Sample records for nm thick pt

  1. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S., E-mail: anil@physics.iisc.ernet.in

    The dependence of perpendicular magnetization and Curie temperature (T{sub c}) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt{sub s}) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T{sub c} was measured using SQUID magnetometer. We have observed a systematic dependence of T{sub c} on the thickness of Pt{sub s}. For 8 nm thickness of Pt{sub s} the Co layer of 0.35 nm showed ferromagnetism with perpendicular anisotropy atmore » room temperature. As the thickness of the Pt{sub s} was decreased to 2 nm, the T{sub c} went down below 250 K. XRD data indicated polycrystalline growth of Pt{sub s} on SiO{sub 2}. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5 nm)/Pt(3 nm)/Co(0.35 nm)/Pt(2 nm) had much higher T{sub c} (above 300 K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T{sub c} and anisotropy by varying the Pt{sub s} thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pt{sub s} layer which hosts the Co layer.« less

  2. Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/NiFe and Mn 80Ir 20/NiFe bilayers

    NASA Astrophysics Data System (ADS)

    Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    2007-03-01

    Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.

  3. Ultrathin Wall (1 nm) and Superlong Pt Nanotubes with Enhanced Oxygen Reduction Reaction Performance.

    PubMed

    Tao, Lu; Yu, Dan; Zhou, Junshuang; Lu, Xiong; Yang, Yunxia; Gao, Faming

    2018-05-01

    The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m 2 g pt -1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    NASA Astrophysics Data System (ADS)

    Lim, S. K.; Jeong, G. H.; Park, I. S.; Na, S. M.; Suh, S. J.

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 °C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  5. Reaction products and oxide thickness formed by Ti out-diffusion and oxidization in poly-Pt/Ti/SiO 2/Si with oxide films deposited

    NASA Astrophysics Data System (ADS)

    Chen, Changhong; Huang, Dexiu; Zhu, Weiguang; Feng, Yi; Wu, Xigang

    2006-08-01

    In the paper, we present experimental results to enhance the understanding of Ti out-diffusion and oxidization in commercial poly-Pt/Ti/SiO 2/Si wafers with perovskite oxide films deposited when heat-treated in flowing oxygen ambient. It indicates that when heat-treated at 550 and 600 °C, PtTi 3+PtTi and PtTi are the reaction products from interfacial interaction, respectively; while heat-treated at 650 °C and above, the products become three layers of titanium oxides instead of the alloys. Confirmed to be rutile TiO 2, the first two layers spaced by 65 nm encapsulate the Pt surface by the first layer with 60 nm thick forming at its surface and by the next layer with 35 nm thick inserting its original layer. In addition, the next layer is formed as a barrier to block up continuous diffusion paths of Ti, and thus results in the last layer of TiO 2- x formed by the residual Ti oxidizing.

  6. Nanoscale morphology and optical property evolution of Pt nanostructures on GaN (0 0 0 1) by the systematic control of annealing temperature and duration with various Pt thickness

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-06-01

    By the controlled fabrication of Pt nanostructures, various surface morphology dependent electronic, catalytic and optical properties can be exploited for a wide range of applications. In this paper, the evolution of Pt nanostructures on GaN (0 0 0 1) by the solid-state dewetting of Pt thin films is investigated. Controlling the annealing temperature, time and film thickness allows us to fabricate distinct size, density and configurations of Pt nanostructures. For 10 nm Pt thickness, tiny voids and Pt hillocks up to 550 °C, extensive void expansion and Pt nanostructure evolution between 600 °C-750 °C and finally Pt nanostructures assisted nanoholes penetration on GaN surface above 800 °C are demonstrated. Furthermore, comparatively elongated Pt nanostructures and NHs are resulted with 20 nm Pt thickness and voids growth and connected Pt nanostructure are formed by annealing duration control. The transformation of Pt films to nanostructures is governed by the surface diffusion, Rayleigh instability, Volmer-Weber growth and energy minimization mechanism whereas NHs penetration is commenced by the decomposition of GaN, Pt-Ga alloying and nitrogen desorption at high temperature. In addition, the optical characteristic of Pt nanostructures on GaN (0 0 0 1) by reflectance, photoluminescence (PL) and Raman spectroscopy demonstrate the surface morphology dependent spectral response.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along 〈001〉 and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe atmore » 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.« less

  8. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    NASA Astrophysics Data System (ADS)

    Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.

    2016-01-01

    The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  9. Size-tunable drug-delivery capsules composed of a magnetic nanoshell.

    PubMed

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.

  10. Size-tunable drug-delivery capsules composed of a magnetic nanoshell

    PubMed Central

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895

  11. Modifying exchange-spring behavior of CoPt/NiFe bilayer by inserting a Pt or Ru spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L.; Lee, C.-M.

    2015-05-07

    We herein explore the possibility of obtaining tunable tilted magnetic anisotropy in ordered-CoPt (5 nm)/NiFe(t{sub NiFe}) bilayers through modifying their exchange spring behavior by inserting Pt and Ru-spacers. The tuning process of tilt angle magnetization of NiFe-layer was systematically investigated by varying the Pt or Ru thickness (t{sub Pt} or t{sub Ru}) from 0 to 8 nm at different thicknesses of NiFe (t{sub NiFe} = 1.5, 4.0, and 6.0 nm). Polar magneto-optic Kerr effect (p-MOKE) studies reveal that the bilayers grown in absence of spacers exhibit almost a rectangular hysteresis loop. With the insertion of Pt-spacer, the loop becomes more and more tilted as t{submore » Pt} increases; whereas, in the case of Ru-spacer, the nature of the loops is not simply changing in one direction. The estimated SQR{sub ⊥} (= θ{sub r}/θ{sub s}) values from the p-MOKE loops are found to monotonically decrease with increasing t{sub Pt} when t{sub Pt} ≦ 4 nm. In contrast, in the case of Ru-spacer, an oscillatory behavior for the SQR{sub ⊥} values is apparent when t{sub Ru} ≦ 4 nm. As a result, an oscillatory tilted angle of NiFe spin configuration was obtained in the case of Ru-spacer; while a decoupling effect was prominent for the Pt-spacer. The results of present study reveal that the insertion of Pt and Ru-spacers as an appropriate means for realizing tunable tilted magnetic anisotropy in the CoPt/NiFe exchange springs.« less

  12. Spin-scattering rates in metallic thin films measured by ferromagnetic resonance damping enhanced by spin-pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, C. T.; Shaw, J. M.; Nembach, H. T.

    2015-06-14

    We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less

  13. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    NASA Astrophysics Data System (ADS)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  14. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue; Luo, Ming; Huang, Hongwen

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  15. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE PAGES

    Wang, Xue; Luo, Ming; Huang, Hongwen; ...

    2016-09-06

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  16. Iridium Interfacial Stack - IrIS

    NASA Technical Reports Server (NTRS)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the SiC chip circuitry.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. Themore » capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.« less

  18. Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol.

    PubMed

    Esteve-Adell, Iván; Bakker, Nadia; Primo, Ana; Hensen, Emiel; García, Hermenegildo

    2016-12-14

    Pt nanoparticles (NPs) strongly grafted on few-layers graphene (G) have been prepared by pyrolysis under inert atmosphere at 900 °C of chitosan films (70-120 nm thickness) containing adsorbed H 2 PtCl 6 . Preferential orientation of exposed Pt facets was assessed by X-ray diffraction of films having high Pt loading where the 111 and 222 diffraction lines were observed and also by SEM imaging comparing elemental Pt mapping with the image of the 111 oriented particles. Characterization techniques allow determination of the Pt content (from 45 ng to 1 μg cm -2 , depending on the preparation conditions), particle size distribution (9 ± 2 nm), and thickness of the films (12-20 nm). Oriented Pt NPs on G exhibit at least 2 orders of magnitude higher catalytic activity for aqueous-phase reforming of ethylene glycol to H 2 and CO 2 compared to analogous samples of randomly oriented Pt NPs supported on preformed graphene. Oriented [Formula: see text]/fl-G undergoes deactivation upon reuse, the most probable cause being Pt particle growth, probably due to the presence of high concentrations of carboxylic acids acting as mobilizing agents during the course of the reaction.

  19. Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures

    NASA Astrophysics Data System (ADS)

    Shang, T.; Yang, H. L.; Zhan, Q. F.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2016-10-01

    We report an investigation of anomalous-Hall resistance (AHR) and spin-Hall magnetoresistance (SMR) in Pt/Ir20Mn80/Y3Fe5O12 (Pt/IrMn/YIG) heterostructures. The AHR of Pt/IrMn/YIG heterostructures with an antiferromagnetic inserted layer is dramatically enhanced as compared to that of the Pt/YIG bilayer. The temperature dependent AHR behavior is nontrivial, while the IrMn thickness dependent AHR displays a peak at an IrMn thickness of 3 nm. The observed SMR in the temperature range of 10-300 K indicates that the spin current generated in the Pt layer can penetrate the IrMn layer (≤3 nm) to interact with the ferromagnetic YIG layer. The lack of conventional anisotropic magnetoresistance (AMR) implies that the insertion of the IrMn layer between Pt and YIG could efficiently suppress the magnetic proximity effect (MPE) on induced Pt moments by YIG.

  20. Ultra-thin L1{sub 0}-FePt for perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Pin; Chow, Gan Moog; Chen, Jing-Sheng, E-mail: msecj@nus.edu.sg

    2014-05-07

    Perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves (PSVs) with ultra-thin L1{sub 0}-FePt alloy free layer possessing high anisotropy and thermal stability have been fabricated and studied. The thickness of the L1{sub 0}-FePt layer was varied between 2 and 4 nm. The PSV became increasingly decoupled with reduced L1{sub 0}-FePt thickness due to the larger difference between the coercivity of the L1{sub 0}-FePt and [Co/Pd]{sub 30} films. The PSV with an ultra-thin L1{sub 0}-FePt free layer of 2 nm displayed a high K{sub u} of 2.21 × 10{sup 7} ergs/cm{sup 3}, high thermal stability of 84 and a largest giant magnetoresistance of 0.54%.

  1. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    PubMed

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  2. Dependence of interfacial Dzyaloshinskii-Moriya interaction and perpendicular magnetic anisotropy on the thickness of the heavy-metal layer

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Hui; Han, Dong-Soo; Jung, Jinyong; Park, Kwonjin; Swagten, Henk J. M.; Kim, June-Seo; You, Chun-Yeol

    2017-10-01

    The interfacial Dzyaloshinskii-Moriya interaction (iDMI) and the interfacial perpendicular magnetic anisotropy (iPMA) between a heavy metal and ferromagnet are investigated by employing Brillouin light scattering. With increasing thickness of the heavy-metal (Pt) layer, the iDMI and iPMA energy densities are rapidly enhanced and they saturate for a Pt thickness of 2.4 nm. Since these two individual magnetic properties show the same Pt thickness dependence, this is evidence that the iDMI and iPMA at the interface between the heavy metal and ferromagnet, the physical origin of these phenomena, are effectively enhanced upon increasing the thickness of the heavy-metal layer.

  3. Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2017-01-01

    To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.

  4. Dimensional scaling of perovskite ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO2/SiO2/Si substrates via chemical solution deposition. It was found that both film types exhibited similar, thickness-independent high-field epsilonr of ˜300 with highly crystalline electrode/dielectric interfaces. The dielectric data suggest that irreversible domain wall motion is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. Tmax was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This was attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. The effective interfacial layers are found to contribute to the measured thickness dependence in d33,f measured by X-ray diffraction. Finally, high field piezoelectric characterization revealed a field-induced rhombohedral to tetragonal phase transition in epitaxial films. While the mechanisms causing thickness dependence are mostly understood, the functional properties of blanket PMN-PT films remain about an order of magnitude lower than what is achieved in constraint-free bulk single crystals. These property reductions are attributed to substrate clamping, and the process of declamping via lateral subdivision was studied in 300-350 nm thick, {001} oriented 70PMN-30PT films on Si substrates. In the clamped state, the films exhibit relative permittivity near 1500 and loss tangents of approximately 0.01. The films showed slim hysteresis loops with remanent polarizations of about 8 muC/cm2 and breakdown fields over 1500 kV/cm. Using optical and electron beam lithography combined with reactive ion etching, the PMN-PT films were systematically patterned down to lateral feature sizes of 200 nm in spatial scale with nearly vertical sidewalls. Upon lateral scaling, which produced partially declamped films, there was an increase in both small and large signal dielectric properties, including a doubling of the relative permittivity in structures with width-to-thickness aspect ratios of 0.7. In addition, declamping resulted in a counterclockwise rotation of the hysteresis loops, increasing the remanent polarization to 13.5 muC/cm2. Rayleigh analysis, Preisach modeling, and the relative permittivity as a function of temperature also indicated changes in the domain wall motion and intrinsic response of the laterally scaled PMN-PT. The longitudinal piezoelectric coefficient, d33,f, was interrogated as a function of position across the patterned structures by finite element modeling, piezoresponse force microscopy, and nanoprobe synchrotron X-ray diffraction. It was found that d33,f increased from the clamped value of 40-50 pm/V to ˜160 pm/V at the free sidewall under 200 kV/cm excitation. The sidewalls partially declamped the piezoelectric response 500-600 nm into the patterned structure, raising the piezoelectric response at the center of features with lateral dimensions less than 1 mum (3:1 width to thickness aspect ratio). The normalized data from all three characterization techniques are in excellent agreement, with quantitative differences providing insight to the field dependence of the piezoelectric coefficient and its declamping behavior.

  5. Large lattice mismatch effects on the epitaxial growth and magnetic properties of FePt films

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Dong, Kaifeng; Yang, Ping; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-01-01

    Heteroepitaxial film growth is crucial for magnetic and electronic devices. In this work, we reported the effects of the large lattice mismatch and film thickness on the epitaxial growth and magnetic properties of FePt films on ZrxTi1-xN (0 0 1) intermediate layer. FePt films with different thickness were deposited on ZrTiN intermediate layers with various doping concentration of TiN in ZrN. The increase in doping concentration of TiN caused a decrease in the lattice parameters of ZrTiN intermediate layer. It was found that (0 0 1) epitaxy of FePt 10 nm films was only achieved on ZrTiN intermediate layer when the TiN composition was ≥25 vol%, while (0 0 1) texture of 5 nm films was achieved on ZrTiN intermediate layer with a minimum of 50 vol% TiN composition. The in-plane lattice constants of FePt and Zr0.70Ti0.30N (25 vol% TiN) were 3.870 Å and 4.476 Å, respectively, which resulted in a lattice mismatch as large as 15.7%. These large lattice mismatch heterostructures adopted 7/6 domain matching epitaxy. The magneto-crystalline anisotropy of FePt films was improved with the increase in lattice mismatch. Intrinsic magnetic properties were extrapolated for FePt (30 nm)/Zr0.70Ti0.30N (30 nm)/TaN (30 nm)/MgO, and the Ms(0 K) and K1(0 K) were 1042 emu/cc and 5.10 × 107 erg/cc, respectively, which is comparable to that of bulk L10 FePt.

  6. Thickness-dependent multiferroic behavior of BiFe0.75Cr0.25O3 films over Pt(111)/Ti/SiO2/Si substrate

    NASA Astrophysics Data System (ADS)

    William, R. V.; Sivaprakash, P.; Marikani, A.; Reddy, V. Raghavendra; Arumugam, S.

    2018-02-01

    We present here the experimental results of BiFe0.75Cr0.25O3 (BFCO) thin film deposited by sol-gel spin coating technique directly on Pt(111)/Ti/SiO2/Si substrate at different thicknesses. The crystal structure of BFCO has been investigated using X-ray diffraction which acts as a double perovskite structure with high crystallinity obtained at 400 °C. Further microscopic studies such as scanning electron microscope (SEM) with EDAX, transmission electron microscope (TEM) were also used in identifying the grain size and particle distribution over Pt (111) substrate. Atomic force microscopy (AFM) on the films at a different thickness (- 80 to - 250 nm) reveals that the surface roughness and other amplitude parameters increases with the increase in thickness signifying an increase of grain size with thickness. Increase in grain size and substrate clamping effect between the BFCO film and the substrate induces change in ferroelectric polarization and dielectric properties in relation to thickness effect. Similarly, decrease in magnetization from 9.241 emu/cm3 (- 80 nm) to 5.7791 emu/cm3 (- 250 nm) is attributed to the formation of anti-sites and anti-phase boundaries in the films. In addition, temperature dependence of magnetization reveals ferromagnetic super-exchange interaction of BFCO which is unlike the spin structure of antiferromagnetic BiFeO3.

  7. Thickness Dependence of the Dzyaloshinskii-Moriya Interaction in Co2 FeAl Ultrathin Films: Effects of Annealing Temperature and Heavy-Metal Material

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S. M.; Stashkevich, A.; Nasui, M.; Gabor, M. S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.-O.; Hindmarch, A. T.; Bouchenoire, L.

    2018-04-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) is investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm ≤tCFA≤2 nm ) grown by sputtering on Si substrates, using Pt, W, Ir, and MgO buffer or/and capping layers. Vibrating sample magnetometry reveals that the magnetization at saturation (Ms ) for the Pt- and Ir-buffered films is higher than the usual Ms of CFA due to the proximity-induced magnetization (PIM) in Ir and Pt estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as a buffer layer rather than a capping layer. Brillouin light scattering in the Damon-Eshbach geometry is used to investigate the thickness dependences of the IDMI constants from the spin-wave nonreciprocity and the perpendicular anisotropy field versus the annealing temperature. The IDMI sign is found to be negative for Pt /CFA and Ir /CFA , while it is positive for W /CFA . The thickness dependence of the effective IDMI constant for stacks involving Pt and W shows the existence of two regimes similar to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches a critical thickness. The surface IDMI and anisotropy constants of each stack are determined for the thickest samples where a linear thickness dependence of the effective IDMI constant and the effective magnetization are observed. The interface anisotropy and IDMI constants investigated for the Pt /CFA /MgO system show different trends with the annealing temperature. The decrease of the IDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent with the interface quality and disorder enhancement.

  8. Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo

    2017-10-01

    We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.

  9. Coatings for FEL optics: preparation and characterization of B4C and Pt

    PubMed Central

    Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz

    2018-01-01

    Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30–100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B4C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments. PMID:29271760

  10. Coatings for FEL optics: preparation and characterization of B4C and Pt.

    PubMed

    Störmer, Michael; Siewert, Frank; Horstmann, Christian; Buchheim, Jana; Gwalt, Grzegorz

    2018-01-01

    Large X-ray mirrors are required for beam transport at both present-day and future free-electron lasers (FELs) and synchrotron sources worldwide. The demand for large mirrors with lengths up to 1 m single layers consisting of light or heavy elements has increased during the last few decades. Accordingly, surface finishing technology is now able to produce large substrate lengths with micro-roughness on the sub-nanometer scale. At the Helmholtz-Zentrum Geesthacht (HZG), a 4.5 m-long sputtering facility enables us to deposit a desired single-layer material some tens of nanometers thick. For the European XFEL project, the shape error should be less than 2 nm over the whole 1 m X-ray mirror length to ensure the safe and efficient delivery of X-ray beams to the scientific instruments. The challenge is to achieve thin-film deposition on silicon substrates, benders and gratings without any change in mirror shape. Thin films of boron carbide and platinum with a thickness in the range 30-100 nm were manufactured using the HZG sputtering facility. This setup is able to cover areas of up to 1500 mm × 120 mm in one step using rectangular sputtering sources. The coatings produced were characterized using various thin-film methods. It was possible to improve the coating process to achieve a very high uniformity of the layer thickness. The movement of the substrate in front of the sputtering source has been optimized. A variation in B 4 C layer thickness below 1 nm (peak-to-valley) was achieved at a mean thickness of 51.8 nm over a deposition length of 1.5 m. In the case of Pt, reflectometry and micro-roughness measurements were performed. The uniformity in layer thickness was about 1 nm (peak-to-valley). The micro-roughness of the Pt layers showed no significant change in the coated state for layer thicknesses of 32 nm and 102 nm compared with the uncoated substrate state. The experimental results achieved will be discussed with regard to current restrictions and future developments.

  11. The Effect of Sliding Speed on Film Thickness and Pressure Supporting Ability of a Point Contact Under Zero Entrainment Velocity Conditions

    NASA Technical Reports Server (NTRS)

    Thompson, Peter M.; Jones, William R., Jr.; Jansen, Mark J.; Prahl, Joseph M.

    2000-01-01

    A unique tribometer is used to study film forming and pressure supporting abilities of point contacts at zero entrainment velocity (ZEV). Film thickness is determined using a capacitance technique, verified through comparisons of experimental results and theoretical elastohydrodynamic lubrication (EHL) predictions for rolling contacts. Experiments are conducted using through hardened AISI 52 100 steel balls, Polyalphaolefin (PAO) 182 and Pentaerythritol Tetraheptanoate (PT) lubricants, and sliding speeds between 2.0 to 12.0 m/s. PAO 182 and PT are found to support pressures up to 1. 1 GPa and 0.67 GPa respectively. Protective lubricant films ranging in thickness between 90 to 2 10 nm for PAO 182 and 220 to 340 nm for PT are formed. Lubricants experience shear stresses between 14 to 22 MPa for PAO 182 and 7 to 16 MPa for PT at shear rates of 10(exp 7)/sec. The lubricant's pressure supporting ability most likely results from the combination of immobile films and its transition to a glassy solid at high pressures.

  12. Crystal shape controlled H2 storage rate in nanoporous carbon composite with ultra-fine Pt nanoparticle

    PubMed Central

    Chen, Tsan-Yao; Zhang, Yanhui; Hsu, Liang-Ching; Hu, Alice; Zhuang, Yu; Fan, Chia-Ming; Wang, Cheng-Yu; Chung, Tsui-Yun; Tsao, Cheng-Si; Chuang, Haw-Yeu

    2017-01-01

    This study demonstrates that the hydrogen storage rate (HSR) of nanoporous carbon supported platinum nanocatalysts (NC) is determined by their heterojunction and geometric configurations. The present NC is synthesized in an average particle size of ~1.5 nm by incipient wetness impregnation of Pt4+ at carbon support followed by annealing in H2 ambient at 102–105 °C. Among the steps in hydrogen storage, decomposition of H2 molecule into 2 H atoms on Pt NC surface is the deciding factor in HSR that is controlled by the thickness of Pt NC. For the best condition, HSR of Pt NC in 1~2 atomic layers thick (4.7 μg/g min) is 2.6 times faster than that (1.3 μg/g min) of Pt NC with higher than 3 atomic layers thick. PMID:28195224

  13. Crystal shape controlled H2 storage rate in nanoporous carbon composite with ultra-fine Pt nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Tsan-Yao; Zhang, Yanhui; Hsu, Liang-Ching; Hu, Alice; Zhuang, Yu; Fan, Chia-Ming; Wang, Cheng-Yu; Chung, Tsui-Yun; Tsao, Cheng-Si; Chuang, Haw-Yeu

    2017-02-01

    This study demonstrates that the hydrogen storage rate (HSR) of nanoporous carbon supported platinum nanocatalysts (NC) is determined by their heterojunction and geometric configurations. The present NC is synthesized in an average particle size of ~1.5 nm by incipient wetness impregnation of Pt4+ at carbon support followed by annealing in H2 ambient at 102-105 °C. Among the steps in hydrogen storage, decomposition of H2 molecule into 2 H atoms on Pt NC surface is the deciding factor in HSR that is controlled by the thickness of Pt NC. For the best condition, HSR of Pt NC in 1~2 atomic layers thick (4.7 μg/g min) is 2.6 times faster than that (1.3 μg/g min) of Pt NC with higher than 3 atomic layers thick.

  14. Magnetization reversal process and evaluation of thermal stability factor in Cu doped granular L10 FePt films

    NASA Astrophysics Data System (ADS)

    Jain, S.; Papusoi, C.; Admana, R.; Yuan, H.; Acharya, R.

    2018-05-01

    Curie temperature TC distributions and magnetization reversal mechanism in Cu doped L10 FePt granular films is investigated as a function of film thickness in the range of ˜5-12 nm with Cu mol. % varying in the range of 0%-6%. It is shown that Cu doping increases the FePt tetragonality and chemical ordering. For Cu doped FePt-X films, coercivity (HC) exhibits a non-monotonic behavior with increasing film thickness, i.e., HC increases initially up to tcr ˜ 7 nm, and decreases thereafter. We attribute this behavior to the change in magnetization reversal mechanism from coherent to an incoherent (domain-wall driven) mode. While in un-doped films, the domain-walls nucleate at the grain boundaries, in doped films the Cu atoms may act as domain-wall nucleation and pinning sites, isolating magnetic spin clusters of reduced dimensionality with respect to the physical grain size. This is experimentally supported by a much poorer dependence of the AC susceptibility (both, real and imaginary components) on the film thickness above 7 nm than in the case of un-doped films. The formation of magnetic spin clusters inside the grains as a consequence of the reduced coupling between Fe-Fe and Fe-Pt-Fe atoms with increasing Cu doping can explain the experimentally evidenced reduction of both, the film Curie temperature, TC, and intrinsic anisotropy energy density, KC, with increasing Cu doping.

  15. Layer-by-layer charging in non-volatile memory devices using embedded sub-2 nm platinum nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu

    In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less

  16. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  17. The role of the non-magnetic material in spin pumping and magnetization dynamics in NiFe and CoFeB multilayer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Calaforra, A., E-mail: ruiz@physik.uni-kl.de; Brächer, T.; Lauer, V.

    2015-04-28

    We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence ofmore » M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.« less

  18. Improvement of perpendicular anisotropy of columnar FePt-ZrO2-C films with FePt insert layer

    NASA Astrophysics Data System (ADS)

    Dong, Kaifeng; Mo, Wenqin; Jin, Fang; Song, Junlei; Cheng, Weimin; Wang, Haiwei

    2018-05-01

    The effects of various thicknesses of FePt insert layer on the microstructure and magnetic properties of FePt-ZrO2-C thin films have been investigated. It is found that with inserting 0.4 nm FePt films between the TiON intermediate layer and FePt-ZrO2-C layer, the perpendicular anisotropy indicated by Hc⊥/Hc//ratio would increase from 4 to 13.1, suggesting the perpendicular anisotropy could be improved a lot with using FePt insert layer. Simultaneously, the FePt grains of FePt-ZrO2-C thin films maintained columnar structure and the grain isolation could also be improved in a certain degree. With further increase of the FePt insert layer thickness, although the perpendicular anisotropy was still larger than that without FePt insert layer, the grain size of the FePt-ZrO2-C films would increase and the isolation would be deteriorated.

  19. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    PubMed Central

    2009-01-01

    The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors. PMID:20596433

  20. L10 FePtCu bit patterned media

    NASA Astrophysics Data System (ADS)

    Brombacher, C.; Grobis, M.; Lee, J.; Fidler, J.; Eriksson, T.; Werner, T.; Hellwig, O.; Albrecht, M.

    2012-01-01

    Chemically ordered 5 nm-thick L10 FePtCu films with strong perpendicular magnetic anisotropy were post-patterned by nanoimprint lithography into a dot array over a 3 mm-wide circumferential band on a 3 inch Si wafer. The dots with a diameter of 30 nm and a center-to-center pitch of 60 nm appear as single domain and reveal an enhanced switching field as compared to the continuous film. We demonstrate successful recording on a single track using shingled writing with a conventional hard disk drive write/read head.

  1. High energy-storage performance of 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} relaxor ferroelectric thin films prepared by RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaolin; Zhang, Le; Hao, Xihong, E-mail: xhhao@imust.cn

    2015-05-15

    Highlights: • High-quality PMN-PT 90/10 RFE thin films were prepared by RF magnetron sputtering. • The maximum discharged density of 31.3 J/cm{sup 3} was obtained in the 750-nm-thick film. • PMN-PT RFE films might be a promising material for energy-storage application. - Abstract: 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} (PMN-PT 90/10) relaxor ferroelectric thin films with different thicknesses were deposited on the LaNiO{sub 3}/Si (100) by the radio-frequency (RF) magnetron sputtering technique. The effects of thickness and deposition temperature on the microstructure, dielectric properties and the energy-storage performance of the thin films were investigated in detail. X-ray diffraction spectra indicated thatmore » the thin films had crystallized into a pure perovskite phase with a (100)-preferred orientation after annealed at 700 °C. Moreover, all the PMN-PT 90/10 thin films showed the uniform and crack-free surface microstructure. As a result, a larger recoverable energy density of 31.3 J/cm{sup 3} was achieved in the 750-nm-thick film under 2640 kV/cm at room temperature. Thus, PMN-PT 90/10 relaxor thin films are the promising candidate for energy-storage capacitor application.« less

  2. Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate- lead titanate thin films

    DOE PAGES

    Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...

    2017-04-11

    Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less

  3. Exploitation of a Self-limiting Process for Reproducible Formation of Ultrathin Ni(1-x)Pt(x) Silicide Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Zhang; B Yang; Y Zhu

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on themore » initial Pt fraction.« less

  4. Spin-orbit-torque driven magnetoimpedance in Pt-layer/magnetic-ribbon heterostructures

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Mohseni, S. Morteza; Jamilpanah, L.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. Majid

    2017-11-01

    When a flow of electrons passes through a paramagnetic layer with strong spin-orbit-coupling such as platinum (Pt), a net spin current is produced via the spin Hall effect (SHE). This spin current can exert a torque on the magnetization of an adjacent ferromagnetic layer which can be probed via magnetization dynamic responses, e.g., spin-torque ferromagnetic resonance. Nevertheless, that effect in the lower frequency magnetization dynamic regime where the skin effect occurs in high permeability ferromagnetic conductors, namely, the magneto-impedance (MI) effect, can be fundamentally important, and has not been studied so far. Here, by utilizing the MI effect in the magnetic-ribbon/Pt heterostructure with high transvers magnetic permeability that allows the ac current effectively confined at the skin depth of ˜100 nm thickness, the effect of spin-orbit-torque (SOT) induced by the SHE probed via the MI measurement is investigated. We observed a systematic MI frequency shift that increases by increasing the applied current amplitude and thickness of the Pt layer (varying from 0 nm to 20 nm). In addition, the role of the Pt layer in the ribbon/Pt heterostructure is evaluated with the ferromagnetic resonance effect representing a standard Gilbert damping increase as a result of the presence of the SHE. Our results unveil the role of SOT in dynamic control of the transverse magnetic permeability probed by impedance spectroscopy as a useful and valuable technique for detection of future SHE devices.

  5. First principles calculation for Gilbert damping constants in ferromagnetic/non-magnetic junctions

    NASA Astrophysics Data System (ADS)

    Hiramatsu, R.; Miura, D.; Sakuma, A.

    2018-05-01

    We evaluated an intrinsic α in ferromagnetic (FM)/non-magnetic (NM) junctions from first principles (FM = Co, Fe, and Ni and NM = Cu, Pd, and Pt) to investigate the effects of the inserted NM layer. α is calculated by liner muffin-tin orbital methods based on the torque-correlation model. We confirmed that Gilbert damping is enhanced and saturated as NM thickness increases, and that the enhancement is greater in NM materials having a stronger spin-orbital interaction. By contrast, the calculated FM thickness dependences of α show that Gilbert damping tends to decrease and be saturated as the FM thickness increases. Under the torque-correlation model, the dependences of α on FM and NM thickness can be explained by considering the electronic structure of the total system, including junction interfaces, which exhibit similar behaviors derived by spin pumping theory.

  6. Ledge-type Co/L1{sub 0}-FePt exchange-coupled composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speliotis, Th.; Giannopoulos, G.; Niarchos, D.

    2016-06-21

    FePt-based exchange-coupled composites consisting of a magnetically hard L1{sub 0}-FePt phase exchange-coupled with a soft ferromagnetic material are promising candidates for future ultra-high density (>1 Tbit/in{sup 2}) perpendicular magnetic recording media, also being of interest for other applications including spin torque oscillators and micro-electro-mechanical systems, among others. In this paper, the effect of the thickness of a soft Co layer (3 < th{sub Co} < 20 nm) on the magnetic behavior of ledge-type fcc(100)-Co/L1{sub 0}(001)-FePt composites deposited on an MgO (100) substrate is systematically studied by combining morpho-structural analyses and angular magnetization measurements. Starting from a film consisting of isolated L1{submore » 0}(001)–FePt islands, the ledge-type structure was obtained by depositing a Co layer that either covered the FePt islands or filled-up the inter-island region, gradually forming a continuous layer with increasing Co thickness. A perpendicular anisotropy was maintained up to th{sub Co} ∼ 9.5 nm and a significant reduction in the coercivity (about 50% for th{sub Co} ∼ 3 nm) with the increase in th{sub Co} was observed, indicating that, by coupling hard FePt and soft Co phases in a ledge-type configuration, the writability can be greatly improved. Recoil loops' measurements confirmed the exchange-coupled behavior, reinforcing a potential interest in these systems for future magnetic recording media.« less

  7. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    NASA Astrophysics Data System (ADS)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  8. Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Majetich, Sara

    2009-03-01

    Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).

  9. Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    NASA Astrophysics Data System (ADS)

    Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.

    2016-07-01

    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.

  10. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  11. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the photothermal vaporization and Coulomb explosion processes of the Pd and Pt nanoparticles are invoked as possible mechanisms for the lumpy nanoparticles formation.

  12. Nano-scaled Pt/Ag/Ni/Au contacts on p-type GaN for low contact resistance and high reflectivity.

    PubMed

    Kwon, Y W; Ju, I C; Kim, S K; Choi, Y S; Kim, M H; Yoo, S H; Kang, D H; Sung, H K; Shin, K; Ko, C G

    2011-07-01

    We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.

  13. Study on the occurrence of spontaneously established perpendicular exchange bias in Co{sub 49}Pt{sub 51}/IrMn bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C. Y.; Lin, K. F.; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw

    2014-05-07

    In this study, perpendicular exchange bias (PEB) effect in the as-grown Co{sub 49}Pt{sub 51}/IrMn bilayers was demonstrated at room temperature using single-layered Co{sub 49}Pt{sub 51} alloy thin film as ferromagnetic (FM) layer. Several unusual features were observed in this system, viz.,: (i) the PEB was spontaneously established without any external magnetic field treatments, (ii) single-shifted loops were obtained rather than double-shifted ones, and (iii) the spontaneous PEB effect was accompanied by a reduction in perpendicular coercivity, H{sub c⊥} from 1024 to 632 Oe. The results of x–ray diffraction revealed the formation of IrMn (111) texture. Training effect studies indicate that themore » PEB effect is stable in this system with less than 5% variation in PEB value within 15 repetitive scans. Significant reduction in the PEB effect was found for the CoPt/IrMn films either grown or subjected to post-annealing under external magnetic field (H{sub ind}). The thickness dependence of PEB effect with respect to the FM and antiferromagnetic layers were also investigated and a largest PEB value of 533 Oe was obtained for the sample grown with 3-nm thick CoPt and 10-nm thick IrMn layers. The results of present study thus establish an opportunity to realize PEB effect in the absence of external field during fabrication.« less

  14. Pt–Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction

    DOE PAGES

    Sun, Xiaojun; Yang, Xuan; Zhang, Yun; ...

    2017-09-08

    We report a facile synthesis of Pt–Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag templateviawet etching.

  15. Pt–Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaojun; Yang, Xuan; Zhang, Yun

    We report a facile synthesis of Pt–Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag templateviawet etching.

  16. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  17. Temperature dependence of spin-orbit torques in Pt/Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Shiwei; Li, Dong; Cui, Baoshan; Xi, Li; Si, Mingsu; Yang, Dezheng; Xue, Desheng

    2018-03-01

    We studied the current-induced spin-orbit torques in a perpendicularly magnetized Pt (1 nm)/Co (0.8 nm)/Pt (5 nm) heterojunction by harmonic Hall voltage measurements. Owing to similar Pt/Co/Pt interfaces, the spin-orbit torques originated from the Rashba effect are reduced, but the contribution from the spin Hall effect is still retained because of asymmetrical Pt thicknesses. When the temperature increases from 50 to 300 K, two orthogonal components of the effective field, induced by spin-orbit torques, reveal opposite temperature dependencies: the field-like term (transverse effective field) decreases from 2.3 to 2.1 (10-6 Oe (A cm-2)-1), whereas the damping-like term (longitudinal effective field) increases from 3.7 to 4.8 (10-6 Oe (A cm-2)-1). It is noticed that the damping-like term, usually smaller than the field-like term in the similar Pt/Co interfaces, is twice as large as the field-like term. As a result, the damping-like spin-orbit torque reaches an efficiency of 0.15 at 300 K. Such a temperature-dependent damping-like term in a Pt/Co/Pt heterojunction can efficiently reduce the switching current density which is 2.30  ×  106 A cm-2 at 300 K, providing an opportunity to further improve and understand spin-orbit torques induced by spin Hall effect.

  18. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  19. Dependence of Magnetic Properties of Co/Pt Multilayers on Deposition Temperature of Pt Buffer Layers

    NASA Astrophysics Data System (ADS)

    Shiomi, Shigeru; Nishimura, Tomotaka; Kobayashi, Tadashi; Masuda, Morio

    1993-04-01

    A 15-nm-thick Pt buffer layer was deposited on a glass slide at temperature Ts(Ptbuf) ranging from 30 to 300°C by e-gun evaporation. Following the cooling in vacuum to ambient temperature, Co and Pt layers have been alternately deposited on it. Very large perpendicular anisotropy and coercivity have been obtained at Ts(Ptbuf) higher than 200°C. The (111) preferred orientation of the Co/Pt multilayer as well as the Pt buffer layer became more pronounced with elevating Ts(Ptbuf), to which the enhancement of perpendicular anisotropy with elevating Ts(Ptbuf) might be ascribable.

  20. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor

    PubMed Central

    Tamaekong, Nittaya; Liewhiran, Chaikarn; Wisitsoraat, Anurat; Phanichphant, Sukon

    2009-01-01

    Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ∼164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature. PMID:22399971

  1. Exchange coupled CoPt/FePtC media for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Piramanayagam, S. N.; Ru, Tan Hui; Saifullah, M. S. M.; Bhatia, C. S.; Yang, Hyunsoo

    2018-04-01

    L10 FePtC granular media are being studied as potential future magnetic recording media and are set to be used in conjunction with heat assisted magnetic recording (HAMR) to enable recording at write fields within the range of current day recording heads. Media structures based on a FePtC storage layer and a capping layer can alleviate the switching field distribution (SFD) requirements of HAMR and reduce the noise originating from the writing process. However, the current designs suffer from SFD issues due to high temperature writing. To overcome this problem, we study a CoPt/FePtC exchange coupled composite structure, where FePtC serves as the storage layer and CoPt (with higher Curie temperature, Tc) as the capping layer. CoPt remains ferromagnetic at near Tc of FePtC. Consequently, the counter exchange energy from CoPt would reduce the noise resulting from the adjacent grain interactions during the writing process. CoPt/FePtC bilayer samples with different thicknesses of CoPt were investigated. Our studies found that CoPt forms a continuous layer at a thickness of 6 nm and leads to considerable reduction in the saturation field and its distribution.

  2. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  3. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  4. Fabrication of Ordered Blue Nanostructure by Anodization of an Aluminum Plate

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Yokota, Yoshihiko; Miyamoto, Iwao; Itatani, Taro

    2007-03-01

    Colors in organisms are created by chemical interactions of molecular pigments and by optical interactions of incident light with biological nanostructures. The latter classes are called structural colors and form an important component of the phenotypes of many animals and even some plants. In this paper, we report on the fabrication of an ordered blue nanostructure by the anodization of an Al plate. In the fabrication of such an ordered nanostructure by the anodization of an Al plate, ordered nanostructures with a pitch and an alumina thickness of approximately 100 nm were produced on the Al plate. The ordered nanostructures on the Al plate showed no colors. However, an ordered nanostructure deposited with a Pt thin film with a thickness of approximately 10 nm showed a blue reflection with a peak reflectivity of approximately 370 nm. We conclude that this blue nanostructure on the Al plate is caused by an interference between the Al surface and the Pt surface.

  5. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.

    PubMed

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

  6. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    NASA Astrophysics Data System (ADS)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  7. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  8. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  9. Experimental study of spin-wave dispersion in Py/Pt film structures in the presence of an interface Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Stashkevich, A. A.; Belmeguenai, M.; Roussigné, Y.; Cherif, S. M.; Kostylev, M.; Gabor, M.; Lacour, D.; Tiusan, C.; Hehn, M.

    2015-06-01

    Brillouin light scattering (BLS), complemented by ferromagnetic resonance (FMR) characterization, has been used for studying spin-wave (SW) propagation in Py (L )/Pt (6 -nm ) bilayers of various Py thicknesses (4 nm ≤L ≤10 nm ) . The FMR measurements allowed determination of the pertinent magnetic parameters and revealed the existence of a normal surface anisotropy. A pronounced asymmetry of Damon-Eshbach (DE) wave frequencies has been evidenced by BLS. Therefore, the difference between Stokes and anti-Stokes DE frequencies has been measured versus SW wave number for all the samples. A detailed discussion about the origin of this frequency difference is reported, which concludes that this is due to interface Dzyaloshinskii-Moriya interaction (IDMI).

  10. Pt thickness dependence of spin Hall effect switching of in-plane magnetized CoFeB free layers studied by differential planar Hall effect

    NASA Astrophysics Data System (ADS)

    Mihajlović, G.; Mosendz, O.; Wan, L.; Smith, N.; Choi, Y.; Wang, Y.; Katine, J. A.

    2016-11-01

    We introduce a differential planar Hall effect method that enables the experimental study of spin orbit torque switching of in-plane magnetized free layers in a simple Hall bar device geometry. Using this method, we study the Pt thickness dependence of switching currents and show that they decrease monotonically down to the minimum experimental thickness of ˜5 nm, while the critical current and power densities are very weakly thickness dependent, exhibiting the minimum values of Jc0 = 1.1 × 108 A/cm2 and ρJc0 2=0.6 ×1012 W/cm 3 at this minimum thickness. Our results suggest that a significant reduction of the critical parameters could be achieved by optimizing the free layer magnetics, which makes this technology a viable candidate for fast, high endurance and low-error rate applications such as cache memories.

  11. Controlling the formation and stability of ultra-thin nickel silicides - An alloying strategy for preventing agglomeration

    NASA Astrophysics Data System (ADS)

    Geenen, F. A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.

    2018-02-01

    The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of tc = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 ° C , thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness tc. The results are discussed in the framework of classical nucleation theory.

  12. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less

  13. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less

  14. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  15. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation timesmore » (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.« less

  16. Absolute second order nonlinear susceptibility of Pt nanowire arrays on MgO faceted substrates with various cross-sectional shapes

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichi; Mizutani, Goro

    2013-08-01

    We have measured optical second harmonic generation (SHG) intensity from three types of Pt nanowires with 7 nm widths of elliptical and boomerang cross-sectional shapes and with 2 nm width elliptical cross-sectional shapes on the MgO faceted templates. From the SHG intensities, we calculated the absolute value of the nonlinear susceptibility χ(2) integrated in the direction of the wire-layer thickness. The tentatively obtained bulk χ(2)B of the wire layer was very large, approaching the value of the well-known nonlinear optical material BaTiO3.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less

  18. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    PubMed

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  19. Synthesis of thick mesoporous gamma-alumina films, loading of Pt nanoparticles, and use of the composite film as a reusable catalyst.

    PubMed

    Dandapat, Anirban; Jana, Debrina; De, Goutam

    2009-04-01

    Nanocrystalline mesoporous gamma-Al2O3 film of high thickness has been developed and characterized. The films were prepared on ordinary glass substrates by a single dip-coating method using boehmite (AlOOH) sols derived from aluminum tri-sec-butoxide in presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent. The dried films were heat-treated at 500 degrees C in air to remove the organics and strengthen the network. The GIXRD of the heat-treated (500 degrees C) film shows a broad peak in the low-angle region supporting the formation of worm-hole-like disordered mesostructures. The high-angle GIXRD, FTIR, and TEM of the films confirm the formation of gamma-Al2O3. N2 adsorption-desorption analyses showed that the heat-treated (500 degrees C) film has a BET surface area of 171 m(2) g(-1) with a pore volume of 0.188 cm(3) g(-1) and mean pore diameter 4.3 nm. Pt nanoparticles (NPs) (approximately 2.7 mol % with respect to the equivalent AlO(1.5)) were generated inside the mesopores of the heat-treated films simply by soaking H2PtCl6 solutions into it, and followed by thermal decomposition at 500 degrees C. The surface area and pore volume of the Pt-incorporated film have been reduced to 101 m(2) g(-1) and 0.119 cm(3) g(-1) respectively, confirming the inclusion of Pt NPs inside the pores. FESEM and TEM studies revealed uniform distribution of Pt NPs (2-8.5 nm; average diameter 4.9 nm) in the films. Catalytic properties of the Pt-incorporated films were investigated in two model (one inorganic and other organic) systems: reduction of hexacyanoferrate(III) ions by thiosulfate to ferrocyanide, and p-nitrophenol to p-aminophenol. In both the cases, the catalyst showed excellent activities, and the reduction reactions followed smoothly, showing isosbestic points in the UV-visible spectra. The catalyst films can be separated easily after the reactions and reused several times.

  20. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  1. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation

    NASA Astrophysics Data System (ADS)

    HuThese Authors Contributed Equally To This Work., Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-02-01

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d

  2. Improved dielectric properties of CaCu3Ti4O12 films with a CaTiO3 interlayer on Pt/TiO2/SiO2/Si substrates prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im

    2015-11-01

    We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.

  3. Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules

    NASA Astrophysics Data System (ADS)

    Jang, Ji-Soo; Kim, Sang-Joon; Choi, Seon-Jin; Kim, Nam-Hoon; Hakim, Meggie; Rothschild, Avner; Kim, Il-Doo

    2015-10-01

    Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer.Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04487a

  4. Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes

    NASA Astrophysics Data System (ADS)

    Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne

    2007-02-01

    Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.

  5. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Takeo, E-mail: t-ohno@wpi-aimr.tohoku.ac.jp; Japan Science and Technology Agency; Samukawa, Seiji, E-mail: samukawa@ifs.tohoku.ac.jp

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  6. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction.

    PubMed

    Cao, Zhenming; Li, Huiqi; Zhan, Chenyang; Zhang, Jiawei; Wang, Wei; Xu, Binbin; Lu, Fa; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun

    2018-03-15

    Single crystalline noble metal nanocages are the most promising candidates for heterogeneous catalysis due to their large specific surface area, well-defined structure and enhanced structural stability. Herein, based on the observation of an unexpected phenomenon that the alloying of Pt and transition metals by co-reduction is more preferential than the formation of pure Pt NCs, we propose a feasible one-pot strategy to synthesize a uniformly epitaxial core-shell Pt-Ni structure with a Ni-rich alloy as the core and a Pt-rich alloy as the shell. The as-prepared Pt-Ni core-shell structures are subsequently etched into monocrystalline Pt-Ni branched nanocages with the wall thickness being 2.8 nm. This unique structure exhibits excellent catalytic performance and stability for the hydrogen evolution reaction (HER) in alkaline solution which is of great significance for the energy-intensive water-alkali and chlor-alkali industry.

  7. Electrical properties of Bi2Mg2/3Nb4/3O7 (BMN) pyrochlore thin films deposited on Pt and Cu metal at low temperatures for embedded capacitor applications

    NASA Astrophysics Data System (ADS)

    Xian, Cheng-Ji; Park, Jong-Hyun; Ahn, Kyung-Chan; Yoon, Soon-Gil; Lee, Jeong-Won; Kim, Woon-Chun; Lim, Sung-Taek; Sohn, Seung-Hyun; Moon, Jin-Seok; Jung, Hyung-Mi; Lee, Seung-Eun; Lee, In-Hyung; Chung, Yul-Kyo; Jeon, Min-Ku; Woo, Seong-Ihl

    2007-01-01

    200-nm-thick BMN films were deposited on Pt /TiO2/SiO2/Si and Cu /Ti/SiO2/Si substrates at various temperatures by pulsed laser deposition. The dielectric constant and capacitance density of the films deposited on Pt and Cu electrodes show similar tendency with increasing deposition temperature. On the other hand, dielectric loss of the films deposited on Cu electrode varies from 0.7% to 1.3%, while dielectric loss of films on Pt constantly shows 0.2% even though the deposition temperature increases. The low value of breakdown strength in BMN films on Pt compared to films deposited on Cu electrode was attributed to the increase of surface roughness by the formation of secondary phases at interface between BMN films and Pt electrodes.

  8. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Lichuan; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Zhang, Dainan

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. Themore » origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.« less

  9. Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Barati, Ehsan; Cinal, Marek

    2015-06-01

    A fully quantum-mechanical calculation of the Gilbert damping constant α in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of α in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.

  10. Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors

    DTIC Science & Technology

    2011-12-01

    synthesis and texture analysis Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter...well textured (i.e. with preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre- treated substrates...and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT sol-gel thin film of thickness 65-85nm [1]. • Oean

  11. Laser induced THz emission from femtosecond photocurrents in Co/ZnO/Pt and Co/Cu/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Li, G.; Mikhaylovskiy, R. V.; Grishunin, K. A.; Costa, J. D.; Rasing, Th; Kimel, A. V.

    2018-04-01

    The ultrashort laser excitation of Co/Pt magnetic heterostructures can effectively generate spin and charge currents at the interfaces between magnetic and nonmagnetic layers. The direction of these photocurrents can be controlled by the helicity of the circularly polarized laser light and an external magnetic field. Here, we employ THz time-domain spectroscopy to investigate further the role of interfaces in these photo-galvanic phenomena. In particular, the effects of either Cu or ZnO interlayers on the photocurrents in Co/X/Pt (X  =  Cu, ZnO) have been studied by varying the thickness of the interlayers up to 5 nm. The results are discussed in terms of spin-diffusion phenomena and interfacial spin-orbit torque.

  12. Effect of deposition temperature on morphological, magnetic and elastic properties of ultrathin Co49Pt51 films

    NASA Astrophysics Data System (ADS)

    Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.

    2018-03-01

    Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.

  13. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, P.; Defence Metallurgical Research Laboratory, Hyderabad 500058; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysismore » on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.« less

  14. Microstructure and magnetic properties of (001) textured L1(0) FePt films on amorphous glass substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speliotis, T; Varvaro, G; Testa, AM

    2015-05-15

    L1(0) FePt thin films with an island-like morphology and magnetic perpendicular anisotropy were grown at low temperature (300 < T-dep< 375 degrees C) by magnetron sputtering on Hoya glass substrates using a 30-nm thick Cr (2 0 0) underlayer. An MgO buffer layer with a thickness of 2 nm was used to inhibit the diffusion from the Cr underlayer and promote the growth of (0 0 1) oriented L1(0) FePt films by inducing an in-plane lattice distortion. By varying the substrate temperature and the Ar sputter pressure (3.5 < P-Ar< 15 mTorr) during the deposition, the degree of chemical order,more » the microstructure and the magnetic properties were tuned and the best properties in term of squareness ratio (M-r/M-s similar to 0.95) and coercive field (H-c similar to 14 kOe) were observed for films deposited at T-dep = 350 degrees C and P-Ar= 5 mTorr, due to the appearance of a tensile strain, which favors the perpendicular anisotropy. The analysis of the angular dependence of remanent magnetization curves on the optimized sample suggests that the magnetization reversal is highly incoherent due to the inter-island interactions. Our results provide useful information on the low temperature growth of FePt films with perpendicular anisotropy onto glass substrates, which are relevant for a variety of technological applications, such as magnetic recording and spintronic devices. (C) 2015 Elsevier B.V. All rights reserved.« less

  15. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature

    NASA Astrophysics Data System (ADS)

    Sun, Dong; Le, Yao; Jiang, Chuanjia; Cheng, Bei

    2018-05-01

    Two-dimensional (2D) ultrathin bismuth tungstate (Bi2WO6) nanosheets (BWO-NS) with a thickness of approximately 4.0 nm were synthesized by a one-step hydrothermal method, and decorated with platinum (Pt) nanoparticles (NPs) via an impregnation/borohydride-reduction approach. The as-prepared ultrathin Pt-BWO-NS exhibited superior catalytic activity for removing gaseous formaldehyde (HCHO) at ambient temperature, in comparison with bulk counterpart with Bi2WO6 sheet thickness of tens of nanometers. The ultrathin structure endowed the Pt-BWO-NS sample with larger specific surface area, which can provide abundant surface active sites for HCHO adsorption and facilitate the homogeneous dispersion of Pt NPs. X-ray photoelectron spectroscopy and hydrogen temperature-programmed reduction analyses revealed the interaction between the Bi2WO6 support and Pt species, which is crucial for activating surface oxygen atoms to participate in the catalytic HCHO oxidation process. By conducting in situ diffuse reflectance infrared Fourier transform spectroscopy under different atmospheres, i.e., gaseous HCHO in nitrogen or oxygen (O2), the reaction mechanism and the role of O2 were elucidated, with dioxymethylene, formate and linearly adsorbed carbon monoxide identified as the main reaction intermediates. This study may provide new enlightenment on fabricating novel 2D nanomaterials for efficient indoor air purification and potentially other environmental applications.

  16. Shape-controlled continuous synthesis of metal nanostructures

    NASA Astrophysics Data System (ADS)

    Sebastian, Victor; Smith, Christopher D.; Jensen, Klavs F.

    2016-03-01

    A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s.A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s. Electronic supplementary information (ESI) available: ESI Fig. S1-S8. See DOI: 10.1039/c5nr08531d

  17. Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Yang, Xuan; Roling, Luke T.; Vara, Madeline; ...

    2016-09-23

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt–Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. Here, after 10 000 cycles of potential cycling in the range of 0.60–1.0 V as in an accelerated durability test, the composition of the nanocagesmore » changed to Pt 56Ag 44, together with a specific activity of 1.23 mA cm –2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm –2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O–O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg –1 Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg –1 Pt).« less

  18. Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuan; Roling, Luke T.; Vara, Madeline

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt–Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. Here, after 10 000 cycles of potential cycling in the range of 0.60–1.0 V as in an accelerated durability test, the composition of the nanocagesmore » changed to Pt 56Ag 44, together with a specific activity of 1.23 mA cm –2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm –2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O–O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg –1 Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg –1 Pt).« less

  19. Gram-Scale Synthesized Pd2Co-Supported PtMonolayers Electrocatalysts for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, W.P.; Sasaki, K.; Su, D.

    2010-04-21

    Gram-scale synthesis of Pt{sub ML} electrocatalysts with a well-defined core-shell structure has been carried out using method involving galvanic displacement of an underpotential deposition Cu layer. The Pt shell thickness can be controlled by stepwise deposition. The Pt{at}Pd{sub 2}Co/C nanoparticles were characterized by X-ray powder diffraction, aberration-corrected scanning transmission electron microscopy, high-resolution energy-loss spectrometry, and in situ X-ray absorption spectroscopy. A complete Pt shell of 0.6 nm on a Pd{sub 2}Co core has been confirmed. The Pt{at}Pd{sub 2}Co/C core-shell electrocatalysts showed a very high activity for the oxygen reduction reaction; the Pt mass and specific activity were 0.72 A mg{supmore » -1}{sub Pt} and 0.5 mA cm{sup -2}, respectively (3.5 and 2.5 times higher than the corresponding values for commercial Pt catalysts), at 0.9 V in 0.1 M HClO{sub 4} at room temperature. In an accelerated potential cycling test, a loss in active surface area and a decrease in catalytic activity for gram-scale-synthesized Pt{sub ML} catalysts were also determined.« less

  20. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  1. Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Billy, E.; Maillard, F.; Morin, A.; Guetaz, L.; Emieux, F.; Thurier, C.; Doppelt, P.; Donet, S.; Mailley, S.

    This study focuses on the elaboration of PEMFC electrodes containing ultra-low platinum (Pt) loadings by direct liquid injection metal organic chemical vapor deposition (DLI-MOCVD). DLI-MOCVD offers a large number of advantages for the elaboration of model PEMFC electrodes. First, by using different metal precursors or elaboration temperature, the size of the Pt nanoparticles and thus the intrinsic catalytic activity can easily be tailored in the nanometer range. In this work, Pt nanoparticles (1-5 nm) with remarkable low degree of agglomeration and uniform distribution were deposited onto the microporous side of a commercial gas-diffusion layer (GDL). Second, reduction of the Pt loading is made possible by varying the Pt deposition time and its influence of the cell performance can be extracted without variation of the thickness of the catalytic layer (in previous studies, a decrease of the catalyst utilization was observed when increasing the Pt loading, i.e. the thickness of the catalytic layer (CL)). The electrocatalytic activity of home-made Pt nanoparticles elaborated by DLI-MOCVD was measured in liquid electrolyte or in complete fuel cell operating on H 2/O 2 or H 2/air and compared vs. that of a commercially available electrode containing 500 μg Pt cm -2 (Pt Ref500). At the cathode, the performance of the electrodes containing 104-226 μg of Pt per cm 2 of electrode compares favorably with that of the Pt Ref500 in H 2/O 2 conditions. In H 2/air conditions, additional mass-transport losses are detected in the low-current density region but the high effectiveness of our electrodes improves the performance in the high-current density region. At the anode, the Pt loading can be reduced to 35 μg Pt cm -2 without any voltage loss in agreement with previous observations.

  2. Synthesis of platinum nanowheels using a bicellar template.

    PubMed

    Song, Yujiang; Dorin, Rachel M; Garcia, Robert M; Jiang, Ying-Bing; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank; Miller, James E; Shelnutt, John A

    2008-09-24

    Disk-like surfactant bicelles provide a unique meso-structured reaction environment for templating the wet-chemical reduction of platinum(II) salt by ascorbic acid to produce platinum nanowheels. The Pt wheels are 496 +/-55 nm in diameter and possess thickened centers and radial dendritic nanosheets (about 2-nm in thickness) culminating in flared dendritic rims. The structural features of the platinum wheels arise from confined growth of platinum within the bilayer that is also limited at edges of the bicelles. The size of CTAB/FC7 bicelles is observed to evolve with the addition of Pt(II) complex and ascorbic acid. Synthetic control is demonstrated by varying the reaction parameters including metal salt concentration, temperature, and total surfactant concentration. This study opens up opportunities for the use of other inhomogeneous soft templates for synthesizing metals, metal alloys, and possibly semiconductors with complex nanostructures.

  3. Formation of the YBa2Cu2NbOy Phase in Thin Films (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    protective layer was deposited on the top of YBCNO film by dc sputtering . A 200 nm 200 nm area film was selected and cut with a Ga ion beam (30 kV...200 TEM at 200 kV. Samples for TEM were prepared using a focused ion beam (FIB (Eindhoven, The Netherlands)) microscope. For TEM examination, a thin Pt...by dc magnetron sputtering deposition of Ag with 93 mm thickness. Transport current measurements were made in liquid nitrogen with the 4-probe method

  4. Nonlocal electrical detection of spin accumulation generated by anomalous Hall effect in mesoscopic N i81F e19 films

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Chen, Shuhan; Cai, Yunjiao; Kandaz, Fatih; Ji, Yi

    2017-10-01

    Spin accumulation generated by the anomalous Hall effect (AHE) in mesoscopic ferromagnetic N i81F e19 (permalloy, Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, the inverse spin Hall effect (ISHE), can also be generated and detected all electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in situ. By exploring Py thicknesses of 4, 8, and 12 nm, the Py spin diffusion length λPy is found to be much shorter than the film thicknesses. The product of λPy and the Py spin Hall angle αSH is determined to be independent of thickness and resistivity: αSHλPy=(0.066 ±0.009 ) nm at 5 K and (0.041 ±0.010 )nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.

  5. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    PubMed

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  6. High sensitivity flat SiO2 fibres for medical dosimetry

    NASA Astrophysics Data System (ADS)

    Abdul Sani, Siti. F.; Alalawi, Amani I.; Azhar, Hairul A. R.; Amouzad Mahdiraji, Ghafour; Tamchek, Nizam; Nisbet, A.; Maah, M. J.; Bradley, D. A.

    2014-11-01

    We describe investigation of a novel undoped flat fibre fabricated for medical radiation dosimetry. Using high energy X-ray beams generated at a potential of 6 MV, comparison has been made of the TL yield of silica flat fibres, TLD-100 chips and Ge-doped silica fibres. The flat fibres provide competitive TL yield to that of TLD-100 chips, being some 100 times that of the Ge-doped fibres. Pt-coated flat fibres have then been used to increase photoelectron production and hence local dose deposition, obtaining significant increase in dose sensitivity over that of undoped flat fibres. Using 250 kVp X-ray beams, the TL yield reveals a progressive linear increase in dose for Pt thicknesses from 20 nm up to 80 nm. The dose enhancement factor (DEF) of (0.0150±0.0003) nm-1 Pt is comparable to that obtained using gold, agreeing at the 1% level with the value expected on the basis of photoelectron generation. Finally, X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface oxidation state of the fibre medium. The charge state of Si2p was found to lie on 103.86 eV of binding energy and the atomic percentage obtained from the XPS analysis is 22.41%.

  7. Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyao; Zheng, Junsheng; Huang, Jun; Dai, Ningning; Li, Ping; Zheng, Jim P.

    2018-07-01

    Polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) functionalized carbon nanotubes (CNTs) supported Pt electrocatalyst was synthesized as a substitute for commonly used Pt/C and Pt/CNTs (modified by harsh acid-oxidation treatment) catalysts. In addition, this catalyst was fabricated as the cathode catalyst layer (CL) with a unique double-layered structure for proton exchange membrane fuel cells (PEMFCs). Thermogravimetric analysis shows an enhanced thermal stability of Pt/PDDA-CNTs. The Pt/PDDA-CNTs catalyst with an average Pt particle size of ∼3.1 nm exhibits the best electrocatalytic activity and a significantly enhanced electrochemical stability. Scanning electron microscope, energy dispersive spectrometer and mercury intrusion porosimetry results demonstrate the gradient distribution of Pt content and pore size along the thickness of buckypaper catalyst layer (BPCL). The accelerated degradation test results of BPCLs indicate that this gradient structure can ensure a high Pt utilization in the BPCLs (up to 90%) and further improve the catalyst durability. In addition, the membrane electrode assembly (MEA) fabricated with cathode BPCL-PDDA shows the best single cell performance and long-term stability, and a reduction of Pt loading can be achieved. The feasibility of BPCL for improving the Pt utilization is also demonstrated by the cathode cyclic voltammetry in MEA.

  8. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  9. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    PubMed

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    NASA Astrophysics Data System (ADS)

    Kisielewski, Jan; Sveklo, Iosif; Kurant, Zbigniew; Bartnik, Andrzej; Jakubowski, Marcin; Dynowska, ElŻbieta; Klinger, Dorota; Sobierajski, Ryszard; Wawro, Andrzej; Maziewski, Andrzej

    2017-05-01

    We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001) substrates. Pt buffers were grown at room temperature (RT) and at 750°C (high temperature, HT). The samples were irradiated with a broad range of light energy densities (up to film ablation) using two different single pulse irradiation sources: (i) 40 fs laser with 800 nm wavelength and (ii) 3 ns laser-plasma source of extreme ultraviolet (EUV) with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT) crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  11. Highly Sensitive and Long Term Stable Electrochemical Microelectrodes for Implantable Glucose Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Qiang, Liangliang

    A miniature wireless implantable electrochemical glucose system for continuous glucose monitoring with good selectivity, sensitivity, linearity and long term stability was developed. First, highly sensitive, long-term stable and reusable planar H2O2 microelectrodes have been fabricated by microlithography. These electrodes composed of a 300 nm Pt black layer situated on a 5 um thick Au layer, provide effective protection to the underlying chromium adhesion layer. Using repeated cyclic voltammetric sweeps in flowing buffer solution, highly sensitive Pt black working electrodes were realized with five-decade linear dynamic range and low detection limit (10 nM) for H2O2 at low oxidation potentials. Second, a highly sensitive, low cost and flexible microwire biosensor was described using 25-mum thick gold wire as working electrode together with 125-mum thick Pt/Ir and Ag wires as counter and reference electrode, embedded within a PDMS-filled polyethylene tube. Surface area and activity of sensor was enhanced by converting gold electrode to nanoporous configuration followed by electrodeposition of platinum black. Glucose oxidase based biosensors by electrodeposition of poly(o-phenylenediamine) and glucose oxidase on the working electrode, displayed a higher glucose sensitivity (1.2 mA mM-1 cm-2) than highest literature reported. In addition it exhibits wide detection range (up to 20 mM) and selectivity (>95%). Third, novel miniaturized and flexible microelectrode arrays with 8 of 25 mum electrodes displayed the much needed 3D diffusion profiles similar to a single 25 mum microelectrode, but with one order increase in current levels. These microelectrode arrays displayed a H2O2 sensitivity of 13 mA mM-1 cm-2, a wide dynamic range of 100 nM to 10 mM, limit of detection of 10 nM. These microwire based edge plane microsensors incorporated flexibility, miniaturization and low operation potential are an promising approach for continuous in vivo metabolic monitoring. Fourth, homemade miniature wireless potentisotat was fabricated based on low power consumption integrated circuits and surface mount parts. The miniature wireless potentisotat with up to two week life-time for continuous glucose sensing has a size less than 9x22x10 mm and weight ˜3.4 grams. Primary in vivo experiment showed homemade system has the exactly same respond and trend as commercial glucose meter.

  12. Nanometer-Thick Yttrium Iron Garnet Film Development and Spintronics-Related Study

    NASA Astrophysics Data System (ADS)

    Chang, Houchen

    In the last decade, there has been a considerable interest in using yttrium iron garnet (Y3Fe5O12, YIG) materials for magnetic insulator-based spintronics studies. This interest derives from the fact that YIG materials have very low intrinsic damping. The development of YIG-based spintronics demands YIG films that have a thickness in the nanometer (nm) range and at the same time exhibit low damping similar to single-crystal YIG bulk materials. This dissertation reports comprehensive experimental studies on nm-thick YIG films by magnetron sputtering techniques. Optimization of sputtering control parameters and post-deposition annealing processes are discussed in detail. The feasibility of low-damping YIG nm-thick film growth via sputtering is demonstrated. A 22.3-nm-thick YIG film, for example, shows a Gilbert damping constant of less than 1.0 x 10-4. The demonstration is of great technological significance because sputtering is a thin film growth technique most widely used in industry. The spin Seebeck effect (SSE) refers to the generation of spin voltage in a ferromagnet (FM) due to a temperature gradient. The spin voltage can produce a pure spin current into a normal metal (NM) that is in contact with the FM. Various theoretical models have been proposed to interpret the SSE, although a complete understanding of the effect has not been realized yet. In this dissertation the study of the role of damping on the SSE in YIG thin films is conducted for the first time. With the thin film development method mentioned in the last paragraph, a series of YIG thin films showing very similar structural and static magnetic properties but rather different Gilbert damping values were prepared. A Pt capping layer was grown on each YIG film to probe the strength of the SSE. The experimental data show that the YIG films with a smaller intrinsic Gilbert damping shows a stronger SSE. The majority of the previous studies on YIG spintronics utilized YIG films that were grown on single-crystal Gd3Ga5O 12 (GGG) substrates first and then capped with either a thin NM layer or a thin topological insulator (TI) layer. The use of the GGG substrates is crucial in terms of realizing high-quality YIG films, because GGG not only has a crystalline structure almost perfectly matching that of YIG but is also extremely stable at high temperature in oxygen that is the condition needed for YIG crystallization. The feasibility of growing high-quality YIG thin films on Pt thin films is explored in this dissertation. This work is of great significance because it enables the fabrication of sandwich-like NM/YIG/NM or NM/YIG/TI structures. Such tri-layered structures will facilitate various interesting fundamental studies as well as device developments. The demonstration of a magnon-mediated electric current drag phenomenon is presented as an example for such tri-layered structures.

  13. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.

    PubMed

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-22

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  14. Spin-hall-active platinum thin films grown via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Schlitz, Richard; Amusan, Akinwumi Abimbola; Lammel, Michaela; Schlicht, Stefanie; Tynell, Tommi; Bachmann, Julien; Woltersdorf, Georg; Nielsch, Kornelius; Goennenwein, Sebastian T. B.; Thomas, Andy

    2018-06-01

    We study the magnetoresistance of yttrium iron garnet/Pt heterostructures in which the Pt layer was grown via atomic layer deposition (ALD). Magnetotransport experiments in three orthogonal rotation planes reveal the hallmark features of spin Hall magnetoresistance. To estimate the spin transport parameters, we compare the magnitude of the magnetoresistance in samples with different Pt thicknesses. We check the spin Hall angle and the spin diffusion length of the ALD Pt layers against the values reported for high-quality sputter-deposited Pt films. The spin diffusion length of 1.5 nm agrees well with that of platinum thin films reported in the literature, whereas the spin Hall magnetoresistance Δ ρ / ρ = 2.2 × 10 - 5 is approximately a factor of 20 smaller compared to that of our sputter-deposited films. Our results demonstrate that ALD allows fabricating spin-Hall-active Pt films of suitable quality for use in spin transport structures. This work provides the basis to establish conformal ALD coatings for arbitrary surface geometries with spin-Hall-active metals and could lead to 3D spintronic devices in the future.

  15. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    NASA Astrophysics Data System (ADS)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  16. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    PubMed Central

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-01-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g−1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction. PMID:27328834

  17. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-03-01

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.

  18. Large anomalous Hall effect in Pt interfaced with perpendicular anisotropy ferrimagnetic insulator

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Garay, Javier; Shi, Jing; Shines Team

    We demonstrate the strain induced perpendicular magnetic anisotropy (PMA) in a ferrimagnetic insulator (FMI), Tm3Fe5O12 (TIG) and the first observation of large anomalous Hall effect (AHE) in TIG/Pt bilayers. Atomically flat TIG films were deposited by a laser molecular beam epitaxy system on (111)-orientated substituted gadolinium gallium garnet substrates. The strength of PMA could be effectively tuned by controlling the oxygen pressure during deposition. Sharp squared anomalous Hall hysteresis loops were observed in bilayers of TIG/Pt over a range of thicknesses of Pt, with the maximum AHE conductivity reaching 1 S/cm at room temperature. The AHE vanishes when a 5 nm Cu layer was inserted between Pt and TIG, strongly indicating the proximity-induced ferromagnetism in Pt. The large AHE in the bilayer structures demonstrates a potential use of PMA-FMI related heterostructures in spintronics. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  19. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Wu, Dongping, E-mail: dongpingwu@fudan.edu.cn; Kubart, Tomas

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phasemore » formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.« less

  20. Alumina-supported sub-nanometer Pt 10 clusters: Amorphization and role of the support material in a highly active CO oxidation catalyst

    DOE PAGES

    Yin, Chunrong; Negreiros, Fabio R.; Barcaro, Giovanni; ...

    2017-02-03

    Catalytic CO oxidation is unveiled on size-selected Pt 10 clusters deposited on two very different ultrathin (≈0.5–0.7 nm thick) alumina films: (i) a highly ordered alumina obtained under ultra-high vacuum (UHV) by oxidation of the NiAl(110) surface and (ii) amorphous alumina obtained by atomic layer deposition (ALD) on a silicon chip that is a close model of real-world supports. Notably, when exposed to realistic reaction conditions, the Pt 10/UHV-alumina system undergoes a morphological transition in both the clusters and the substrate, and becomes closely akin to Pt 10/ALD-alumina, thus reconciling UHV-type surface-science and real-world experiments. The Pt 10 clusters, thoroughlymore » characterized via combined experimental techniques and theoretical analysis, exhibit among the highest CO oxidation activity per Pt atom reported for CO oxidation catalysts, due to the interplay of ultra-small size and support effects. Lastly, a coherent interdisciplinary picture then emerges for this catalytic system.« less

  1. Unexpected structural and magnetic depth dependence of YIG thin films

    NASA Astrophysics Data System (ADS)

    Cooper, J. F. K.; Kinane, C. J.; Langridge, S.; Ali, M.; Hickey, B. J.; Niizeki, T.; Uchida, K.; Saitoh, E.; Ambaye, H.; Glavic, A.

    2017-09-01

    We report measurements on yttrium iron garnet (YIG) thin films grown on both gadolinium gallium garnet (GGG) and yttrium aluminum garnet (YAG) substrates, with and without thin Pt top layers. We provide three principal results: the observation of an interfacial region at the Pt/YIG interface, we place a limit on the induced magnetism of the Pt layer, and confirm the existence of an interfacial layer at the GGG/YIG interface. Polarized neutron reflectometry (PNR) was used to give depth dependence of both the structure and magnetism of these structures. We find that a thin film of YIG on GGG is best described by three distinct layers: an interfacial layer near the GGG, around 5 nm thick and nonmagnetic, a magnetic "bulk" phase, and a nonmagnetic and compositionally distinct thin layer near the surface. We theorize that the bottom layer, which is independent of the film thickness, is caused by Gd diffusion. The top layer is likely to be extremely important in inverse spin Hall effect measurements, and is most likely Y2O3 or very similar. Magnetic sensitivity in the PNR to any induced moment in the Pt is increased by the existence of the Y2O3 layer; any moment is found to be less than 0.02 μB/atom .

  2. Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE

    NASA Astrophysics Data System (ADS)

    Meyers, Cedric J. G.; Freeze, Christopher R.; Stemmer, Susanne; York, Robert A.

    2017-12-01

    Voltage-tunable, interdigital capacitors (IDCs) were fabricated on Ba0.29Sr0.71TiO3 grown by hybrid molecular beam epitaxy (MBE). In this growth technique, we utilize the metal-organic precursor titanium tetraisopropoxide rather than solid-source Ti as with conventional MBE. Two samples of varying BaxSr(1-x)TiO3 (BST) thicknesses were fabricated and analyzed. High-quality, epitaxial Pt electrodes were deposited by sputtering from a high-purity Pt target at 825 °C. The Pt electrodes were patterned and etched by argon ion milling, passivated with reactively sputtered SiO2, and then metallized with lift-off Ti/Au. The fabricated devices consisted of two-port IDCs embedded in ground-signal-ground, coplanar waveguide (CPW) transmission lines to enable radio-frequency (RF) probing. The sample included open and thru de-embedding structures to remove pad and CPW parasitic impedances. Two-port RF scattering (S) parameters were measured from 100 MHz to 40 GHz while DC bias was stepped from 0 V to 100 V. The IDCs exhibit a high zero-bias radio-frequency (RF) quality factor (Q) approaching 200 at 1 GHz and better than 2.3:1 capacitance tuning for the 300-nm-thick sample. Differences in the Q(V) and C(V) response with varying thicknesses indicate that unknown higher order material phenomena are contributing to the loss and tuning characteristics of the material.

  3. Metal diffusion barriers for GaAs solar cells.

    PubMed

    van Leest, R H; Mulder, P; Bauhuis, G J; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J

    2017-03-15

    In this study accelerated ageing testing (AAT), J-V characterization and TEM imaging in combination with phase diagram data from literature are used to assess the potential of Ti, Ni, Pd and Pt as diffusion barriers for Au/Cu-based metallization of III-V solar cells. Ni barriers show the largest potential as at an AAT temperature of 250 °C both cells with 10 and 100 nm thick Ni barriers show significantly better performance compared to Au/Cu cells, with the cells with 10 nm Ni barriers even showing virtually no degradation after 7.5 days at 250 °C (equivalent to 10 years at 100 °C at an E a of 0.70 eV). Detailed investigation shows that Ni does not act as a barrier in the classical sense, i.e. preventing diffusion of Cu and Au across the barrier. Instead Ni modifies or slows down the interactions taking place during device degradation and thus effectively acts as an 'interaction' barrier. Different interactions occur at temperatures below and above 250 °C and for thin (10 nm) and thick (100 nm) barriers. The results of this study indicate that 10-100 nm thick Ni intermediate layers in the Cu/Au based metallization of III-V solar cells may be beneficial to improve the device stability upon exposure to elevated temperatures.

  4. Temperature dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/ferromagnetic bilayers

    NASA Astrophysics Data System (ADS)

    Yamato, T.; Kume, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    Temperature dependence of the exchange anisotropy was investigated for (0 0 1)-oriented top-type Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and bottom-type Ni 80Fe 20 (3 nm)/Mn 89Pt 11 (30 nm) and Co 90Fe 10 (3 nm)/Mn 89Pt 11 (30 nm) bilayers. The top-type MnPt/NiFe bilayers exhibited both 1 and 4-fold anisotropies in their in-plane torque curves at 80 K. For tAF=3 nm, rapid decrease of 1-fold component and gradual decrease of 4-fold component were observed with increasing temperature. While for tAF=30 nm, the 1 and 4-fold anisotropies decreased similarly with temperature. In the bottom-type bilayers, by using CoFe ferromagnetic layer, the 4-fold anisotropy was found to become twice as that of the NiFe/MnPt bilayer.

  5. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead tomore » spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.« less

  6. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasingmore » AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.« less

  7. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J.; Roul, Basanta

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolutionmore » X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.« less

  8. In situ fabricated platinum—poly(vinyl alcohol) nanocomposite thin film: a highly reusable ‘dip catalyst’ for hydrogenation

    NASA Astrophysics Data System (ADS)

    Divya Madhuri, U.; Kesava Rao, V.; Hariprasad, E.; Radhakrishnan, T. P.

    2016-04-01

    A simple protocol for the in situ generation of platinum nanoparticles in a poly(vinyl alcohol) (PVA) thin film is developed. Chloroplatinic acid as well as potassium platinum(II) chloride are used as precursors and the film is fabricated by spin coating followed by mild thermal annealing. The chemical process occurring inside the film, wherein the polymer itself acts as the reducing agent, is explored through different spectroscopy and microscopy techniques. The Pt-PVA film, <100 nm thick and containing ˜1 nm size Pt nanoparticles, is shown to be a highly efficient catalyst for the reduction of methylene blue using sodium borohydride. The ease of retrieval and reuse of the thin film is highlighted by the term ‘dip catalyst’. The reaction yield, kinetics and rate are reproducible through several reuses of the same catalyst film. Turnover number (TON = number of mols of product/number of mols of catalyst) and turnover frequency (TOF = TON/reaction time) are significantly higher than those reported earlier for this reaction using metal nanocatalysts. Utility of Pt-PVA film as an efficient catalyst for other hydrogenation reactions is demonstrated.

  9. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices

    NASA Astrophysics Data System (ADS)

    Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung

    2018-06-01

    Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.

  10. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding

    PubMed Central

    Jiang, Xiue; Weise, Stefan; Hafner, Margit; Röcker, Carlheinz; Zhang, Feng; Parak, Wolfgang J.; Nienhaus, G. Ulrich

    2010-01-01

    Nanoparticles are finding a rapidly expanding range of applications in research and technology, finally entering our daily life in medical, cosmetic or food products. Their ability to invade all regions of an organism including cells and cellular organelles offers new strategies for medical diagnosis and therapy (nanomedicine), but their safe use requires a deep knowledge about their interactions with biological systems at the molecular level. Upon incorporation, nanoparticles are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a ‘protein corona’. These nanoparticle–protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here we have quantitatively analysed the adsorption of human transferrin onto small (radius approx. 5 nm) polymer-coated FePt nanoparticles by using fluorescence correlation spectroscopy. Transferrin binds to the negatively charged nanoparticles with an affinity of approximately 26 µM in a cooperative fashion and forms a monolayer with a thickness of 7 nm. By using confocal fluorescence microscopy, we have observed that the uptake of FePt nanoparticles by HeLa cells is suppressed by the protein corona compared with the bare nanoparticles. PMID:19776149

  11. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell.

    PubMed

    Du, Yue; Feng, Yujie; Qu, Youpeng; Liu, Jia; Ren, Nanqi; Liu, Hong

    2014-07-01

    The photoelectrochemical cell (PEC) is a promising tool for the degradation of organic pollutants and simultaneous electricity recovery, however, current cathode catalysts suffer from high costs and short service lives. Herein, we present a novel biocathode coupled PEC (Bio-PEC) integrating the advantages of photocatalytic anode and biocathode. Electrochemical anodized TiO2 nanotube arrays fabricated on Ti substrate were used as Bio-PEC anodes. Field-emission scanning electron microscope images revealed that the well-aligned TiO2 nanotubes had inner diameters of 60-100 nm and wall-thicknesses of about 5 nm. Linear sweep voltammetry presented the pronounced photocurrent output (325 μA/cm(2)) under xenon illumination, compared with that under dark conditions. Comparing studies were carried out between the Bio-PEC and PECs with Pt/C cathodes. The results showed that the performance of Pt/C cathodes was closely related with the structure and Pt/C loading amounts of cathodes, while the Bio-PEC achieved similar methyl orange (MO) decoloration rate (0.0120 min(-1)) and maximum power density (211.32 mW/m(2)) to the brush cathode PEC with 50 mg Pt/C loading (Brush-PEC, 50 mg). The fill factors of Bio-PEC and Brush-PEC (50 mg) were 39.87% and 43.06%, respectively. The charge transfer resistance of biocathode was 13.10 Ω, larger than the brush cathode with 50 mg Pt/C (10.68 Ω), but smaller than the brush cathode with 35 mg Pt/C (18.35 Ω), indicating the comparable catalytic activity with Pt/C catalyst. The biocathode was more dependent on the nutrient diffusion, such as nitrogen and inorganic carbon, thus resulting in relatively higher diffusion resistance compared to the brush cathode with 50 mg Pt/C loading that yielded similar MO removal and power output. Considering the performance and cost of PEC system, the biocathode was a promising alternative for the Pt/C catalyst.

  12. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  13. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  14. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suess, D.; Abert, C.; Bruckner, F.

    2015-04-28

    The switching probability of magnetic elements for heat-assisted recording with pulsed laser heating was investigated. It was found that FePt elements with a diameter of 5 nm and a height of 10 nm show, at a field of 0.5 T, thermally written-in errors of 12%, which is significantly too large for bit-patterned magnetic recording. Thermally written-in errors can be decreased if larger-head fields are applied. However, larger fields lead to an increase in the fundamental thermal jitter. This leads to a dilemma between thermally written-in errors and fundamental thermal jitter. This dilemma can be partly relaxed by increasing the thickness of the FePtmore » film up to 30 nm. For realistic head fields, it is found that the fundamental thermal jitter is in the same order of magnitude of the fundamental thermal jitter in conventional recording, which is about 0.5–0.8 nm. Composite structures consisting of high Curie top layer and FePt as a hard magnetic storage layer can reduce the thermally written-in errors to be smaller than 10{sup −4} if the damping constant is increased in the soft layer. Large damping may be realized by doping with rare earth elements. Similar to single FePt grains in composite structure, an increase of switching probability is sacrificed by an increase of thermal jitter. Structures utilizing first-order phase transitions breaking the thermal jitter and writability dilemma are discussed.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagannathan, Kaushik; Benson, David M.; Robinson, David B.

    Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd.more » Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H 2SO 4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.« less

  16. Control of superconductivity by means of electric-field-induced strain in superconductor/piezoelectric hybrids

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Zeibekis, M.; Zhang, S. J.

    2018-01-01

    The controlled modification of superconductivity by any means, specifically in hybrid systems, has attracted much interest in the recent decades. Here, we present experimental data and phenomenological modeling on the control of TC of superconducting (SC) Nb thin films, with thickness 3 nm ≤ dN b≤50 nm, under the application of in-plane strain, S(Eex) induced by an external out-of-plane electric field, Eex to piezoelectric (PE) single crystals, namely, ( 1 -x )Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT), with x = 0.27 and 0.31. We report experimental modification of TC of Nb by Eex, accurately described by a phenomenological model that incorporates the constitutive relation S(Eex) of PMN-xPT. The systematic experimental-phenomenological modeling approach introduced here is generic and paves the way for an understanding of the underlying physical mechanisms in any SC/PE hybrid.

  17. The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Bandow, S.; Nagata, S.; Saito, K.; Tokunaga, K.; Morita, K.

    Hydrogen (H)- and water (H2O)-storage and desorption characteristics of 25 nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309 K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition.

  18. Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth.

    PubMed

    Ghobadi, Amir; Hajian, Hodjat; Dereshgi, Sina Abedini; Bozok, Berkay; Butun, Bayram; Ozbay, Ekmel

    2017-11-08

    In this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al 2 O 3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.

  19. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.

    PubMed

    Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-03-07

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.

  20. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    PubMed

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  1. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film

    NASA Astrophysics Data System (ADS)

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-02-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials.PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05757g

  2. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.

    2017-11-01

    The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.

  3. Pattern Classification with Memristive Crossbar Circuits

    DTIC Science & Technology

    2016-03-31

    Fig. 2a), with a Pt/Al2O3/ TiO2 -x/Ti/Pt memristor at each crosspoint, was fabricated using a standard lift-off patterning. The Al2O3/ TiO2 -x stack...Form SiO2/Si Pt (60 nm) TiO2 -x (30 nm) Ti (15 nm) Al2O3 (4 nm) Ta (5 nm) Pt (60 nm) VW- VR VW+ Voltage (V) -2.0 -1.5 -1.0 -0.5 0.0 0.5...circuit with integrated Al2O3/ TiO2 -x resistive switching devices: (a) micrograph of a 12×12-crosspoint crossbar; (b) typical quasi-dc I-V curves of

  4. UV absorption investigation of ferromagnetically filled ultra-thick carbon onions, carriers of the 217.5 nm Interstellar Absorption Feature

    NASA Astrophysics Data System (ADS)

    Boi, Filippo S.; Zhang, Xiaotian; Ivaturi, Sameera; Liu, Qianyang; Wen, Jiqiu; Wang, Shanling

    2017-12-01

    Carbon nano-onions (CNOs) are fullerene-like structures which consist of quasi-spherical closed carbon shells. These structures have become a subject of great interest thanks to their characteristic absorption feature of interstellar origin (at 217.5 nm, 4.6 μm-1). An additional extinction peak at 3.8 μm-1 has also been reported and attributed to absorption by graphitic residues between the as-grown CNOs. Here, we report the ultraviolet absorption properties of ultra-thick CNOs filled with FePt3 crystals, which also exhibit two main absorption peaks—features located at 4.58 μm-1 and 3.44 μm-1. The presence of this additional feature is surprising and is attributed to nonmagnetic graphite flakes produced as a by-product in the pyrolysis experiment (as confirmed by magnetic separation methods). Instead, the feature at 4.58 μm-1 is associated with the π-plasmonic resonance of the CNOs structures. The FePt3 filled CNOs were fabricated in situ by an advanced one-step fast process consisting in the direct sublimation and pyrolysis of two molecular precursors, namely, ferrocene and dichloro-cyclooctadiene-platinum in a chemical vapour deposition system. The morphological, structural, and magnetic properties of the as-grown filled CNOs were characterized by a means of scanning and transmission electron microscopy, X-ray diffraction, and magnetometry.

  5. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    PubMed

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  6. Pulsed laser-deposited VO2 thin films on Pt layers

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Zaghrioui, Mustapha; Ta Phuoc, Vinh; Roger, Sylvain; Autret-Lambert, Cécile; Okimura, Kunio

    2013-03-01

    VO2 films were deposited on Pt (111)/TiO2/SiO2/Si (001) substrates by means of a pulsed laser deposition technique. An x-ray diffraction peak at 2θ = 39.9° was deconvoluted into two pseudo-Voigt profiles of Pt (111) and VOx-originated components. The VOx diffraction peak was more obvious in a VOx/Pt (111)/Al2O3 (0001) sample, having a narrower width compared with a VO2/Al2O3 (0001) sample. Temperature-controlled Raman spectroscopy for the VOx/Pt/TiO2/SiO2/Si sample has revealed the monoclinic VO2 phase at low temperature and the structural phase transition at about 72 °C in a heating process. The electronic conductive nature at the high temperature phase was confirmed by near normal incidence infrared reflectivity measurements. Out-of-plane current-voltage characteristics showed an electric field-induced resistance switching at a voltage as low as 0.2 V for a 50 nm-thick film. A survey of present and previous results suggests an experimental law that the transition voltage of VO2 is proportional to the square root of the electrodes distance.

  7. Roughness evolution in dewetted Ag and Pt nanoscale films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2018-01-01

    The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.

  8. Perpendicular magnetic anisotropy and spin reorientation transition in L1{sub 0} FePt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jae Young; Lee, Nyun Jong; Kim, Tae Hee

    2011-04-01

    We investigated the thickness and composition dependence of perpendicular magnetic anisotropy (PMA) in L1{sub 0} Fe{sub 1-x}Pt{sub x} (x = 0.4, 0.5, and 0.55) films. The FePt films with different thicknesses of 35 and 70 A were grown at the substrate temperature T{sub s} = 300 deg. C by molecular beam epitaxy coevaporation technique. A (001)-oriented epitaxial L1{sub 0} FePt film was grown on the thin (001)-oriented fcc Pt layer, while a poorly crystallized FePt film was formed on the (111)-textured Pt layer. Our results showed that, at a fixed thickness of 70 A, the PMA of FePt alloy filmsmore » is enhanced as Pt content increases from 40% to 55%.« less

  9. Interfacial Dzyaloshinskii-Moriya interaction sign in Ir/Co2FeAl systems investigated by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Roussigné, Y.; Petrisor, T.; Mos, R. B.; Stashkevich, A.; Chérif, S. M.; Tiusan, C.

    2018-02-01

    C o2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm ≤tCFA≤1.8 nm ), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of these structures have been studied by vibrating sample magnetometry (VSM), miscrostrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. VSM characterizations show that films are mostly in-plane magnetized and the saturating field perpendicular to the film plane increases with decreasing CFA thickness suggesting the existence of a perpendicular interface anisotropy. The presence of a magnetic dead layer of 0.44 nm has been detected by VSM. The MS-FMR with the magnetic field applied perpendicularly to the film plane has been used to determine the gyromagnetic factor. The BLS measurements reveal a pronounced nonreciprocal spin wave propagation, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by the Ir interface with CFA, which increases with decreasing CFA thickness. The DMI sign has been found to be the same (negative) as that of Pt/Co, in contrast to the ab initio calculation on Ir/Co, where it is found to be positive. The thickness dependence of the effective DMI constant shows the existence of two regimes similarly to that of the perpendicular anisotropy constant. The surface DMI constant Ds was estimated to be -0.37 pJ /m for the thickest samples, where a linear thickness dependence of the effective DMI constant has been observed.

  10. Current-induced switching in CoGa/L10 MnGa/(CoGa)/Pt structure with different thicknesses

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Mizukami, S.

    2018-06-01

    In this paper, we present the results of our study into current-induced spin-orbit torque (SOT) switching in perpendicularly magnetized CoGa/MnGa/Pt trilayers with different thicknesses of MnGa and Pt. The SOT switching was observed for all films that undergo Joule heating. We also investigate SOT switching in the bottom (CoGa)/MnGa/top(CoGa/Pt) films with different top layers. Although both the bottom and top layers contribute to the SOT, the relative magnitudes of the switching current densities JC in the top and bottom layers indicate that the SOT is dominant in the top layer. The JC as a function of thickness is discussed in terms of the magnetic properties and resistivity. Experimental data suggested that the MnGa thickness dependence of JC may originate from the perpendicular magnetic anisotropy thickness product Kueff t value. On the other hand, JC as a function of the Pt thickness shows weak dependence. This may be attributed to the slight change of spin-Hall angle θSH value with different thicknesses of Pt, when we assumed that the SOT switching is primarily due to the spin-Hall effect.

  11. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.

    PubMed

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute; Wiedwald, Ulf

    2016-01-01

    Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: "small" NPs with diameters in the range of 2-3 nm and "large" ones in the range of 5-8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600-650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min.

  12. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

    PubMed Central

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute

    2016-01-01

    Summary Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: “small” NPs with diameters in the range of 2–3 nm and “large” ones in the range of 5–8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600–650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min. PMID:27335749

  13. Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling

    NASA Astrophysics Data System (ADS)

    Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.

    2013-04-01

    Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.

  14. Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces

    NASA Astrophysics Data System (ADS)

    Chang, Houchen; Liu, Tao; Reifsnyder Hickey, Danielle; Janantha, P. A. Praveen; Mkhoyan, K. Andre; Wu, Mingzhong

    2017-12-01

    For the majority of previous work on Y3Fe5O12 (YIG)/normal metal (NM) bi-layered structures, the YIG layers were grown on Gd3Ga5O12 first and were then capped by an NM layer. This work demonstrates the sputtering growth of a Pt/YIG structure where the Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows well-oriented (111) texture, a surface roughness of 0.15 nm, and an effective Gilbert damping constant less than 4.7 × 10-4, and the YIG/Pt interface allows for efficient spin transfers. This demonstration indicates the feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics studies.

  15. Laser-excited luminescence and absorption study of mixed valence for K 2Pt(CN) 4—K 2Pt(CN) 6 crystals

    NASA Astrophysics Data System (ADS)

    Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.

    1982-04-01

    Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.

  16. Cobalt-based multilayers with ultrathin seedlayers for perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin

    With the rapid increase in areal density in longitudinal magnetic recording, it is widely believed that the superparamagnetic limit will soon be reached. Perpendicular magnetic recording is now being seriously considered to be a candidate for the replacement. Co/Pd and Co/Pt multilayers are promising candidates because of their high anisotropy, high coercivity, high remanent squareness, and high negative nucleation field. However, Co/Pd and Co/Pt multilayers usually require thick seed layers to promote perpendicular anisotropies, which leads to large "spacing loss". In this work, different seed layers were studied and it showed that an amorphous indium tin oxide (ITO) seed layer as thin as 2nm could promote good perpendicular anisotropy. The processing parameters for Co-based multilayers such as deposition pressure, temperature, individual layer thickness, and number of bilayers were optimized to obtain better interfaces, higher coercivity, and higher anisotropies. Boron was added as dopants into Co layers to obtain better intergranular segregation and reduce the grain growth during the thin film deposition. The substrates were heated to promote the migration of boron atoms. It was proved that the addition of boron has successfully reduced the magnetic domain sizes as well as the media noise. Spin stand test showed that the CoB/Pd multilayers with 2nm ITO seed layer and 6mum thick NiFe soft underlayers deposited at 230°C gave a D50 of 340 kfci for differentiated output signals and an areal density of 11 Gb/in2 at a bit-error-rate of 10 -7. Given narrower heads, better soft underlayer, and lower flying height, the media can reach a much higher recording density.

  17. Huge domain-wall speed variation with respect to ferromagnetic layer thickness in ferromagnetic Pt/Co/TiO2/Pt films

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Yu, Ji-Sung; Kim, Joo-Sung; Kim, Duck-Ho; Min, Byoung-Chul; Choe, Sug-Bong

    2018-02-01

    In this study, we investigate the influence of the ferromagnetic layer thickness on the magnetization process. A series of ultrathin Pt/Co/TiO2/Pt films exhibits domain-wall (DW) speed variation of over 100,000 times even under the same magnetic field, depending on the ferromagnetic layer thickness. From the creep-scaling analysis, such significant variation is found to be mainly attributable to the thickness-dependence of the creep-scaling constant in accordance with the creep-scaling theory of the linear proportionality between the creep-scaling constant and the ferromagnetic layer thickness. Therefore, a thinner film shows a faster DW speed. The DW roughness also exhibits sensitive dependence on the ferromagnetic layer thickness: a thinner film shows smoother DW. The present observation provided a guide for an optimal design rule of the ferromagnetic layer thickness for better performance of DW-based devices.

  18. Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability

    DOE PAGES

    Gummalla, Mallika; Ball, Sarah; Condit, David; ...

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  19. A synthetic study and characterization of the Pt(II) complexes with bipyridines back-born system.

    PubMed

    Jo, Woongkyu; Son, Seokhwan; Jo, Hyeongjun; Kim, Byeongcheol; Kwak, Cheehun; Jung, Sangchul; Lee, Jihoon; Ahn, Hogeun; Chung, Minchul

    2014-08-01

    The reaction of platinum [Pt(5,5-dmbpy)]Cl2 (5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) with 4,4'-dimethyl-2,2'-bipyridine (4,4-dmbpy), [Pt(dbbpy)]Cl2 (dbbpy = 4,4'-dibutyl-2,2'-bipyridine), [Pt(dpbpy)]Cl2 (dpbpy = 4,4'-dipentyl-2,2'-bipyridine) with 5,5'-dimethyl-2,2'-bipyridine (5,5-dmbpy) affords the following complexes: [(4,4-dmbpy)Pt(5,5-dmbpy)][PF6]2 (1) and [(dbbpy)Pt(5,5-dmbpy)][PF6]2 (2), [(dpbpy)Pt(5,5-dmbpy)][PF6]2 (3), [(5,5-dmbpy)Pt(5,5-dmbpy)][PF6]2 (4). This study was synthesized new platinum complex compounds utilizing ligand of 5,5'-Dimethyl-2,2'-dipyridyl System. To study the chemical composition was used 1H(13C)-NMR, UV-vis, Spectro photometer and Measurements about optical physics and chemical properties were measured to use spectrofluorometer. UV-vis absorption area was measured 310 nm to 383 nm and luminous wavelength was measured 390 nm to 419 nm.

  20. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    PubMed Central

    2014-01-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%. PACS 81.07.Ta; 78.67.Pt; 88.40.jj PMID:25489285

  1. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness,more » which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.« less

  2. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  3. Nanoporous gold membranes: From morphological control to fuel cell catalysis

    NASA Astrophysics Data System (ADS)

    Ding, Yi

    Porous noble metals are particularly attractive for scientific research and industrial applications such as catalysis, sensing, and filtration. In this thesis, I will discuss the fabrication, characterization, and application of a new class of porous metals, called nanoporous metals (NPM). NPM is made during selective dissolution (also called dealloying) of reactive components (e.g., silver) from multi-component alloys (e.g., Ag/Au alloy). Commercially available white gold leaf (Ag65Au35) can, for example, be etched into nanoporous gold (NPG) membrane by simply floating the leaf on concentrated nitric acid for periods of a few minutes. NPG leaf adopts a single crystal porous structure within individual grains. The microstructure of NPG, such as the pore size, is tunable between a few nanometers to sub-micron length scale by either thermal annealing or post-treatment in nitric acid for extended period of time. A new gas-liquid-solid interface electroless plating technique is developed to uniformly cover the NPG surface with other metals, such as silver and platinum. This technique allows new opportunities of making functionalized nanostructures. We show that a combination of silver plating and dealloying can be used to make multimodal porous metals, which are expected to have application in sensing field. Electroless platinum plating onto NPG shows very usual growth mode. TEM observation indicates that the platinum layer on NPG surface takes a novel form of layer-islanding growth (Stranski-Krastanov growth). Annealing the Pt/NPG composite smoothens the Pt islands and forms a 1 nm coherent Pt layer on the NPG backbone, possibly with dislocation formation at the Pt/Au interface. Furthermore, it was found that we could dissolve the gold away in aqueous gold etchant, leaving behind the 1 nm-thick Pt shell, a structure we call nanotubular mesoporous platinum (NMP). Pt plated NPG has a series of unique structural properties, such as high active surface area, thermally stable, low Pt usage, and better tolerance to CO poisoning. We incorporated it as a membrane electrode into a working proton exchange membrane fuel cells (PEMFC). Preliminary results show that Pt/NPG has very good fuel cell performance at a very low platinum loading.

  4. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells.

    PubMed

    Joshi, Prakash; Zhou, Zhengping; Poudel, Prashant; Thapa, Amit; Wu, Xiang-Fa; Qiao, Qiquan

    2012-09-21

    A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (R(ct)) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm(2), much lower than that of the Pt electrode (1.81 Ω cm(2)). Such a low value of R(ct) indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (R(s)) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm(2), which was close to the R(s) of 5.77 Ω cm(2) of the Pt electrode, despite the significant difference in their thicknesses: ∼22 μm for Ni-CNT-CNF composite, while ∼40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (R(s-tot)) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (J(sc)) of 15.83 mA cm(-2), open circuit voltage (V(oc)) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with J(sc) of 15.01 mA cm(-2), V(oc) of 0.83, and FF of 0.67.

  5. Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Shigeyuki; Kasai, Shinya; Mitani, Seiji

    2018-01-01

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Ta/NiFe/Pt layered structures was investigated through magnetization measurements. Ta/NiFe/Pt films with NiFe layer thickness (t) values of 2 nm or more showed typical in-plane magnetization curves, which was presumably due to the dominant contribution of the shape magnetic anisotropy. The thickness dependence of the saturation magnetization of the entire NiFe layer (M s) was well analyzed using the so-called dead-layer model, showing that the magnetically active part of the NiFe layer has saturation magnetization (M\\text{s}\\text{act}) independent of t and comparable to the bulk value. In the perpendicular direction, the saturation field H k was found to clearly decrease with decreasing t, while the effective field of shape magnetic anisotropy due to the active NiFe saturation magnetization M\\text{s}\\text{act} should be independent of t. These observations show that there exists interface PMA in the layered structures. The interface PMA energy density was determined to be ∼0.17 erg/cm2 using the dead-layer model. Motivated by the correlation observed between M s and H k, we also attempted to interpret the experimental results using an alternative approach beyond the dead-layer model; however, it gives only implications on the incomplete validity of the dead-layer model and no better understanding.

  6. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Wang, Shouguo, E-mail: sgwang@ustb.edu.cn; Han, Gang

    2015-09-15

    The Blocking temperature (T{sub B}) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (H{sub eb}) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of T{sub B} in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface actingmore » as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance T{sub B} and H{sub eb}. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.« less

  7. Hydrogen Sorption Kinetics on Bare and Platinum-Modified Palladium Nanofilms, Grown by Electrochemical Atomic Layer Deposition (E-ALD)

    DOE PAGES

    Jagannathan, Kaushik; Benson, David M.; Robinson, David B.; ...

    2016-01-01

    Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd.more » Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H 2SO 4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.« less

  8. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.

  9. Parallel fabrication of sub-50-nm uniformly sized nanoparticles by deposition through a patterned silicon nitride nanostencil.

    PubMed

    Yan, X-M; Contreras, A M; Koebel, M M; Liddle, J A; Somorjai, G A

    2005-06-01

    Using low-pressure chemical vapor deposition of silicon dioxide, we have reduced the size of 56-nm features in a silicon nitride membrane, called a stencil, down to 36 nm. Sub-50-nm uniformly sized nanoparticles are fabricated by electron-beam deposition of Pt through the stencil mask. A self-assembled monolayer (SAM) of tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane was used to reduce Pt clogging of the nanosize holes during deposition as well as to protect the stencil during the postdeposition Pt removal. X-ray photoelectron spectroscopy shows that the SAM protects the stencil efficiently during this postdeposition removal of Pt.

  10. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.

    PubMed

    Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter

    2016-06-01

    Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method

    NASA Astrophysics Data System (ADS)

    Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul

    2011-06-01

    Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b

  12. Spin-orbit torque based magnetization switching in Pt/Cu/[Co/Ni]5 multilayer structures

    NASA Astrophysics Data System (ADS)

    Ostwal, Vaibhav; Penumatcha, Ashish; Hung, Yu-Ming; Kent, Andrew D.; Appenzeller, Joerg

    2017-12-01

    Spin-Orbit Torque (SOT) in Heavy Metal/Ferromagnet (HM/FM) structures provides an important tool to control the magnetization of FMs and has been an area of interest for memory and logic implementation. Spin transfer torque on the FM in such structures is attributed to two sources: (1) the Spin Hall effect in the HM and (2) the Rashba-effect at the HM/FM interface. In this work, we study the SOT in a Pt/[Co,Ni] structure and compare its strength with the SOT in a Pt/Cu/[Co,Ni] structure where copper, a metal with a low spin-orbit interaction, is inserted between the Pt (HM) layer and the [Co,Ni] (FM) layer. We use an AC harmonic measurement technique to measure the strength of the SOT on the magnetic thin-film layer. Our measurements show that a significant SOT is exerted on the magnetization even after a 6 nm thick copper layer is inserted between the HM and the FM. Also, we find that this torque can be used to switch a patterned magnetic layer in the presence of an external magnetic field.

  13. Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overweg, H. C.; Haan, A. M. J. den; Eerkens, H. J.

    2015-08-17

    We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10{sup −12} Am{sup 2}, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed inmore » this paper.« less

  14. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; ...

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  15. Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra

    2017-05-01

    Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.

  16. Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts

    PubMed Central

    Caldwell, Keegan M.; Ramaker, David E.; Jia, Qingying; Mukerjee, Sanjeev; Ziegelbauer, Joseph M.; Kukreja, Ratandeep S.; Kongkanand, Anusorn

    2015-01-01

    X-ray adsorption near edge structure (XANES) data at the Co or Ni K-edge, analyzed using the Δμ difference procedure, are reported for dealloyed PtCox and PtNix catalysts (six different catalysts at different stages of life). All catalysts meet the 2017 DOE beginning of life target Pt mass activity target (>0.44 A mgPt−1), but exhibit varying activities and durabilities. The variance factors include different initial precursors, dealloying in HNO3 vs H2SO4, if a postdealloying thermal annealing step was performed, and different morphologies (some with a multi PtMx core and porous Pt skin, some single core with nonporous skin). Data are obtained at the initial beginning of life (BOL, ~200 voltage cycles) and after 10k and 30k (end of life, EOL) voltage cycles following DOE protocol (0.6–1.0 V vs reversible hydrogen electrode). The Δμ data are used to determine at what potential (Vpen) the Pt skin is penetrated by O. The durability, related to a drop in the electrochemical surface areas (ECSAs) after extensive voltage cycling, directly correlates with the Vpen at BOL. The data indicate that cycling produces a “characteristic” Pt skin robustness (porosity or thickness). When the Pt skin at BOL is “thin” (Vpen < 0.9 V) it grows to a “characteristic” thickness consistent with a Vpen of ≈1.1 V, and if it begins very thick, it thins to the same “characteristic” thickness. Particles dealloyed in H2SO4 appear to have a thicker Pt skin at BOL than those dealloyed in HNO3, and a postdealloying annealing procedure appears to produce a particularly nonporous skin with high Vpen, but not necessarily thicker. Furthermore, the PtM3 catalysts exhibited a fast skin “healing” process whereby the initial porous skin appears to become more nonporous after holding the potential at 0.9 V. This work is believed to be the first in situ XAS study to shed light on the nature of the Pt skin, its thickness, and/or porosity, and how it changes with respect to operating electrochemical conditions. PMID:26191117

  17. Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs.

    PubMed

    Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N

    2016-01-29

    The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.

  18. The relationship between the microstructure and magnetic properties of sputtered Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Petford-Long, Amanda K.; Jakubovics, J. P.

    1994-11-01

    Co/Pd multilayer films (MLFs) are of interest because of their potential application as high-density magneto-optical recording media. Co/Pd MLFs with varying Co and Pd layer thicknesses were grown by sputter-deposition onto (100) Si wafers. X-ray diffraction and high resolution electron microscopy were used to study the microstructure of the films, and Lorentz microscopy was used to analyze their magnetic domain structure. The films show an fcc crystal structure with a compromised lattice parameter and a strong (111) crystallographic texture in the growth direction. The compromised interplanar spacing parallel to the surface increased with decreasing thickness ratio (t(sub Co)/t(sub Pd), and the columnar grain size decreased with increasing Pd layer thickness. Films with t(sub Co) = 0.35 nm and t(sub Pd) = 2.8 nm (columnar grain diameter 20 nm) showed promising magnetic properties, namely a high perpendicular magnetic anisotropy (1.85x10(exp 5) J/cu m), with a perpendicular coercivity of 98.7 kA/m, a perpendicular remanence ratio of 99%, and a perpendicular coercivity ratio of 88%. The magnetic domains were uniform and of a narrow stripe type, confirming the perpendicular easy axis of magnetization. The Curie temperature was found to be about 430 C. Films of pure Co and Pd, grown for comparison, also showed columnar grain structure with grain-sizes of the same order as those seen in the MLFs. In addition the Pd films showed a (111) textured fcc structure.

  19. The influence of alloying on the phase formation sequence of ultra-thin nickel silicide films and on the inheritance of texture

    NASA Astrophysics Data System (ADS)

    Geenen, F. A.; Solano, E.; Jordan-Sweet, J.; Lavoie, C.; Mocuta, C.; Detavernier, C.

    2018-05-01

    The controlled formation of silicide materials is an ongoing challenge to facilitate the electrical contact of Si-based transistors. Due to the ongoing miniaturisation of the transistor, the silicide is trending to ever-thinner thickness's. The corresponding increase in surface-to-volume ratio emphasises the importance of low-energetic interfaces. Intriguingly, the thickness reduction of nickel silicides results in an abrupt change in phase sequence. This paper investigates the sequence of the silicides phases and their preferential orientation with respect to the Si(001) substrate, for both "thin" (i.e., 9 nm) and "ultra-thin" (i.e., 3 nm) Ni films. Furthermore, as the addition of ternary elements is often considered in order to tailor the silicides' properties, additives of Al, Co, and Pt are also included in this study. Our results show that the first silicide formed is epitaxial θ-Ni2Si, regardless of initial thickness or alloyed composition. The transformations towards subsequent silicides are changed through the additive elements, which can be understood through solubility arguments and classical nucleation theory. The crystalline alignment of the formed silicides with the substrate significantly differs through alloying. The observed textures of sequential silicides could be linked through texture inheritance. Our study illustrates the nucleation of a new phase drive to reduce the interfacial energy at the silicide-substrate interface as well as at the interface with the silicide which is being consumed for these sub-10 nm thin films.

  20. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahajan, Mani, E-mail: manimahajan86@gmail.com; Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu

    Carbon nanospheres of grape-like structure (CNS) with diameter ranging from 40 to 50 nm and wall thickness of 6–8 nm were synthesized by solvothermal route. The phase structure, morphology, microstructure, thermal stability, disorder and optical properties of synthesized CNS were investigated by various characterization techniques. The possible formation and growth mechanism for CNS were discussed on the basis of the in-build reaction conditions. The degradation study of organic pollutants (methylene blue) in UV light in the presence of synthesized CNS was done. The stability of the CNS in electrochemical performance was also discussed at the different potential window and comparedmore » its electrocatalytic activity with platinum supported on CNS which shows the better response for oxygen reduction reactions (ORR) at an optimized potential window (–0.2 to 1.0 V vs SCE). - Graphical abstract: A representative synthesis mechanism of carbon nano sphere (CNS) showing spherical morphology with its photo as well as electrocatalyst properties. - Highlights: • Carbon nanospheres (CNS) have been synthesized using in situ chemical-reduction route. • The bare CNS shows good luminescence and photocatalytic applications. • The Pt/CNS shows better electrochemical performance than the reported Pt/C.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottwald, M.; Kan, J. J.; Lee, K.

    Thermal budget, stack thickness, and dipolar offset field control are crucial for seamless integration of perpendicular magnetic junctions (pMTJ) into semiconductor integrated circuits to build scalable spin-transfer-torque magnetoresistive random access memory. This paper is concerned with materials and process tuning to deliver thermally robust (400 °C, 30 min) and thin (i.e., fewer layers and integration-friendly) pMTJ utilizing Co/Pt-based bottom pinned layers. Interlayer roughness control is identified as a key enabler to achieve high thermal budgets. The dipolar offset fields of the developed film stacks at scaled dimensions are evaluated by micromagnetic simulations. This paper shows a path towards achieving sub-15 nm-thick pMTJ withmore » tunneling magnetoresistance ratio higher than 150% after 30 min of thermal excursion at 400 °C.« less

  3. Revealing the semiconductor–catalyst interface in buried platinum black silicon photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Anderson, Nicholas C.; Neale, Nathan R.

    2016-01-01

    Nanoporous 'black' silicon semiconductors interfaced with buried platinum nanoparticle catalysts have exhibited stable activity for photoelectrochemical hydrogen evolution even after months of exposure to ambient conditions. The mechanism behind this stability has not been explained in detail, but is thought to involve a Pt/Si interface free from SiOx layer that would adversely affect interfacial charge transfer kinetics. In this paper, we resolve the chemical composition and structure of buried Pt/Si interfaces in black silicon photocathodes from a micron to sub-nanometer level using aberration corrected analytical scanning transmission electron microscopy. Through a controlled electrodeposition of copper on samples aged for onemore » month in ambient conditions, we demonstrate that the main active catalytic sites are the buried Pt nanoparticles located below the 400-800 nm thick nanoporous SiOx layer. Though hydrogen production performance degrades over 100 h under photoelectrochemical operating conditions, this burying strategy preserves an atomically clean catalyst/Si interface free of oxide or other phases under air exposure and provides an example of a potential method for stabilizing silicon photoelectrodes from oxidative degradation in photoelectrochemical applications.« less

  4. X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO 2 /Pt Cells

    DOE PAGES

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; ...

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  5. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.

    PubMed

    Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong

    2010-05-14

    This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

  6. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    PubMed

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  7. Long-lived room temperature deep-red/near-IR emissive intraligand triplet excited state (3IL) of naphthalimide in cyclometalated platinum(II) complexes and its application in upconversion.

    PubMed

    Wu, Wenting; Guo, Huimin; Wu, Wanhua; Ji, Shaomin; Zhao, Jianzhang

    2011-11-21

    [C(^)NPt(acac)] (C(^)N = cyclometalating ligand; acac = acetylacetonato) complexes in which the naphthalimide (NI) moiety is directly cyclometalated (NI as the C donor of the C-Pt bond) were synthesized. With 4-pyrazolylnaphthalimide, isomers with five-membered (Pt-2) and six-membered (Pt-3) chelate rings were obtained. With 4-pyridinylnaphthalimide, only the complex with a five-membered chelate ring (Pt-4) was isolated. A model complex with 1-phenylpyrazole as the C(^)N ligand was prepared (Pt-1). Strong absorption of visible light (ε = 21,900 M(-1) cm(-1) at 443 nm for Pt-3) and room temperature (RT) phosphorescence at 630 nm (Pt-2 and Pt-3) or 674 nm (Pt-4) were observed. Long-lived phosphorescences were observed for Pt-2 (τ(P) = 12.8 μs) and Pt-3 (τ(P) = 61.9 μs). Pt-1 is nonphosphorescent at RT in solution because of the acac-localized T(1) excited state [based on density functional theory (DFT) calculations and spin density analysis], but a structured emission band centered at 415 nm was observed at 77 K. Time-resolved transient absorption spectra and spin density analysis indicated a NI-localized intraligand triplet excited state ((3)IL) for complexes Pt-2, Pt-3, and Pt-4. DFT calculations on the transient absorption spectra (T(1) → T(n) transitions, n > 1) also support the (3)IL assignment of the T(1) excited states of Pt-2, Pt-3, and Pt-4. The complexes were used as triplet sensitizers for triplet-triplet-annihilation (TTA) based upconversion, and the results show that Pt-3 is an efficient sensitizer with an upconversion quantum yield of up to 14.1%, despite its low phosphorescence quantum yield of 5.2%. Thus, we propose that the sensitizer molecules at the triplet excited state that are otherwise nonphosphorescent were involved in the TTA upconversion process, indicating that weakly phosphorescent or nonphosphorescent transition-metal complexes can be used as triplet sensitizers for TTA upconversion.

  8. Formation of metallic clusters in oxide insulators by means of ion beam mixing

    NASA Astrophysics Data System (ADS)

    Talut, G.; Potzger, K.; Mücklich, A.; Zhou, Shengqiang

    2008-04-01

    The intermixing and near-interface cluster formation of Pt and FePt thin films deposited on different oxide surfaces by means of Pt+ ion irradiation and subsequent annealing was investigated. Irradiated as well as postannealed samples were investigated using high resolution transmission electron microscopy. In MgO and Y :ZrO2 covered with Pt, crystalline clusters with mean sizes of 2 and 3.5nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In MgO samples covered with FePt, clusters with mean sizes of 1 and 2nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In Y :ZrO2 samples covered with FePt, clusters up to 5nm in size were found after the Pt+ irradiation with 2×1016cm-2 and subsequent annealing. In LaAlO3 the irradiation was accompanied by a full amorphization of the host matrix and appearance of embedded clusters of different sizes. The determination of the lattice constant and thus the kind of the clusters in samples covered by FePt was hindered due to strong deviation of the electron beam by the ferromagnetic FePt.

  9. Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Wu, Di; Jiang, Zhengsheng

    2014-02-14

    Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperaturemore » of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.« less

  10. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

    DOE PAGES

    Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...

    2017-04-03

    We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less

  11. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  12. Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films

    NASA Astrophysics Data System (ADS)

    Kato, Kazumi; Fu, Desheng; Suzuki, Kazuyuki; Tanaka, Kiyotaka; Nishizawa, Kaori; Miki, Takeshi

    2004-05-01

    Polar-axis-oriented CaBi4Ti4O15 (CBTi144) films were fabricated on Pt foils using a complex metal alkoxide solution. The 500-nm-thick film showed the columnar structure and consisted of well-developed grains. The a/b-axis orientation of the ferroelectric films is considered to be associated with the preferred orientation of Pt foil. The film showed good ferro- and piezoelectric properties. The Pr and Ec were 25 μC/cm2 and 306 kV/cm, respectively, at an applied voltage of 115 V. The d33 was characterized as 30 pm/V by piezoresponse force microscopy. The values were twice as large as those of the CBTi144 thin film with random orientation. The polar-axis-oriented CBTi144 films would open up possibilities for devices as Pb-free piezoelectric materials.

  13. Determination of intrinsic spin Hall angle in Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  14. Tendon Adaptation to Sport-specific Loading in Adolescent Athletes.

    PubMed

    Cassel, M; Carlsohn, A; Fröhlich, K; John, M; Riegels, N; Mayer, F

    2016-02-01

    Tendon adaptation due to mechanical loading is controversially discussed. However, data concerning the development of tendon thickness in adolescent athletes is sparse. The purpose of this study was to examine possible differences in Achilles (AT) and patellar tendon (PT) thickness in adolescent athletes while considering age, gender and sport-specific loading. In 500 adolescent competitive athletes of 16 different sports and 40 recreational controls both ATs and PTs were sonographically measured. Subjects were divided into 2 age groups (< 13; ≥ 13 years) and 6 sport type categories (ball, combat, and water sports, combined disciplines, cycling, controls). In addition, 3 risk groups (low, moderate, high) were created according to the athlete's risk of developing tendinopathy. AT and PT thickness did not significantly differ between age groups (AT/PT:<13: 5.4±0.7 mm/3.6±0.5 mm;≥13: 5.3±0.7 mm/3.6±0.5 mm). In both age groups males presented higher tendon thickness than females (p<0.001). AT thickness was highest in ball sports/cyclists and lowest in controls (p≤0.002). PT thickness was greatest in water sports and lowest in controls (p=0.02). High risk athletes presented slightly higher AT thickness compared to the low risk group (p=0.03). Increased AT and PT thickness in certain sport types compared to controls supports the hypothesis of structural tendon adaptation due to sport-specific loading. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells.

    PubMed

    Baskaran, Balraj; Muthukumarasamy, Arulmozhi; Chidambaram, Siva; Sugumaran, Abimanyu; Ramachandran, Krithikadevi; Rasu Manimuthu, Thaneswari

    2017-04-01

    Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time . The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20-50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC 50 ) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.

  16. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells.

    PubMed

    Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu

    2013-10-01

    We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The magnetic properties and microstructure of Co-Pt thin films using wet etching process.

    PubMed

    Lee, Chang-Hyoung; Cho, Young-Lae; Lee, Won-Pyo; Suh, Su-Jeong

    2014-11-01

    Perpendicular magnetic recording (PMR) is a promising candidate for high density magnetic recording and has already been applied to hard disk drive (HDD) systems. However, media noise still limits the recording density. To reduce the media noise and achieve a high signal-to-noise ratio (SNR) in hard disk media, the grains of the magnetic layer must be magnetically isolated from each other. This study examined whether sputter-deposited Co-Pt thin films can have adjacent grains that are physically isolated. To accomplish this, the effects of the sputtering conditions and wet etching process on magnetic properties and the microstructure of the films were investigated. The film structure was Co-Pt (30 nm)/Ru (30 nm)/NiFe (10 nm)/Ta (5 nm). The composition of the Co-Pt thin films was Co-30.7 at.% Pt. The Co-Pt thin films were deposited in Ar gas at 5, 10, 12.5, and 15 mTorr. Wet etching process was performed using 7% nitric acid solution at room temperature. These films had high out-of-plane coercivity of up to 7032 Oe, which is twice that of the as-deposited film. These results suggest that wet etched Co-Pt thin films have weaker exchange coupling and enhanced out-of-plane coercivity, which would reduce the medium noise.

  18. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.

    The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less

  19. Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.

    PubMed

    Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas

    2014-11-26

    Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.

  20. Formation of Size- and Position-Controlled Nanometer Size Pt Dots on GaAs and InP Substrates by Pulsed Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Sato, Taketomo; Kaneshiro, Chinami; HiroshiOkada, HiroshiOkada; Hasegawa, Hideki

    1999-04-01

    Attempts were made to form regular arrays of size- andposition-controlled Pt-dots on GaAs and InP by combining an insitu electrochemical process with the electron beam (EB)lithography. This utilizes the precipitation of Pt nano-particles atthe initial stage of electrodeposition. First, electrochemicalconditions were optimized in the mode of self-assembled dot arrayformation on unpatterned substrates. Minimum in-plane dot diameters of22 nm and 26 nm on GaAs and InP, respectively, were obtained underthe optimal pulsed mode. Then, Pt dots were selectively formed onpatterned substrates with open circular windows formed by EBlithography, thereby realizing dot-position control. The Pt dot wasfound to have been deposited at the center of each open window, andthe in-plane diameter of the dot could be controlled by the number,width and period of the pulse-waveform applied to substrates. Aminimum diameter of 20 nm was realized in windows with a diameter of100 nm, using a single pulse. Current-voltage (I-V)measurements using an atomic force microscopy (AFM) system with aconductive probe indicated that each Pt dot/n-GaAs contact possessed ahigh Schottky barrier height of about 1 eV.

  1. Sintering behavior of spin-coated FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Jia, Zhiyong; Zoto, I.; Reed, D.; Nikles, David E.; Harrell, J. W.; Thompson, Gregory; Mankey, Gary; Krishnamurthy, Vemuru V.; Porcar, L.

    2006-04-01

    FePt and [FePt]95Au5 nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 °C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]95Au5 particles before annealing, SANS measurements gave an in-plane coherence length parameter a=7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c=12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  2. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  3. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells.

    PubMed

    Manikandan, M; Hasan, Nazim; Wu, Hui-Fen

    2013-07-01

    This study demonstrates the effective synthesis of five different sized/shaped Pt NPs, within a narrow size regime of 1-21 nm using a modified methodology and the toxicity/biocompatibility of Pt NPs on Neuro 2A cancer cells was investigated elaborately by using light microscopic observations, tryphan blue exclusion assay, MTT assay and ICP-MS. The Pt NPs-C with sizes 5-6 nm showed superior non-cytotoxic property compared to the other four Pt NPs. These non-cytotoxic Pt NPs were employed for successful photothermal treatment of Neuro 2A cell lines using near-IR 1064 nm of laser irradiation. The Pt NPs-C could generate a 9 °C increase in temperature leading to effective photothermal killing of cancer cells. The MALDI-MS was used to prove the possibility of apoptosis related triggering of cell death in the presence of the Pt NPs. The results confirm that the current approach is an effective platform for in vivo treatment of neuro cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, N.; Rodenbücher, C.; Szot, K.

    2014-08-14

    The resistive switching (RS) properties of strontium titanate (Sr{sub 1+x}Ti{sub 1+y}O{sub 3+(x+2y)}, STO) based metal-oxide-metal structures prepared from industrial compatible processes have been investigated focusing on the effects of composition, microstructure, and device size. Metastable perovskite STO films were prepared on Pt-coated Si substrates utilizing plasma-assisted atomic layer deposition (ALD) from cyclopentadienyl-based metal precursors and oxygen plasma at 350 °C, and a subsequent annealing at 600 °C in nitrogen. Films of 15 nm and 12 nm thickness with three different compositions [Sr]/([Sr] + [Ti]) of 0.57 (Sr-rich STO), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO) were integrated into Pt/STO/TiN crossbar structures with sizes ranging from 100 μm{supmore » 2} to 0.01 μm{sup 2}. Nano-structural characterizations revealed a clear effect of the composition of the as-deposited STO films on their crystallization behavior and thus on the final microstructures. Local current maps obtained by local-conductivity atomic force microscopy were in good agreement with local changes of the films' microstructures. Correspondingly, also the initial leakage currents of the Pt/STO/TiN devices were affected by the STO compositions and by the films' microstructures. An electroforming process set the Pt/STO/TiN devices into the ON-state, while the forming voltage decreased with increasing initial leakage current. After a RESET process under opposite voltage has been performed, the Pt/STO/TiN devices showed a stable bipolar RS behavior with non-linear current-voltage characteristics for the high (HRS) and the low (LRS) resistance states. The obtained switching polarity and nearly area independent LRS values agree with a filamentary character of the RS behavior according to the valence change mechanism. The devices of 0.01 μm{sup 2} size with a 12 nm polycrystalline stoichiometric STO film were switched at a current compliance of 50 μA with voltages of about ±1.0 V between resistance states of about 40 kΩ (LRS) and 1 MΩ (HRS). After identification of the influences of the films' microstructures, i.e., grain boundaries and small cracks, the remaining RS properties could be ascribed to the effect of the [Sr]/([Sr] + [Ti]) composition of the ALD STO thin films.« less

  5. Anomalous spin Hall magnetoresistance in Pt/Co bilayers

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Masashi; Towa, Daiki; Lau, Yong-Chang; Takahashi, Saburo; Hayashi, Masamitsu

    2018-05-01

    We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer that its origin is associated with a particular property of Co.

  6. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  7. Low temperature aluminum nitride thin films for sensory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarar, E.; Zamponi, C.; Piorra, A.

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/Vmore » up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.« less

  8. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.

  9. Block copolymer directed one-pot simple synthesis of L10-phase FePt nanoparticles inside ordered mesoporous aluminosilicate/carbon composites.

    PubMed

    Kang, Eunae; Jung, Hyunok; Park, Je-Geun; Kwon, Seungchul; Shim, Jongmin; Sai, Hiroaki; Wiesner, Ulich; Kim, Jin Kon; Lee, Jinwoo

    2011-02-22

    A "one-pot" synthetic method was developed to produce L1(0)-phase FePt nanoparticles in ordered mesostructured aluminosilicate/carbon composites using polyisoprene-block-poly(ethylene oxide) (PI-b-PEO) as a structure-directing agent. PI-b-PEO block copolymers with aluminosilicate sols are self-assembled with a hydrophobic iron precursor (dimethylaminomethyl-ferrocene) and a hydrophobic platinum precursor (dimethyl(1,5-cyclooctadiene)platinum(II)) to obtain mesostructured composites. The as-synthesized material was heat-treated to 800 °C under an Ar/H(2) mixture (5% v/v), resulting in the formation of fct FePt nanocrystals encapsulated in ordered mesopores. By changing the quantities of the Fe and Pt precursors in the composite materials, the average particle size of the resulting fct FePt, estimated using the Debye-Scherer equation with X-ray diffraction patterns, can be easily controlled to be 2.6-10.4 nm. Using this simple synthetic method, we can extend the size of directly synthesized fct FePt up to ∼10 nm, which cannot be achieved directly in the colloidal synthetic method. All fct FePt nanoparticles show hysteresis behavior at room temperature, which indicates that ferromagnetic particles are obtained inside mesostructued channels. Well-isolated, ∼10 nm fct FePt have a coercivity of 1100 Oe at 300 K. This coercivity value is higher than values of fct FePt nanoparticles synthesized through the tedious hard template method by employing SBA-15 as a host material. The coercivity value for FePt-1 (2.6 nm) at 5 K is as high as 11 900 Oe, which is one of the largest values reported for FePt nanoparticles, or any other magnetic nanoparticles. The fct FePt nanoparticles also showed exchange-bias behavior.

  10. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  11. Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid.

    PubMed

    Zhang, Da; Chang, Wan Cheng; Okajima, Takeyoshi; Ohsaka, Takeo

    2011-12-06

    The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively. © 2011 American Chemical Society

  12. Unidirectional magnetoresistance in magnetic thin films with non-uniform thickness

    NASA Astrophysics Data System (ADS)

    Jia, M. W.; Zhou, C.; Zeng, F. L.; Wu, Y. Z.

    2018-05-01

    The magnetoresistance (MR) of Co film and Co/Pt bilayers was studied systematically as a function of Co and Pt thickness at room temperature. In the samples with the wedge shape, we found the unidirectional MR which has the characteristics of R (Mz )≠R (-Mz ) with the magnetization normal to the film. The measured unidirectional MR is attributed to the differential anomalous Hall resistance due to the thickness difference at the electrodes for the longitudinal resistance measurements. The unidirectional MR effect in the Co/Pt bilayers can be greatly suppressed by a non-magnetic Cu inserting layer.

  13. Metallopolymer precursors to L10-CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application

    NASA Astrophysics Data System (ADS)

    Dong, Qingchen; Qu, Wenshan; Liang, Wenqing; Guo, Kunpeng; Xue, Haibin; Guo, Yuanyuan; Meng, Zhengong; Ho, Cheuk-Lam; Leung, Chi-Wah; Wong, Wai-Yeung

    2016-03-01

    Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium.Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium. Electronic supplementary information (ESI) available: PXRD, EDX and SEM original data. See DOI: 10.1039/c6nr00034g

  14. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-05-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.

  15. Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru

    2016-08-15

    Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less

  16. X-ray diffraction and surface acoustic wave analysis of BST/Pt/TiO{sub 2}/SiO{sub 2}/Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mseddi, Souhir; Hedi Ben Ghozlen, Mohamed; Njeh, Anouar

    2011-11-15

    High dielectric constant and electrostriction property of (Ba, Sr)Ti0{sub 3} (BST) thin films result in an increasing interest for dielectric devices and microwave acoustic resonator. Barium strontium titanate (Ba{sub 0.645}Sr{sub 0.355}TiO{sub 3}) films of about 300 nm thickness are grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrates by rf magnetron sputtering deposition techniques. X-ray diffraction is applied for the microstructural characterization. The BST films exhibit a cubic perovskite structure with a dense and smooth surface. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in the BST films. Young's modulus E and the Poisson ratio {nu}more » of TiO{sub 2,} Pt and BST films in different propagation directions are derived from the measured dispersion curves. Estimation of BST elastics constants are served in SAW studies. Impact of stratification process on SAW, propagating along [100] and [110] directions of silicon substrate, has been interpreted on the basis of ordinary differential equation (ODE) and stiffness matrix method (SMM). A good agreement is observed between experimental and calculated dispersion curves. The performed calculations are strongly related to the implemented crystallographic data of each layer. Dispersion curves are found to be sensitive to the SAW propagation direction and the stratification process for the explored frequency ranges 50-250 MHz, even though it corresponds to a wave length clearly higher than the whole films thickness.« less

  17. The influence of A-site rare-earth for barium substitution on the chemical structure and ferroelectric properties of BZT thin films

    NASA Astrophysics Data System (ADS)

    Ostos, C.; Martínez-Sarrión, M. L.; Mestres, L.; Delgado, E.; Prieto, P.

    2009-10-01

    Rare-earth ( RE) doped Ba(Zr,Ti)O 3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba 0.90Ln0.067Zr 0.09Ti 0.91O 3 ( Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a <001> epitaxial crystal growth on Nb-doped SrTiO 3, <001> and <011> growth on single-crystal Si, and a <111>-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2 p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO 3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO 6-octahedra distortion ( M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/ RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system.

  18. Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.

    PubMed

    Kasiwattanawut, Haruetai; Tchouaso, Modeste Tchakoua; Prelas, Mark A

    2018-05-22

    This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239 Pu and 241 Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239 Pu and 2.2% at 5.48 MeV of 241 Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Metamorphic P-T paths and Precambrian crustal growth in East Antarctica

    NASA Technical Reports Server (NTRS)

    Harley, S. L.

    1988-01-01

    The metamorphic constraints on crustal thicknesses in Archean and post-Archean terranes are summarized along with possible implications for tectonic processes. It is important to recognize that P-T estimates represent perturbed conditions and should not be used to estimate steady state geothermal gradients or crustal thicknesses. The example is cited of the Dora Maira complex in the French Alps, where crustal rocks record conditions of 35 kbar and 800 C, implying their subduction to depths of 100 km or more, followed by subsequent uplift to the surface. Therefore such P-T estimates tell more about processes than crustal thicknesses. More importantly, according to the author, are determinations of P-T paths, particularly coupled with age measurements, because these may provide constraints on how and when perturbed conditions relax back to steady state conditions. P-T paths are illustrated that should be expected from specific tectonic processes, including Tibetan style collision, with and without subsequent extension, rifting of thin or thickened crust, and magmatic accretion. Growth of new crust, associated with magmatic accretion, for example, could possibly be monitored with these P-T paths.

  20. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  1. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    NASA Astrophysics Data System (ADS)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  2. Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Li, Meng; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-01-01

    In this work, four water-soluble polythiophene derivatives (PT, PT-DDA, PT-ADA, and PT-ADA-PPR) with different pendant moieties were synthesized via oxidative copolymerization by FeCl3. By increasing the hydrophobic ability of side chain moieties, there is a gradually blue shift for the maximum absorption wavelength and red shift for the maximum emission wavelength, a reducing trend for fluorescence quantum yields, a growing trend for Stokes shift, and an increasing trend for the mean sizes in the order of PT, PT-ADA, and PT-DDA. All the synthesized polymers show low toxicity and good photostability and accumulate in the lysosomes of A549 cells. Furthermore, the introduction of porphyrin group to PT-ADA side chain (PT-ADA-PPR) broadens the absorption and emission ranges of PT-ADA. PT-ADA-PPR could be excited at two different excitation wavelengths (488 nm and 559 nm) and exhibits two emission pathways, and dual-color fluorescence images (orange and red) of PT-ADA-PPR accumulated in A549 cells are observed. Thus, PT-ADA-PPR could be used as an excellent dual-color fluorescent and lysosome-specific imaging material.

  3. Bluish-green BMes2-functionalized Pt(II) complexes for high efficiency PhOLEDs: impact of the BMes2 location on emission color.

    PubMed

    Rao, Ying-Li; Schoenmakers, Dylan; Chang, Yi-Lu; Lu, Jia-Sheng; Lu, Zheng-Hong; Kang, Youngjin; Wang, Suning

    2012-09-03

    New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2))-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50 nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10 nm whereas a fluoro substituent blue-shifts the emission energy by about 6 nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475 nm and Φ(PL)=0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485 nm and Φ(PL)=0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100 cd m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4%, respectively, have been achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermal stability of Pt nanoclusters interacting to carbon sublattice

    NASA Astrophysics Data System (ADS)

    Baidyshev, V. S.; Gafner, Yu. Ya.; Gafner, S. L.; Redel, L. V.

    2017-12-01

    The catalytic activity of Pt clusters is dependent not only on the nanoparticle size and its composition, but also on its internal structure. To determine the real structure of the nanoparticles used in catalysis, the boundaries of the thermal structure stability of Pt clusters to 8.0 nm in diameter interacting with carbon substrates of two types: a fixed α-graphite plane and a mobile substrate with the diamond structure. The effect of a substrate on the processes melting of Pt nanoclusters is estimated. The role of the cooling rate in the formation of the internal structure of Pt clusters during crystallization is studied. The regularities obtained in the case of "free" Pt clusters and Pt clusters on a substrate are compared. It is concluded that platinum nanoparticles with diameter D ≤ 4.0 nm disposed on a carbon substrate conserve the initial fcc structure during cooling.

  5. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    NASA Astrophysics Data System (ADS)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications. Electronic supplementary information (ESI) available: Supplementary TEM, EELS, EDS, Electro-chemical measurement data can be found. See DOI: 10.1039/c1nr11374g

  6. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.

    2017-11-01

    Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.

  7. Nasal bone length, prenasal thickness, prenasal thickness-to-nasal bone length ratio and prefrontal space ratio in second- and third-trimester fetuses with Down syndrome.

    PubMed

    Vos, F I; De Jong-Pleij, E A P; Bakker, M; Tromp, E; Pajkrt, E; Kagan, K O; Bilardo, C M

    2015-02-01

    To evaluate nasal bone length (NBL), prenasal thickness (PT), prenasal thickness-to-nasal bone length (PT-NBL) ratio and prefrontal space ratio (PFSR) as markers for Down syndrome in the second and third trimesters. NBL, PT, PT-NBL ratio and PFSR were measured retrospectively in stored two-dimensional images or three-dimensional volumes (corrected to the mid-sagittal plane) of fetuses with Down syndrome, which were retrieved from the digital databases of participating units. Measurements were performed on the stored images and volumes by two experienced operators, and the values obtained were compared to our previously reported normal ranges for euploid fetuses in order to assess the detection rates for Down syndrome. A total of 159 fetuses with Down syndrome were included in the analysis, six of which were excluded because of inadequate available images. Median maternal age was 36.0 years and median gestational age was 23 + 1 weeks. NBL and PT were correlated with gestational age (P < 0.001), but the PT-NBL ratio and PFSR were not. Mean NBL, PT, PT-NBL ratio and PFSR were 4.42 mm, 5.56 mm, 1.26 and 0.34, respectively. The nasal bone was absent in 23 (15.4%) cases. As a marker for Down syndrome, the PT-NBL ratio yielded the highest detection rate (86.2%), followed by PFSR (79.7%), PT (63.4%) and NBL (61.9%). All markers were abnormal in 33.6% of cases, whilst all were normal in 4.7%. At least one of the four markers was abnormal in 95.3%, and either the PT-NBL ratio or PFSR was abnormal in 93.8%. Detection rates were not related to gestational age. The PT-NBL ratio and PFSR are robust second- and third-trimester markers for Down syndrome. Both provide high detection rates and are easy to use, as the cut-off for normality is constant throughout gestation. Ltd. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  8. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine and Adenine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue B.

    2015-08-05

    We report the first low-temperature photodetachment photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are model systems for understanding platinum-complex photodynamic therapies, and knowledge of the intrinsic photodetachment properties is crucial for understanding their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra consistent with the complexes where the Pt(CN)42- moiety is largely intact. The adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be between 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV,more » values that are lower than for the bare Pt(CN)42- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photodetachment spectra of the four nucleobase-dianion complexes, and also in the 266 nm spectra of the Pt(CN)42-∙thymine and Pt(CN)42-∙adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)42-∙T]* and [Pt(CN)42-∙A]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the resonant electron detachment bands observed here for Pt(CN)42-∙T and Pt(CN)42-∙A but not for Pt(CN)42-∙U and Pt(CN)42-∙C to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)42- dianion in the Pt(CN)42-∙M clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase disaplys a long-lived excited state.« less

  9. Magneto-optical properties of PdCo based multilayered films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Tsunashima, S.; Iwata, S.

    1989-09-01

    Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.

  10. From well-defined Pt(II) surface species to the controlled growth of silica supported Pt nanoparticles.

    PubMed

    Laurent, Pierre; Veyre, Laurent; Thieuleux, Chloé; Donet, Sébastien; Copéret, Christophe

    2013-01-07

    Silica-supported Pt nanoparticles were prepared from well-defined surface platinum(II) surface species, obtained by grafting of well-defined Pt(II) molecular precursors with specific ligands (Cl, Me, N(SiMe(3))(2), OSi(OtBu)(3)) onto silica partially dehydroxylated at 200 and 700 °C yielding well-defined platinum(II) surface species. This approach allowed for testing the effect of Pt density and ligands on nanoparticle size. Higher grafting densities are achieved on silica partially dehydroxylated at 200 °C due to its initially higher surface silanol density. Surface species have been synthesized from symmetrical and dissymmetrical complexes, namely (COD)Pt(Me)(2), (COD)Pt(OSi(OtBu)(3))(2), (COD)Pt(Me)(OSi(OtBu)(3)), (COD)Pt(Me)(N(SiMe(3))(2)), (COD)Pt(Cl)(N(SiMe(3))(2)) and (COD)Pt(N(SiMe(3))(2))(OSi(OtBu)(3)) yielding mono-grafted complexes of general formula (COD)Pt(R)(OSi≡) according to elemental analyses, diffuse reflectance infrared fourier transform (DRIFT) and carbon-13 solid-state nuclear magnetic resonance (NMR) spectroscopies. While the dimethyl-complex shows low reactivity towards grafting, bis-siloxy and dissymmetric complexes demonstrate better reactivity yielding platinum loadings up to 7.4 wt%. Upon grafting amido complexes, the surface passivation yielding Me(3)SiOSi≡ surface species is demonstrated. Nanoparticles have been synthesized from these well-defined surface species by reduction under H(2) at 300 °C, under static or flow conditions. This process yields nanoparticles with sizes ranging from 2 to 3.3 nm and narrow size dispersion from 0.5 to 1.2 nm. Interestingly, the chloride complex yields large nanoparticles from 5 to 40 nm demonstrating the strong influence of chloride over the nanoparticles growth.

  11. Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers

    NASA Astrophysics Data System (ADS)

    He, Min; Li, Gang; Zhu, Zhaozhao; Zhang, Ying; Peng, Licong; Li, Rui; Li, Jianqi; Wei, Hongxiang; Zhao, Tongyun; Zhang, X.-G.; Wang, Shouguo; Lin, Shi-Zeng; Gu, Lin; Yu, Guoqiang; Cai, J. W.; Shen, Bao-gen

    2018-05-01

    Magnetic skyrmions in multilayers are particularly appealing as next generation memory devices due to their topological compact size, the robustness against external perturbations, the capability of electrical driving and detection, and the compatibility with the existing spintronic technologies. To date, Néel-type skyrmions at room temperature (RT) have been studied mostly in multilayers with easy-axis magnetic anisotropy. Here, we systematically broadened the evolution of magnetic skyrmions with sub-50-nm size in a series of Pt/Co/Ta multilayers where the magnetic anisotropy is tuned continuously from easy axis to easy plane by increasing the ferromagnetic Co layer thickness. The existence of nontrivial skyrmions is identified via the combination of in situ Lorentz transmission electron microscopy (L-TEM) and Hall transport measurements. A high density of magnetic skyrmions over a wide temperature range is observed in the multilayers with easy-plane anisotropy, which will stimulate further exploration for new materials and accelerate the development of skyrmion-based spintronic devices.

  12. Slowing of Femtosecond Laser-Generated Nanoparticles in a Background Gas

    DOE PAGES

    Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.

    2014-11-25

    The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.

    The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less

  14. Ordering and bandgap reduction in InAs{sub 1{minus}x}Sb{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follstaedt, D.M.; Biefeld, R.M.; Kurtz, S.R.

    1995-02-01

    InAs{sub 1{minus}x}Sb{sub x} alloys grown by MBE and MOCVD are found to have reduced emission energies due to CuPt-type order, even for Sb concentrations as low as x = 0.07 ({Delta}E = 25--65 meV). Cross-section TEM examination of such alloys shows the two {l_brace}111{r_brace}{sub B} variants are separated into regions 1--2 {mu}m across with platelet domains 10--40 nm thick on habit planes tilted {approximately}30{center_dot} from the (001) growth surface. Nomarski optical images show a cross-hatched surface pattern expected for lattice-mismatched layers. The local tilt of the surface correlates with the dominant variant in each region. InAs{sub 1{minus}x}Sb{sub x}/In{sub 1{minus}y}Ga{sub y}Asmore » strained-layer superlattices with low Sb content and flat surfaces also show CuPt ordering.« less

  15. Nanophase-separated Ni3Nb as an automobile exhaust catalyst.

    PubMed

    Tanabe, Toyokazu; Imai, Tsubasa; Tokunaga, Tomoharu; Arai, Shigeo; Yamamoto, Yuta; Ueda, Shigenori; Ramesh, Gubbala V; Nagao, Satoshi; Hirata, Hirohito; Matsumoto, Shin-Ichi; Fujita, Takeshi; Abe, Hideki

    2017-05-01

    Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) ( i.e. , Ni 3 Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust ( i.e. , nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni 3 Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix ( i.e. , NbO x ( x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N 2 generation, and the NbO x matrix absorbs excessive nitrogen adatoms to retain the active Ni 0 sites at the metal/oxide interface. Furthermore, the NbO x matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours.

  16. Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun

    2016-04-04

    The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the sign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Ourmore » findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nm-thick Co.« less

  17. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    PubMed Central

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-01-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications. PMID:27185656

  18. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  19. Detecting decompositions of sulfur hexafluoride using reduced graphene oxide decorated with Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Dachang; Tang, Ju; Zhang, Xiaoxing; Fang, Jiani; Li, Yi; Zhuo, Ran

    2018-05-01

    The resistance-typed gas sensing material of Pt nanoparticles (PtNPs) decorated reduced graphene oxide (RGO) synthesized by one-step chemical reduction for the detection of four types of SF6 decompositions was explored. The PtNPs disperse uniformly on RGO with particle size near 2–4 nm and a small number of particles are larger than 10 nm. Gas sensing tests suggest that the introduction of PtNPs increases the response to SO2, SOF2 and H2S compared to pure RGO and PtNPs-RGO experiences resistance reducing in SO2 and SOF2 while presenting the opposite case in H2S. Elevating the temperature enhances the recovery properties to SO2 and H2S but lowers the sensitivity. The sensing mechanism for Pt-RGO in low oxygen and water environment depends mainly on the charge transfer between gas and adsorbent and the solvent on material surface. The work provides experimental investigation of Pt-RGO to detect SF6 decompositions.

  20. Preparation and Characterization of Ferroelectric BaTi0.91(Hf0.5, Zr0.5)0.09O3 Thin Films by Sol-Gel Process Using Titanium and Zirconium Alkoxides

    NASA Astrophysics Data System (ADS)

    Thongrueng, Jirawat; Nishio, Keishi; Nagata, Kunihiro; Tsuchiya, Toshio

    2000-09-01

    Sol-gel-derived BaTi0.91(Hf0.5, Zr0.5)0.09O3 (BTHZ-9) thin films have been successfully prepared on Pt and Pt(111)/Ti/SiO2/Si(100) substrates by spin-coating and sintering from 550 to 900°C for 2 h in oxygen ambient. X-ray diffraction measurement indicated that the single perovskite phase of the BTHZ-9 thin films was obtained at heat treatment above 650°C. The formation temperature of the double-alkoxy-derived BTHZ-9 thin films was lower by at least 80°C than that of the films prepared from only titanium alkoxide. The microstructure of the films was observed by atomic force microscopy and scanning electron microscopy. The grain size of the films increased from 70 to 200 nm with increasing sintering temperature ranging from 650 to 850°C. The maximum peak for the dielectric constant, corresponding to the Curie point (87°C), was broad and lower in magnitude compared with that of the BTHZ-9 bulk ceramics. Tensile stresses resulting from the differences between thermal expansion coefficients of the substrate and the film caused poor electrical properties. BTHZ-9 thin films exhibited a well-saturated polarization-electric field hysteresis loop. The polarization and coercive field for the 850-nm-thick BTHZ-9 thin film prepared on Pt/Ti/SiO2/Si substrate at 750°C were determined to be 8 μC/cm2 and 15 kV/cm, respectively. Those of the BTHZ-9 thin film prepared on Pt substrate at 850°C were found to be 9 μC/cm2 and 18 kV/cm, respectively.

  1. Pt nanoparticles residing in the pores of porous LaNiO₃ nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells.

    PubMed

    Yu, Nan; Kuai, Long; Wang, Qing; Geng, Baoyou

    2012-09-07

    Pt-filled porous LaNiO₃ cubes are prepared through a facile route. The characterizations reveal that large numbers of pores (9-10 nm) are distributed homogeneously in porous LaNiO₃ cubes. The Pt nanoparticles residing in the pores of porous LaNiO₃ cubes are about 5 nm in size. The investigation on the electrocatalytic activity reveals that electrocatalytic activity of the obtained Pt loaded porous LaNiO₃ nanocubes exhibit a significantly improved electrochemical active surface area (EASA) and a remarkably enhanced electrocatalytic performance toward methanol oxidation. The results are significant for improving the efficiency of Pt-based catalysts for DMFCs as well as the applications of perovskite compounds.

  2. The control of Pt and Ru nanoparticle size on high surface area supports.

    PubMed

    Liu, Qiuli; Joshi, Upendra A; Über, Kevin; Regalbuto, John R

    2014-12-28

    Supported Ru and Pt nanoparticles are synthesized by the method of strong electrostatic adsorption and subsequently treated under different steaming-reduction conditions to achieve a series of catalysts with controlled particle sizes, ranging from 1 to 8 nm. While in the case of oxidation-reduction conditions, only Pt yielded particles ranging from 2.5 to 8 nm in size and a loss of Ru was observed. Both Ru and Pt sinter faster in air than in hydrogen. This methodology allows the control of particle size using a "production-scalable" catalyst synthesis method which can be applied to high surface area supports with common metal precursors.

  3. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration with: P. Grudowski, D. Jawarani, R. Garcia, M.L. Kottke, R.B. Gregory, X.-D. Wang, D. Theodore, P. Fejes, W.J. Taylor, B.Y. Nguyen, C. Capasso, M. Raymond, D. Denning, K. Chang, R. Noble, M. Jahanbani, S. Bolton, P. Crabtree, D. Goedeke, M. Rossow, M. Chowdhury, H. Desjardins, A.Thean.

  4. Electro-Caloric Properties of BT/PZT Multilayer Thin Films Prepared by Sol-Gel Method.

    PubMed

    Kwon, Min-Su; Lee, Sung-Gap; Kim, Kyeong-Min

    2018-09-01

    In this study, Barium Titanate (BT)/Lead Zirconate Titanate (PZT) multilayer thin films were fabricated by the spin-coating method on Pt (200 nm)/Ti (10 nm) SiO2 (100 nm)/P-Si (100) substrates using BaTiO3 and Pb(Zr0.90Ti0.10)O3 metal alkoxide solutions. The coating and heating procedure was repeated several times to form the multilayer thin films. All of BT/PZT multilayer thin films show X-ray diffraction patterns typical to a polycrystalline perovskite structure and a uniform and void free grain microstructure. The thickness of the BT and PZT film by one-cycle of drying/sintering was approximately 50 nm and all of the films consisted of fine grains with a flat surface morphology. The electrocaloric properties of BT/PZT thin films were investigated by indirect estimation. The results showed that the temperature change ΔT can be calculated as a function of temperature using Maxwell's relation; the temperature change reaches a maximum value of ~1.85 °C at 135 °C under an applied electric field of 260 kV/cm.

  5. Greenschist-Facies Pseudotachylytes and Gouge: a Microstructural Study of the Deformation Propagation at the Boundary Between Hp-Metabasite and Calcite Bearing Metasediments

    NASA Astrophysics Data System (ADS)

    Crispini, L.; Scambelluri, M.; Capponi, G.

    2013-12-01

    Recent friction experiments on calcite-bearing systems reproduce pseudotachylyte structures, that are diagnostic of dinamic calcite recrystallization related to seismic slip in the shallow crust. Here we provide the study of a pseudotachylyte (PT) bearing low angle oblique-slip fault. The fault is linked to the exhumation of Alpine HP-ophiolites and it is syn- to post-metamorphic with respect to retrograde greenschist facies metamorphism. The observed microstructures developed at the brittle-ductile transition and suggest that seismic and interseismic slip was enhanced by interaction with fluids. The fault zone is in-between high-pressure eclogite-facies metabasites (hangingwall) and calcite bearing metasediments (footwall). The mafic rocks largely consist of upper greenschist facies hornblende, albite, chlorite, epidote with relict eclogitic garnet, Na-pyroxene and rutile; metasediments correspond to calcschist and micaschist with quartz, phengite, zoisite, chlorite, calcite and relics of garnet. Key features of the oucrop are: the thickness and geometry of the PT and gouge; the multiple production of PT characterized by overprinting plastic and brittle deformation; the occurrence in footwall metasediments of mm-thick bands of finely recrystallized calcite coeval with PT development in the hangingwall. The damage zone is ca. 2 m-thick and is characterized by two black, ultra-finegrained straight and sharp Principal Slip Zones (PSZ) marked by PT. The damage zone shows a variety of fault rocks (cataclasite and ultracataclasite, gouge and PT) with multiple crosscutting relationships. Within the two main PSZ, PT occurs in 10-20 cm thick layer, in small scale injection veins and in microfractures. In the mafic hanging wall, the PT is recrystallized and does not preserve glass: it shows flow structures with subrounded, embayed and rebsorbed quartz in a fine grained matrix composed of isotropic albite + chlorite + quartz + epidote + titanite, suggesting recrystallization at ca. 270-300°C, 8-10 km of the original glass. PT show plastic deformations overprinted by shear bands and fracturing. The matrix of cataclastic layers has the same mineral assemblage as PT and clasts of recrystallised PT, to indicate polyphase PSZ formation. In the metasedimentary footwall, the original foliation is deflected parallel to the PSZ and is cut by cm-spaced shear bands parallel to PSZ. Deformation propagates in the footwall through mm-thick injections veins, shear bans, P-shears and veins. Pockets of recrystallized PT occur along the pre-existing mylonitic foliation of metasediments. Worthnote is the presence of mm-thick deformation bands (CDB) that are post-mylonitic foliation and mainly composed of fine grained calcite bounded by dissolution seams or ribbon grains of deformed calcite. CDB are characterised by subrounded embayed and rebsorbed quartz grains rimmed by new Ca-Mg amphibole, K-feldspar (90-93%K), in a dinamic recrystallized calcite 2-10 micron in size and slightly elongated. The features of the CDB suggest that these structures can be considered as diagnostic of localised deformation during coesismic slip in metasedimentary rocks.

  6. Reactions of NO2 with BaO/Pt(111) Model Catalysts: The Effects of BaO Film Thickness and NO2 Pressure on the Formation of Ba(NOx)2 Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudiyanselage, Kumudu; Yi, Cheol-Woo; Szanyi, Janos

    2011-05-31

    The adsorption and reaction of NO2 on BaO (<1, ~3, and >20 monolayer equivalent (MLE))/Pt(111) model systems were studied with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS) under ultra-high vacuum (UHV) as well as elevated pressure conditions. NO2 reacts with sub-monolayer BaO (<1 MLE) to form nitrites only, whereas the reaction of NO2 with BaO (~3 MLE)/Pt(111) produces mainly nitrites and a small amount of nitrates under UHV conditions (PNO2 ~ 1.0 × 10-9 Torr) at 300 K. In contrast, a thick BaO(>20 MLE) layer on Pt(111) reacts with NO2 to form nitrite-nitratemore » ion pairs under the same conditions. At elevated NO2 pressures (≥ 1.0 × 10-5 Torr), however, BaO layers at all these three coverages convert to amorphous barium nitrates at 300 K. Upon annealing to 500 K, these amorphous barium nitrate layers transform into crystalline phases. The thermal decomposition of the thus-formed Ba(NOx)2 species is also influenced by the coverage of BaO on the Pt(111) substrate: at low BaO coverages, these species decompose at significantly lower temperatures in comparison with those formed on thick BaO films due to the presence of Ba(NOx)2/Pt interface where the decomposition can proceed at lower temperatures. However, the thermal decomposition of the thick Ba(NO3)2 films follows that of bulk nitrates. Results obtained from these BaO/Pt(111) model systems under UHV and elevated pressure conditions clearly demonstrate that both the BaO film thickness and the applied NO2 pressure are critical in the Ba(NOx)2 formation and subsequent thermal decomposition processes.« less

  7. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    PubMed

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  8. EFFECTS OF TiOx INTERLAYER ON RESISTANCE SWITCHING OF Pt/TiOx/ZnO/n+-Si STRUCTURES

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Lv, Xiaojun; Xi, Junhua; Wu, Xin; Mao, Qinan; Liu, Qingmin; Ji, Zhenguo

    2014-08-01

    In this paper, we fabricated Pt/TiOx/ZnO/n+-Si structures by inserting TiOx interlayer between Pt top electrode (TE) and ZnO thin film for non-volatile resistive random access memory (ReRAM) applications. Effects of TiOx interlayer with different thickness on the resistance switching of Pt/TiOx/ZnO/n+-Si structures were investigated. Conduction behaviors in high and low resistance state (HRS and LRS) fit well with the trap-controlled space-charge-limited conduction (SCLC) and Ohmic behavior, respectively. Variations of set and reset voltages and HRS and LRS resistances of Pt/TiOx/ZnO/n+-Si structures were investigated as a function of TiOx thickness. Switching cycling tests were attempted to evaluate the endurance reliability of Pt/TiOx/ZnO/n+-Si structures. Additionally, the switching mechanism was analyzed by the filament model.

  9. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers

    PubMed Central

    Gopal, Judy; Hasan, Nazim; Manikandan, M.; Wu, Hui-Fen

    2013-01-01

    For the first time, we have investigated the bacterial toxicity or compatibility properties of Pt nanoparticles (NPs) with different sizes (P1, P2, P3, P4 and P5). The bacterio-toxic or compatible properties of these five different sized Pt NPs with the clinical pathogen, Pseudomonas aeruginosa were explored by many analytical methods such as the conventional plate count method, matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), fluorescence microscopy and fluorescence sensoring techniques. The results revealed that the 1–3 nm sized (P1 and P2) Pt NPs showed bacterio-toxic properties while the 4–21 nm (P3, P4 and P5) Pt NPs exhibited bacterio-compatible properties. This is the first study which reports the bacterial toxicity of Pt NPs. The information released from this study is significantly important to future clinical, medical, biological and biomedical applications of Pt NPs. PMID:23405274

  10. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    NASA Astrophysics Data System (ADS)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  11. Imaging Magnetization Structure and Dynamics in Ultrathin Y3Fe5O12/Pt Bilayers with High Sensitivity Using the Time-Resolved Longitudinal Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Bartell, Jason M.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Yang, Fengyuan; Ralph, Daniel C.; Fuchs, Gregory D.

    2017-04-01

    We demonstrate an instrument for time-resolved magnetic imaging that is highly sensitive to the in-plane magnetization state and dynamics of thin-film bilayers of yttrium iron garnet [Y3Fe5O12(YIG )]/Pt : the time-resolved longitudinal spin Seebeck (TRLSSE) effect microscope. We detect the local in-plane magnetic orientation within the YIG by focusing a picosecond laser to generate thermally driven spin current from the YIG into the Pt by the spin Seebeck effect and then use the inverse spin Hall effect in the Pt to transduce this spin current to an output voltage. To establish the time resolution of TRLSSE, we show that pulsed optical heating of patterned YIG (20 nm )/Pt (6 nm )/Ru (2 nm ) wires generates a magnetization-dependent voltage pulse of less than 100 ps. We demonstrate TRLSSE microscopy to image both static magnetic structure and gigahertz-frequency magnetic resonance dynamics with submicron spatial resolution and a sensitivity to magnetic orientation below 0.3 °/√{H z } in ultrathin YIG.

  12. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    PubMed Central

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-01-01

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316

  13. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers.

    PubMed

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin-orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T(n) with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.

  14. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    DOE PAGES

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; ...

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T n with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less

  15. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris; Zharov, Vladimir; Melnikov, Andrei; Tuchin, Valery; Khlebtsov, Nikolai

    2006-10-01

    Recently, several groups (Anderson, Halas, Zharov, and their co-workers, 2003; El-Sayed and co-workers, 2006) demonstrated, through pioneering results, the great potential of photothermal (PT) therapy for the selective treatment of cancer cells, bacteria, viruses, and DNA targeted with gold nanospheres, nanoshells, nanorods, and nanosphere clusters. However, the current understanding of the relationship between the nanoparticle/cluster parameters (size, shape, particle/cluster structure, etc) and the efficiency of PT therapy is limited. Here, we report theoretical simulations aimed at finding the optimal single-particle and cluster structures to achieve its maximal absorption, which is crucial for PT therapeutic effects. To characterize the optical amplification in laser-induced thermal effects, we introduce relevant parameters such as the ratio of the absorption cross section to the gold mass of a single-particle structure and absorption amplification, defined as the ratio of cluster absorption to the total absorption of non-interacting particles. We consider the absorption efficiency of single nanoparticles (gold spheres, rods, and silica/gold nanoshells), linear chains, 2D lattice arrays, 3D random volume clusters, and the random aggregated N-particle ensembles on the outer surface of a larger dielectric sphere, which mimic aggregation of nanosphere bioconjugates on or within cancer cells. The cluster particles are bare or biopolymer-coated gold nanospheres. The light absorption of cluster structures is studied by using the generalized multiparticle Mie solution and the T-matrix method. The gold nanoshells with (silica core diameter)/(gold shell thickness) parameters of (50-100)/(3-8) nm and nanorods with minor/major sizes of (15-20)/(50-70) nm are shown to be more efficient PT labels and sensitizers than the equivolume solid single gold spheres. In the case of nanosphere clusters, the interparticle separations and the short linear-chain fragments are the main structural parameters determining the absorption efficiency and its spectral shifting to the red. Although we have not found a noticeable dependence of absorption amplification on the cluster sphere size, 20-40 nm particles are found to be most effective, in accordance with our experimental observations. The long-wavelength absorption efficiency of random clusters increases with the cluster particle number N at small N and reveals a saturation behaviour at N>20.

  16. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    PubMed

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  17. Deciphering the morphology of ice films on metal surfaces

    NASA Astrophysics Data System (ADS)

    Thürmer, Konrad

    2011-03-01

    Although extensive research has been aimed at the structure of ice films, questions regarding basic processes that govern film evolution remain. Recently we discovered how ice films as many as 30 molecular layers thick can be imaged with STM. The observed morphology yields new insights about water-solid interactions and how they affect the structure of ice films. This talk gives an overview of this progress for crystalline ice films on Pt(111) [2-5]. STM reveals a first molecular water layer very different from bulk ice: besides the usual hexagons it also contains pentagons and heptagons. Slightly thicker films (~ 1 nm, at T> 120 K) arecomprisedof ~ 3 nm - highcrystallites , surroundedbytheone - molecule - thickwettinglayer . Thesecrystalsdewetbynucleatinglayersontheirtopfacets [ 4 ] . Measurementsofthenucleationrateasafunctionofcrystalheightprovideestimatesoftheenergyoftheice - Ptinterface . ForT > 115 Ksurfacediffusionisfastenoughthatsurfacesmoothingand 2 D - islandripeningisobservable [ 5 ] . ByquantifyingtheT - dependentripeningofislandarrayswedeterminedtheactivationenergyforsurfaceself - diffusion . Theshapeofthese 2 Dislandsvariesstronglywithfilmthickness . Weattributethistoatransitionfrompolarizediceatthesubstratetowardsprotondisorderatlargerfilmthicknesses . Despitefastsurfacediffusionicemultilayersareoftenfarfromequilibrium . Forexample , icegrowsbetween ~ 120 and ~ 160 K in its cubic variant rather than in its equilibrium hexagonal form. We found this to be a consequence of the mismatch in the atomic Pt-step height and the ice-bilayer separation and propose a mechanism of cubic-ice formation via growth spirals around screw dislocations. Joint work with N.C. Bartelt and S. Nie, Sandia Natl. Labs, CA. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. DOE under Contracts No. DEAC04-94AL85000.

  18. Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography - Part I: Simulation

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjit; Kim, Wontae

    2017-06-01

    This paper investigates the possibilities of evaluating non-uniform coating thickness using thermal wave imaging method. A comparative study of pulsed thermography (PT) and lock-in thermography (LIT) based on evaluating the accuracy of predicted coating thickness is presented. In this study, a transient thermal finite element model was created in ANSYS 15. A single square pulse heating for PT and a sinusoidal heating at different modulation frequencies for LIT were used to stimulate the sample according to the experimental procedures. The response of thermally excited surface was recorded and data processing with Fourier transform was carried out to obtain the phase angle. Then calculated phase angle was correlated with the coating thickness. The method demonstrated potential in the evaluation of coating thickness and was successfully applied to measure the non-uniform top layers ranging from 0.1 mm to 0.6 mm; within an accuracy of 0.0003-0.0023 mm for PT and 0.0003-0.0067 mm for LIT. The simulation model enabled a better understanding of PT and LIT and provided a means of establishing the required experimental set-up parameters. This also led to optimization of experimental configurations, thus limiting the number of physical tests necessary.

  19. Prenasal thickness to nasal bone length ratio: effectiveness as a second or third trimester marker for Down syndrome.

    PubMed

    Tournemire, A; Groussolles, M; Ehlinger, V; Lusque, A; Morin, M; Benevent, J B; Arnaud, C; Vayssière, C

    2015-08-01

    To assess the value of the prenasal thickness to nasal bone length ratio (PT/NBL) for detecting trisomy 21 (T21) after the first trimester. Two examiners blinded to fetal T21 status retrospectively measured prenasal thickness (PT) and nasal bone length (NBL) of T21 and control fetuses at 15-36 weeks' gestational age on two-dimensional images from all T21-screening ultrasounds from November 2010 to April 2013. ROC curve analysis and its diagnostic values determined the best cut-off value for the ratio. Interobserver reproducibility was assessed. Good quality ultrasound profile images were available for 26 fetuses with T21 compared to 91 normal fetuses. The median PT/NBL ratio was 1.28 for T21 and 0.73 for control fetuses (p<0.0001). The PT/NBL ratio performed significantly better (AUC 0.99; 95%CI 0.97-1) than either PT (0.82; 0.73-0.91) or NBL (0.91; 0.85-0.98). The optimal PT/NBL ratio cut-off was 0.98, with a sensitivity of 88.5% [76.2-100%] and a specificity of 100%. Interobserver variability was low. The PT/NBL ratio is a strong marker for detecting T21 in the second and third trimesters, significantly more effective than either indicator alone. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Patterned Growth of Carbon Nanotubes or Nanofibers

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D.

    2004-01-01

    A method and apparatus for the growth of carbon nanotubes or nanofibers in a desired pattern has been invented. The essence of the method is to grow the nanotubes or nanofibers by chemical vapor deposition (CVD) onto a patterned catalyst supported by a substrate. The figure schematically depicts salient aspects of the method and apparatus in a typical application. A substrate is placed in a chamber that contains both ion-beam sputtering and CVD equipment. The substrate can be made of any of a variety of materials that include several forms of silicon or carbon, and selected polymers, metals, ceramics, and even some natural minerals and similar materials. Optionally, the substrate is first coated with a noncatalytic metal layer (which could be a single layer or could comprise multiple different sublayers) by ion-beam sputtering. The choice of metal(s) and thickness(es) of the first layer (if any) and its sublayers (if any) depends on the chemical and electrical properties required for subsequent deposition of the catalyst and the subsequent CVD of the carbon nanotubes. A typical first-sublayer metal is Pt, Pd, Cr, Mo, Ti, W, or an alloy of two or more of these elements. A typical metal for the second sublayer or for an undivided first layer is Al at a thickness .1 nm or Ir at a thickness .5 nm. Proper choice of the metal for a second sublayer of a first layer makes it possible to use a catalyst that is chemically incompatible with the substrate. In the next step, a mask having holes in the desired pattern is placed over the coated substrate. The catalyst is then deposited on the coated substrate by ion-beam sputtering through the mask. Optionally, the catalyst could be deposited by a technique other than sputtering and/or patterned by use of photolithography, electron- beam lithography, or another suitable technique. The catalytic metal can be Fe, Co, Ni, or an alloy of two or more of these elements, deposited to a typical thickness in the range from 0.1 to 20 nm.

  1. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction

    PubMed Central

    Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)

    2015-01-01

    A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247

  2. Effect of Pt Nanoparticles on the Photocatalytic Activity of ZnO Nanofibers

    NASA Astrophysics Data System (ADS)

    Di Mauro, Alessandro; Zimbone, Massimo; Scuderi, Mario; Nicotra, Giuseppe; Fragalà, Maria Elena; Impellizzeri, Giuliana

    2015-12-01

    For this study, we originally realized ZnO nanofibers (˜50 nm in mean radius) mixed with Pt nanoparticles (˜30 nm in mean radius), prepared by pulsed laser ablation in liquid, and investigated their photocatalytic performance. The material was synthesized by the simple electrospinning method coupled with subsequent thermal treatments. Methylene blue was employed as a representative dye pollutant to evaluate the photocatalytic activity of the nanofibers. It was found that the Pt-ZnO fibers exhibit a photodegradation reaction rate that is ˜40 % higher than the one obtained for reference ZnO fibers. These encouraging results demonstrate that Pt-ZnO nanofibers can be fruitfully applied for environmental applications.

  3. Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex

    DOE PAGES

    Saris, Patrick J. G.; Thompson, Mark E.

    2016-08-04

    Here, the design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine free ligand for sky blue phosphorescence is demonstrated in a cyclometallated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 kelvin (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.

  4. Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saris, Patrick J. G.; Thompson, Mark E.

    Here, the design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine free ligand for sky blue phosphorescence is demonstrated in a cyclometallated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 kelvin (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.

  5. Comparison of the agglomeration behavior of thin metallic films on SiO2

    NASA Astrophysics Data System (ADS)

    Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.

    2005-07-01

    The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.

  6. Growth and sacrificial oxidation of transition metal nanolayers

    NASA Astrophysics Data System (ADS)

    Tsarfati, Tim; Zoethout, Erwin; van de Kruijs, Robbert; Bijkerk, Fred

    2009-04-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e - donation by Mo. Au and Cu, in spite of their significantly lower surface free energy, grow in islands on Mo and actually promote Mo oxidation. Applications of the sacrificial oxidation in nanometer thin layers exist in a range of nanoscopic devices, such as nano-electronics and protection of e.g. multilayer X-ray optics for astronomy, medicine and lithography.

  7. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures.

    PubMed

    Chen, Ruei-San; Tang, Chih-Che; Shen, Wei-Chu; Huang, Ying-Sheng

    2015-12-05

    Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal-semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω(-) (1) cm(-) (1), with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed. Similar results can be obtained for other layer semiconductor materials such as MoS2 and WS2.

  8. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures

    PubMed Central

    Chen, Ruei-San; Tang, Chih-Che; Shen, Wei-Chu; Huang, Ying-Sheng

    2015-01-01

    Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal–semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω−1 cm−1, with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed. Similar results can be obtained for other layer semiconductor materials such as MoS2 and WS2. PMID:26710105

  9. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    PubMed

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  10. Electrochemical and Morphological Investigations of Ga Addition to Pt Electrocatalyst Supported on Carbon

    PubMed Central

    Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.

    2017-01-01

    This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065

  11. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  12. Nasal bone length: prenasal thickness ratio: a strong 2D ultrasound marker for Down syndrome.

    PubMed

    Szabó, Andrea; Szili, Károly; Szabó, János Tamás; Sikovanyecz, János; Isaszegi, Dóra; Horváth, Emese; Szabó, János

    2014-12-01

    To evaluate the feasibility of incorporating two-dimensional ultrasound measurements of nasal bone length (NBL) and prenasal thickness (PT) into the second-trimester anomaly scan and to determine whether the NBL : PT ratio could help in differentiating euploid and Down syndrome fetuses. Two-dimensional measurements of NBL and PT were obtained from the midsagittal plane of the fetal head at 14-28 weeks of gestation in a Caucasian population at risk for aneuploidy. The screening performances of NBL, PT, and the ratios NBL : PT and PT : NBL were analyzed in euploid (n = 1330) and Down syndrome (n = 33) fetuses. Nasal bone length and PT alone showed strong correlations with Down syndrome (sensitivity: 76% at 1.88% and 2.35% false positive rate, respectively). However, the NBL : PT ratio showed an even stronger correlation with Down syndrome (false positive rate: 0.9%, sensitivity: 97%). The mean NBL : PT ratio showed a gradual increase from 1.48 to 1.79 (a 21.2% increase) between 14 and 28 weeks of gestation. Two-dimensional ultrasound measurements of NBL and PT, particularly the NBL : PT ratio, are highly sensitive markers for Down syndrome fetuses. © 2014 John Wiley & Sons, Ltd.

  13. Pt thermal atomic layer deposition for silicon x-ray micropore optics.

    PubMed

    Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa

    2018-04-20

    We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10  nm and Pt ∼20  nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2  nm rms to 2.2±0.2  nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

  14. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core

    DOE PAGES

    Elbert, Katherine; Hu, Jue; Ma, Zhong; ...

    2015-10-05

    Hydrogen oxidation and evolution on Pt in acid are facile processes, while in alkaline electrolytes, they are 2 orders of magnitude slower. Thus, developing catalysts that are more active than Pt for these two reactions is important for advancing the performance of anion exchange membrane fuel cells and water electrolyzers. Herein, we detail a 4-fold enhancement of Pt mass activity that we achieved using single-crystalline Ru@Pt core–shell nanoparticles with two-monolayer-thick Pt shells, which doubles the activity on Pt–Ru alloy nanocatalysts. For Pt specific activity, the two- and one-monolayer-thick Pt shells exhibited enhancement factors of 3.1 and 2.3, respectively, compared tomore » the Pt nanocatalysts in base, differing considerably from the values of 1 and 0.4, respectively, in acid. To explain such behavior and the orders of magnitude difference in activity on going from acid to base, we performed kinetic analyses of polarization curves over a wide range of potential from –250 to 250 mV using the dual-pathway kinetic equation. From acid to base, the activation free energies increase the most for the Volmer reaction, resulting in a switch of the rate-determining step from the Tafel to the Volmer reaction, and a shift to a weaker optimal hydrogen binding energy. Furthermore, the much higher activation barrier for the Volmer reaction in base than in acid is ascribed to one or both of the two catalyst-insensitive factors: slower transport of OH – than H + in water and a stronger O–H bond in water molecules (HO–H) than in hydrated protons (H 2O–H +).« less

  15. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoxiong; Xu, Zhihua; Cheng, Bei; Jiang, Chuanjia

    2017-05-01

    Formaldehyde (HCHO) removal from air at room (ambient) temperature by effective catalysts is of significance for improving indoor air quality, and catalysts with high efficiency and good recyclability are highly desirable. In this study, platinum (Pt) supported on nanorod-shaped Co3O4 (Pt/Co3O4) was prepared by calcination of microwave-assisted synthesized Co3O4 precursor followed by NaBH4-reduction of Pt precursor. The as-prepared Co3O4 exhibited a morphology of nanorods with lengths of 400-700 nm and diameters of approximately 40-50 nm, which were self-assembled by nanoparticles. The Pt/Co3O4 catalyst exhibited a superior catalytic performance for HCHO oxidation at room temperature compared to Pt supported on commercial Co3O4 (Pt/Co3O4-c) and Pt supported on commercial TiO2 (Pt/TiO2), which is mainly due to the high oxygen mobility resulting from its distinct nanorod morphology, strong metal-support interaction between Pt and Co3O4, and the intrinsic redox nature of the Co3O4 support. This study provides new insights into the fabrication of high-performance catalysts for indoor air purification.

  16. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  17. Improvement in surface conditions of electroplated Fe-Pt thick-film magnets

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Honda, J.; Hamamura, R.; Omagari, Y.; Yamada, H.; Fujita, N.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    Fe-Pt thick-films were electroplated on Ta, Ti, Co, Ni, and Cu plates (substrates) using a direct current, and the surface morphology, the magnetic properties, and the crystal structure of the films were evaluated. The films plated on the Co, Ni, and Cu substrates showed much smooth surface compared with those for the Ta and Ti ones, and we confirmed that the Cu plate was the most attractive substrate due to very small cracks after an annealing for L10 ordering. High coercivity (>800 kA/m) for the Cu substrate is almost the same as that for our previous study in which we employed the Ta substrate, and we found that the Cu plate is a hopeful substrate to improve the surface conditions of electroplated Fe-Pt thick-film magnets.

  18. Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine

    NASA Astrophysics Data System (ADS)

    Adliha Abdullah, Nur; Abu Bakar, Norhayati; Shapter, Joseph G.; Mat Salleh, Muhamad; Umar, Akrajas Ali

    2017-06-01

    Creatinine is one of the most commonly used bio markers of renal function. This paper reports a study on detection of creatinine using silver-platinum (AgPt) nanoferns substrates to fabricate a surface-enhanced Raman spectroscopy (SERS) sensor. The AgPt nanoferns were synthesized by liquid phase deposition (LPD) where the morphology structures and thickness of the AgPt nanoferns were controlled by varying the concentration of formic acid which was acting as the reducing agent. We have obtained four different nanoferns structures and thicknesses. This study showed that the AgPt nanoferns structure synthesized with 40 mM formic acid give the highest Raman peak intensity for a 0.05 M creatinine sample.

  19. Double heterojunction nanowire photocatalysts for hydrogen generation

    NASA Astrophysics Data System (ADS)

    Tongying, P.; Vietmeyer, F.; Aleksiuk, D.; Ferraudi, G. J.; Krylova, G.; Kuno, M.

    2014-03-01

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities. Electronic supplementary information (ESI) available: Details of NW syntheses, processing and characterization. Additional TEM images of CdS, CdSe and CdSe/CdS core/shell NWs. NW concentration and cross section estimates. Details of the Pt NP decoration. Additional TEM images of Pt NP decorated CdS, CdSe and CdSe/CdS core/shell NWs. Size distribution of Pt NPs for CdSe/Pt NP and CdSe/CdS/Pt NP NWs. Xe arc lamp spectrum. Details of H2 generation experiments. Estimated photon absorption rate. Details of TDA measurements. TDA spectra and kinetics of CdS and CdS/Pt NP NWs. Plot illustrating CdSe NW band edge bleach kinetics. Comparison of CdSe band edge bleach kinetics in CdSe/CdS core/shell NWs when excited at λexc = 387 nm and λexc = 560 nm. Comparison of CdSe band edge bleach kinetics in CdSe/Pt NP NWs when excited at λexc = 387 nm and λexc = 560 nm. Bar graph showing H2 generation efficiencies of CdS and CdS/Pt NP NWs. Bleach kinetics of CdSe/CdS/Pt NP NWs at λexc = 387 nm and λexc = 560 nm. Comparison of CdS band edge bleach kinetics in CdS/Pt NP, and CdSe/CdS core/shell NWs when excited at λexc = 387 nm. See DOI: 10.1039/c4nr00298a

  20. Study of perpendicular anisotropy L1{sub 0}-FePt pseudo spin valves using a micromagnetic trilayer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Pin, E-mail: hopin@mit.edu; Data Storage Institute, Agency of Science, Technology and Research - A*STAR, 117608 Singapore; Evans, Richard F. L.

    2015-06-07

    A trilayer micromagnetic model based on the Landau-Lifshitz-Bloch equation of motion is utilized to study the properties of L1{sub 0}-FePt/TiN/L1{sub 0}-FePt pseudo spin valves (PSVs) in direct comparison with experiment. Theoretical studies give an insight on the crystallographic texture, magnetic properties, reversal behavior, interlayer coupling effects, and magneto-transport properties of the PSVs, in particular, with varying thickness of the top L1{sub 0}-FePt and TiN spacer. We show that morphological changes in the FePt layers, induced by varying the FePt layer thickness, lead to different hysteresis behaviors of the samples, caused by changes in the interlayer and intralayer exchange couplings. Suchmore » effects are important for the optimization of the PSVs due to the relationship between the magnetic properties, domain structures, and the magnetoresistance of the device.« less

  1. Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties

    PubMed Central

    2010-01-01

    We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs. PMID:20672113

  2. Platinum assisted vapor-liquid-solid growth of er-si nanowires and their optical properties.

    PubMed

    Kim, Myoung-Ha; Kim, Il-Soo; Park, Yong-Hee; Park, Tae-Eon; Shin, Jung H; Choi, Heon-Jin

    2009-11-14

    We report the optical activation of erbium coated silicon nanowires (Er-SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor-liquid-solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core-shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er-SiNWs.

  3. Platinum Assisted Vapor-Liquid-Solid Growth of Er-Si Nanowires and Their Optical Properties

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Ha; Kim, Il-Soo; Park, Yong-Hee; Park, Tae-Eon; Shin, Jung H.; Choi, Heon-Jin

    2010-02-01

    We report the optical activation of erbium coated silicon nanowires (Er-SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor-liquid-solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core-shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er-SiNWs.

  4. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    PubMed

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  5. Nanoscale chemical state analysis of resistance random access memory device reacting with Ti

    NASA Astrophysics Data System (ADS)

    Shima, Hisashi; Nakano, Takashi; Akinaga, Hiro

    2010-05-01

    The thermal stability of the resistance random access memory material in the reducing atmosphere at the elevated temperature was improved by the addition of Ti. The unipolar resistance switching before and after the postdeposition annealing (PDA) process at 400 °C was confirmed in Pt/CoO/Ti(5 nm)/Pt device, while the severe degradation of the initial resistance occurs in the Pt/CoO/Pt and Pt/CoO/Ti(50 nm)/Pt devices. By investigating the chemical bonding states of Co, O, and Ti using electron energy loss spectroscopy combined with transmission electron microscopy, it was revealed that excess Ti induces the formation of metallic Co, while the thermal stability was improved by trace Ti. Moreover, it was indicated that the filamentary conduction path can be thermally induced after PDA in the oxide layer by analyzing electrical properties of the degraded devices. The adjustment of the reducing elements is quite essential in order to participate in their profits.

  6. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGES

    Zhu, Jing; Zheng, Xin; Wang, Jie; ...

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt 3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt 3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relativemore » to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  7. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.

    2017-05-01

    Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.

  8. Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells.

    PubMed

    Wang, Ruihong; Xie, Ying; Shi, Keying; Wang, Jianqiang; Tian, Chungui; Shen, Peikang; Fu, Honggang

    2012-06-11

    The synergistic effect between Pt and WC is beneficial for methanol electro-oxidation, and makes Pt-WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small-sized and contacting Pt-WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small-sized, well-dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre-existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2-3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt-WC nanostructures. These results are consistent with the theoretical findings. X-ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt-WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prenasal thickness to nasal bone length ratio in normal and trisomy 21 fetuses at 11-14 weeks of gestation.

    PubMed

    Manegold-Brauer, Gwendolin; Bourdil, Lucas; Berg, Christoph; Schoetzau, Andreas; Gembruch, Ulrich; Geipel, Annegret

    2015-11-01

    To show the feasibility and to create a reference range for prenasal thickness (PT) and for the PT to nasal bone length (NBL) ratio in normal fetuses at 11-14 gestational weeks and to compare the findings to fetuses with trisomy 21. PT, NBL and PT/NBL ratio were measured retrospectively in stored two-dimensional images of 1155 normal fetuses and 44 fetuses with trisomy 21. Mid-sagittal images were acquired at first trimester ultrasound examinations and were selected from our digital database. The PT increased with CRL from 1.0 mm at 45-mm CRL to 1.6 mm at 84-mm CRL. The mean PT/NBL ratio was 0.6 and was not altered by CRL. The mean PT/NBL ratio in fetuses with trisomy 21 was significantly higher than in normal fetuses (p < 0.0001). For a cut-off value of 0.8 the PT/NBL yielded a sensitivity of 86.4% and a specificity of 98.4% for trisomy 21. The assessment of PT between 11 and 14 gestational weeks is feasible with high intraclass correlation. The PT to NBL ratio seems to be a promising marker for trisomy 21 in the first trimester and was superior to the isolated contribution of NBL and PT measurements. © 2015 John Wiley & Sons, Ltd.

  10. Screening metal nanoparticles using boron-doped diamond microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Rangkuti, Prasmita K.; Einaga, Yasuaki

    2016-04-19

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrodemore » produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.« less

  11. Preparation, Spectroscopic Characterization, and Frontier MO Study of the Heteronuclear Luminescent [Pt(2)Au(2)(dmb)(2)(PPh(3))(4)](PF(6))(2) Cluster (dmb = 1,8-Diisocyano-p-menthane). A Cluster with a Formal Au(0)-Au(0) Bond Encapsulated inside a "Pt(2)(dmb)(2)(2+) " Fragment.

    PubMed

    Zhang, Tianle; Drouin, Marc; Harvey, Pierre D.

    1999-11-01

    The title compound is prepared from the direct reaction of Pt(2)(dba)(3) (dba = dibenzylideneacetone) and [Au(PPh(3))(2)](PF(6)) in the presence of 1,8-diisocyano-p-methane (dmb), with Pt(2)(dmb)(2)Cl(2), [Pt(4)(dmb)(4)(PPh(3))(2)](PF(6))(2), and (PPh(3))AuCl being formed as parallel products. X-ray crystallography reveals the presence of a quasi-linear PPh(3)Au-AuPPh(3) fragment encapsulated inside a "Pt(2)(dmb)(2)(2+)" ring which is axially coordinated with two PPh(3) ligands. The d(AuAu) is 2.5977(6) Å and is indicative of a strong Au-Au single bond. The IR nu(CN) data reveal that the Pt oxidation state is I, which places the Au oxidation state at 0. The PtAu distances are 2.8422(5) and 2.8082(5) Å. The Raman-active nu(Au(2)), nu(PtAu) (b(2g) + a(g)), nu(PtP), nu(AuP), and nu(PtC) are found at 121.2, approximately 100, 85.5, 162.1, 183.1, and 457.2, and 440.9 cm(-)(1), respectively. The PtAu (0.67 mdyn Å(-)(1)) and Au(2) (1.21 mdyn Å(-)(1)) force constants (F) confirm the presence of medium PtAu and strong Au(2) bonding interactions. The absorption spectra are characterized by strong bands at lambda(max) (epsilon, M(-1) cm(-1)) at 316 (32 300), 366 (37 800), and 418 nm (21 500) and lower intensity features at 516 (2860) and 655 nm (834). The cluster is luminescent at low temperatures (solid and frozen glasses), and in the solid state at room temperature, and exhibits an emission band at approximately 875 nm, and an emission lifetime, tau(e), of 4.4 +/- 0.4 ns (solvent = butyronitrile, T = 77 K).

  12. Preparation and Ferroelectric Property of (100)-ORIENTED Ca0.4Sr0.6Bi4Ti4O15 Thin Film on Pt/Ti/SiO2/Si Substrate

    NASA Astrophysics Data System (ADS)

    Fan, Suhua; Che, Quande; Zhang, Fengqing

    The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.

  13. Switching times of nanoscale FePt: Finite size effects on the linear reversal mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, M. O. A.; Chantrell, R. W.

    2015-04-20

    The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T{sup *}), at which the linear reversal mechanism occurs, are observed to decrease with system size whilst the temperature window T{sup *}

  14. Effects of surface topography on magnetization reversal of magnetic thin films.

    PubMed

    Girgis, E; Pogossian, S P; Benkhedar, M L

    2006-04-01

    The influence of the created surface roughness on the coercivity of magnetic thin films has been investigated. The magnetic thin films (CoFe and alternatively NiFe) are sputtered on top of smooth substrates that were previously covered with an array of considerably rougher lines with one of these materials Pt, Cu, CoFe, and NiFe. The lines have been patterned using optical lithography into arrays that are deposited with different thicknesses varying between 5 nm-15 nm. The lines have been designed to have a very rough edge and seated in two different angles relative to the wafer edge (zero and 45 degrees). Magneto-optic Kerr effect (MOKE) measurements showed two distinct switching fields in the hysteresis loops that are due to magnetic domain wall trapping created by the surface roughness. The magnetization reversal showed a strong dependence on the height, the orientation angle, and the material's type of the created surface roughness (the lines).

  15. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors, ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.

  16. Polarization switching behavior of one-axis-oriented lead zirconate titanate films fabricated on metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Ichinose, Daichi; Shiraishi, Takahisa; Shima, Hiromi; Kiguchi, Takanori; Akama, Akihiko; Nishida, Ken; Konno, Toyohiko J.; Funakubo, Hiroshi

    2017-10-01

    For the application of electronic devices using ferroelectric/piezoelectric components, one-axis-oriented tetragonal Pb(Zr0.40Ti0.60)O3 (PZT) films with thicknesses of up to 1 µm were fabricated with the aid of a Ca2Nb3O10 nanosheet (ns-CN) template for preferential crystal growth for evaluating their polarization switching behavior. The ns-CN template was supported on ubiquitous silicon (Si) wafer by a simple dip coating technique, followed by the repetitive chemical solution deposition (CSD) of PZT films. The PZT films were grown successfully with preferential crystal orientation of PZT(100) up to the thickness of 1020 nm. The (100)-oriented PZT film with ∼1 µm thickness exhibited unique polarization behavior of ferroelectric polarization, i.e., a marked increase in remanent polarization (P r) up to approximately 40 µC/cm2 induced by domain switching under high electric field, whereas the film with a lower thickness showed only a lower P r of approximately 11 µC/cm2 even under a high electric field. The ferroelectric property of the (100)-oriented PZT film after domain switching on ns-CN/Pt/Si can be comparable to those of (001)/(100)-oriented epitaxial PZT films.

  17. Structural and luminescence studies on pi...pi and Pt...Pt interactions in mixed chloro-isocyanide cyclometalated platinum(II) complexes.

    PubMed

    Díez, Alvaro; Forniés, Juan; Larraz, Carmen; Lalinde, Elena; López, José A; Martín, Antonio; Moreno, M Teresa; Sicilia, Violeta

    2010-04-05

    [Pt(bzq)Cl(CNR)] [bzq = benzoquinolinate; R = tert-butyl ((t)Bu 1), 2-6-dimethylphenyl (Xyl 2), 2-naphthyl (2-Np 3)] complexes have been synthesized and structurally and photophysically characterized. 1 was found to co-crystallize in two distinct pseudopolymorphs: a red form, which exhibits an infinite 1D-chain ([1](infinity)) and a yellow form, which contains discrete dimers ([1](2)), both stabilized by interplanar pi...pi (bzq) and short Pt...Pt bonding interactions. Complex 3, generated through the unexpected garnet-red double salt isomer [Pt(bzq)(CN-2-Np)(2)][Pt(bzq)Cl(2)] 4, crystallizes as yellow Pt...Pt dimers ([3](2)), while 2 only forms pi...pi (bzq) contacting dimers. Their electronic absorption and luminescence behaviors have been investigated. According to Time-Dependent Density Functional Theory (TD-DFT) calculations, the lowest-lying absorption (CH(2)Cl(2)) has been attributed to combined (1)ILCT and (1)MLCT/(1)ML'CT (L = bzq, L' = CNR) transitions, the latter increasing from 1 to 3. In solid state, while the yellow form [1](2) exhibits a green (3)MLCT unstructured emission only at 77 K, the 1-D form [1](infinity) displays a characteristic low-energy red emission (672 nm, 298 K; 744 nm, 77 K) attributed to a mixed (3)MMCT [d(sigma*)-->p(sigma)]/(3)MMLCT [dsigma*(M(2))-->sigma(pi*)(bzq)] excited state. However, upon exposure to standard atmospheric conditions, [1](infinity) shows an irreversible change to an orange-ochre solid, whose emissive properties are similar to those of the crude 1. Complexes 2 and 3 (77 K) exhibit a structured emission from discrete fragments ((3)LC/(3)MLCT), whereas the luminescence of the garnet-red salt 4 is dominated by a low energy emission (680 nm, 298 K; 730 nm, 77 K) arising from a (3)MMLCT excited state. Solvent (CH(2)Cl(2), toluene, 2-MeTHF and CH(3)CN) and concentration-dependent emission studies at 298 K and at 77 K are also reported for 1-3. In CH(2)Cl(2) solution, the low phosphorescent emission band is ascribed to bzq intraligand charge transfer (3)ILCT mixed with metal-to-ligand (L = bzq, L' = CNR) charge transfer (3)MLCT/(3)ML'CT character with the Pt to CNR contribution increasing from 1 to 3, according to computational studies.

  18. (Pt1-xCux)3Cu2B and Pt9Cu3B5, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    NASA Astrophysics Data System (ADS)

    Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.

    2015-09-01

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.

  19. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  20. Nasal bone length: prenasal thickness ratio: a strong 2D ultrasound marker for Down syndrome

    PubMed Central

    Szabó, Andrea; Szili, Károly; Szabó, János Tamás; Sikovanyecz, János; Isaszegi, Dóra; Horváth, Emese; Szabó, János

    2014-01-01

    Objectives To evaluate the feasibility of incorporating two-dimensional ultrasound measurements of nasal bone length (NBL) and prenasal thickness (PT) into the second-trimester anomaly scan and to determine whether the NBL : PT ratio could help in differentiating euploid and Down syndrome fetuses. Method Two-dimensional measurements of NBL and PT were obtained from the midsagittal plane of the fetal head at 14–28 weeks of gestation in a Caucasian population at risk for aneuploidy. The screening performances of NBL, PT, and the ratios NBL : PT and PT : NBL were analyzed in euploid (n = 1330) and Down syndrome (n = 33) fetuses. Results Nasal bone length and PT alone showed strong correlations with Down syndrome (sensitivity: 76% at 1.88% and 2.35% false positive rate, respectively). However, the NBL : PT ratio showed an even stronger correlation with Down syndrome (false positive rate: 0.9%, sensitivity: 97%). The mean NBL : PT ratio showed a gradual increase from 1.48 to 1.79 (a 21.2% increase) between 14 and 28 weeks of gestation. Conclusion Two-dimensional ultrasound measurements of NBL and PT, particularly the NBL : PT ratio, are highly sensitive markers for Down syndrome fetuses. © 2014 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. PMID:24966049

  1. Preparation and characterization of ultraflat Pt facets by atom-height-resolved differential optical microscopy

    NASA Astrophysics Data System (ADS)

    Azhagurajan, M.; Wen, R.; Kim, Y. G.; Itoh, T.; Sashikata, K.; Itaya, K.

    2015-01-01

    We recently demonstrated that improvements to our technique, laser confocal microscopy with differential interference microscopy (LCM-DIM), has rendered it fully capable of resolving monatomic steps with heights of ca. 0.25 nm on Au(111) and Pd(111) surfaces, even as low as 0.14 nm on Si(100), in aqueous solution. In this paper, we describe in detail a method to prepare and characterize, via atomic-layer-resolved LCM-DIM, ultraflat Pt(111) and Pt(100) facets over a wide surface area. The preparation of ultraflat surfaces is important in the characterization at the atomic scale of electrochemical processes under reaction conditions. To showcase the elegance of LCM-DIM, the anodic dissolution of Pt in aqueous HCl is briefly recounted.

  2. Outcome Comparison Between in Situ Repair Versus Tear Completion Repair for Partial Thickness Rotator Cuff Tears.

    PubMed

    Kim, Yang-Soo; Lee, Hyo-Jin; Bae, Sung-Ho; Jin, Hyonki; Song, Hyun Seok

    2015-11-01

    To compare the clinical outcomes of arthroscopic in situ repair with the tear completion repair technique for partial-thickness rotator cuff tears (PT-RCTs). We prospectively enrolled 100 cases with articular-sided and bursal-sided PT-RCTs exceeding 50% of tendon thickness and allocated them randomly. An in situ repair was performed in group 1 (n = 50). Completion of the remaining cuff tissue and repair were performed in group 2 (n = 50). The medial row was knotted as transosseous repair (suture-bridge technique) in all cases. American Shoulder Elbow Society (ASES) score, Constant shoulder (CS) score, Simple shoulder (SS) score, and Korean shoulder (KS) score, and visual analog scale (VAS) for pain and range of motion were assessed at 3, 6, and 12 months and at the last visit. Repaired tendon integrity was determined at 6 to 12 months by magnetic resonance imaging. Eight cases were lost to follow-up. Ultimately, 92 cases were analyzed. The average follow-up was 19.1 months (range, 12 to 42 months). Significant improvements in the VAS for pain and functional outcomes were observed in both groups postoperatively (P = .001 for VAS; P < .001 for ASES score; P < .001 for CS score; P = .001 for SS score; P<.001 for KS score). No significant difference in the clinical results was observed at any time between the groups. No difference of retear rate on articular-sided PT-RCT was observed between the groups (P = .34). Retears on the bursal-sided PT-RCT were more frequent in group 2 (P = .02). Arthroscopic repair of PT-RCT exceeding 50% of the thickness provided functional improvements and pain relief regardless of the repair technique. The retear rate for bursal-sided PT-RCT was higher in group 2, although the retear rate for the articular-sided PT-RCT was not different. Level II, prospective comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose.

    PubMed

    Qiao, Fengmin; Wang, Zhenzhen; Xu, Ke; Ai, Shiyun

    2015-10-07

    A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.

  4. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.

    2015-11-01

    Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  5. Large spin-orbit torques in Pt/Co-Ni/W heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jiawei; Qiu, Xuepeng; Legrand, William

    2016-07-25

    The spin orbit torques (SOTs) in perpendicularly magnetized Co-Ni multilayers sandwiched between two heavy metals (HM) have been studied. By exploring various HM materials, we show an efficient enhancement or cancellation of the total SOT, depending on the combination of the two HM materials. The maximum SOT effective field is obtained in Pt/Co-Ni/W heterostructures. We also model our double HM system and show that the effective spin Hall angle has a peak value at certain HM thicknesses. Measuring the SOT in Pt/Co-Ni/W for various W thicknesses confirms an effective spin Hall angle up to 0.45 in our double HM system.

  6. Method for localized deposition of noble metal catalysts with control of morphology

    DOEpatents

    Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  7. Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

    PubMed Central

    Han, Luyang; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul

    2010-01-01

    Summary Monatomic (Fe, Co) and bimetallic (FePt and CoPt) nanoparticles were prepared by exploiting the self-organization of precursor loaded reverse micelles. Achievements and limitations of the preparation approach are critically discussed. We show that self-assembled metallic nanoparticles can be prepared with diameters d = 2–12 nm and interparticle distances D = 20–140 nm on various substrates. Structural, electronic and magnetic properties of the particle arrays were characterized by several techniques to give a comprehensive view of the high quality of the method. For Co nanoparticles, it is demonstrated that magnetostatic interactions can be neglected for distances which are at least 6 times larger than the particle diameter. Focus is placed on FePt alloy nanoparticles which show a huge magnetic anisotropy in the L10 phase, however, this is still less by a factor of 3–4 when compared to the anisotropy of the bulk counterpart. A similar observation was also found for CoPt nanoparticles (NPs). These results are related to imperfect crystal structures as revealed by HRTEM as well as to compositional distributions of the prepared particles. Interestingly, the results demonstrate that the averaged effective magnetic anisotropy of FePt nanoparticles does not strongly depend on size. Consequently, magnetization stability should scale linearly with the volume of the NPs and give rise to a critical value for stability at ambient temperature. Indeed, for diameters above 6 nm such stability is observed for the current FePt and CoPt NPs. Finally, the long-term conservation of nanoparticles by Au photoseeding is presented. PMID:21977392

  8. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02166b

  9. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (<1 nm) perpendicularly magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.

  10. Redistribution of phosphorus during Ni0.9Pt0.1-based silicide formation on phosphorus implanted Si substrates

    NASA Astrophysics Data System (ADS)

    Lemang, M.; Rodriguez, Ph.; Nemouchi, F.; Juhel, M.; Grégoire, M.; Mangelinck, D.

    2018-02-01

    Phosphorus diffusion and its distribution during the solid-state reactions between Ni0.9Pt0.1 and implanted Si substrates are studied. Silicidation is achieved through a first rapid thermal annealing followed by a selective etching and a direct surface annealing. The redistribution of phosphorus in silicide layers is investigated after the first annealing for different temperatures and after the second annealing. Phosphorus concentration profiles obtained thanks to time of flight secondary ion mass spectrometry and atom probe tomography characterizations for partial and total reactions of the deposited 7 nm thick Ni0.9Pt0.1 film are presented. Phosphorus segregation is observed at the Ni0.9Pt0.1 surface and at Ni2Si interfaces during Ni2Si formation and at the NiSi surface and the NiSi/Si interface after NiSi formation. The phosphorus is evidenced in low concentrations in the Ni2Si and NiSi layers. Once NiSi is formed, a bump in the phosphorus concentration is highlighted in the NiSi layer before the NiSi/Si interface. Based on these profiles, a model for the phosphorus redistribution is proposed to match this bump to the former Ni2Si/Si interface. It also aims to bind the phosphorus segregation and its low concentration in different silicides to a low solubility of phosphorus in Ni2Si and in NiSi and a fast diffusion of phosphorus at their grain boundaries. This model is also substantiated by a simulation using a finite difference method in one dimension.

  11. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications.

    PubMed

    Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-04-10

    New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba₀ .96 Ca 0. 04 Ti 0. 82 Zr 0. 18 O₃ (BCZTO) target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111) underlayer enhanced the (001) orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111) textured film at 700 °C and directly onto (100) Si wafers showed relatively larger (011) and diminished intensity (00ℓ) diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (e r ) and resistivity (r) of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~10⁴ to ~10 10 Ω∙cm, respectively.

  12. Effect of UV lamp irradiation during oxidation of Zr/Pt/Si structure on electrical properties of Pt/ZrO 2/Pt/Si structure

    NASA Astrophysics Data System (ADS)

    Bae, Joon Woo; Lim, Jae-Won; Mimura, Kouji; Uchikoshi, Masahito; Miyazaki, Takamichi; Isshiki, Minoru

    2010-03-01

    Metal-insulator-metal (MIM) capacitors were fabricated using ZrO 2 films and the effects of structural and native defects of the ZrO 2 films on the electrical and dielectric properties were investigated. For preparing ZrO 2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O 2 atmosphere with/without UV light irradiation ( λ = 193 nm, Deep UV lamp). The ZrO 2(˜12 nm) films on Pt(˜100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage ( C- V) and current-voltage ( I- V) measurements were carried out on MIM structures. ZrO 2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.

  13. Size, shape, and compositional effects on the order-disorder phase transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys.

    PubMed

    Kaatz, Forrest H; Bultheel, Adhemar

    2018-08-24

    Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated world-wide by many researchers for their interesting catalytic and nanophase properties. The low temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. We consider two models for low temperature ordering in the phase diagrams of Au-Cu and Pt-M nanocluster alloys. These models are valid for sizes ∼5 nm and approach bulk values for sizes ∼20 nm. We study the phase transitions in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Dispersion data shows that for the three shapes considered, octahedra have the highest percentage of surface atoms for the same relative diameter. We summarize the effects of structural ordering on the catalytic activity and suggest a method to avoid sintering during annealing of Pt-M alloys.

  14. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...

    2014-05-05

    Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less

  15. Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.

    PubMed

    Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin

    2010-05-01

    Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.

  16. Influence of hydrogen on the thermoelectric voltage signal in a Pt/WO x /6 H-SiC/Ni/Pt layered structure

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Grigoriev, S. N.; Fominski, V. Yu.; Volosova, M. A.; Soloviev, A. A.

    2017-09-01

    The possibility of detecting H2 by registering the thermal electromotive force signal, which arises between the surfaces of 6 H-SiC plates with a thickness of 400 μm, is established. The working surface of the plates is modified by deposition of a WO x film and catalytic Pt. An ohmic contact (Ni/Pt) is created on the rear surface of the plate, and this surface is maintained at a stabilized temperature of 350°C. The temperature gradient through the plate thickness arises due to the cooling of the working surface with the air medium. The delivery of H2 into this medium up to a concentration of 2% gives rise to a 15-fold increase in the electric signal, which considerably exceeds the Pt/WO x /SiC/Ni/Pt system's response registered in the usual way by measuring the current-voltage dependence. In this case, an additional power source for the registration of the thermal electromotive force is not required.

  17. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    DOE PAGES

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; ...

    2015-09-17

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less

  18. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less

  19. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria.

    PubMed

    Maes, Synthia; Props, Ruben; Fitts, Jeffrey P; Smet, Rebecca De; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-03-01

    Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.

  20. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    NASA Astrophysics Data System (ADS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-04-01

    The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.

  1. Synthesis of Pt nanoparticles as catalysts of oxygen reduction with microbubble-assisted low-voltage and low-frequency solution plasma processing

    NASA Astrophysics Data System (ADS)

    Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki

    2018-04-01

    In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.

  2. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane.

    PubMed

    An, Kwangjin; Alayoglu, Selim; Musselwhite, Nathan; Na, Kyungsu; Somorjai, Gabor A

    2014-05-14

    Selective isomerization toward branched hydrocarbons is an important catalytic process in oil refining to obtain high-octane gasoline with minimal content of aromatic compounds. Colloidal Pt nanoparticles with controlled sizes of 1.7, 2.7, and 5.5 nm were deposited onto ordered macroporous oxides of SiO2, Al2O3, TiO2, Nb2O5, Ta2O5, and ZrO2 to investigate Pt size- and support-dependent catalytic selectivity in n-hexane isomerization. Among the macroporous oxides, Nb2O5 and Ta2O5 exhibited the highest product selectivity, yielding predominantly branched C6 isomers, including 2- or 3-methylpentane, as desired products of n-hexane isomerization (140 Torr n-hexane and 620 Torr H2 at 360 °C). In situ characterizations including X-ray diffraction and ambient-pressure X-ray photoelectron spectroscopy showed that the crystal structures of the oxides in Pt/oxide catalysts were not changed during the reaction and oxidation states of Nb2O5 were maintained under both H2 and O2 conditions. Fourier transform infrared spectra of pyridine adsorbed on the oxides showed that Lewis sites were the dominant acidic site of the oxides. Macroporous Nb2O5 and Ta2O5 were identified to play key roles in the selective isomerization by charge transfer at Pt-oxide interfaces. The selectivity was revealed to be Pt size-dependent, with improved isomer production as Pt sizes increased from 1.7 to 5.5 nm. When 5.5 nm Pt nanoparticles were supported on Nb2O5 or Ta2O5, the selectivity toward branched C6 isomers was further increased, reaching ca. 97% with a minimum content of benzene, due to the combined effects of the Pt size and the strong metal-support interaction.

  3. Composition distributions in FePt(Au) nanoparticles

    NASA Astrophysics Data System (ADS)

    Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.

    2010-08-01

    Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.

  4. Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films

    NASA Astrophysics Data System (ADS)

    Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo

    2001-08-01

    The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr, Ti)O3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 °C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 °C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C-V characteristics, P-E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x-y alignment and the interface between electrode and PZT in MFM capacitors.

  5. Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin

    2018-05-01

    Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.

  6. Converse magnetoelectric coupling in NiFe/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} nanocomposite thin films grown on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ming; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000; Hu, Jiamian

    2013-11-04

    Multiferroic NiFe (∼30 nm)/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3}(PMN–PT, ∼220 nm) bilayered thin films were grown on common Pt/Ti/SiO{sub 2}/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMN–PT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMN–PT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMN–PT nanocomposite thin films.

  7. Determination of the spin Hall angle in single-crystalline Pt films from spin pumping experiments

    NASA Astrophysics Data System (ADS)

    Keller, Sascha; Mihalceanu, Laura; Schweizer, Matthias R.; Lang, Philipp; Heinz, Björn; Geilen, Moritz; Brächer, Thomas; Pirro, Philipp; Meyer, Thomas; Conca, Andres; Karfaridis, Dimitrios; Vourlias, George; Kehagias, Thomas; Hillebrands, Burkard; Papaioannou, Evangelos Th

    2018-05-01

    We report on the determination of the spin Hall angle in ultra-clean, defect-reduced epitaxial Pt films. By applying vector network analyzer ferromagnetic resonance spectroscopy to a series of single crystalline Fe (12 nm) /Pt (t Pt) bilayers we determine the real part of the spin mixing conductance (4.4 ± 0.2) × 1019 m‑2 and reveal a very small spin diffusion length in the epitaxial Pt (1.1 ± 0.1) nm film. We investigate the spin pumping and ISHE in a stripe microstucture excited by a microwave coplanar waveguide antenna. By using their different angular dependencies, we distinguish between spin rectification effects and the inverse spin Hall effect. The relatively large value of the spin Hall angle (5.7 ± 1.4)% shows that ultra-clean e-beam evaporated non-magnetic materials can also have a comparable spin-to-charge current conversion efficiency as sputtered high resistivity layers.

  8. Combined effect of Pt and W alloying elements on Ni-silicide formation

    NASA Astrophysics Data System (ADS)

    Luo, T.; Mangelinck, D.; Descoins, M.; Bertoglio, M.; Mouaici, N.; Hallén, A.; Girardeaux, C.

    2018-03-01

    A combinatorial study of the combined effect of Pt and W on Ni silicide formation is performed. Ni(Pt, W) films with thickness and composition gradients were prepared by a co-deposition composition spread technique using sputtering deposition from Pt, W, and Ni targets. The deposited Ni(Pt,W) films were characterized by X-ray diffraction, X-ray reflectivity, Rutherford backscattering, and atom probe tomography. The maximum content of alloying elements is close to 27 at. %. Simulations of the thickness and composition were carried out and compared with experimental results. In situ X-ray diffraction and atom probe tomography were used to study the phase formation. Both additive alloying elements (Pt + W) slow down the Ni consumption and the effect of W is more pronounced than the one of Pt. Regarding the effect of alloying elements on Ni silicides formation, three regions could be distinguished in the Ni(Pt,W)/Si wafer. For the region close to the Ni target, the low contents of alloying elements (Pt + W) have little impact on the phase sequence (δ-Ni2Si is the first silicide and NiSi forms when Ni is entirely consumed) but the kinetics of silicide formation slows down. The region close to the Pt target has high contents of (Pt + W) and is rich in Pt and a simultaneous phase formation of δ-Ni2Si and NiSi is observed. For the high (Pt + W) contents and W-rich region, NiSi forms unexpectedly before δ-Ni2Si and the subsequent growth of δ-Ni2Si is accompanied by the NiSi consumption. When Ni is entirely consumed, NiSi regrows at the expense of δ-Ni2Si.

  9. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    PubMed

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs withmore » increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.« less

  11. Electroplated L1{sub 0} CoPt thick-film permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oniku, Ololade D., E-mail: ololadeoniku@ufl.edu; Qi, Bin; Arnold, David P.

    2014-05-07

    The fabrication and magnetic characterization of 15-μm-thick electroplated L1{sub 0} CoPt hard magnets with good magnetic properties is reported in this paper. Experimental study of the dependence of the magnets' properties on annealing temperature reveals that an intrinsic coercivity H{sub ci} = ∼800 kA/m (10 kOe), squareness >0.8, and energy product of >150 kJ/m{sup 3} are obtained for photolithographically patterned structures (250 μm × 2 mm stripes; 15 μm thickness) electroplated on silicon substrates and annealed in hydrogen forming gas at 700 °C. Scanning electron microscopy is used to inspect the morphology of both the as-deposited and annealed magnetic layers, and X-ray Diffractometer analysis on the magnets annealed at 700 °Cmore » confirm a phase transformation to an ordered L1{sub 0} CoPt structure, with a minor phase of hcp Co. These thick films are intended for microsystems/MEMS applications.« less

  12. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio

    NASA Astrophysics Data System (ADS)

    Parro, Rocco J.; Scardelletti, Maximilian C.; Varaljay, Nicholas C.; Zimmerman, Sloan; Zorman, Christian A.

    2008-10-01

    This paper reports an effort to develop amorphous silicon carbide (a-SiC) films for use in shunt capacitor RF MEMS microbridge-based switches. The films were deposited using methane and silane as the precursor gases. Switches were fabricated using 500 nm and 300 nm-thick a-SiC films to form the microbridges. Switches made from metallized 500 nm-thick SiC films exhibited favorable mechanical performance but poor RF performance. In contrast, switches made from metallized 300 nm-thick SiC films exhibited excellent RF performance but poor mechanical performance. Load-deflection testing of unmetallized and metallized bulk micromachined SiC membranes indicates that the metal layers have a small effect on the Young's modulus of the 500 nm and 300 nm-thick SiC MEMS. As for residual stress, the metal layers have a modest effect on the 500 nm-thick structures, but a significant affect on the residual stress in the 300 nm-thick structures.

  13. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zielińska-Jurek, Anna; Wei, Zhishun; Wysocka, Izabela; Szweda, Piotr; Kowalska, Ewa

    2015-10-01

    Ag-Pt-modified TiO2 nanocomposites were synthesized using the sol-gel method. Bimetallic modified TiO2 nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO2 and Pt/TiO2 nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts' characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m2/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO2 and Ag-Pt/TiO2 nanocomposites.

  14. Influence of interface inhomogeneities in thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin

    2017-11-01

    The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.

  15. Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles.

    PubMed

    Harris, Clifton; Kamat, Prashant V

    2010-12-28

    The electrodic behavior of platinum nanoparticles (2.8 nm diameter) and their role in influencing the photocatalytic behavior of CdSe quantum dots (3.4 nm diameter) has been evaluated by confining both nanoparticles together in heptane/dioctyl sulphosuccinate/water reverse micelles. The particles spontaneously couple together within the micelles via micellar exchange processes and thus facilitate experimental observation of electron transfer reactions inside the water pools. Electron transfer from CdSe to Pt is found to occur with a rate constant of 1.22 × 10(9) s(-1). With the use of methyl viologen (MV(2+)) as a probe molecule, the role of Pt in the photocatalytic process is established. Ultrafast oxidation of the photogenerated MV(+•) radicals indicates that Pt acts as an electron sink, scavenging electrons from MV(+•) with a rate constant of 3.1 × 10(9) s(-1). The electron transfer between MV(+•) and Pt, and a drastically lower yield of MV(+•) under steady state irradiation, confirms the ability of Pt nanoparticles to discharge electrons quickly. The kinetic details of photoinduced processes in CdSe-Pt assemblies and the electrodic behavior of Pt nanoparticles provide important information for the development of light energy conversion devices.

  16. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  17. Gas-Flow Tailoring Fabrication of Graphene-like Co-Nx-C Nanosheet Supported Sub-10 nm PtCo Nanoalloys as Synergistic Catalyst for Air-Cathode Microbial Fuel Cells.

    PubMed

    Cao, Chun; Wei, Liling; Zhai, Qiran; Ci, Jiliang; Li, Weiwei; Wang, Gang; Shen, Jianquan

    2017-07-12

    In this work, we presented a novel, facile, and template-free strategy for fabricating graphene-like N-doped carbon as oxygen reduction catalyst in sustainable microbial fuel cells (MFCs) by using an ion-inducing and spontaneous gas-flow tailoring effect from a unique nitrogen-rich polymer gel precursor which has not been reported in materials science. Remarkably, by introduction of trace platinum- and cobalt- precursor in polymer gel, highly dispersed sub-10 nm PtCo nanoalloys can be in situ grown and anchored on graphene-like carbon. The as-prepared catalysts were investigated by a series of physical characterizations, electrochemical measurements, and microbial fuel cell tests. Interestingly, even with a low Pt content (5.13 wt %), the most active Co/N codoped carbon supported PtCo nanoalloys (Co-N-C/Pt) exhibited dramatically improved catalytic activity toward oxygen reduction reaction coupled with superior output power density (1008 ± 43 mW m -2 ) in MFCs, which was 29.40% higher than the state of the art Pt/C (20 wt %). Notability, the distinct catalytic activity of Co-N-C/Pt was attributed to the highly efficient synergistic catalytic effect of Co-Nx-C and PtCo nanoalloys. Therefore, Co-N-C/Pt should be a promising oxygen reduction catalyst for application in MFCs. Further, the novel strategy for graphene-like carbon also can be widely used in many other energy conversion and storage devices.

  18. A New Green Chemical Synthesis Strategy for Synthesis of L10 FePt Nanoparticles from Layered Precursor Fe(H2O)6PtCl6

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George; Hu, Xiaocao; Capobianchi, Aldo; Gallagher, Ryan

    2014-03-01

    In this work, a new green chemical strategy for the synthesis of L10 FePt nanoparticles is reported. The starting material is a polycrystalline molecular complex (Fe(H2O)6PtCl6) , in which Fe and Pt atoms are arranged on alternating planes. The starting compound was milled with crystalline NaCl and then annealed under forming gas (5 % H2 and 95 % Ar) at 450 °C for 2h. Finally, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. Transmission electron microscopy (TEM) images revealed that this method is able to produce L10 nanoparticles with different average size varying from 13.9 nm to 5.4 nm depending on the (Fe(H2O)6PtCl6) /NaCl ratio. With smaller (Fe(H2O)6PtCl6) /NaCl ratio(10mg/20g) and longer milling time(15h), FePt nanoparticles had a smaller size and narrower size distribution. The X-Ray Diffraction (XRD) pattern showed the presence of the characteristic peaks of the fct phase. The hysteresis loop, measured both at room temperature and 50 K, shows a high coercivity of 7.6 kOe and 11.2 kOe, respectively as expected for the high anisotropy L10 phase. Larger precursor/NaCl ratio and shorter ball milling time led to larger coercivity.

  19. Hybrid mesoporous-silica materials functionalized by Pt(II) complexes: correlation between the spatial distribution of the active center, photoluminescence emission, and photocatalytic activity.

    PubMed

    Mori, Kohsuke; Watanabe, Kentaro; Terai, Yoshikazu; Fujiwara, Yasufumi; Yamashita, Hiromi

    2012-09-03

    [Pt(tpy)Cl]Cl (tpy: terpyridine) was successfully anchored to a series of mesoporous-silica materials that were modified with (3-aminopropyl)triethoxysilane with the aim of developing new inorganic-organic hybrid photocatalysts. Herein, the relationship between the luminescence characteristics and photocatalytic activities of these materials is examined as a function of Pt loading to define the spatial distribution of the Pt complex in the mesoporous channel. At low Pt loading, the Pt complex is located as an isolated species and exhibits strong photoluminescence emission at room temperature owing to metal-to-ligand charge-transfer ((3)MLCT) transitions (at about 530 nm). Energy- and/or electron-transfer from (3)MLCT to O(2) generate potentially active oxygen species, which are capable of promoting the selective photooxidation of styrene derivatives. On the other hand, short Pt···Pt interactions are prominent at high loading and the metal-metal-to-ligand charge-transfer ((3)MMLCT) transition is at about 620 nm. Such Pt complexes, which are situated close to each other, efficiently catalyze H(2)-evolution reactions in aqueous media in the presence of a sacrificial electron donor (EDTA) under visible-light irradiation. This study also investigates the effect of nanoconfinement on anchored guest complexes by considering the differences between the pore dimensions and structures of mesoporous-silica materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.

    2005-05-01

    There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.

  1. Trends in Serial Measurements of Ultrasound Markers in Second and Third Trimester Down Syndrome Fetuses.

    PubMed

    Vos, F I; De Jong-Pleij, E A P; Bakker, M; Tromp, E; Bilardo, C M

    2015-01-01

    To evaluate trends of nasal bone length (NBL), prenasal thickness (PT), nuchal fold (NF), prenasal thickness to nasal bone length (PT-NBL) ratio, and prefrontal space ratio (PFSR), measured serially in second- and third-trimester Down syndrome (DS) fetuses. Prenatal databases were searched for cases of continuing DS pregnancies with serial measurements, taken at least two weeks apart. Trends were plotted on previously reported normal ranges. Serial measurements were available in 25 Down syndrome fetuses. Median gestational age (GA) was 25 weeks; average number of visits per case was 2.44, with a median interval of 39 days between investigations. In DS fetuses, NBL and PT showed fairly stable trends with gestation. PFSR, but especially NF, had a more unpredictable trend. The PT-NBL ratio was the most stable marker, remaining unchanged in 95% of cases. NBL, PT, and NF showed more deviance from the normal range with advancing gestation, but MoM values remained stable. All but two fetuses had ultrasound markers or structural anomalies, especially heart defects. The PT-NBL ratio is the most constant DS marker throughout gestation, following a predictable trend. © 2015 S. Karger AG, Basel.

  2. Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe.

    PubMed

    Guo, Jingshu; Wu, Zhiwei; Zhao, Yanli

    2017-05-01

    We investigate the light absorption enhancement in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe, which can provide high internal quantum efficiency. By using aab0-quasi-TE hybrid modes for the first time, a high absorptance of 95.6% is achieved in 5 nm thick Au stripe with area of only 0.14 μm2, without using resonance structure. In theory, the responsivity, dark current, and 3dB bandwidth of the corresponding device are 0.146 A/W, 8.03 nA, and 88 GHz, respectively. For most silicides, the quasi-TM mode should be used in this device, and an optimized PtSi device has a responsivity of 0.71 A/W and a dark current of 35.9 μA.

  3. Synthesis of three-dimensionally ordered macro-/mesoporous Pt with high electrocatalytic activity by a dual-templating approach

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan

    2014-01-01

    Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.

  4. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    NASA Astrophysics Data System (ADS)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  5. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    PubMed Central

    Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P

    2013-01-01

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12–25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a “Swiss cheese” type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900

  6. Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmed H.; Abdel-wahab, M. Sh.; Vattamkandathil, Sajith; Ansari, Akhalakur Rahman

    2018-07-01

    Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134 and 280 nm) from 30 to 40 nm, respectively. Optical band gap is deduced to be direct with values varied from 3.22 to 3.28 eV and the refractive index are evaluated based on the optical band values according to Moss, Ravindra-Srivastava, and Dimitrov-Sakka models. All refractive index models gave values around 2.3.

  7. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, B. F., E-mail: bfmiao@nju.edu.cn; Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; Huang, S. Y.

    2016-01-15

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  8. Nanophase-separated Ni3Nb as an automobile exhaust catalyst† †Electronic supplementary information (ESI) available: Demonstration procedure, experimental and characterization details. See DOI: 10.1039/c6sc05473k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Tanabe, Toyokazu; Imai, Tsubasa; Tokunaga, Tomoharu; Arai, Shigeo; Yamamoto, Yuta; Ueda, Shigenori; Ramesh, Gubbala V.; Nagao, Satoshi; Hirata, Hirohito; Matsumoto, Shin-ichi

    2017-01-01

    Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) (i.e., Ni3Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust (i.e., nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni3Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix (i.e., NbOx (x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N2 generation, and the NbOx matrix absorbs excessive nitrogen adatoms to retain the active Ni0 sites at the metal/oxide interface. Furthermore, the NbOx matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours. PMID:28507707

  9. One-step hydrothermal synthesis of feather duster-like NiS@MoS2 with hierarchical array structure for the Pt-free dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Su, Lijun; Xiao, Yaoming; Han, Gaoyi; Lin, Jeng-Yu

    2018-04-01

    Novel feather duster-like nickel sulfide (NiS) @ molybdenum sulfide (MoS2) with hierarchical array structure is synthesized via a simple one-step hydrothermal method, in which a major structure of rod-like NiS in the center and a secondary structure of MoS2 nanosheets with a thickness of about 15-55 nm on the surface. The feather duster-like NiS@MoS2 is employed as the counter electrode (CE) material for the dye-sensitized solar cell (DSSC), which exhibits superior electrocatalytic activity due to its feather duster-like hierarchical array structure can not only support the fast electron transfer and electrolyte diffusion channels, but also can provide high specific surface area (238.19 m2 g-1) with abundant active catalytic sites and large electron injection efficiency from CE to electrolyte. The DSSC based on the NiS@MoS2 CE achieves a competitive photoelectric conversion efficiency of 8.58%, which is higher than that of the NiS (7.13%), MoS2 (7.33%), and Pt (8.16%) CEs under the same conditions. [Figure not available: see fulltext.

  10. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.

    PubMed

    Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric

    2014-02-06

    Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.

  11. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  12. Evidence for spin injection and transport in solution-processed TIPS-pentacene at room temperature

    NASA Astrophysics Data System (ADS)

    Mooser, S.; Cooper, J. F. K.; Banger, K. K.; Wunderlich, J.; Sirringhaus, H.

    2012-10-01

    Recently, there has been growing interest in the field of organic spintronics, where the research on organic semiconductors (OSCs) has extended from the complex aspects of charge carrier transport to the study of the spin transport properties of those anisotropic and partly localized systems.1 Furthermore, solution-processed OSCs are not only interesting due to their technological applications, but it has recently been shown in 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin film transistors that they can exhibit a negative temperature coefficient of the mobility due to localized transport limited by thermal lattice fluctuations.2 Here, spin injection and transport in solution-processed TIPS-pentacene are investigated exploiting vertical CoPt/TIPSpentacene/AlOx/Co spin valve architectures.3 The antiparallel magnetization state of the relative orientation of CoPt and Co is achieved due to their different coercive fields. A spin valve effect is detected from T = 175 K up to room temperature, where the resistance of the device is lower for the antiparallel magnetization state. The first observation of the scaling of the magnetoresistance (MR) with the bulk mobility of the OSC as a function of temperature, together with the dependence of the MR on the interlayer thickness, clearly indicates spin injection and transport in TIPS-pentacene. From OSC-spacer thickness-dependent MR measurements, a spin relaxation length of TIPS-pentacene of (24+/-6) nm and a spin relaxation time of approximately 3.5 μs at room temperature are estimated, taking the measured bulk mobility of holes into account.

  13. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    PubMed

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-05

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.

  14. Fabrication of metal nanoelectrodes by interfacial reactions.

    PubMed

    Zhu, Xinyu; Qiao, Yonghui; Zhang, Xin; Zhang, Sensen; Yin, Xiaohong; Gu, Jing; Chen, Ye; Zhu, Zhiwei; Li, Meixian; Shao, Yuanhua

    2014-07-15

    Despite great improvements in the past decades, the controllable fabrication of metal nanoelectrodes still remains very challenging. In this work, a simple and general way to fabricate metal nanoelectrodes (Ag, Au, and Pt) is developed. On the basis of interfacial reactions at nano-liquid/liquid interfaces supported at nanopipettes, the nanoparticles can be formed in situ and have been used to block the orifices of pipettes to make nanoelectrodes. The effect of the driving force for interfacial reaction at the liquid/liquid interface, the ratio of redox species in organic and aqueous phases, and the surface charge of the inner wall of a pipette have been studied. The fabricated nanoelectrodes have been characterized by scanning electron microscopy (SEM) and electrochemical techniques. A silver electrode with about 10 nm in radius has been employed as the scanning electrochemical microscopy (SECM) probe to explore the thickness of a water/nitrobenzene (W/NB) interface, and this value is equal to 0.8 ± 0.1 nm (n = 5). This method of fabrication of nanoelectrodes can be extended to other metal or semiconductor electrodes.

  15. SNR improvement by variation of recording and media parameters for a HAMR exchange coupled composite media

    NASA Astrophysics Data System (ADS)

    Natekar, N. A.; Liu, Zengyuan; Hernandez, Stephanie; Victora, R. H.

    2018-05-01

    An exchange coupled composite media structure proposed previously seems to address both the issue of Tc variation in FePt as well as poor SNR/User Density during the HAMR process. Here we examine a thinner 3-6 nm structure that is likely easier to fabricate than the previous 13.5 nm thick structure. We find that increasing the damping within the write (superparamagnetic) layer and introducing intergranular exchange within the grains in the write layer are both successful approaches to improve the recorded SNR. Ensemble waveform analysis that allows the breakdown of the total SNR into transition SNR (due to AC noise) and remanence SNR (due to DC noise) helps identify the leading causes for this SNR improvement. Further studies indicate that varying the peak heat spot temperature in the HAMR write process is also a successful approach for improving the recorded SNR. This lends credence to the idea that a thinner composite media may still be used successfully to realize significant enhancements of SNR and the corresponding user density.

  16. Spectroscopic Study of the Thermal Degradation of PVP-capped Rh and Pt Nanoparticles in H2 and O2 Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodko, Yuri; Lee, Hyun Sook; Joo, Sang Hoon

    2009-09-15

    Poly(N-vinylpyrrolidone) (PVP) capped platinum and rhodium nanoparticles (7-12 nm) have been studied with UV-VIS, FTIR and Raman spectroscopy. The absorption bands in the region 190-900 nm are shown to be sensitive to the electronic structure of surface Rh and Pt atoms as well as to the aggregation of the nanoparticles. In-situ FTIR-DRIFT spectroscopy of the thermal decay of PVP stabilized Rh and Pt nanoparticles in H{sub 2} and O{sub 2} atmospheres in temperatures ranging from 30 C-350 C reveal that decomposition of PVP above 200 C, PVP transforms into a 'polyamidpolyene' - like material that is in turn converted intomore » a thin layer of amorphous carbon above 300 C. Adsorbed carbon monoxide was used as a probing molecule to monitor changes of electronic structure of surface Rh and Pt atoms and accessible surface area. The behavior of surface Rh and Pt atoms with ligated CO and amide groups of pyrrolidones resemble that of surface coordination compounds.« less

  17. Effect of the Platinum Electroplated Layer Thickness on the Coatings' Microstructure

    NASA Astrophysics Data System (ADS)

    Zagula-Yavorska, Maryana; Gancarczyk, Kamil; Sieniawski, Jan

    2017-03-01

    CMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.

  18. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films

    PubMed Central

    Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  19. Strain-induced nanostructure of Pb(Mg1/3Nb2/3)O3-PbTiO3 on SrTiO3 epitaxial thin films with low PbTiO3 concentration

    NASA Astrophysics Data System (ADS)

    Kiguchi, Takanori; Fan, Cangyu; Shiraishi, Takahisa; Konno, Toyohiko J.

    2017-10-01

    The singularity of the structure in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) (x = 0-50 mol %) epitaxial thin films of 100 nm thickness was investigated from the viewpoint of the localized residual strain in the nanoscale. The films were deposited on SrTiO3 (STO) (001) single-crystal substrates by chemical solution deposition (CSD) using metallo-organic decomposition (MOD) solutions. X-ray and electron diffraction patterns revealed that PMN-xPT thin films included a single phase of the perovskite-type structure with the cube-on-cube orientation relationship between PMN-xPT and STO: (001)Film ∥ (001)Sub, [100]Film ∥ [100]Sub. X-ray reciprocal space maps showed an in-plane tensile strain in all the compositional ranges considered. Unit cells in the films were strained from the rhombohedral (pseudocubic) (R) phase to a lower symmetry crystal system, the monoclinic (MB) phase. The morphotropic phase boundary (MPB) that split the R and tetragonal (T) phases was observed at x = 30-35 for bulk crystals of PMN-xPT, whereas the strain suppressed the transformation from the R phase to the T phase in the films up to x = 50. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis and its related local strain analysis revealed that all of the films have a bilayer morphology. The nanoscale strained layer formed only above the film/substrate semi-coherent interface. The misfit dislocations generated the localized and periodic strain fields deformed the unit cells between the dislocation cores from the R to an another type of the monoclinic (MA) phase. Thus, the singular and localized residual strains in the PMN-xPT/STO (001) epitaxial thin films affect the phase stability around the MPB composition and result in the MPB shift phenomena.

  20. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin; Hinata, Shintaro

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain sizemore » in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.« less

  1. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-04-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  2. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by electron-beam lithography. These and other nanotubes were found to have lengths ranging from 2 to 10 m and diameters ranging from 30 to 200 nm, the exact values of length depending on growth times and conditions and the exact values of diameter depending on the diameters and thicknesses of the catalyst spots. The bottom part of Figure 2 is an SEM of an embedded array of carbon nanotubes after CMP.

  3. Photoactive platinum(ii) β-diketonates as dual action anticancer agents.

    PubMed

    Raza, Md Kausar; Mitra, Koushambi; Shettar, Abhijith; Basu, Uttara; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-08-16

    Platinum(ii) complexes, viz. [Pt(L)(cur)] (1), [Pt(L)(py-acac)] (2) and [Pt(L)(an-acac)] (3), where HL is 4,4'-bis-dimethoxyazobenzene, Hcur is curcumin, Hpy-acac and Han-acac are pyrenyl and anthracenyl appended acetylacetone, were prepared, characterized and their anticancer activities were studied. Complex [Pt(L)(acac)] (4) was used as a control. Complex 1 showed an absorption band at 430 nm (ε = 8.8 × 10(4) M(-1) cm(-1)). The anthracenyl and pyrenyl complexes displayed bands near 390 nm (ε = 3.7 × 10(4) for 3 and 4.4 × 10(4) M(-1) cm(-1) for 2). Complex 1 showed an emission band at 525 nm (Φ = 0.017) in 10% DMSO-DPBS (pH, 7.2), while 2 and 3 were blue emissive (λem = 440 and 435, Φ = 0.058 and 0.045). There was an enhancement in emission intensity on glutathione (GSH) addition indicating diketonate release. The platinum(ii) species thus formed acted as a transcription inhibitor. The released β-diketonate base showed photo-chemotherapeutic activity. The complexes photocleaved plasmid DNA under blue light of 457 nm forming ∼75% nicked circular (NC) DNA with hydroxyl radicals and singlet oxygen as the ROS. Complexes 1-3 were photocytotoxic in skin keratinocyte HaCaT cells giving IC50 of 8-14 μM under visible light (400-700 nm, 10 J cm(-2)), while being non-toxic in the dark (IC50: ∼60 μM). Complex 4 was inactive. Complexes 1-3 generating cellular ROS caused apoptotic cell death under visible light as evidenced from DCFDA and annexin-V/FITC-PI assays. This work presents a novel way to deliver an active platinum(ii) species and a phototoxic β-diketone species to the cancer cells.

  4. Conduction and rectification in NbO x - and NiO-based metal-insulator-metal diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osgood, Richard M.; Giardini, Stephen; Carlson, Joel

    2016-09-01

    Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ('nanorectennas') are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively themore » rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of ~4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current, given by the rectification responsivity, calculated from the I-V curve times input power.« less

  5. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt

    DOE PAGES

    Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.; ...

    2017-05-07

    Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less

  6. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.

    Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less

  7. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    NASA Astrophysics Data System (ADS)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  8. Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles.

    PubMed

    Buchtelova, Hana; Dostalova, Simona; Michalek, Petr; Krizkova, Sona; Strmiska, Vladislav; Kopel, Pavel; Hynek, David; Richtera, Lukas; Ridoskova, Andrea; Adam, Pavlina; Kynicky, Jindrich; Brtnicky, Martin; Heger, Zbynek; Adam, Vojtech

    2017-07-01

    The nanotechnological concept is based on size-dependent properties of particles in the 1-100 nm range. Nevertheless, the connection between their size and effect is still not clear. Thus, we focused on reductive colloidal synthesis, characterization and biological testing of Pt nanoparticles (PtNPs) capped with biocompatible polymer polyvinylpyrrolidone (PVP). Synthesized PtNPs were of 3 different primary sizes (approx. ∼10; ∼14 and > 20 nm) and demonstrated exceptional haemocompatibility. In vitro treatment of three different types of malignant cells (prostate - LNCaP, breast - MDA-MB-231 and neuroblastoma - GI-ME-N) revealed that even marginal differences in PtNPs diameter resulted in changes in their cytotoxicity. The highest cytotoxicity was observed using the smallest PtNPs-10, where 24IC 50 was lower (3.1-6.2 μg/mL) than for cisplatin (8.1-19.8 μg/mL). In contrast to MDA-MB-231 and LNCaP cells, in GI-ME-N cells PtNPs caused noticeable changes in their cellular structure without influencing their viability. Post-exposure analyses revealed that PtNPs-29 and PtNPs-40 were capable of forming considerably higher amount of reactive oxygen species with consequent stimulation of expression of metallothionein (MT1/2 and MT3), at both mRNA and protein level. Overall, our pilot study demonstrates that in the nanoscaled world even the smallest differences can have crucial biological effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  10. An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer.

    PubMed

    Sang, Fuming; Liu, Jia; Zhang, Xue; Pan, Jianxin

    2018-04-25

    A colorimetric method is described for the determination of Pt(II). It is based on the use of gold nanoparticles (AuNPs) which are known to aggregate in the presence of a cationic polymer such as poly(diallyldimethylammonium chloride) (PDDA). If, however, a mismatched aptamer (AA) electrostatically binds to PDDA, aggregation is prevented. Upon the addition of Pt(II), it will bind to the aptamer and induce the formation of a hairpin structure. Hence, interaction between aptamer and PDDA is suppressed and PDDA will induce the aggregation of the AuNPs. This is accompanied by a color change from red to blue. The effect can be observed with bare eyes and quantified by colorimetry via measurement of the ratio of absorbances at 610 nm and 520 nm. Response is linear in the 0.24-2 μM Pt(II) concentration range, and the detection limit is 58 nM. The assay is completed within 15 min and selective for Pt(II) even in the presence of other metal ions. It was successfully applied to the rapid determination of Pt(II) in spiked soil samples. Graphical abstract Schematic representation of the method for detection of Pt(II) based on the use of a cationic polymer and gold nanoparticles. In the presence of Pt(II), aptamer interacts with the Pt(II) and prevents the interaction between aptamer and cationic polymer. Hence, cationic polymer induce the aggregation of the AuNPs and lead to the color change from red to blue.

  11. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    DOE PAGES

    Miao, B. F.; Huang, S. Y.; Qu, D.; ...

    2016-01-29

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. Here, it is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from themore » ANE.« less

  12. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuoka, Y.; Seto, Y.; Kato, T., E-mail: takeshik@nuee.nagoya-u.ac.jp

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with themore » reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.« less

  13. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing

    2015-03-01

    A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications.A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06787h

  14. Radiochemical synthesis of a carbon-supported Pt-SnO2 bicomponent nanostructure exhibiting enhanced catalysis of ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Ohkubo, Yuji; Akita, Tomoki; Nitani, Hiroaki; Yamamoto, Takao A.

    2015-03-01

    Carbon-supported Pt-SnO2 electrocatalysts with various Sn/Pt molar ratios were prepared by an electron beam irradiation method. These catalysts were composed of metallic Pt particles approximately 5 nm in diameter together with low crystalline SnO2. The contact between the Pt and SnO2 in these materials varied with the amount of dissolved oxygen in the precursor solutions and it was determined that intimate contact between the Pt and SnO2 significantly enhanced the catalytic activity of these materials during the ethanol oxidation reaction. The mechanism by which the contact varies is discussed based on the radiochemical reduction process.

  15. Thin TiOx layer as a voltage divider layer located at the quasi-Ohmic junction in the Pt/Ta2O5/Ta resistance switching memory.

    PubMed

    Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi

    2017-02-09

    Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.

  16. Updated evidence-based clinical practice guidelines for the diagnosis and management of melanoma: definitive excision margins for primary cutaneous melanoma.

    PubMed

    Sladden, Michael J; Nieweg, Omgo E; Howle, Julie; Coventry, Brendon J; Thompson, John F

    2018-02-19

    Definitive management of primary cutaneous melanoma consists of surgical excision of the melanoma with the aim of curing the patient. The melanoma is widely excised together with a safety margin of surrounding skin and subcutaneous tissue, after the diagnosis and Breslow thickness have been established by histological assessment of the initial excision biopsy specimen. Sentinel lymph node biopsy should be discussed for melanomas ≥ 1 mm thickness (≥ 0.8 mm if other high risk features) in which case lymphoscintigraphy must be performed before wider excision of the primary melanoma site. The 2008 evidence-based clinical practice guidelines for the management of melanoma (http://www.cancer.org.au/content/pdf/HealthProfessionals/ClinicalGuidelines/ClinicalPracticeGuidelines-ManagementofMelanoma.pdf) are currently being revised and updated in a staged process by a multidisciplinary working party established by Cancer Council Australia. The guidelines for definitive excision margins for primary melanomas have been revised as part of this process. Main recommendations: The recommendations for definitive wide local excision of primary cutaneous melanoma are: melanoma in situ: 5-10 mm margins invasive melanoma (pT1) ≤ 1.0 mm thick: 1 cm margins invasive melanoma (pT2) 1.01-2.00 mm thick: 1-2 cm margins invasive melanoma (pT3) 2.01-4.00 mm thick: 1-2 cm margins invasive melanoma (pT4) > 4.0 mm thick: 2 cm margins Changes in management as a result of the guideline: Based on currently available evidence, excision margins for invasive melanoma have been left unchanged compared with the 2008 guidelines. However, melanoma in situ should be excised with 5-10 mm margins, with the aim of achieving complete histological clearance. Minimum clearances from all margins should be assessed and stated. Consideration should be given to further excision if necessary; positive or close histological margins are unacceptable.

  17. Acute and chronic nephrotoxicity of platinum nanoparticles in mice

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yoshiaki; Watari, Akihiro; Hayata, Yuya; Li, Xiangru; Kondoh, Masuo; Yoshioka, Yasuo; Tsutsumi, Yasuo; Yagi, Kiyohito

    2013-09-01

    Platinum nanoparticles are being utilized in various industrial applications, including in catalysis, cosmetics, and dietary supplements. Although reducing the size of the nanoparticles improves the physicochemical properties and provides useful performance characteristics, the safety of the material remains a major concern. The aim of the present study was to evaluate the biological effects of platinum particles less than 1 nm in size (snPt1). In mice administered with a single intravenous dose of snPt1, histological analysis revealed necrosis of tubular epithelial cells and urinary casts in the kidney, without obvious toxic effects in the lung, spleen, and heart. These mice exhibited dose-dependent elevation of blood urea nitrogen, an indicator of kidney damage. Direct application of snPt1 to in vitro cultures of renal cells induced significant cytotoxicity. In mice administered for 4 weeks with twice-weekly intraperitoneal snPt1, histological analysis of the kidney revealed urinary casts, tubular atrophy, and inflammatory cell accumulation. Notably, these toxic effects were not observed in mice injected with 8-nm platinum particles, either by single- or multiple-dose administration. Our findings suggest that exposure to platinum particles of less than 1 nm in size may induce nephrotoxicity and disrupt some kidney functions. However, this toxicity may be reduced by increasing the nanoparticle size.

  18. Acute and chronic nephrotoxicity of platinum nanoparticles in mice

    PubMed Central

    2013-01-01

    Platinum nanoparticles are being utilized in various industrial applications, including in catalysis, cosmetics, and dietary supplements. Although reducing the size of the nanoparticles improves the physicochemical properties and provides useful performance characteristics, the safety of the material remains a major concern. The aim of the present study was to evaluate the biological effects of platinum particles less than 1 nm in size (snPt1). In mice administered with a single intravenous dose of snPt1, histological analysis revealed necrosis of tubular epithelial cells and urinary casts in the kidney, without obvious toxic effects in the lung, spleen, and heart. These mice exhibited dose-dependent elevation of blood urea nitrogen, an indicator of kidney damage. Direct application of snPt1 to in vitro cultures of renal cells induced significant cytotoxicity. In mice administered for 4 weeks with twice-weekly intraperitoneal snPt1, histological analysis of the kidney revealed urinary casts, tubular atrophy, and inflammatory cell accumulation. Notably, these toxic effects were not observed in mice injected with 8-nm platinum particles, either by single- or multiple-dose administration. Our findings suggest that exposure to platinum particles of less than 1 nm in size may induce nephrotoxicity and disrupt some kidney functions. However, this toxicity may be reduced by increasing the nanoparticle size. PMID:24059288

  19. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    NASA Astrophysics Data System (ADS)

    Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)

    2014-11-01

    Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  20. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    PubMed

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions.

  1. A sensitive sandwich-type electrochemical aptasensor for thrombin detection based on platinum nanoparticles decorated carbon nanocages as signal labels.

    PubMed

    Gao, Fenglei; Du, Lili; Zhang, Yu; Zhou, Fuyi; Tang, Daoquan

    2016-12-15

    In this work, a novel and sensitive sandwich-type electrochemical aptasensor has been developed for thrombin detection based on platinum nanoparticles (Pt NPs) decorated carbon nanocages (CNCs) as signal tags. The morphological and compositional of the Pt NPs/CNCs were examined using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The results showed that the Pt NPs with about 3-5nm in diameter were well dispersed on the surface of CNCs. The thiolated aptamer was firstly immobilized on the gold electrode to capture the thrombin molecules, and then aptamer functionalized Pt NPs/CNCs nanocomposites were used to fabricate a sandwich sensing platform. Then, the high-content Pt NPs on carbon nanocages acting as hydrogen peroxide-mimicking enzyme catalyzed the reduction of H2O2, resulting in significant electrochemical signal amplification. Differential pulse voltammetry is employed to detect thrombin with different concentrations. Under optimized conditions, the approach provided a good linear response range from 0.05 pM to 20nM with a low detection limit of 10fM. This Pt NPs/CNCs-based aptasensor shows good precision, acceptable stability and reproducibility, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  3. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure.more » Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.« less

  4. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  5. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  6. Calorimetric gas sensor

    DOEpatents

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  7. A Lamellar Complex of Lecithin and Poly-l-Tyrosine

    PubMed Central

    Giannoni, G.; Padden, F. J.; Roe, R. J.

    1971-01-01

    Complexes of poly-L-tyrosine (PT) with dipalmitoyllecithin, synthetic, (DPL) and with egg lecithin (EL) have been obtained by precipitation from methanol-water solutions. Chemical analysis indicates that both lecithins bind PT up to a limiting ratio of about 4 tyrosine residues/lecithin molecule. DPL-PT complexes have a lamellar structure closely resembling lecithin itself. In fact, DPL and DPL-PT lamellae have very nearly the same thickness as precipitated from methanol-water, although their swelling behavior on resuspension in pure water is different. The complexes crystallize in the form of hexagonal platelets, some monolayers and some with terraced spiral growths, with a thickness of 50-55 A. In X-ray and electron diffraction they yield sharp reflections at 4.14 A which are characteristic of hexagonal packing of phospholipid paraffinic chains. The order-disorder transition temperature of this crystalline lattice, determined by differential scanning calorimetry, is somewhat higher in the complex than in pure DPL. Physical models consistent with these observations are discussed. ImagesFIGURE 1 aFIGURE 1 b PMID:5134208

  8. Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing

    Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.

  9. Thickness-dependent carrier mobility of ambipolar MoTe2: Interplay between interface trap and Coulomb scattering

    NASA Astrophysics Data System (ADS)

    Ji, Hyunjin; Lee, Gwanmu; Joo, Min-Kyu; Yun, Yoojoo; Yi, Hojoon; Park, Ji-Hoon; Suh, Dongseok; Lim, Seong Chu

    2017-05-01

    The correlation between the channel thickness and the carrier mobility is investigated by conducting static and low frequency (LF) noise characterization for ambipolar carriers in multilayer MoTe2 transistors. For channel thicknesses in the range of 5-15 nm, both the low-field carrier mobility and the Coulomb-scattering-limited carrier mobility (μC) are maximal at a thickness of ˜10 nm. For LF noise, the interplay of interface trap density (NST), which was minimal at ˜10 nm, and the interfacial Coulomb scattering parameter (αSC), which decreased up to 10 nm and saturated above 10 nm, explained the mobility (μC) peaked near 10 nm by the carrier fluctuation and charge distribution.

  10. Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Chen, J. Y.; Shi, D. W.; Iqbal, Javed; Han, Xiufeng

    2012-04-01

    The Co/Cu multilayer nanowires fabricated in an array using anodized aluminum oxide (AAO) template by electrodeposition method, have been investigated. It has been observed that the magnetization reversal mode and magnetic anisotropy depend upon the Co and Cu layer thicknesses. Magnetization reversal occurs by curling mode at around Co = 400 nm and Cu = 10 nm, while for Co = 30 nm and Cu = 60 nm, magnetization reversal occurs by nucleation mode. A change of magnetic anisotropy from out of plane to in plane is observed when thickness of Cu layer tCu = 60 nm and that of Co tCo = 30 nm. Magnetic anisotropy is lost when thickness of the Co layer tCo = 400 nm and that of Cu tCu= 10 nm. Magnetic properties have been explained by the competition among shape anisotropy, magnetostatic interactions and magnetocrystalline anisotropy. Magnetic properties can be tuned accordingly depending upon the thickness of the Co and Cu nanodisks.

  11. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  12. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy

    PubMed Central

    Shin, Ji Soo

    2017-01-01

    Purpose The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. Methods This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. Results The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 µm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Conclusions Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. PMID:29022292

  13. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    PubMed

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  14. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy.

    PubMed

    Shin, Ji Soo; Lee, Young Hoon

    2017-12-01

    The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 μm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society

  15. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    NASA Astrophysics Data System (ADS)

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  16. Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.

    PubMed

    Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G

    2010-02-01

    Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.

  17. Wet-chemical synthesis and properties of CoPt and CoPt3 alloy nanoparticles.

    PubMed

    Frommen, Christoph; Rösner, Harald; Fenske, Dieter

    2002-10-01

    Surface-protected, air-stable nanoparticles of CoPt and CoPt3 were prepared by thermal decomposition/reduction of organometallic precursors with a long-chain aliphatic diol, also known as the polyol process. Particles 3 nm in diameter showed ferromagnetic behavior up to 350 K (Hc = 65 Oe at T = 300 K; Hc = 410 Oe at T = 5K) and underwent a disordering-ordering phase transformation after annealing that resulted in an increase in coercivity (Hc = 170 Oe at T = 300 K; Hc = 2000 Oe at T = 5 K).

  18. Electrical manipulation of perpendicular magnetic anisotropy in a Pt/Co/Pt trilayer grown on PMN-PT(0 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Sun, L.; Luo, Y. M.; Zhang, D.; Liang, J. H.; Wu, Y. Z.

    2018-03-01

    Strain-induced modulation of perpendicular magnetic anisotropy (PMA) is demonstrated in a wedge-shaped Pt/Co/Pt sandwich grown on PMN-PT(0 1 1) substrate using magnetic torque measurements. An anisotropic in-plane strain is generated by applying an electric field across the PMN-PT substrate and transferred to the ferromagnetic Pt/Co/Pt sandwich. The critical thickness of spin reorientation transition is tuned to the thicker region of the Pt/Co/Pt wedge. The strain-induced change of PMA is quantitatively extracted. Only the first order anisotropy term is tuned by the electric field, while the second order anisotropy term has negligible electric field-dependence. Both of the volume and interface contributions of the first order anisotropy term show tunable electric field modulation. These results may benefit the understanding of strain-mediated magnetoelectric coupling effect in artificial multiferroic structures containing a ferromagnetic layer with PMA.

  19. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    NASA Astrophysics Data System (ADS)

    Laval, M.; Lüders, U.; Bobo, J. F.

    2007-09-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.

  20. Bipolar resistive switching in Si/Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Dias, C.; Lv, H.; Picos, R.; Aguiar, P.; Cardoso, S.; Freitas, P. P.; Ventura, J.

    2017-12-01

    Resistive switching devices are being intensively studied aiming a large number of promising applications such as nonvolatile memories, artificial neural networks and sensors. Here, we show nanoscale bipolar resistive switching in Pt/Si/Ag/TiW structures, with a dielectric barrier thickness of 20 nm. The observed phenomenon is based on the formation/rupture of metallic Ag filaments in the otherwise insulating Si host material. No electroforming process was required to achieve resistive switching. We obtained average values of 0.23 V and -0.24 V for the Set and Reset voltages, respectively. The stability of the switching was observed for over 100 cycles, together with a clear separation of the ON (103 Ω) and OFF (102 Ω) states. Furthermore, the influence of the Set current compliance on the ON resistance, resistances ratio and Set/Reset voltages percentage variation was also studied.

  1. (111)-oriented Pb(Zr ,Ti)O3 films deposited on SrRuO3/Pt electrodes: Reproducible preparation by metal organic chemical vapor deposition, top electrode influence, and reliability

    NASA Astrophysics Data System (ADS)

    Menou, Nicolas; Funakubo, Hiroshi

    2007-12-01

    (111)-textured Pb(Zr0.4Ti0.6)O3 films (thickness of ˜120nm) were deposited on (111)-oriented SrRuO3 bottom electrodes by pulse metal organic chemical vapor deposition (MOCVD). PZT single phase was evidenced over a large range of Pb precursor input rate into the MOCVD chamber. In this process window, the good control of the (111) texture of PZT films was confirmed. It is shown that the control of both the composition and orientation of PZT films leads to reproducible electric properties (Pr, Vc, resistance to fatigue) across the process window. Furthermore, the impact of the top electrode chemical nature, elaboration process, and annealing process upon the electric properties was studied systematically.

  2. (Pt{sub 1–x}Cu{sub x}){sub 3}Cu{sub 2}B and Pt{sub 9}Cu{sub 3}B{sub 5}, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamakha, Leonid P.; Sologub, Oksana, E-mail: oksana.sologub@univie.ac.at; Stöger, Berthold

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt{sub 1−x}Cu{sub x}){sub 3}Cu{sub 2}B (x=0.33) forms a B-filled β-Mn-type structure (space group P4{sub 1}32; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt{sub 9}Cu{sub 3}B{sub 5} (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt{sub 9}Zn{submore » 3}B{sub 5–δ}-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt{sub 6}] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt{sub 6}] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt{sub 6}] and [Pt{sub 6}] trigonal prisms, rotated perpendicularly to the central one. There is no B–B contact as well as Cu–B contact in the structure. The relationships of Pt{sub 9}Cu{sub 3}B{sub 5} structure with the structure of Ti{sub 1+x}Os{sub 2−x}RuB{sub 2} as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt{sub 1–x}Cu{sub x}){sub 3}Cu{sub 2}B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ{sub 0}H{sub C2}(0){sup WHH} of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt{sub 9}Cu{sub 3}B{sub 5} (Pt{sub 9}Zn{sub 3}B{sub 5–δ}-type structure) from electrical resistivity measurements. - Highlights: • First two copper platinum borides, (Pt{sub 0.67}Cu{sub 0.33}){sub 3}Cu{sub 2}B and Pt{sub 9}Cu{sub 3}B{sub 5} were obtained. • (Pt{sub 0.67}Cu{sub 0.33}){sub 3}Cu{sub 2}B forms a B-filled β-Mn-type structure. • Pt{sub 9}Cu{sub 3}B{sub 5} adopts a Pt{sub 9}Zn{sub 3}B{sub 5–δ}-type structure. • Boron atoms exhibit octahedral and trigonal prismatic coordination. • (Pt{sub 1–x}Cu{sub x})3Cu{sub 2}B (x=0.3) is a bulk superconductor with T{sub c} 2.06 K.« less

  3. Influence of prolonged intermittent high-intensity exercise on knee flexor strength in male and female soccer players.

    PubMed

    Mercer, Tom H; Gleeson, Nigel P; Wren, Karen

    2003-06-01

    This study investigated the effect of an acute, prolonged, intermittent, high-intensity single-leg pedalling exercise task (PIHIET) on the isokinetic leg strength of the knee flexors in six male and seven female collegiate soccer players. Following determination of single-leg VO(2peak), subjects completed a PIHIET designed to simulate the energetics of soccer match play (approximately 90 min in total; approximately 70% single-leg VO(2peak)). Pre-, mid- and post-PIHIET gravity-corrected indices of knee flexion peak torque (PT) and range of motion-relativised torque at 15% of knee flexion (RRT(15%); 0% = full knee extension) were assessed at a lever-arm angular velocity of 1.05 rad.s(-1)for intervention and control limbs using an isokinetic dynamometer. Repeated measures ANOVAs revealed significant condition (PIHIET, control) x time (pre-, mid-, post-PIHIET) interactions for knee flexion PT (F([2,22])=26.2; P<0.001) and RRT(15%) (F([2,22])=20.1; P<0.001). Flexion PT and RRT(15% )were observed to decrease, pre- to post-intervention, from 92.8 (28.7) N.m to 72.1 (28.0) N.m and from 63.8 (17.5) N.m to 47.9 (18.4) N.m respectively, for the intervention limb alone. These data corresponded to 22.3% and 24.9% mean reductions pre-post intervention in PT and RRT(15%). Exploratory post hoc analysis of the pattern of the relative deterioration (%) of PT and RRT(15%), for the intervention limb alone, revealed a three-way interaction [group (male, female) x parameter (PT, RRT(15%)) x assessment phase (pre- to mid-PIHIET, mid- to post-PIHIET)] (F(1,11)=5.2; P<0.05). This interaction characterised a greater deterioration of strength performance during the mid- to post-PIHIET assessment phase, at the extremes of range of motion (RRT(15%)) for the female group. The greater percentage of mid-post phase strength loss observed in women near the end-range extension may potentially be implicated in the higher incidence of knee injury reported in female soccer players.

  4. Photochemical Fabrication of Transition Metal Nanoparticles Using CdS Template and Their Co-Catalysis Effects for TiO2 Photocatalysis

    NASA Astrophysics Data System (ADS)

    Badhwar, Nidhi; Gupta, Nidhi; Pal, Bonamali

    2013-09-01

    Transition metal nanoparticles were prepared by chemical dissolution of CdS template from metal photodeposited CdS nanorod (length = 70-85 nm and width = 5-6 nm) heterocomposites. Size (9-10 nm) of metal nanoparticles obtained after CdS removal was larger than the size (4-6 nm) of metal nanodeposits over CdS template. The obtained Au nanoparticles displayed a broad red shifted absorption band at 660 nm, whereas Pt, Pd and Rh nanoparticles exhibit featureless absorption spectra. Elemental analysis confirms the complete removal of CdS template from Au-CdS (Au — 2.65 at.%) and Ag-CdS (Ag — 2.06 at.%) composites showing no Cd peak. These metal nanoparticles imparted dissimilar co-catalytic activity of TiO2 for photocatalytic degradation of salicylic acid in the order Au > Pt > Pd > Ag > Rh as a function of their nature, electronegativity, redox potential and work function.

  5. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    NASA Astrophysics Data System (ADS)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  6. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer.

    PubMed

    Choi, Woong Kirl; Baek, Seung Yub

    2015-09-22

    In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond's extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer-platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged by the grinding process will be increased. Despite the etching method requiring more procedures to remove the Pt coating layer after FIB milling, it is a feasible method for diamond tools with under 500 nm width.

  7. Effect of CaRuO3 interlayer on the dielectric properties of Ba(Zr ,Ti)O3 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tang, X. G.; Tian, H. Y.; Wang, J.; Wong, K. H.; Chan, H. L. W.

    2006-10-01

    Ba(Zr0.2Ti0.8)O3 (BZT) thin films on Pt(111)/Ti /SiO2/Si(100) substrates without and with CaRuO3 (CRO) buffer layer were fabricated at 650°C in situ by pulsed laser deposition. The BZT thin films showed a dense morphology, many clusters are found on the surface images of BZT/Pt films, which are composed by nanosized grains of 25-35nm; the average grain size of BZT/CRO films is about 80nm, which lager than that of BZT/Pt thin film. The dielectric constants and dissipation factors of BZT/Pt and BZT/CRO thin films were 392 and 0.019 and 479 and 0.021 at 1MHz, respectively. The dielectric constant of BZT/Pt and BZT/CRO thin films changes significantly with applied dc bias field and has high tunabilities and figures of merit of ˜70% and 37 and 75% and 36, respectively, under an applied field of 400kV /cm. The possible microstructural background responsible for the high dielectric constant and tunability was discussed.

  8. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  9. Development of iron platinum/oxide high anisotropy magnetic media

    NASA Astrophysics Data System (ADS)

    Yang, En

    Because the size of magnetic grains is approaching the superparamagnetic limit in current perpendicular media, it is necessary to produce thin film media made with magnetic alloys with larger magneto-crystalline anisotropy energies to achieve higher recording densities. Due to its high anisotropy field and good environmental stability, FePt (L10) is the most promising media for achieving such ultra-high recording densities. However, there are several challenges associated with the development of FePt as a perpendicular media. As deposited FePt has disordered fee phase; either high deposition temperature, > 600 oC, or a high temperature post annealing process is required to obtain the ordered L10 structure, which is not desirable for manufacturing purposes. Therefore, techniques that enable ordering at significantly reduced temperatures are critically and urgently needed. Furthermore, in order to use it as a high density recording media, very small (less than 5 nm), uniform and fully-ordered, magnetically isolated FePt (L10) columnar grains with well defined grain boundaries, excellent perpendicular texture and high coercivity are desired. In this study, experiments and research have been mainly focused on the following aspects: (1) controlling of c axis orientation of FePt, (2) obtaining small columnar FePt grains, (3) improving order parameter and magnetic properties at lower ordering temperature. After a systematic experimental investigation, we have found an experimental approach for obtaining highly ordered L1 0 FePt-oxide thin film media at moderate deposition temperatures. In most previous studies, the FePt-Oxide layer is directly deposited on a textured MgO (001) layer. By introducing a double buffer layer in between the FePt-oxide layer and the MgO underlayer, we are able to substantially enhance the L1 0 ordering of the FePt-oxide layer while lowering the deposition temperature to 400oC. The buffer layers also yield a significantly enhanced (001) texture of the formed L10 FePt film. With the order parameter near unity, the coercivity of the resulting granular L10 FePt-oxide film exceeds Hc > 20 kOe with an average grain size about D = 8 nm. With the buffer layer technique, l8kOe coercivity has also been achieved for L10 FePt-oxide film at a grain size of about D = 4.5 nm, but it requires 35% of SiO2 in the magnetic layer. With 9% of Oxide in the film, excellent perpendicular texture, very high order parameter and small grain size of FePt can also be obtained by utilizing RuAl grain size defining layer along with TiN barrier layer. With the Ag buffer layer technique, the microstructure and magnetic properties of FePt films with RuAl grain size defining layer can be further improved.

  10. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells.

    PubMed

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-31

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.

  11. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells

    PubMed Central

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-01

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864

  12. Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in themore » high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare alloy nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions« less

  13. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  14. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE PAGES

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...

    2017-11-15

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  15. Particle size distribution control of Pt particles used for particle gun

    NASA Astrophysics Data System (ADS)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  16. Pt nanoparticle-reduced graphene oxide nanohybrid for proton exchange membrane fuel cells.

    PubMed

    Park, Dae-Hwan; Jeon, Yukwon; Ok, Jinhee; Park, Jooil; Yoon, Seong-Ho; Choy, Jin-Ho; Shul, Yong-Gun

    2012-07-01

    A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, Katherine; Hu, Jue; Ma, Zhong

    Hydrogen oxidation and evolution on Pt in acid are facile processes, while in alkaline electrolytes, they are 2 orders of magnitude slower. Thus, developing catalysts that are more active than Pt for these two reactions is important for advancing the performance of anion exchange membrane fuel cells and water electrolyzers. Herein, we detail a 4-fold enhancement of Pt mass activity that we achieved using single-crystalline Ru@Pt core–shell nanoparticles with two-monolayer-thick Pt shells, which doubles the activity on Pt–Ru alloy nanocatalysts. For Pt specific activity, the two- and one-monolayer-thick Pt shells exhibited enhancement factors of 3.1 and 2.3, respectively, compared tomore » the Pt nanocatalysts in base, differing considerably from the values of 1 and 0.4, respectively, in acid. To explain such behavior and the orders of magnitude difference in activity on going from acid to base, we performed kinetic analyses of polarization curves over a wide range of potential from –250 to 250 mV using the dual-pathway kinetic equation. From acid to base, the activation free energies increase the most for the Volmer reaction, resulting in a switch of the rate-determining step from the Tafel to the Volmer reaction, and a shift to a weaker optimal hydrogen binding energy. Furthermore, the much higher activation barrier for the Volmer reaction in base than in acid is ascribed to one or both of the two catalyst-insensitive factors: slower transport of OH – than H + in water and a stronger O–H bond in water molecules (HO–H) than in hydrated protons (H 2O–H +).« less

  18. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection.

    PubMed

    Campos, Bruno B; Oliva, María Moreno; Contreras-Cáceres, Rafael; Rodriguez-Castellón, Enrique; Jiménez-Jiménez, José; da Silva, Joaquim C G Esteves; Algarra, Manuel

    2016-03-01

    Carbon quantum dots (CQDs) coated with poly(amidoamine) (PAMAM-NH2) dendrimer are prepared from folic acid and phosphoric acid under a hydrothermal procedure. The obtained nanoparticles are successfully used as fluorescent sensor for Pt(IV) (in the form of chloroplatinate ion). CQDs possess many attractive features including uniform dispersion with average size about 13nm for unmodified particles and, ∼30nm when they are coated with PAMAM-NH2 dendrimer. The synthesized nanoparticles have been characterized by elemental analysis, attenuated total reflectance (ATR), X-ray photoelectron (XPS) and Raman spectroscopies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and steady-state and life-time fluorescence. CQDs are used as fluorescent sensor of Pt(IV) ion in aqueous media showing linear quenching effect of their fluorescence. The results obtained demonstrated a limit of detection of 657nM with an accuracy of the method of 0.13% (as RSD, n=10) and sensitivity of 78nM. Moreover, with the presence of other interference species, good results are obtained when applied in real samples from platinum nanoparticles synthesis. The dissolved platinum ions can be quantified in the range 6-96μM with an accuracy of 2.5%. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females.

    PubMed

    Wang, Dan; De Vito, Giuseppe; Ditroilo, Massimiliano; Fong, Daniel T P; Delahunt, Eamonn

    2015-06-01

    The objective of this study was to investigate the gender-specific differences in peak torque (PT), muscle stiffness (MS) and musculoarticular stiffness (MAS) of the knee joints in a young active population. Twenty-two male and twenty-two female recreational athletes participated. PT of the knee joint extensor musculature was assessed on an isokinetic dynamometer, MS of the vastus lateralis (VL) muscle was measured in both relaxed and contracted conditions, and knee joint MAS was quantified using the free oscillation technique. Significant gender differences were observed for all dependent variables. Females demonstrated less normalized PT (mean difference (MD)=0.4Nm/kg, p=0.005, η(2)=0.17), relaxed MS (MD=94.2N/m, p<.001, η(2)=0.53), contracted MS (MD=162.7N/m, p<.001, η(2)=0.53) and MAS (MD=422.1N/m, p<.001, η(2)=0.23) than males. MAS increased linearly with the external load in both genders with males demonstrating a significantly higher slope (p=0.019) than females. The observed differences outlined above may contribute to the higher knee joint injury incidence and prevalence in females when compared to males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound.

    PubMed

    Tian, Shan; Wang, Lizhen; Yang, Jiemeng; Mao, Rui; Liu, Zhaohui; Fan, Yubo

    2017-02-08

    Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and -45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  2. Structural Evolution of Sub-10 nm Octahedral Platinum$-$Nickel Bimetallic Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Qiaowan; Xu, Yuan; Duan, Zhiyuan

    Octahedral Pt alloy nanocrystals (NCs) have shown excellent activities as electrocatalysts toward oxygen reduction reaction (ORR). As the activity and stability of NCs are highly dependent on their structure and the elemental distribution, it is of great importance to understand the formation mechanism of octahedral NCs and to rationally synthesize shape-controlled alloy catalysts with optimized ORR activity and stability. However, the factors controlling the structural and compositional evolution during the synthesis have not been well understood yet. Here in this paper, we systematically investigated the structure and composition evolution pathways of Pt–Ni octahedra synthesized with the assistance of W(CO) 6more » and revealed a unique core–shell structure consisting of a Pt core and a Pt–Ni alloy shell. Below 140 °C, sphere-like pure Pt NCs with the diameter of 3–4 nm first nucleated, followed by the isotropic growth of Pt–Ni alloy on the seeds at temperatures between 170 and 230 °C forming Pt@Pt–Ni core–shell octahedra with {111} facets. Owing to its unique structure, the Pt@Pt–Ni octahedra show an unparalleled stability during potential cycling, that is, no activity drop after 10 000 cycles between 0.6 and 1.0 V. This work proposes the Pt@Pt–Ni octahedra as a high profile electrocatalyst for ORR and reveals the structural and composition evolution pathways of Pt-based bimetallic NCs.« less

  3. Structural Evolution of Sub-10 nm Octahedral Platinum$-$Nickel Bimetallic Nanocrystals

    DOE PAGES

    Chang, Qiaowan; Xu, Yuan; Duan, Zhiyuan; ...

    2017-05-11

    Octahedral Pt alloy nanocrystals (NCs) have shown excellent activities as electrocatalysts toward oxygen reduction reaction (ORR). As the activity and stability of NCs are highly dependent on their structure and the elemental distribution, it is of great importance to understand the formation mechanism of octahedral NCs and to rationally synthesize shape-controlled alloy catalysts with optimized ORR activity and stability. However, the factors controlling the structural and compositional evolution during the synthesis have not been well understood yet. Here in this paper, we systematically investigated the structure and composition evolution pathways of Pt–Ni octahedra synthesized with the assistance of W(CO) 6more » and revealed a unique core–shell structure consisting of a Pt core and a Pt–Ni alloy shell. Below 140 °C, sphere-like pure Pt NCs with the diameter of 3–4 nm first nucleated, followed by the isotropic growth of Pt–Ni alloy on the seeds at temperatures between 170 and 230 °C forming Pt@Pt–Ni core–shell octahedra with {111} facets. Owing to its unique structure, the Pt@Pt–Ni octahedra show an unparalleled stability during potential cycling, that is, no activity drop after 10 000 cycles between 0.6 and 1.0 V. This work proposes the Pt@Pt–Ni octahedra as a high profile electrocatalyst for ORR and reveals the structural and composition evolution pathways of Pt-based bimetallic NCs.« less

  4. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity.

    PubMed

    Tahir, Kamran; Nazir, Sadia; Ahmad, Aftab; Li, Baoshan; Khan, Arif Ullah; Khan, Zia Ul Haq; Khan, Faheem Ullah; Khan, Qudrat Ullah; Khan, Abrar; Rahman, Aziz Ur

    2017-01-01

    The increase in the severe infectious diseases and resistance of the majority of the bacterial pathogens to the available drug is a serious problem now a day. In order to overcome this problem it is necessary to develop new therapeutic agents which are non-toxic and more effective to inhibit these microbial pathogens. For this purpose the plant extract of highly active medicinal plant, Taraxacum laevigatum was used for the synthesis of platinum nanoparticles (PtNPs) to enhance its bio-activities. The surface plasmon resonance peak appeared at 283nm clearly represent the formation of PtNPs. The results illustrate that the bio-synthesized PtNPs were uniformly dispersed, small sized (2-7nm) and spherical in shape. The green synthesized PtNPs were characterized by UV-vis spectroscopy, XRD, TEM, SEM, EDX, DLS and FTIR. These nanoparticles were tested against gram positive bacteria (Bacillus subtilis) and gram negative bacteria (Pseudomonas aeruginosa). The bio-synthesized PtNPs were examined to be more effective against both of the bacteria. The results showed, that the zone of inhibition of PtNPs against P. aeruginosa was 15 (±0.5) mm and B. subtilis was 18 (±0.8) mm. The most significant outcome of this examination is that PtNPs exhibited strong antibacterial activity against P. aeruginosa and B. subtilis which have strong defensive system against several antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Cui-Ping; Nie, Li; College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009

    A new salt [H{sub 2}DABCO][Pt(mnt){sub 2}]{sub 2} (1) (mnt{sup 2-}=maleonitriledithiolate and H{sub 2}DABCO{sup 2+} is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt){sub 2}]{sup -} anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt){sub 2}]{sub 2}{sup 2-} π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence ofmore » strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H{sub 2}DABCO][Pt(mnt){sub 2}]{sub 2} shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.« less

  6. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  7. Recombination zone in white organic light emitting diodes with blue and orange emitting layers

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi

    2012-10-01

    White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.

  8. XAS and XMCD studies of magnetic properties modifications of Pt/Co/Au and Pt/Co/Pt trilayers induced by Ga⁺ ions irradiation.

    PubMed

    Mazalski, Piotr; Sveklo, Iosif; Kurant, Zbigniew; Ollefs, Katharina; Rogalev, Andrei; Wilhelm, Fabrice; Fassbender, Juergen; Baczewski, Lech Tomasz; Wawro, Andrzej; Maziewski, Andrzej

    2015-05-01

    Magnetic and magneto-optical properties of Pt/Co/Au and Pt/Co/Pt trilayers subjected to 30 keV Ga(+) ion irradiation are compared. In two-dimensional maps of these properties as a function of cobalt thickness and ion fluence, two branches with perpendicular magnetic anisotropy (PMA) for Pt/Co/Pt trilayers are well distinguished. The replacement of the Pt capping layer with Au results in the two branches still being visible but the in-plane anisotropy for the low-fluence branch is suppressed whereas the high-fluence branch displays PMA. The X-ray absorption spectra and X-ray magnetic circular dichroism (XMCD) spectra are discussed and compared with non-irradiated reference samples. The changes of their shapes and peak amplitude, particularly for the high-fluence branch, are related to the modifications of the local environment of Co(Pt) atoms and the etching effects induced by ion irradiation. Additionally, in irradiated trilayers the XMCD measurements at the Pt L2,3-edge reveal an increase of the magnetic moment induced in Pt atoms.

  9. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layersmore » at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.« less

  10. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    DOE PAGES

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; ...

    2018-03-09

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layersmore » at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.« less

  11. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layersmore » at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.« less

  12. Mesoporous graphene-like nanobowls as Pt electrocatalyst support for highly active and stable methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yan, Zaoxue; He, Guoqiang; Jiang, Zhifeng; Wei, Wei; Gao, Lina; Xie, Jimin

    2015-06-01

    Mesoporous graphene-like nanobowls (GLBs) with high surface area of 1091 m2 g-1, high pore volume of 2.7 cm3 g-1 and average pore diameter of 9.8 nm are synthesized through template method. The GLBs with inherent excellent electrical conductivity and chemical inertia show the properties of well mass transfer, poison resistance and stable loading of smaller Pt particles. Therefore, the Pt/GLB catalyst shows much higher activity and stability than that of commercial Pt/C (TKK) for methanol oxidation reaction (MOR). Therein, the peak current density on Pt/GLB (2075 mA mgPt-1) for MOR is 2.87 times that of commercial Pt/C (723 mA mgPt-1); and the onset potential for the MOR on the former is negatively shifted about 160 mV compared with that on the latter. The catalytic performances of the Pt/GLB are also better than those of the Pt loading on mesoporous amorphous carbon nanobowls (Pt/BLC), indicating promotion effect of graphite on Pt catalytic performance.

  13. Magnetic vortices in nanocaps induced by curvature

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  14. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  15. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity.

    PubMed

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K; Wiltshire, Benjamin D; Kisslinger, Ryan; Shankar, Karthik

    2018-01-05

    Anodically formed, vertically oriented, self-organized cylindrical TiO 2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO 2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  16. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y.

    2016-03-01

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg1/3Nb2/3)O3]0.65[PbTiO3]0.35 (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  17. A study of growth and thermal dewetting behavior of ultra-thin gold films using transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sudheer, Mondal, Puspen; Rai, V. N.; Srivastava, A. K.

    2017-07-01

    The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm) deposited on the formvar film (substrate) by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs) change with an increase in the film thickness (0.7 to 2.8 nm). Nearly spherical Au NPs are obtained for <3 nm thickness films whereas percolated nanostructures are observed for ≥3 nm thickness films as a consequence of the interfacial interaction of Au and formvar film. The covered area fraction (CAF) increases from ˜13 to 75 % with the change in film thickness from 0.7 to 8.4 nm. In-situ annealing of ≤3 nm film produces comparatively bigger size and better sphericity Au NPs along with their narrow distributions, whereas just percolated film produces broad distribution in size having spherical as well as elongated Au NPs. The films with thickness ≤3 nm show excellent thermal stability. The films having thickness >6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ˜0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm) during solid-state dewetting and recrystallization of the grains.

  18. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale

    PubMed Central

    Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  19. Thickness-dependent metal-to-insulator transition in epitaxial VO2 films

    NASA Astrophysics Data System (ADS)

    Zhi, Bowen; Gao, Guanyin; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Jin, Shaowei; Wu, Wenbin

    2014-12-01

    The metal-to-insulator transition (MIT) of VO2 films with a thickness of 3-100 nm on TiO2(001) substrates has been investigated. When varying the film thickness from 10 to 100 nm, the MIT temperature was first kept at 290 K in the range of 10-14 nm, and then increased with thickness increasing due to the strain relaxation. The origin of the suppressed transition in VO2 films thinner than 6 nm was also investigated. When prolonging the in situ annealing time, the sharpness, amplitude and width of the transition for 4 nm thick films were all increased, suggesting improved crystallinity rather than Ti diffusion from the substrates. In addition, the MIT was suppressed when the VO2 films were covered by a TiO2 layer, indicating that the interface effect via the confinement of the dimerization of the V atoms should be the main reason.

  20. Photoelectrochemistry by Design: Tailoring the Nanoscale Structure of Pt/NiO Composites Leads to Enhanced Photoelectrochemical Hydrogen Evolution Performance

    PubMed Central

    2017-01-01

    Photoelectrochemical hydrogen evolution is a promising avenue to store the energy of sunlight in the form of chemical bonds. The recent rapid development of new synthetic approaches enables the nanoscale engineering of semiconductor photoelectrodes, thus tailoring their physicochemical properties toward efficient H2 formation. In this work, we carried out the parallel optimization of the morphological features of the semiconductor light absorber (NiO) and the cocatalyst (Pt). While nanoporous NiO films were obtained by electrochemical anodization, the monodisperse Pt nanoparticles were synthesized using wet chemical methods. The Pt/NiO nanocomposites were characterized by XRD, XPS, SEM, ED, TEM, cyclic voltammetry, photovoltammetry, EIS, etc. The relative enhancement of the photocurrent was demonstrated as a function of the nanoparticle size and loading. For mass-specific surface activity the smallest nanoparticles (2.0 and 4.8 nm) showed the best performance. After deconvoluting the trivial geometrical effects (stemming from the variation of Pt particle size and thus the electroactive surface area), however, the intermediate particle sizes (4.8 and 7.2 nm) were found to be optimal. Under optimized conditions, a 20-fold increase in the photocurrent (and thus the H2 evolution rates) was observed for the nanostructured Pt/NiO composite, compared to the benchmark nanoparticulate NiO film. PMID:28620447

  1. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution.

    PubMed

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang

    2015-03-09

    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy "controlling competitive reaction" strategy by selecting the thiourea as S(2-) source and Zn(Ac)₂·2H₂O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m(2)g(-1), microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h(-1) under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.

  2. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang

    2015-03-01

    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy ``controlling competitive reaction'' strategy by selecting the thiourea as S2- source and Zn(Ac)2.2H2O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m2g-1, microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h-1 under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.

  3. Electroluminescence dependence on the organic thickness in ZnO nano rods/Alq3 heterostructure devices.

    PubMed

    Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei

    2011-04-01

    ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.

  4. Impact of oxygen stoichiometry on electroforming and multiple switching modes in TiN/TaOx/Pt based ReRAM

    NASA Astrophysics Data System (ADS)

    Sharath, S. U.; Joseph, M. J.; Vogel, S.; Hildebrandt, E.; Komissinskiy, P.; Kurian, J.; Schroeder, T.; Alff, L.

    2016-10-01

    We have investigated the material and electrical properties of tantalum oxide thin films (TaOx) with engineered oxygen contents grown by RF-plasma assisted molecular beam epitaxy. The optical bandgap and the density of the TaOx films change consistently with oxygen contents in the range of 3.63 to 4.66 eV and 12.4 to 9.0 g/cm3, respectively. When exposed to atmosphere, an oxidized Ta2O5-y surface layer forms with a maximal thickness of 1.2 nm depending on the initial oxygen deficiency of the film. X-ray photoelectron spectroscopy studies show that multiple sub-stoichiometric compositions occur in oxygen deficient TaOx thin films, where all valence states of Ta including metallic Ta are possible. Devices of the form Pt/Ta2O5-y/TaOx/TiN exhibit highly tunable forming voltages of 10.5 V to 1.5 V with decreasing oxygen contents in TaOx. While a stable bipolar resistive switching (BRS) occurs in all devices irrespective of oxygen content, unipolar switching was found to coexist with BRS only at higher oxygen contents, which transforms to a threshold switching behaviour in the devices grown under highest oxidation.

  5. Electrode influence on the number of oxygen vacancies at the gate/high-κ dielectric interface in nanoscale MIM capacitors

    NASA Astrophysics Data System (ADS)

    Stojanovska-Georgievska, Lihnida

    2015-02-01

    In this paper, a particular attention has been paid in determining the impact of the type of top electrode (the gate), on the overall characteristics of the examined metal-insulator-metal structures, that contain doped Ta2O5:Hf high-κ dielectric as an insulator. For that purpose MIM capacitors with different metal gates (conventional Al and also W, Au, Pt, Mo, TiN, Ta) were formed. The results obtained, consider both the influence of metal work function and oxygen affinity, as possible reasons for increasing of number of oxygen vacancies at the gate/dielectric interface. Here we use capacitance-voltage alteration (C-V measurements) under constant current stress (CCS) conditions as characterization technique. The measurements show grater creation of positive oxygen vacancies in the case of metal electrodes with high work function, like Au and Pt, for almost one order of magnitude. It is also indicative that these metals have also the lowest values of heat of oxygen formation, which also favors the creation of oxygen vacancies. All results are discussed taking into consideration the nanoscale thickness of the dielectric layer (of the order of 8 nm), implicating the stronger effect of interface properties on the overall behavior rather than the one originating from the bulk of material.

  6. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of Steel...

  7. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of Steel...

  8. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of Steel...

  9. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of Steel...

  10. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    PubMed

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  11. Energy and Electron Transfer in Enhanced Two-Photon-Absorbing Systems with Triplet Cores

    PubMed Central

    Finikova, Olga S.; Troxler, Thomas; Senes, Alessandro; DeGrado, William F.; Hochstrasser, Robin M.; Vinogradov, Sergei A.

    2008-01-01

    Enhanced two-photon-absorbing (2PA) systems with triplet cores are currently under scrutiny for several biomedical applications, including photodynamic therapy (PDT) and two-photon microscopy of oxygen. The performance of so far developed molecules, however, is substantially below expected. In this study we take a detailed look at the processes occurring in these systems and propose ways to improve their performance. We focus on the interchromophore distance tuning as a means for optimization of two-photon sensors for oxygen. In these constructs, energy transfer from several 2PA chromophores is used to enhance the effective 2PA cross section of phosphorescent metalloporphyrins. Previous studies have indicated that intramolecular electron transfer (ET) can act as an effective quencher of phosphorescence, decreasing the overall sensor efficiency. We studied the interplay between 2PA, energy transfer, electron transfer, and phosphorescence emission using Rhodamine B-Pt tetrabenzoporphyrin (RhB-PtTBP) adducts as model compounds. 2PA cross sections (σ2) of tetrabenzoporphyrins (TBPs) are in the range of several tens of GM units (near 800 nm), making TBPs superior 2PA chromophores compared to regular porphyrins (σ2 values typically 1-2 GM). Relatively large 2PA cross sections of rhodamines (about 200 GM in 800-850 nm range) and their high photostabilities make them good candidates as 2PA antennae. Fluorescence of Rhodamine B (λfl = 590 nm, ϕfl = 0.5 in EtOH) overlaps with the Q-band of phosphorescent PtTBP (λabs = 615 nm, ϵ = 98 000 M-1 cm-1, ϕp ∼ 0.1), suggesting that a significant amplification of the 2PA-induced phosphorescence via fluorescence resonance energy transfer (FRET) might occur. However, most of the excitation energy in RhB-PtTBP assemblies is consumed in several intramolecular ET processes. By installing rigid nonconducting decaproline spacers (Pro10) between RhB and PtTBP, the intramolecular ETs were suppressed, while the chromophores were kept within the Förster r0 distance in order to maintain high FRET efficiency. The resulting assemblies exhibit linear amplification of their 2PA-induced phosphorescence upon increase in the number of 2PA antenna chromophores and show high oxygen sensitivity. We also have found that PtTBPs possess unexpectedly strong forbidden S0 → T1 bands (λmax = 762 nm, ϵ = 120 M-1 cm-1). The latter may overlap with the laser spectrum and lead to unwanted linear excitation. PMID:17608457

  12. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  13. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  14. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.

    PubMed

    Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  15. Au and Pt selectively deposited on {0 0 1}-faceted TiO2 toward SPR enhanced photocatalytic Cr(VI) reduction: The influence of excitation wavelength

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lai, Min; Fang, Jiaojiao; Lu, Chunhua

    2018-05-01

    Anatase TiO2 nanosheets with {0 0 1}-{1 0 1} surface heterojunction is employed as the typical photocatalyst to study surface plasmon resonance (SPR) enhanced photocatalytic Cr(VI) reduction with the help of selectively deposited Au and Pt nanoparticles. By employing an UV LED with central wavelength of 365 nm and a green LED with central wavelength of 530 nm as the light sources, results indicate the single green LED has little positive effect on driving the photocatalytic Cr(VI) reduction. In contrast, Au SPR can significantly improve the photocatalytic Cr(VI) reduction efficiency when both the UV LED and green LED are simultaneously irradiated. The {0 0 1}-{1 0 1} surface heterojunction and Pt nanoparticles can further improve the Cr(VI) reduction efficiency because of the facilitated hot electrons' transfer. Our findings suggest that the synergistic effect among {0 0 1}-{1 0 1} surface heterojunction, Au/Pt selective deposition, and excitation wavelength is important for SPR enhanced photocatalytic Cr(VI) reduction activity.

  16. Unsupported platinum nanoparticles as effective sensors of neurotransmitters and possible drug curriers

    NASA Astrophysics Data System (ADS)

    Tąta, Agnieszka; Gralec, Barbara; Proniewicz, Edyta

    2018-03-01

    Herein, surface-enhanced Raman scattering (SERS) activity of positively charged unsupported platinum nanoparticles (PtNPs) with ∼12 nm size and narrow size distribution, in an aqueous solution, towards neurotransmitters was monitored at 785 nm excitation wavelength. The pure PtNPs were synthetized by polyol method. Their morphology and structure were checked by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) measurements. As a neurotransmitter bombesin (BN), which exhibits autocrine effect on the growth of normal and tumour tissues, and its fragments from the C-terminal end: BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 (X-14 fragments of the BN amino acid sequence) were chosen. The collected spectra were interpreted and discussed. This is to determine the adsorption mode of bombesin onto the PtNPs surface and changes in this mode as a result of the bombesin backbone shortening from the N-terminal end. This is important from the point of using PtNPs as potential BN carrier into the cancerous tissue and antitumor drug.

  17. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

    PubMed Central

    Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa

    2017-01-01

    The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020

  18. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  19. Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Sheng; Li, Shin-Ming; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Yang, Shin-Yi; Tien, Hsi-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang

    2014-08-01

    A powerful synthesis strategy is proposed for fabricating porous polyaniline-reduced graphene oxide (PANI-RGO) composites with transparency up to 80% and thickness from 300 to 1000 nm for the counter electrode (CE) of bifacial dye-sensitizing solar cells (DSSCs). The first step is to combine the in-situ positive charge transformation of graphene oxide (GO) through aniline (ANI) prepolymerization and the electrostatic adsorption of ANI oligomer-GO to effectively control the thickness of ultrathin PANI-GO films by adjusting pH of the polymerization media. In the second step, PANI-GO films are reduced with hydroiodic acid to simultaneously enhance the apparent redox activity for the I3-/I- couple and their electronic conductivity. Incorporating the RGO increases the transparency of PANI and facilitates the light-harvesting from the rear side. A DSSC assembled with such a transparent PANI-RGO CE exhibits an excellent efficiency of 7.84%, comparable to 8.19% for a semi-transparent Pt-based DSSC. The high light-harvesting ability of PANI-RGO enhances the efficiency retention between rear- and front-illumination modes to 76.7%, compared with 69.1% for a PANI-based DSSC. The higher retention reduces the power-to-weight ratio and the total cost of bifacial DSSCs, which is also promising in other applications, such as windows, power generators, and panel screens.

  20. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching.

    PubMed

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-12-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 10(10) cm(-2)) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  1. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

    PubMed

    Qi, Lifang; Yu, Jiaguo; Jaroniec, Mietek

    2011-05-21

    CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded. © The Owner Societies 2011

  2. Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor

    PubMed Central

    TalebiFard, Sahba; Schmidt, Shon; Shi, Wei; Wu, WenXuan; Jaeger, Nicolas A. F.; Kwok, Ezra; Ratner, Daniel M.; Chrostowski, Lukas

    2017-01-01

    Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU. PMID:28270963

  3. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells.

    PubMed

    Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing

    2015-03-19

    A tungsten trioxide (WO₃) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO₃ composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO₃ CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO₃ CE. Moreover, the use of Pt/WO₃ CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ∼2 μg cm(-2), while maintaining a much better performance. The excellent performance of Pt/WO₃ CE is attributed to the efficient electron injection and transport via WO₃ supporters, as well as the nanostructure array morphology of WO₃ for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO₃ nanoplate arrays for other applications.

  4. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    DOE PAGES

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong; ...

    2017-03-08

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activitymore » in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less

  5. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.

    PubMed

    Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong

    2014-09-01

    In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong

    2017-03-22

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn. iNPs (3.2 +/- 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO(2)) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic andmore » basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less

  7. Full control of the spin-wave damping in a magnetic insulator using spin orbit torque

    NASA Astrophysics Data System (ADS)

    Klein, Olivier

    2015-03-01

    The spin-orbit interaction (SOI) has been an interesting and useful addition in the field of spintronics by opening it to non-metallic magnet. It capitalizes on adjoining a strong SOI normal metal next to a thin magnetic layer. The SOI converts a charge current, Jc, into a spin current, Js, with an efficiency parametrized by ΘSH, the spin Hall angle. An important benefit of the SOI is that Jc and Js are linked through a cross-product, allowing a charge current flowing in-plane to produce a spin current flowing out-of-plane. Hence it enables the transfer of spin angular momentum to non-metallic materials and in particular to insulating oxides, which offer improved performance compared to their metallic counterparts. Among all oxides, Yttrium Iron Garnet (YIG) holds a special place for having the lowest known spin-wave (SW) damping factor. Until recently the transmission of spin current through the YIG|Pt interface has been subject to debate. While numerous experiments have reported that Js produced by the excitation of ferromagnetic resonance (FMR) in YIG can cross efficiently the YIG|Pt interface and be converted into Jc in Pt through the inverse spin Hall effect (ISHE), most attempts to observe the reciprocal effect, where Js produced in Pt by the direct spin Hall effect (SHE) is transferred to YIG, resulting in damping compensation, have failed. This has been raising fundamental questions about the reciprocity of the spin transparency of the interface between a metal and a magnetic insulator. In this talk it will be demonstrated that the threshold current for damping compensation can be reached in a 5 μm diameter YIG(20nm)|Pt(7nm) disk. Reduction of both the thickness and lateral size of a YIG-structure were key to reach the microwave generation threshold current, Jc*. The experimental evidence rests upon the measurement of the ferromagnetic resonance linewidth as a function of Idc using a magnetic resonance force microscope (MRFM). It is shwon that the magnetic losses of spin-wave modes existing in the magnetic insulator can be reduced or enhanced by at least a factor of five depending on the polarity and intensity of the in-plane dc current, Idc. Complete compensation of the damping of the fundamental mode by spin-orbit torque is reached for a current density of ~ 3 .1011 A.m-2, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime. This result opens up a new area of research on the electronic control of the damping of YIG-nanostructures.

  8. Platinum particle size and support effects in NO(x) mediated carbon oxidation over platinum catalysts.

    PubMed

    Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A

    2006-04-15

    Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.

  9. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan

    2016-12-01

    This work focused on the catalytic transformation of methane (CH4) and carbon dioxide (CO2) into syngas (mixture of CO and H2). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400-700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  10. Strength and texture of Pt compressed to 63 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Shieh, Sean R.; Duffy, Thomas S.

    2015-02-01

    Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at ˜60 GPa. Coarse-grained (˜2-μm particles) Pt has a much lower yield strength of 1-1.5 GPa at ˜60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the <110> texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed <110> and <100> texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell.

  11. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    PubMed

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  12. Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin

    2008-12-01

    A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.

  13. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14).

    PubMed

    von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L

    2015-07-21

    Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

  14. Combined magnetic resonance and optical imaging of head and neck tumor xenografts using Gadolinium-labelled phosphorescent polymeric nanomicelles

    PubMed Central

    2010-01-01

    Background The overall objective of this study was to develop a nanoparticle formulation for dual modality imaging of head and neck cancer. Here, we report the synthesis and characterization of polymeric phospholipid-based nanomicelles encapsulating near-infrared (NIR) phosphorescent molecules of Pt(II)-tetraphenyltetranaphthoporphyrin [Pt(TPNP)] and surface functionalized with gadolinium [Pt(TPNP)-Gd] for combined magnetic resonance imaging (MRI) and NIR optical imaging applications. Methods Dynamic light scattering, electron microscopy, optical spectroscopy and MR relaxometric measurements were performed to characterize the optical and magnetic properties of nanoparticles in vitro. Subsequently, in vivo imaging experiments were carried out using nude mice bearing primary patient tumor-derived human head and neck squamous cell carcinoma xenografts. Results The nanomicelles were ~100 nm in size and stable in aqueous suspension. T1-weighted MRI and relaxation rate (R1 = 1/T1) measurements carried out at 4.7 T revealed enhancement in the tumor immediately post injection with nanomicelles, particularly in the tumor periphery which persisted up to 24 hours post administration. Maximum intensity projections (MIPs) generated from 3D T1-weighted images also demonstrated visible enhancement in contrast within the tumor, liver and blood vessels. NIR optical imaging performed (in vivo and ex vivo) following completion of MRI at the 24 h time point confirmed tumor localization of the nanoparticles. The large spectral separation between the Pt(TPNP) absorption (~700 nm) and phosphorescence emission (~900 nm) provided a dramatic decrease in the level of background, resulting in high contrast optical (NIR phosphorescence) imaging. Conclusions In conclusion, Pt(TPNP)-Gd nanomicelles exhibit a high degree of tumor-avidity and favorable imaging properties that allow for combined MR and optical imaging of head and neck tumors. Further investigation into the potential of Pt(TPNP)-Gd nanomicelles for combined imaging and therapy of cancer is currently underway. PMID:21110873

  15. Radiolytic Synthesis of Pt-Particle/ABS Catalysts for H₂O₂ Decomposition in Contact Lens Cleaning.

    PubMed

    Ohkubo, Yuji; Aoki, Tomonori; Seino, Satoshi; Mori, Osamu; Ito, Issaku; Endo, Katsuyoshi; Yamamura, Kazuya

    2017-08-23

    A container used in contact lens cleaning requires a Pt plating weight of 1.5 mg for H₂O₂ decomposition although Pt is an expensive material. Techniques that decrease the amount of Pt are therefore needed. In this study, Pt nanoparticles instead of Pt plating film were supported on a substrate of acrylonitrile-butadiene-styrene copolymer (ABS). This was achieved by the reduction of Pt ions in an aqueous solution containing the ABS substrate using high-energy electron-beam irradiation. Pt nanoparticles supported on the ABS substrate (Pt-particle/ABS) had a size of 4-10 nm. The amount of Pt required for Pt-particle/ABS was 250 times less than that required for an ABS substrate covered with Pt plating film (Pt-film/ABS). The catalytic activity for H₂O₂ decomposition was estimated by measuring the residual H₂O₂ concentration after immersing the catalyst for 360 min. The Pt-particle/ABS catalyst had a considerably higher specific catalytic activity for H₂O₂ decomposition than the Pt-film/ABS catalyst. In addition, sterilization performance was estimated from the initial rate of H₂O₂ decomposition over 60 min. The Pt-particle/ABS catalyst demonstrated a better sterilization performance than the Pt-film/ABS catalyst. The difference between Pt-particle/ABS and Pt-film/ABS was shown to reflect the size of the O₂ bubbles formed during H₂O₂ decomposition.

  16. Photothermal optical coherence tomography for depth-resolved imaging of mesenchymal stem cells via single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Connolly, Emma; Murphy, Mary; Barron, Valerie; Leahy, Martin

    2014-03-01

    The progress in stem cell research over the past decade holds promise and potential to address many unmet clinical therapeutic needs. Tracking stem cell with modern imaging modalities are critically needed for optimizing stem cell therapy, which offers insight into various underlying biological processes such as cell migration, engraftment, homing, differentiation, and functions etc. In this study we report the feasibility of photothermal optical coherence tomography (PT-OCT) to image human mesenchymal stem cells (hMSCs) labeled with single-walled carbon nanotubes (SWNTs) for in vitro cell tracking in three dimensional scaffolds. PT-OCT is a functional extension of conventional OCT with extended capability of localized detection of absorbing targets from scattering background to provide depth-resolved molecular contrast imaging. A 91 kHz line rate, spectral domain PT-OCT system at 1310nm was developed to detect the photothermal signal generated by 800nm excitation laser. In general, MSCs do not have obvious optical absorption properties and cannot be directly visualized using PT-OCT imaging. However, the optical absorption properties of hMSCs can me modified by labeling with SWNTs. Using this approach, MSC were labeled with SWNT and the cell distribution imaged in a 3D polymer scaffold using PT-OCT.

  17. Nano optical sensor binuclear Pt-2-pyrazinecarboxylic acid -bipyridine for enhancement of the efficiency of 3-nitrotyrosine biomarker for early diagnosis of liver cirrhosis with minimal hepatic encephalopathy.

    PubMed

    Attia, M S; Al-Radadi, Najlaa S

    2016-12-15

    A new, precise, and very selective method for increasing the impact and assessment of 3-nitrotyrosine (3-Nty) as a biomarker for early diagnosis of liver cirrhosis with minimal hepatic encephalopathy (MHE) disease was developed. The method depends on the formation of the ion pair associate between 3-nitrotyrosine and the optical sensor binuclear Pt-2-pyrazinecarboxylic acid (pca)-Bipyridine (bpy) complex doped in sol-gel matrix in buffer solution of pH 7.3. The binuclear Pt (pca)(bpy) has +II net charge which is very selective and sensitive for [3-Nty](-2) at pH 7.3 in serum sample of liver cirrhosis with MHE diseases. 3-nitrotyrosine (3-Nty) quenches the luminescence intensity of the nano optical sensor binuclear Pt(pca) (bpy) at 528nm after excitation at 370nm, pH 7.3. The remarkable quenching of the luminescence intensity at 528nm of nano binuclear Pt(pca) (bpy) doped in sol-gel matrix by various concentrations of the 3-Nty was successfully used as an optical sensor for the assessment of 3-Nty in different serum samples of (MHE) in patients with liver cirrhosis. The calibration plot was achieved over the concentration range 1.85×10(-5) - 7.95×10(-10)molL(-1) 3-Nty with a correlation coefficient of (0.999) and a detection limit of (4.7×10(-10)molL(-1)). The method increases the sensitivity (93.75%) and specificity (96.45%) of 3-Nty as a biomarker for early diagnosis of liver cirrhosis with MHE in patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. In vivo photothermal optical coherence tomography of gold nanorods in the mouse eye (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lapierre-Landry, Maryse; Gordon, Andrew Y.; Penn, John S.; Skala, Melissa C.

    2017-02-01

    Optical coherence tomography (OCT) has become standard in retinal imaging at the pre-clinical and clinical level by allowing non-invasive, three-dimensional imaging of the tissue structure. However, OCT lacks specificity to contrast agents that could be used for in vivo molecular imaging. We have performed in vivo photothermal optical coherence tomography (PT-OCT) of targeted gold nanorods in the mouse retina after the mice were injected systemically with the contrast agent. To our knowledge, we are the first to perform PT-OCT in the eye and image targeted gold nanorods with this technology. As a model of age-related wet macular degeneration, lesions were induced by laser photocoagulation in each mouse retina (n=12 eyes). Untargeted and targeted (anti-mouse CD102 antibody, labeling neovasculature) gold nanorods (peak absorption λ=750nm) were injected intravenously by tail-vein injection five days after lesion induction, and imaged the same day with PT-OCT. Our instrument is a spectral domain OCT system (λ=860nm) with a Titanium:Sapphire laser (λ=750nm) added to the beam path using a 50:50 coupler to heat the gold nanorods. We acquired PT-OCT volumes of one lesion per mouse eye. There was a significant increase in photothermal intensity per unit area of the lesion in the targeted gold nanorods group versus the saline control group and the untargeted gold nanorods group. This experiment demonstrates the feasibility of PT-OCT to image the distribution of molecular contrast agents in the mouse retina, including in highly scattering lesions. In the future we will use this method to identify new biomarkers linked with retinal disease.

  19. Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Yao, Bo

    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L1 0 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed [Fe/Pt]n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fcc →L10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in [Fe/Pt] n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L1 0 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in [Fe/Pt]n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in [Fe/Pt]n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of [Fe/Pt]n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in [Fe/Pt] n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product.

  20. Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    NASA Astrophysics Data System (ADS)

    Tolley, R.; Montoya, S. A.; Fullerton, E. E.

    2018-04-01

    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface, resulting in reduced saturation magnetization, magnetic anisotropy, and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3 μ m and transport measurements demonstrate these features can be displaced by means of spin-orbit torques with current densities as low as J =2 ×108A / m2 and display a skyrmion Hall effect.

  1. Large exchange bias induced by polycrystalline Mn3Ga antiferromagnetic films with controlled layer thickness

    NASA Astrophysics Data System (ADS)

    Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi

    2018-05-01

    Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.

  2. Selective Catalysis in Nanoparticle Metal-Organic Framework Composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Casey Justin

    The design of highly selective catalysts are becoming increasingly important, especially as chemical and pharmaceutical industries seek to improve atom economy and minimize energy intensive separations that are often required to separate side products from the desired product. Enzymes are among the most selective of all catalysts, generally operating through molecular recognition whereby an active site analogous to a lock and the substrate is analogous to a key. The assembly of a porous, crystalline material around a catalytically active metal particle could serve as an artificial enzyme. In this vein, we first synthesized the polyvinylpyrrolidone (PVP) coated nanoparticles of interest and then encapsulated them within zeolitic imidazolate framework 8 or ZIF-8. 2.8 nm Pt-PVP nanoparticles, which were encapsulated within ZIF-8 to form Pt ZIF-8 composite. Pt ZIF-8 was inactive for the hydrogenation of cyclic olefins such as cis-cyclooctene and cis-cyclohexene while the composite proved to be a highly selective catalyst for the hydrogenation of terminal olefins, hydrogenating trans-1,3-hexadiene to 3-hexene in 95% selectivity after 24 hours under 1 bar H2. We extended our encapsulation method to sub-2 nm Au nanoparticles to form Au ZIF-8. Au ZIF-8 served as a highly chemoselective catalyst for the hydrogenation of crotonaldehyde an alpha,beta-unsaturated aldehyde, to crotyl alcohol an alpha,beta-unsaturated alcohol, in 90-95% selectivity. In order to investigate nanoparticle size effects on selectivity, 6-10 nm Au nanoparticles were encapsulated within ZIF-8 to form Au6 ZIF-8. Control catalysts with nanoparticles supported on the surface of ZIF-8 were synthesized as well, Au/ZIF-8 and Au6/ZIF-8. Au6 ZIF-8 hydrogenated crotonaldehyde in 85% selectivity towards the unsaturated alcohol. Catalysts with nanoparticles supported on the exterior of ZIF-8 were far less selective towards the unsaturated alcohol. Post-catalysis transmission electron microscopy analysis of Au ZIF-8 and Au/ZIF-8 shows that the nanoparticles of Au ZIF-8 remain within experimental uncertainty and unchanged, whereas Au nanoparticles of Au/ZIF suffered from server sintering. We performed solvent assisted linker exchange, a single-crystal to single-crystal transformation, on Pt ZIF-8 to exchange the 2-methylimidazole linkers with imidazole to form Pt SALEM-2. Since Pt SALEM-2 should have larger apertures than Pt ZIF-8, we investigated Pt ZIF-8 and Pt SALEM-2 as catalysts for the hydrogenation of substrates with increasingly larger kinetic diameter: 1-octene, cis-cyclohexene, and beta-pinene. Both catalysts were active for the hydrogenation of 1-octene, while only Pt SALEM-2 was active for cis-cyclohexene hydrogenation. Neither catalyst was active for the hydrogenation of beta-pinene, indicating that the Pt nanoparticles remained well encapsulated throughout the SALE process.

  3. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation PIPELINE AND... SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of Steel...

  4. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  5. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-01-13

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  6. Glucose sensing based on Pt-MWCNT and MWCNT

    NASA Astrophysics Data System (ADS)

    Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.

    2007-04-01

    It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.

  7. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  8. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  9. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  10. The influence of thermal stresses on the phase composition of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 thick films

    NASA Astrophysics Data System (ADS)

    Uršič, Hana; Zarnik, Marina Santo; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Kosec, Marija

    2011-01-01

    The influence of thermal stresses versus the phase composition for 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thick films is being reported. The thermal residual stresses in the films have been calculated using the finite-element method. It has been observed that in 0.65PMN-0.35PT films a compressive stress enhances the thermodynamic stability of the tetragonal phase with the space group P4mm.

  11. Effect of Ru thickness on spin pumping in Ru/Py bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet

    2015-05-07

    We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumpingmore » from Py into Ru.« less

  12. Effect of the spin-twist structure on the spin-wave dynamics in Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange coupled bi-layers with varying Ni{sub 80}Fe{sub 20} thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Semanti; Barman, Saswati, E-mail: saswati@bose.res.in; Barman, Anjan, E-mail: abarman@bose.res.in

    2014-05-07

    We have investigated optically induced ultrafast magnetization dynamics of a series of Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange spring bi-layers with varying Ni{sub 80}Fe{sub 20} thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni{sub 80}Fe{sub 20} layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni{sub 80}Fe{sub 20} layer gives rise to new modes in the composite system as opposed to the bare Ni{sub 80}Fe{sub 20} films.

  13. A comparison of the performance of two advanced restraint systems in frontal impacts.

    PubMed

    Lopez-Valdes, F J; Juste, O; Pipkorn, B; Garcia-Muñoz, I; Sunnevång, C; Dahlgren, M; Alba, J J

    2014-01-01

    The goal of the study is to compare the kinematics and dynamics of the THOR dummy in a frontal impact under the action of 2 state-of-the-art restraint systems. Ten frontal sled tests were performed with THOR at 2 different impact speeds (35 and 9 km/h). Two advanced restraint systems were used: a pretensioned force-limiting belt (PT+FL) and a pretensioned belt incorporating an inflatable portion (PT+BB). Dummy measurements included upper and lower neck reactions, multipoint thoracic deflection, and rib deformation. Data were acquired at 10,000 Hz. Three-dimensional motion of relevant dummy landmarks was tracked at 1,000 Hz. RESULTS are reported in a local coordinate system moving with the test buck. Average forward displacement of the head was greater when the PT+FL belt was used (35 km/h: 376.3±16.1 mm [PT+BB] vs. 393.6±26.1 mm [PT+FL]; 9 km/h: 82.1±26.0 mm [PT+BB] vs. 98.8±0.2 mm [PT+FL]). The forward displacement of T1 was greater for the PT+FL belt at 35 km/h but smaller at 9 km/h. The forward motion of the pelvis was greater when the PT+BB was used, exhibiting a difference of 82 mm in the 9 km/h tests and 95.5 mm in the 35 km/h test. At 35 km/h, upper shoulder belt forces were similar (PT+FL: 4,756.8±116.6 N; PT+BB: 4,957.7±116.4 N). At 9 km/h, the PT+BB belt force was significantly greater than the PT+FL one. Lower neck flexion moments were higher for the PT+BB at 35 km/h but lower at 9 km/h (PT+FL: 34.2±3.5 Nm; PT+BB: 26.8±2.1 Nm). Maximum chest deflection occurred at the chest upper left region for both belts and regardless of the speed. The comparison of the performance of different restraints requires assessing occupant kinematics and dynamics from a global point of view. Even if the force acting on the chest is similar, kinematics can be substantially different. The 2 advanced belts compared here showed that while the PT+BB significantly reduced peak and resultant chest deflection, the resulting kinematics indicated an increased forward motion of the pelvis and a reduced rotation of the occupant's torso. Further research is needed to understand how these effects can influence the protection of real occupants in more realistic vehicle environments.

  14. Electron-beam pumped laser structures based on MBE grown {ZnCdSe}/{ZnSe} superlattices

    NASA Astrophysics Data System (ADS)

    Kozlovsky, V. I.; Shcherbakov, E. A.; Dianov, E. M.; Krysa, A. B.; Nasibov, A. S.; Trubenko, P. A.

    1996-02-01

    Cathodoluminescence (CL), photoreflection (PR), phototransmission (PT) of single and multiquantum wells (MQWs) and strain layer {ZnCdSe}/{ZnSe} superlattices (SLs) grown by molecular beam epitaxy (MBE) were studied. An increase of the Stokes shift with the number of quantum wells (QWs) and the appearance of new lines in CL and PT spectra were observed. Room temperature (RT) vertical-cavity surface-emitting laser (VCSEL) operation was achieved by using the SL structures. Output power up to 2.2 W in single longitudinal mode with λ = 493 nm was obtained. Cut facet laser wavelength of the same SL structure was 502 nm.

  15. Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction

    DOE PAGES

    Strickler, Alaina L.; Jackson, Ariel; Jaramillo, Thomas F.

    2016-12-28

    Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specificmore » and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Furthermore, activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.« less

  16. Subsurface optical stimulation of the rat prostate nerves using continuous-wave near-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2012-02-01

    Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.

  17. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    PubMed

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.

  18. Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods.

    PubMed

    Ye, Rongkai; Zhang, Yanping; Chen, Yuyu; Tang, Liangfeng; Wang, Qiong; Wang, Qianyu; Li, Bishan; Zhou, Xuan; Liu, Jianyu; Hu, Jianqiang

    2018-05-22

    Pt-based catalysts with novel structure have attracted great attention due to their outstanding performance. In this work, H 2 PtCl 6 was used as both precursor and etching agent to realize the shape-controlled synthesis of Pt-modified Au@Ag nanorods (NRs). During the synthesis, the as-prepared Ag shell played a crucial role in both protecting the Au NRs from being etched away by PtCl 6 2- and leading to an unusual growth mode of Pt component. The site-specified etching and/or growth depended on the concentration of H 2 PtCl 6 , where high-yield core-shell structure or dumbbell-like structure could be obtained. The shape-controlled synthesis also led to a tunable longitudinal surface plasmon resonance from ca. 649 to 900 nm. Meanwhile, the core-shell Pt-modified Au@Ag NRs showed approximately 4-fold enhancement in catalytic reduction reaction of p-nitrophenol than that of the Au NRs, suggesting the great potential for photocatalytic reaction.

  19. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  20. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE PAGES

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; ...

    2017-01-26

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

Top