameter and submicron-sized bases, are distributed uniformly with density of 106-107tips/cm2. Field emission (FE) measurements show that its turn on field is 4.7 V/μm, which is comparable to that of carbon nanotubes, and the fluctuation of FE current is as small as 0.74% for 4 h. It is revealed this nanostructure is available to optimize the FE properties and make the array a promising field emitter.
Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires.
Laksana, Chipta; Chen, Meei-Ru; Liang, Yen; Tzou, An-Jyeg; Kao, Hui-Ling; Jeng, Erik; Chen, Jyh; Chen, Hou-Guang; Jian, Sheng-Rui
2011-08-01
High-quality epitaxial AlN films were deposited on sapphire substrates at low growth temperature using a helicon sputtering system. SAW filters fabricated on the AlN films exhibited excellent characteristics, with center frequency of 354.2 MHz, which corresponds to a phase velocity of 5667 m/s. An oscillator fabricated using AlN-based SAW devices is presented and applied to deep-UV light detection. A frequency downshift of about 43 KHz was observed when the surface of SAW device was illuminated by a UV source with dominant wavelength of around 200 nm. The results indicate the feasibility of developing remote sensors for deep-UV measurement using AlN-based SAW oscillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele
2012-10-29
Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.
Effects of the bisphosphonate alendronate on molars of young rats after lateral luxation.
Rothbarth, Cláudia Pires; Bradaschia-Correa, Vivian; Ferreira, Lorraine Braga; Arana-Chavez, Victor Elias
2014-12-01
The bisphosphonate alendronate (ALN) was employed with the aim of investigating its effects on dental and periodontal tissues after lateral luxation of developing molars. Twenty-one-day-old Wistar rats had their second upper molars laterally luxated. Daily 2.5 mg kg(-1) ALN injections started at the day of the luxation; controls received sterile saline solution. The teeth were analyzed 7, 14, and 21 days after the procedure. On the days cited, the maxillae were fixed, decalcified, and embedded in paraffin or Spurr resin. The paraffin sections were stained with H&E, incubated for TRAP histochemistry or immunolabeled for osteopontin (OPN). Spurr ultrathin sections were examined in a transmission electron microscope. After 21 days, the root apex of luxated molars without ALN was wide open and disorganized and also covered by an irregular layer of cellular cementum, which was not observed in ALN-treated animals. Ankylosis sites were observed in ALN rats in both luxated and non-luxated teeth. The TRAP-positive osteoclasts were more numerous in ALN group, despite their latent ultrastructural appearance without the presence of resorption apparatus compared to controls. OPN immunolabeling revealed a thick immunopositive line in the dentin that must be resultant from the moment of the luxation, while ALN-treated specimens did not present alterations in dentin. The present findings indicate that alendronate inhibits some alterations in dentin and cementum formation induced by dental trauma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Shigetoh, Keisuke; Horibuchi, Kayo; Nakamura, Daisuke
2017-11-01
Owing to the large differences in the chemical properties between Al and N polarities in aluminum nitride (AlN), the choice of the polar direction for crystal growth strongly affects not only the quality but also the shape (facet formation) of the grown crystal. In particular, N-polar (0 0 0 -1) has been considered to be a more preferable direction than Al-polar (0 0 0 1) for sublimation growth because compared to Al-polar (0 0 0 1), N-polar (0 0 0 -1) exhibits better stability at high growth rate (high supersaturation) conditions and enables easier lateral enlargement of the crystal. However, some critical growth conditions induce polarity inversion and hinder stable N-polar growth. Furthermore, the origin of the polarity inversion in AlN growth by the sublimation method is still unclear. To ensure stable N-polar growth without polarity inversion, the formation mechanism of the inversion domain during AlN sublimation growth must be elucidated. Therefore, herein, we demonstrate homoepitaxial growth on an N-polar seed and carefully investigate the obtained crystal that shows polarity inversion. Annular bright-field scanning transmission electron microscopy reveals that polarity is completely converted to the Al polarity via the formation of a 30 nm thick mixed polar layer (MPL) just above the seed. Moreover, three-dimensional atom probe tomography shows the segregation of the oxygen impurities in the MPL with a high concentration of about 3 atom%. Finally, by avoiding the incorporation of oxygen impurity into the crystal at the initial stage of the growth, we demonstrate an effective reduction (seven orders of magnitude) of the inversion domain boundary formation.
High-speed and low-energy nitride memristors
Choi, Byung Joon; Torrezan, Antonio C.; Strachan, John Paul; ...
2016-05-24
High-performance memristors based on AlN films have been demonstrated, which exhibit ultrafast ON/OFF switching times (≈85 ps for microdevices with waveguide) and relatively low switching current (≈15 μA for 50 nm devices). Physical characterizations are carried out to understand the device switching mechanism, and rationalize speed and energy performance. The formation of an Al-rich conduction channel through the AlN layer is revealed. Here, the motion of positively charged nitrogen vacancies is likely responsible for the observed switching.
NASA Astrophysics Data System (ADS)
Nepal, Neeraj
Deep ultraviolet (UV) photoluminescence (PL) spectroscopy has been employed to study optical properties of AlGaN alloys, undoped and doped AlN epilayers and nanostructure AlN photonics crystals (PCs). Using a deep UV laser system with an excitation wave length at 197 nm, continuous wave PL, temperature dependent, and time-resolved PL have been carried out on these AlGaN and AlN epilayers and nanostructures. We have measured the compositional and temperature dependence of the energy bandgap of AlxGa1-xN alloys covering the entire alloy range of x, 0 ≤ x ≤ 1 and fitted with the Varshni equation. Varshni coefficients, alpha and beta, in AlGaN alloys have a parabolic dependence with alloy concentration x. Based on the experimental data, an empirical relation was thus obtained for the energy gap of AlGaN alloys for the entire alloy concentration and at any temperature below 800 K. The exciton localization energy in AlxGa1-xN alloys the entire composition range (0 ≤ x ≤ 1) has been measured by fitting the band edge emission peak energy with the Varshni equation. Deviations of the excitonic emission peak energy from the Varshni equation at low temperatures provide directly the exciton localization energies, ELoc in AlGaN alloys. It was found that ELoc increases with x for x ≤ 0.7, and decreases with x for x ≥ 0.8. The relations between the exciton localization energy, the activation energy, and the emission linewidth have been established. It thus provides three different and independent methods to determine the exciton localization energies in AlGaN alloys. Impurity transitions in AlGaN alloys have also been investigated. Continuous wave (CW) PL spectra of Si and undoped AlGaN alloys reveals groups of impurity transitions that have been assigned to the recombination between shallow donors and an isolated triply charged cation-vacancy (VIII)3-, a doubly charged cation-vacancy-complex (VIII-complex)2- , and a singly charged cation-vacancy-complex (VIII-complex) -1. The energy levels of these deep acceptors in AlxGa 1-xN (0 ≤ x ≤ 1) alloys are pinned to a common energy level in the vacuum. AlGaN alloys predominantly exhibiting the bandedge and (V III-complex)1- transitions possess improved conductivities over those emitting predominantly (VIII)3- and (V III-complex)2- related transitions. These results thus answer the very basic question of high resistivity in Al-rich AlGaN alloys. Acceptor doped AlGaN alloys have been studied by deep UV PL. A PL emission line at 6.02 eV has been observed at 10 K in Mg-doped AlN. It is due to the recombination of an exciton bound to the neutral Mg acceptor (I1) with a binding energy, Ebx of 40 meV, which indicates large activation energy of the Mg acceptor. The observed large binding energy of the acceptor-bound exciton is consistent with relatively large binding energy of the Mg acceptor in AlN. With the energy level of 0.51 eV for Mg dopants in AlN, it is interesting and important to study other suitable acceptor dopants for AlN. Growth and optical studies of Zn-doped AlN epilayers has been carried out. The PL spectra of Zn-doped AlN epilayers exhibited two impurity emission lines at 5.40 and 4.50 eV, which were absent in undoped epilayers. They are assigned respectively, to the transitions of free electrons and electrons bound to triply positively charged nitrogen vacancies (0.90 eV deep) to the Zn0 acceptors. It was deduced that the Zn energy level is about 0.74 eV above the valence band edge, which is about 0.23 eV deeper than the Mg energy level in AlN. Nitrogen vacancies are the compensating defects in acceptor doped AlGaN alloys. A nitrogen vacancy (VN) related emission line was also observed in ion-implanted AlN at 5.87 eV and the energy level of singly charged VN1+ is found at 260 meV below the conduction band. As a consequence of large binding energy of VN 1+ as well as high formation energy, VN1+ in AlN cannot contribute significant n-type conductivity, which is consistent with experimental observation. The temperature dependent PL study of the bandedge emissions in GaN and AlN epilayers up to 800 K has been carried out, which reveals two distinctive activation processes. The first process occurring below Tt = 325 K (Tt = 500 K) for GaN (AlN) is due to the activation of free excitons to free carriers, whereas the second occurring above Tt with an activation energy of 0.29 eV (0.3 eV) for GaN (AlN) is believed to be associated with a higher lying conduction band (Gamma3) at about 0.3 eV above the conduction band minimum (Gamma1). These higher lying bands could affect device performance of GaN and AlN at elevated temperatures. Two-dimensional nanostructured AlN photonic crystals (PCs) with a varying periodicity/diameter down to 150 nm/75 nm have also been studied by deep UV PL. With PCs formation, a 20-fold enhancement in the band edge emission intensity at 208 nm over unpatterned AlN epilayer has been observed. The emission intensity increases with the decrease in the lattice constant of the AlN PCs. AlN PCs represent photonic crystals with highest (shortest) bandgap (wavelength) semiconductors, which open up new opportunities for exploring novel physical phenomena in the artificially structured photonic band gap material systems and their applications, particularly in the area of deep UV as well as nano-photonics.
Spotting 2D atomic layers on aluminum nitride thin films.
Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan
2015-10-23
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
Valence and conduction band offsets of β-Ga2O3/AlN heterojunction
NASA Astrophysics Data System (ADS)
Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang
2017-10-01
Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.
NASA Astrophysics Data System (ADS)
Wang, Yin-Ping; Liu, Hai-Tao; Song, Hong-Yu; Liu, Jia-Xin; Shen, Hui-Ying; Jin, Yang; Wang, Guo-Dong
2018-04-01
0.05-0.15 mm-thick ultra-thin grain-oriented silicon steel sheets were successfully produced by a novel processing route including strip casting, hot rolling, normalizing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing and secondary recrystallization annealing. The evolutions of microstructure, texture and inhibitor along the processing were briefly investigated. The results showed that the initial Goss orientation originated due to the heterogenous nucleation of δ-ferrite grains during solidification. Because of the lack of shear deformation, only a few Goss grains were observed in the hot rolled sheet. After the first cold rolling and intermediate annealing, Goss texture was enhanced and distributed in the whole thickness. A small number of Goss grains having a high fraction of high energy boundaries exhibited in the primary recrystallization annealed sheet. A large number of fine and dispersed MnS and AlN and a few co-precipitates MnS and AlN with the size range of 10-70 nm were also observed. Interestingly, a well-developed secondary recrystallization microstructure characterized by 10-60 mm grains and a sharp Goss texture were finally produced in the 0.05-0.15 mm-thick ultra-thin sheets. A magnetic induction B8 of 1.72-1.84 T was obtained. Another new finding was that a few {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains also can grow up abnormally because of the high fraction of high energy boundaries and the size and number advantage, respectively. These non-Goss grains finally deteriorated the magnetic properties of the ultra-thin sheets. In addition, low surface energies of {hk0} planes may also contribute to the abnormal growth of Goss, {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay
2017-11-01
GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.
Aslam, Muhammad Zubair; Jeoti, Varun; Karuppanan, Saravanan; Malik, Aamir Farooq; Iqbal, Asif
2018-05-24
A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO₂/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS) compatible AlN/SiO₂/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO₂ layers’ thicknesses over phase velocities and electromechanical coupling coefficients ( k ²) of two SAW modes (i.e., Rayleigh and Sezawa) is analyzed and the optimal thicknesses of AlN and SiO₂ layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB) polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode.
Wide-bandgap III-Nitride based Second Harmonic Generation
2014-10-02
fabrication process for a GaN LPS. Fig. 1: 3-step Fabrication process of a GaN based lateral polar structure. ( a ) Growth of a 20 nm AlN buffer layer...etching of the LT-AlN stripes. This results are shown in Fig. 2 ( a ) and (b). Fig. 2: AFM images of KOH ( a ) and RIE (b) patterned templates for lateral ...was varied between 0.6 - 1.0. FIG. 3: Growth process of AlGaN based Lateral Polar Structures. ( a ) RIE patterning. (b) Growth of HT- AlN. (c
Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J
2014-08-11
Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Berger, Christoph; Veit, Peter
2015-06-22
Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function atmore » zero time delay.« less
Thermal modelling of high-power laser diodes mounted using various types of submounts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A
2014-10-31
Using three-dimensional thermal modelling of a highpower 980-nm laser diode with a stripe contact width of 100 μm as an example, we analyse the thermal parameters of high-power laser diodes mounted using submounts. We consider a range of thermal conductivities of submounts that includes parameters of widely used thermal compensators based on AlN, BeO and SiC, as well as on CuW and CuMo composites and polycrystalline and single-crystal synthetic diamond with high thermal conductivity. Taking into account experimental overall efficiency vs. pump current data, we calculate the temperature of the active layer as a function of the width, thickness andmore » thermal conductivity of the submount at thermal loads corresponding to cw output powers of 10, 15 and 20 W. (lasers)« less
NASA Astrophysics Data System (ADS)
Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.
2016-08-01
Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.
NASA Astrophysics Data System (ADS)
Falub, Claudiu V.; Rohrmann, Hartmut; Bless, Martin; Meduňa, Mojmír; Marioni, Miguel; Schneider, Daniel; Richter, Jan H.; Padrun, Marco
2017-05-01
Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8" Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100) nm thick magnetic layers and (2-20) nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ˜(7-120) Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency), while the coercivity was kept low, ˜(0.05-0.9) Oe. The alignment of the easy axis (EA) on the 8" wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM), X-ray reflectivity (XRR) with reciprocal space mapping (RSM) and magneto-optical Kerr effect (MOKE) measurements.
Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun
2015-01-01
The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999
Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi
2016-08-01
An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.
Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp
2016-07-11
Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less
NASA Astrophysics Data System (ADS)
Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid
2018-03-01
We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.
Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology
NASA Astrophysics Data System (ADS)
Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua
2013-04-01
Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, K.; Pletschen, W.; Godejohann, B.
2015-11-28
Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation betweenmore » frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.« less
He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao
2017-12-13
It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.
Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.
2015-01-01
Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335
NASA Astrophysics Data System (ADS)
Tabataba-Vakili, Farsane; Roland, Iannis; Tran, Thi-Mo; Checoury, Xavier; El Kurdi, Moustafa; Sauvage, Sébastien; Brimont, Christelle; Guillet, Thierry; Rennesson, Stéphanie; Duboz, Jean-Yves; Semond, Fabrice; Gayral, Bruno; Boucaud, Philippe
2017-09-01
III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantum well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.
Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices
NASA Astrophysics Data System (ADS)
Alleyne, Fatima Sierre
One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective of this study is to understand the resulting phase transformation behavior during Ag precipitation with the intent to ultimately control the electrical operation of AlN piezoelectric resonators in energy scavenging applications. In this work, multiple source reactive ion sputtering was employed to deposit a thin film of AlN on a 525 microns thick Si substrate, followed by ion implantation (Ag cathode) into the aluminum nitride, and subsequent thermal annealing. Computer simulations were conducted to elucidate the projected range of the silver in the AlN epilayer as a result of the ion implantation process. A myriad of characterization methods including Rutherford Backscattering Spectrometry (RBS), x-ray diffraction (XRD), rocking curve, electron microscopy was employed to quantify the concentration of silver, morphology of silver precipitates, as well as the composition, crystallinity and degree of damage in the ion-implanted AlN samples with respect to thermal annealing conditions. The presence, or lack of precipitates in the samples was utilized to draw conclusions about the feasibility of developing a buried conductive layer in a ceramic matrix via ion implantation. Computer simulations results obtained via TRIM and TRIDYN confirmed that the maximum concentration of silver lied within 30 -- 47 nm from the surface. The RBS data verified the presence of Si, Al, N, Ag, and O2 , whose concentration varied with temperature. X-ray diffraction and electron microscopy corroborated the crystallinity of the AlN epilayer. Electron diffraction confirmed both the epitaxy of the AlN film on the (001) Si substrate and the crystalline quality of the epilayer prior to and after the thermal annealing treatment. Electron microscopy revealed that the sputtered AlN film grew epitaxially in a columnar morphology and silver precipitates did form in some of the aluminum nitride samples implanted but only in those implanted with a higher concentration of Ag under high-energy implantation conditions. It is concluded that the Ag implanted region does indeed have potential as a buried contact layer for piezoelectric activation and sensing if the critical concentration and appropriate thermal conditions can be attained.
NASA Astrophysics Data System (ADS)
Kaun, Stephen William
GaN-based high-electron-mobility transistors (HEMTs) will play an important role in the next generation of high-frequency amplifiers and power-switching devices. Since parasitic conduction (leakage) through the GaN buffer layer and (Al,Ga,In)N barrier reduces the efficiency of operation, HEMT performance hinges on the epitaxial quality of these layers. Increasing the sheet charge density and mobility of the two-dimensional electron gas (2DEG) is also essential for reducing the channel resistance and improving output. The growth conditions applied in plasma-assisted molecular beam epitaxy (PAMBE) and ammonia-based molecular beam epitaxy (NH3-MBE) that result in high-quality metal-polar HEMT structures are described. The effects of threading dislocations on the gate leakage and channel conductivity of AlGaN/GaN HEMTs were studied in detail. For this purpose, a series of HEMT structures were grown on GaN templates with threading dislocation densities (TDDs) that spanned three orders of magnitude. There was a clear trend of reduced gate leakage with reduced TDD for HEMTs grown by Ga-rich PAMBE; however, a reduction in TDD also entailed an increase in buffer leakage. By reducing the unintentionally doped (UID) GaN buffer thickness and including an AlGaN back barrier, a HEMT regrown by Ga-rich PAMBE on low-TDD free-standing (FS) GaN (~5 x 107 cm-2 TDD) yielded a three-terminal breakdown voltage greater than 50 V and a power output (power-added efficiency) of 6.7 W/mm (50 %) at 4 GHz with a 40 V drain bias. High TDD was then shown to severely degrade the 2DEG mobility of AlxGa1-xN/GaN (x = 0.24, 0.12, 0.06) and AlGaN/AlN/GaN heterostructures grown by Ga-rich PAMBE. By regrowing on low-TDD FS GaN and including a 2.5 nm AlN interlayer, an Al0.24Ga0.76N/AlN/GaN heterostructure achieved a room temperature (RT) 2DEG sheet resistance of 169 Ω/□. As evidenced by atom probe tomography, the AlN interlayer grown by Ga-rich PAMBE was pure with abrupt interfaces. The pure AlN interlayer greatly reduced alloy-related scattering. When AlGaN/AlN/GaN heterostructures were grown by NH3-MBE at 820 °C, the 2DEG sheet density was lower than expected. These AlN interlayers were shown to have a significant concentration of Ga impurities by atom probe tomography. The source of these impurities was most likely the decomposition of the underlying GaN layers, as reduction of the growth temperature below 750 °C yielded a much lower concentration of Ga impurities. Flux optimization and application of an In surfactant was necessary to reduce the interface roughness in AlGaN/AlN/GaN heterostructures grown by NH3-MBE at low temperature, yielding sheet resistances below 300 Ω/□. The growth of InAlN/(GaN)/(AlN)/GaN heterostructures with lattice-matched In0.17Al0.83N barriers by N-rich PAMBE is also described. Through flux optimization, the columnar microstructure previously observed in N-rich PAMBE-grown InAlN layers was eliminated. By including a 3 nm AlN interlayer and 2 nm GaN interlayer, an In0.17Al0.83N/GaN/AlN/GaN heterostructure regrown on low-TDD FS GaN achieved an exceptionally low RT 2DEG sheet resistance of 145 Ω/□.
NASA Astrophysics Data System (ADS)
Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.
2017-11-01
The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.
NASA Astrophysics Data System (ADS)
Takeuchi, M.; Shimizu, H.; Kajitani, R.; Kawasaki, K.; Kumagai, Y.; Koukitu, A.; Aoyagi, Y.
2007-01-01
The growth of N-polar AlN layers on c-plane sapphire is reported. Low-temperature AlN (LT-AlN) layers were used as seeding buffer layers with pre-nitridation for sapphire. To avoid strong vapor-phase reaction between trimethylaluminum (TMA) and ammonia (NH 3) and to improve the crystalline quality, low-pressure flow-modulated (FM) metal-organic chemical vapor deposition (MOCVD) technique was introduced with careful optimization of the FM sequence. The surface morphologies and the crystalline quality defined by the X-ray diffraction (XRD) (0 0 2) and (1 0 0) rocking curve measurements strongly depended on the LT-AlN thickness and on the TMA coverage per cycle of the FM growth. The sample showing the best XRD data with a good morphology was almost completely etched in aqueous KOH solution owing to N-polarity. From the plan-view transmission electron microscopy (TEM) observation, the dislocation density was counted to be about 3×10 10 cm -2.
Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces
NASA Astrophysics Data System (ADS)
Stoker, D. S.; Baek, J.; Wang, W.; Kovar, D.; Becker, M. F.; Keto, J. W.
2006-05-01
We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG ( z -scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN -sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χxxxx(3)(3ω;ω,ω,ω)=1.52±0.25×10-13esu . The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolique, V.; Jaouen, M.; Cabioc'h, T.
2008-04-15
By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from thesemore » observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.« less
Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haider, Ali; Kayaci, Fatma; Uyar, Tamer
2014-09-01
Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii) calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructuremore » using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nicholas R.; Sun, Huaxing; Sharma, Kashish
2016-09-15
Thermal atomic layer etching (ALE) of crystalline aluminum nitride (AlN) films was demonstrated using sequential, self-limiting reactions with hydrogen fluoride (HF) and tin(II) acetylacetonate [Sn(acac){sub 2}] as the reactants. Film thicknesses were monitored versus number of ALE reaction cycles at 275 °C using in situ spectroscopic ellipsometry (SE). A low etch rate of ∼0.07 Å/cycle was measured during etching of the first 40 Å of the film. This small etch rate corresponded with the AlO{sub x}N{sub y} layer on the AlN film. The etch rate then increased to ∼0.36 Å/cycle for the pure AlN films. In situ SE experiments established the HF and Sn(acac){submore » 2} exposures that were necessary for self-limiting surface reactions. In the proposed reaction mechanism for thermal AlN ALE, HF fluorinates the AlN film and produces an AlF{sub 3} layer on the surface. The metal precursor, Sn(acac){sub 2}, then accepts fluorine from the AlF{sub 3} layer and transfers an acac ligand to the AlF{sub 3} layer in a ligand-exchange reaction. The possible volatile etch products are SnF(acac) and either Al(acac){sub 3} or AlF(acac){sub 2}. Adding a H{sub 2} plasma exposure after each Sn(acac){sub 2} exposure dramatically increased the AlN etch rate from 0.36 to 1.96 Å/cycle. This enhanced etch rate is believed to result from the ability of the H{sub 2} plasma to remove acac surface species that may limit the AlN etch rate. The active agent from the H{sub 2} plasma is either hydrogen radicals or radiation. Adding an Ar plasma exposure after each Sn(acac){sub 2} exposure increased the AlN etch rate from 0.36 to 0.66 Å/cycle. This enhanced etch rate is attributed to either ions or radiation from the Ar plasma that may also lead to the desorption of acac surface species.« less
Mary Ealias, Anu; Saravanakumar, M P
2018-01-15
Protein Rich Solution (PRS) was prepared from the sewage sludge with ultrasonic assistance. With PRS, aluminium based nanosheet like materials (AlNs) were synthesised for the ultrasonic removal of Congo Red (CR) and Crystal Violet (CV) dyes. PRS was characterised by UV, EEM and NMR spectral analysis. AlNs were characterised by FTIR, XRD, TGA, BET, SEM, AFM, TEM and XPS analysis. The point of zero charge of AlNs was found to be 5.4. The BET analysis ensured that the average pore diameter and total pore volume of AlNs as 8.464 nm and 0.11417 cc/g respectively. The efficacy of AlNs for the removal of toxic dyes was tested by performing Response surface methodology (RSM) designed experiments. The effect of sonication time, dosage and initial concentration on dye removal was studied at an optimised pH value. Langmuir, Freundlich and Temkin isotherm models were examined. The maximum adsorption capacity was found to be 121.951 and 105.263 mg/g for CR and CV respectively. The kinetic models like pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion were examined to understand the mechanism behind it. The results revealed that the use of ultrasonication enhanced the mass transfer. The experimental studies on the influence of ultrasound power indicated a positive relation with the removal efficiency. The results of thermodynamic study revealed that the process was spontaneous and exothermic for both the dyes. The increase in ionic strength increased the removal efficiency for both CR and CV. RSM predicted the optimum adsorbent dosages as 0.16 g for 50 mg/L of CR and 0.12 g for 100 mg/L of CV dye solutions. The values of half-life and fractional adsorption for both CR and CV suggested that the low cost AlNs has high potential to remove the toxic industrial dyes. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaumeton, Florian, E-mail: florian.chaumeton@cemes.fr; Gauthier, Sébastien, E-mail: gauthier@cemes.fr; Martrou, David, E-mail: david.martrou@cemes.fr
Nitride wide-band-gap semiconductors are used to make high power electronic devices or efficient light sources. The performance of GaN-based devices is directly linked to the initial AlN buffer layer. During the last twenty years of research on nitride growth, only few information on the AlN surface quality have been obtained, mainly by ex-situ characterization techniques. Thanks to a Non Contact Atomic Force Microscope (NC-AFM) connected under ultra high vacuum (UHV) to a dedicated molecular beam epitaxy (MBE) chamber, the surface of AlN(0001) thin films grown on Si(111) and 4H-SiC(0001) substrates has been characterized. These experiments give access to a quantitativemore » determination of the density of screw and edge dislocations at the surface. The layers were also characterized by ex-situ SEM to observe the largest defects such as relaxation dislocations and hillocks. The influence of the growth parameters (substrate temperature, growth speed, III/V ratio) and of the initial substrate preparation on the dislocation density was also investigated. On Si(111), the large in-plane lattice mismatch with AlN(0001) (19%) induces a high dislocation density ranging from 6 to 12×10{sup 10}/cm{sup 2} depending on the growth conditions. On 4H-SiC(0001) (1% mismatch with AlN(0001)), the dislocation density decreases to less than 10{sup 10}/cm{sup 2}, but hillocks appear, depending on the initial SiC(0001) reconstruction. The use of a very low growth rate of 10 nm/h at the beginning of the growth process allows to decrease the dislocation density below 2 × 10{sup 9}/cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Tsai, Chia-Lung; Liu, Hsueh-Hsing; Chen, Jun-Wei; Lu, Chien-Pin; Ikenaga, Kazutada; Tabuchi, Toshiya; Matsumoto, Koh; Fu, Yi-Keng
2017-12-01
We demonstrate that the light output power of deep ultraviolet light-emitting diodes (DUV-LEDs) can be improved by introducing an intrinsic last quantum barrier interlayer to a high quality AlN template. The light output power of the DUV-LEDs can be doubled by substituting the last quantum barrier with an intrinsic last quantum barrier (u-LQB)/Mg-doped LQB for only pure u-LQB in the same thickness with a 35 A/cm2 injection current. It is believed that the improved performance of the DUV LED could be attributed to the decreased diffusion of Mg tunneling into MQW and the reduction of sub-band parasitic emissions.
Tzou, An-Jye; Chu, Kuo-Hsiung; Lin, I-Feng; Østreng, Erik; Fang, Yung-Sheng; Wu, Xiao-Peng; Wu, Bo-Wei; Shen, Chang-Hong; Shieh, Jia-Ming; Yeh, Wen-Kuan; Chang, Chun-Yen; Kuo, Hao-Chung
2017-12-01
We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N 2 -based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H 2 /NH 3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th ), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.
A Low-Noise NbTiN Hot Electron Bolometer Mixer
NASA Technical Reports Server (NTRS)
Tong, C. Edward; Stern, Jeffrey; Megerian, Krikor; LeDuc, Henry; Sridharan, T. K.; Gibson, Hugh; Blundell, Raymond
2001-01-01
Hot electron bolometer (HEB) mixer elements, based on niobium titanium nitride (NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding bolometer elements that measure about 1 micrometer long and between 2 and 12 micrometers wide. These mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined to be about 2.5 GHz and we measured a receiver noise temperature of 270 K at 630 GHz using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability and the noise temperature measurements are highly repeatable. An 800 GHz receiver incorporating one of these mixer chips has recently been installed at the Sub-Millimeter Telescope in Arizona for field test and for astronomical observations.
NASA Astrophysics Data System (ADS)
Sun, Weihua; Hu, Shu-e.; Li, Guobao; Yu, Hao
This paper analyzes precipitation and dislocation strengthening behaviors of a 27mm thick Niobium-bearing Grade X80 steel plate for strain based design line pipe manufacture. The steel is produced by thermal-mechanical processing (TMCP) and is characterized with granular bainite and polygonal ferrite microstructure. Mechanical properties of both the steel and the UOE pipe are briefly introduced. Transmission electron microscope (TEM) is used to investigate the fine grain structure, distribution of the precipitates and dislocations in the steel. Precipitate morphologies, volume fractions of M(C,N), M3C, CaS, AlN and Cu are extensively studied respectively by Electrolytic Chemical Phase Analysis (ECPA) and X-ray Small Angle Diffraction (X-ray SAD). Dislocations in the steel are characterized with Positron Annihilation analysis. The results prove that precipitation hardening reveal a 58.1MPa strengthening contribution by the precipitates less than 20nm in size. Dislocation hardening is approximately 176MPa to the present studied steel and 198MPa to the pipe.
Lasing and Longitudinal Cavity Modes in Photo-Pumped Deep Ultraviolet AlGaN Heterostructures
2013-04-29
of the structures were intentionally doped. The AlGaN composition was determined by triple -axis high-resolution X-ray diffraction measurements. Cross...threshold can be achieved on single crystal AlN substrates. This achievement serves as a starting point towards realizing electrically pumped sub-300 nm UV
Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths.
Ajay, Akhil; Blasco, Rodrigo; Polaczynski, Jakub; Spies, Maria; den Hertog, Martien; Monroy, Eva
2018-06-27
In this paper, we study intersubband characteristics of GaN/AlN and GaN/Al0.4Ga0.6N heterostructures in GaN nanowires structurally designed to absorb in the mid-infrared wavelength region. Increasing the GaN well width from 1.5 to 5.7 nm leads to a red shift of the intersubband absorption from 1.4 to 3.4 µm. The red shift in larger quantum wells is amplified by the fact that one of the GaN/AlN heterointerfaces (corresponding to the growth of GaN on AlN) is not sharp but rather a graded alloy extending around 1.5-2 nm. Using AlGaN instead of AlN for the same barrier dimensions, we observe the effects of reduced polarization, which blue shifts the band-to-band transitions and red shifts the intersubband transitions. In heavily doped GaN/AlGaN nanowires, a broad absorption band is observed in the 4.5-6.4 µm spectral region. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.
2016-12-01
We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.
Williams, Donald S; McCracken, Paul J; Purcell, Mona; Pickarski, Maureen; Mathers, Parker D; Savitz, Alan T; Szumiloski, John; Jayakar, Richa Y; Somayajula, Sangeetha; Krause, Stephen; Brown, Keenan; Winkelmann, Christopher T; Scott, Boyd B; Cook, Lynn; Motzel, Sherri L; Hargreaves, Richard; Evelhoch, Jeffrey L; Cabal, Antonio; Dardzinski, Bernard J; Hangartner, Thomas N; Duong, Le T
2013-10-01
Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 μg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates. © 2013 Elsevier Inc. All rights reserved.
The management of stress in MOCVD-grown InGaN/GaN LED multilayer structures on Si(1 1 1) substrates
NASA Astrophysics Data System (ADS)
Jiang, Quanzhong; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.
2013-09-01
The tensile stress in light-emitting diode (LED)-on-Si(1 1 1) multilayer structures must be reduced so that it does not compromise the multiple quantum well emission wavelength uniformity and structural stability. In this paper it is shown for non-optimized LED structures grown on Si(1 1 1) substrates that both emission wavelength uniformity and structural stability can be achieved within the same growth process. In order to gain a deeper understanding of the stress distribution within such a structure, cross-sectional Raman and photo-luminescence spectroscopy techniques were developed. It is observed that for a Si:GaN layer grown on a low-temperature (LT) AlN intermediate layer there is a decrease in compressive stress with increasing Si:GaN layer thickness during MOCVD growth which leads to a high level of tensile stress in the upper part of the layer. This may lead to the development of cracks during cooling to room temperature. Such a phenomenon may be associated with annihilation of defects such as dislocations. Therefore, a reduction of dislocation intensity should take place at the early stage of GaN growth on an AlN or AlGaN layer in order to reduce a build up of tensile stress with thickness. Furthermore, it is also shown that a prolonged three dimensional GaN island growth on a LT AlN interlayer for the reduction of dislocations may result in a reduction in the compressive stress in the resulting GaN layer.
NASA Astrophysics Data System (ADS)
Gloux, F.; Ruterana, P.; Wojtowicz, T.; Lorenz, K.; Alves, E.
2006-10-01
The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×10 13 to 2×10 16 at/cm 2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×10 15 at/cm 2, a highly disordered 'nanocrystalline layer' (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I 1, E and I 2 types have been noticed from the lowest fluence, they are I 1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I 1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs. When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×10 16 at/cm 2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.
Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J
2016-06-09
Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack.
Cho, Hyun Min; Kim, Min-Sun
2014-08-01
In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.
Design and Optimization of AlN based RF MEMS Switches
NASA Astrophysics Data System (ADS)
Hasan Ziko, Mehadi; Koel, Ants
2018-05-01
Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tommasini S. M.; Miller L.; Trinward, A.
Bone's microporosities play important biologic and mechanical roles. Here, we quantified 3D changes in cortical osteocyte-lacunae and other small porosities induced by estrogen withdrawal and two different osteoporosistreatments. Unlike 2D measurements, these data collected via synchrotron radiation-based {mu}CT describe the size and 3D spatial distribution of a large number of porous structures. Six-month old female Sprague-Dawley rats were separated into four groups of age-matched controls, untreated OVX, OVX treated with PTH, and OVX treated with Alendronate (ALN). Intracortical microporosity of the medial quadrant of the femoral diaphysis was quantified at endosteal, intracortical, and periosteal regions of the samples, allowing themore » quantification of osteocyte lacunae that were formed primarily before versus after the start of treatment. Across the overall thickness of the medial cortex, lacunar volume fraction (Lc.V/TV) was significantly lower in ALN treated rats compared to PTH. In the endosteal region, average osteocyte lacunar volume (< Lc.V >) of untreated OVX rats was significantly lower than in age-matched controls, indicating a decrease in osteocyte lacunar size in bone formed on the endosteal surface after estrogen withdrawal. The effect of treatment (OVX, ALN, PTH) on the number of lacunae per tissue volume (Lc.N/TV) was dependent on the specific location within the cortex (endosteal, intracortical, periosteal). In both the endosteal and intracortical regions, Lc.N/TV was significantly lower in ALN than in untreated OVX, suggesting a site-specific effect in osteocyte lacuna density with ALN treatment. There also were a significantly greater number of small pores (5-100 {micro}m{sup 3} in volume) in the endosteal region for PTH compared to ALN. The mechanical impact of this altered microporosity structure is unknown, but might serve to enhance, rather than deteriorate bone strength with PTH treatment, as smaller osteocyte lacunae may be better able to absorb shear forces than larger lacunae. Together, these data demonstrate that current treatments of osteoporosis can alter the number, size, and distribution of microporosities in cortical rat lamellar bone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicek, E.; McClintock, R.; Cho, C. Y.
2013-10-28
We report on Al{sub x}Ga{sub 1−x}N-based solar-blind ultraviolet (UV) photodetector (PD) grown on Si(111) substrate. First, Si(111) substrate is patterned, and then metalorganic chemical vapor deposition is implemented for a fully-coalesced ∼8.5 μm AlN template layer via a pulsed atomic layer epitaxial growth technique. A back-illuminated p-i-n PD structure is subsequently grown on the high quality AlN template layer. After processing and implementation of Si(111) substrate removal, the optical and electrical characteristic of PDs are studied. Solar-blind operation is observed throughout the array; at the peak detection wavelength of 290 nm, 625 μm{sup 2} area PD showed unbiased peak externalmore » quantum efficiency and responsivity of ∼7% and 18.3 mA/W, respectively, with a UV and visible rejection ratio of more than three orders of magnitude. Electrical measurements yielded a low-dark current density below 1.6 × 10{sup −8} A/cm{sup 2} at 10 V reverse bias.« less
Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H
2016-12-01
Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.
Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J.
2016-01-01
Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack. PMID:27279454
In-situ cyclic pulse annealing of InN on AlN/Si during IR-lamp-heated MBE growth
NASA Astrophysics Data System (ADS)
Suzuki, Akira; Bungi, Yu; Araki, Tsutomu; Nanishi, Yasushi; Mori, Yasuaki; Yamamoto, Hiroaki; Harima, Hiroshi
2009-05-01
To improve crystal quality of InN, an in-situ cyclic rapid pulse annealing during growth was carried out using infrared-lamp-heated molecular beam epitaxy. A cycle of 4 min growth of InN at 400 °C and 3 s pulse annealing at a higher temperature was repeated 15 times on AlN on Si substrate. Annealing temperatures were 550, 590, 620, and 660 °C. The back of Si was directly heated by lamp irradiation through a quartz rod. A total InN film thickness was about 200 nm. With increasing annealing temperature up to 620 °C, crystal grain size by scanning electron microscope showed a tendency to increase, while widths of X-ray diffraction rocking curve of (0 0 0 2) reflection and E 2 (high) mode peak of Raman scattering spectra decreased. A peak of In (1 0 1) appeared in X-ray diffraction by annealing higher than 590 °C, and In droplets were found on the surface by annealing at 660 °C.
Room temperature luminescence and ferromagnetism of AlN:Fe
NASA Astrophysics Data System (ADS)
Li, H.; Cai, G. M.; Wang, W. J.
2016-06-01
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Nath, Digbijoy N.
We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.
2015-09-17
Ultraviolet Polariton Laser Significant progress was achieved in the epitaxy of deep UV AlN/ AlGaN Bragg mirrors and microcavity structures paving...the way to the successful fabrication of vertical cavity emitting laser structures and polariton lasers. For the first time DBRs providing sufficient...high reflectivity for polariton emission were demonstrated. Thanks to a developed strain balanced Al0.85Ga0.15N template, the critical thickness
2011-01-01
Background Alendronate (ALN) is the most common form of bisphosphonates used for the treatment of osteoporosis. Osteoprotegerin (OPG) has also been shown to reduce osteoporotic changes in both humans and experimental animals after systemic administration. The aim of this current study was to test if the anti-resorption effects of ALN may be enhanced when used in combination with OPG. Objectives To investigate the effects of ALN, OPG or combined on bone mass and bone mechanical properties in ovariectomized (OVX) rats. Methods OVX rats were treated with ALN, OPG-Fc, or OPG-Fc and ALN. Biochemical markers, trabecular bone mass, biomechanics, histomorphometry and RANKL expression in the bone tissues were examined following the treatments. Results The treatment of ALN, OPG-Fc and ALN+OPG-Fc all prevented bone loss in the OVX-rats, there was no statistical difference among the three treatment groups in terms of vertebrae BMD, mineralizing surfaces, mineral apposition rate, BFR/BS. The ALN+OPG-Fc treatment group had significantly increased the mechanical strength of lumber vertebral bodies and femoral shafts when compared to the ALN and OPG-Fc treatment groups. The RANKL protein expression in the vertebral bones was significantly decreased in the ALN and ALN+OPG-Fc treatment groups, suggesting the combined use of OPG-Fc and ALN might have amplified inhibition of bone resorption through inhibiting RANKL-dependent osteoclastogenesis. Conclusion The combined use of OPG-Fc and ALN may be a new treatment strategy for reversing bone loss and restoring bone quality in osteoprotic disorders. PMID:21752290
Micro thermal energy harvester design optimization
NASA Astrophysics Data System (ADS)
Trioux, E.; Monfray, S.; Basrour, S.
2017-11-01
This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through the thermal buckling of a bilayer aluminum nitride/aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, with improved performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease in buckling temperatures compared to previously studied rectangular plates. Firstly, an analytical model exposes the basic principle of the presented device. Then a numerical model completes the explanations by introducing a butterfly shaped structure. Finally the fabrication process is briefly described and both the rectangular and butterfly harvesters are characterized. We compare their performances with an equal thickness of Al and AlN. Secondly, with a thicker Al layer than AlN layer, we will characterize only the butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack.
NASA Astrophysics Data System (ADS)
Liang, Yu-Han; Towe, Elias
2017-12-01
Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.
Kim, Beom Su; Shkembi, Feride; Lee, Jun
2017-01-01
Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10 -7 -10 -4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young's modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration.
Kim, Beom Su; Shkembi, Feride
2017-01-01
Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10−7–10−4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young's modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration. PMID:28210623
Duong, L T; Pickarski, M; Cusick, T; Chen, C M; Zhuo, Y; Scott, K; Samadfam, R; Smith, S Y; Pennypacker, B L
2016-07-01
The objectives here were to evaluate the effects of odanacatib (ODN) at doses exceeding the clinical exposure on biomechanical properties of lumbar vertebrae (LV), hip and central femur (CF), and compare ODN to alendronate (ALN) on bone remodeling/modeling in ovariectomized (OVX) monkeys. Ten days post-surgery, animals were treated with vehicle (VEH), ODN-L (2mg/kg/day, p.o.), ODN-H (8/4mg/kg/day), or ALN (30μg/kg/week, s.c.) for 20months. An intact group was also included. ODN-L provided systemic exposures of 1.8-fold of clinical exposure. ODN-H started at 20-fold for 5.5months, and then reduced to 7.8-fold of clinical exposure, compared to ALN at approximated clinical exposure. From cross sectional analyses, LV density and peak load in ODN at both doses or ALN were not different from VEH or Intact. However, cortical thickness of femoral neck (FN) and CF in ODN were higher (21-34%, p<0.05) than VEH, due to smaller endocortical (Ec) perimeter of FN (10-11%; p<0.05) and CF (9-12%; ODN-L, p<0.05), and larger CF periosteal (Ps) perimeter (2-12%; ODN-H, p<0.001) versus VEH. ODN groups also showed slightly higher cortical porosity and Ps non-lamellar bone in CF. ODN-H treatment resulted in higher CF peak load (p<0.05) versus VEH. For all bone sites analyzed, a positive, linear relationship (r(2)=0.46-0.69, p<0.0001) of peak load to density or structural parameters was demonstrated. No treatment-related differences in the derived intrinsic strength properties were evidenced as compared between groups. ALN reduced all remodeling surfaces without affecting Ps modeling. Trabecular and intracortical remodeling were reduced in ODN groups, similar to ALN. Ec mineralizing surface in ODN-H trended to be lower than VEH by month 20, but Ec bone formation indices in ODN groups generally were not different from VEH. Ps modeling in ODN groups was significantly higher than other treatment groups. This study overall demonstrated the bone safety profile of ODN and its unique mechanism on cortical bone supporting the clinical application for osteoporosis treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang; Misra, R. D. K.; Wang, Guo-Dong
2016-12-01
A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size 100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size 20-50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size 10-40 mm were formed and the final magnetic induction, B8, was as high as 1.9 T.
Liu, Xiaomin; Qu, Shuxin; Lu, Xiong; Ge, Xiang; Leng, Yang
2009-12-01
The aim of this study was to investigate the drug distribution in ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), which was developed to treat particle-induced osteolysis after artificial joint replacements, since the drug distribution in UHMWPE could play a key role in controlling drug release. A mixture of UHMWPE powder and ALN was dried and hot pressed to prepare UHMWPE loaded with ALN (UHMWPE-ALN). Fourier transform infrared spectroscopy analysis demonstrated that the hot press had no effect on the functional groups of ALN in UHMWPE-ALN. X-ray diffraction indicated that there was no phase change of the UHMWPE after hot pressing. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra revealed the existence of characteristic elements and functional groups from ALN in UHMWPE-ALN, such as Na+, C3H8N+, PO3(-) and PO3H(-). In addition, SIMS images suggested that ALN did not agglomerate in UHMWPE-ALN. A small punch test and hardness test were carried out and the results indicated that ALN did not affect the mechanical properties at the present content level. The present study demonstrated that it was feasible to fabricate the un-agglomerated distributed drug in UHMWPE with good mechanical properties. This ALN loaded UHMWPE would have potential application in clinics.
First-principles study on stability, and growth strategies of small AlnZr (n=1-9) clusters
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhou, Zhonghao; Wang, Hongbin; Li, Shengli; Zhao, Zhen
2016-09-01
The geometries, relative stability as well as growth strategies of the AlnZr (n=1-9) clusters are investigated with spin polarized density functional theory: BLYP. The results reveal that the AlnZr clusters are more likely to form the dense accumulation structures than the AlN (N=1-10) clusters. The average binding energies of AlnZr are higher than those of AlN clusters. The AlnZr (n=3, 5, and 7) clusters are more stable than others by the differences of the total binding energies. Mülliken population analysis for the AlnZr clusters shows that the electron's adsorption ability of Zr is slightly lower than that of Al except for AlZr cluster. Local peaks of the HOMO-LUMO gap curve are found at n=3, 5, and 7. The reaction energies of AlnZr are higher, which means that AlnZr clusters are easier to react with Al clusters. Zr atom preferential reacts with Al2 cluster. Local peaks of the magnetic dipole moments are found at n=2, 5, and 8.
Bone, H G; Walter, M A; Hurley, M E; Epstein, S
2017-05-01
No clinically important pharmacokinetic interference of alendronate occurred between a new effervescent formulation of alendronate and levothyroxine when coadministered. The combination does not materially affect levothyroxine absorption. Concurrent treatment of osteoporosis with alendronate (Aln) and hypothyroidism with levothyroxine (LT4) may be problematic because both drugs are to be taken separately after fasting overnight. The primary objective was to assess pharmacokinetic interactions between a new effervescent formulation of Aln (Aln-NEF) and LT4. A randomized, open-label, 3-way crossover study was conducted in 30 healthy adults (15 women). Subjects were dosed 3 times, separated by 35 days, after overnight fasts, with Aln-NEF alone (70 mg), LT4 alone (600 μg), or Aln-NEF and LT4 concurrently. Samples were analyzed for plasma Aln and serum LT4. Pharmacokinetic drug-drug interaction was assessed using 90% confidence intervals (CIs) for the test/reference ratio of the geometric means for area under the concentration-time curve from time zero to last measureable time point (AUC 0-t ) and maximum concentration (C max ). Results were compared to the default no-effect boundaries of 80 to 125% for the ratio Aln-NEF and LT4 concurrently/Aln-NEF alone and the ratio Aln-NEF and LT4 concurrently/LT4 alone. Geometric mean ratios (Aln-NEF with LT4/Aln-NEF alone) were 0.927 (90% CI 0.795-1.081) for AUC 0-8 and 0.912 (90% CI 0.773-1.077) for C max , demonstrating LT4 does not appreciably affect the pharmacokinetics of Aln. Geometric mean ratios (LT4 with Aln-NEF/LT4 alone) were 1.049 (90% CI 0.983-1.119) for AUC 0-48 and 1.075 (90% CI 1.006-1.148) for C max , demonstrating LT4 is bioequivalent between the 2 treatments. Coadministration of Aln-NEF and LT4 was well tolerated. There was no clinically important pharmacokinetic interference between the Aln-NEF formulation and LT4. Aln-NEF does not materially affect LT4 absorption.
Room temperature luminescence and ferromagnetism of AlN:Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn
2016-06-15
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.
Lu, Tsung-Ju; Fanto, Michael; Choi, Hyeongrak; Thomas, Paul; Steidle, Jeffrey; Mouradian, Sara; Kong, Wei; Zhu, Di; Moon, Hyowon; Berggren, Karl; Kim, Jeehwan; Soltani, Mohammad; Preble, Stefan; Englund, Dirk
2018-04-30
We demonstrate a wide-bandgap semiconductor photonics platform based on nanocrystalline aluminum nitride (AlN) on sapphire. This photonics platform guides light at low loss from the ultraviolet (UV) to the visible spectrum. We measure ring resonators with intrinsic quality factor (Q) exceeding 170,000 at 638 nm and Q >20,000 down to 369.5 nm, which shows a promising path for low-loss integrated photonics in UV and visible spectrum. This platform opens up new possibilities in integrated quantum optics with trapped ions or atom-like color centers in solids, as well as classical applications including nonlinear optics and on-chip UV-spectroscopy.
Komatsu, Koichiro; Shimada, Akemi; Shibata, Tatsuya; Wada, Satoshi; Ideno, Hisashi; Nakashima, Kazuhisa; Amizuka, Norio; Noda, Masaki; Nifuji, Akira
2013-11-01
Bisphosphonates (BPs) are a major class of antiresorptive drug, and their molecular mechanisms of antiresorptive action have been extensively studied. Recent studies have suggested that BPs target bone-forming cells as well as bone-resorbing cells. We previously demonstrated that local application of a nitrogen-containing BP (N-BP), alendronate (ALN), for a short period of time increased bone tissue in a rat tooth replantation model. Here, we investigated cellular mechanisms of bone formation by ALN. Bone histomorphometry confirmed that bone formation was increased by local application of ALN. ALN increased proliferation of bone-forming cells residing on the bone surface, whereas it suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in vivo. Moreover, ALN treatment induced more alkaline phosphatase-positive and osteocalcin-positive cells on the bone surface than PBS treatment. In vitro studies revealed that pulse treatment with ALN promoted osteocalcin expression. To track the target cells of N-BPs, we applied fluorescence-labeled ALN (F-ALN) in vivo and in vitro. F-ALN was taken into bone-forming cells both in vivo and in vitro. This intracellular uptake was inhibited by endocytosis inhibitors. Furthermore, the endocytosis inhibitor dansylcadaverine (DC) suppressed ALN-stimulated osteoblastic differentiation in vitro and it suppressed the increase in alkaline phosphatase-positive bone-forming cells and subsequent bone formation in vivo. DC also blocked the inhibition of Rap1A prenylation by ALN in the osteoblastic cells. These data suggest that local application of ALN promotes bone formation by stimulating proliferation and differentiation of bone-forming cells as well as inhibiting osteoclast function. These effects may occur through endocytic incorporation of ALN and subsequent inhibition of protein prenylation.
Experiments using a 200 kV implanter and a 5 MV tandem accelerator
NASA Astrophysics Data System (ADS)
Ishigami, Ryoya; Ito, Yoshifumi; Yasuda, Keisuke; Hatori, Satoshi
2001-07-01
N+ ions with an energy of 190 keV were implanted into an Al alloy (95% Al and 5% Mg) to a dose of 1.5×1019ions/cm2. A layer of AlN with 1.4 μm thickness was obtained. The amounts of InN deposited on GaAs or Al2O3 were measured by RBS using He2+ ions with an energy of 3.14 MeV generated by a tandem accelerator. The thickness was estimated to be 0.047 μm and 0.26 μm in each case. An experiment on transmission ERDA using He2+ ions with an energy of 15 MeV is proposed for the measurement of deuterons in thick Ti foil with good depth resolution.
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.
Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki
2006-05-18
Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.
Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi
2016-02-05
We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.
NASA Astrophysics Data System (ADS)
Mori, Takahiro; Morita, Yukinori; Matsukawa, Takashi
2018-05-01
The effect of post-implantation annealing (PIA) on Al-N isoelectronic trap (IET) formation in silicon has been experimentally investigated to discuss the Al-N IET formation and implantation-induced defect recovery mechanisms. We performed a photoluminescence study, which indicated that self-interstitial clusters and accompanying vacancies are generated in the ion implantation process. It is supposed that Al and N atoms move to the vacancy sites and form stable Al-N pairs in the PIA process. Furthermore, the PIA process recovers self-interstitial clusters while transforming their atomic configuration. The critical temperature for the formation/dissociation of Al-N pairs was found to be 450 °C, with which we describe the process integration for devices utilizing Al-N IET technology.
NASA Astrophysics Data System (ADS)
Belkerk, B. E.; Soussou, M. A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.
2012-07-01
This paper reports the ultra-fast transient hot-strip (THS) technique for determining the thermal conductivity of thin films and coatings of materials on substrates. The film thicknesses can vary between 10 nm and more than 10 µm. Precise measurement of thermal conductivity was performed with an experimental device generating ultra-short electrical pulses, and subsequent temperature increases were electrically measured on nanosecond and microsecond time scales. The electrical pulses were applied within metallized micro-strips patterned on the sample films and the temperature increases were analysed within time periods selected in the window [100 ns-10 µs]. The thermal conductivity of the films was extracted from the time-dependent thermal impedance of the samples derived from a three-dimensional heat diffusion model. The technique is described and its performance demonstrated on different materials covering a large thermal conductivity range. Experiments were carried out on bulk Si and thin films of amorphous SiO2 and crystallized aluminum nitride (AlN). The present approach can assess film thermal resistances as low as 10-8 K m2 W-1 with a precision of about 10%. This has never been attained before with the THS technique.
Electron microscopy characterization of AlGaN/GaN heterostructures grown on Si (111) substrates
NASA Astrophysics Data System (ADS)
Gkanatsiou, A.; Lioutas, Ch. B.; Frangis, N.; Polychroniadis, E. K.; Prystawko, P.; Leszczynski, M.
2017-03-01
AlGaN/GaN buffer heterostructures were grown on "on axis" and 4 deg off Si (111) substrates by MOVPE. The electron microscopy study reveals the very good epitaxial growth of the layers. Almost c-plane orientated nucleation grains are achieved after full AlN layer growth. Step-graded AlGaN layers were introduced, in order to prevent the stress relaxation and to work as a dislocation filter. Thus, a crack-free smooth surface of the final GaN epitaxial layer is achieved in both cases, making the buffer structure ideal for the forthcoming growth of the heterostructure (used for HEMT device applications). Finally, the growth of the AlGaN/GaN heterostructure on top presents characteristic and periodic undulations (V-pits) on the surface, due to strain relaxation reasons. The AlN interlayer grown in between the heterostructure demonstrates an almost homogeneous thickness, probably reinforcing the 2DEG electrical characteristics.
NASA Astrophysics Data System (ADS)
Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu
2017-03-01
This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.
Design of Al-rich AlGaN quantum well structures for efficient UV emitters
NASA Astrophysics Data System (ADS)
Funato, Mitsuru; Ichikawa, Shuhei; Kumamoto, Kyosuke; Kawakami, Yoichi
2017-02-01
The effects of the structure design of AlGaN-based quantum wells (QWs) on the optical properties are discussed. We demonstrate that to achieve efficient emission in the germicidal wavelength range (250 - 280 nm), AlxGa1-xN QWs in an AlyGa1-yN matrix (x < y) is quite effective, compared with those in an AlN matrix: Time-resolved photoluminescence and cathodoluminescence spectroscopies show that the AlyGa1-yN matrix can enhance the radiative recombination process and can prevent misfit dislocations, which act as non-radiative recombination centers, from being induced in the QW interface. As a result, the emission intensity at room temperature is about 2.7 times larger for the AlxGa1-xN QW in the AlyGa1-yN matrix than that in the AlN matrix. We also point out that further reduction of point defects is crucial to achieve an even higher emission efficiency.
Kim, Sung Eun; Yun, Young-Pil; Shim, Kyu-Sik; Kim, Hak-Jun; Park, Kyeongsoon; Song, Hae-Ryong
2016-09-29
The aim of this study was to evaluate the in vitro osteogenic effects and in vivo new bone formation of three-dimensional (3D) printed alendronate (Aln)-releasing poly(caprolactone) (PCL) (Aln/PCL) scaffolds in rat tibial defect models. 3D printed Aln/PCL scaffolds were fabricated via layer-by-layer deposition. The fabricated Aln/PCL scaffolds had high porosity and an interconnected pore structure and showed sustained Aln release. In vitro studies showed that MG-63 cells seeded on the Aln/PCL scaffolds displayed increased alkaline phosphatase (ALP) activity and calcium content in a dose-dependent manner when compared with cell cultures in PCL scaffolds. In addition, in vivo animal studies and histologic evaluation showed that Aln/PCL scaffolds implanted in a rat tibial defect model markedly increased new bone formation and mineralized bone tissues in a dose-dependent manner compared to PCL-only scaffolds. Our results show that 3D printed Aln/PCL scaffolds are promising templates for bone tissue engineering applications.
NASA Astrophysics Data System (ADS)
Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.
2018-04-01
We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.
NASA Astrophysics Data System (ADS)
Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue
2017-02-01
This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.
Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsipas, P.; Kassavetis, S.; Tsoutsou, D.
Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.
NASA Astrophysics Data System (ADS)
Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki
2016-05-01
Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.
Kim, Won Hwa; Kim, Hye Jung; Jung, Jin Hyang; Park, Ho Yong; Lee, Jeeyeon; Kim, Wan Wook; Park, Ji Young; Cheon, Hyejin; Lee, So Mi; Cho, Seung Hyun; Shin, Kyung Min; Kim, Gab Chul
2017-11-01
Ultrasonography-guided fine-needle aspiration (US-guided FNA) for axillary lymph nodes (ALNs) is currently used with various techniques for the initial staging of breast cancer and tagging of ALNs. With the implementation of the tattooing of biopsied ALNs, the rate of false-negative results of US-guided FNA for non-palpable and suspicious ALNs and concordance with sentinel lymph nodes were determined by node-to node analyses. A total of 61 patients with breast cancer had negative results for metastasis on US-guided FNA of their non-palpable and suspicious ALNs. The biopsied ALNs were tattooed with an injection of 1-3 mL Charcotrace (Phebra, Lane Cove West, Australia) ink and removed during sentinel lymph node biopsy or axillary dissection. We determined the rate of false-negative results and concordance with the sentinel lymph nodes by a retrospective review of surgical and pathologic findings. The association of false-negative results with clinical and imaging factors was evaluated using logistic regression. Of the 61 ALNs with negative results for US-guided FNA, 13 (21%) had metastases on final pathology. In 56 of 61 ALNs (92%), tattooed ALNs corresponded to the sentinel lymph nodes. Among the 5 patients (8%) without correspondence, 1 patient (2%) had 2 metastatic ALNs of 1 tattooed node and 1 sentinel lymph node. In multivariate analysis, atypical cells on FNA results (odds ratio = 20.7, p = 0.040) was independently associated with false-negative FNA results. False-negative ALNs after US-guided FNA occur at a rate of 21% and most of the tattooed ALNs showed concordance with sentinel lymph nodes. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo
2017-10-01
A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Jing
2018-02-01
Optical polarization from AlGaN quantum well (QW) is crucial for realizing high-efficiency deep-ultraviolet (UV) light-emitting diodes (LEDs) because it determines the light emission patterns and light extraction mechanism of the devices. As the Al-content of AlGaN QW increases, the valence bands order changes and consequently the light polarization switches from transverse-electric (TE) to transverse-magnetic (TM) owing to the different sign and the value of the crystal field splitting energy between AlN (-169meV) and GaN (10meV). Several groups have reported that the ordering of the bands and the TE/TM crossover Al-content could be influenced by the strain state and the quantum confinement from the AlGaN QW system. In this work, we investigate the influence of QW thickness on the optical polarization switching point from AlGaN QW with AlN barriers by using 6-band k•p model. The result presents a decreasing trend of the critical Al-content where the topmost valence band switches from heave hole (HH) to crystal field spilt-off (CH) with increasing QW thicknesses due to the internal electric field and the strain state from the AlGaN QW. Instead, the TE- and TM-polarized spontaneous emission rates switching Al-content rises first and falls later because of joint consequence of the band mixing effect and the Quantum Confined Stark Effect. The reported optical polarization from AlGaN QW emitters in the UV spectral range is assessed in this work and the tendency of the polarization switching point shows great consistency with the theoretical results, which deepens the understanding of the physics from AlGaN QW UV LEDs.
Kobayashi, M; Hara, K; Akiyama, Y
2004-11-01
In this study, we examined changes in bone parameters and bone strength in rats fed low-Mg diets (experiment 1) and the effects of vitamin K2 (MK-4, experiment 3) and alendronate (ALN, experiment 2) in this model. In experiment 1, 5-week-old male Wistar rats were fed three low-Mg diets (Mg 9, 6, 3 mg/100 g diet) for 4 weeks. Although the cortical bone mineral content (CtBMC) and cortical thickness (CtTh) of the femoral diaphysis in all low-Mg-diet groups were the same as or greater than those in the intact group (Mg: 90 mg/100 g diet), the maximum load and elastic modulus were significantly reduced in the 3-mg-Mg group. In experiment 2, 4-week-old Wistar rats were fed a 6-mg-Mg diet for 8 weeks, and the effect of ALN (2, 20, and 200 microg/kg twice a week) was evaluated. The administration of ALN at 200 microg/kg increased the cortical bone mineral content (CtBMC), CtTh, and maximum load, but had no effect on the elastic modulus, as compared with the low-Mg-control group. In experiment 3, the effect of MK-4 was evaluated under the same conditions as in experiment 2. The administration of MK-4 had no effect on CtBMC, CtTh, or bone components of the femoral diaphysis. However, MK-4 inhibited the decreases in maximum load and elastic modulus due to the low-Mg diet. Since there is no other experimental model in which there is a decrease in bone mechanical properties without a decrease in bone mineral content, the low-Mg diet model is considered to be an excellent model for examining bone quality. Our results from this model suggest that MK-4 and ALN affect bone mechanical properties by different mechanisms.
Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers
Yadav, S. K.; Wang, J.; Liu, X. -Y.
2016-06-13
An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less
Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic
2015-09-01
tile(s) Aluminum nitride (AlN) 163 a Polymer layers Polyurethane foam 18 b Backing metal Aluminum 6061-T6 (Al) 23 c Projectile Tungsten heavy alloy...larger (a factor of 3.8) than the most dense polyurethane foam of the available constitutive models. Default options for element failure were imposed in...AlN), a polycrystalline ceramic. The total thickness of the tile(s) is 38.1 mm in all cases. A thin polyurethane laminate separates neighboring tiles
NASA Astrophysics Data System (ADS)
Lin, Jingyu; Jiang, Hongxing
2003-07-01
This paper summarizes some of the recent advances made by our group on the growth, characterization and applications of AlGaN alloys with high Al contents. Recently, our group has achieved highly conductive n-type AlxGa1-xN for x as high as 0.7 (a resistivity value as low as 0.15 ohm-cm has been achieved). Prior to this, only insulating AlxGa1-xN (x > 0.5) can be obtained. Our success is largely attributed to our unique capability for monitoring the optical qualities of these layers -- the development of the world's first (and presently only) deep UV picosecond time-resolved optical spectroscopy system for probing the optical properties of III-nitrides [photoluminescence (PL), electro-luminescence (EL), etc.] with a time-resolution of a few ps and wavelength down to deep UV (down to 195 nm). Our time- resolved PL results have shown that we must fill in the localization states (caused by alloy fluctuation) by doping before conduction could occur. The density of states of localization states is about 1018/cm3 in this system. It was also shown that AlxGa1-xN alloys could be made n-type for x up to 1 (pure AlN). Time-resolved photoluminescence (PL) studies carried out on these materials have revealed that Si-doping reduces the effect of carrier localization in AlxGa1-xN alloys and a sharp drop in carrier localization energy as well as a sharp increase in conductivity occurs when the Si doping concentration increases to above 1 x 1018 cm-3. For the Mg-doped AlxGa1-xN alloys, p-type conduction was achieved for x up to 0.27. The Mg acceptor activation energy as a function of Al content has been deduced. Mg-δ-doping in GaN and AlGaN epilayers has been investigated. We have demonstrated that δ-doping significantly suppresses the dislocation density, enhances the p-type conduction, and reduces the non-radiative recombination centers in GaN and AlGaN. AlN epilayers with high optical qualities have also been grown on sapphire substrates. Very efficient band-edge PL emission lines have been observed for the first time with above bandgap deep UV laser excitation. We have shown that the thermal quenching of the PL emission intensity is much less severe in AlN than in GaN and the optical quality of AlN can be as good as GaN. From the low temperature (10 K) emission spectra, as well as the temperature dependence of the recombination lifetime and the PL emission intensity, the binding energies of the bound excitons and free excitons in AlN were deduced to be around 16 meV and 80 meV, respectively. From this, the energy bandgap of AlN epilayers grown on sapphire was found to be around 6.11 eV at 10 K. The observed large free exciton binding energy implies that excitons in AlN are extremely robust entities. This together with other well-known physical properties of AlN may considerably expand future prospects for the application of III-nitride materials.
Lettau, Michael; Kotter, Elmar; Bendszus, Martin; Hähnel, Stefan
2014-10-01
CT angiography (CTA) is an increasingly used method for evaluation of stented vessel segments. Our aim was to compare the appearance of different carotid artery stents in vitro on CTA using different CT scanners. Of particular interest was the measurement of artificial lumen narrowing (ALN) caused by the stent material within the stented vessel segment to determine whether CTA can be used to detect in-stent restenosis. CTA appearances of 16 carotid artery stents of different designs and sizes (4.0 to 11.0 mm) were investigated in vitro. CTA was performed using 16-, 64- and 320-row CT scanners. For each stent, artificial lumen narrowing (ALN) was calculated. ALN ranged from 18.77% to 59.86%. ALN in different stents differed significantly. In most stents, ALN decreased with increasing stent diameter. In all but one stents, ALN using sharp image kernels was significantly lower than ALN using medium image kernels. Considering all stents, ALN did not significantly differ using different CT scanners or imaging protocols. CTA evaluation of vessel patency after stent placement is possible, but is considerably impaired by ALN. Investigators should be informed about the method of choice for every stent and stent manufacturers should be aware of potential artifacts caused by their stents during noninvasive diagnostic methods such as CTA. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Shalaby, Essam. A. M.; Churyumov, Alexander. Yu.; Besisa, Dina. H. A.; Daoud, A.; Abou El-khair, M. T.
2017-07-01
A comparative study of thermal and wear behavior of squeeze cast A359 alloy and composites containing 5, 10 and 15 wt.% AlN and SiC particulates was investigated. It was pointed out that A359/AlN composites have a superior thermal conductivity as compared to A359 alloy or even to A359/SiC composites. Composites wear characteristics were achieved by pins-on-disk instrument over a load range of 20-60 N and a sliding speed of 2.75 m/s. Results showed that A359/AlN and A359/SiC composites exhibited higher wear resistance values compared to A359 alloy. Moreover, A359/AlN composites showed superior values of wear resistance than A359/SiC composites at relatively high loads. Friction coefficients and contact surface temperature for A359/AlN specimens decreased as AlN content increased, while they increased for A359/SiC. Investigations of worn surfaces revealed that A359/AlN composites were covered up by aluminum nitrides and iron oxides, which acted as smooth layers. However, A359/SiC composites were mainly covered only by iron oxides. The superior thermal conductivity and the significant wear resistance of the developed A359/AlN composites provided a high durable material suitable for industrial applications.
Adsorption properties of AlN on Si(111) surface: A density functional study
NASA Astrophysics Data System (ADS)
Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting
2018-04-01
In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Rui; Li, Ding; Liu, Ningyang; Liu, Lei; Chen, Weihua; Wang, Cunda; Yang, Zhijian; Hu, Xiaodong
2010-02-01
AlN layer was grown as interlayer between undoped GaN and Mg doped Al0.14Ga0.86N/GaN superlattices (SLs) epilayer to modulate the strain distribution between Al0.14Ga0.86N barrier and GaN well layers in SLs sample. Strain relaxation was observed in the SLs sample with AlN interlayer by x-ray diffraction reciprocal space mapping method. The measured hole concentration of SLs sample with AlN interlayer at room temperature was over 1.6×1018 cm-3 but that was only 6.6×1016 cm-3 obtained in SLs sample without AlN interlayer. Variable temperature Hall-effect measurement showed that the acceptor activation energy decreased from 150 to 70 meV after inserting the AlN layer, which indicated that the strain modulation of SLs induced by AlN interlayer was beneficial to the Mg acceptor activation and hole concentration enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridhara Rao, D. V.; Jain, Anubha; Lamba, Sushil
2013-05-13
The electron microscopy was used to characterize the AlN interlayer in Al{sub x}Ga{sub 1-x}N/AlN/GaN heterostructures grown by plasma assisted molecular beam epitaxy (PAMBE). We show that the AlN interlayer grown by PAMBE is without gallium and oxygen incorporation and the interfaces are coherent. The AlN interlayer has the ABAB stacking of lattice planes as expected for the wurtzite phase. High purity of AlN interlayer with the ABAB stacking leads to larger conduction band offset along with stronger polarization effects. Our studies show that the origin of lower sheet resistance obtained by PAMBE is the purity of AlN interlayer.
Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.
Song, Jie; Han, Jung
2017-03-02
We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.
Comparison of acute lobar nephronia and uncomplicated urinary tract infection in children.
Yang, Ching-Chi; Shao, Pei-Lan; Lu, Chun-Yi; Tsau, Yong-Kwei; Tsai, I-Jung; Lee, Ping-Ing; Chang, Luan-Yin; Huang, Li-Ming
2010-06-01
This aim of this study was to assess the clinical manifestations, the microorganisms involved and their antibiotic resistance in children hospitalized due to acute lobar nephronia (ALN) and non-ALN community-acquired urinary tract infections (UTIs). We retrospectively reviewed the records of 265 previously healthy children hospitalized due to a first-episode of community-acquired febrile UTI between July 2004 and June 2007. Based on the results of renal ultrasonography and computed tomography, they were divided into ALN and non-ALN groups. Their demographic and clinical characteristics, distribution of microorganisms, and their antimicrobial resistance were analyzed. Of the total number of cases of children admitted with a first-episode community-acquired UTI, 19.2% (n=51) were diagnosed as ALN. Children with ALN were older (1.86 years vs. 0.81 years; p < 0.01), had longer periods of fever before admission (4.7 days vs. 1.4 days; p < 0.01), higher peak body temperatures (39.5°C vs. 38.9°C; p < 0.01), higher white cell counts (18.86 × 10(9)/L vs. 15.08 × 10(9)/L; p < 0.01) and higher C-reactive protein levels (9.0 mg/dL vs. 3.5 mg/dL; p < 0.01) compared with non-ALN children. Fever also persisted for longer after the start of antibiotic treatment in the ALN children (2.7 days vs. 1.4 days: p < 0.01) and they required longer hospital stays and incurred higher medical costs. The major pathogen found in ALN was E. coli (90%). The E. coli isolated from ALN children was more resistant to cotrimoxazole and ciprofloxacin than those from non-ALN children. ALN is not uncommon in children with a first-episode febrile UTI. They have a prolonged clinical course, higher inflammatory parameters, longer hospital stays and incur higher medical costs. E. coli is the major pathogen isolated from these children. Copyright © 2010 Taiwan Society of Microbiology. Published by Elsevier B.V. All rights reserved.
Kuchuk, Andrian V; Kryvyi, Serhii; Lytvyn, Petro M; Li, Shibin; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Safryuk, Nadiia V; Stanchu, Hryhorii V; Belyaev, Alexander E; Salamo, Gregory J
2016-12-01
Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation. These results indicate a total SL thickness beyond which growth may be limited for the formation of high-quality coherent crystal structures; however, they may indicate a growth window for the reduction of threading dislocations by controlled relaxation of the epilayers.
Sharma, Anuj; Raman, Achala; Pradeep, Avani Raju
2017-01-01
Alendronate (ALN) inhibits osteoclastic bone resorption and triggers osteostimulative properties both in vivo and in vitro, as shown by increase in matrix formation. This study aimed to explore the efficacy of 1% ALN gel as local drug delivery (LDD) in adjunct to scaling and root planing (SRP) for the treatment of chronic periodontitis among smokers. 75 intrabony defects were treated in 46 male smokers either with 1% ALN gel or placebo gel. ALN gel was prepared by adding ALN into carbopol-distilled water mixture. Clinical parameters [modified sulcus bleeding index, plaque index, probing depth (PD), and periodontal attachment level (PAL)] were recorded at baseline, at 2 months, and at 6 months, while radiographic parameters were recorded at baseline and at 6 months. Defect fill at baseline and at 6 months was calculated on standardized radiographs by using the image analysis software. Mean PD reduction and mean PAL gain were found to be greater in the ALN group than in the placebo group, both at 2 and 6 months. Furthermore, a significantly greater mean percentage of bone fill was found in the ALN group (41.05±11.40%) compared to the placebo group (2.5±0.93%). The results of this study showed 1% ALN stimulated a significant increase in PD reduction, PAL gain, and an improved bone fill compared to placebo gel in chronic periodontitis among smokers. Thus, 1% ALN, along with SRP, is effective in the treatment of chronic periodontitis in smokers.
NASA Astrophysics Data System (ADS)
Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah
2018-05-01
Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.
Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.
2004-10-01
AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.
Neutron Productions from thin Be target irradiated by 50 MeV/u 238U beam
NASA Astrophysics Data System (ADS)
Lee, Hee-Seock; Oh, Joo-Hee; Jung, Nam-Suk; Oranj, Leila Mokhtari; Nakao, Noriaki; Uwamino, Yoshitomo
2017-09-01
Neutrons generated from thin beryllium target by 50 MeV/u 238U beam were measured using activation analysis at 15, 30, 45, and 90 degrees from the beam direction. A 0.085 mm-thick Be stripper of RIBF was used as the neutron generating target. Activation detectors of bismuth, cobalt, and aluminum were placed out of the stripper chamber. The threshold reactions of 209Bi(n, xn)210-xBi(x=4 8), 59Co(n, xn)60-xCO(x=2 5), 59Co(n, 2nα)54Mn, 27Al(n, α)24Na, and 27Al(n,2nα)22Na were applied to measure the production rates of radionuclides. The neutron spectra were obtained using an unfolding method with the SAND-II code. All of production rates and neutron spectra were compared with the calculated results using Monte Carlo codes, the PHITS and the FLUKA. The FLUKA results showed better agreement with the measurements than the PHITS. The discrepancy between the measurements and the calculations were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che
2012-06-29
GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign ofmore » cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.« less
Superconductivity and tunneling-junctions in epitaxial Nb2N/AlN/GaN heterojunctions
NASA Astrophysics Data System (ADS)
Yan, Rusen; Han, Yimo; Khalsa, Guru; Vishwanath, Suresh; Katzer, Scott; Nepal, Neeraj; Downey, Brian; Muller, David; Meyer, David; Xing, Grace; Jena, Debdeep; ECE Collaboration; AEP Collaboration; MSE Collaboration; NRL Collaboration
We have discovered that ultrathin highly crystalline Nb2N layers grown epitaxially (by MBE) on SiC and integrated with AlN and GaN heterostructures are high-quality superconductors with transition temperatures from 9-13 K. The out-of-plane critical magnetic fields are found to be 14 Tesla range, and the critical current density is 4*1E5 A/cm2 at 5 K. Preliminary in-plane magnetotransport measurements on 4 nm thin films indicate a significantly high critical magnetic field exceeding 40 T. Since Nb2N superconducting layers can be epitaxially integrated with GaN, AlN, and AlGaN, we also demonstrate Nb2N superconductivity in a layer located beneath an N-polar GaN high-electron-mobility transistor (HEMT) heterostructure that uses a 2DEG channel as a microwave amplifier; such a demonstration illustrates the potential emergence of a new paradigm where an all-epitaxial III-N/Nb2N platform could serve as the basis for microwave qubits to power quantum computation as well as quantum communications.
Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.
Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J
2016-11-24
Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .
Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation
Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong
2015-01-01
Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587
Compatibility of AlN with liquid lithium
NASA Astrophysics Data System (ADS)
Terai, T.; Suzuki, A.; Yoneoka, T.; Mitsuyama, T.
2000-12-01
Development of ceramic coatings is one of the most important subjects in liquid blanket research and development. Compatibility of sintered AlN and AlN coatings with liquid lithium, a candidate breeding material, was investigated. Sintered AlN with or without the sintering aid of Y 2O 3 examined in lithium at 773 K for 1390 h showed a slight decrease in electrical resistivity because of a reduction in Al 2O 3 impurity, though AlN and Y 2O 3 components themselves were subject to no severe corrosion. On the other hand, AlN ceramic coatings on SUS430 with high resistivity (> 10 11 Ω m) fabricated by the RF sputtering method disappeared in liquid lithium at 773 K in 56 h. This may be because cracks were formed due to the difference in thermal expansion between the coatings and the substrate or because the oxide formed between the two was removed by liquid lithium.
SHARMA, Anuj; RAMAN, Achala; PRADEEP, Avani Raju
2017-01-01
Abstract Objective Alendronate (ALN) inhibits osteoclastic bone resorption and triggers osteostimulative properties both in vivo and in vitro, as shown by increase in matrix formation. This study aimed to explore the efficacy of 1% ALN gel as local drug delivery (LDD) in adjunct to scaling and root planing (SRP) for the treatment of chronic periodontitis among smokers. Material and Methods 75 intrabony defects were treated in 46 male smokers either with 1% ALN gel or placebo gel. ALN gel was prepared by adding ALN into carbopol-distilled water mixture. Clinical parameters [modified sulcus bleeding index, plaque index, probing depth (PD), and periodontal attachment level (PAL)] were recorded at baseline, at 2 months, and at 6 months, while radiographic parameters were recorded at baseline and at 6 months. Defect fill at baseline and at 6 months was calculated on standardized radiographs by using the image analysis software. Results Mean PD reduction and mean PAL gain were found to be greater in the ALN group than in the placebo group, both at 2 and 6 months. Furthermore, a significantly greater mean percentage of bone fill was found in the ALN group (41.05±11.40%) compared to the placebo group (2.5±0.93%). Conclusions The results of this study showed 1% ALN stimulated a significant increase in PD reduction, PAL gain, and an improved bone fill compared to placebo gel in chronic periodontitis among smokers. Thus, 1% ALN, along with SRP, is effective in the treatment of chronic periodontitis in smokers. PMID:28678942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke
2015-02-23
Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysismore » also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.« less
AlN metal-semiconductor field-effect transistors using Si-ion implantation
NASA Astrophysics Data System (ADS)
Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás
2018-04-01
We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.
Self-assembling of impurity clusters in AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb)
NASA Astrophysics Data System (ADS)
Elyukhin, V. A.
2015-11-01
The self-assembling conditions of arrays of tetrahedral impurity clusters of two types in zinc blende AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb) are represented. Doping with one cation and two anion isoelectronic impurities transforms AlN into AlN-rich GaxAl1-xBVyCVzN1-y-z alloy of GaBV, GaCV, GaN, AlBV, AlCV and AlN. The cause of self-assembling is the preference of GaBV, GaCV and AlN bonding over that of GaN, AlBV, AlCV. The conditions are considered from 0 °C to 1000 °C in the dilute and ultra dilute limits for the cation and anion impurities, correspondingly. The temperature ranges between the cluster occurrence and self-assembling completion when the same anion impurities are in clusters are very small. 1P4Ga and 1As4Ga cluster occurrence temperatures are equal, correspondingly, to 797 °C and 736 °C at Ga content 2% and P and As contents 0.01%. 1P4Ga and 1Sb4Ga cluster occurrence temperatures are equal, correspondingly, to 976 °C and 736 °C at the same impurity contents. The cluster densities in AlN:(Ga, As, Sb) are close to those in AlN:(Ga, P, Sb). The results demonstrate that studied semiconductors are promising materials to produce arrays of identical ∼1 nm low band gap objects of two types embedded in the wide band gap matrix.
pMUT+ASIC integrated platform for wide range ultrasonic imaging
NASA Astrophysics Data System (ADS)
Tillak, J.; Saeed, N.; Khazaaleh, S.; Viegas, J.; Yoo, J.
2017-03-01
We propose an integrated platform of Aluminum Nitrate (AlN) based Piezoelectric Micromachined Ultrasonic Transducer (pMUT) phased array with Application Specific Integrated Circuit (ASIC) for medical imaging and industrial diagnosis. The ASIC provides wide driving range for frequencies between 100 kHz and 5 MHz and channelscalable, programmable application adaptive transmitting beamformer. The system supports operation in various media, including gasses, liquids and biological tissue. The scan resolution for 5 MHz operation is 68 μm in air. The beamformer covers a test volume from -30° to +30° with a step of 3° and scan depth of 10 cm. The ASIC system features low noise receiver electronics, power saving transmission circuitry, and high-voltage drive of large capacitance transducer (up to 500 pF). Integrated pMUT phased array consists of 4 channels of single-membrane ultrasonic transducer of 400 nm deflection and 20 pF feed-thru capacitance, which produce 15 Pa pressure at 500 μm distance from the surface of the transducers. The active area of the ASIC is (700×1490) μm2, which includes channel scalable TX, 8-channale low noise RX, digital back end with autonomous beamformer and power management unit. The system is battery powered with 3.3V-5V standard supply, representing a truly portable solution for ultrasonic applications. Given the CMOS-compatible fabrication process for the AlN pMUTs, dense, miniaturized arrays are possible. Furthermore the smooth surface of dielectric AlN renders optical quality MEMS surfaces for integration in miniaturized photonic + ultrasound microsystems.
Defect reduction in seeded aluminum nitride crystal growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.
2017-04-18
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Defect reduction in seeded aluminum nitride crystal growth
Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.
2017-06-06
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Defect reduction in seeded aluminum nitride crystal growth
Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert
2017-09-26
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Lettau, Michael; Bendszus, Martin; Hähnel, Stefan
2013-06-01
Our aim was to evaluate the in vitro visualization of different carotid artery stents on angiographic CT (ACT). Of particular interest was the influence of stent orientation to the angiography system by measurement of artificial lumen narrowing (ALN) caused by the stent material within the stented vessel segment to determine whether ACT can be used to detect restenosis within the stent. ACT appearances of 17 carotid artery stents of different designs and sizes (4.0 to 11.0 mm) were investigated in vitro. Stents were placed in different orientations to the angiography system. Standard algorithm image reconstruction and stent-optimized algorithm image reconstruction was performed. For each stent, ALN was calculated. With standard algorithm image reconstruction, ALN ranged from 19.0 to 43.6 %. With stent-optimized algorithm image reconstruction, ALN was significantly lower and ranged from 8.2 to 18.7 %. Stent struts could be visualized in all stents. Differences in ALN between the different stent orientations to the angiography system were not significant. ACT evaluation of vessel patency after stent placement is possible but is impaired by ALN. Stent orientation of the stents to the angiography system did not significantly influence ALN. Stent-optimized algorithm image reconstruction decreases ALN but further research is required to define the visibility of in-stent stenosis depending on image reconstruction.
NASA Astrophysics Data System (ADS)
Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming
2017-01-01
The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.
Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density
NASA Astrophysics Data System (ADS)
Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.
2017-06-01
Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.
2015-11-01
Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.
Iwamoto, J; Makita, K; Sato, Y; Takeda, T; Matsumoto, H
2011-10-01
A randomized controlled trial was performed to compare the short-term effects of alendronate (ALN) and ECT on pain and quality of life (QOL) in postmenopausal women with osteoporosis. Back pain and QOL [Short-Form Health Survey (SF-8)] significantly improved at 1, 3, and 6 months in both groups, with greater improvements in the ALN group than in the ECT group. These results suggested that ALN reduced back pain and improved QOL more markedly than ECT in postmenopausal osteoporotic women with back pain. Intramuscular ECT is known to reduce pain via the central nervous system. A multicenter randomized controlled trial was performed to compare the short-term effects of ALN and ECT on pain and QOL in postmenopausal women with osteoporosis. One hundred and 94 postmenopausal osteoporotic women with back pain (mean age 79.8 years, range 60-96 years) were randomly divided into two groups: the ALN group (35 mg weekly) and the ECT group (intramuscular 20 units a week). The duration of the study was 6 months. The trial was completed in 97 (100%) women of the ALN group and 96 (99.0%) women of the ECT group. Urinary levels of cross-linked N-terminal telopeptide of type I collagen (NTX), serum alkaline phosphatase (ALP), face scale score (FSS, back pain), and SF-8 (QOL) were monitored. Urinary NTX levels significantly decreased at 3 months in the ALN group, but not in the ECT group. Serum ALP levels significantly decreased at 6 months in the both groups, with a greater reduction in the ALN group. The FSS and SF-8 significantly improved at 1, 3, and 6 months in both groups, with greater improvements in the ALN group than in the ECT group. ALN suppressed bone turnover, reduced back pain, and improved QOL more markedly than ECT in postmenopausal osteoporotic women with back pain.
NASA Astrophysics Data System (ADS)
Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.
2015-10-01
We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.
Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeanmaire, G., E-mail: guillaume.jeanmaire@univ-lorraine.fr; Aubert and Duval, BP1, 63770 Les Ancizes; Dehmas, M.
2014-12-15
In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were themore » subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.« less
Terahertz characterization of Y2O3-added AlN ceramics
NASA Astrophysics Data System (ADS)
Kang, Seung Beom; Chung, Dong Chul; Kim, Sung-Jin; Chung, Jun-Ki; Park, Sang-Yeup; Kim, Ki-Chul; Kwak, Min Hwan
2016-12-01
Terahertz optical and dielectric properties of AlN ceramics fabricated by hot pressed sintering are investigated by THz time-domain spectroscopy in the frequency range of 0.2-3.5 THz. The measured properties of the pure AlN ceramic are compared with those of Y2O3-added AlN ceramic. Two prominent resonance modes, which are essentially responsible for the dielectric properties of the Y2O3-added AlN in terahertz regime, are characterized at ωTO1/(2π) = 2.76 THz (92 cm-1) and ωTO2/(2π) = 18.2 THz (605 cm-1) and are well described by the pseudo-harmonic oscillator model through theoretical fitting. The resonance ωTO1 at 2.76 THz is proposed to be due to the formation of a YAG (Y3Al5O12) secondary phase in Y2O3-added AlN ceramic. From the experimental results, good correlation is observed between the prominent peak of YAG secondary phase at 2.76 THz and thermal conductivity. Additionally, there is a high correlation between densification and refractive index of AlN ceramics fabricated by hot pressed sintering.
Polynitrogen/Nanoaluminum Surface Interactions
2009-05-12
atomic and molecular oxygen and of other energetic species like nitromethane (CH3NO2) with AlN(0001) and AlN )1(000 surfaces have been analyzed. 15...molecular oxygen and of other energetic species like nitromethane (CH3NO2) with AlN(0001) and AlN )1(000 surfaces have been analyzed. For these...materials. For this set of compounds we have analyzed several high explosive salts containing the CN7 - anion, namely the hydrazinium ([N2H5][CN7
Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T
2004-04-01
It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.
Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.
2016-09-01
We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.
NASA Astrophysics Data System (ADS)
Uehara, Masato; Shigemoto, Hokuto; Fujio, Yuki; Nagase, Toshimi; Aida, Yasuhiro; Umeda, Keiichi; Akiyama, Morito
2017-09-01
Aluminum nitride (AlN) is one of piezoelectric materials, which are eagerly anticipated for use in microelectromechanical systems (MEMS) applications such as communication resonators, sensors, and energy harvesters. AlN is particularly excellent in generated voltage characteristics for the MEMS rather than oxide piezoelectric materials such as lead zirconium titanate Pb(Zr, Ti)O3. However, it is necessary to improve the piezoelectric properties of AlN in order to advance the performance of the MEMS. We dramatically increased the piezoelectric coefficient d33 of AlN films by simultaneously adding magnesium (Mg) and niobium (Nb). The d33 of Mg39.3Nb25.0Al35.7N is 22 pC/N, which is about four times that of AlN. The d33 is increased by Mg and Nb simultaneous addition, and is not increased by Mg or Nb single addition. Interestingly, the Nb has multiple chemical states, and which are influenced by the Mg concentration.
The influence of point defects on the thermal conductivity of AlN crystals
NASA Astrophysics Data System (ADS)
Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón
2018-05-01
The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.
High-Temperature Electromechanical Characterization of AlN Single Crystals.
Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning
2015-10-01
Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminska, A.; Cardinal Stefan Wyszynski University, College of Science, Department of Mathematics and Natural Sciences, Dewajtis 5, 01-815 Warsaw; Jankowski, D.
High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electricmore » field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.« less
NASA Astrophysics Data System (ADS)
Zehetner, J.; Vanko, G.; Dzuba, J.; Ryger, I.; Lalinsky, T.; Benkler, Manuel; Lucki, Michal
2015-05-01
AlGaN/GaN based high electron mobility transistors (HEMTs), Schottky diodes and/or resistors have been presented as sensing devices for mechanical or chemical sensors operating in extreme conditions. In addition we investigate ferroelectric thin films for integration into micro-electro-mechanical-systems (MEMS). Creation of appropriate diaphragms and/or cantilevers out of SiC is necessary for further improvement of sensing properties of such MEMS sensors. For example sensitivity of the AlGaN/GaN based MEMS pressure sensor can be modified by membrane thickness. We demonstrated that a 4H-SiC 80μm thick diaphragms can be fabricated much faster with laser ablation than by electrochemical, photochemical or reactive ion etching (RIE). We were able to verify the feasibility of this process by fabrication of micromechanical membrane structures also in bulk 3C-SiC, borosilicate glass, sapphire and Al2O3 ceramic substrates by femtosecond laser (520nm) ablation. On a 350μm thick 4H-SiC substrate we produced an array of 275μm deep and 1000μm to 3000μm of diameter blind holes without damaging the 2μm AlN layer at the back side. In addition we investigated ferroelectric thin films as they can be deposited and micro-patterned by a direct UV-lithography method after the ablation process for a specific membrane design. The risk to harm or damage the function of thin films was eliminated by that means. Some defects in the ablated membranes are also affected by the polarisation of the laser light. Ripple structures oriented perpendicular to the laser polarisation promote creation of pin holes which would perforate a thin membrane. We developed an ablation technique strongly inhibiting formation of ripples and pin poles.
Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F
2012-08-01
Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.
NASA Astrophysics Data System (ADS)
Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao
2018-05-01
The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.
Solar-Blind Photodetectors for Harsh Electronics
Tsai, Dung-Sheng; Lien, Wei-Cheng; Lien, Der-Hsien; Chen, Kuan-Ming; Tsai, Meng-Lin; Senesky, Debbie G.; Yu, Yueh-Chung; Pisano, Albert P.; He, Jr-Hau
2013-01-01
We demonstrate solar-blind photodetectors (PDs) by employing AlN thin films on Si(100) substrates with excellent temperature tolerance and radiation hardness. Even at a bias higher than 200 V the AlN PDs on Si show a dark current as low as ~ 1 nA. The working temperature is up to 300°C and the radiation tolerance is up to 1013 cm−2 of 2-MeV proton fluences for AlN metal-semiconductor-metal (MSM) PDs. Moreover, the AlN PDs show a photoresponse time as fast as ~ 110 ms (the rise time) and ~ 80 ms (the fall time) at 5 V bias. The results demonstrate that AlN MSM PDs hold high potential in next-generation deep ultraviolet PDs for use in harsh environments. PMID:24022208
NASA Astrophysics Data System (ADS)
Parro, Rocco J.; Scardelletti, Maximilian C.; Varaljay, Nicholas C.; Zimmerman, Sloan; Zorman, Christian A.
2008-10-01
This paper reports an effort to develop amorphous silicon carbide (a-SiC) films for use in shunt capacitor RF MEMS microbridge-based switches. The films were deposited using methane and silane as the precursor gases. Switches were fabricated using 500 nm and 300 nm-thick a-SiC films to form the microbridges. Switches made from metallized 500 nm-thick SiC films exhibited favorable mechanical performance but poor RF performance. In contrast, switches made from metallized 300 nm-thick SiC films exhibited excellent RF performance but poor mechanical performance. Load-deflection testing of unmetallized and metallized bulk micromachined SiC membranes indicates that the metal layers have a small effect on the Young's modulus of the 500 nm and 300 nm-thick SiC MEMS. As for residual stress, the metal layers have a modest effect on the 500 nm-thick structures, but a significant affect on the residual stress in the 300 nm-thick structures.
Measurement of second order susceptibilities of GaN and AlGaN
NASA Astrophysics Data System (ADS)
Sanford, N. A.; Davydov, A. V.; Tsvetkov, D. V.; Dmitriev, A. V.; Keller, S.; Mishra, U. K.; DenBaars, S. P.; Park, S. S.; Han, J. Y.; Molnar, R. J.
2005-03-01
Rotational Maker fringes, scaled with respect to χ11(2) of crystalline quartz, were used to determine the second order susceptibilities χ31(2) and χ33(2) for samples of thin AlxGa1-xN films, a thicker GaN film, and a free-standing GaN platelets. The pump wavelength was 1064nm. The AlxGa1-xN samples, ranging in thickness from roughly 0.5to4.4μm, were grown by metalorganic chemical vapor deposition (MOCVD) and hydride vapor-phase epitaxy (HVPE) on (0001) sapphire substrates. The Al mole fractions x were 0, 0.419, 0.507, 0.618, 0.660, and 0.666, for the MOCVD-grown samples, and x =0, 0.279, 0.363, and 0.593 for the HVPE-grown samples. An additional HVPE-grown GaN sample ˜70μm thick was also examined. The free-standing bulk GaN platelets consisted of an HVPE grown film ˜226μm thick removed from its growth substrate, and a crystal ˜160μm thick grown by high-pressure techniques. For the AlxGa1-xN samples, the magnitudes of χ31(2) and χ33(2) decrease roughly linearly with increasing x and extrapolate to ˜0 for x =1. Furthermore, the constraint expected for a perfect wurtzite structure, namely χ33(2)=-2χ31(2), was seldom observed, and the samples with x =0.660 and x =0.666 showed χ31(2) and χ33(2) having the same sign. These results are consistent with the theoretical studies of nonlinear susceptibilities for AlN and GaN performed by Chen et al. [Appl. Phys. Lett. 66, 1129 (1995)]. The thicker bulk GaN samples displayed a complex superposition of high- and low-frequency Maker fringes due to the multiple-pass interference of the pump and second-harmonic generation beams, and the nonlinear coefficients were approximately consistent with those measured for the thin-film GaN sample.
NASA Astrophysics Data System (ADS)
Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun
2016-04-01
In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.
Kolios, Leila; Hoerster, Ann Kristin; Sehmisch, Stephan; Malcherek, Marie Christin; Rack, Thomas; Tezval, Mohammed; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Stuermer, Klaus Michael; Stuermer, Ewa Klara
2010-01-01
Osteoporosis is accompanied by predominantly metaphyseal fractures with a delayed and qualitatively reduced healing process. This study addressed the question of whether fracture healing in the context of osteoporosis prophylaxis is improved with estrogen (E) or alendronate (ALN). Thirty-six ovariectomized and 12 sham-operated 12-week-old rats received soy-free (osteoporotic C, sham), E-, or ALN- supplemented diets. After 10 weeks, a metaphyseal tibia osteotomy and standardized T-plate fixation were performed. After a 5-week healing process, the fracture callus was evaluated qualitatively by biomechanical bending test and quantitatively in microradiographic sections. The time course of callus formation was examined using fluorochrome-labeled histological sections. Administration of E improved the biomechanical properties of callus (stiffness [N/mm]: sham: 110.2 + or - 76.07, C: 41.28 + or - 33.70, E: 85.72 + or - 47.24, ALN: 72.07 + or - 34.68). The resistance to microfracturing seen in E-treated animals was significantly enhanced and even superior to sham (yield load [N] sham: 27.44 + or - 9.72, C: 21.04 + or - 12.47, E: 42.85 + or - 13.74(Delta), ALN: 25.28 + or - 6.4(.)) (* P < 0.05 vs. sham group, (Delta) P < 0.05 vs. C group, (*) P < 0.05 vs. E group). Trabecular bone in particular was improved, indicating the presence of physiological endosteal bridging (Tr.Dn [%] sham: 10.53 + or - 18.9, C: 1.01 + or - 0.14, E: 24.13 + or - 34.09(Delta), ALN: 3.99 + or - 8.3(.)). ALN did not help bone healing, as shown by mechanical tests. Compared to the C group, statistically, ALN did not show worse properties. The induction of callus formation under ALN treatment was slightly delayed (Tt.Cl [mm(2)] sham: 3.68 + or - 0.66, C: 3.44 + or - 0.42, E: 3.69 + or - 0.58, ALN: 3.06 + or - 0.56). Osteoporotic metaphyseal fracture healing was qualitatively and quantitatively improved by E prophylaxis. The process of fracture healing occurred nearly physiologically (shamlike). Notably, ALN hardly improved metaphyseal callus properties when assessed as osteoporosis prophylaxis, but to a lesser extent than E.
Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures
NASA Astrophysics Data System (ADS)
Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep
2017-08-01
Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.
Strain relaxation in (0001) AlN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido
2001-06-01
The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.
Compound formation and melting behavior in the AB compound and rare earth oxide systems
NASA Astrophysics Data System (ADS)
Huang, Z. K.; Yan, D. S.; Yen, T. S.; Tien, T. Y.
1990-03-01
Compound formation in the systems of the covalent compounds BeO, AlN, and SiC with R2O 3(rare earth oxides) is described. Tentative phase diagrams of the AlN sbnd Nd 2O 3 and AlN sbnd Eu 2O 3 systems are presented.
Tseng, I-Hsiang; Tsai, Mei-Hui; Chung, Chi-Wei
2014-08-13
Unique two-dimensional alumina nanosheets (Alns) using graphene oxide (GO) as templates are fabricated and successfully incorporated with organo-soluble polyimide (PI) to obtain highly transparent PI nanocomposite films with improved moisture barrier property. The effects of filler types and contents on water vapor transmission rate (WVTR) and transparency of PI are systematically studied. The hydroxyl groups on GO react with aluminum isopropoxide via sol-gel process to obtain alumina coverd-GO (Al-GO), and then thermal decomposition is applied to obtain Alns. Alns are the most efficient fillers among others to restrict the diffusion of water vapor within PI matrix and simultaneously maintain the transparency of PI. XRD pattern, TEM, and AFM images confirm the sheet-like morphology of Alns with ultrahigh aspect ratio. With only 0.01 wt % of Alns, the PI nanocomposite film exhibits the most significant reduction of 95% in WVTR as compared to that of pure PI film. Most importantly, the resultant PI/Alns-0.01 film exhibits excellent optical transparency and high mechanical strength and great thermal stability.
Leap, Michael Jerald
2017-08-31
Here, the kinetics of toughness degradation resulting from transgranular particle embrittlement are evaluated as a function of composition and processing history for simulated carburizing operations in air-melt steel containing grain-refining additions of aluminum and aluminum plus niobium. The kinetics of particle embrittlement are inherently linked to the ripening of AlN precipitates after extended austenitization in steel containing carbon contents representative of both the case and core of a carburized component. Embrittlement in steel containing AlN occurs with an activation energy similar to the value for aluminum diffusion in austenite, although an AlN volume fraction effect on the embrittlement kinetics ismore » manifested as decreases in activation energy with decreases in the [Al]/[N] ratio of steel. In contrast, the presence of niobium substantially retards the kinetics of particle embrittlement in steel containing 120–200 ppm N. Observations of AlN precipitates coated with Nb(C,N) indicate that the decreases in embrittlement kinetics are related to a reduction in the potential for AlN ripening during austenitization.« less
Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo
2015-01-01
By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leap, Michael Jerald
Here, the kinetics of toughness degradation resulting from transgranular particle embrittlement are evaluated as a function of composition and processing history for simulated carburizing operations in air-melt steel containing grain-refining additions of aluminum and aluminum plus niobium. The kinetics of particle embrittlement are inherently linked to the ripening of AlN precipitates after extended austenitization in steel containing carbon contents representative of both the case and core of a carburized component. Embrittlement in steel containing AlN occurs with an activation energy similar to the value for aluminum diffusion in austenite, although an AlN volume fraction effect on the embrittlement kinetics ismore » manifested as decreases in activation energy with decreases in the [Al]/[N] ratio of steel. In contrast, the presence of niobium substantially retards the kinetics of particle embrittlement in steel containing 120–200 ppm N. Observations of AlN precipitates coated with Nb(C,N) indicate that the decreases in embrittlement kinetics are related to a reduction in the potential for AlN ripening during austenitization.« less
NASA Astrophysics Data System (ADS)
Li, Haoran; Mazumder, Baishakhi; Bonef, Bastien; Keller, Stacia; Wienecke, Steven; Speck, James S.; Denbaars, Steven P.; Mishra, Umesh K.
2017-11-01
In GaN/(Al,Ga)N high-electron-mobility transistors (HEMT), AlN interlayer between GaN channel and AlGaN barrier suppresses alloy scattering and significantly improves the electron mobility of the two-dimensional electron gas. While high concentrations of gallium were previously observed in Al-polar AlN interlayers grown by metal-organic chemical vapor deposition, the N-polar AlN (Al x Ga1-x N) films examined by atom probe tomography in this study exhibited aluminum compositions (x) equal to or higher than 95% over a wide range of growth conditions. The also investigated AlN interlayer in a N-polar GaN/AlN/AlGaN/ S.I. GaN HEMT structure possessed a similarly high x content.
Lithium and sodium adsorption properties of two-dimensional aluminum nitride
NASA Astrophysics Data System (ADS)
Sengupta, Amretashis
2018-09-01
In this work the lithiation and sodiation properties of 2-dimensional (2D) AlN sheets are studied from density functional theory (DFT) simulations. 2D AlN showed theoretical specific capacity of 500.8 and 385.3 mA h g-1, maximum open circuit voltage of 1.49 and 1.86 V and diffusion barriers 0.40 and 0.15 eV, for Li and Na adsorption respectively. The calculations show 2D AlN as a possible alternative as anode material in Li-ion and Na-ion batteries. Further the high specific capacity and small diffusion barriers for Na atoms can make 2D AlN useful in supercapacitors. The change in carrier transport properties due to Li/Na adsorption on monolayer AlN can also be useful in chemical/bio-sensors and nanoelectronics devices.
NASA Astrophysics Data System (ADS)
Gillinger, M.; Shaposhnikov, K.; Knobloch, T.; Stöger-Pollach, M.; Artner, W.; Hradil, K.; Schneider, M.; Kaltenbacher, M.; Schmid, U.
2018-03-01
Aluminum nitride (AlN) on sapphire has been investigated with two different pretreatments prior to sputter deposition of the AlN layer to improve the orientation and homogeneity of the thin film. An inverse sputter etching of the substrate in argon atmosphere results in an improvement of the uniformity of the alignment of the AlN grains and hence, in enhanced electro-mechanical AlN film properties. This effect is demonstrated in the raw measurements of SAW test devices. Additionally, the impulse response of several devices shows that a poor AlN thin film layer quality leads to a higher signal damping during the transduction of energy in the inter-digital transducers. As a result, the triple-transit signal cannot be detected at the receiver.
Protection from high-velocity impact particles for quartz glass by coatings on the basis of Al-Si-N
NASA Astrophysics Data System (ADS)
Bozhko, I. A.; Rybalko, E. V.; Fedorischeva, M. V.; Solntsev, V. L.; Cherniavsky, A. G.; Kaleri, A. Yu.; Psakhie, S. G.; Sergeev, V. P.
2016-11-01
The paper presents the results of the research of the phase composition and the mechanical properties of the coatings on the basis of Al-Si-N system produced by pulsed magnetron sputtering on the KV glass substrates. By the X-ray diffraction method, it has been discovered that the coatings contain AlN phase (hcp) with different thickness. The deposition of Al-Si-N coating system allows both increasing the microhardness of the surface layer of the quartz glass up to 29 GPa, and maintaining high elastic properties (We > 0.70). The laboratory tests have been carried out involving the impact of high-speed flows of iron particles on the Al-Si-N protective coating with different thicknesses produced by pulsed magnetron sputtering. The increase of Al-Si-N coating thickness from 1µm to 10µm decreases 4-fold the surface density of the craters on the samples caused by a high-speed flow of iron particles.
Point-defect energies in the nitrides of aluminum, gallium, and indium
NASA Astrophysics Data System (ADS)
Tansley, T. L.; Egan, R. J.
1992-05-01
Experimental data on the nature and energetic location of levels associated with native point defects in the group-III metal nitrides are critically reviewed and compared with theoretical estimates. All three show strong evidence of the existence of a triplet of donorlike states associated with the nitrogen vacancy. Ground states are at about 150, 400, and 900 meV from the conduction-band edge in InN, GaN, and AlN, respectively, with their charged derivatives lying closer to the band edge. These values agree with both modified-hydrogenic and deep-level calculations, surprisingly well in view of the inherent approximations in each in this depth range. The InN donor ground state is both optically active and usually occupied, showing a distinctive absorption band which is very well described by quantum-defect analysis. Variation of threshold with electron concentration shows a Moss-Burstein shift commensurate with that observed in band-to-band absorption. In both GaN and AlN, levels have been identified at about 1/4EG and about 3/4EG, which correlate well with predictions for the antisite defects NM and MN, respectively, while similar behavior in InN is at odds with theory. The metal-vacancy defect appears to generate a level somewhat below midgap in AlN and close to the valence-band edge in GaN, but has not been located experimentally in InN, where it is predicted to lie very close to the valence-band edge. A tentative scheme for the participation of two of the native defects in GaN, namely VN and NGa, in the four broad emission bands found in Zn-compensated and undoped GaN is offered.
Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts
NASA Astrophysics Data System (ADS)
Yan, Xiao Y.
2008-04-01
A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.
Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...
2015-06-29
In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al 2O 3 targets. However, Al 2O 3 is not an ideal source material because it does not form a prolific beam of Al - required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al 2O 3), aluminum nitride (AlN), mixed Al 2O 3–AlN as well as aluminum fluoride (AlF 3) weremore » tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al 2O 3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al 2O 3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less
Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties.
Hassler, N; Gamsjaeger, S; Hofstetter, B; Brozek, W; Klaushofer, K; Paschalis, E P
2015-01-01
Raman microspectroscopic analysis of iliac crest from patients that were treated with alendronate (ALN) for 10 years revealed minimal, transient alterations in bone material properties confined to actively forming bone surfaces compared to patients that were on ALN for 5 years. These changes were not encountered in the bulk tissue. Alendronate (ALN) and other bisphosphonates (BPs) are the most widely prescribed therapy for postmenopausal osteoporosis. Despite their overall excellent safety record and efficacy in reducing fractures, questions have been raised regarding potential detrimental effects that may be related to prolonged bone turnover reduction, although no definite cause-effect relationship has been established to date. The purpose of the present study was to evaluate bone material properties in patients that were receiving ALN for 5 or 10 years. Raman microspectroscopic analysis was used to analyze iliac crest biopsies from postmenopausal women with osteoporosis who had been treated with ALN for 5 years and were then re-randomized to placebo (PBO, N = 14), 5 mg/day ALN (N = 10), or 10 mg/day ALN (N = 6) for another 5 years. The parameters monitored and expressed as a function of tissue age were (i) the mineral/matrix ratio (MM), (ii) the relative proteoglycan content (PG), (iii) the relative lipid content (LPD), (iv) the mineral maturity/crystallinity (MMC), and (v) the relative pyridinoline content (PYD). The obtained data indicate that 10-year ALN use results in minimal, transient bone tissue composition changes compared to use for 5 years, confined to actively forming trabecular surfaces, implying potential differences in bone matrix maturation that nevertheless did not result in differences of these values in bulk tissue. The data suggest that prolonged reduction in bone turnover during 10 years of therapy with ALN by itself is unlikely to be associated with adverse effects on bone material properties.
On the hole accelerator for III-nitride light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn
2016-04-11
In this work, we systematically conduct parametric studies revealing the sensitivity of the hole injection on the hole accelerator (a hole accelerator is made of the polarization mismatched p-electron blocking layer (EBL)/p-GaN/p-Al{sub x}Ga{sub 1−x}N heterojunction) with different designs, including the AlN composition in the p-Al{sub x}Ga{sub 1−x}N layer, and the thickness for the p-GaN layer and the p-Al{sub x}Ga{sub 1−x}N layer. According to our findings, the energy that the holes obtain does not monotonically increase as the AlN incorporation in the p-Al{sub x}Ga{sub 1−x}N layer increases. Meanwhile, with p-GaN layer or p-Al{sub x}Ga{sub 1−x}N layer thickening, the energy that themore » holes gain increases and then reaches a saturation level. Thus, the hole injection efficiency and the device efficiency are very sensitive to the p-EBL/p-GaN/p-Al{sub x}Ga{sub 1−x}N design, and the hole accelerator can effectively increase the hole injection if properly designed.« less
Optical, structural, and nuclear scientific studies of AlGaN with high Al composition
NASA Astrophysics Data System (ADS)
Lin, Tse Yang; Chung, Yee Ling; Li, Lin; Yao, Shude; Lee, Y. C.; Feng, Zhe Chuan; Ferguson, Ian T.; Lu, Weijie
2010-08-01
AlGaN epilayers with higher Al-compositions were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on (0001) sapphire. Trimethylgallium (TMGa), trimethylaluminium (TMAl) and NH3 were used as the source precursors for Ga, Al, and N, respectively. A 25 nm AlN nucleation layer was first grown at low-temperature of 590 °C at 300 Torr. Followed, AlxGa1-xN layers were grown at 1080 °C on low-temperature AlN nucleation layers. The heterostructures were characterized by a series of techniques, including x-ray diffraction (XRD), Rutherford backscattering (RBS), photoluminescence (PL), scanning electron microscopy (SEM) and Raman scattering. Precise Al compositions were determined through XRD, RBS, and SEM combined measurements. Room Temperature Raman Scattering spectra shows three major bands from AlGaN alloys, which are AlN-like, A1 longitudinal optical (LO) phonon modes, and E2 transverse optical (TO) band, respectively, plus several peak comes from the substrate. Raman spectral line shape analysis lead to an optical determination of the electrical property free carrier concentration of AlGaN. The optical properties of AlGaN with high Al composition were presented here.
NASA Astrophysics Data System (ADS)
Mastail, C.; David, M.; Nita, F.; Michel, A.; Abadias, G.
2017-11-01
We use ab initio calculations to determine the preferred nucleation sites and migration pathways of Ti, Al and N adatoms on cubic NaCl-structure (B1) AlN surfaces, primary inputs towards a further thin film growth modelling of the TiAlN alloy system. The potential energy landscape is mapped out for both metallic species and nitrogen adatoms for two different AlN surface orientations, (001) and (110), using density functional theory. For all species, the adsorption energies on AlN(011) surface are larger than on AlN(001) surface. Ti and Al adatom adsorption energy landscapes determined at 0 K by ab initio show similar features, with stable binding sites being located in, or near, epitaxial surface positions, with Ti showing a stronger binding compared to Al. In direct contrast, N adatoms (Nad) adsorb preferentially close to N surface atoms (Nsurf), thus forming strong N2-molecule-like bonds on both AlN(001) and (011). Similar to N2 desorption mechanisms reported for other cubic transition metal nitride surfaces, in the present work we investigate Nad/Nsurf desorption on AlN(011) using a drag calculation method. We show that this process leaves a Nsurf vacancy accompanied with a spontaneous surface reconstruction, highlighting faceting formation during growth.
Prediction of the electron redundant SinNn fullerenes
NASA Astrophysics Data System (ADS)
Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan
2018-05-01
The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.
NASA Astrophysics Data System (ADS)
Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu
2018-05-01
This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.
Theoretical analysis of SAW propagation characteristics in (100) oriented AlN/diamond structure.
Ro, Ruyen; Chiang, Yuan-Feng; Sung, Chia-Chi; Lee, Ruyue; Wu, Sean
2010-01-01
In this study, the finite element method is employed to calculate SAW characteristics in (100) AlN/diamond based structures with different electrical interfaces; i.e., IDT/ AlN/diamond, AlN/IDT/diamond, IDT/AlN/thin metal film/ diamond, and thin metal film/AlN/IDT/diamond. The effects of Cu and Al electrodes as well as the thickness of electrode on phase velocity, coupling coefficient, and reflectivity of SAWs are illustrated. Propagation characteristics of SAWs in (002) AlN/diamond-based structures are also presented for comparison. Simulation results show that to retain a large reflectivity for the design of RF filters and duplexers, the Cu IDT/(100) AlN/diamond structure possesses the highest phase velocity and largest coupling coefficient at the smallest AlN film thickness- to-wavelength ratio.
NASA Astrophysics Data System (ADS)
Hammad, Ahmed H.; Abdel-wahab, M. Sh.; Vattamkandathil, Sajith; Ansari, Akhalakur Rahman
2018-07-01
Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134 and 280 nm) from 30 to 40 nm, respectively. Optical band gap is deduced to be direct with values varied from 3.22 to 3.28 eV and the refractive index are evaluated based on the optical band values according to Moss, Ravindra-Srivastava, and Dimitrov-Sakka models. All refractive index models gave values around 2.3.
High Temperature Annealing of MBE-grown Mg-doped GaN
NASA Astrophysics Data System (ADS)
Contreras, S.; Konczewicz, L.; Peyre, H.; Juillaguet, S.; Khalfioui, M. Al; Matta, S.; Leroux, M.; Damilano, B.; Brault, J.
2017-06-01
In this report, are shown the results of high temperature resistivity and Hall Effect studies of Mg-doped GaN epilayers. The samples studied were grown on (0001) (c-plane) sapphire by molecular beam epitaxy and 0.5 μm GaN:Mg layers have been achieved on low temperature buffers of GaN (30 nm) and AlN ( 150 nm). The experiments were carried out in the temperature range from 300 K up to 900 K. Up to about 870 K a typical thermally activated conduction process has been observed with the activation energy value EA = 215 meV. However, for higher temperatures, an annealing effect is observed in all the investigated samples. The increase of the free carrier concentration as a function of time leads to an irreversible decrease of sample resistivity of more than 60%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurai, Satoshi, E-mail: kurai@yamaguchi-u.ac.jp; Yamada, Yoichi; Miyake, Hideto
2016-01-14
Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractionsmore » of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.« less
Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng
The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less
NASA Astrophysics Data System (ADS)
Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.
2015-10-01
A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.
The Oxidation of AlN in Dry and Wet Oxygen
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei
1998-01-01
The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.
AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Li, H.; Robertson, J.
2016-05-28
AlN and Al oxy-nitride dielectric layers are proposed instead of Al{sub 2}O{sub 3} as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al{sub 2}O{sub 3}, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al{sub 2}O{sub 3} is attributed tomore » its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.« less
Characteristics of blue organic light emitting diodes with different thick emitting layers
NASA Astrophysics Data System (ADS)
Li, Chong; Tsuboi, Taiju; Huang, Wei
2014-08-01
We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.
Structures and stabilities of Al(n) (+), Al(n), and Al(n) (-) (n=13-34) clusters.
Aguado, Andrés; López, José M
2009-02-14
Putative global minima of neutral (Al(n)) and singly charged (Al(n) (+) and Al(n) (-)) aluminum clusters with n=13-34 have been located from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ the generalized gradient approximation of Perdew, Burke, and Ernzerhof to describe exchange-correlation electronic effects. Our results show that icosahedral growth dominates the structures of aluminum clusters for n=13-22. For n=23-34, there is a strong competition between decahedral structures, relaxed fragments of a fcc crystalline lattice (some of them including stacking faults), and hexagonal prismatic structures. For such small cluster sizes, there is no evidence yet for a clear establishment of the fcc atomic packing prevalent in bulk aluminum. The global minimum structure for a given number of atoms depends significantly on the cluster charge for most cluster sizes. An explicit comparison is made with previous theoretical results in the range n=13-30: for n=19, 22, 24, 25, 26, 29, 30 we locate a lower energy structure than previously reported. Sizes n=32, 33 are studied here for the first time by an ab initio technique.
Defect reduction in MBE-grown AlN by multicycle rapid thermal annealing
NASA Astrophysics Data System (ADS)
Greenlee, Jordan D.; Gunning, Brendan; Feigelson, Boris N.; Anderson, Travis J.; Koehler, Andrew D.; Hobart, Karl D.; Kub, Francis J.; Doolittle, W. Alan
2016-01-01
Multicycle rapid thermal annealing (MRTA) is shown to reduce the defect density of molecular beam epitaxially grown AlN films. No damage to the AlN surface occurred after performing the MRTA process at 1520°C. However, the individual grain structure was altered, with the emergence of step edges. This change in grain structure and diffusion of AlN resulted in an improvement in the crystalline structure. The Raman E2 linewidth decreased, confirming an improvement in crystal quality. The optical band edge of the AlN maintained the expected value of 6.2 eV throughout MRTA annealing, and the band edge sharpened after MRTA annealing at increased temperatures, providing further evidence of crystalline improvement. X-ray diffraction shows a substantial improvement in the (002) and (102) rocking curve FWHM for both the 1400 and 1520°C MRTA annealing conditions compared to the as-grown films, indicating that the screw and edge type dislocation densities decreased. Overall, the MRTA post-growth annealing of AlN lowers defect density, and thus will be a key step to improving optoelectronic and power electronic devices. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Florea, R. M.
2017-06-01
Basic material concept, technology and some results of studies on aluminum matrix composite with dispersive aluminum nitride reinforcement was shown. Studied composites were manufactured by „in situ” technique. Aluminum nitride (AlN) has attracted large interest recently, because of its high thermal conductivity, good dielectric properties, high flexural strength, thermal expansion coefficient matches that of Si and its non-toxic nature, as a suitable material for hybrid integrated circuit substrates. AlMg alloys are the best matrix for AlN obtaining. Al2O3-AlMg, AlN-Al2O3, and AlN-AlMg binary diagrams were thermodynamically modelled. The obtained Gibbs free energies of components, solution parameters and stoichiometric phases were used to build a thermodynamic database of AlN- Al2O3-AlMg system. Obtaining of AlN with Liquid-phase of AlMg as matrix has been studied and compared with the thermodynamic results. The secondary phase microstructure has a significant effect on the final thermal conductivity of the obtained AlN. Thermodynamic modelling of AlN-Al2O3-AlMg system provided an important basis for understanding the obtaining behavior and interpreting the experimental results.
Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel.
Wu, Duo; Yang, Jiaojiao; Li, Jiyao; Chen, Liang; Tang, Bei; Chen, Xingyu; Wu, Wei; Li, Jianshu
2013-07-01
In situ remineralization of hydroxyapatite (HA) on human tooth enamel surface induced by organic matrices is of great interest in the fields of material science and stomatology. In order to mimic the organic matrices induced biomineralization process in developing enamel and enhance the binding strength at the remineralization interface, carboxyl-terminated poly(amido amine) (PAMAM-COOH)-alendronate (ALN) conjugate (ALN-PAMAM-COOH) was synthesized and characterized. PAMAM-COOH has a highly ordered architecture and is capable of promoting the HA crystallization process. ALN is conjugated on PAMAM-COOH due to its specific adsorption on HA (the main component of tooth enamel), resulting in increased binding strength which is tight enough to resist phosphate buffered saline (PBS) rinsing as compared with that of PAMAM-COOH alone. While incubated in artificial saliva, ALN-PAMAM-COOH could induce in situ remineralization of HA on acid-etched enamel, and the regenerated HA has the nanorod-like crystal structure similar to that of human tooth enamel. The hardness of acid-etched enamel samples treated by ALN-PAMAM-COOH can recover up to 95.5% of the original value with strong adhesion force. In vivo experiment also demonstrates that ALN-PAMAM-COOH is effective in repairing acid-etched enamel in the oral cavity. Overall, these results suggest that ALN-PAMAM-COOH is highly promising as a restorative biomaterial for in situ remineralization of human tooth enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.
A first-principles study of the properties of four predicted novel phases of AlN
NASA Astrophysics Data System (ADS)
Yang, Ruike; Zhu, Chuanshuai; Wei, Qun; Du, Zheng
2017-05-01
Structural, elastic, thermodynamic, electronic and optical properties of four predicted novel AlN phases (Pmn21-AlN, Pbam-AlN, Pbca-AlN and Cmcm-AlN) are calculated using first-principles according to density function theory (DFT). These phases were found using the CALYPSO method but have not yet been synthesized experimentally. Here we predict some of their properties. The properties are analyzed by means of GGA-PBE and PBE0 respectively. The more precision results are obtained by PBE0. Cmcm-AlN owns better plasticity and it's Young's modulus has clearer anisotropy than Pmn21-AlN, Pbam-AlN and Pbca-AlN. The Debye temperature, under higher temperature, shows weak temperature dependence and approach to a constant value. The Dulong-Petit limit of all four novel AlN phases and wz-AlN is about 48 J mol-1 K-1 and they have almost the same temperature law. The band structures show that the four AlN are the wide direct band gap semiconductors, which band gaps are 5.95 (Pmn21-AlN), 5.99 (Pbam-AlN), 5.88 (Pbca-AlN) and 5.59 eV (Cmcm-AlN). The bonding behaviors are the combination of covalent and ionic nature. The dielectric constants, refractive index, reflectivity, absorption, loss spectra, conductivity and Raman spectra are also calculated in detail. All four phases have a lower plasma frequency than of wz-AlN.
NASA Astrophysics Data System (ADS)
Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke
2017-06-01
Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.
NASA Astrophysics Data System (ADS)
Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang
2013-12-01
Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.
Loss of Ductility Caused by AlN Precipitation in Hadfield Steel
NASA Astrophysics Data System (ADS)
Radis, Rene; Schlacher, Christian; Kozeschnik, Ernst; Mayr, Peter; Enzinger, Norbert; Schröttner, Hartmuth; Sommitsch, Christof
2012-04-01
Two modified X120Mn12 Hadfield steels, differing in the amount of the alloying elements Al and N, are analyzed with respect to AlN precipitation and its effects on ductility. Charpy impact tests are performed, demonstrating the loss of ductility in the one grade containing a high density of AlN precipitates. The characterization of the precipitates is carried out by high-resolution scanning electron microscopy (HRSEM). Depending on chemical composition, primary and secondary AlN precipitates are detected on prior austenite grain boundaries and within the bulk volume. The experimental observations are confirmed by thermokinetic simulations, using the software package MatCalc (Vienna University of Technology, Vienna, Austria).
NASA Astrophysics Data System (ADS)
Weinstein, I. A.; Vokhmintsev, A. S.; Chaikin, D. V.; Afonin, Yu. D.
2016-11-01
The high-field electroluminescence (EL) spectra for Al-rich AlN nanowhiskers varying applied voltage were studied. The observed 2.70 eV emission, which can be considered as superposition of two Gaussian bands in 2.75 and 2.53 eV, was analyzed. It was shown that Fowler-Nordheim effect took place in EL mechanism with participation of capturing levels of ON- and VN-centers when AlN nanowhiskers were exposed to an external field of 2.5 ÷ 10 V/μm. Obtained results and made conclusions are in a good agreement with independent electron field emission measurements for different one-dimensional AlN nanostructures.
Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S., E-mail: anil@physics.iisc.ernet.in
The dependence of perpendicular magnetization and Curie temperature (T{sub c}) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt{sub s}) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T{sub c} was measured using SQUID magnetometer. We have observed a systematic dependence of T{sub c} on the thickness of Pt{sub s}. For 8 nm thickness of Pt{sub s} the Co layer of 0.35 nm showed ferromagnetism with perpendicular anisotropy atmore » room temperature. As the thickness of the Pt{sub s} was decreased to 2 nm, the T{sub c} went down below 250 K. XRD data indicated polycrystalline growth of Pt{sub s} on SiO{sub 2}. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5 nm)/Pt(3 nm)/Co(0.35 nm)/Pt(2 nm) had much higher T{sub c} (above 300 K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T{sub c} and anisotropy by varying the Pt{sub s} thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pt{sub s} layer which hosts the Co layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302
2015-02-23
This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure.more » Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.« less
Reginster, J Y; Al Daghri, Nasser; Kaufman, Jean-Marc; Bruyère, Olivier
2018-02-01
The recently published results of the sequential treatment of postmenopausal osteoporotic women with subcutaneous abaloparatide (80 µg/day) (ABL) for 18 months followed by 6 months of oral alendronate (70 mg/week) (ALN) support the administration of an anti-resorptive agent after completion of a treatment course with an osteoanabolic agent. The ABL/ALN sequence resulted in greater bone mineral density gains at all skeletal sites and in a reduction of vertebral, non-vertebral, major and clinical fractures compared to what is observed after 18 months of placebo followed by 6 months of ALN. Whereas questions remained unanswered about the ideal anti-resorptive agent to be used after ABL, the optimal duration of the administration of the anti-resorptive drug or the potential interest of re-initiating a course of ABL after a limited administration of ALN, these results support the use of the ABL/ALN sequence in the management of postmenopausal osteoporosis.
A comparative study on magnetism in Zn-doped AlN and GaN from first-principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liang; Wang, Lingling, E-mail: llwang@hnu.edu.cn, E-mail: xiaowenzhi@hnu.edu.cn; Huang, Weiqing
2014-09-14
First-principles calculations have been used to comparatively investigate electronic and magnetic properties of Zn-doped AlN and GaN. A total magnetic moment of 1.0 μ B{sub B} induced by Zn is found in AlN, but not in GaN. Analyses show that the origin of spontaneous polarization not only depend on the localized atomic orbitals of N and sufficient hole concentration, but also the relative intensity of the covalency of matrix. The relatively stronger covalent character of GaN with respect to AlN impedes forming local magnetic moment in GaN matrix. Our study offers a fresh sight of spontaneous spin polarization in d⁰more » magnetism. The much stronger ferromagnetic coupling in c-plane of AlN means that it is feasible to realize long-range ferromagnetic order via monolayer delta-doping. This can apply to other wide band-gap semiconductors in wurtzite structure.« less
Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Dutta, Shankar; Prakash, Ravi; Raman, R.; Kapoor, Ashok Kumar; Kaur, Davinder
2018-02-01
This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of - 650 (± 50) MPa, - 730 (± 50) MPa and - 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.
NASA Astrophysics Data System (ADS)
Ji, Hyunjin; Lee, Gwanmu; Joo, Min-Kyu; Yun, Yoojoo; Yi, Hojoon; Park, Ji-Hoon; Suh, Dongseok; Lim, Seong Chu
2017-05-01
The correlation between the channel thickness and the carrier mobility is investigated by conducting static and low frequency (LF) noise characterization for ambipolar carriers in multilayer MoTe2 transistors. For channel thicknesses in the range of 5-15 nm, both the low-field carrier mobility and the Coulomb-scattering-limited carrier mobility (μC) are maximal at a thickness of ˜10 nm. For LF noise, the interplay of interface trap density (NST), which was minimal at ˜10 nm, and the interfacial Coulomb scattering parameter (αSC), which decreased up to 10 nm and saturated above 10 nm, explained the mobility (μC) peaked near 10 nm by the carrier fluctuation and charge distribution.
Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires
NASA Astrophysics Data System (ADS)
Ahmad, Naeem; Chen, J. Y.; Shi, D. W.; Iqbal, Javed; Han, Xiufeng
2012-04-01
The Co/Cu multilayer nanowires fabricated in an array using anodized aluminum oxide (AAO) template by electrodeposition method, have been investigated. It has been observed that the magnetization reversal mode and magnetic anisotropy depend upon the Co and Cu layer thicknesses. Magnetization reversal occurs by curling mode at around Co = 400 nm and Cu = 10 nm, while for Co = 30 nm and Cu = 60 nm, magnetization reversal occurs by nucleation mode. A change of magnetic anisotropy from out of plane to in plane is observed when thickness of Cu layer tCu = 60 nm and that of Co tCo = 30 nm. Magnetic anisotropy is lost when thickness of the Co layer tCo = 400 nm and that of Cu tCu= 10 nm. Magnetic properties have been explained by the competition among shape anisotropy, magnetostatic interactions and magnetocrystalline anisotropy. Magnetic properties can be tuned accordingly depending upon the thickness of the Co and Cu nanodisks.
Shin, Ji Soo
2017-01-01
Purpose The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. Methods This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. Results The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 µm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Conclusions Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. PMID:29022292
Sharma, N; Periasamy, C; Chaturvedi, N
2018-07-01
In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.
Shin, Ji Soo; Lee, Young Hoon
2017-12-01
The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 μm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society
NASA Astrophysics Data System (ADS)
Nie, Qu-yang; Zhang, Fang-hui
2018-05-01
The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.
Cao, Junhua; Liu, Yang; Ning, Xiao-Shan
2018-05-11
A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.
Yano, Tetsuo; Yamada, Mei; Inoue, Daisuke
2017-07-01
Teriparatide (TPTD), a recombinant human parathyroid hormone N-terminal fragment (1-34), is a widely used bone anabolic drug for osteoporosis. Sequential treatment with antiresorptives such as bisphosphonates after TPTD discontinuation is generally recommended. However, relative effects of bisphosphonates have not been determined. In the present study, we directly compared effects of risedronate (RIS) and alendronate (ALN) on bone mineral density (BMD), bone turnover, structural property and strength in ovariectomized (OVX) rats, when administered after TPTD. Female Sprague Dawley rats were divided into one sham-operated and eight ovariectomized groups. TPTD, RIS, and ALN were given subcutaneously twice per week for 4 or 8 weeks after 4 week treatment with TPTD. TPTD significantly increased BMD (+9.6%) in OVX rats after 4 weeks of treatment. 8 weeks after TPTD withdrawal, vehicle-treated group showed a blunted BMD increase of +8.4% from the baseline. In contrast, 8 weeks of treatment with RIS and ALN significantly increased BMD to 17.4 and 21.8%, respectively. While ALN caused a consistently larger increase in BMD, sequential treatment with RIS resulted in lower Tb.Sp compared to ALN in the fourth lumbar vertebra as well as in greater stiffness in compression test. In conclusion, the present study demonstrated that sequential therapy with ALN and RIS after TPTD both improved bone mass and structure. Our results further suggest that RIS may have a greater effect on improving bone quality and stiffness than ALN despite less prominent effect on BMD. Further studies are necessary to determine clinical relevance of these findings to fracture rate.
Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation
NASA Astrophysics Data System (ADS)
Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.
2018-01-01
Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. The results show that the threshold displacement energies, Ed, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum Ed values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [ 1 ¯ 1 ¯ 20 ] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between Ed and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. These findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.
Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers
NASA Astrophysics Data System (ADS)
Al Balushi, Zakaria Y.
Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth of N-polar InGaN by MOCVD is challenging. These challenges arise from the lack of available native substrates suitable for N-polar film growth. As a result, InGaN layers are conventionally grown in the III-polar direction (i.e. III-polar InGaN) and typically grow under considerable amounts of stress on III-polar GaN base layers. While the structure-property relations of thin III-polar InGaN layers have been widely studied in quantum well structures, insight into the growth of thick films and N-polar InGaN layers have been limited. Therefore, this dissertation research compared the growth of both thick III-polar and N-polar InGaN films grown on optimized GaN base layers. III-polar InGaN films were rough and exhibited a high density of V-pits, while the growth of thick N-polar InGaN films showed improved structural quality and low surface roughness. The results of this dissertation work thereby provide an alternative route to the fabrication of thick InGaN films for potential use in solar cells as well as strain reducing schemes for deep-green and red light emitters. Moreover, this dissertation investigated stress relaxation in thick N-polar films using in situ reflectivity and curvature measurements. The results showed that stress relaxation in N-polar InGaN significantly differed from III-polar InGaN due to the absence of V-pits and it was hypothesized that plastic relaxation in N-polar InGaN could occur by dislocation glide, which typically is kinetically limited at such low growth temperatures required for InGaN. The second part of this dissertation research work focused on buffer free growth of GaN directly on SiC and on epitaxial graphene produced on SiC for potential vertical devices. The studies presented in this dissertation work on the growth of GaN directly on SiC compared the stress evolution of GaN films grown with and without an AlN buffer layer. Films grown directly on SiC showed reduced threading dislocation densities and improved surface roughness when compared to the growth of GaN on an AlN buffer layer. The dislocations in the GaN films grown di
Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN
NASA Astrophysics Data System (ADS)
Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.
2015-01-01
We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 1018 cm-3 to 1.6 × 1019 cm-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 1019 cm-3 at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.
Depth-resolved cathodoluminescence of a homoepitaxial AlN thin film
NASA Astrophysics Data System (ADS)
Silveira, E.; Freitas, J. A.; Slack, G. A.; Schowalter, L. J.; Kneissl, M.; Treat, D. W.; Johnson, N. M.
2005-07-01
In the present work we will report on the optical properties of an AlN film homoepitaxially grown on a high-quality large bulk AlN single crystal. The latter was grown by a sublimation-recondensation technique, while the film was grown by organometallic vapor-phase epitaxy. Cathodoluminescence measurements were performed using electron beam energies between 2 and 10 keV in order to excite the sample and so to probe different sample depths, making it possible to differentiate between different features which originate in the AlN homoepitaxial film. The penetration depth has been determined through the calculation of the Bohr-Bethe maximum range of excitation using the approximation to the Everhart-Hoff expression for the energy loss within a solid.
Thin film molybdenum silicide as potential temperature sensors for turbine engines
NASA Technical Reports Server (NTRS)
Ho, C. H.; Prakash, S.; Deshpandey, C. V.; Doerr, H. J.; Bunshah, R. F.
1989-01-01
Temperature measurements of Mo-Si-based thin-film resistance thermometers were studied. Annealing in an argon ambient at a temperature above 1000 C for at least 1 h is required to form the stable tetragonal MoSi2 phase. With a crack-free 2-micron-thick AlN barrier layer on top, a sensor was tested up to 1200 C. The resistivity vs temperature characteristic shows the room temperature resistivity and temperature coefficient of resistivity (TCR) of the sensor to be approximately 350 microohm and 0.01195 K, respectively. No film adhesion problems were observed for at least four testing cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seredin, P. V., E-mail: paul@phys.vsu.ru; Goloshchapov, D. L.; Lenshin, A. S.
Nanostructured aluminum-nitride films are formed by reactive ion-plasma sputtering onto GaAs substrates with different orientations. The properties of the films are studied via structural analysis, atomic force microscopy, and infrared and visible–ultraviolet spectroscopy. The aluminum-nitride films can have a refractive index in the range of 1.6–4.0 at a wavelength of ~250 nm and an optical band gap of ~5 eV. It is shown that the morphology, surface composition, and optical characteristics of AlN/GaAs heterophase systems can be controlled using misoriented GaAs substrates.
NASA Astrophysics Data System (ADS)
Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.
2009-03-01
Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.
Erbium doped aluminum nitride nanoparticles for nano-thermometer applications
NASA Astrophysics Data System (ADS)
Pandya, Sneha G.; Kordesch, Martin E.
2015-06-01
We have synthesized nanoparticles (NPs) of aluminum nitride (AlN) doped in situ with erbium (Er) using the inert gas condensation technique. These NPs have optical properties that make them good candidates for nanoscale temperature sensors. The photoluminescence (PL) spectrum of Er3+ in these NPs shows two emission peaks in the green region at around 540 and 560 nm. The ratio of the intensities of these luminescence peaks is related to temperature. Using Boltzmann’s distribution, the temperature of the NP and its surrounding can be calculated. The NPs were directly deposited on (111) p-type silicon wafers, transmission electron microscope grids and glass cover slips. XRD and HRTEM study indicates that most of the NPs have crystalline hexagonal AlN structure. An enhancement of the luminescence from these NPs was observed after heating in-air at 770 K for 3 h. The sample was then heated in air using a scanning optical microscope laser. The corresponding change in PL peak intensities of the NPs was recorded for laser powers ranging from 0.2 to 15.1 mW. Temperature calculated using the Boltzmann’s distribution was in the range of 300-470 K. This temperature range is of interest for semiconductor device heating and for thermal treatment of cancerous cells, for example.
NASA Astrophysics Data System (ADS)
Kozlovskiy, A.; Dukenbayev, K.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Kenzhina, I.; Tosi, D.; Loginov, V.; Zdorovets, M.
2018-06-01
The paper presents the results of investigation of defect formation in AlN ceramics under Fe+7 ion irradiation with a fluence from 1 × 1011 to 1 × 1014 ion cm‑2. The change in the main crystallographic characteristics, the decrease in the magnitude of Griffiths criterion, and the increase in the average voltage as a result of irradiation are caused by the appearance of additional defects in the structure and their further evolution leading to a change in the degree of crystallinity. For samples irradiated with Fe+7 ions to a dose of 1 × 1011 ion cm‑2, the formation of pyramidal hillocks is observed on the surface, whose average height is 17–20 nm. An increase in the irradiation dose leads to an increase in chillocks size and their density. At the same time, at large irradiation doses, the formation of conglomerates of chyllocks and grooves on the samples surface is observed. The change in surface morphology, the formation of chyllocks on the ceramic surface, and the dependence of the change in crystallographic characteristics during irradiation make it possible to unambiguously associate the formation of radiation defects in the structure of the ceramic with energy losses in elastic and inelastic interactions of iron ions with lattice atoms.
Duong, Le T; Crawford, Randy; Scott, Kevin; Winkelmann, Christopher T; Wu, Gouxin; Szczerba, Pete; Gentile, Michael A
2016-12-01
Odanacatib (ODN) a selective and reversible cathepsin K inhibitor, inhibits bone resorption, increases bone mass and reduces fracture risk in women with osteoporosis. A 16-month (~7-remodeling cycles) study was carried out in treatment mode to assess the effects of ODN versus ALN on bone mass, remodeling status and biomechanical properties of lumbar vertebrae (LV) and femur in ovariectomized (OVX) rabbits. This study also evaluated the impact of discontinuing ODN on these parameters. Rabbits at 7.5months post-OVX were dosed for 16-months with ODN (7.5μM·h 0-24 , in food) or ALN (0.2mg/kg/wk, s.c.) and compared to vehicle-treated OVX- (OVX+Veh) or Sham-operated animals. After 8months, treatment was discontinued in half of the ODN group. ODN treatment increased in vivo LV aBMD and trabecular (Tb) vBMD until reaching plateau at month 12 by 16% and 23% vs. baseline, respectively, comparable levels to that in Sham and significantly above OVX+Veh. LV BMD was also higher in ALN that plateaued around month 8 to levels below that in ODN or Sham. ODN treatment resulted in higher BMD, structure and improved biomechanical strength of LV and central femur (CF) to levels similar to Sham. ALN generally showed less robust efficacy compared to ODN. Neither ODN nor ALN influenced material properties at these bone sites following ODN or ALN treatment for 7 remodeling cycles in rabbits. ODN and ALN persistently reduced the bone resorption marker urinary helical peptide over study duration. While ALN reduced the bone formation marker BSAP, ODN treatment did not affect this marker. ODN also preserved histomorphometry-based bone formation indices in LV trabecular, CF endocortical and intracortical surfaces, at the levels of OVX+Veh. Discontinuation of ODN returned bone mass, structure and strength parameters to the comparable respective levels in OVX+Veh. Together, these data demonstrate efficacy and bone safety profile of ODN and suggests the potential long-term benefits of this agent over ALN with respect to accrued bone mass without long-term effects on bone formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Wideband acoustic wave resonators composed of hetero acoustic layer structure
NASA Astrophysics Data System (ADS)
Kadota, Michio; Tanaka, Shuji
2018-07-01
“Hetero acoustic layer (HAL) surface acoustic wave (SAW) device” is a new type of SAW device using a single crystal piezoelectric thin plate supported by a substrate. In this study, a HAL SAW resonator using a LiNbO3 (LN) thin plate and a multi-layer acoustic film was designed by finite element method (FEM) and fabricated. The thickness of LN is 3.6 µm and the pitch of an interdigital transducer (IDT) (λ) is 5.24 µm for a resonance frequency of 600 MHz. The multi-layer acoustic film is composed of 3 layers of SiO2 and AlN for each, i.e., 6 layers in total, alternately deposited on a glass substrate. The HAL SAW resonator achieved a wide bandwidth of 20.3% and a high impedance ratio of 83 dB. Compared with a 0th shear horizontal (SH0) mode plate wave resonator, the performance is better and the thickness of LN is 7 times larger. The HAL SAW without a cavity is advantageous in terms of mechanical stability, thickness controllability and fabrication yield.
NASA Astrophysics Data System (ADS)
Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong
2015-12-01
To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.
Chen, Xue; He, Yingjian; Wang, Jiwei; Huo, Ling; Fan, Zhaoqing; Li, Jinfeng; Xie, Yuntao; Wang, Tianfeng; Ouyang, Tao
2018-06-14
Knowledge of the pathology of axillary lymph nodes (ALN) in breast cancer patients is critical for determining their treatment. Ultrasound is the best noninvasive evaluation for the ALN status. However, the correlation between negative ultrasound results and the sentinel lymph nodes (SLN) pathology remains unknown. To test the hypothesis that negative ultrasound results of ALN predict the negative pathology results of SLN in breast cancer patients, we assessed the association between ALN ultrasonography-negative results and the SLN pathology in 3115 patients with breast cancer recruited between October 2010 and April 2016 from a single cancer center, prospective database. Of these patients who met the inclusion criteria, 2317 (74.4%) had no SLN pathological metastasis. In the univariate analysis, other 798 patient with positive SLN tended to be under age 40 and premenopausal, having large tumor sizes (>2 cm), higher histological grade of primary tumor, positive hormone receptors, and negative HER-2 status (P < .05 for all). In the multivariate analysis, menstrual status, tumor size, ER status and histological types of primary tumor remained to be independent predictors for SLN pathological metastasis. The area under curve (AUC) was 0.658 (95% CI = 0.637-0.679), P > .05. In conclusion, only a 74.4% consistency between ALN ultrasonography-negative results and negative pathological SLN results, although menstrual status, tumor size, histologic subtypes of primary tumor and ER status were found to be statistically independent predictors of positive SLN among patients negative for ALN ultrasonography. Therefore, the present study suggests that negative ultrasound results of ALN do not adequately predict the negative pathology results of SLN in breast cancer patients. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Liu, Yumei; Shi, Feng; Bo, Lin; Zhi, Wei; Weng, Jie; Qu, Shuxin
2017-10-01
The aim of this study was to develop a novel alginate-encapsulated system (Alg beads) to investigate the cell response to critical-sized wear particles of ultra-high molecular weight polyethylene loaded with alendronate sodium (UHMWPE-ALN), one of the most effective drugs to treat bone resorption in clinic. The extrusion method was used to prepare Alg beads encapsulating rat calvarial osteoblasts (RCOs) and critical-sized UHMWPE-ALN wear particles with spherical morphology and uniform size. The morphology, permeability and stability of Alg beads were characterized. The proliferation, ALP activity, cell apoptosis and distribution of live/dead RCOs co-cultured with wear particles in Alg beads were evaluated. RCOs and critical-sized UHMWPE-ALN wear particles distributed evenly and contacted efficiently in Alg beads. Alg beads were both permeable to trypsin and BSA, while the smaller the molecular was, the larger the diffuse was. The proliferation of RCOs in Alg beads increased with time, which indicated that Alg beads provided suitable conditions for cell culture. The long-term stability of Alg beads indicated the possibility for the longer time of co-cultured cells with wear particles. Critical-sized UHMWPE-ALN and UHMWPE wear particles both inhibited the proliferation and differentiation of RCOs, and induced the apoptosis of RCOs encapsulated in Alg beads. However, these effects could be significantly alleviated by the ALN released from the critical-sized UHMWPE-ALN wear particles. The present results suggested that this novel-developed co-culture system was feasible to evaluate the cell response to critical-sized UHMWPE-ALN wear particles for a longer time. Copyright © 2017 Elsevier B.V. All rights reserved.
Recombination zone in white organic light emitting diodes with blue and orange emitting layers
NASA Astrophysics Data System (ADS)
Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi
2012-10-01
White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.
2013-02-01
Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and
Electro-acoustic sensors based on AlN thin film: possibilities and limitations
NASA Astrophysics Data System (ADS)
Wingqvist, Gunilla
2011-06-01
The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0
Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Stan, George E.
2017-01-01
Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials. PMID:29149061
Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E
2017-11-17
Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.
Magnetic vortices in nanocaps induced by curvature
NASA Astrophysics Data System (ADS)
Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.
2018-05-01
Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.
Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids
González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.
2017-01-01
The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Xie, Y. P.; Guo, H. B.; Chen, Y. G.
2018-05-01
Aluminum nitride (AlN) has a polar crystal structure that is susceptible to electric dipolar interactions. The inversion domains in AlN, similar to those in GaN and other wurtzite-structure materials, decrease the energy associated with the electric dipolar interactions at the expense of inversion-domain boundaries, whose interface energy has not been quantified. We study the atomic structures of six different inversion-domain boundaries in AlN, and compare their interface energies from density functional theory calculations. The low-energy interfaces have atomic structures with similar bonding geometry as those in the bulk phase, while the high-energy interfaces contain N-N wrong bonds. We calculate the formation energy of an inversion domain using the interface energy and dipoles' electric-field energy, and find that the distribution of the inversion domains is an important parameter for the microstructures of AlN films. Using this thermodynamic model, it is possible to control the polarity and microstructure of AlN films by tuning the distribution of an inversion-domain nucleus and by selecting the low-energy synthesis methods.
NASA Astrophysics Data System (ADS)
Sudheer, Mondal, Puspen; Rai, V. N.; Srivastava, A. K.
2017-07-01
The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm) deposited on the formvar film (substrate) by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs) change with an increase in the film thickness (0.7 to 2.8 nm). Nearly spherical Au NPs are obtained for <3 nm thickness films whereas percolated nanostructures are observed for ≥3 nm thickness films as a consequence of the interfacial interaction of Au and formvar film. The covered area fraction (CAF) increases from ˜13 to 75 % with the change in film thickness from 0.7 to 8.4 nm. In-situ annealing of ≤3 nm film produces comparatively bigger size and better sphericity Au NPs along with their narrow distributions, whereas just percolated film produces broad distribution in size having spherical as well as elongated Au NPs. The films with thickness ≤3 nm show excellent thermal stability. The films having thickness >6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ˜0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm) during solid-state dewetting and recrystallization of the grains.
Thickness-dependent metal-to-insulator transition in epitaxial VO2 films
NASA Astrophysics Data System (ADS)
Zhi, Bowen; Gao, Guanyin; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Jin, Shaowei; Wu, Wenbin
2014-12-01
The metal-to-insulator transition (MIT) of VO2 films with a thickness of 3-100 nm on TiO2(001) substrates has been investigated. When varying the film thickness from 10 to 100 nm, the MIT temperature was first kept at 290 K in the range of 10-14 nm, and then increased with thickness increasing due to the strain relaxation. The origin of the suppressed transition in VO2 films thinner than 6 nm was also investigated. When prolonging the in situ annealing time, the sharpness, amplitude and width of the transition for 4 nm thick films were all increased, suggesting improved crystallinity rather than Ti diffusion from the substrates. In addition, the MIT was suppressed when the VO2 films were covered by a TiO2 layer, indicating that the interface effect via the confinement of the dimerization of the V atoms should be the main reason.
NASA Astrophysics Data System (ADS)
Miranda, S. M. C.; Franco, N.; Alves, E.; Lorenz, K.
2012-10-01
AlN thin films were implanted with cadmium, to fluences of 1 × 1013 and 8 × 1014 at/cm2. The implanted samples were annealed at 950 °C under flowing nitrogen. Although implantation damage in AlN is known to be extremely stable the crystal could be fully recovered at low fluences. At high fluences the implantation damage was only partially removed. Implantation defects cause an expansion of the c-lattice parameter. For the high fluence sample the lattice site location of the ions was studied by Rutherford Backscattering/Channelling Spectrometry. Cd ions are found to be incorporated in substitutional Al sites in the crystal and no significant diffusion is seen upon thermal annealing. The observed high solubility limit and site stability are prerequisite for using Cd as p-type dopant in AlN.
Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei
2011-04-01
ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.
Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate
Kline, Gerald R.; Lakin, Kenneth M.
1985-12-03
A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.
Competitive growth mechanisms of AlN on Si (111) by MOVPE.
Feng, Yuxia; Wei, Hongyuan; Yang, Shaoyan; Chen, Zhen; Wang, Lianshan; Kong, Susu; Zhao, Guijuan; Liu, Xianglin
2014-09-18
To improve the growth rate and crystal quality of AlN, the competitive growth mechanisms of AlN under different parameters were studied. The mass transport limited mechanism was competed with the gas-phase parasitic reaction and became dominated at low reactor pressure. The mechanism of strain relaxation at the AlN/Si interface was studied by transmission electron microscopy (TEM). Improved deposition rate in the mass-transport-limit region and increased adatom mobility were realized under extremely low reactor pressure.
Lin, Hui-Feng; Wu, Chun-Te; Chien, Wei-Cheng; Chen, Sheng-Wen; Kao, Hui-Ling; Chyi, Jen-Inn; Chen, Jyh-Shin
2005-05-01
Epitaxial AlN films have been grown on GaN/sapphire using helicon sputtering at 300 degrees C. The surface acoustic wave (SAW) filters fabricated on AlN/GaN/sapphire exhibit more superior characteristics than those made on GaN/sapphire. This composite structure of AlN on GaN may bring about the development of high-frequency components, which integrate and use their semiconducting, optoelectronic, and piezoelectric properties.
Properties of planar structures based on Policluster films of diamond and AlN
NASA Astrophysics Data System (ADS)
Belyanin, A. F.; Luchnikov, A. P.; Nalimov, S. A.; Bagdasarian, A. S.
2018-01-01
AlN films doped with zinc were grown on Si substrates by RF magnetron reactive sputtering of a compound target. Policluster films of diamond doped with boron were formed on layered Si/AlN substrates from the gas phase hydrogen and methane, activated arc discharge. By electron microscopy, X-ray diffraction and Raman spectroscopy the composition and structure of synthetic policluster films of diamond and AlN films were studied. Photovoltaic devices based on the AlN/PFD layered structure are presented.
Effect of topical alendronate on root resorption of dried replanted dog teeth.
Levin, L; Bryson, E C; Caplan, D; Trope, M
2001-06-01
Alendronate (ALN) is a third generation bisphosphonate with demonstrated osteoclast inhibitory activity that may slow down the resorptive process after severe traumatic injuries. Eighty-two premolar roots of five mongrel dogs were endodontically treated and restored, extracted and treated as follows: 70 roots were bench dried for either 40 or 60 min. Thirty-eight of these roots were then soaked for 5 min in a 1 mM solution of ALN in Hanks' Balanced Salt Solution (HBSS) and replanted. Thirty-two roots were soaked for 5 min in HBSS and replanted. In the remaining 12 roots which were not exposed to the bench drying procedure, a 0.5 mM deep lingual mid-root cemental defect was made. Six of these roots were soaked in a 1 mM solution of ALN in HBSS for 5 min and replanted. The other six roots were soaked for 5 min in HBSS and replanted. Historical negative and positive controls were used from similarly treated teeth in our previous studies. After 4 months the dogs were killed and the roots prepared for histological evaluation. Five-microm-thick cross-sections of the root and surrounding tissue taken every 70 microm were evaluated for healing according to the criteria of Andreasen. In the 12 roots with cemental defects, healing with cementum of the damaged root surface was evaluated. In addition, residual root mass was also measured to determine the extent of root structure loss for each soaking method. Cemental healing took place in all 12 artificially damaged roots, indicating that these soaking media did not inhibit cementogenesis. The alendronate-soaked roots had statistically significantly more healing than the roots soaked in HBSS without alendronate. This improvement in healing was seen in all dogs except one and in all teeth except the first premolar. Soaking in alendronate also resulted in significantly less loss in root mass due to resorption compared to those teeth soaked in HBSS without alendronate.
Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor
TalebiFard, Sahba; Schmidt, Shon; Shi, Wei; Wu, WenXuan; Jaeger, Nicolas A. F.; Kwok, Ezra; Ratner, Daniel M.; Chrostowski, Lukas
2017-01-01
Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU. PMID:28270963
First principles calculation for Gilbert damping constants in ferromagnetic/non-magnetic junctions
NASA Astrophysics Data System (ADS)
Hiramatsu, R.; Miura, D.; Sakuma, A.
2018-05-01
We evaluated an intrinsic α in ferromagnetic (FM)/non-magnetic (NM) junctions from first principles (FM = Co, Fe, and Ni and NM = Cu, Pd, and Pt) to investigate the effects of the inserted NM layer. α is calculated by liner muffin-tin orbital methods based on the torque-correlation model. We confirmed that Gilbert damping is enhanced and saturated as NM thickness increases, and that the enhancement is greater in NM materials having a stronger spin-orbital interaction. By contrast, the calculated FM thickness dependences of α show that Gilbert damping tends to decrease and be saturated as the FM thickness increases. Under the torque-correlation model, the dependences of α on FM and NM thickness can be explained by considering the electronic structure of the total system, including junction interfaces, which exhibit similar behaviors derived by spin pumping theory.
NASA Astrophysics Data System (ADS)
Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.
2007-03-01
Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.
NASA Astrophysics Data System (ADS)
Pan, Lei; Dong, Xun; Li, Zhonghui; Luo, Weike; Ni, Jinyu
2018-07-01
AlGaN/GaN heterostructures were grown on Si (1 1 1) substrates with different AlN nucleation layers (NL) by metal-organic chemical vapor deposition (MOCVD). The results indicate that the growth temperature of AlN NL has a noticeable influence on the structural, electronic and optical properties of the AlGaN/GaN heterostructures. Optimizing the growth temperature to 1040 °C led to quasi-2D smooth surface of the AlN NL with providing sufficient compressive stress to suppress cracking of the subsequent GaN layer during the cooling process, resulting in improved crystalline quality of GaN layer and superior two-dimensional electron gas (2DEG) performance of the AlGaN/GaN heterostructure.
Mekhail, George M; Kamel, Amany O; Awad, Gehanne As; Mortada, Nahed D; Rodrigo, Rowena L; Spagnuolo, Paul A; Wettig, Shawn D
2016-09-01
To synthesize an osteotropic alendronate functionalized gelatin (ALN-gelatin) biopolymer for nanoparticle preparation and targeted delivery of DNA to osteoblasts for gene therapy applications. Alendronate coupling to gelatin was confirmed using Fourier transform IR, (31)PNMR, x-ray diffraction (XRD) and differential scanning calorimetry. ALN-gelatin biopolymers prepared at various alendronate/gelatin ratios were utilized to prepare nanoparticles and were optimized in combination with DNA and gemini surfactant for transfecting both HEK-293 and MG-63 cell lines. Gelatin functionalization was confirmed using the above methods. Uniform nanoparticles were obtained from a nanoprecipitation technique. ALN-gelatin/gemini/DNA complexes exhibited higher transfection efficiency in MG-63 osteosarcoma cell line compared with the positive control. ALN-gelatin is a promising biopolymer for bone targeting of either small molecules or gene therapy applications.
DUTRA, Bernardo Carvalho; OLIVEIRA, Alcione Maria Soares Dutra; OLIVEIRA, Peterson Antônio Dutra; MANZI, Flavio Ricardo; CORTELLI, Sheila Cavalca; COTA, Luís Otávio de Miranda; COSTA, Fernando Oliveira
2017-01-01
Abstract Background and objectives Few studies have evaluated the effect of the topical application of sodium alendronate (ALN) on the treatment of intrabuccal bone defects, especially those caused by periodontitis. This 6-month randomized placebo controlled clinical trial aimed at evaluating the effect of non-surgical periodontal treatment associated with the use of 1% ALN, through clinical evaluations and cone-beam computed tomography (CBCT). Material and Methods Twenty individuals with chronic periodontitis underwent periodontal examination at the baseline as well as 3 and 6 months after periodontal treatment, registering clinical attachment level (CAL), periodontal probing depth (PPD), and bleeding on probing (BOP) as the clinical outcomes. After manual scaling and root planing, 40 bilateral sites with interproximal vertical bone defects were randomly treated with either 1% ALN gel or a placebo. Bone defects were evaluated through CBCT at the baseline and 6 months post-treatment. The clinical and CBCT parameters were compared using the Wilcoxon and Friedman tests (p<0.05). Results Although ALN produced a greater CAL gain when compared to the placebo at 6 months post-treatment (p=0.021), both treatments produced similar effects on the PPD, BOP, and bone height. Significant differences in bone fill were observed only in patients of the ALN group (4.5 to 3.8 mm; p=0.003) at 6 months post-treatment. Conclusions Topical application of 1% ALN might be a beneficial adjuvant to non-surgical periodontal therapy. PMID:28678950
NASA Astrophysics Data System (ADS)
Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi
2018-05-01
Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.
Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France
2016-08-15
Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less
Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings
Ali, Kamran; Narayana, Sivaprasad; Okonkwo, Paul C.; Yusuf, Moinuddin M.; Alashraf, Abdullah
2018-01-01
This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical) by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L) to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement. PMID:29619143
Effect of Ru thickness on spin pumping in Ru/Py bilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet
2015-05-07
We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumpingmore » from Py into Ru.« less
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2012-02-01
Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.
Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.
Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less
Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes
Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; ...
2017-01-26
Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less
Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi
2016-05-04
Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.
Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD
NASA Astrophysics Data System (ADS)
Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko
2018-02-01
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
Towards AlN optical cladding layers for thermal management in hybrid lasers
NASA Astrophysics Data System (ADS)
Mathews, Ian; Lei, Shenghui; Nolan, Kevin; Levaufre, Guillaume; Shen, Alexandre; Duan, Guang-Hua; Corbett, Brian; Enright, Ryan
2015-06-01
Aluminium Nitride (AlN) is proposed as a dual function optical cladding and thermal spreading layer for hybrid ridge lasers, replacing current benzocyclobutene (BCB) encapsulation. A high thermal conductivity material placed in intimate contact with the Multi-Quantum Well active region of the laser allows rapid heat removal at source but places a number of constraints on material selection. AlN is considered the most suitable due to its high thermal conductivity when deposited at low deposition temperatures, similar co-efficient of thermal expansion to InP, its suitable refractive index and its dielectric nature. We have previously simulated the possible reduction in the thermal resistance of a hybrid ridge laser by replacing the BCB cladding material with a material of higher thermal conductivity of up to 319 W/mK. Towards this goal, we demonstrate AlN thin-films deposited by reactive DC magnetron sputtering on InP.
Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots
NASA Astrophysics Data System (ADS)
Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.
2018-01-01
We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.
NASA Astrophysics Data System (ADS)
Choudhary, R. K.; Mishra, S. C.; Mishra, P.; Limaye, P. K.; Singh, K.
2015-11-01
Aluminum nitride (AlN) coating is a potential candidate for addressing the problems of MHD pressure drop, tritium permeation and liquid metal corrosion of the test blanket module of fusion reactor. In this work, AlN coatings were grown on stainless steel by magnetron sputtering. Grazing incidence X-ray diffraction measurement revealed that formation of mixed phase (wurtzite and rock salt) AlN was favored at low discharge power and substrate negative biasing. However, at sufficiently high discharge power and substrate bias, (100) oriented wurtzite AlN was obtained. Secondary ion mass spectroscopy showed presence of oxygen in the coatings. The highest value of hardness and Young's modulus were 14.1 GPa and 215 GPa, respectively. Scratch test showed adhesive failure at a load of about 20 N. Wear test showed improved wear resistance of the coatings obtained at higher substrate bias.
Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwata, Yoshiya; Oto, Takao; Banal, Ryan G.
2015-03-21
Inhomogeneity in Al-rich AlGaN/AlN quantum wells is directly observed using our custom-built confocal microscopy photoluminescence (μ-PL) apparatus with a reflective system. The μ-PL system can reach the AlN bandgap in the deep ultra-violet spectral range with a spatial resolution of 1.8 μm. In addition, cathodoluminescence (CL) measurements with a higher spatial resolution of about 100 nm are performed. A comparison of the μ-PL and CL measurements reveals that inhomogeneities, which have different spatial distributions of a few- and sub-micron scales that are superimposed, play key roles in determining the optical properties.
2013-01-01
GdBa2Cu3O7 − δ (GdBCO) films with different thicknesses from 200 to 2,100 nm are deposited on CeO2/yttria-stabilized zirconia (YSZ)/CeO2-buffered Ni-W substrates by radio-frequency magnetron sputtering. Both the X-ray diffraction and scanning electron microscopy analyses reveal that the a-axis grains appear at the upper layers of the films when the thickness reaches to 1,030 nm. The X-ray photoelectron spectroscopy measurement implies that the oxygen content is insufficient in upper layers beyond 1,030 nm for a thicker film. The Williamson-Hall method is used to observe the variation of film stress with increasing thickness of our films. It is found that the highest residual stresses exist in the thinnest film, while the lowest residual stresses exist in the 1,030-nm-thick film. With further increasing film thickness, the film residual stresses increase again. However, the critical current (Ic) of the GdBCO film first shows a nearly linear increase and then shows a more slowly enhancing to a final stagnation as film thickness increases from 200 to 1,030 nm and then to 2,100 nm. It is concluded that the roughness and stress are not the main reasons which cause the slow or no increase in Ic. Also, the thickness dependency of GdBa2Cu3O7 − δ films on the Ic is attributed to three main factors: a-axis grains, gaps between a-axis grains, and oxygen deficiency for the upper layers of a thick film. PMID:23816137
Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina
2002-07-01
The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.
Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates.
Paušová, Šárka; Kment, Štěpán; Zlámal, Martin; Baudys, Michal; Hubička, Zdeněk; Krýsa, Josef
2017-05-10
This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm -3 NH₄F and 4 mol dm -3 H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm -2 at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).
Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2016-07-01
We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.
NASA Astrophysics Data System (ADS)
Kaiju, H.; Kasa, H.; Komine, T.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.
2015-05-01
We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96-1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10-20 nm can be expected to function as spin-filter devices.
NASA Astrophysics Data System (ADS)
Kim, Kyung Joong; Lee, Seung Mi; Jang, Jong Shik; Moret, Mona
2012-02-01
The general equation Tove = L cos θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.
Khorasani, Mohammad S; Diko, Sindi; Hsia, Allison W; Anderson, Matthew J; Genetos, Damian C; Haudenschild, Dominik R; Christiansen, Blaine A
2015-02-16
Previous studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury. Non-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption. μCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points. High-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted.
The influence of design parameters on the performance of FBAR in 10-14 GHz
NASA Astrophysics Data System (ADS)
Nor, N. I. M.; Osman, R. A. M.; Idris, M. S.; Khalid, N.; Mohamad Isa, M.; Ahmad, N.; Mat Isa, Siti S.; Ramli, Muhammad M.; Kasjoo, S. R.
2017-11-01
This research presents the analysis of the influence of design parameters on the performance of film bilk acoustic wave resonator (FBAR) working from 10 GHz to 14 GHz. The analysis is done by implementing one-dimensional (1-D) modellings, which are 1-D Mason model and Butterworth Van Dyke (BVD) model. The physical parameters such as piezoelectric materials and its thickness, and size of area affecting the characteristics of the FBAR are analyzed in detail. Zinc oxide (ZnO) and aluminum nitride (AlN) are chosen as the piezoelectric materials. The resonance area is varied at 25μm×25μm to 35μm×35μm. From the analysis, it is found that as the frequency increases, the thickness of the piezoelectric material decreases. Meanwhile, the static capacitance increases as the frequency increases. It is also found that as the area increases, the electrical impedance and static capacitance also increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, T.; Kumar, M.; Som, T., E-mail: tsom@iopb.res.in
2015-09-14
Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film.more » Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.« less
Making AlN(x) Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Kleinsasser, Alan; Bumble, Bruce; LeDuc, Henry; Lee, Karen
2005-01-01
A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlN(x)) for use as tunnel barriers in Nb/Al-AlN(x)/Nb superconductor/insulator/ superconductor (SIS) Josephson junctions. AlN(x) is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability. While ultra-thin AlN films with good thickness and stoichiometry control are easily formed using techniques such as reactive molecular beam epitaxy and chemical vapor deposition, growth temperatures of 900 C are necessary for the dissociative adsorption of nitrogen from either nitrogen (N2) or ammonia (NH3). These growth temperatures are prohibitively high for the formation of tunnel barriers on Nb films because interfacial reactions at temperatures as low as 200 to 300 C degrade device properties. Heretofore, deposition by reactive sputtering and nitridation of thin Al layers with DC and RF nitrogen plasmas have been successfully used to form AlN barriers in SIS junctions. However, precise control over critical current density Jc has proven to be a challenge, as is attaining adequate process reproducibility from system to system. The present ion-beam technique is an alternative to the plasma or reactive sputtering techniques as it provides a highly controlled arrival of reactive species, independent of the electrical conditions of the substrate or vacuum chamber. Independent and accurate control of parameters such as ion energy, flux, species, and direction promises more precise control of film characteristics such as stoichiometry and thickness than is the case with typical plasma processes. In particular, the background pressure during ion-beam nitride growth is 2 or 3 orders of magnitude lower, minimizing the formation of compounds with contaminants, which is critical in devices the performance of which is dictated by interfacial characteristics. In addition, the flux of incoming species can be measured in situ using ion probes so that the dose can be controlled accurately. The apparatus used in the present ion-beam technique includes a vacuum chamber containing a commercial collimated- ion-beam source, a supply of nitrogen and argon, and an ion probe for measuring the ion dose. Either argon or nitrogen can be used as the feed gases for the ion source, depending on whether cleaning of the substrate or growth of the nitride, respectively, is desired. Once the Nb base electrode and Al proximity layer have been deposited, the N2 gas line to the ion beam is vented and purged, and the ion-source is turned on until a stable discharge is obtained. The substrate is moved over the ion-beam source to expose the Al surface layer to the ion beam (see figure) for a specified duration for the formation of the nitride tunnel barrier. Next, the Nb counter-electrode layer is deposited on the nitride surface layer. The Nb/Al- AlN(x)/Nb-trilayer-covered substrate is then patterned into individual devices by use of conventional integrated-circuit processing techniques.
Manufacturing and testing VLPC hybrids
NASA Astrophysics Data System (ADS)
Adkins, L. R.; Ingram, C. M.; Anderson, E. J.
1998-11-01
To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of ±0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.
Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing
2015-01-01
Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.
Ultra-violet avalanche photodiode based on AlN/GaN periodically-stacked-structure
NASA Astrophysics Data System (ADS)
Wu, Xingzhao; Zheng, Jiyuan; Wang, Lai; Brault, Julien; Matta, Samuel; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yianjun; Wang, Jian; Li, Hongtao; Khalfioui, Mohamed A.; Li, Mo; Kang, Jianbin; Li, Qian
2018-02-01
The high-gain photomultiplier tube (PMT) is the most popular method to detect weak ultra-violet signals which attenuate quickly in atmosphere, although the vacuum tube makes it fragile and difficult to integrate. To overcome the disadvantage of PMT, an AlN/GaN periodically-stacked-structure (PSS) avalanche photodiode (APD) has been proposed, finally achieving good quality of high gain and low excessive noise. As there is a deep g valley only in the conduction band of both GaN and AlN, the electron transfers suffering less scattering and thus becomes easier to obtain the threshold of ionization impact. Because of unipolar ionization in the PSS APD, it works in linear mode. Four prototype devices of 5-period, 10-period, 15-period, and 20-period were fabricated to verify that the gain of APD increases exponentially with period number. And in 20-period device, a recorded high and stable gain of 104 was achieved under constant bias. In addition, it is proved both experimentally and theoretically, that temperature stability on gain is significantly improved in PSS APD. And it is found that the resonant enhancement in interfacial ionization may bring significant enhancement of electron ionization performance. To make further progress in PSS APD, the device structure is investigated by simulation. Both the gain and temperature stability are optimized alternatively by a proper design of periodical thickness and AlN layer occupancy.
Red persistent luminescence in rare earth-free AlN:Mn 2+ phosphor
Xu, Jian; Cherepy, Nerine J.; Ueda, Jumpei; ...
2017-07-03
Here, we investigated the persistent luminescence (PersL) properties of a rare earth-free Mn 2+ doped AlN (AlN:Mn) red phosphor together with a commercial SrAl 2O 4:Eu 2+, Dy 3+ green persistent phosphor as a reference. Similar to its photoluminescence (PL) spectrum, the PersL spectrum of the AlN:Mn phosphor exhibited a red emission band centered at 600 nm due to the Mn 2+: 4T 1( 4G) → 6A 1( 6S) transition with a relatively narrow full width at half maximum (FWHM) of 43 nm. The luminance of AlN:Mn powders was 0.65 mcd/m 2 at 60 min after ceasing ultraviolet (UV) illumination,more » and its duration upon 0.32 mcd/m 2 could reach over 110 min. An extremely broad thermoluminescence (TL) glow curve was observed ranging from 100 K to 600 K and peaked at around 310 K, indicating a wide trap distribution in this material.« less
Red persistent luminescence in rare earth-free AlN:Mn 2+ phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jian; Cherepy, Nerine J.; Ueda, Jumpei
Here, we investigated the persistent luminescence (PersL) properties of a rare earth-free Mn 2+ doped AlN (AlN:Mn) red phosphor together with a commercial SrAl 2O 4:Eu 2+, Dy 3+ green persistent phosphor as a reference. Similar to its photoluminescence (PL) spectrum, the PersL spectrum of the AlN:Mn phosphor exhibited a red emission band centered at 600 nm due to the Mn 2+: 4T 1( 4G) → 6A 1( 6S) transition with a relatively narrow full width at half maximum (FWHM) of 43 nm. The luminance of AlN:Mn powders was 0.65 mcd/m 2 at 60 min after ceasing ultraviolet (UV) illumination,more » and its duration upon 0.32 mcd/m 2 could reach over 110 min. An extremely broad thermoluminescence (TL) glow curve was observed ranging from 100 K to 600 K and peaked at around 310 K, indicating a wide trap distribution in this material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, V. E., E-mail: ovcharenko.ove45@mail.ru; Ivanov, Yu. F., E-mail: ivanov.yufi55@mail.ru; Mohovikov, A. A., E-mail: mohovikov.maa28@rambler.ru
A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It ismore » possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.« less
Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory
2009-02-01
We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.
The optimal thickness of a transmission-mode GaN photocathode
NASA Astrophysics Data System (ADS)
Wang, Xiao-Hui; Shi, Feng; Guo, Hui; Hu, Cang-Lu; Cheng, Hong-Chang; Chang, Ben-Kang; Ren, Ling; Du, Yu-Jie; Zhang, Jun-Ju
2012-08-01
A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 104 cm·s-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.
Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija
2005-10-01
In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.
Theoretical Studies of Nanocluster Formation
2016-05-26
background, technical approach 2. Core-shell nanoclusters (Mg/Cu, Si/Al, etc.) - energetic additives for propellants , explosives - gas generators...shell nanocluster synthesis Core-shell nanoclusters such as SiAln, NinAlm, Aln(CuO)m, etc. may be useful ingredients in propellants and explosives
Native defect properties and p -type doping efficiency in group-IIA doped wurtzite AlN
NASA Astrophysics Data System (ADS)
Zhang, Yong; Liu, Wen; Niu, Hanben
2008-01-01
Using the first-principles full-potential linearized augmented plane-wave (FPLAPW) method based on density functional theory (DFT), we have investigated the native defect properties and p -type doping efficiency in AlN doped with group-IIA elements such as Be, Mg, and Ca. It is shown that nitrogen vacancies (VN) have low formation energies and introduce deep donor levels in wurtzite AlN, while in zinc blende AlN and GaN, these levels are reported to be shallow. The calculated acceptor levels γ(0/-) for substitutional Be (BeAl) , Mg (MgAl) , and Ca (CaAl) are 0.48, 0.58, and 0.95eV , respectively. In p -type AlN, Be interstitials (Bei) , which act as donors, have low formation energies, making them a likely compensating center in the case of acceptor doping. Whereas, when N-rich growth conditions are applied, Bei are energetically not favorable. It is found that p -type doping efficiency of substitutional Be, Mg, and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants. Among the three dopants, Be may be the best candidate for p -type w-AlN . N-rich growth conditions help us to increase the concentration of BeAl , MgAl , and CaAl .
NASA Astrophysics Data System (ADS)
Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang
2016-07-01
Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)
NASA Astrophysics Data System (ADS)
Wang, Chunxia; Zhang, Xiong; Guo, Hao; Chen, Hongjun; Wang, Shuchang; Yang, Hongquan; Cui, Yiping
2013-10-01
GaN-based light-emitting diodes (LEDs) with specially designed electron blocking layers (EBLs) between the multiple quantum wells (MQWs) and the top p-GaN layer have been developed. The EBLs consist of Mg-doped p-AlGaN/GaN superlattice (SL) with the layer thickness of p-AlGaN varied from 1 to 10 nm and the layer thickness of p-GaN fixed at 1 nm in this study. It was found that under a 2000 V reverse bias voltage condition, the electro-static discharge (ESD) yield increased from 61.98 to 99.51% as the thickness of p-AlGaN in the EBLs was increased from 1 to 10 nm. Since the ESD yield was 97.80%, and maximum value for LEDs' light output power (LOP) and minimum value for the forward voltage (Vf) were achieved when the thickness of p-AlGaN in the EBLs was 9 nm with a 20 mA injection current, it was concluded that the p-AlGaN/GaN SL EBLs with the combination of 9-nm-thick p-AlGaN and 1-nm-thick p-GaN would be beneficial to the fabrication of the GaN-based LEDs with high brightness, high ESD endurance, and low Vf.
NASA Astrophysics Data System (ADS)
Tonny, Kaniz Naila; Rafique, Rosaleena; Sharmin, Afrina; Bashar, Muhammad Shahriar; Mahmood, Zahid Hasan
2018-06-01
Al doped ZnO (AZO) films are fabricated by using sol-gel spin coating method and changes in electrical, optical and structural properties due to variation in film thickness is studied. AZO films provide c-axis orientation along the (002) plane and peak sharpness increased with film thickness is evident from XRD analysis. Conductivity (σ) of AZO films has increased from 2.34 (Siemens/cm) to 20156.27 (Siemens/cm) whereas sheet resistance (Rsh) decreases from 606300 (ohms/sq.) to 2.08 (ohm/sq.) with increase of film thickness from 296 nm to 1030 nm. Optical transmittance (T%) of AZO films is decreased from around 82% to 62% in the visible region. And grain size (D) of AZO thin films has been found to increase from 19.59 nm to 25.25 nm with increase of film thickness. Figure of Merit is also calculated for prepared sample of AZO. Among these four sample of AZO thin films, L-15 sample (having thickness in 895 nm) has provided highest figure of merit which is 5.49*10^-4 (Ω-1).
Photoconductivity of Macroporous and Nonporous Silicon with Ultrathin Oxide Layers
NASA Astrophysics Data System (ADS)
Konin, K. P.; Goltvyansky, Yu. V.; Karachevtseva, L. A.; Karas, M. I.; Morozovs'ka, D. V.
2018-06-01
The photoconductivity of macroporous silicon with ultrathin oxide layers of 2.7-30 nm in thickness at short-wave optical excitation was studied. The following feature was revealed: a nonmonotonic change in the photoconductivity as a function of the oxide thickness. At a minimum thickness, the photoconductivity is negative; in the interval 6.8-15 nm, it is very much suppressed; at 15-30 nm, it is positive. Suppression of photoconductivity over a wide thickness range indicates an abnormally high concentration of traps and capture centers for charge carriers of both signs. Such a change in the photoconductivity corresponds to the known results on the continuous morphological rearrangement of the oxide in the thickness range from 6-7 nm to 12-15 nm from the coesite-like (4-membered SiO4 tetrahedra rings) to the tridymite-like (6-membered SiO4 tetrahedra rings). The suppression of photoconductivity in the intermediate range probably demonstrates the collective, antisynergetic action of these coexisting oxide forms on the nonequilibrium charge carriers. These coexisting oxide forms manifest themselves as an unusual collective defect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070; Chi, Hang
2016-01-25
In this research, we report the enhanced thermoelectric power factor in topologically insulating thin films of Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} with a thickness of 6–200 nm. Measurements of scanning tunneling spectroscopy and electronic transport show that the Fermi level lies close to the valence band edge, and that the topological surface state (TSS) is electron dominated. We find that the Seebeck coefficient of the 6 nm and 15 nm thick films is dominated by the valence band, while the TSS chiefly contributes to the electrical conductivity. In contrast, the electronic transport of the reference 200 nm thick film behaves similar to bulk thermoelectric materialsmore » with low carrier concentration, implying the effect of the TSS on the electronic transport is merely prominent in the thin region. The conductivity of the 6 nm and 15 nm thick film is obviously higher than that in the 200 nm thick film owing to the highly mobile TSS conduction channel. As a consequence of the enhanced electrical conductivity and the suppressed bipolar effect in transport properties for the 6 nm thick film, an impressive power factor of about 2.0 mW m{sup −1} K{sup −2} is achieved at room temperature for this film. Further investigations of the electronic transport properties of TSS and interactions between TSS and the bulk band might result in a further improved thermoelectric power factor in topologically insulating Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} thin films.« less
Broadband operation of rolled-up hyperlenses
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Rottler, Andreas; Bröll, Markus; Ehlermann, Jens; Stemmann, Andrea; Stickler, Daniel; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan
2012-06-01
This work is related to an earlier publication [Schwaiger , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.163903 102, 163903 (2009)], where we demonstrated by means of fiber-based transmission measurements that rolled-up Ag-(In)GaAs multilayers represent three-dimensional metamaterials with a plasma edge which is tunable over the visible and near-infrared regime by changing the thickness ratio of Ag and (In)GaAs, and predicted by means of finite-difference time-domain simulations that hyperlensing occurs at this frequency-tunable plasma edge. In the present work we develop a method to measure reflection curves on these structures and find that they correspond to the same tunable plasma edge. We find that retrieving the effective parameters from transmission and reflection data fails, because our realized metamaterials exceed the single-layer thicknesses of 5nm, which we analyze to be the layer thickness limit for the applicability of effective parameter retrieval. We show that our realized structures nevertheless have the functionality of an effective metamaterial by supplying a detailed finite-difference time-domain study which compares light propagation through our realized structure (17-nm-thick Ag layers and 34-nm-thick GaAs layers) and light propagation through an idealized structure of the same total thickness but with very thin layers [2-nm-thick Ag layers and 4-nm-thick (In)GaAs layers]. In particular, our simulations predict broadband hyperlensing covering a large part of the visible spectrum for both the idealized and our realized structures.
Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.
Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan
2005-07-01
Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.
Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation
Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...
2018-01-30
Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less
Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Zhang, Yanwen
Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less
Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan
2016-08-01
Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.
de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry
2015-04-01
Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.
Gas-Phase Combustion Synthesis of Aluminum Nitride Powder
NASA Technical Reports Server (NTRS)
Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.
1996-01-01
Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.
Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
Pantzer, Adi; Vakahy, Atsmon; Eliyahou, Zohar; Levi, George; Horvitz, Dror; Kohn, Amit
2014-03-01
Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling
2016-05-01
To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.
Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure
NASA Astrophysics Data System (ADS)
Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim
2018-03-01
Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan
1998-01-01
In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.
NASA Astrophysics Data System (ADS)
Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi
2018-01-01
The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.
Hentschel, Carsten; Wagner, Hendrik; Smiatek, Jens; Heuer, Andreas; Fuchs, Harald; Zhang, Xi; Studer, Armido; Chi, Lifeng
2013-02-12
Herein we present a study on nonspecific binding of proteins at highly dense packed hydrophobic polystyrene brushes. In this context, an atomic force microscopy tip was functionalized with concanavalin A to perform single-molecule force spectroscopy measurements on polystyrene brushes with thicknesses of 10 and 60 nm, respectively. Polystyrene brushes with thickness of 10 nm show an almost two times stronger protein adsorption than brushes with a thickness of 60 nm: 72 pN for the thinner and 38 pN for the thicker layer, which is in qualitative agreement with protein adsorption studies conducted macroscopically by fluorescence microscopy.
An achromatic four-mirror compensator for spectral ellipsometers
NASA Astrophysics Data System (ADS)
Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.
2017-07-01
Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.
2018-03-01
In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).
The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki
2016-08-28
The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less
Characterization of crystal structure features of a SIMOX substrate
NASA Astrophysics Data System (ADS)
Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.
2015-12-01
The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.
Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.
Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin
2015-03-01
Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.
Natsag, J; Kendall, M A; Sellmeyer, D E; McComsey, G A; Brown, T T
2016-03-01
The aim of the study was to determine the effect of alendronate (ALN) on inflammatory markers and osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL), and to explore the associations of baseline systemic inflammation and vitamin D status on the bone mineral density (BMD) response to ALN. Eighty-two HIV-positive patients with lumbar spine T-score ≤ -1.5 were randomized to ALN 70 mg weekly or placebo for 48 weeks; all received calcium carbonate 500 mg/vitamin D3 200 IU twice daily. Serum C-telopeptide (CTx) and BMD were assessed at baseline and week 48. Stored plasma samples in 70 subjects were assayed for levels of 25-hydroxyvitamin D (25(OH)D), OPG, RANKL, interleukin (IL)-6 and soluble receptors for tumour necrosis factor (TNF)-α 1 and 2 (sTNFR 1 and 2). ALN increased BMD more than placebo at both the lumbar spine (difference ALN - placebo 2.64%; P = 0.011) and the total hip (difference 2.27%; P = 0.016). No within- or between-arm differences in OPG, RANKL or inflammatory markers were observed over 48 weeks. High baseline CTx and sTNFR2 were associated with a more robust BMD response to ALN over 48 weeks at the lumbar spine [difference 5.66%; 95% confidence interval (CI) 3.50, 7.82; P < 0.0001] and total hip (difference 4.99%; 95% CI 2.40, 7.57; P = 0.0002), respectively. Baseline 25(OH)D < 32 ng/mL was associated with larger increases in total hip BMD over 48 weeks, independent of ALN treatment (P = 0.014). Among HIV-positive patients, higher baseline bone resorption and TNF-α activity were associated with an increased BMD response to ALN. The greater BMD response in those with lower vitamin D reinforces the importance of vitamin D supplementation with bisphosphonate treatment. © 2015 British HIV Association.
Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers
Li, Nan; Yadav, Satyesh K.; Wang, Jian; ...
2015-12-18
We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.
Ab-initio study of boron incorporation and compositional limits at GaN and AlN (0001) surfaces
NASA Astrophysics Data System (ADS)
Lymperakis, L.
2018-06-01
Density functional theory calculations are employed to investigate B incorporation at the GaN(0001) and AlN(0001) surfaces. It is found that under typical metal-organic chemical vapor deposition (MOCVD) and metal rich molecular beam epitaxy (MBE) conditions, the maximum B contents at the surfaces are in the order of 3% for GaN and 15% for AlN. Under MBE N-rich growth conditions the calculations reveal a rehybridization enhanced solubility mechanism that dominates at the surface. This mechanism offers a promising route to kinetically stabilize B contents above the bulk solubility limit and as high as 25%.
Band gap and electronic structure of MgSiN2
NASA Astrophysics Data System (ADS)
Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.
2014-09-01
Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.
AlN based piezoelectric micromirror.
Shao, Jian; Li, Qi; Feng, Chuhuan; Li, Wei; Yu, Hongbin
2018-03-01
Aiming to pursue a micromirror possessing many desired characteristics, such as linear control, low power consumption, fast response, and easy fabrication, a new piezoelectric actuation strategy is presented. Different from conventional piezoelectric actuation cases, we first propose using AlN film as the active layer for actuating the micromirror. Owing to its good CMOS compatible deposition and patterning techniques, the AlN based piezoelectric micromirror has been successfully fabricated with a modified silicon-on-insulator-based microelectromechanical system (MEMS) process. At the same time, various mirror movement modes operating at high frequencies and excellent linear relationship between the movement and the control signal both have been experimentally demonstrated.
Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN
Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...
2017-04-10
III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.
Method for improving the toughness of silicon carbide-based ceramics
Tein, Tseng-Ying; Hilmas, Gregory E.
1996-01-01
Method of improving the toughness of SiC-based ceramics. SiC, , AlN, Al.sub.2 O.sub.3 and optionally .alpha.-Si.sub.3 N.sub.4 are hot pressed to form a material which includes AlN polytypoids within its structure.
Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Nguyen, Tien Dai; Hwang, Jehwan; Kim, Yeongho; Kim, Eui-Tae; Kim, Jun Oh; Lee, Sang Jun
2018-05-01
We have investigated the structural characteristics and the device performance of three-stack InGaAsSb/AlGaAsSb quantum-well (QW) light-emitting diodes (LEDs) grown by using molecular beam epitaxy. The QW LED structure with an 8-nm well thickness had a single peak emission wavelength of 2.06 μm at an injection current of 0.3 A at room temperature. However, the QWLEDs with three different well thicknesses of 5-, 10-, and 15-nm had double peak emission wavelengths of 1.97 and 2.1 μm at an injection current of 1.1 A, which were associated with the radiative recombination in the QW with a 5-nm well thickness and the overlapped emission from the QWs with 10- and 15-nm well thicknesses, respectively.
Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
Cui, Shumao; Pu, Haihui; Wells, Spencer A.; ...
2015-10-21
Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO 2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ~10 15 cm -2 for the 4.8-nm-thick PNSmore » when exposed to 20 p.p.b. NO 2 at 300 K. As a result, our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm).« less
Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
NASA Astrophysics Data System (ADS)
Cui, Shumao; Pu, Haihui; Wells, Spencer A.; Wen, Zhenhai; Mao, Shun; Chang, Jingbo; Hersam, Mark C.; Chen, Junhong
2015-10-01
Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ~1015 cm-2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm).
Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
Cui, Shumao; Pu, Haihui; Wells, Spencer A.; Wen, Zhenhai; Mao, Shun; Chang, Jingbo; Hersam, Mark C.; Chen, Junhong
2015-01-01
Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ∼1015 cm−2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm). PMID:26486604
Wide band antireflective coatings Al2O3 / HfO2 / MgF2 for UV region
NASA Astrophysics Data System (ADS)
Winkowski, P.; Marszałek, Konstanty W.
2013-07-01
Deposition technology of the three layers antireflective coatings consists of hafnium compound are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5x10-5 mbar in presence of oxygen and fluoride films by thermal evaporation. Substrate temperature was 250°C. Coatings were deposited onto optical lenses made from quartz glass (Corning HPFS). Thickness and deposition rate were controlled by thickness measuring system Inficon XTC/2. Simulations leading to optimization of thickness and experimental results of optical measurements carried during and after deposition process were presented. Physical thickness measurements were made during deposition process and were equal to 43 nm/74 nm/51 nm for Al2O3 / HfO2 / MgF2 respectively. Optimization was carried out for ultraviolet region from 230nm to the beginning of visible region 400 nm. In this region the average reflectance of the antireflective coating was less than 0.5% in the whole range of application.
Colloidal CuInSe2 nanocrystals thin films of low surface roughness
NASA Astrophysics Data System (ADS)
de Kergommeaux, Antoine; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter
2013-03-01
Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.
Early and Late Retrieval of the ALN Removable Vena Cava Filter: Results from a Multicenter Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellerin, O., E-mail: olivier.pellerin@egp.aphp.f; Barral, F. G.; Lions, C.
Retrieval of removable inferior vena cava (IVC) filters in selected patients is widely practiced. The purpose of this multicenter study was to evaluate the feasibility and results of percutaneous removal of the ALN removable filter in a large patient cohort. Between November 2003 and June 2006, 123 consecutive patients were referred for percutaneous extraction of the ALN filter at three centers. The ALN filter is a removable filter that can be implanted through a femoral/jugular vein approach and extracted by the jugular vein approach. Filter removal was attempted after an implantation period of 93 {+-} 15 days (range, 6-722 days)more » through the right internal jugular vein approach using the dedicated extraction kit after control inferior vena cavography. Following filter removal, vena cavograms were obtained in all patients. Successful extraction was achieved in all but one case. Among these successful retrievals, additional manipulation using a femoral approach was needed when the apex of the filter was close to the IVC wall in two patients. No immediate IVC complications were observed according to the postimplantation cavography. Neither technical nor clinical differences between early and late filter retrieval were noticed. Our data confirm the safety of ALN filter retrieval up to 722 days after implantation. In infrequent cases, additional endovenous filter manipulation is needed to facilitate extraction.« less
Distributed bragg reflector using AIGaN/GaN
Waldrip, Karen E.; Lee, Stephen R.; Han, Jung
2004-08-10
A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.
2013-01-01
GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377
NASA Astrophysics Data System (ADS)
Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei
2017-10-01
Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.
Fitzgerald, Kevin; Frank-Kamenetsky, Maria; Shulga-Morskaya, Svetlana; Liebow, Abigail; Bettencourt, Brian R; Sutherland, Jessica E; Hutabarat, Renta M; Clausen, Valerie A; Karsten, Verena; Cehelsky, Jeffrey; Nochur, Saraswathy V; Kotelianski, Victor; Horton, Jay; Mant, Timothy; Chiesa, Joseph; Ritter, James; Munisamy, Malathy; Vaishnaw, Akshay K; Gollob, Jared A; Simon, Amy
2014-01-04
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to LDL receptors, leading to their degradation. Genetics studies have shown that loss-of-function mutations in PCSK9 result in reduced plasma LDL cholesterol and decreased risk of coronary heart disease. We aimed to investigate the safety and efficacy of ALN-PCS, a small interfering RNA that inhibits PCSK9 synthesis, in healthy volunteers with raised cholesterol who were not on lipid-lowering treatment. We did a randomised, single-blind, placebo-controlled, phase 1 dose-escalation study in healthy adult volunteers with serum LDL cholesterol of 3·00 mmol/L or higher. Participants were randomly assigned in a 3:1 ratio by computer algorithm to receive one dose of intravenous ALN-PCS (with doses ranging from 0·015 to 0·400 mg/kg) or placebo. The primary endpoint was safety and tolerability of ALN-PCS. Secondary endpoints were the pharmacokinetic characteristics of ALN-PCS and its pharmacodynamic effects on PCSK9 and LDL cholesterol. Study participants were masked to treatment assignment. Analysis was per protocol and we used ANCOVA to analyse pharmacodynamic endpoint data. This trial is registered with ClinicalTrials.gov, number NCT01437059. Of 32 participants, 24 were randomly allocated to receive a single dose of ALN-PCS (0·015 mg/kg [n=3], 0·045 mg/kg [n=3], 0·090 mg/kg [n=3], 0·150 mg/kg [n=3], 0·250 mg/kg [n=6], or 0·400 mg/kg [n=6]) and eight to placebo. The proportions of patients affected by treatment-emergent adverse events were similar in the ALN-PCS and placebo groups (19 [79%] vs seven [88%]). ALN-PCS was rapidly distributed, with peak concentration and area under the curve (0 to last measurement) increasing in a roughly dose-proportional way across the dose range tested. In the group given 0·400 mg/kg of ALN-PCS, treatment resulted in a mean 70% reduction in circulating PCSK9 plasma protein (p<0·0001) and a mean 40% reduction in LDL cholesterol from baseline relative to placebo (p<0·0001). Our results suggest that inhibition of PCSK9 synthesis by RNA interference (RNAi) provides a potentially safe mechanism to reduce LDL cholesterol concentration in healthy individuals with raised cholesterol. These results support the further assessment of ALN-PCS in patients with hypercholesterolaemia, including those being treated with statins. This study is the first to show an RNAi drug being used to affect a clinically validated endpoint (ie, LDL cholesterol) in human beings. Alnylam Pharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo
2014-06-02
Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less
Domain wall structure and interactions in 50 nm wide Cobalt nanowires
NASA Astrophysics Data System (ADS)
Tu, Kun-Hua; Ojha, Shuchi; Ross, Caroline A.
2018-05-01
Arrays of cobalt nanowires with widths of 50 nm, thickness of 5 and 20 nm and periodicity of 70 nm were fabricated by pattern transfer from a self-assembled block copolymer film. Transverse domain walls (DWs) were imaged by magnetic force microscopy, indicating repulsive interactions between DWs of the same sign in the 20 nm thick wires. Micromagnetic simulations were used to identify the interactions in the six distinct cases of a pair of transverse DWs in adjacent wires, considering all the possible combinations of head-to-head and tail-to-tail DWs and the orientation of the core magnetization. The boundary between repulsive and attractive DW interactions is mapped out for wires as a function of thickness, width and interwire spacing.
NASA Astrophysics Data System (ADS)
Kacel, T.; Guittoum, A.; Hemmous, M.; Dirican, E.; Öksüzoglu, R. M.; Azizi, A.; Laggoun, A.; Zergoug, M.
We have studied the effect of thickness on the structural, microstructural, electrical and magnetic properties of Ni films electrodeposited onto n-Si (100) substrates. A series of Ni films have been prepared for different potentials ranging from -1.6V to -2.6V. Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), four point probe technique, atomic force microscopy (AFM) and vibrating sample magnetometry (VSM) have been used to investigate the physical properties of elaborated Ni thin films. From the analysis of RBS spectra, we have extracted the films thickness t (t ranges from 83nm to 422nm). We found that the Ni thickness, t (nm), linearly increases with the applied potential. The Ni thin films are polycrystalline and grow with the 〈111〉 texture. The lattice parameter a (Å) monotonously decreases with increasing thickness. However, a positive strain was noted indicating that all the samples are subjected to a tensile stress. The mean grain sizes D (nm) and the strain ɛhkl decrease with increasing thickness. The electrical resistivity ρ (μΩ.cm) increases with t for t less than 328nm. The diffusion at the grain boundaries may be the important factor in the electrical resistivity. From AFM images, we have shown that the Ni surface roughness decreases with increasing thickness. The coercive field HC, the squareness factor S, the saturation field HS and the effective anisotropy constant K1eff are investigated as a function of Ni thickness and grain sizes. The correlation between the magnetic and the structural properties is discussed.
Method for improving the toughness of silicon carbide-based ceramics
Tein, T.Y.; Hilmas, G.E.
1996-12-03
Method of improving the toughness of SiC-based ceramics is disclosed. SiC, , AlN, Al{sub 2}O{sub 3} and optionally {alpha}-Si{sub 3}N{sub 4} are hot pressed to form a material which includes AlN polytypoids within its structure. 1 fig.
NASA Astrophysics Data System (ADS)
Goto, Takeyoshi; Kinugasa, Tomoya
2018-05-01
The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness < 4 nm indicate the formation of structured ice-like hydrogen bond (H-bond) layers for the higher energy shifts or the formation of slightly weaker H-bond layers as compared to those in the bulk liquid state for lower energy shifts. In either case, the H-bond structure of bulk liquid water is nearly lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.
Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz
2018-04-01
Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.
NASA Astrophysics Data System (ADS)
Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.
2017-07-01
The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .
Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan
2016-12-21
Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
Brillouin Light Scattering study of Fe/Pd multilayers
NASA Astrophysics Data System (ADS)
From, Milton; Cheng, Li; Altounian, Zaven
2002-03-01
We have performed a series of Brillouin light scattering (BLS) measurements on sputtered multilayers in order to test a recent calculation[1] that predicts that the majority of spin-wave modes present in a magnetic multilayer will not be seen by BLS due to destructive interference between light scattered by different layers in the structure. We have measured the BLS spectra of a series of Si(100) + Pdx + [Fe/Pdx] x 25 sputtered multilayers. The thickness of the Fe layers was 1.5 nm and the Pd thicknesses examined were x = 0.5nm, 1.0nm, 1.5nm, 2.5nm, and 4.0nm. The BLS instrument used was a 4-pass Fabry-Perot interferometer operated in the back-scattering geometry with 514.5 nm laser light. We obtain good 2-parameter fits of the model calculation to the data for all values of Pd thickness and for applied magnetic fields in the range 0 < H < 0.7 T. [1]J.F. Cochran, Phys Rev B, vol. 64, 134406 (2001)
Evaluation of electrical properties of Cr/CrN nano-multilayers for electronic applications.
Marulanda, D M; Olaya, J J; Patiño, E J
2011-06-01
The electrical properties of Cr/CrN nano-multilayers produced by Unbalanced Magnetron Sputtering have been studied as a function of bilayer period and total thickness. Two groups of multilayers were produced: in the first group the bilayer period varied between 20 nm, 100 nm and 200 nm with total thickness of 1 microm, and in the second group the bilayer period varied between 25 nm, 50 nm and 100 nm and a total thickness of 100 nm. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used in order to investigate the microstructure characteristics of the multilayers, and the Four Point Probe (FPP) method was used to evaluate in-plane and transverse electrical resistivity. XRD results show (111) and (200) orientations for all the CrN coatings and the presence of a multilayer structure was confirmed through SEM studies. Transverse electrical resistivity results show that this property is strongly dependent on the bilayer period.
NASA Astrophysics Data System (ADS)
Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong
2011-10-01
We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.
[Preliminary analysis about influence of porcelain thickness on interfacial crack of PFM].
Zhu, Ziyuan; Zhang, Baowei; Zhang, Xiuyin; Xu, Kan; Fang, Ruhua; Wang, Dongmei
2002-01-01
This study was about the influence of porcelain thickness on crack at interface. The effect of porcelain thickness on the flaw at the interface between porcelain and metal was studied in three groups with porcelain thickness of 0.5 mm, 1.5 mm and 2.5 mm (metal thickness of 0.5 mm) by means of moire interferometre and interfacial fracture mechanics. The parameter Jc was compared among the three groups and the growing of the flaw was observed. Jc and the extreme strength of group with porcelain thickness of 0.5 mm (2.813 N/m and 9.979 N) were lower than those of the groups with porcelain thickness of 1.5 mm and 2.5 mm (5.395 N/m, 19.134 N and 5.429 N/m, 19.256 N). Flaws extend along the interface in the groups with porcelain thickness of 1.5 mm and 0.5 mm. (1) Fracture resistance of the interface in the groups with porcelain thickness of 1.5 mm and 2.5 mm is similar and it decreases in the group with 0.5 mm thick porcelain. (2) When porcelain is 1.5 mm or 0.5 mm thick, flaws will extend along the interface. When porcelain is 2.5 mm thick, flaws will extend into the porcelain layer.
Fahrleitner-Pammer, Astrid; Burr, David; Dobnig, Harald; Stepan, Jan J; Petto, Helmut; Li, Jiliang; Krege, John H; Pavo, Imre
2016-08-01
An increase in procollagen type I amino-terminal propeptide (PINP) early after teriparatide initiation was shown to correlate with increased lumbar spine areal BMD and is a good predictor of the anabolic response to teriparatide. Few data exist correlating PINP and bone microstructure, and no data exist in patients on teriparatide following prior potent antiresorptive treatment. This exploratory analysis aimed to investigate the effects of teriparatide on cancellous bone microstructure and correlations of bone markers with microstructure in alendronate-pretreated patients. This was a post hoc analysis of changes in bone markers and three-dimensional indices of bone microstructure in paired iliac crest biopsies from a prospective teriparatide treatment study in postmenopausal women with osteoporosis who were either treatment-naïve (TN, n=16) or alendronate-pretreated (ALN, n=29) at teriparatide initiation. Teriparatide (20μg/day) was given for 24months; biopsies were taken at baseline and endpoint, and serum concentrations of PINP and type 1 collagen cross-linked C-telopeptide (βCTX) were measured at intervals up to 24months. In the TN and ALN groups, respectively, mean (SD) increases in three-dimensional bone volume/tissue volume were 105 (356)% (P=0.039) and 55 (139)% (P<0.005) and trabecular thickness 30.4 (30)% (P<0.001) and 30.8 (53)% (P<0.001). No significant changes were observed in trabecular number or separation. In the ALN patients, 3-month change of neither PINP nor βCTX correlated with indices of cancellous bone microstructure. However, 12-month changes in biochemical bone markers correlated significantly with improvements in bone volume/tissue volume, r=0.502 (P<0.01) and r=0.378 (P<0.05), trabecular number, r=0.559 (P<0.01) and r=0.515 (P<0.01), and reduction of trabecular separation, r=-0.432 (P<0.05) and r=-0.530 (P<0.01), for PINP and βCTX, respectively. We conclude that cancellous bone microstructure improved with teriparatide therapy irrespective of prior antiresorptive use. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zhendong; Kong, Wenwen; Mi, Kui; Chen, Guilin; Zhang, Peng; Fan, Xiaolong; Gao, Cunxu; Xue, Desheng
2018-03-01
Epitaxial Co2FeAl films with the thickness varying from 26.4 nm to 4.6 nm were grown on MgO(001) substrates by molecular beam epitaxy. Spin rectification was adopted to study the dynamic magnetic properties of the Co2FeAl films, considering the reported advantages of this technique with high thickness-independent sensitivity on samples. At a fixed microwave frequency, the in-plane angular dependent resonance fields and their linewidths exhibit a superposition of a uniaxial and a fourfold anisotropy for all samples. The results reveal an anisotropic damping behavior of the films. Along in-plane different azimuths of the films, frequency-dependent resonance-field linewidths were investigated. The anisotropic effective damping of the films with the thickness varying from 26.4 nm to 4.6 nm was then analyzed, which is contributed from the two-magnon scattering.
Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; ...
2015-02-11
In this study, near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopymore » and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guohong; Liu, Yong; Li, Baojun
2015-06-07
We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takesmore » parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.« less
Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.
Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R
2010-04-16
We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.
Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momblona, C.; Malinkiewicz, O.; Soriano, A.
2014-08-01
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less
Metal/Dielectric Multilayers for High Resolution Imaging
2012-08-07
of a silicon waveguide coated by thin metal film. The proposed PWG structure consists of narrow silicon waveguide clad by gold film without top...where the waveguide thickness is 220nm and the lower oxide cladding is 2μm. The device consists of main waveguide (of waveguide width WSOI=450nm...evaporation, where 3nm thick titanium was used as adhesion layer before 40nm gold deposition took place. Finally, the samples were spun coated with
Structural properties and glass transition in Aln clusters
NASA Astrophysics Data System (ADS)
Sun, D. Y.; Gong, X. G.
1998-02-01
We have studied the structural and dynamical properties of several Aln clusters by the molecular-dynamics method combined with simulated annealing. The well-fitted glue potential is used to describe the interatomic interaction. The obtained atomic structures for n=13, 55, and 147 are in agreement with results from ab initio calculations. Our results have demonstrated that the disordered cluster Al43 can be considered as a glass cluster. The obtained thermal properties of glass cluster Al43 are clearly different from the results for high-symmetry clusters, its melting behavior has properties similar to those of a glass solid. The present studies also show that the surface melting behavior does not exist in the studied Aln clusters.
Theoretical investigation of Lamb wave characteristics in AlN/3C-SiC composite membranes
NASA Astrophysics Data System (ADS)
Lin, Chih-Ming; Chen, Yung-Yu; Pisano, Albert P.
2010-11-01
Cubic silicon carbide (3C-SiC) layer can provide advantages of high frequency and high quality factor for Lamb wave devices due to the superior properties of high acoustic velocity and low acoustic loss. In this study, Lamb wave propagation characteristics in composite membranes consisting of a c-axis oriented aluminum nitride (AlN) film and an epitaxial 3C-SiC (100) layer are investigated by theoretical calculation. The lowest symmetric mode Lamb wave propagating along the [011] direction exhibits a phase velocity higher than 10 000 m/s and an electromechanical coupling coefficient above 2% in the AlN/3C-SiC multilayered membranes.
NASA Astrophysics Data System (ADS)
Ahmad, A. A.; Alsaad, A.; Al-Bataineh, Q. M.; Al-Naafa, M. A.
2018-02-01
In this study, Lithium niobate (LiNbO3) and Aluminum nitride (AlN) nanostructures were designed and investigated using the COMSOL Multiphysics software for pressure sensing applications. The Finite Element Method (FEM) was used for solving the differential equations with various parameters such as size, length, force, etc. The variation of the total maximum displacement as a function of applied force for various NWs lengths and the variation of the voltage as a function of applied force were plotted and discussed. AlN nanowires exhibit a better piezoelectric response than LiNbO3 nanowires do.
Costales, Aurora; Blanco, M A; Francisco, E; Pendas, A Martín; Pandey, Ravindra
2006-03-09
We report the results of a theoretical study of AlnNn (n=7-16) clusters that is based on density functional theory. We will focus on the evolution of structural and electronic properties with the cluster size in the stoichiometric AlN clusters considered. The results reveal that the structural and electronic properties tend to evolve toward their respective bulk limits. The rate of evolution is, however, slow due to the hollow globular shape exhibited by the clusters, which introduces large surface effects that dominate the properties studied. We will also discuss the changes induced upon addition of an extra electron to the respective neutral clusters.
Controlling the optical parameters of self-assembled silver films with wetting layers and annealing
NASA Astrophysics Data System (ADS)
Ciesielski, Arkadiusz; Skowronski, Lukasz; Trzcinski, Marek; Szoplik, Tomasz
2017-11-01
We investigated the influence of presence of Ni and Ge wetting layers as well as annealing on the permittivity of Ag films with thicknesses of 20, 35 and 65 nm. Most of the research on thin silver films deals with very small (<20 nm) or relatively large (≥50 nm) thicknesses. We studied the transition region (around 30 nm) from charge percolation pathways to fully continuous films and compared the values of optical parameters among silver layers with at least one fixed attribute (thickness, wetting and capping material, post-process annealing). Our study, based on atomic force microscopy, ellipsometric and X-ray photoelectron spectroscopy measurements, shows that utilizing a wetting layer is comparable to increasing the thickness of the silver film. Both operations decrease the roughness-to-thickness ratio, thus decreasing the scattering losses and both narrow the Lorentz-shaped interband transition peak. However, while increasing silver thickness increases absorption on the free carriers, the use of wetting layers influences the self-assembled internal structure of silver films in such a way, that the free carrier absorption decreases. Wetting layers also introduce additional contributions from effects like segregation or diffusion, which evolve in time and due to annealing.
NASA Astrophysics Data System (ADS)
Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso
2018-06-01
Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.
Multi-band filter design with less total film thickness for short-wave infrared
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang
2017-08-01
A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition process and black matrix coating, the optical device processes were completed.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin
2017-11-01
A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.
AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.
Sun, Wei; Tan, Chee-Keong; Tansu, Nelson
2017-09-19
The AlN/GaN digital alloy (DA) is a superlattice-like nanostructure formed by stacking ultra-thin ( ≤ 4 monolayers) AlN barriers and GaN wells periodically. Here we performed a comprehensive study on the electronics and optoelectronics properties of the AlN/GaN DA for mid- and deep-ultraviolet (UV) applications. Our numerical analysis indicates significant miniband engineering in the AlN/GaN DA by tuning the thicknesses of AlN barriers and GaN wells, so that the effective energy gap can be engineered from ~3.97 eV to ~5.24 eV. The band structure calculation also shows that the valence subbands of the AlN/GaN DA is properly rearranged leading to the heavy-hole (HH) miniband being the top valence subband, which results in the desired transverse-electric polarized emission. Furthermore, our study reveals that the electron-hole wavefunction overlaps in the AlN/GaN DA structure can be remarkably enhanced up to 97% showing the great potential of improving the internal quantum efficiency for mid- and deep-UV device application. In addition, the optical absorption properties of the AlN/GaN DA are analyzed with wide spectral coverage and spectral tunability in mid- and deep-UV regime. Our findings suggest the potential of implementing the AlN/GaN DA as a promising active region design for high efficiency mid- and deep-UV device applications.
NASA Astrophysics Data System (ADS)
Drüsedau, T. P.; Koppenhagen, K.; Bläsing, J.; John, T.-M.
Molybdenum films sputter-deposited at low pressure show a (110) to (211) texture turnover with increasing film thickness, which is accompanied by a transition from a fiber texture to a mosaic-like texture. The degree of (002) texturing of sputtered aluminum nitride (AlN) films strongly depends on nitrogen pressure in Ar/N2 or in a pure N2 atmosphere. For the understanding of these phenomena, the power density at the substrate during sputter deposition was measured by a calorimetric method and normalized to the flux of deposited atoms. For the deposition of Mo films and various other elemental films, the results of the calorimetric measurements are well described by a model. This model takes into account the contributions of plasma irradiation, the heat of condensation and the kinetic energy of sputtered atoms and reflected Ar neutrals. The latter two were calculated by TRIM.SP Monte Carlo simulations. An empirical rule is established showing that the total energy input during sputter deposition is proportional to the ratio of target atomic mass to sputtering yield. For the special case of a circular planar magnetron the radial dependence of the Mo and Ar fluxes and related momentum components at the substrate were calculated. It is concluded that mainly the lateral inhomogeneous radial momentum component of the Mo atoms is the cause of the in-plane texturing. For AlN films, maximum (002) texturing appears at about 250 eV per atom energy input.
Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom
2015-09-21
Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.
Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang
2017-03-01
Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1-xGaxSe2-ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (-1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.
Selective Epitaxial Graphene Growth on SiC via AlN Capping
NASA Astrophysics Data System (ADS)
Zaman, Farhana; Rubio-Roy, Miguel; Moseley, Michael; Lowder, Jonathan; Doolittle, William; Berger, Claire; Dong, Rui; Meindl, James; de Heer, Walt; Georgia Institute of Technology Team
2011-03-01
Electronic-quality graphene is epitaxially grown by graphitization of carbon-face silicon carbide (SiC) by the sublimation of silicon atoms from selected regions uncapped by aluminum nitride (AlN). AlN (deposited by molecular beam epitaxy) withstands high graphitization temperatures of 1420o C, hence acting as an effective capping layer preventing the growth of graphene under it. The AlN is patterned and etched to open up windows onto the SiC surface for subsequent graphitization. Such selective epitaxial growth leads to the formation of high-quality graphene in desired patterns without the need for etching and lithographic patterning of graphene itself. No detrimental contact of the graphene with external chemicals occurs throughout the fabrication-process. The impact of process-conditions on the mobility of graphene is investigated. Graphene hall-bars were fabricated and characterized by scanning Raman spectroscopy, ellipsometry, and transport measurements. This controlled growth of graphene in selected regions represents a viable approach to fabrication of high-mobility graphene as the channel material for fast-switching field-effect transistors.
Structure and lattice dynamics of the wide band gap semiconductors MgSiN2 and MgGeN2
NASA Astrophysics Data System (ADS)
Râsander, M.; Quirk, J. B.; Wang, T.; Mathew, S.; Davies, R.; Palgrave, R. G.; Moram, M. A.
2017-08-01
We have determined the structural and lattice dynamical properties of the orthorhombic, wide band gap semiconductors MgSiN2 and MgGeN2 using density functional theory. In addition, we present the structural properties and Raman spectra of MgSiN2 powder. The structural properties and lattice dynamics of the orthorhombic systems are compared to those of wurtzite AlN. We find clear differences in the lattice dynamics between MgSiN2, MgGeN2 and AlN, for example, we find that the highest phonon frequency in MgSiN2 is about 100 cm-1 higher than the highest frequency in AlN, and that MgGeN2 is much softer. We also provide the Born effective charge tensors and dielectric tensors of MgSiN2, MgGeN2 and AlN. Phonon related thermodynamic properties, such as the heat capacity and the entropy, have also been evaluated and are found to be in very good agreement with available experimental results.
Tensile strength of aluminium nitride films
NASA Astrophysics Data System (ADS)
Zong, Deng Gang; Ong, Chung Wo; Aravind, Manju; Tsang, Mei Po; Loong Choy, Chung; Lu, Deren; Ma, Dejun
2004-11-01
Two-layered aluminium nitride (AlN)/silicon nitride microbridges were fabricated for microbridge tests to evaluate the elastic modulus, residual stress and tensile strength of the AlN films. The silicon nitride layer was added to increase the robustness of the structure. In a microbridge test, load was applied to the centre of a microbridge and was gradually increased by a nano-indenter equipped with a wedge tip until the sample was broken, while displacement was recorded coherently. Measurements were performed on single-layered silicon nitride microbridges and two-layered AlN/silicon nitride microbridges respectively. The data were fitted to a theory to derive the elastic modulus, residual stress and tensile strength of the silicon nitride films and AlN films. For the AlN films, the three parameters were determined to be 200, 0.06 and 0.3 GPa, respectively. The values of elastic modulus obtained were consistent with those measured by conventional nano-indentation method. The tensile strength value can be used as a reference to reflect the maximum tolerable tensile stress of AlN films when they are used in micro-electromechanical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Ananya, E-mail: ananya@ipr.res.in; Das, Subrat Kumar; Agarwal, Anees Bano Pooja
2016-05-23
In the present study thermal resistance of conduction cooled current lead joint block employing two different interfacial material namely AlN sheet and Kapton Film have been studied in the temperature range 5K-35K. In each case, the performance of different interlayer materials e.g. Indium foil for moderately pressurized contacts (contact pressure <1 MPa), and Apiezon N Grease, GE varnish for low pressurized contact (contact pressure <1 MPa) is studied. The performances of AlN joint with Indium foil and with Apeizon N Grease are studied and it is observed that the contact resistance reduces more with indium foil as compared to greasedmore » contact. The contact resistance measurements of Kapton film with Apiezon N grease and with GE varnish were also carried out in the same temperature range. A comparative study of AlN joint with Indium foil and Kapton with GE varnish as filler material is carried out to demonstrate better candidate material among Kapton and AlN for a particular filler material in the same temperature range.« less
Li, Xingsheng; Racie, Timothy; Hettinger, Julia; Bettencourt, Brian R.; Najafian, Nader; Haslett, Patrick; Fitzgerald, Kevin; Holmes, Ross P.; Erbe, David; Querbes, William; Knight, John
2017-01-01
Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound. PMID:27432743
Quantifying Repetitive Speech in Autism Spectrum Disorders and Language Impairment
van Santen, Jan P. H.; Sproat, Richard W.; Hill, Alison Presmanes
2013-01-01
We report on an automatic technique for quantifying two types of repetitive speech: repetitions of what the child says him/herself (self-repeats) and of what is uttered by an interlocutor (echolalia). We apply this technique to a sample of 111 children between the ages of four and eight: 42 typically developing children (TD), 19 children with specific language impairment (SLI), 25 children with autism spectrum disorders (ASD) plus language impairment (ALI), and 25 children with ASD with normal, non-impaired language (ALN). The results indicate robust differences in echolalia between the TD and ASD groups as a whole (ALN + ALI), and between TD and ALN children. There were no significant differences between ALI and SLI children for echolalia or self-repetitions. The results confirm previous findings that children with ASD repeat the language of others more than other populations of children. On the other hand, self-repetition does not appear to be significantly more frequent in ASD, nor does it matter whether the child’s echolalia occurred within one (immediate) or two turns (near-immediate) of the adult’s original utterance. Furthermore, non-significant differences between ALN and SLI, between TD and SLI, and between ALI and TD are suggestive that echolalia may not be specific to ALN or to ASD in general. One important innovation of this work is an objective fully automatic technique for assessing the amount of repetition in a transcript of a child’s utterances. PMID:23661504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun
2016-06-15
In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less
NASA Astrophysics Data System (ADS)
Kim, Seul-Gi; Hu, Qicheng; Nam, Ki-Bong; Kim, Mun Ja; Yoo, Ji-Beom
2018-04-01
Large-scale graphitic thin film with high thickness uniformity needs to be developed for industrial applications. Graphitic films with thicknesses ranging from 3 to 20 nm have rarely been reported, and achieving the thickness uniformity in that range is a challenging task. In this study, a process for growing 20 nm-thick graphite films on Ni with improved thickness uniformity is demonstrated and compared with the conventional growth process. In the film grown by the process, the surface roughness and coverage were improved and no wrinkles were observed. Observations of the film structure reveal the reasons for the improvements and growth mechanisms.
Wright, N C; Foster, P J; Mudano, A S; Melnick, J A; Lewiecki, M E; Shergy, W J; Curtis, J R; Cutter, G R; Danila, M I; Kilgore, M L; Lewis, E C; Morgan, S L; Redden, D T; Warriner, A H; Saag, K G
2017-08-01
The Effectiveness of Discontinuing Bisphosphonates (EDGE) study is a planned pragmatic clinical trial to guide "drug holiday" clinical decision making. This pilot study assessed work flow and feasibility of such a study. While participant recruitment and treatment adherence were suboptimal, administrative procedures were generally feasible and minimally disrupted clinic flow. The comparative effectiveness of continuing or discontinuing long-term alendronate (ALN) on fractures is unknown. A large pragmatic ALN discontinuation study has potential to answer this question. We conducted a 6-month pilot study of the planned the EDGE study among current long-term ALN users (women aged ≥65 with ≥3 years of ALN use) to determine study work flow and feasibility including evaluating the administrative aspects of trial conduct (e.g., time to contract, institutional review board (IRB) approval), assessing rates of site and participant recruitment, and evaluating post-randomization outcomes, including adherence, bisphosphonate-associated adverse events, and participant and site satisfaction. We assessed outcomes 1 and 6 months after randomization. Nine sites participated, including seven community-based medical practices and two academic medical centers. On average (SD), contract execution took 3.4 (2.3) months and IRB approval took 13.9 (4.1) days. Sites recruited 27 participants (13 to continue ALN and 14 to discontinue ALN). Over follow-up, 22% of participants did not adhere to their randomization assignment: 30.8% in the continuation arm and 14.3% in the discontinuation arm. No fractures or adverse events were reported. Sites reported no issues regarding work flow, and participants were highly satisfied with the study. Administrative procedures of the EDGE study were generally feasible, with minimal disruption to clinic flow. In this convenience sample, participant recruitment was suboptimal across most practice sites. Accounting for low treatment arm adherence, a comprehensive recruitment approach will be needed to effectively achieve the scientific goals of the EDGE study.
The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.
Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C
2014-07-01
Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; p<0.01) and the density of osteocyte lacunae (-20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×10(2) #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Göhringer, Isabella; Muller, Carmem L Storrer; Cunha, Emanuelle Juliana; Passoni, Giuliene Nunes De Souza; Vieira, Juliana Souza; Zielak, João Cesar; Scariot, Rafaela; Deliberador, Tatiana Miranda; Giovanini, Allan Fernando
2017-10-01
Alendronate (ALN) is a nitrogen-bisphosphonate that may induce an anabolic effect on craniofacial bone repair when administrated in low doses. Based on this premise, this study analyzed the influence of prophylactic low doses of ALN on bone healing in defects created in rabbit mandible. A 5 × 2-mm diameter deep defect was created in the calvaria of 28 rabbits. Fourteen of these rabbits received previously 50 μg/kg of 1% sodium ALN for 4 weeks, while the other rabbits received only 0.9% physiological saline solution (control). Animals were euthanized at 15 and 60 days postsurgery (n = 7), and the data were analyzed using histomorphometry and immunohistochemistry using the anti-CD34, bone morphogenetic protein -2 (BMP-2), and transforming growth factor (TGF)-β1 antibodies. On the 15th day postsurgery, the specimens that received previous treatment with ALN demonstrated large vascular lumen and intense positivity to CD34 either concentrated in endothelium or cells spread among the reparative tissue. These results coincided with intense positivity for BMP-2+ cells and TGF-β1 that was concentrated in both cells and perivascular area. In contrast, the control group revealed scarce cells that exhibited CD34, BMP-2+, and the TGF-β1 was restricted for perivascular area on well-formed granulation tissue. These patterns of immunohistochemical result, especially found on the 15th day of analysis, seem to be responsible for the development of larger quantities of bone matrix in the specimens that receive ALN on the 60th day postsurgery. These preliminary results showed that the prophylactic administration of low doses of ALN might be an alternative to craniofacial bone craniofacial bone repair because it increases the immunopositivity for TGF-β1 and consequently improves the CD34+ and BMP-2+ cells on reparative sites.
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Liakhov, Yuriy F.; Tomchuk, Anastasiya V.; Haftel, Michael; Pinchuk, Anatoliy O.
2017-10-01
Effects of plasmonic coupling between metal nanoparticles and thin metal films separated by thin dielectric film-spacers have been studied by means of light extinction in three-layer planar Au NPs monolayer/dielectric (shellac) film/Al film nanostructure. The influence of coupling on the spectral characteristics of the Au NPs SPR extinction peak has been analyzed with spacer thickness, varied from 3 to 200 nm. The main observed features are a strong red shift (160 nm), and non-monotonical behavior of the magnitude and width of Au NPs SPR, as the spacer thickness decreased. The appearance of an intensive gap mode peak was observed at a spacer thickness smaller than approximately 30 nm, caused by the hybridization of the Au NPs SPR mode and gap mode in the presence of the Al film. Additionally, the appreciable enhancement (5.6 times) of light extinction by the Au NPs monolayer in the presence of Al film has been observed. A certain value of dielectric spacer thickness (70 nm) exists at which such enhancement is maximal.
Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira
2012-01-01
The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.
Large-area few-layer hexagonal boron nitride prepared by quadrupole field aided exfoliation
NASA Astrophysics Data System (ADS)
Lun Lu, Han; Zhi Rong, Min; Qiu Zhang, Ming
2018-03-01
A quadrupole electric field-mediated exfoliation method is proposed to convert micron-sized hexagonal boron nitride (h-BN) powder into few-layer hexagonal boron nitride nanosheets (h-BNNS). Under optimum conditions (400 Hz, 40 V, 32 μg ml-1, sodium deoxycholate, TAE medium), the h-BN powders (thickness >200 nm, horizontal scale ˜10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering and atomic force microscope data show that the yield is 47.6% (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers).
NASA Astrophysics Data System (ADS)
Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.
2016-01-01
The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.
You, S; Kang, D K; Jung, Y S; An, Y-S; Jeon, G S; Kim, T H
2015-08-01
To evaluate the diagnostic performance of ultrasound, MRI and fluorine-18 fludeoxyglucose positron emission tomography (¹⁸F-FDG PET)/CT for the diagnosis of metastatic axillary lymph node (ALN) after neoadjuvant chemotherapy (NAC) and to find out histopathological factors affecting the diagnostic performance of these imaging modalities. From January 2012 to November 2014, 191 consecutive patients with breast cancer who underwent NAC before surgery were retrospectively reviewed. We included 139 patients with ALN metastasis that was confirmed on fine needle aspiration or core needle biopsy at initial diagnosis. After NAC, 39 (28%) patients showed negative conversion of ALN on surgical specimens of sentinel lymph node (LN) or ALN. The sensitivity of ultrasound, MRI and PET/CT was 50% (48/96), 72% (70/97) and 22% (16/73), respectively. The specificity of ultrasound, MRI and PET/CT was 77% (30/39), 54% (21/39) and 85% (22/26), respectively. The Az value of combination of ultrasound and PET/CT was the highest (0.634) followed by ultrasound (0.626) and combination of ultrasound, MRI and PET/CT (0.617). The size of tumour deposit in LN and oestrogen receptor was significantly associated with the diagnostic performance of ultrasound (p < 0.001 and p = 0.009, respectively) and MRI (p = 0.045 and p = 0.036, respectively). The percentage diameter decrease, size of tumour deposit in LN, progesterone receptor, HER2 and histological grade were significantly associated with the diagnostic performance of PET/CT (p = 0.023, p = 0.002, p = 0.036, p = 0.044 and p = 0.008, respectively). On multivariate logistic regression analysis, size of tumour deposit within LN was identified as being independently associated with diagnostic performance of ultrasound [odds ratio, 13.07; 95% confidence interval (CI), 2.95-57.96] and PET/CT (odds ratio, 6.47; 95% CI, 1.407-29.737). Combination of three imaging modalities showed the highest sensitivity, and PET/CT showed the highest specificity for the evaluation of ALN metastasis after NAC. Ultrasound alone or combination of ultrasound and PET/CT showed the highest positive-predictive value. The size of tumour deposit within ALN was significantly associated with diagnostic performance of ultrasound and PET/CT. This study is about the diagnostic performance of ultrasound, MRI, PET/CT and combination of each imaging modality for the evaluation of metastatic ALN after NAC. Of many histopathological factors, only the size of tumour deposit within ALN was an independent factor associated with the diagnostic performance of ultrasound and PET/CT.
Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.
2017-09-01
Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.
InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties
NASA Astrophysics Data System (ADS)
Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo
2015-03-01
InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.
Micro and Nano Electromechanical Systems for Near-Zero Power Infrared Detection
NASA Astrophysics Data System (ADS)
Qian, Zhenyun
Light is one of the most important tools for human beings to probe and sense the physical world. Infrared (IR) radiation located in longer wavelengths than those of visible light carries rich information of an environment as it reveals the temperature distribution and chemical composition of objects. In addition, it has been utilized for communication and distance measurement owing to the atmospheric window and insensitiveness of human eyes to the IR radiation. As a result, IR detectors nowadays can be found in a wide variety of applications, including thermal imaging, automotive night vision, standoff chemical detection, remote control and laser ranging, just to mention a few. On the other hand, due to the recent fast development of the Internet of Things (IoT), there is a growing demand for miniaturized and power efficient unattended sensors that can be widely distributed in large volumes to form a wireless sensor networks capable of monitoring the environment with high accuracy and long lifetime. In this context, micro and nano electromechanical systems (MEMS/NEMS) may provide a huge impact, since they can be used for the implementation of miniaturized, low power, high-performance sensors and wireless communication devices fully compatible with standard integrated circuitry. This dissertation presents the design and the experimental verification of high performance uncooled IR detectors based on Aluminum Nitride (AlN) nano electromechanical resonators, and a first-of-its-kind near-zero power IR digitizer based on plasmonically-enhanced micromechanical photoswitches. The unique advantages of the piezoelectric AlN thin film in terms of scaling in thickness and transduction efficiency are exploited by the first experimental demonstration of ultra-fast (thermal time constant, tau ˜ 80 mus) and high resolution (noise equivalent power, NEP ˜ 656 pW/Hz1/2) AlN NEMS resonant IR detectors with reduced pixel size comparable to the state-of-the-art microbolometers. Furthermore, the spectral selectivity of the proposed IR detector technology is investigated and demonstrated by the seamless integration of ultra-thin plasmonic absorbers. The first prototypes show strong absorption (> 92%) in mid-wavelength infrared range with a narrow bandwidth (full width at half maximum, FWHM < 17%), resulting in the demonstration of high resolution (NEP ˜ 130 pW/Hz1/2) narrowband infrared detectors suitable for IR spectroscopy and multispectral imaging system. The second part of the dissertation is focused on the discussion and development of a new class of IR wake-up sensors that can remain dormant, with near-zero power consumption, until awoken by an external signal of interest. The proposed near-zero power IR digitizer combines sensing, signal processing and comparator functionalities into a single passive microelectromechanical system capable of producing a digitized output bit in the presence of the unique infrared spectral signature associated to an event of interest. The prototypes reported in this dissertation are capable of producing a digitized output bit (i.e. a large and sharp OFF-to-ON state transition with ON/OFF conductance ratio > 1012 and subthreshold slope > 9 dec/nW) when exposed to IR radiation in a specific narrow spectral band (˜ 900 nm bandwidth in the mid-IR) with intensity above a power threshold of only ˜ 500 nW, which is not achievable with any existing photoswitch technologies. The two IR sensing elements presented here set a stepping stone towards the development of highly sensitive and persistent IR sensor nodes that required for the future event-driven wireless sensor networks.
Growth of AlGaN alloys under excess group III conditions: Formation of vertical nanorods
NASA Astrophysics Data System (ADS)
Singha, Chirantan; Sen, Sayantani; Pramanik, Pallabi; Palit, Mainak; Das, Alakananda; Roy, Abhra Shankar; Sen, Susanta; Bhattacharyya, Anirban
2018-01-01
Droplet Epitaxy of AlGaN nanostructures was investigated in this work. Growth was carried out by Plasma Assisted Molecular Beam Epitaxy (PA-MBE) under extreme group III rich conditions, where the excess metal remained on the growth surface and formed nanoscale metallic droplets due to the interplay of surface energy, surface diffusion and desorption, all of which are strongly dependent on the relative arrival rates of gallium and aluminum and the substrate temperature. Intermittent exposure of this metallic film to active nitrogen forms various types of nanostructures, whose morphology, composition and luminescence properties were evaluated. Our results indicate that for AlN, the droplet epitaxy process forms random arrays of uniform well oriented [0 0 0 1] nanorods with a height of ∼1 μm and a diameter of 250 nm. For AlGaN grown under excess gallium, and intermittent exposure to the active plasma, structures with diameters of 200 μm to 600 μm and a height of 80 nm were observed. We report the spontaneous formation of lateral concentric heterostructures under these conditions. A single photoluminescence (PL) peak was observed at about 260 nm with a room temperature to 4 K intensity ratio of ∼25%.
Conductive aluminum line formation on aluminum nitride surface by infrared nanosecond laser
NASA Astrophysics Data System (ADS)
Kozioł, Paweł E.; Antończak, Arkadiusz J.; Szymczyk, Patrycja; Stępak, Bogusz; Abramski, Krzysztof M.
2013-12-01
In this paper the fabrication of conductive aluminum paths on AlN ceramic's surface due to the interaction of laser radiation Nd:YAG (1.064 μm) is presented. The metallization process produces an appropriate power value on the ceramics surface to ensure the correct temperature (2200 °C) for which aluminum and nitrogen bonds are broken. Studies have been undertaken on creating low-ohmic structures depending on the parameters such as radiation power, scanning speed, the coverage of subsequent pulses and the environmental impact of the process (air, nitrogen, argon). Furthermore, with regards to the application of this method, it was significant to determine the thickness of the functional layer. A structure of the resistivity of ρ = 0.64 × 10-6 Ω m and aluminum layer thickness of 10 μm was achieved for the process carried out on the inert gas, argon. In addition, a quantitative analysis of nitrogen and aluminum for laser-treated structures was conducted. The performed tests confirmed that the highest amount of aluminum was produced on the surface treated by laser radiation in the environment of the process gas, argon.
Effect of strain on gallium nitride and gallium indium arsenide nitride growth and doping
NASA Astrophysics Data System (ADS)
G. S., Sudhir
GaN and the related (Al,In)N materials are currently used in manufacturing optoelectronic and electronic devices. However, the efficiency of these devices is limited due to lack of high structural quality and of low resistive p-type GaN. The GaN thin films are under strain during growth due to the large lattice mismatch, thermal expansion difference, and low growth temperature. Developing a better understanding of the effect of strain on the properties of thin films is important in furthering our knowledge of thin film growth affecting the performance of III-nitride based devices. Pulsed laser deposition was used to grow thin films of AlN and GaN on sapphire substrates. It is shown that the structure and surface morphology of layers are controlled by the nitrogen partial pressure during the growth. Through these nitrogen pressure related effects, thin films with microstructure ranging from crystalline to amorphous can be produced. A minimal surface root mean square roughness of 0.7 nm for amorphous AlN is obtained which compares well with the substrate roughness of 0.5 nm. Incorporation of impurities changes the lattice constants of thin films of GaN deposited on basal plane sapphire by molecular beam epitaxy. Both Mg (1017 cm-3) and Zn (3 x 10 20 cm-3) doping were found to expand the c lattice parameter by +0.38 x 10-2 and +0.62 x 10 -2, respectively. Oxygen up to concentrations 9 x 10 21 cm-3 is shown to replace nitrogen in GaN thin films reducing the c parameter only by a small amount. Incorporation of Si leads to a large decrease of the c parameter, which can not be attributed to the different size of Ga and Si. It is suggested that doping alters the film stoichiometry by a predicted Fermi level dependence of defect formation energies and thereby, lattice parameters and stress. A proper buffer layer design is shown to increase the incorporation of Mg by two orders of magnitude Finally, the balance of lattice parameter change caused by dopant and native point defects with strain contributed by growth condition leads to high mobility p-type GaN thin films. Incorporation of N in thin films of GaAsN and GaInAsN on GaAs was studied by molecular beam epitaxy. X-ray diffraction results indicated that the amount of N in GaAs increased with the power to plasma source and the slower growth rate, but was not affected by the growth temperature. Photoluminescence (PL) results showed a drastic narrowing of the bandgap with increased N incorporation. High pressure measurements showed the pressure coefficient of the absorption edge of 4 mum thick GaInAsN layer to be unusually small (51 meV/GPa). Also, the temperature-induced shift of the edge is reduced by 50% compared to that of GaAs. Based on the results of the detailed materials characterization, optimized p-GaAs/i-GaInAsN/n-GaAs structures were grown for I mum photo-detectors. The device characteristics of the prototype devices are presented.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
NASA Astrophysics Data System (ADS)
Assis, Anu; Shahul Hameed T., A.; Predeep, P.
2017-06-01
Mobility and current handling capabilities of Organic Field Effect Transistor (OFET) are vitally important parameters in the electrical performance where the material parameters and thickness of different layers play significant role. In this paper, we report the simulation of an OFET using multi physics tool, where the active layer is pentacene and Poly Methyl Methacrylate (PMMA) forms the dielectric. Electrical characterizations of the OFET on varying the thickness of the dielectric layer from 600nm to 400nm are simulated and drain current, transconductance and mobility are analyzed. In the study it is found that even though capacitance increases with reduction in dielectric layer thickness, the transconductance effect is reflected many more times in the mobility which in turn could be attributed to the variations in transverse electric field. The layer thickness below 300nm may result in gate leakage current points to the requirement of optimizing the thickness of different layers for better performance.
Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements
NASA Astrophysics Data System (ADS)
Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Okur, Serdal; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit
2014-02-01
Carrier transport in double heterostructure (DH) InGaN light emitting diodes (LEDs) was investigated using photocurrent measurements performed under CW HeCd laser (325 nm wavelength) excitation. The effect of electron injector thicknesses was investigated by monitoring the excitation density and applied bias dependent escape of photogenerated carriers from the active region and through energy band structure and carrier transport simulations using Silvaco Atlas. For quad (4x) 3-nm DH LED structures incorporating staircase electron injectors (SEIs), photocurrent increased with SEI thickness due to reduced effective barrier opposing carrier escape from the active region as confirmed by simulations. The carrier leakage percentile at -3V bias and 280 Wcm-2 optical excitation density increased from 24 % to 55 % when In 0.04Ga0.96N + In0.08Ga0.92N SEI thickness was increased from 4 nm + 4 nm to 30 nm + 30 nm. The increased leakage with thicker SEI correlates with increased carrier overflow under forward bias.
Calculated defect levels in GaN and AlN and their pressure coefficients
NASA Astrophysics Data System (ADS)
Gorczyca, I.; Svane, A.; Christensen, N. E.
1997-03-01
Using the Green's function technique based on the linear muffin-tin orbital method in the atomic-spheres approximation we perform self-consistent calculations of the electronic structure of native defects and other impurities in cubic GaN and AlN. Vacancies, antisites and interstitials and some of the most common dopants such as Zn, Mg, Cd, C and Ge are investigated in different charge states. To examine the lattice relaxation effects the super-cell approach in connection with the full-potential linear muffin-tin-orbital method is applied to the aluminum vacancy and the nitrogen antisite in AlN. The influence of hydrostatic pressure on the energy positions of some defect states is also studied.
Aslan, Kadir; Malyn, Stuart N.; Zhang, Yongxia; Geddes, Chris D.
2008-01-01
We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected. PMID:19479004
Aslan, Kadir; Malyn, Stuart N; Zhang, Yongxia; Geddes, Chris D
2008-04-15
We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected.
NASA Astrophysics Data System (ADS)
Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim
2017-06-01
This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.
Recoil hysteresis of Sm -Co/Fe exchange-spring bilayers
NASA Astrophysics Data System (ADS)
Kang, K.; Lewis, L. H.; Jiang, J. S.; Bader, S. D.
2005-12-01
The exchange-spring behavior found in Sm-Co (20nm)/Fe epitaxial bilayer films was investigated by analyzing major hysteresis and recoil curves as a function of anneal conditions. The hard layer consists of nanocrystalline intermetallic Sm-Co hexagonal phases (majority phase Sm2Co7 with SmCo3 and SmCo5). Recoil curves, obtained from the successive removal to remanence and reapplication of an increasingly negative field from the major demagnetization curve, reveal the reversible and irreversible components of the magnetization. The Sm-Co thickness was fixed at 20nm while the Fe thicknesses of 10 and 20nm were studied, with ex situ annealing carried out in evacuated, sealed silica tubes at different temperatures. The peak in the recoil curve area is associated with the coercivity of the hard phase. The development of the soft component magnetization is revealed by the departure of the recoil area from zero with application of a reverse field. These two features together confirm that annealing stabilizes the 10nm Fe bilayer sample against local magnetic reversal while it weakens the 20nm bilayer sample. Furthermore, in both its as-deposited and annealed states the Sm -Co/Fe bilayer of 10nm Fe thickness always displays a higher exchange field and smaller recoil loop areas than the bilayer of 20nm Fe thickness, consistent with a stronger exchange response and more reversible magnetization in the former.
NASA Astrophysics Data System (ADS)
Jiang, Quanzhong; Lewins, Christopher J.; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.
2013-08-01
This paper describes the effect of an interfacial biaxial stress field on the dislocation formation dynamics during epitaxial growth of nitrides on Si(110). The anisotropic mismatch stress between a 2-fold symmetry Si(110) atomic plane and the AlN basal plane of 6-fold symmetry may be relaxed through the creation of additional characteristic dislocations, as proposed by Ruiz-Zepeda et al. with Burgers vectors: b= 1/2[bar 2110] and b= [1bar 210], +/-60° from [11bar 20]. The dislocations generated under such a biaxial stress field appear annihilating more efficiently with increasing thickness, leading to high-quality nitride epilayers on Si(110) for improved quantum efficiency of InGaN/GaN quantum wells.
NbTiN Based SIS Multilayer Structures for SRF Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Anne-marie; Eremeev, Grigory; Phillips, H
2013-09-01
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less
Deep ultraviolet light-emitting and laser diodes
NASA Astrophysics Data System (ADS)
Khan, Asif; Asif, Fatima; Muhtadi, Sakib
2016-02-01
Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.
Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings
NASA Astrophysics Data System (ADS)
Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz
2014-01-01
Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.
Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment
2017-05-21
to thicker layers (~40 nm). Author Keywords photoalignment; azodye; reactive mesogen 1. Introduction Photoalignment of liquid crystals by azodye...Polymerizable azodyes[3] as well as passivation of the azodye film by spin-coating with a layer of reactive mesogen[4] are currently proposed solutions...thick alignment film rather than a ~40 nm thick alignment film ; cells with thin alignment layers are stable to exposure to polarized light for at
Sobon, Grzegorz; Duzynska, Anna; Świniarski, Michał; Judek, Jarosław; Sotor, Jarosław; Zdrojek, Mariusz
2017-01-01
In this work, we demonstrate a comprehensive study on the nonlinear parameters of carbon nanotube (CNT) saturable absorbers (SA) as a function of the nanotube film thickness. We have fabricated a set of four saturable absorbers with different CNT thickness, ranging from 50 to 200 nm. The CNTs were fabricated via a vacuum filtration technique and deposited on fiber connector end facets. Each SA was characterized in terms of nonlinear transmittance (i.e. optical modulation depth) and tested in a Thulium-doped fiber laser. We show, that increasing the thickness of the CNT layer significantly increases the modulation depth (up to 17.3% with 200 nm thick layer), which strongly influences the central wavelength of the laser, but moderately affects the pulse duration. It means, that choosing the SA with defined CNT thickness might be an efficient method for wavelength-tuning of the laser, without degrading the pulse duration. In our setup, the best performance in terms of bandwidth and pulse duration (8.5 nm and 501 fs, respectively) were obtained with 100 nm thick CNT layer. This is also, to our knowledge, the first demonstration of a fully polarization-maintaining mode-locked Tm-doped laser based on CNT saturable absorber. PMID:28368014
Lee, Dongki; Lee, Jaewon; Song, Ki-Hee; Rhee, Hanju; Jang, Du-Jeon
2016-01-21
Thin nanofibers (NFs) of J-dominant aggregates with a thickness of 15 nm and thick NFs of H-dominant aggregates with a thickness of 25 nm were fabricated by the self-assembly of poly(3-hexylthiophene)-coated gold nanoparticles. The formation and decay dynamics of the charge carriers, which are dependent on the aggregate types of NFs, was investigated by time-resolved emission and transient-absorption spectroscopy. With increasing excitation energy, the fraction of the fast emission decay component decreased, suggesting that the fast formation of polaron pairs (PP), localized (LP), and delocalized polarons (DP) results from higher singlet exciton states produced by the singlet fusion. The faster decay dynamics of DP and LP in the thick NFs than in thin NFs is due to the increased delocalization of DP and LP. As the interchain aggregation is weaker than intrachain aggregation, PP decays faster in thin NFs than in thick NFs. In both thin and thick NFs, although triplet (T1) excitons were barely observed with excitation at 532 nm on a nanosecond time scale, they were observed with excitation at 355 nm, showing that T1 excitons within NFs are generated mainly through the singlet fission from a higher singlet exciton state rather than through intersystem crossing.
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
GaN-Based Detector Enabling Technology for Next Generation Ultraviolet Planetary Missions
NASA Technical Reports Server (NTRS)
Aslam, S.; Gronoff, G.; Hewagama, T.; Janz, S.; Kotecki, C.
2012-01-01
The ternary alloy AlN-GaN-InN system provides several distinct advantages for the development of UV detectors for future planetary missions. First, (InN), (GaN) and (AlN) have direct bandgaps 0.8, 3.4 and 6.2 eV, respectively, with corresponding wavelength cutoffs of 1550 nm, 365 nm and 200 nm. Since they are miscible with each other, these nitrides form complete series of indium gallium nitride (In(sub l-x)Ga(sub x)N) and aluminum gallium nitride (Al(sub l-x)Ga(sub x)N) alloys thus allowing the development of detectors with a wavelength cut-off anywhere in this range. For the 2S0-365 nm spectral wavelength range AlGaN detectors can be designed to give a 1000x solar radiation rejection at cut-off wavelength of 325 nm, than can be achieved with Si based detectors. For tailored wavelength cut-offs in the 365-4S0 nm range, InGaN based detectors can be fabricated, which still give 20-40x better solar radiation rejection than Si based detectors. This reduced need for blocking filters greatly increases the Detective Quantum efficiency (DQE) and simplifies the instrument's optical systems. Second, the wide direct bandgap reduces the thermally generated dark current to levels allowing many observations to be performed at room temperature. Third, compared to narrow bandgap materials, wide bandgap semiconductors are significantly more radiation tolerant. Finally, with the use of an (AI, In)GaN array, the overall system cost is reduced by eliminating stringent Si CCD cooling systems. Compared to silicon, GaN based detectors have superior QE based on a direct bandgap and longer absorption lengths in the UV.
NASA Astrophysics Data System (ADS)
Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya
2017-06-01
A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.
Thickness dependent optical and electrical properties of CdSe thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Nehra, S. P.
2016-05-06
The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows thatmore » the electrical resistivity is observed to be decreased with thickness.« less
NASA Astrophysics Data System (ADS)
Kim, Jun-Young; Ionescu, Adrian; Mansell, Rhodri; Farrer, Ian; Oehler, Fabrice; Kinane, Christy J.; Cooper, Joshaniel F. K.; Steinke, Nina-Juliane; Langridge, Sean; Stankiewicz, Romuald; Humphreys, Colin J.; Cowburn, Russell P.; Holmes, Stuart N.; Barnes, Crispin H. W.
2017-01-01
Structural and magnetic properties of 1-10 nm thick Fe films deposited on GaN(0001) were investigated. In-situ reflecting high energy electron diffraction images indicated a α-Fe(110)/GaN(0001) growth of the 3D Volmer-Weber type. The α-Fe(110) X-ray diffraction peak showed a 1° full-width at half-maximum, indicating ≈20 nm grain sizes. A significant reduction in Fe atomic moment from its bulk value was observed for films thinner than 4 nm. Both GaN/Fe interface roughness and Fe film coercivity increased with Fe thickness, indicating a possible deterioration of Fe crystalline quality. Magnetic anisotropy was mainly uniaxial for all films while hexagonal anisotropies appeared for thicknesses higher than 3.7 nm.
NASA Astrophysics Data System (ADS)
Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.
2006-10-01
Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.
Large Area Few Layers Hexagonal Boron Nitride Prepared by Quadrupole Field Aided Exfoliation.
Hanlun, Lu; Rong, Min Zhi; Zhang, Ming Qiu
2018-01-16
A quadrupole electric field mediated exfoliation method is proposed to convert micron sized hexagonal boron nitride (hBN) powders into few layers hexagonal boron nitride nano-sheets (h-BNNS). Under the optimum conditions (400 Hz, 40 V, 32μg/mL, sodium deoxycholate, TAE medium), the hBN powders (thickness > 200 nm, horizontal scale ~ 10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering (DLS) and atomic force microscope (AFM) statistics show that the yield is 47.6 % (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers). © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratap, Surender; Sarkar, Niladri, E-mail: niladri@pilani.bits-pilani.ac.in
Self-Consistent Quantum Method using Schrodinger-Poisson equations have been used for determining the Channel electron density of Nano-Scale MOSFETs for 6nm and 9nm thick channels. The 6nm thick MOSFET show the peak of the electron density at the middle where as the 9nm thick MOSFET shows the accumulation of the electrons at the oxide/semiconductor interface. The electron density in the channel is obtained from the diagonal elements of the density matrix; [ρ]=[1/(1+exp(β(H − μ)))] A Tridiagonal Hamiltonian Matrix [H] is constructed for the oxide/channel/oxide 1D structure for the dual gate MOSFET. This structure is discretized and Finite-Difference method is used formore » constructing the matrix equation. The comparison of these results which are obtained by Quantum methods are done with Semi-Classical methods.« less
Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C. B.; Haarindraprasad, R.; Liu, Wei-Wen; Poopalan, P.; Balakrishnan, S. R.; Thivina, V.; Ruslinda, A. R.
2015-01-01
The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5–10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications. PMID:26694656
Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Haarindraprasad, R; Liu, Wei-Wen; Poopalan, P; Balakrishnan, S R; Thivina, V; Ruslinda, A R
2015-01-01
The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lin'an, E-mail: layang@xidian.edu.cn; Li, Yue; Wang, Ying
Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al{sub 0.15}Ga{sub 0.85}N emitter barrier and a 1.7-nm-thick Al{sub 0.25}Ga{sub 0.75}N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A andmore » 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al{sub 0.2}Ga{sub 0.8}N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In{sub 0.03}Ga{sub 0.97}N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.« less
Coatings for FEL optics: preparation and characterization of B4C and Pt
Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz
2018-01-01
Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30–100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B4C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments. PMID:29271760
Coatings for FEL optics: preparation and characterization of B4C and Pt.
Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz
2018-01-01
Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30-100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B 4 C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments.
On compensation in Si-doped AlN
NASA Astrophysics Data System (ADS)
Harris, Joshua S.; Baker, Jonathon N.; Gaddy, Benjamin E.; Bryan, Isaac; Bryan, Zachary; Mirrielees, Kelsey J.; Reddy, Pramod; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.
2018-04-01
Controllable n-type doping over wide ranges of carrier concentrations in AlN, or Al-rich AlGaN, is critical to realizing next-generation applications in high-power electronics and deep UV light sources. Silicon is not a hydrogenic donor in AlN as it is in GaN; despite this, the carrier concentration should be controllable, albeit less efficiently, by increasing the donor concentration during growth. At low doping levels, an increase in the Si content leads to a commensurate increase in free electrons. Problematically, this trend does not persist to higher doping levels. In fact, a further increase in the Si concentration leads to a decrease in free electron concentration; this is commonly referred to as the compensation knee. While the nature of this decrease has been attributed to a variety of compensating defects, the mechanism and identity of the predominant defects associated with the knee have not been conclusively determined. Density functional theory calculations using hybrid exchange-correlation functionals have identified VAl+n SiAl complexes as central to mechanistically understanding compensation in the high Si limit in AlN, while secondary impurities and vacancies tend to dominate compensation in the low Si limit. The formation energies and optical signatures of these defects in AlN are calculated and utilized in a grand canonical charge balance solver to identify carrier concentrations as a function of Si content. The results were found to qualitatively reproduce the experimentally observed compensation knee. Furthermore, these calculations predict a shift in the optical emissions present in the high and low doping limits, which is confirmed with detailed photoluminescence measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eustis, T.J.; Silcox, J.; Murphy, M.J.
The presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N's on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleationmore » layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.« less
NASA Astrophysics Data System (ADS)
Xu, Chang; Gao, Hongmiao; Sugino, Takayuki; Miyao, Masanobu; Sadoh, Taizoh
2018-06-01
High-speed thin-film transistors (TFTs) are required to develop the next generation of electronics, such as three-dimensional large-scale integrated circuits and advanced system-in-displays. For this purpose, high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigate solid-phase crystallization of amorphous-GeSn (a-GeSn) films (Sn concentration: 2% and thickness: 50-200 nm) on insulating substrates, where thin a-Si under-layers (thickness: 0-20 nm) are introduced between a-GeSn films and insulating substrates. The GeSn films are polycrystallized by annealing (450 °C, 20 h) for all samples irrespective of a-GeSn and a-Si thickness conditions, while the Si films remain amorphous. Analysis of crystal structures of GeSn films (thickness: 50 nm) reveals that grain sizes decrease from ˜10 μm to 2-3 μm by the introduction of a-Si under-layers (thickness: 3-20 nm). This phenomenon is attributed to the change in dominant nucleation sites from the interface to the bulk, which significantly decreases grain-boundary scattering of carriers through a decrease in the barrier heights at grain boundaries. Bulk-nucleation further becomes dominant by increasing the GeSn film thickness. As a result, a high carrier mobility of ˜550 cm2/V s is realized for GeSn films (thickness: 100 nm) grown with a-Si under-layers. This mobility is the largest among ever reported data for Ge and GeSn grown on an insulator. This technique will facilitate realization of high-speed TFTs for use in the next generation of electronics.
Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness
NASA Astrophysics Data System (ADS)
Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti
2018-01-01
The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.
Polymer-modified opal nanopores.
Schepelina, Olga; Zharov, Ilya
2006-12-05
The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.
Additional Learning Needs Policy in the Devolved Polities of the UK: A Systems Perspective
ERIC Educational Resources Information Center
Chaney, Paul
2012-01-01
Using a systems approach, this paper explores the impact of devolution on additional learning needs (ALN) policy in compulsory phase education. Focus is placed on ALN/SEN Codes of Practice, the schools curriculum, teacher training, and the work of education inspectorates and tribunals. Analysis reveals that the move to quasi-federalism in the UK…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Virginia R.; Nepal, Neeraj; Johnson, Scooter D.
Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layermore » epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.« less
Berkovich Nanoindentation on AlN Thin Films.
Jian, Sheng-Rui; Chen, Guo-Ju; Lin, Ting-Chun
2010-03-31
Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm-3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young's modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young's modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple "pop-ins" observed in the load-displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load-displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices.
CVD of SiC and AlN using cyclic organometallic precursors
NASA Technical Reports Server (NTRS)
Interrante, L. V.; Larkin, D. J.; Amato, C.
1992-01-01
The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.
Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate
NASA Astrophysics Data System (ADS)
Herrmann, Ashley Ann Elizabeth
In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and the strain is relaxed through hillock/island formation instead. The kinetics-limiting parameters for these relaxation modes are identified and used to simulate their kinetics, and a deformation map is then constructed to delineate the conditions under which each mode would prevail. Such a deformation map would prove useful when one seeks to optimize the thermal stability or other mechanical properties in any ultra-thin film system.
Formation of nickel germanides from Ni layers with thickness below 10 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel
2017-03-01
The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.
2017-01-01
Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.
Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P
2018-01-22
The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.
Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films
NASA Astrophysics Data System (ADS)
Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.
2018-06-01
Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.
High free carrier concentration in p-GaN grown on AlN substrates
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Mita, Seiji; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Tweedie, James; Bryan, Isaac; Bryan, Zachary; Kirste, Ronny; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko
2017-07-01
A high free hole concentration in III-nitrides is important for next generation optoelectronic and high power electronic devices. The free hole concentration exceeding 1018 cm-3 and resistivity as low as 0.7 Ω cm are reported for p-GaN layers grown by metalorganic vapor phase epitaxy on single crystal AlN substrates. Temperature dependent Hall measurements confirmed a much lower activation energy, 60-80 mV, for p-GaN grown on AlN as compared to sapphire substrates; the lowering of the activation energy was due to screening of Coulomb potential by free carriers. It is also shown that a higher doping density (more than 5 × 1019 cm-3) can be achieved in p-GaN/AlN without the onset of self-compensation.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-11-04
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography
NASA Astrophysics Data System (ADS)
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-11-01
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-01-01
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006
Histological comparison of alendronate, calcium hydroxide and formocresol in amputated rat molar.
Cengiz, S Burcak; Batirbaygil, Yildiz; Onur, Mehmet Ali; Atilla, Pergin; Asan, Esin; Altay, Nil; Cehreli, Zafer C
2005-10-01
The purpose of this study was to evaluate the potential of alendronate sodium (ALN), a biphosohonate to stimulate hard tissue formation in pulpotomized (amputated) rat molars. Two commonly used pulpotomy materials, calcium hydroxide (CH) and formocresol (FC) were utilized for comparisons. Histological evaluations were performed by observers blinded to treatment allocation on days 7, 15, 30 and 60, followed by statistical analysis of selected histological criteria. In all evaluation periods, hard tissue deposition was evident along the radicular dentin in ALN and CH groups. In days 30 and 60, the latter two groups showed no differences in inflammatory cell response and hard tissue deposition scores (P > 0.05). ALN appears to be capable of maintaining pulpal vitality, while promoting hard tissue formation, similar to CH.
High efficiency white organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan
2015-06-01
The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.
Magnetization reversal in ferromagnetic wires patterned with antiferromagnetic gratings
NASA Astrophysics Data System (ADS)
Sani, S. R.; Liu, F.; Ross, C. A.
2017-04-01
The magnetic reversal behavior is examined for exchange-biased ferromagnetic/antiferromagnetic nanostructures consisting of an array of 10 nm thick Ni80Fe20 stripes with width 200 nm and periodicity 400 nm, underneath an orthogonal array of 10 nm thick IrMn stripes with width ranging from 200 nm to 500 nm and periodicity from 400 nm to 1 μm. The Ni80Fe20 stripes show a hysteresis loop with one step when the IrMn width and spacing are small. However, upon increasing the IrMn width and spacing, the hysteresis loops showed two steps as the pinned and unpinned sections of the Ni80Fe20 stripes switch at different fields. Micromagnetic modeling reveals the influence of geometry on the reversal behavior.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
Indium oxide based fiber optic SPR sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in
2016-05-06
Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.