Science.gov

Sample records for nmda receptor-mediated transmission

  1. Antihistamine terfenadine potentiates NMDA receptor-mediated calcium influx, oxygen radical formation, and neuronal death.

    PubMed

    Díaz-Trelles, R; Novelli, A; Vega, J A; Marini, A; Fernández-Sánchez, M T

    2000-10-13

    We previously reported that the histamine H1 receptor antagonist terfenadine enhances the excitotoxic response to N-methyl-D-aspartate (NMDA) receptor agonists in cerebellar neurons. Here we investigated whether this unexpected action of terfenadine relates to its antihistamine activity, and which specific events in the signal cascade coupled to NMDA receptors are affected by terfenadine. Low concentrations of NMDA (100 microM) or glutamate (15 microM) that were only slightly (<20%) toxic when added alone, caused extensive cell death in cultures pre-exposed to terfenadine (5 microM) for 5 h. Terfenadine potentiation of NMDA receptor response was mimicked by other H1 antagonists, including chlorpheniramine (25 microM), oxatomide (20 microM), and triprolidine (50 microM), was prevented by histamine (1 mM), and did not require RNA synthesis. Terfenadine increased NMDA-mediated intracellular calcium and cGMP synthesis by approximately 2.4 and 4 fold respectively. NMDA receptor-induced cell death in terfenadine-treated neurons was associated with a massive production of hydrogen peroxides, and was significantly inhibited by the application of either (+)-alpha-tocopherol (200 microM) or the endogenous antioxidant melatonin (200 microM) 15 min before or up to 30 min after receptor stimulation. This operational time window suggests that an enduring production of reactive oxygen species is critical for terfenadine-induced NMDA receptor-mediated neurodegeneration, and strengthens the importance of antioxidants for the treatment of excitotoxic injury. Our results also provide direct evidence for antihistamine drugs enhancing the transduction signaling activated by NMDA receptors in cerebellar neurons.

  2. Effects of 2-phenoxyethanol on N-methyl-D-aspartate (NMDA) receptor-mediated ion currents.

    PubMed

    Musshoff, U; Madeja, M; Binding, N; Witting, U; Speckmann, E J

    1999-02-01

    The actions were examined of 17 frequently used glycol ether compounds on the glutamate receptor-mediated ion currents. The receptors were expressed in Xenopus oocytes by injection of rat brain mRNA. Most of the 17 glycol ethers exerted no effects on the glutamate subreceptors activated by kainate and N-methyl-D-aspartate (NMDA), whereas 2-phenoxyethanol (ethylene glycol monophenyl ether) caused a considerable reduction of NMDA-induced membrane currents in a reversible and concentration-dependent manner. The threshold concentration of the ethylene glycol monophenyl ether effect was < 10 mumol/l. The concentration for a 50% inhibition (IC50) was approximately 360 mumol/l. The results indicate a neurotoxic potential for 2-phenoxyethanol.

  3. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  4. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  5. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity.

    PubMed

    Chen, H S; Pellegrini, J W; Aggarwal, S K; Lei, S Z; Warach, S; Jensen, F E; Lipton, S A

    1992-11-01

    Excessive activation of NMDA receptors is thought to mediate the calcium-dependent neurotoxicity associated with hypoxic-ischemic brain injury, trauma, epilepsy, and several neurodegenerative diseases. For this reason, various NMDA antagonists have been investigated for their therapeutic potential in these diseases, but heretofore none have proven to be both effective and safe. In the present study, memantine, an adamantane derivative similar to the antiviral drug amantadine, is shown to block the channels activated by NMDA receptor stimulation. From whole-cell and single-channel recording experiments, the mechanism of action of memantine is deduced to be open-channel block, similar to MK-801; however, unlike MK-801, memantine is well tolerated clinically. Compared to MK-801, memantine's safety may be related to its faster kinetics of action with rapid blocking and unblocking rates at low micromolar concentrations. Furthermore, at these levels memantine is an uncompetitive antagonist and should theoretically allow near-normal physiological NMDA activity throughout the brain even in the face of pathologically high focal concentrations of glutamate. These pharmacological properties confer upon memantine a therapeutic advantage against NMDA receptor-mediated neurotoxicity with few side effects compared with other organic NMDA open-channel blockers. Moreover, memantine is increasingly effective against escalating levels of glutamate, such as those observed during a stroke. Low micromolar concentrations of memantine, levels known to be tolerated by patients receiving the drug for the treatment of Parkinson's disease, prevent NMDA receptor-mediated neurotoxicity in cultures of rat cortical and retinal ganglion cell neurons; memantine also appears to be both safe and effective in a rat stroke model. These results suggest that memantine has considerable therapeutic potential for the myriad of clinical entities associated with NMDA receptor-mediated neurotoxicity.

  6. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  7. NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus.

    PubMed

    Feldman, D E; Knudsen, E I

    1994-10-01

    The pharmacology of auditory responses in the inferior colliculus (IC) of the barn owl was investigated by iontophoresis of excitatory amino acid receptor antagonists into two different functional subdivisions of the IC, the external nucleus (ICx) and the lateral shell of the central nucleus (lateral shell), both of which carry out important computations in the processing of auditory spatial information. Combined application of the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP5) and the non-NMDA receptor antagonist 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX) significantly reduced auditory-evoked spikes at all sites in these two subdivisions, and completely eliminated responses at many locations. This suggests that excitatory amino acid receptors mediate the bulk, if not all, of auditory responses in the ICx and lateral shell. NMDA and non-NMDA receptors contributed differently to auditory responses in the two subdivisions. In the ICx, AP5 significantly reduced the number of auditory-evoked spikes at every site tested. On average, AP5 eliminated 55% of auditory-evoked spikes at multiunit sites and 64% at single-unit sites in this structure. In contrast, in the lateral shell, AP5 significantly reduced responses at less than half the sites tested, and, on average, AP5 eliminated only 19% of spikes at multiunit sites and 25% at single-unit sites. When the magnitude of response blockade produced by AP5 at individual multiunit sites was normalized to adjust for site-to-site differences in the efficacy of iontophoresed AP5 and CNQX, AP5 blockade was still significantly greater in the ICx than the lateral shell. CNQX application strongly reduced responses in both subdivisions. These data suggest that NMDA receptor currents make a major contribution to auditory responses in the ICx, while they make only a small contribution to auditory responses in the lateral shell. Non-NMDA receptor currents, on the other hand, contribute to auditory responses in both

  8. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  9. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.

  10. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons.

    PubMed

    Kim, Sunoh; Ahn, Kwangseog; Oh, Tae Hwan; Nah, Seung-Yeol; Rhim, Hyewhon

    2002-08-16

    Alternative medicines such as herbal products are increasingly being used for preventive and therapeutic purposes. Ginseng is the best known and most popular herbal medicine used worldwide. In spite of some beneficial effects of ginseng on the CNS, little scientific evidence shows at the cellular level. In the present study, we have examined the direct modulation of ginseng on the activation of glutamate, especially NMDA, receptors in cultured hippocampal neurons. Using fura-2-based digital imaging techniques, we found ginseng total saponins inhibited NMDA-induced but less effectively glutamate-induced increase in [Ca2+]i. Ginseng total saponins also modulated Ca2+ transients evoked by depolarization with 50mM KCl along with its own effects on [Ca2+]i. Furthermore, we demonstrated that ginsenoside Rg3 is an active component for ginseng actions on NMDA receptors. The data obtained suggest that the inhibition of NMDA receptors by ginseng, in particular by ginsenoside Rg3, could be one of the mechanisms for ginseng-mediated neuroprotective actions.

  11. NMDA Receptor-Mediated Activation of NADPH Oxidase and Glomerulosclerosis in Hyperhomocysteinemic Rats

    PubMed Central

    Zhang, Chun; Yi, Fan; Xia, Min; Boini, Krishna M.; Zhu, Qing; Laperle, Laura A.; Abais, Justine M.; Brimson, Christopher A.

    2010-01-01

    Abstract This study investigated the role of NMDA receptor in hyperhomocyteinemia (hHcys)-induced NADPH oxidase (Nox) activation and glomerulosclerosis. Sprague–Dawley rats were fed a folate-free (FF) diet to produce hHcys, and a NMDA receptor antagonist, MK-801, was administrated. Rats fed the FF diet exhibited significantly increased plasma homocysteine levels, upregulated NMDA receptor expression, enhanced Nox activity and Nox-dependent O2.− production in the glomeruli, which were accompanied by remarkable glomerulosclerosis. MK-801 treatment significantly inhibited Nox-dependent O2.− production induced by hHcys and reduced glomerular damage index as compared with vehicle-treated hHcys rats. Correspondingly, glomerular deposition of extracellular matrix components in hHcys rats was ameliorated by the administration of MK-801. Additionally, hHcys induced an increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and a decrease in matrix metalloproteinase (MMP)-1 and MMP-9 activities, all of which were abolished by MK-801 treatment. In vitro studies showed that homocysteine increased Nox-dependent O2.− generation in rat mesangial cells, which was blocked by MK-801. Pretreatment with MK-801 also reversed homocysteine-induced decrease in MMP-1 activity and increase in TIMP-1 expression. These results support the view that the NMDA receptor may mediate Nox activation in the kidney during hHcys and thereby play a critical role in the development of hHcys-induced glomerulosclerosis. Antioxid. Redox Signal. 13, 975–986. PMID:20406136

  12. Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration.

    PubMed

    Joe, N; Scott, V; Brown, C H

    2014-01-01

    Magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) project to the posterior pituitary gland where they release the hormones, vasopressin and oxytocin into the circulation to maintain plasma osmolality. Hormone release is proportionate to SON MNC action potential (spike) firing rate. When activated by ambient extracellular glutamate, extrasynaptic NMDA receptors (eNMDARs) mediate a tonic (persistent) depolarisation to increase the probability of action potential firing. In the present study, in vivo single-unit electrophysiological recordings were made from urethane-anaesthetised female Sprague-Dawley rats to investigate the impact of tonic eNMDAR activation on MNC activity. Water deprivation (for up to 48 h) caused an increase in the firing rate of SON MNCs that was associated with a general increase in post-spike excitability. To determine whether eNMDAR activation contributes to the increased MNC excitability during water deprivation, memantine, which preferentially blocks eNMDARs, was administered locally into the SON by microdialysis. Memantine significantly decreased the firing rate of MNCs recorded from 48-h water-deprived rats but had no effect on MNCs recorded from euhydrated rats. In the presence of the glial glutamate transporter-1 (GLT-1) blocker, dihydrokainate, memantine also reduced the MNC firing rate in euhydrated rats. Taken together, these observations suggest that GLT-1 clears extracellular glutamate to prevent the activation of eNDMARs under basal conditions and that, during dehydration, eNMDAR activation contributes to the increased firing rate of MNCs.

  13. Repeated exposure of adult rats to Aroclor 1254 induces neuronal injury and impairs the neurochemical manifestations of the NMDA receptor-mediated intracellular signaling in the hippocampus.

    PubMed

    Hilgier, Wojciech; Łazarewicz, Jerzy W; Strużynska, Lidia; Frontczak-Baniewicz, Małgorzata; Albrecht, Jan

    2012-01-01

    Aroclor 1254 is a mixture of polychlorinated biphenyls (PCBs), a class of environmental toxins which cause a wide spectrum of neurotoxic effects. Learning and memory deficits are the profound effects of PCBs which may be related to hippocampal dysfunction. To get insight into the underlying neurochemical mechanisms, we employed the microdialysis technique to investigate the effect of repeated exposure of adult male Wistar rats to Aroclor 1254 (10mg/kg b.w., daily, ig., for 14days), on the neurochemical parameters of NMDA receptor-mediated glutamatergic signaling in the hippocampus in vivo assessed using the microdialysis technique. The results demonstrated that exposure to Aroclor 1254, which was associated with substantial neuronal damage and loss in the hippocampus, markedly decreased the NMDA-induced extracellular accumulation of newly loaded (45)CaCl(2), cGMP and glutamate, and reduced the basal content of the NO precursor, arginine, indicating inhibition of the NMDA/NO/cGMP pathway. Aroclor 1254 exposure also decreased the basal microdialysate content of glutamate and glutamine, which may cause inadequate supply of the neurotransmitter glutamate, while the level of two other neuroactive amino acids, aspartate or taurine was not affected by the exposure. The results underscore neuronal lesion and inhibition of NMDA receptor-mediated glutamatergic signaling in hippocampus as a potential major contributor to the cognitive deficits associated with exposure to PCB.

  14. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus

    PubMed Central

    Stefanescu, Roxana A.; Shore, Susan E.

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry. PMID:26622224

  15. Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells

    PubMed Central

    Pai, Yoon Hyoung; Lim, Chae Seong; Park, Kyung-Ah; Cho, Hyun Sil; Lee, Gyu-Seung; Shin, Yong Sup; Kim, Hyun-Woo; Jeon, Byeong Hwa

    2016-01-01

    In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic INMDA in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in Iholding (IGLU) at a holding potential (Vholding) of –70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive IGLU was observed even in normal aCSF at Vholding of –40 mV or –20 mV. IGLU was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in Iholding (IAMPA) in SON MNCs. Pretreatment with AP5 attenuated IAMPA amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at Vholding of –70 mV. IAMPA attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced IAMPA attenuation in SON MNCs. Finally, chronic dehydration did not affect IAMPA attenuation by AP5 in the neurons. These results suggest that tonic INMDA, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs. PMID:27382359

  16. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  17. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission.

    PubMed

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-07-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  18. Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation.

    PubMed

    Yin, Xiao-Hui; Zhang, Quan-Guang; Miao, Bei; Zhang, Guang-Yi

    2005-05-01

    A number of works show that the mitogen-activated protein kinase (MAPK) signalling pathway responds actively in cerebral ischaemia and reperfusion. We undertook our present studies to clarify the role of mixed-lineage kinase 3 (MLK3), a MAPK kinase kinase (MAPKKK) in MAPK cascades, in global ischaemia and ischaemic tolerance. The mechanism concerning NMDA receptor-mediated Akt1 activation underlying ischaemic tolerance, was also investigated. Sprague-Dawley rats were subjected to 6 min of ischaemia and differing times of reperfusion. Our results showed MLK3 was activated in the hippocampal CA1 region with two peaks occurring at 30 min and 6 h, respectively. This activation returned to base level 3 days later. Both preconditioning with 3 min of sublethal ischaemia and NMDA pretreatment inhibited the 6-h peak of activation. However, pretreatment of ketamine before preconditioning reversed the inhibiting effect of preconditioning on MLK3 activation at 6 h of reperfusion. In the case of Akt1, however, preconditioning and NMDA pretreatment enhanced Akt1 activation at 10 min of reperfusion. Furthermore, ketamine pretreatment reversed preconditioning-induced increase of Akt1 activation. We also noted that pretreatment of LY294002 before preconditioning reversed both the inhibition of MLK3 activation at 6 h of reperfusion and the increase in Akt1 activation at 10 min of reperfusion. The above-mentioned results lead us to conclude that, in the hippocampal CA1 region, preconditioning inhibits MLK3 activation after lethal ischaemia and reperfusion and, furthermore, this effect is mediated by Akt1 activation through NMDA receptor stimulation.

  19. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    PubMed

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-01

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction.

  20. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    PubMed

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-01

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. PMID:26612394

  1. Excitotoxicity through NMDA receptors mediates cerebellar granule neuron apoptosis induced by prion protein 90-231 fragment.

    PubMed

    Thellung, Stefano; Gatta, Elena; Pellistri, Francesca; Corsaro, Alessandro; Villa, Valentina; Vassalli, Massimo; Robello, Mauro; Florio, Tullio

    2013-05-01

    Prion diseases recognize, as a unique molecular trait, the misfolding of CNS-enriched prion protein (PrP(C)) into an aberrant isoform (PrP(Sc)). In this work, we characterize the in vitro toxicity of amino-terminally truncated recombinant PrP fragment (amino acids 90-231, PrP90-231), on rat cerebellar granule neurons (CGN), focusing on glutamatergic receptor activation and Ca(2+) homeostasis impairment. This recombinant fragment assumes a toxic conformation (PrP90-231(TOX)) after controlled thermal denaturation (1 h at 53 °C) acquiring structural characteristics identified in PrP(Sc) (enrichment in β-structures, increased hydrophobicity, partial resistance to proteinase K, and aggregation in amyloid fibrils). By annexin-V binding assay, and evaluation of the percentage of fragmented and condensed nuclei, we show that treatment with PrP90-231(TOX), used in pre-fibrillar aggregation state, induces CGN apoptosis. This effect was associated with a delayed, but sustained elevation of [Ca(2+)]i. Both CGN apoptosis and [Ca(2+)]i increase were not observed using PrP90-231 in PrP(C)-like conformation. PrP90-231(TOX) effects were significantly reduced in the presence of ionotropic glutamate receptor antagonists. In particular, CGN apoptosis and [Ca(2+)]i increase were largely reduced, although not fully abolished, by pre-treatment with the NMDA antagonists APV and memantine, while the AMPA antagonist CNQX produced a lower, although still significant, effect. In conclusion, we report that CGN apoptosis induced by PrP90-231(TOX) correlates with a sustained elevation of [Ca(2+)]i mediated by the activation of NMDA and AMPA receptors.

  2. Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development

    PubMed Central

    Zou, Shiping; Fuss, Babette; Fitting, Sylvia; Hahn, Yun Kyung; Hauser, Kurt F.

    2015-01-01

    Myelin pallor in HIV+ individuals can occur very early during the disease process. While myelin damage might partly originate from HIV-induced vascular changes, the timing suggests that myelin and/or oligodendrocytes (OLs) may be directly affected. Histological (Golgi–Kopsch, electron microscopy) and biochemical studies have revealed an increased occurrence of abnormal OL/myelin morphology and dysregulated myelin protein expression in transgenic mice expressing the HIV-1 transactivator of transcription (Tat) protein. This suggests that viral proteins by themselves might cause OL injury. Since Tat interacts with NMDARs, we hypothesized that activation of NMDARs and subsequent disruption of cytoplasmic Ca2+ ([Ca2+]i) homeostasis might be one cause of white matter injury after HIV infection. In culture, HIV-1 Tat caused concentration-dependent death of immature OLs, while more mature OLs remained alive but had reduced myelin-like membranes. Tat also induced [Ca2+]i increases and Thr-287 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II β (CaMKIIβ) in OLs. Tat-induced [Ca2+]i was attenuated by the NMDAR antagonist MK801, and also by the AMPA/kainate receptor antagonist CNQX. Importantly, both MK801 and CNQX blocked Tat-induced death of immature OLs, but only MK801 reversed Tat effects on myelin-like membranes. These results suggest that OLs can be direct targets of HIV proteins released from infected cells. Although viability and membrane production are both affected by glutamatergic receptor-mediated Ca2+ influx, and possibly the ensuing CaMKIIβ activation, the roles of AMPARs and NMDARs appear to be different and dependent on the stage of OL differentiation. SIGNIFICANCE STATEMENT Over 33 million individuals are currently infected by HIV. Among these individuals, ∼60% develop HIV-associated neurocognitive disorders. Myelin damage and white matter injury have been frequently reported in HIV patients but not extensively studied. Clinical studies

  3. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures.

    PubMed

    Blaabjerg, M; Kristensen, B W; Bonde, C; Zimmer, J

    2001-04-13

    The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular uptake of propidium iodide (PI) to quantify neuronal degeneration. Cultures exposed to ACPD, showed a concentration (2-5 mM) and time (1-4 days) dependent increase in PI uptake in CA1, CA3 and dentate subfields after 24 h and 48 h of exposure, with CA1 pyramidal cells being most sensitive. The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect. Co-exposing cultures to a subtoxic dose of 300 microM ACPD together with 10 microM NMDA, which at this dose is known to induce a fairly selective degeneration of CA1 pyramidal cells, significantly increased the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 microM NMDA only. Adding the 300 microM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked by addition of 10 or 100 microM 2-methyl-6-(phenylethynyl)pyridine (MPEP) (mGluR5 antagonist) during the co-exposure, while a corresponding addition of 10 or 100 microM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (mGluR1 antagonist) had no effect. We conclude that, stimulation of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal

  4. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  5. Two types of functionally different GABAA receptors mediate GABA modulation of cholinergic transmission in cat terminal ileum.

    PubMed

    Radomirov, R; Pencheva, N

    1995-08-01

    1. The effects of GABA (1 microM-2 mM) on longitudinally or circularly oriented organ bath preparations of cat terminal ileum consisted of a relaxation phase with an inhibition of the rhythmic spontaneous phasic contractions, followed by a phase of contractions characterized by an elevation in basal tone and an increase in amplitude of the spontaneous phasic contractions. 2. Muscimol (100 microM), but not baclofen (100 microM), mimicked the relaxation phase of the response to applied GABA (100 microM) in all tissue preparations. In addition, muscimol induced a phase of contractile activity in the circular muscle layer whilst baclofen exerted a 'GABA-like' contractile effect on the longitudinal muscle layer. Bicuculline (30 microM) or picrotoxinin (30 microM) antagonized the GABA- or muscimol-induced relaxations in all preparations and decreased the GABA- but not the baclofen-induced contractions of the longitudinal muscle layer. 3. Tetrodotoxin (0.5 microM) or atropine (0.1 microM) prevented the bicuculline-sensitive phases of the GABA or muscimol effects on both muscle layers but not the contractile effect of baclofen on the longitudinal muscle layer. 4. The bicuculline-sensitive phases of the GABA effect on both muscle layers were almost completely eliminated by 1 nM pirenzepine. At this concentration pirenzepine did not affect the electrically-evoked cholinergic twitch contractions or contractile responses to applied acetylcholine of both muscle layers. 5. During electrically-evoked cholinergic twitch contractions of both muscle layers, GABA (100 microM) had an inhibitory effect. The inhibition occurred in the presence of pirenzepine (1 nM) but not of bicuculline (30 microM). 6. It is suggested that two types of functionally different bicuculline-sensitive GABAA receptors mediate an exitatory presynaptic and an inhibitory prejunctional action of GABA on the cholinergic transmission in cat terminal ileum.

  6. NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease.

    PubMed

    Bustos, Gonzalo; Abarca, Jorge; Bustos, Victor; Riquelme, Eduardo; Noriega, Viviana; Moya, Catherine; Campusano, Jorge

    2009-08-01

    The clinical symptoms of Parkinson's disease (PD) appear late and only when the degenerative process at the level of the nigrostriatal dopamine (DA) pathway is quite advanced. An increase in brain-derived neurotrophic factor (BDNF) expression may be one of the molecular signals associated to compensatory and plastic responses occurring in basal ganglia during presymptomatic PD. In the present study, we used in vivo microdialysis, semiquantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry to study N-methyl-D-aspartic acid (NMDA) receptor regulation of BDNF expression in substantia nigra (SN) of adult rats after partial lesioning of the nigrostriatal DA pathway with unilateral striatal injections of 6-hydroxydopamine (6-OHDA). A time-dependent partial decrease of striatal DA tissue content as well as parallel and gradual increases in extracellular glutamate and aspartate levels in SN were found 1 to 7 days after unilateral 6-OHDA intrastriatal injection. Instead, the number of tyrosine hydroxylase-immunoreactive (IR) cells in the ipsilateral SN pars compacta remained statistically unchanged after neurotoxin injection. Intrastriatal administration of 6-OHDA also produced an early and transient augmentation of pan-BDNF, exon II-BDNF, and exon III-BDNF transcripts in the ipsilateral SN. The pan-BDNF and exon II-BDNF transcript increases were completely abolished by the prior systemic administration of MK-801, a selective antagonist of NMDA receptors. MK-801 also blocked the increase in BDNF-IR cells in SN observed 7 days after unilateral 6-OHDA intrastriatal injections. Our findings suggest that a coupling between glutamate release, NMDA receptor activation, and BDNF expression may exist in the adult SN and represent an important signal in this midbrain nucleus triggered in response to partial DA loss occurring in striatal nerve endings during presymptomatic PD.

  7. Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: Characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats.

    PubMed

    Burgdorf, Jeffrey; Kroes, Roger A; Zhang, Xiao-lei; Gross, Amanda L; Schmidt, Mary; Weiss, Craig; Disterhoft, John F; Burch, Ronald M; Stanton, Patric K; Moskal, Joseph R

    2015-11-01

    depression models, PEL, and most importantly on CFE demonstrate the therapeutic potential of rapastinel for the treatment of PTSD. Moreover, rapastinel appears to elicit its therapeutic effects through a NMDA receptor-mediated, LTP-like, metaplasticity process in the MPFC.

  8. Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices.

    PubMed Central

    Frankiewicz, T.; Potier, B.; Bashir, Z. I.; Collingridge, G. L.; Parsons, C. G.

    1996-01-01

    The effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, memantine (1-amino-3,5-dimethyladamantane) and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzocyclo-hepten-5,10-imin e maleate) were compared on synaptic transmission and long-term potentiation (LTP) in hippocampal slices and on NMDA-induced currents in cultured superior collicular neurones. 2. Memantine (10-100 microM) reversibly reduced, but did not abolish, NMDA receptor-mediated secondary population spikes recorded in area CA1 of hippocampal slices bathed in Mg(2+)-free artificial cerebrospinal fluid. 3. Memantine (100 microM) antagonized NMDA receptor-mediated excitatory postsynaptic currents recorded in area CA1 in a strongly voltage-dependent manner i.e. depressed to 11 +/- 4% of control at -35 mV and 95 +/- 5% of control at +40 mV (n = 9), with no apparent effect on response kinetics. 4. The effects of MK-801 and memantine on the induction of LTP were assessed after prolonged pre-incubations with these antagonists. When present for 6.6 +/- 0.4 h prior to tetanic stimulation, memantine blocked the induction of LTP with an IC50 of 11.6 +/- 0.53 microM. By comparison, similar long pre-incubations with MK-801 (6.4 +/- 0.4 h) blocked the induction of LTP with an IC50 of 0.13 +/- 0.02 microM. 5. Memantine and MK-801 reduced NMDA-induced currents in cultured superior colliculus neurones recorded at -70 mV with IC50s of 2.2 +/- 0.2 microM and 0.14 +/- 0.04 microM respectively. The effects of memantine were highly voltage-dependent and behaved as though the affinity decreased epsilon fold per 50 mV of depolarization (apparent delta = 0.71). In contrast, under the conditions used, MK-801 appeared to be much less voltage-dependent i.e. affinity decreased epsilon fold per 329 mV of depolarization (apparent delta = 0.15). 6. Depolarizing steps from -70 mV to +50 mV in the continuous presence of memantine (10 microM) caused a rapid relief of blockade of NMDA-induced currents from 83.7 +/- 1

  9. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  10. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons.

    PubMed

    Gu, Xinglong; Mao, Xia; Lussier, Marc P; Hutchison, Mary Anne; Zhou, Liang; Hamra, F Kent; Roche, Katherine W; Lu, Wei

    2016-01-01

    Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. PMID:26932439

  11. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons

    PubMed Central

    Gu, Xinglong; Mao, Xia; Lussier, Marc P.; Hutchison, Mary Anne; Zhou, Liang; Hamra, F. Kent; Roche, Katherine W.; Lu, Wei

    2016-01-01

    Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. PMID:26932439

  12. μ-Opioid Receptor-Mediated Inhibition of Intercalated Neurons and Effect on Synaptic Transmission to the Central Amygdala.

    PubMed

    Blaesse, Peter; Goedecke, Lena; Bazelot, Michaël; Capogna, Marco; Pape, Hans-Christian; Jüngling, Kay

    2015-05-13

    The amygdala is a key region for the processing of information underlying fear, anxiety, and fear extinction. Within the local neuronal networks of the amygdala, a population of inhibitory, intercalated neurons (ITCs) modulates the flow of information among various nuclei of amygdala, including the basal nucleus (BA) and the centromedial nucleus (CeM) of the amygdala. These ITCs have been shown to be important during fear extinction and are target of a variety of neurotransmitters and neuropeptides. Here we provide evidence that the activation of μ-opioid receptors (MORs) by the specific agonist DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin) hyperpolarizes medially located ITCs (mITCs) in acute brain slices of mice. Moreover, we use whole-cell patch-clamp recordings in combination with local electrical stimulation or glutamate uncaging to analyze the effect of MOR activation on local microcircuits. We show that the GABAergic transmission between mITCs and CeM neurons is attenuated by DAMGO, whereas the glutamatergic transmission on CeM neurons and mITCs is unaffected. Furthermore, MOR activation induced by theta burst stimulation in BA suppresses plastic changes of feedforward inhibitory transmission onto CeM neurons as revealed by the MOR antagonist CTAP d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2. In summary, the mITCs constitute a target for the opioid system, and therefore, the activation of MOR in ITCs might play a central role in the modulation of the information processing between the basolateral complex of the amygdala and central nuclei of the amygdala. PMID:25972162

  13. μ-Opioid Receptor-Mediated Inhibition of Intercalated Neurons and Effect on Synaptic Transmission to the Central Amygdala.

    PubMed

    Blaesse, Peter; Goedecke, Lena; Bazelot, Michaël; Capogna, Marco; Pape, Hans-Christian; Jüngling, Kay

    2015-05-13

    The amygdala is a key region for the processing of information underlying fear, anxiety, and fear extinction. Within the local neuronal networks of the amygdala, a population of inhibitory, intercalated neurons (ITCs) modulates the flow of information among various nuclei of amygdala, including the basal nucleus (BA) and the centromedial nucleus (CeM) of the amygdala. These ITCs have been shown to be important during fear extinction and are target of a variety of neurotransmitters and neuropeptides. Here we provide evidence that the activation of μ-opioid receptors (MORs) by the specific agonist DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin) hyperpolarizes medially located ITCs (mITCs) in acute brain slices of mice. Moreover, we use whole-cell patch-clamp recordings in combination with local electrical stimulation or glutamate uncaging to analyze the effect of MOR activation on local microcircuits. We show that the GABAergic transmission between mITCs and CeM neurons is attenuated by DAMGO, whereas the glutamatergic transmission on CeM neurons and mITCs is unaffected. Furthermore, MOR activation induced by theta burst stimulation in BA suppresses plastic changes of feedforward inhibitory transmission onto CeM neurons as revealed by the MOR antagonist CTAP d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2. In summary, the mITCs constitute a target for the opioid system, and therefore, the activation of MOR in ITCs might play a central role in the modulation of the information processing between the basolateral complex of the amygdala and central nuclei of the amygdala.

  14. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  15. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  16. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  17. Actions of bupivacaine, a widely used local anesthetic, on NMDA receptor responses.

    PubMed

    Paganelli, Meaghan A; Popescu, Gabriela K

    2015-01-14

    NMDA receptors mediate excitatory neurotransmission in brain and spinal cord and play a pivotal role in the neurological disease state of chronic pain, which is caused by central sensitization. Bupivacaine is the indicated local anesthetic in caudal, epidural, and spinal anesthesia and is widely used clinically to manage acute and chronic pain. In addition to blocking Na(+) channels, bupivacaine affects the activity of many other channels, including NMDA receptors. Importantly, bupivacaine inhibits NMDA receptor-mediated synaptic transmission in the dorsal horn of the spinal cord, an area critically involved in central sensitization. We used recombinant NMDA receptors expressed in HEK293 cells and found that increasing concentrations of bupivacaine decreased channel open probability in GluN2 subunit- and pH-independent manner by increasing the mean duration of closures and decreasing the mean duration of openings. Using kinetic modeling of one-channel currents, we attributed the observed current decrease to two main mechanisms: a voltage-dependent "foot-in-the-door" pore block and an allosteric gating effect. Further, the inhibition was state-independent because it occurred to the same degree whether the drug was applied before or after glutamate stimulation and was mediated by extracellular and intracellular inhibitory sites, via hydrophilic and hydrophobic pathways. These results predict that clinical doses of bupivacaine would decrease the peak and accelerate the decay of synaptic NMDA receptor currents during normal synaptic transmission. These quantitative predictions inform possible applications of bupivacaine as preventative and therapeutic approaches in chronic pain.

  18. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  19. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures.

    PubMed

    Mennerick, S; Jevtovic-Todorovic, V; Todorovic, S M; Shen, W; Olney, J W; Zorumski, C F

    1998-12-01

    Nitrous oxide (N2O; laughing gas) has been a widely used anesthetic/analgesic since the 19th century, although its cellular mechanism of action is not understood. Here we characterize the effects of N2O on excitatory and inhibitory synaptic transmission in microcultures of rat hippocampal neurons, a preparation in which anesthetic effects on monosynaptic communication can be examined in a setting free of polysynaptic network variables. Eighty percent N2O occludes peak NMDA receptor-mediated (NMDAR) excitatory autaptic currents (EACs) with no effect on the NMDAR EAC decay time course. N2O also mildly depresses AMPA receptor-mediated (AMPAR) EACs. We find that N2O inhibits both NMDA and non-NMDA receptor-mediated responses to exogenous agonist. The postsynaptic blockade of NMDA receptors exhibits slight apparent voltage dependence, whereas the blockade of AMPA receptors is not voltage dependent. Although the degree of ketamine and Mg2+ blockade of NMDA-induced responses is dependent on permeant ion concentration, the degree of N2O blockade is not. We also observe a slight and variable prolongation of GABAA receptor-mediated (GABAR) postsynaptic currents likely caused by previously reported effects of N2O on GABAA receptors. Despite the effects of N2O on both NMDA and non-NMDA ionotropic receptors, glial glutamate transporter currents and metabotropic glutamate receptor-mediated synaptic depression are not affected. Paired-pulse depression, the frequency of spontaneous miniature excitatory synaptic currents, and high-voltage-activated calcium currents are not affected by N2O. Our results suggest that the effects of N2O on synaptic transmission are confined to postsynaptic targets. PMID:9822732

  20. Dentate gyrus–CA3 glutamate release/NMDA transmission mediates behavioral despair and antidepressant-like responses to leptin

    PubMed Central

    Wang, Xuezhen; Zhang, Di; Lu, Xin-Yun

    2014-01-01

    Compelling evidence supports the important role of the glutamatergic system in the pathophysiology of major depression and also as a target for rapid-acting antidepressants. However, the functional role of glutamate release/transmission in behavioral processes related to depression and antidepressant efficacy remains to be elucidated. In this study, glutamate release and behavioral responses to tail suspension, a procedure commonly used for inducing behavioral despair, were simultaneously monitored in real time. The onset of tail suspension stress evoked a rapid increase in glutamate release in hippocampal field CA3, which declined gradually after its offset. Blockade of NMDA receptors by intra-CA3 infusion of MK-801, a non-competitive NMDA receptor antagonist, reversed behavioral despair. The CA3 was innervated by granule neurons expressing the leptin receptor (LepRb) in the dentate gyrus (DG), representing a subpopulation of granule neurons that were devoid of stress-induced activation. Leptin treatment dampened tail suspension-evoked glutamate release in CA3. On the other hand, intra-CA3 infusion of NMDA blocked the antidepressant-like effect of leptin in reversing behavioral despair in both the tail suspension and forced swim tests, which involved activation of Akt signaling in DG. Together, these results suggest that the DG-CA3 glutamatergic pathway is critical for mediating behavioral despair and antidepressant-like responses to leptin. PMID:25092243

  1. Methamphetamine blunts Ca2+ currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex

    PubMed Central

    González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A.; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J.; Bisagno, Veronica

    2015-01-01

    Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC) dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1mg/kg) depressed voltage-dependent calcium currents (ICa) and increased IH amplitude and the paired-pulse ratio of evoked EPSCs in deep-layer pyramidal mPFC neurons. Most of these effects were blocked by systemic co-administration of the D1/D5 receptor antagonist SCH23390 (0.5 and 0.05 mg/kg). In vitro METH (i.e bath-applied to slices from naïve-treated animals) was able to emulate its systemic effects on ICa and evoked EPSCs paired-pulse ratio. We also provide evidence of altered mRNA expression of i) voltage-gated calcium channels P/Q-type Cacna1a (Cav2.1), N-type Cacna1b (Cav2.2), T-type Cav3.1 Cacna1g, Cav3.2 Cacna1h, Cav3.3 Cacna1i and the auxiliary subunit Cacna2d1 (α2δ1), ii) hyperpolarization-activated cyclic nucleotide-gated channels Hcn1 and Hcn2 and iii) glutamate receptors subunits AMPA-type Gria1, NMDA-type Grin1 and metabotropic Grm1 in the mouse mPFC after repeated METH treatment. Moreover, we show that some of these changes in mRNA expression were sensitive D1/5 receptor blockade. Altogether these altered mechanisms affecting synaptic physiology and transcriptional regulation may underlie prefrontal cortex functional alterations that could lead to PFC impairments observed in METH-addicted individuals. PMID:25871318

  2. Methamphetamine blunts Ca(2+) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex.

    PubMed

    González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Verónica

    2016-05-01

    Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC)-dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1 mg/kg) depressed voltage-dependent calcium currents (ICa ) and increased hyperpolarization-activated cation current (IH ) amplitude and the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) in deep-layer pyramidal mPFC neurons. Most of these effects were blocked by systemic co-administration of the D1/D5 receptor antagonist SCH23390 (0.5 and 0.05 mg/kg). In vitro METH (i.e. bath-applied to slices from naïve-treated animals) was able to emulate its systemic effects on ICa and evoked EPSCs paired-pulse ratio. We also provide evidence of altered mRNA expression of (1) voltage-gated calcium channels P/Q-type Cacna1a (Cav 2.1), N-type Cacna1b (Cav 2.2), T-type Cav 3.1 Cacna1g, Cav 3.2 Cacna1h, Cav 3.3 Cacna1i and the auxiliary subunit Cacna2d1 (α2δ1); (2) hyperpolarization-activated cyclic nucleotide-gated channels Hcn1 and Hcn2; and (3) glutamate receptors subunits AMPA-type Gria1, NMDA-type Grin1 and metabotropic Grm1 in the mouse mPFC after repeated METH treatment. Moreover, we show that some of these changes in mRNA expression were sensitive D1/5 receptor blockade. Altogether, these altered mechanisms affecting synaptic physiology and transcriptional regulation may underlie PFC functional alterations that could lead to PFC impairments observed in METH-addicted individuals.

  3. Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission.

    PubMed

    Nascimento, Filipe; Sebastião, Ana M; Ribeiro, Joaquim A

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A(1) receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4-6 weeks old) and symptomatic (12-14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg(2+) paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N (6)-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.

  4. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements

    PubMed Central

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-01-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions. PMID:26443442

  5. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility

    PubMed Central

    Ding, Xuekun; Qiao, Yanhua; Piao, Chengji; Zheng, Xigeng; Liu, Zhengkui; Liang, Jing

    2014-01-01

    Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs) are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc) core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum. PMID:25249952

  6. Effects of Chronic Exposure to an Anabolic Androgenic Steroid Cocktail on α5-Receptor Mediated GABAergic Transmission and Neural Signaling in the Forebrain of Female Mice

    PubMed Central

    Penatti, Carlos A. A.; Costine, Beth A.; Porter, Donna M.; Henderson, Leslie P.

    2009-01-01

    Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone that are illicitly self-administered for enhancement of performance and body image, but which also have significant effects on the brain and on behavior. While the stereotypical AAS user is an adult male, AAS abuse in women is rapidly increasing, yet few studies have examined AAS effects in female subjects. We have assessed the effects in female mice of a combination of commonly abused AAS on neuronal activity and neurotransmission mediated by γ-aminobutyric acid type A (GABAA) receptors in the medial preoptic nucleus (MPN); a nexus in the circuits of the hypothalamus and forebrain that are critical for the expression of social behaviors known to be altered in AAS abuse. Our data indicate that chronic exposure to AAS resulted in androgen receptor (AR)-dependent upregulation of α5, β3 and δ subunit mRNA. Acute application of the α5 subunit-selective inverse agonist, L-655,708, indicated that a significant fraction of the synaptic current is carried by α5-containing receptors and that AAS treatment may enhance expression of α5-containing receptors contributing to synaptic, but not tonic, currents in the MPN. AAS treatment also resulted in a significant decrease in action potential frequency in MPN neurons that was also correlated with an increased sensitivity to L655,708. Our data demonstrate that chronic exposure to multiple AAS elicits significant changes in GABAergic transmission and neuronal activity that are likely to reflect changes in the expression of α5-containing synaptic receptors within the MPN. PMID:19324077

  7. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  8. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  9. Structural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors.

    PubMed

    Yi, Feng; Mou, Tung-Chung; Dorsett, Katherine N; Volkmann, Robert A; Menniti, Frank S; Sprang, Stephen R; Hansen, Kasper B

    2016-09-21

    NMDA receptors mediate excitatory synaptic transmission and regulate synaptic plasticity in the central nervous system, but their dysregulation is also implicated in numerous brain disorders. Here, we describe GluN2A-selective negative allosteric modulators (NAMs) that inhibit NMDA receptors by stabilizing the apo state of the GluN1 ligand-binding domain (LBD), which is incapable of triggering channel gating. We describe structural determinants of NAM binding in crystal structures of the GluN1/2A LBD heterodimer, and analyses of NAM-bound LBD structures corresponding to active and inhibited receptor states reveal a molecular switch in the modulatory binding site that mediate the allosteric inhibition. NAM binding causes displacement of a valine in GluN2A and the resulting steric effects can be mitigated by the transition from glycine bound to apo state of the GluN1 LBD. This work provides mechanistic insight to allosteric NMDA receptor inhibition, thereby facilitating the development of novel classes NMDA receptor modulators as therapeutic agents. PMID:27618671

  10. AMPA receptor-mediated miniature synaptic calcium transients in GluR2 null mice.

    PubMed

    Wang, Sabrina; Jia, Zhengping; Roder, John; Murphy, Timothy H

    2002-07-01

    AMPA-type glutamate receptors are normally Ca(2+) impermeable due to the expression of the GluR2 receptor subunit. By using GluR2 null mice we were able to detect miniature synaptic Ca(2+) transients (MSCTs) associated with AMPA-type receptor-mediated miniature synaptic currents at single synapses in primary cortical cultures. MSCTs and associated Ca(2+) transients were monitored under conditions that isolated responses mediated by AMPA or N-methyl-D-aspartate (NMDA) receptors. As expected, addition of the antagonist 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX, 3 microM) blocked the AMPA receptor-mediated MSCTs. Voltage-gated Ca(2+) channels did not contribute to AMPA MSCTs because CdCl(2) (0.1-0.2 mM) did not significantly alter the frequency or the amplitude of the MSCTs. The amplitude of AMPA MSCTs appeared to be regulated independently from event frequency since the two measures were not correlated (R = 0.023). Synapses were identified that only expressed MSCTs attributed to either NMDA or AMPA receptors. At synapses with only NMDA responses, MSCT amplitude was significantly lower (by 40%) than synapses expressing both NMDA and AMPA responses. At synapses that showed MSCTs mediated by both AMPA and NMDA receptors, the amplitude of the transients in each condition was positively correlated (R = 0.94). Our results suggest that when AMPA and NMDA receptors are co-expressed at synapses, mechanisms exist to ensure proportional scaling of each receptor type that are distinct from the presynaptic factors controlling the frequency of miniature release. PMID:12091530

  11. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    synaptic transmission in the STN has been understudied. Here, we show that GluN2B- and GluN2D-containing NMDA receptors mediate the NMDA receptor component of EPSCs in subthalamic neurons. Moreover, our results demonstrate that pharmacologic modulation of GluN2D-containing receptors alters the time course of EPSCs and controls the in vivo spike-firing rate in the STN. This study identifies GluN2D as a potential target for modulating subthalamic neuron activity. PMID:26631477

  12. Src, a Molecular Switch Governing Gain Control of Synaptic Transmission Mediated by N-methyl-D-Aspartate Receptors

    NASA Astrophysics Data System (ADS)

    Yu, Xian-Min; Salter, Michael W.

    1999-07-01

    The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

  13. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  14. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  15. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity

    PubMed Central

    Gray, John A.; Zito, Karen; Hell, Johannes W.

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  16. Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells.

    PubMed Central

    Mittman, S; Taylor, W R; Copenhagen, D R

    1990-01-01

    1. Cells in the ganglion cell layer of salamander retinal slices were voltage clamped using patch pipettes. Light elicited transient excitatory postsynaptic currents (EPSCs) in on-off ganglion cells and sustained EPSCs in on ganglion cells. Light-evoked inhibitory postsynaptic currents in these cells could be blocked by 100 microM-bicuculline methobromide and 500 nM-strychnine. 2. In the presence of external Cd2+, at a concentration that blocked light-evoked synaptic inputs, N-methyl-D-aspartate (NMDA) and the non-NMDA-receptor agonists, quisqualate and kainate, gated conductances in both on-off and on ganglion cells. The current-voltage (I-V) curve for the conductance elicited by NMDA had a negative slope between -40 and -70 mV and a reversal potential near 0 mV. The I-V curves for the non-NMDA-receptor-mediated conductances were nearly linear and also had reversal potentials near 0 mV. 3. I-V curves were measured at an early time point near the peak of transient EPSCs and at a later time point during the decay phase of the responses. The late I-V curve had a negative slope below -40 mV. The early I-V curve had a positive slope over the entire voltage range but the slope was greater at positive than at negative potentials. The evoked current reversed near 0 mV at both time points. 4. The region of negative slope of the late I-V curve was eliminated when Mg2+ was removed from the external saline. A slowly decaying component of transient EPSCs was eliminated in 20 microM-DL-2-amino-7-phosphonoheptanoate (AP7), an NMDA-receptor antagonist. 5. Application of 1 microM-6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA-receptor antagonist at this concentration, blocked a fast component of transient EPSCs. 6. Our results demonstrate that the synaptic inputs to on-off ganglion cells have two components: a slower NMDA-receptor-mediated component having a time-to-peak of 110 +/- 45 ms and an e-fold decay time of 209 +/- 35 ms at -31 mV (mean +/- S.D., n = 5), and a

  17. Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus.

    PubMed

    Isaacson, J S; Walmsley, B

    1995-03-01

    bulb EPSC declined significantly with age (postnatal days 11-22). 6. These results indicate that both NMDA and non-NMDA receptors underlie excitatory synaptic transmission in the AVCN of young rats. The end bulb synapse onto bushy cells generates a non-NMDA receptor-mediated EPSC with very fast kinetics. NMDA receptors can also mediate synaptic transmission at the end bulb synapse, but their contribution becomes less as the auditory system matures. This finding suggests that NMDA receptors may play an important role in the development of this synapse. PMID:7608781

  18. [Glutamate receptor-mediated retinal neuronal injury in experimental glaucoma].

    PubMed

    Wang, Zhong-Feng; Yang, Xiong-Li

    2016-08-25

    Glaucoma, the second leading cause of blindness, is a neurodegenerative disease characterized by optic nerve degeneration related to apoptotic death of retinal ganglion cells (RGCs). In the pathogenesis of RGC death following the onset of glaucoma, functional changes of glutamate receptors are commonly regarded as important risk factors. During the past several years, we have explored the mechanisms underlying RGC apoptosis and retinal Müller cell reactivation (gliosis) in a rat chronic ocular hypertension (COH) model. We demonstrated that elevated intraocular pressure in COH rats may induce changes of various signaling pathways, which are involved in RGC apoptosis by modulating glutamate NMDA and AMPA receptors. Moreover, we also demonstrated that over-activation of group I metabotropic glutamate receptors (mGluR I) by excessive extracellular glutamate in COH rats could contribute to Müller cell gliosis by suppressing Kir4.1 channels. In this review, incorporating our results, we discuss glutamate receptor- mediated RGC apoptosis and Müller cell gliosis in experimental glaucoma. PMID:27546508

  19. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  20. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  1. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    PubMed

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  2. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala

    PubMed Central

    Kenny, Paul J.; Chartoff, Elena; Roberto, Marisa; Carlezon, William A.; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5–2.5 mg/kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg/kg) or intravenously self-administered (0.03 mg/kg/infusion) nicotine injections. The highest LY235959 dose (5 mg/kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 μM) increased NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1–10 ng/side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug. PMID:18418357

  3. D1/5 modulation of synaptic NMDA receptor currents

    PubMed Central

    Varela, Juan A.; Hirsch, Silke J.; Chapman, David; Leverich, Leah S.; Greene, Robert W.

    2009-01-01

    Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/5 receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/5 modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/5 receptor activation elicits a bi-directional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Synaptic responses mediated by NMDA receptors that include NR2B subunits are potentiated by D1/5 receptor activation, while responses mediated by NMDA receptors that include NR2A subunits are depressed. Furthermore, these bidirectional, subunit-specific effects are mediated by distinctive intracellular signaling mechanisms. As there is a predominance of NMDA receptors composed of NR2A subunits observed in entorhinal-CA1 inputs and a predominance of NMDA receptors composed of NR2B subunits in CA3-CA1 synapses, potentiation of synaptic NMDA currents predominates in the proximal CA3-CA1 synapses, while depression of synaptic NMDA currents predominates in the distal entorhinal-CA1 synapses. Finally, all of these effects are reproduced by the release of endogenous monoamines through activation of D1/5 receptors. Thus, endogenous D1/5 activation can, 1) decrease the NR2A/B ratio of NMDAR subunit composition at glutamatergic synapses, a rejuvenation to a composition similar to developmentally immature synapses, and, 2) in CA1, bias NMDA receptor responsiveness towards the more highly processed tri-synaptic CA3-CA1 circuit and away from the direct entorhinal-CA1 input. PMID:19279248

  4. Excitatory synaptic transmission in the lateral and central amygdala.

    PubMed

    Sah, P; Lopez De Armentia, Mikel

    2003-04-01

    The amygdala plays a major role in the acquisition and expression of fear conditioning. NMDA receptor-dependent synaptic plasticity within the basolateral amygdala has been proposed to underlie the acquisition and possible storage of fear memories. Here the properties of fast glutamatergic transmission in the lateral and central nuclei of the amygdala are presented. In the lateral amygdala, two types of neurons, interneurons and projection neurons, could be distinguished by their different firing properties. Glutamatergic inputs to interneurons activated AMPA receptors with inwardly rectifying current-voltage relations (I-Vs), whereas inputs to projection neurons activated receptors that had linear I-Vs, indicating that receptors on interneurons lack GluR2 subunits. Inputs to projection neurons formed dual component synapses with both AMPA and NMDA components, whereas at inputs to interneurons, the contribution of NMDA receptors was very small. Neurons in the central amygdala received dual component glutamatergic inputs that activated AMPA receptors with linear I-Vs. NMDA receptor-mediated EPSCs had slow decay time constants in the central nucleus. Application of NR2B selective blockers ifenprodil or CP-101,606 blocked NMDA EPSCs by 70% in the central nucleus, but only by 30% in the lateral nucleus. These data show that the distribution of glutamatergic receptors on amygdalar neurons is not uniform. In the lateral amygdala, interneurons and pyramidal neurons express AMPA receptors with different subunit compositions. Synapses in the central nucleus activate NMDA receptors that contain NR1 and NR2B subunits, whereas synapses in the lateral nucleus contain receptors with both NR2A and NR2B subunits. PMID:12724149

  5. Memantine selectively blocks extrasynaptic NMDA receptors in rat substantia nigra dopamine neurons.

    PubMed

    Wu, Yan-Na; Johnson, Steven W

    2015-04-01

    Recent studies suggest that selective block of extrasynaptic N-methyl-d-aspartate (NMDA) receptors might protect against neurodegeneration. We recorded whole-cell currents with patch pipettes to characterize the ability of memantine, a low-affinity NMDA channel blocker, to block synaptic and extrasynaptic NMDA receptors in substantia nigra zona compacta (SNC) dopamine neurons in slices of rat brain. Pharmacologically isolated NMDA receptor-mediated EPSCs were evoked by electrical stimulation, whereas synaptic and extrasynaptic receptors were activated by superfusing the slice with NMDA (10 µM). Memantine was 15-fold more potent for blocking currents evoked by bath-applied NMDA compared to synaptic NMDA receptors. Increased potency for blocking bath-applied NMDA currents was shared by the GluN2C/GluN2D noncompetitive antagonist DQP-1105 but not by the high-affinity channel blocker MK-801. Our data suggest that memantine causes a selective block of extrasynaptic NMDA receptors that are likely to contain GluN2C/2D subunits. Our results justify further investigations on the use of memantine as a neuroprotective agent in Parkinson's disease.

  6. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  7. Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies

    PubMed Central

    2016-01-01

    N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca2+ influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca2+ homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases.

  8. Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies

    PubMed Central

    2016-01-01

    N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca2+ influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca2+ homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases. PMID:27630777

  9. Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies.

    PubMed

    Carvajal, Francisco J; Mattison, Hayley A; Cerpa, Waldo

    2016-01-01

    N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca(2+) influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca(2+) homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases. PMID:27630777

  10. Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell

    PubMed Central

    Arrigoni, Elda; Greene, Robert W

    2004-01-01

    The two major inputs to CA1 pyramidal neurons, the perforant pathway (PP) that terminates on distal dendrites and the Schaffer collaterals (SCH) that terminate on proximal dendrites, activate both AMPA and N-methyl-D-aspartate (NMDA) receptors. In an in vitro slice preparation, the pharmacologically isolated NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) (NMDA-EPSCs) of either pathway can be selectively activated onto a single CA1 pyramidal neuron. Analysis of the decay phase of PP and SCH NMDA-EPSCs revealed no significant difference in their time constants, suggesting no apparent different distribution in NR2-subunit composition in the NMDA receptors (NMDAR) activated by the two synaptic inputs. However, application of the NR2B-selective antagonist, ifenprodil, differently affected the NMDA-EPSCs activated by the PP and SCH inputs. The reduction of the PP responses was only 30% compared to 75% for the SCH responses. In addition, for both pathways, the ifenprodil-insensitive component of the NMDA-EPSCs had significantly more rapid decay kinetics than those prior to application of ifenprodil. Our results show a greater NR2B subunit contribution to the NMDA component of the SCH EPSC, compared to the NMDA component of the PP EPSC and that in single CA1 pyramidal neurons NMDA composition is anatomically specific to the afferent input. PMID:15155538

  11. Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

    PubMed Central

    Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun

    2015-01-01

    Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265

  12. The Rac1 inhibitor NSC23766 suppresses CREB signaling by targeting NMDA receptor function.

    PubMed

    Hou, Hailong; Chávez, Andrés E; Wang, Chih-Chieh; Yang, Hongtian; Gu, Hua; Siddoway, Benjamin A; Hall, Benjamin J; Castillo, Pablo E; Xia, Houhui

    2014-10-15

    NMDA receptor signaling plays a complex role in CREB activation and CREB-mediated gene transcription, depending on the subcellular location of NMDA receptors, as well as how strongly they are activated. However, it is not known whether Rac1, the prototype of Rac GTPase, plays a role in neuronal CREB activation induced by NMDA receptor signaling. Here, we report that NSC23766, a widely used specific Rac1 inhibitor, inhibits basal CREB phosphorylation at S133 (pCREB) and antagonizes changes in pCREB levels induced by NMDA bath application in rat cortical neurons. Unexpectedly, we found that NSC23766 affects the levels of neuronal pCREB in a Rac1-independent manner. Instead, our results indicate that NSC23766 can directly regulate NMDA receptors as indicated by their strong effects on both exogenous and synaptically evoked NMDA receptor-mediated currents in mouse and rat neurons, respectively. Our findings strongly suggest that Rac1 does not affect pCREB signaling in cortical neurons and reveal that NSC23766 could be a novel NMDA receptor antagonist.

  13. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca(2+)-activated K(+) (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5'-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  14. Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site.

    PubMed

    Lench, Alex M; Robson, Emma; Jones, Roland S G

    2015-01-01

    Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.

  15. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    PubMed

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  16. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  17. Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning.

    PubMed

    Cain, D P

    1998-03-01

    The problems and issues associated with the use of pharmacological antagonists in studies on learning and memory are considered in a review of the role of N-methyl-D-aspartate (NMDA) receptors, NMDA receptor-mediated long-term potentiation (LTP), and muscarinic receptors in spatial learning in the water maze. The evidence indicates that neither NMDA nor muscarinic receptors, nor NMDA receptor-mediated LTP, are required for spatial learning, although they might normally contribute to it. Detailed behavioral analyses have indicated that the water maze task is more complex than generally has been appreciated, and has a number of dissociable components. Naive rats trained under NMDA or muscarinic antagonism display sensorimotor disturbances that interfere with their ability to acquire the task. Rats made familiar with the general requirements of the task can learn the location of a hidden platform readily under NMDA or muscarinic antagonism. The ability of a rat to acquire the water maze task depends on its ability to apply instinctive behaviors to performance of the task in an adaptive manner. The instinctive behaviors undergo modification as the rat learns the general strategies required in the task. The evidence suggests that at least some of the plastic changes involved in acquiring the task occur in existing neural circuits situated in widespread areas of the brain, including sensory and motor structures in the cortex and elsewhere, and are therefore difficult to distinguish from existing sensorimotor mechanisms. More generally, the findings indicate the difficulty of inferring the occurrence or nonoccurrence of learning from behavior, and the difficulty of causally linking the action of particular receptor populations with the formation of specific memories.

  18. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression.

    PubMed

    Cline, Brandon H; Costa-Nunes, Joao P; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I; Bukhman, Yury V; Kubatiev, Aslan; Steinbusch, Harry W M; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  19. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    PubMed Central

    Cline, Brandon H.; Costa-Nunes, Joao P.; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I.; Bukhman, Yury V.; Kubatiev, Aslan; Steinbusch, Harry W. M.; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  20. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish. PMID:25732591

  1. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  2. NMDA receptors and memory encoding.

    PubMed

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  3. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  4. INFLUENCE OF NMDA AND NON-NMDA ANTAGONISTS ON ACUTE AND INFLAMMATORY PAIN IN THE TRIGEMINAL TERRITORY

    PubMed Central

    Piovesan, Elcio Juliato; Randunz, Vitor; Utiumi, Marco; Lange, Marcos Cristiano; Kowacs, Pedro André; Mulinari, Rogério Andrade; Oshinsky, Michael; Vital, Maria; Sereniki, Adriana; Fernandes, Artur Furlaneto; Silva, Lucas Leite e; Werneck, Lineu César

    2016-01-01

    NMDA and non-NMDA receptors are involved in spinal transmission of nociceptive information in physiological and pathological conditions. Our objective was to study the influence of NMDA and non-NMDA receptor antagonists on pain control in the trigeminal system using a formalin-induced orofacial pain model. Motor performance was also evaluated. Male Rattus norvegicus were pre-treated with topiramate (T) (n=8), memantine (M) (n=8), divalproex (D) (n=8) or isotonic saline solution (ISS) (n=10) intraperitoneally 30 minutes before the formalin test. Formalin 2.5% was injected into the right upper lip (V2 branch) and induced two phases: phase I (early or neurogenic) (0–3 min) and phase II (late or inflammatory) (12–30 min). For motor behavior performance we used the open-field test and measured latency to movement onset, locomotion and rearing frequencies, and immobility time. Pre-treatment of animals with M and D only attenuated nociceptive formalin behavior for phase II. T increased locomotion and rearing frequencies and reduced immobility time. Treatment with M increased immobility time and with D reduced locomotion frequency. Our results showed that the NMDA antagonist (M) is more potent than the non-NMDA antagonists (D and T) in the control of pain in the inflammatory phase. The non-NMDA topiramate improved motor performance more than did D and M, probably because T has more anxiolytic properties. PMID:19099122

  5. N-Methyl-D-aspartate receptor mediated toxicity in nonneuronal cell lines: characterization using fluorescent measures of cell viability and reactive oxygen species production.

    PubMed

    Anegawa, N J; Guttmann, R P; Grant, E R; Anand, R; Lindstrom, J; Lynch, D R

    2000-05-01

    Cells transfected with specific N-methyl-D-aspartate (NMDA) receptor subtypes undergo cell death that mimics glutamate-induced excitotoxicity pharmacologically. We have further characterized the mechanisms of cell death resulting from NMDA receptor activation in such cells through development of cell counting methods based on co-transfection with green fluorescent protein. When co-transfected with NMDA receptors, GFP expression was limited to live cells as indicated by the observation that GFP was only detected in cells which were positive for markers of live cells, and was found in no cells which were trypan blue or propidium iodide positive. Using co-transfection with green fluorescent protein and cell counting of viable cells with a fluorescence activated cells sorter, we confirmed the subunit-specific profile of NMDA receptor-mediated cell death in cells transfected with NMDA receptors. Toxicity was greatest in the NR1A/2A receptor, less in the NR1A/2B receptor, and least in NR1A/2C receptors. Cell death also differed pharmacologically between subunit combinations. Cell death in cells transfected with NR 1A/2A was blocked by amino-phosphonovaleric acid at lower concentrations than in cells transfected with NR 1A/2B. In cells transfected with the NR1A/2A or NR1A/2B combinations but not NR1A/2C, cell death was also associated with production of reactive oxygen species. In addition, removal of the final 400 amino acids of the C-terminal region of NR2A decreased cell death. The use of GFP based cell counting provides a sensitive mechanism for assessing the mechanism of excitotoxicity in transfected cell models.

  6. Treatment with a clinically-relevant dose of methylphenidate alters NMDA receptor composition and synaptic plasticity in the juvenile rat prefrontal cortex.

    PubMed

    Urban, Kimberly R; Li, Yan-Chun; Gao, Wen-Jun

    2013-03-01

    Methylphenidate (Ritalin, MPH) is the most commonly prescribed psychoactive drug for children. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, its cellular mechanisms of action and potential long-term effects are poorly understood. We recently reported that a clinically relevant (1 mg/kg i.p., single injection) dose of MPH significantly decreased neuronal excitability in the juvenile rat prefrontal cortical neurons. Here we further explore the actions of acute treatment with MPH on the level of NMDA receptor subunits and NMDA receptor-mediated short- and long-term synaptic plasticity in the juvenile rat prefrontal cortical neurons. We found that a single dose of MPH treatment (1 mg/kg, intraperitoneal) significantly decreased the surface and total protein levels of NMDA receptor subunits NR1 and NR2B, but not NR2A, in the juvenile prefrontal cortex. In addition, the amplitude, decay time and charge transfer of NMDA receptor-mediated EPSCs were significantly decreased whereas the amplitude and short-term depression of AMPA receptor-mediated EPSCs were significantly increased in the prefrontal neurons. Furthermore, MPH treatment also significantly increased the probability and magnitude of LTP induction, but had only a small effect on LTD induction in juvenile rat prefrontal cortical neurons. Our data thus present a novel mechanism of action of MPH, i.e., changes in glutamatergic receptor-mediated synaptic plasticity following early-life treatment. Furthermore, since a single dosage resulted in significant changes in NMDA receptors, off-label usage by healthy individuals, especially children and adolescents, may result in altered potential for plastic learning.

  7. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  8. Receptor-mediated mitophagy in yeast and mammalian systems

    PubMed Central

    Liu, Lei; Sakakibara, Kaori; Chen, Quan; Okamoto, Koji

    2014-01-01

    Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease. PMID:24903109

  9. Free energy landscape of receptor-mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Yang, Tianyi; Zaman, Muhammad H.

    2007-01-01

    Receptor-mediated cell adhesion plays a critical role in cell migration, proliferation, signaling, and survival. A number of diseases, including cancer, show a strong correlation between integrin activation and metastasis. A better understanding of cell adhesion is highly desirable for not only therapeutic but also a number of tissue engineering applications. While a number of computational models and experimental studies have addressed the issue of cell adhesion to surfaces, no model or theory has adequately addressed cell adhesion at the molecular level. In this paper, the authors present a thermodynamic model that addresses receptor-mediated cell adhesion at the molecular level. By incorporating the entropic, conformational, solvation, and long- and short-range interactive components of receptors and the extracellular matrix molecules, they are able to predict adhesive free energy as a function of a number of key variables such as surface coverage, interaction distance, molecule size, and solvent conditions. Their method allows them to compute the free energy of adhesion in a multicomponent system where they can simultaneously study adhesion receptors and ligands of different sizes, chemical identities, and conformational properties. The authors' results not only provide a fundamental understanding of adhesion at the molecular level but also suggest possible strategies for designing novel biomaterials.

  10. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury.

    PubMed

    Almeida-Suhett, Camila P; Prager, Eric M; Pidoplichko, Volodymyr; Figueiredo, Taiza H; Marini, Ann M; Li, Zheng; Eiden, Lee E; Braga, Maria F M

    2015-11-01

    Patients that suffer mild traumatic brain injuries (mTBI) often develop cognitive impairments, including memory and learning deficits. The hippocampus shows a high susceptibility to mTBI-induced damage due to its anatomical localization and has been implicated in cognitive and neurological impairments after mTBI. However, it remains unknown whether mTBI cognitive impairments are a result of morphological and pathophysiological alterations occurring in the CA1 hippocampal region. We investigated whether mTBI induces morphological and pathophysiological alterations in the CA1 using the controlled cortical impact (CCI) model. Seven days after CCI, animals subjected to mTBI showed cognitive impairment in the passive avoidance test and deficits to long-term potentiation (LTP) of synaptic transmission. Deficiencies in inducing or maintaining LTP were likely due to an observed reduction in the activation of NMDA but not AMPA receptors. Significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs) were also observed 7 days after CCI. Design-based stereology revealed that although the total number of neurons was unaltered, the number of GABAergic interneurons is significantly reduced in the CA1 region 7 days after CCI. Additionally, the surface expression of α1, ß2/3, and γ2 subunits of the GABAA receptor were reduced, contributing to a reduced mIPSC frequency and amplitude, respectively. Together, these results suggest that mTBI causes a significant reduction in GABAergic inhibitory transmission and deficits to NMDA receptor mediated currents in the CA1, which may contribute to changes in hippocampal excitability and subsequent cognitive impairments after mTBI.

  11. Receptor-mediated delivery of engineered nucleases for genome modification.

    PubMed

    Chen, Zhong; Jaafar, Lahcen; Agyekum, Davies G; Xiao, Haiyan; Wade, Marlene F; Kumaran, R Ileng; Spector, David L; Bao, Gang; Porteus, Matthew H; Dynan, William S; Meiler, Steffen E

    2013-10-01

    Engineered nucleases, which incise the genome at predetermined sites, have a number of laboratory and clinical applications. There is, however, a need for better methods for controlled intracellular delivery of nucleases. Here, we demonstrate a method for ligand-mediated delivery of zinc finger nucleases (ZFN) proteins using transferrin receptor-mediated endocytosis. Uptake is rapid and efficient in established mammalian cell lines and in primary cells, including mouse and human hematopoietic stem-progenitor cell populations. In contrast to cDNA expression, ZFN protein levels decline rapidly following internalization, affording better temporal control of nuclease activity. We show that transferrin-mediated ZFN uptake leads to site-specific in situ cleavage of the target locus. Additionally, despite the much shorter duration of ZFN activity, the efficiency of gene correction approaches that seen with cDNA-mediated expression. The approach is flexible and general, with the potential for extension to other targeting ligands and nuclease architectures.

  12. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  13. Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity.

    PubMed

    Iki, Junko; Inoue, Akihiro; Bito, Haruhiko; Okabe, Shigeo

    2005-12-01

    Abstract Cortactin is an F-actin-associated protein which interacts with the postsynaptic scaffolding protein Shank at the SH3 domain and is localized within the dendritic spine in the mouse neuron. Green fluorescent protein (GFP)-based time-lapse imaging revealed cortactin redistribution from dendritic cytoplasm to postsynaptic sites by application of brain-derived neurotrophic factor (BDNF). This response was mediated by mitogen-activated protein (MAP) kinase activation and was dependent on the C-terminal SH3 domain. In contrast, activation of N-methyl-D-aspartate (NMDA) receptors induced loss of cortactin from postsynaptic sites. This NMDA-dependent redistribution was blocked by an Src family kinase inhibitor. Conversely, increasing Src family kinase activity induced cortactin phosphorylation and loss of cortactin from the postsynaptic sites. Finally, blocking of endogenous BDNF reduced the amount of cortactin at the postsynaptic sites and an NMDA receptor antagonist prevented this reduction. These results indicate the importance of counterbalance between BDNF and NMDA receptor-mediated signalling in the reorganization of the postsynaptic actin cytoskeleton during neuronal development.

  14. Visualization of Receptor-mediated Endocytosis in Yeast

    PubMed Central

    Mulholland, Jon; Konopka, James; Singer-Kruger, Birgit; Zerial, Marino; Botstein, David

    1999-01-01

    We studied the ligand-induced endocytosis of the yeast α-factor receptor Ste2p by immuno-electron microscopy. We observed and quantitated time-dependent loss of Ste2p from the plasma membrane of cells exposed to α-factor. This ligand-induced internalization of Ste2p was blocked in the well-characterized endocytosis-deficient mutant sac6Δ. We provide evidence that implicates furrow-like invaginations of the plasma membrane as the site of receptor internalization. These invaginations are distinct from the finger-like plasma membrane invaginations within actin cortical patches. Consistent with this, we show that Ste2p is not located within the cortical actin patch before and during receptor-mediated endocytosis. In wild-type cells exposed to α-factor we also observed and quantitated a time-dependent accumulation of Ste2p in intracellular, membrane-bound compartments. These compartments have a characteristic electron density but variable shape and size and are often located adjacent to the vacuole. In immuno-electron microscopy experiments these compartments labeled with antibodies directed against the rab5 homologue Ypt51p (Vps21p), the resident vacuolar protease carboxypeptidase Y, and the vacuolar H+-ATPase Vph1p. Using a new double-labeling technique we have colocalized antibodies against Ste2p and carboxypeptidase Y to this compartment, thereby identifying these compartments as prevacuolar late endosomes. PMID:10069819

  15. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications.

    PubMed

    D'Souza, Anisha A; Devarajan, Padma V

    2015-04-10

    Hepatocyte resident afflictions continue to affect the human population unabated. The asialoglycoprotein receptor (ASGPR) is primarily expressed on hepatocytes and minimally on extra-hepatic cells. This makes it specifically attractive for receptor-mediated drug delivery with minimum concerns of toxicity. ASGPR facilitates internalization by clathrin-mediated endocytosis and exhibits high affinity for carbohydrates specifically galactose, N-acetylgalactosamine and glucose. Isomeric forms of sugar, galactose density and branching, spatial geometry and galactose linkages are key factors influencing ligand-receptor binding. Popular ligands for ASGPR mediated targeting are carbohydrate polymers, arabinogalactan and pullulan. Other ligands include galactose-bearing glycoproteins, glycopeptides and galactose modified polymers and lipids. Drug-ligand conjugates provide a viable strategy; nevertheless ligand-anchored nanocarriers provide an attractive option for ASGPR targeted delivery and are widely explored. The present review details various ligands and nanocarriers exploited for ASGPR mediated delivery of drugs to hepatocytes. Nanocarrier properties affecting ASGPR mediated uptake are discussed at length. The review also highlights the clinical relevance of ASGPR mediated targeting and applications in diagnostics. ASGPR mediated hepatocyte targeting provides great promise for improved therapy of hepatic afflictions.

  16. Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated.

    PubMed

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L; Hernandez, Orville; McEwen, Juan G; Soares, Célia Maria de Almeida

    2014-05-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. PMID:24831516

  17. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    PubMed Central

    Xiao, Guangqing

    2013-01-01

    Transport of macromolecules across the blood-brain-barrier (BBB) requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn) in regulating the efflux of Immunoglobulin G (IgG) from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed. PMID:23840214

  18. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice. PMID:25524412

  19. H-Ras regulation of TRAIL death receptor mediated apoptosis

    PubMed Central

    Chen, Jun-Jie; Bozza, William P.; Di, Xu; Zhang, Yaqin; Hallett, William; Zhang, Baolin

    2014-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists. PMID:25026275

  20. Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L.; Hernandez, Orville; McEwen, Juan G.; Soares, Célia Maria de Almeida

    2014-01-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. PMID:24831516

  1. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice.

  2. NMDA-mediated and self-induced bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons.

    PubMed

    Zheng, Fei; Wang, Hongbing

    2009-01-01

    Activity-dependent transcriptional up-regulation of bdnf (brain-derived neurotrophic factor) is involved in regulating many aspects of neuronal functions. The NMDA (N-methyl-D-aspartic acid)-mediated and BDNF-mediated exon IV transcription may represent mechanistically different responses, and relevant to activity-dependent changes in neurons. We found that the activities of ERK (extracellular signal regulated kinase), CaM KII/IV (calmodulin-dependent protein kinase II and IV), PI3K (phosphoinositide 3-kinase), and PLC (phospholipase C) are required for NMDA receptor-mediated bdnf exon IV transcription in cultured cortical neurons. In contrast, the BDNF-induced and TrkB-dependent exon IV transcription was regulated by ERK and CaM KII/IV, but not by PI3K and PLC. While ERK and CaM KII/IV are separate signaling pathways in BDNF-stimulated neurons, CaM KII/IV appeared to regulate exon IV transcription through ERK in NMDA-stimulated neurons. Similarly, the PI3K and PLC signaling pathways converged on ERK in NMDA- but not BDNF-stimulated neurons. Our results implicate that the NMDA-induced and the self-maintenance of bdnf transcription are differentially regulated.

  3. Ionotropic NMDA receptor evokes an excitatory response in superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Oskutyte, Diana; Ishizuka, Ken'Ichi; Satoh, Yoshihide; Murakami, Toshiki

    2004-02-27

    Extracellular recordings were taken from preganglionic superior salivatory nucleus (SSN) neurons projecting to submandibular and intra-lingual ganglia, in order to study the action of SSN neurons resulting from ionophoretic application of ionotropic NMDA receptor agonist in urethane-chloralose anaesthetized rats. Single SSN neurons were identified by their antidromic spike responses following stimulation of the chorda-lingual nerve (CLN), chorda tympani branches (CTBs) and the lingual nerve (LN). About one-third (33%, 10/30) of the identified SSN neurons were induced to fire by ionophoretic application of the NMDA receptor agonists used, dl-homocysteic acid (DLH) and N-methyl-D-aspartic acid (NMDA). More than half exhibited firing at high frequencies, often exceeding 40 Hz. About one-fifth (20%; 6/30) of the identified SSN neurons exhibited orthodromic spike responses to the combination of NMDA receptor agonist application and sensory nerve (CLN or LN) stimulus. These excitatory responses evoked by application of NMDA receptor agonist were attenuated (n = 4) by ionophoretic application of DL-2-amino-5-phosphonovaleric acid (AP5; NMDA receptor antagonist). About half (47%) of the neurons did not respond to any combination of NMDA receptor agonist and sensory nerve stimuli. No differences were observed between SSN neurons with B fibre axons and those with C fibre axons in response to ionophoresis of the NMDA receptor agonists. The NMDA-sensitive neurons, which exhibited high frequency firing, were predominantly found in the rostral part of the SSN. In summary, activation of ionotropic NMDA receptors exerts an excitatory effect on about half of the SSN neurons. These data support the view that NMDA receptors are involved in information processing and transmission on SSN neurons.

  4. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP.

    PubMed

    Watt, Alanna J; Sjöström, Per Jesper; Häusser, Michael; Nelson, Sacha B; Turrigiano, Gina G

    2004-05-01

    Most excitatory glutamatergic synapses contain both AMPA and NMDA receptors, but whether these receptors are regulated together or independently during synaptic plasticity has been controversial. Although long-term potentiation (LTP) is thought to selectively enhance AMPA currents and alter the NMDA-to-AMPA ratio, this ratio is well conserved across synapses onto the same neuron. This suggests that the NMDA-to-AMPA ratio is only transiently perturbed by LTP. To test this, we induced LTP at rat neocortical synapses and recorded mixed AMPA-NMDA currents. We observed rapid LTP of AMPA currents, as well as delayed potentiation of NMDA currents that required previous AMPA potentiation. The delayed potentiation of NMDA currents restored the original NMDA-to-AMPA ratio within 2 h of LTP induction. These data suggest that recruitment of AMPA receptors to synapses eventually induces a proportional increase in NMDA current. This may ensure that LTP does not alter the relative contributions of these two receptors to synaptic transmission and information processing.

  5. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    PubMed Central

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.

    2010-01-01

    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419

  6. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances

    PubMed Central

    Xu, Shi; Olenyuk, Bogdan Z.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.

    2012-01-01

    Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization. PMID:23026636

  7. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  8. Trapping channel block of NMDA-activated responses by amantadine and memantine.

    PubMed

    Blanpied, T A; Boeckman, F A; Aizenman, E; Johnson, J W

    1997-01-01

    channels will release the blocker between synaptic responses. The extent to which amantadine and memantine become trapped after channel block thus may influence their therapeutic effects and their modulation of NMDA-receptor-mediated excitatory postsynaptic potentials.

  9. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (INMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated INMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on INMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated INMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of INMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  10. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  11. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons

    PubMed Central

    Yang, Jiangyan; Ruchti, Evelyne; Petit, Jean-Marie; Jourdain, Pascal; Grenningloh, Gabriele; Allaman, Igor; Magistretti, Pierre J.

    2014-01-01

    l-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons l-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. l-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, l-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of l-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of l-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived l-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of l-lactate as a signaling molecule for neuronal plasticity. PMID:25071212

  12. Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission.

    PubMed

    Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T

    2013-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level.

  13. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  14. NMDA receptor contributions to visual contrast coding

    PubMed Central

    Manookin, Michael B.; Weick, Michael; Stafford, Benjamin K.; Demb, Jonathan B.

    2010-01-01

    Summary In the retina, it is not well understood how visual processing depends on AMPA- and NMDA-type glutamate receptors. Here, we investigated how these receptors contribute to contrast coding in identified guinea pig ganglion cell types, in vitro. NMDA-mediated responses were negligible in ON α cells but substantial in OFF α and δ cells. OFF δ cell NMDA receptors were composed of GluN2B subunits. Using a novel deconvolution method, we determined the individual contributions of AMPA, NMDA and inhibitory currents to light responses of each cell type. OFF α and δ cells used NMDA receptors for encoding either the full contrast range (α), including near-threshold responses, or only a high range (δ). However, contrast sensitivity depended substantially on NMDA receptors only in OFF α cells. NMDA receptors contribute to visual contrast coding in a cell-type specific manner. Certain cell types generate excitatory responses using primarily AMPA receptors or disinhibition. PMID:20670835

  15. Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22.

    PubMed

    Chen, Tingjun; Hu, Zhijing; Quirion, Rémi; Hong, Yanguo

    2008-04-01

    The sensory neuron-specific receptor (SNSR) is exclusively distributed in dorsal root ganglion (DRG) cells. We have demonstrated that intrathecal (i.t.) administration of SNSR agonists inhibits formalin-evoked responses and the development of morphine tolerance [Chen, T., Cai, Q., Hong, Y., 2006. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (tyr(6))-gamma2-msh-6-12 inhibit formalin-evoked nociception and neuronal fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 141, 965-975]. The present study was undertaken to examine the possible impact of the activation of SNSR on NMDA receptors. I.t. administration of NMDA (6.8 nmol) induced nociceptive behaviors, including scratching, biting and lifting, followed by thermal hypoalgesia and hyperalgesia. These responses were associated with the expression of Fos-like immunoreactivity (FLI) throughout the spinal dorsal horn with highest effect seen in laminae I-II. I.t. NMDA also induced an increase in nitric oxide synthase (NOS) activity in superficial layers of the dorsal horn, but not around the central canal, as revealed by NADPH diaphorase histochemistry. Pretreatment with the SNSR agonist bovine adrenal medulla 8-22 (3, 10 and 30 nmol) dose-dependently diminished NMDA-evoked nocifensive behaviors and hyperalgesia. This agonist also reduced NMDA-evoked expression of FLI and NADPH reactivity in the spinal dorsal horn. Taken together, these data suggest that the activation of SNSR induces spinal analgesia by suppressing NMDA receptor-mediated activation of spinal dorsal horn neurons and an increase in NOS activity.

  16. Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training.

    PubMed

    Haeger, Paola; Alvarez, Alvaro; Leal, Nancy; Adasme, Tatiana; Núñez, Marco Tulio; Hidalgo, Cecilia

    2010-04-01

    Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. Diverse physiological or pathological conditions induce differential DMT1 variant expression, which are cell-type dependent. Hence, it becomes relevant to ascertain if activation of neuronal plasticity processes that require functional N-methyl D: -aspartate (NMDA) receptors, including in vitro stimulation of NMDA receptor-mediated signaling and spatial memory training, selectively modify DMT1 variant expression. Here, we report for the first time that brief (5 min) exposure of primary hippocampal cultures to NMDA (50 muM) increased 24 h later the expression of DMT1-1B and DMT1+IRE, but not of DMT1-IRE mRNA. In contrast, endogenous DMT1 mRNA levels remained unaffected following 6 h incubation with brain-derived nerve factor. NMDA (25-50 muM) also enhanced DMT1 protein expression 24-48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation. PMID:19655216

  17. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    SciTech Connect

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-free and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.

  18. Molecular pharmacology of human NMDA receptors

    PubMed Central

    Hedegaard, Maiken K.; Hansen, Kasper B.; Andersen, Karen T.; Bräuner-Osborne, Hans; Traynelis, Stephen F.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical animal models to drug candidates for human use, it is important to establish whether NMDA receptor ligands have similar properties at rodent and human NMDA receptors. Here, we compare amino acid sequences for human and rat NMDA receptor subunits and discuss inter-species variation in the context of our current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human and rat NMDA receptors. PMID:22197913

  19. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    SciTech Connect

    Dekundy, Andrzej . E-mail: andrzej.dekundy@merz.de; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  20. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice.

    PubMed

    Dekundy, Andrzej; Kaminski, Rafal M; Zielinska, Elzbieta; Turski, Waldemar A

    2007-03-01

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  1. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition. PMID:27325034

  2. Resveratrol inhibits glycine receptor-mediated ion currents.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Kim, Hyung-Chun; Rhim, Hyewhon; Nah, Seung-Yeol

    2014-01-01

    Resveratrol is found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-nociceptive, and life-prolonging effects. However, the single cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. The glycine receptor is an inhibitory ligand-gated ion channel involved in fast synaptic transmission in spinal cord. In the present study, we investigated the effect of resveratrol on human glycine receptor channel activity. Glycine α1 receptors were expressed in Xenopus oocytes and glycine receptor channel activity was measured using a two-electrode voltage clamp technique. Treatment with resveratrol alone had no effect on oocytes injected with H2O or on oocytes injected with glycine α1 receptor cRNA. In the oocytes injected with glycine α1 receptor cRNA, co- or pre-treatment of resveratrol with glycine inhibited the glycine-induced inward peak current (IGly) in a reversible manner. The inhibitory effect of resveratrol on IGly was also concentration dependent, voltage independent, and non-competitive. These results indicate that resveratrol regulates glycine receptor channel activity and that resveratrol-mediated regulation of glycine receptor channel activity is one of several cellular action mechanisms of resveratrol for pain regulation. PMID:24694604

  3. Ubiquitin ligase RNF167 regulates AMPA receptor-mediated synaptic transmission

    PubMed Central

    Lussier, Marc P.; Herring, Bruce E.; Nasu-Nishimura, Yukiko; Neutzner, Albert; Karbowski, Mariusz; Youle, Richard J.; Nicoll, Roger A.; Roche, Katherine W.

    2012-01-01

    AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified. In a screen to identify transmembrane RING domain-containing E3 ubiquitin ligases that regulate surface expression of AMPARs, we identified RNF167. Predominantly lysosomal, a subpopulation of RNF167 is located on the surface of cultured neurons. Using a RING mutant RNF167 or a specific shRNA to eliminate endogenous RNF167, we demonstrate that AMPAR surface expression increases in hippocampal neurons with disrupted RNF167 activity and that RNF167 is involved in activity-dependent ubiquitination of AMPARs. In addition, RNF167 regulates synaptic AMPAR currents, whereas synaptic NMDAR currents are unaffected. Therefore, our study identifies RNF167 as a selective regulator of AMPAR-mediated neurotransmission and expands our understanding of how ubiquitination dynamically regulates excitatory synapses. PMID:23129617

  4. Histamine H(3) receptor-mediated modulation of perivascular nerve transmission in rat mesenteric arteries.

    PubMed

    Sun, Pengyuan; Takatori, Shingo; Jin, Xin; Koyama, Toshihiro; Tangsucharit, Panot; Li, Simin; Zamami, Yoshito; Kitamura, Yoshihisa; Kawasaki, Hiromu

    2011-03-25

    The rat mesenteric artery has been shown to be innervated by adrenergic vasoconstrictor nerves and calcitonin gene-related peptide (CGRP)-containing (CGRPergic) vasodilator nerves. The present study was designed to investigate the involvement of histamine H(3) receptors in the neurotransmission of perivascular adrenergic and CGRPergic nerves. The mesenteric vascular beds without an endothelium isolated from male Wistar rats were perfused with Krebs solution and perfusion pressure was measured. In preparations with resting tension, the selective H(3) receptor agonist (R)-α-methylhistamine (α-methylhistamine; 10-100nM) significantly reduced periarterial nerve stimulation (2-8Hz)-induced vasoconstriction and noradrenaline release in the perfusate without an effect on the vasoconstriction induced by exogenously injected noradrenaline (0.5, 1.0nmol). In preparations with active tone produced by methoxamine (2μM) and in the presence of guanethidine (5μM), the periarterial nerve stimulation (1, 2Hz)-induced vasodilator response was inhibited by α-methylhistamine (0.1-1μM) perfusion without affecting vasodilation induced by exogenously injected CGRP (5pmol). Clobenpropit (histamine H(3) receptor antagonist, 1μM) canceled the α-methylhistamine-induced decrease in the periarterial nerve stimulation-induced vasoconstriction and noradrenaline release and periarterial nerve stimulation-induced vasodilation. These results suggest that the stimulation of H(3) receptors located in rat perivascular nerves inhibits presynaptically the neurotransmission of not only adrenergic nerves, but also CGRP nerves, by decreasing neurotransmitters.

  5. Modulation of Neuronal Migration by NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Komuro, Hitoshi; Rakic, Pasko

    1993-04-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is essential for neuronal differentiation and establishment or elimination of synapses in a developing brain. The activity of the NMDA receptor has now been shown to also regulate the migration of granule cells in slice preparations of the developing mouse cerebellum. First, blockade of NMDA receptors by specific antagonists resulted in the curtailment of cell migration. Second, enhancement of NMDA receptor activity by the removal of magnesium or by the application of glycine increased the rate of cell movement. Third, increase of endogenous extracellular glutamate by inhibition of its uptake accelerated the rate of cell migration. These results suggest that NMDA receptors may play an early role in the regulation of calcium-dependent cell migration before neurons reach their targets and form synaptic contacts.

  6. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing.

    PubMed

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-03-01

    The role of N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  7. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing

    PubMed Central

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-01-01

    The role of N-methyl--aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  8. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  9. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention?

    PubMed

    Haddad, John J

    2005-11-01

    Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.

  10. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens.

    PubMed

    Zhao, Rui; Chen, Jiaojiao; Ren, Zhaoxiang; Shen, Hui; Zhen, Xuechu

    2016-11-01

    Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine-induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine-induced hyperlocomotor activity in rats. By employing single-unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine-inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N-methyl-D-aspartic acid receptor (NMDAR)-mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor-mediate excitatory postsynaptic current (EPSC) were mimicked by the D1 -like receptor agonist SKF 38393 and blocked by the D1 -like receptor antagonist SCH 23390, whereas D2 -like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor-mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1 -like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor-GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine-induced hyperlocomotion. PMID:27377051

  11. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals.

  12. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2014-02-18

    Fc receptor-mediated macrophage phagocytosis against cancer cells is an important mechanism in the immune therapy of cancers. Traditional research about macrophage phagocytosis was based on optical microscopy, which cannot reveal detailed information because of the 200-nm-resolution limit. Quantitatively investigating the macrophage phagocytosis at micro- and nanoscale levels is still scarce. The advent of atomic force microscopy (AFM) offers an excellent analytical instrument for quantitatively investigating the biological processes at single-cell and single-molecule levels under native conditions. In this work, we combined AFM and fluorescence microscopy to visualize and quantify the detailed changes in cell morphology and mechanical properties during the process of Fc receptor-mediated macrophage phagocytosis against cancer cells. Lymphoma cells were discernible by fluorescence staining. Then, the dynamic process of phagocytosis was observed by time-lapse optical microscopy. Next, AFM was applied to investigate the detailed cellular behaviors during macrophage phagocytosis under the guidance of fluorescence recognition. AFM imaging revealed the distinct features in cellular ultramicrostructures for the different steps of macrophage phagocytosis. AFM cell mechanical property measurements indicated that the binding of cancer cells to macrophages could make macrophages become stiffer. The experimental results provide novel insights in understanding the Fc-receptor-mediated macrophage phagocytosis.

  13. Enhancement of steroid receptor-mediated transcription for the development of highly responsive bioassays.

    PubMed

    Willemsen, Philippe; Scippo, Marie-Louise; Maghuin-Rogister, Guy; Martial, Joseph A; Muller, Marc

    2005-06-01

    We have previously generated several transformed human mammary cell lines for the detection of steroid receptor-mediated activities and used these cell lines to detect and characterize steroid hormone (ant)agonistic compounds. In this report, we describe the specific optimization procedures used to enhance receptor-mediated transcription through the human glucocorticoid, progesterone and androgen receptors, respectively. Sodium arsenite-induced chemical stress leads to a substantial and specific increase in the glucocorticoid receptor-mediated transcription, resulting in maximal stimulations of more than 2000-fold by the agonist dexamethasone. Similarly, a combined treatment with forskolin (an activator of adenylate cyclase) and trichostatin A (an inhibitor of histone deacetylases) leads to a synergistic enhancement of progesterone or androgen stimulation, resulting in a maximal induction of more than 200-fold or about 100-fold, respectively. The enhanced responses to specific steroids are mediated by the corresponding nuclear receptor. We show that by using these enhanced transcriptional stimulation protocols, it is possible to detect lower amounts of steroid hormones without substantially affecting the relative biological activities of various agonists. Finally, the application of these enhanced reporter cell assays to real biological samples from meat-producing animals is evaluated, and some validation parameters are presented.

  14. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  15. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  16. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    '-N-ethylcarboxamidoadenosine (CGS 21680; 0.5-1.0 microM) did not significantly affect the EPSPm. 4. The selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 microM) fully reversed the depressant effects of both adenosine (100 microM) and CADO (1 microM) on the EPSPm and the stimulus-evoked reductions in spike frequency adaptation. 5. DPCPX (0.2 microM) alone caused a small but variable mean increase in the EPSPm of 22 +/- 19% and enabled activation of an EPSPm by a previously subthreshold stimulus. In contrast, the selective adenosine kinase inhibitor 5-iodotubercidin (5-IT; 10 microM) inhibited the EPSPm by 74 +/- 10%, an effect that was reversed by DPCPX. 6. The concentration-response relationship for the depressant action of CADO on the EPSPm more closely paralleled that for its presynaptic depressant action on glutamate-mediated EPSPs than that for postsynaptic hyperpolarization. The respective mean IC50 and EC50 concentrations for these effects were 0.3, 0.8 and 3.0 microM. 7. CADO (1-5 microM) did not have a significant effect on the postsynaptic depolarization, increase in input resistance and reduction in spike frequency adaptation evoked by carbachol (0.5-3.0 microM). All these effects were abolished by atropine (1 microM). 8. These data provide good evidence for an adenosine A1 receptor-mediated inhibition of mAChR-mediated synaptic responses in hippocampal CA1 pyramidal neurones. This inhibition is mediated predominantly presynaptically, is active tonically and can be enhanced when extracellular levels of endogenous adenosine are raised. PMID:9234198

  17. Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors

    PubMed Central

    Herrero, Jose L.; Gieselmann, Marc A.; Sanayei, Mehdi; Thiele, Alexander

    2013-01-01

    Summary Attention improves perception by affecting different aspects of the neuronal code. It enhances firing rates, it reduces firing rate variability and noise correlations of neurons, and it alters the strength of oscillatory activity. Attention-induced rate enhancement in striate cortex requires cholinergic mechanisms. The neuropharmacological mechanisms responsible for attention-induced variance and noise correlation reduction or those supporting changes in oscillatory activity are unknown. We show that ionotropic glutamatergic receptor activation is required for attention-induced rate variance, noise correlation, and LFP gamma power reduction in macaque V1, but not for attention-induced rate modulations. NMDA receptors mediate attention-induced variance reduction and attention-induced noise correlation reduction. Our results demonstrate that attention improves sensory processing by a variety of mechanisms that are dissociable at the receptor level. PMID:23719166

  18. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit

    PubMed Central

    Volkmann, Robert A.; Fanger, Christopher M.; Anderson, David R.; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B.; Fagiolini, Michela; Menniti, Frank S.

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders. PMID:26829109

  19. Receptor-mediated delivery of photoprotective agents by low-density lipoprotein

    SciTech Connect

    Mosley, S.T.; Yang, Y.L.; Falck, J.R.; Anderson, R.G.W.

    1984-12-01

    Low density lipoprotein (LDL) has been used to deliver toxic molecules to cells by receptor-mediated endocytosis. In these studies, the cholesteryl ester core of LDL was replaced with a lipophilic, toxic molecule. The authors report that photoprotective azo dyes can be stably incorporated into LDL, and that this reconstituted LDL protects cells from the photosensitizing action of pyrene methanol (PM) in a receptor-dependent process. The photoprotective action of the azo dye is due to its ability to scavenge singlet oxygen that is produced by the photosensitive agent in response to UV light.

  20. Investigations of receptor-mediated phagocytosis by hormone-induced (imprinted) Tetrahymena pyriformis.

    PubMed

    Kovács, P; Sundermann, C A; Csaba, G

    1996-08-15

    Receptor-mediated endocytosis by Tetrahvmena pyriformis was studied using tetramethylrhodamine isothiocyanate-labeled concanavalin A (TRITC-Con A) with fluorescence and confocal microscopy. In the presence of insulin, or 24 h after insulin pretreatment (hormonal imprinting), the binding and uptake of TRITC-Con A increased when compared to controls, owing to the binding of TRITC-Con A to sugar oligomers of insulin receptors. Mannose inhibited the binding of Con A, thus demonstrating the specificity of binding. Histamine, a phagocytosis-promoting factor in mammals and Tetrahymena, and galactose, did not influence the uptake of TRITC-Con A.

  1. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  2. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind.

  3. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind. PMID:26134648

  4. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  5. CD44, α4 integrin, and fucoidin receptor-mediated phagocytosis of apoptotic leukocytes

    PubMed Central

    Johnson, Jacob D.; Hess, Krista L.; Cook-Mills, Joan M.

    2011-01-01

    Various types of phagocytes mediate the clearance of apoptotic cells. We previously reported that human and murine high endothelial venule (HEV) cells ingest apoptotic cells. In this report, we examined endothelial cell fucoidin receptor-mediated phagocytosis using a murine endothelial cell model mHEV. mHEV cell recognition of apoptotic leukocytes was blocked by fucoidin but not by other phagocytic receptor inhibitors such as mannose, fucose, N-acetylglucosamine, phosphatidylserine (PS), or blocking anti-PS receptor antibodies. Thus, the mHEV cells used fucoidin receptors for recognition and phagocytosis of apoptotic leukocytes. The fucoidin receptor-mediated endothelial cell phagocytosis was specific for apoptotic leukocytes, as necrotic cells were not ingested. This is in contrast to macrophages, which ingest apoptotic and necrotic cells. Endothelial cell phagocytosis of apoptotic cells did not alter viable lymphocyte migration across these endothelial cells. Antibody blocking of CD44 and α4 integrin on the apoptotic leukocyte inhibited this endothelial cell phagocytosis, suggesting a novel function for these adhesion molecules in the removal of apoptotic targets. The removal of apoptotic leukocytes by endothelial cells may protect the microvasculature, thus ensuring that viable lymphocytes can successfully migrate into tissues. PMID:12960273

  6. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis

    PubMed Central

    Richards, David M.; Endres, Robert G.

    2016-01-01

    Phagocytosis and receptor-mediated endocytosis are vitally important particle uptake mechanisms in many cell types, ranging from single-cell organisms to immune cells. In both processes, engulfment by the cell depends critically on both particle shape and orientation. However, most previous theoretical work has focused only on spherical particles and hence disregards the wide-ranging particle shapes occurring in nature, such as those of bacteria. Here, by implementing a simple model in one and two dimensions, we compare and contrast receptor-mediated endocytosis and phagocytosis for a range of biologically relevant shapes, including spheres, ellipsoids, capped cylinders, and hourglasses. We find a whole range of different engulfment behaviors with some ellipsoids engulfing faster than spheres, and that phagocytosis is able to engulf a greater range of target shapes than other types of endocytosis. Further, the 2D model can explain why some nonspherical particles engulf fastest (not at all) when presented to the membrane tip-first (lying flat). Our work reveals how some bacteria may avoid being internalized simply because of their shape, and suggests shapes for optimal drug delivery. PMID:27185939

  7. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis.

    PubMed

    Aranda, Juan F; Canfrán-Duque, Alberto; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-09-01

    Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking.

  8. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents.

    PubMed

    Mul, Joram D; Spruijt, Berry M; Brakkee, Jan H; Adan, Roger A H

    2013-11-01

    Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced.

  9. Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tran, Nhiem; Webster, Thomas J.

    2013-05-01

    Iron oxide nanoparticles are promising candidates for controlling drug delivery through an external magnetic force to treat a wide range of diseases, including osteoporosis. Previous studies have demonstrated that in the presence of hydroxyapatite coated magnetite (Fe3O4) nanoparticles, osteoblast (or bone forming cell) proliferation and long-term functions (such as calcium deposition) were significantly enhanced. Hydroxyapatite is the major inorganic component of bone. As a further attempt to understand why, in the current study, the uptake of such nanoparticles into osteoblasts was experimentally investigated and mathematically modeled. Magnetite nanoparticles were synthesized using a co-precipitation method and were coated with hydroxyapatite. A cellular uptake experiment at low temperatures indicated that receptor-mediated endocytosis contributed to the internalization of the magnetic nanoparticles into osteoblasts. A model was further developed to explain the uptake of magnetic nanoparticles into osteoblasts using receptor-mediated endocytosis. This model may explain the internalization of hydroxyapatite into osteoblasts to elevate intracellular calcium levels necessary to promote osteoblast functions to treat a wide range of orthopedic problems, including osteoporosis.

  10. Endogenous ion channel complexes: the NMDA receptor.

    PubMed

    Frank, René A W

    2011-06-01

    Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.

  11. Decreases in mitochondrial reactive oxygen species initiate GABAA receptor-mediated electrical suppression in anoxia-tolerant turtle neurons

    PubMed Central

    Hogg, David W; Pamenter, Matthew E; Dukoff, David J; Buck, Leslie T

    2015-01-01

    Key points Anoxia induces hyper-excitability and cell death in mammalian brain but in the western painted turtle (Chrysemys picta bellii) enhanced GABA transmission prevents injury. The mechanism responsible for increased GABA transmission is unknown; however, reactive oxygen species (ROS) generated by mitochondria may play a role because this is an oxygen-sensitive process. In this study, we show that inhibition of mitochondrial ROS production is sufficient to initiate a redox-sensitive GABA signalling cascade that suppresses pyramidal neuron action potential frequency. These results further our understanding of the turtle's unique strategy for reducing ATP consumption during anoxia and highlights a natural mechanism in which to explore therapies to protect mammalian brain from low-oxygen insults (e.g. cerebral stroke). Abstract Anoxia induces hyper-excitability and cell death in mammalian brain but in the anoxia-tolerant western painted turtle (Chrysemys picta bellii) neuronal electrical activity is suppressed (i.e. spike arrest), adenosine triphosphate (ATP) consumption is reduced, and cell death does not occur. Electrical suppression is primarily the result of enhanced γ-aminobutyric acid (GABA) transmission; however, the underlying mechanism responsible for initiating oxygen-sensitive GABAergic spike arrest is unknown. In turtle cortical pyramidal neurons there are three types of GABAA receptor-mediated currents: spontaneous inhibitory postsynaptic currents (IPSCs), giant IPSCs and tonic currents. The aim of this study was to assess the effects of reactive oxygen species (ROS) scavenging on these three currents since ROS levels naturally decrease with anoxia and may serve as a redox signal to initiate spike arrest. We found that anoxia, pharmacological ROS scavenging, or inhibition of mitochondrial ROS generation enhanced all three types of GABA currents, with tonic currents comprising ∼50% of the total current. Application of hydrogen peroxide inhibited

  12. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    PubMed

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  13. Peripheral tackykinin and excitatory amino acid receptors mediate hyperalgesia induced by Phoneutria nigriventer venom.

    PubMed

    Zanchet, Eliane Maria; Cury, Yara

    2003-04-25

    The generation of hyperalgesia by Phoneutria nigriventer venom was investigated in rats using the paw pressure test, through the intraplantar injection of the venom. Hyperalgesia was significantly inhibited by N-[2-(4-chlorophenyl) ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamide (capsazepine), a vanilloid receptor antagonist, by the local administration of pGlu-Ala-Asp-Pro-Asn-Lys-Phe-Tyr-Pro (spiro-gamma-lactam) Leu-Trp-NH(2) (GR82334) or of Phenyl-CO-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH(2) (GR94800), inhibitors of tachykinin NK(1) and NK(2) receptors, respectively, or by the local injection of dizocilpine (MK 801), (+/-)-2-amino-5-phosphonopentanoic acid ((+/-)-AP-5), or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and non-NMDA excitatory amino acid receptors. The correlation between hyperalgesia and the inflammatory response induced by the venom was also investigated. The venom-induced edematogenic response was not modified by the pharmacological treatments. These results suggest that hyperalgesia induced by P. nigriventer venom is mediated by stimulation of capsaicin-sensitive neurons, with activation of peripheral tachykinin NK(1) and NK(2) receptors and of both the NMDA and AMPA receptors. Distinct mechanisms are involved in the development of hyperalgesia and edema induced by the venom.

  14. Enzyme induction and histopathology elucidate aryl hydrocarbon receptor-mediated versus non-aryl hydrocarbon receptor-mediated effects of Aroclor 1268 in American mink (Neovison vison).

    PubMed

    Folland, William R; Newsted, John L; Fitzgerald, Scott D; Fuchsman, Phyllis C; Bradley, Patrick W; Kern, John; Kannan, Kurunthachalam; Zwiernik, Matthew J

    2016-03-01

    Polychlorinated biphenyl (PCB) concentrations reported in preferred prey and blubber of bottlenose dolphins from the Turtle-Brunswick River estuary (Georgia, USA) suggest the potential for adverse effects. However, PCBs in Turtle-Brunswick River estuary dolphins are primarily derived from Aroclor 1268, and predicting toxic effects of Aroclor 1268 is uncertain because of the mixture's unique composition and associated physiochemical characteristics. These differences suggest that toxicity benchmarks for other PCB mixtures may not be relevant to dolphins exposed to Aroclor 1268. American mink (Neovison vison) were used as a surrogate model for cetaceans to characterize mechanisms of action associated with Aroclor 1268 exposure. Mink share similarities in phylogeny and life history with cetaceans and are characteristically sensitive to PCBs, making them an attractive surrogate species for marine mammals in ecotoxicity studies. Adult female mink and a subsequent F1 generation were exposed to Aroclor 1268 through diet, and effects on enzyme induction, histopathology, thyroid hormone regulation, hematology, organ weights, and body condition index were compared to a negative control and a 3,3',4,4',5-pentachlorobiphenyl (PCB 126)-positive control. Aroclor 1268 dietary exposure concentrations ranged from 1.8 µg/g wet weight to 29 µg/g wet weight. Anemia, hypothyroidism, and hepatomegaly were observed in mink exposed to Aroclor 1268 beyond various dietary thresholds. Cytochrome P450 induction and squamous epithelial proliferation jaw lesions were low in Aroclor 1268 treatments relative to the positive control. Differences in enzyme induction and the development of squamous epithelial proliferation jaw lesions between Aroclor 1268 treatments and the positive control, coupled with effects observed in Aroclor 1268 treatments not observed in the positive control, indicate that mechanisms additional to the aryl hydrocarbon receptor-mediated pathway are associated with

  15. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling.

    PubMed

    Arons, Magali H; Thynne, Charlotte J; Grabrucker, Andreas M; Li, Dong; Schoen, Michael; Cheyne, Juliette E; Boeckers, Tobias M; Montgomery, Johanna M; Garner, Craig C

    2012-10-24

    Mutations in several postsynaptic proteins have recently been implicated in the molecular pathogenesis of autism and autism spectrum disorders (ASDs), including Neuroligins, Neurexins, and members of the ProSAP/Shank family, thereby suggesting that these genetic forms of autism may share common synaptic mechanisms. Initial studies of ASD-associated mutations in ProSAP2/Shank3 support a role for this protein in glutamate receptor function and spine morphology, but these synaptic phenotypes are not universally penetrant, indicating that other core facets of ProSAP2/Shank3 function must underlie synaptic deficits in patients with ASDs. In the present study, we have examined whether the ability of ProSAP2/Shank3 to interact with the cytoplasmic tail of Neuroligins functions to coordinate pre/postsynaptic signaling through the Neurexin-Neuroligin signaling complex in hippocampal neurons of Rattus norvegicus. Indeed, we find that synaptic levels of ProSAP2/Shank3 regulate AMPA and NMDA receptor-mediated synaptic transmission and induce widespread changes in the levels of presynaptic and postsynaptic proteins via Neurexin-Neuroligin transsynaptic signaling. ASD-associated mutations in ProSAP2/Shank3 disrupt not only postsynaptic AMPA and NMDA receptor signaling but also interfere with the ability of ProSAP2/Shank3 to signal across the synapse to alter presynaptic structure and function. These data indicate that ASD-associated mutations in a subset of synaptic proteins may target core cellular pathways that coordinate the functional matching and maturation of excitatory synapses in the CNS.

  16. An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells.

    PubMed

    Rizk, Shahir S; Luchniak, Anna; Uysal, Serdar; Brawley, Crista M; Rock, Ronald S; Kossiakoff, Anthony A

    2009-07-01

    We have developed and tested a robust delivery method for the transport of proteins to the cytoplasm of mammalian cells without compromising the integrity of the cell membrane. This receptor-mediated delivery (RMD) technology utilizes a variant of substance P (SP), a neuropeptide that is rapidly internalized upon interaction with the neurokinin-1 receptor (NK1R). Cargos in the form of synthetic antibody fragments (sABs) were conjugated to the engineered SP variant (SPv) and efficiently internalized by NK1R-expressing cells. The sABs used here were generated to bind specific conformational forms of actin. The internalized proteins appear to escape the endosome and retain their binding activity within the cells as demonstrated by co-localization with the actin cytoskeleton. Further, since the NK1R is over-expressed in many cancers, SPv-mediated delivery provides a highly specific method for therapeutic utilization of affinity reagents targeting intracellular processes in diseased tissue.

  17. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  18. Administration of pyrene lipids by receptor-mediated endocytosis and their degradation in skin fibroblasts

    SciTech Connect

    Agmon, V.; Dinur, T.; Cherbu, S.; Dagan, A.; Gatt, S. )

    1991-10-01

    Sphingomyelin and seven glycosphingolipids were labeled with the fluorescent probe pyrene and administered into cultured fibroblasts by receptor-mediated endocytosis. For this purpose pyrene sphingomyelin or mixtures of pyrene glycolipid and unlabeled sphingomyelin were dispersed as small, unilamellar liposomes. Apolipoprotein E was then added and the receptor for this ligand on the cell surface was utilized for uptake of the liposomes and their transport to the lysosomes, where the respective pyrene lipids were degraded. Following incubation with each of the respective pyrene lipids, only the administered compound and the pyrene ceramide were present; intermediate hydrolysis products were not detected. This indicated that, in skin fibroblasts, the lysosomal ceramidase was limiting and controlled the rate of total degradation of the pyrene sphingolipids.

  19. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier.

    PubMed

    Mooberry, Linda K; Nair, Maya; Paranjape, Sulabha; McConathy, Walter J; Lacko, Andras G

    2010-01-01

    The purpose of these studies was to determine the mechanism(s) whereby paclitaxel (PTX), is taken up by cancer cells, once encapsulated into synthetic/reconstituted high density lipoprotein (rHDL). The uptake of PTX was found to be facilitated by the scavenger receptor type B-1 (SR-B1) when drug-loaded rHDL particles were incubated with cells that express the SRB1 receptor. Studies with double-labeled, PTX containing rHDL nanoparticles showed that prostate cancer (PC-3) cells incorporated PTX primarily via a selective (SR-B1 type) uptake mechanism. In the presence of a 10-fold excess of plasma HDL, PTX uptake decreased to 30% of the control. These findings suggest that the incorporation of lipophilic drugs by cancer cells from rHDL nanoparticles is facilitated by a receptor mediated (SR-B1) mechanism.

  20. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier

    PubMed Central

    Lajoie, Jason M.; Shusta, Eric V.

    2016-01-01

    Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer’s disease, stroke and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence, therapeutic potential, of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT targeting strategies have been developed over the past 20 years, and this review will explore exciting recent advances, with a particular emphasis on those studies showing brain targeting in vivo. PMID:25340933

  1. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    SciTech Connect

    Junker, L.H.; Davis, R.A. )

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  2. Current injection and receptor-mediated excitation produce similar maximal firing rates in hypoglossal motoneurons.

    PubMed

    Wakefield, Hilary E; Fregosi, Ralph F; Fuglevand, Andrew J

    2016-03-01

    The maximum firing rates of motoneurons (MNs), activated in response to synaptic drive, appear to be much lower than that elicited by current injection. It could be that the decrease in input resistance associated with increased synaptic activity (but not current injection) might blunt overall changes in membrane depolarization and thereby limit spike-frequency output. To test this idea, we recorded, in the same cells, maximal firing responses to current injection and to synaptic activation. We prepared 300 μm medullary slices in neonatal rats that contained hypoglossal MNs and used whole-cell patch-clamp electrophysiology to record their maximum firing rates in response to triangular-ramp current injections and to glutamate receptor-mediated excitation. Brief pressure pulses of high-concentration glutamate led to significant depolarization, high firing rates, and temporary cessation of spiking due to spike inactivation. In the same cells, we applied current clamp protocols that approximated the time course of membrane potential change associated with glutamate application and with peak current levels large enough to cause spike inactivation. Means (SD) of maximum firing rates obtained in response to glutamate application were nearly identical to those obtained in response to ramp current injection [glutamate 47.1 ± 12.0 impulses (imp)/s, current injection 47.5 ± 11.2 imp/s], even though input resistance was 40% less during glutamate application compared with current injection. Therefore, these data suggest that the reduction in input resistance associated with receptor-mediated excitation does not, by itself, limit the maximal firing rate responses in MNs.

  3. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate.

    PubMed

    Follett, Pamela L; Deng, Wenbin; Dai, Weimin; Talos, Delia M; Massillon, Leon J; Rosenberg, Paul A; Volpe, Joseph J; Jensen, Frances E

    2004-05-01

    Periventricular leukomalacia is a form of hypoxic-ischemic cerebral white matter injury seen most commonly in premature infants and is the major antecedent of cerebral palsy. Glutamate receptor-mediated excitotoxicity is a predominant mechanism of hypoxic-ischemic injury to developing cerebral white matter. We have demonstrated previously the protective effect of AMPA-kainate-type glutamate receptor blockade in a rodent model of periventricular leukomalacia. The present study explores the therapeutic potential of glutamate receptor blockade for hypoxic-ischemic white matter injury. We demonstrate that AMPA receptors are expressed on developing human oligodendrocytes that populate fetal white matter at 23-32 weeks gestation, the period of highest risk for periventricular leukomalacia. We show that the clinically available anticonvulsant topiramate, when administered post-insult in vivo, is protective against selective hypoxic-ischemic white matter injury and decreases the subsequent neuromotor deficits. We further demonstrate that topiramate attenuates AMPA-kainate receptor-mediated cell death and calcium influx, as well as kainate-evoked currents in developing oligodendrocytes, similar to the AMPA-kainate receptor antagonist 6-nitro-7-sulfamoylbenzo-(f)quinoxaline-2,3-dione (NBQX). Notably, protective doses of NBQX and topiramate do not affect normal maturation and proliferation of oligodendrocytes either in vivo or in vitro. Taken together, these results suggest that AMPA-kainate receptor blockade may have potential for translation as a therapeutic strategy for periventricular leukomalacia and that the mechanism of protective efficacy of topiramate is caused at least in part by attenuation of excitotoxic injury to premyelinating oligodendrocytes in developing white matter.

  4. Relationship between Ah receptor-mediated polychlorinated biphenyl (PCB)-induced humoral immunosuppression and thymic atrophy.

    PubMed

    Silkworth, J B; Antrim, L

    1985-12-01

    Thymic atrophy and humoral immunosuppression by certain polychlorinated biphenyls is associated with the aromatic hydrocarbon (Ah) receptor in mice. We examined the relationship between these two toxic effects. 3,3',4,4'-Tetrachlorobiphenyl (TCB), which causes immunosuppression and thymic atrophy, and 2,3,3',4,4',5-hexachlorobiphenyl, which causes immunosuppression without thymic atrophy, were administered i.p. to C57BL/6 mice at 0, 35 and 350 mumol/kg b.wt. 2 days before i.v. immunization with 10 micrograms of Escherichia coli lipopolysaccharide. Both congeners caused significant suppression of the day 4 anti-lipopolysaccharide plaque-forming cell response/spleen (less than or equal to 46% of control). TCB (350 mumol/kg) was also administered 2 days before either a primary or secondary i.p. immunization with sheep erythrocytes. TCB treatment before primary immunization had no effects on the day 5 secondary response, whereas treatment before the secondary immunization significantly inhibited both day 5 immunoglobulin M and immunoglobulin G plaque-forming cells (less than 10 and less than 2% of control, respectively) and decreased serum antibody. TCB administered either 8 or 2 days before or 2 or 4 days after immunization with sheep erythrocytes demonstrated that significant suppression of both plaque-forming cells and serum antibody could occur without thymic atrophy. Immunity was most impaired when TCB was given 2 days before immunization. These results demonstrate that thymic atrophy does not always accompany the severe immunosuppression caused by Ah receptor ligands and suggests that it may not be a sensitive measure of Ah receptor-mediated immunosuppression. The data also suggests that differentiation of B lymphocytes into antibody producing cells is impaired during Ah receptor-mediated gene activation.

  5. Modeling receptor-mediated processes with dioxin: Implications for pharmacokinetics and risk assessment

    SciTech Connect

    Anderson, M.E.; Mills, J.J.; Gargas, M.L. ); Keddersi, L. ); Birnbaum, L.S. ); Neubert, D. ); Greenlee, W.F. )

    1993-02-01

    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD), a widespread aromatic hydrocarbon, caused tumors in the liver and other sites when administered chronically to rats at doses as low as 0.01 [mu]g/kg/day. It functions in combination with a cellular protein, the Ah receptor, to alter gene regulation, and this resulting modulation of gene expression is believed to be obligatory for both dioxin toxicity and carcinogenicity. The U.S. EPA is reevaluating its dioxin risk assessment and, as part of this process, will be developing risk assessment approaches for chemicals, such as dioxin, whose toxicity is receptor-mediated. This paper describes a receptor-mediated physiologically based pharmacokinetic (PB-PK) model for the tissue distribution and enzyme-inducing properties of dioxin and discusses the potential role of these models in a biologically motivated risk assessment. In this model, ternary interactions among the Ah receptor, dioxin, and DNA binding sites lead to enhance production of specific hepatic proteins. This model was used to examine the tissue disposition of dioxin and the induction of both a dioxin-binding protein (presumably, cytochrome P4501A2), and cytochrome P4501A1. Tumor promotion correlated more closely with predicted induction of P4501A1 than with induction of hepatic binding proteins. Although increased induction of these proteins is not expected to be causally related to tumor formation, these physiological dosimetry and gene-induction response models will be important for biologically motivated dioxin risk assessments in determining both target tissue dose of dioxin and gene products and in examining the relationship between these gene products and the cellular events more directly involved in tumor promotion.

  6. Fluid Shear Stress Sensitizes Cancer Cells to Receptor-Mediated Apoptosis via Trimeric Death Receptors

    PubMed Central

    Mitchell, Michael J.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor (TNF) apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer (NK) cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to receptor-mediated apoptosis has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlated with the application of fluid shear stress, and TRAIL-induced apoptosis increased in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis was not affected by the application fluid shear stress. Interestingly, fluid shear stress did not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments revealed that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear force can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents. PMID:25110459

  7. Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways.

    PubMed

    Urban, Jonathan D; Vargas, Gabriel A; von Zastrow, Mark; Mailman, Richard B

    2007-01-01

    Aripiprazole is a unique atypical antipsychotic drug with an excellent side-effect profile presumed, in part, to be due to lack of typical D(2) dopamine receptor antagonist properties. Whether aripiprazole is a typical D(2) partial agonist, or a functionally selective D(2) ligand, remains controversial (eg D(2)-mediated inhibition of adenylate cyclase is system dependent; aripiprazole antagonizes D(2) receptor-mediated G-protein-coupled inwardly rectifying potassium channels and guanosine triphosphate nucleotide (GTP)gammaS coupling). The current study examined the D(2L) receptor binding properties of aripiprazole, as well as the effects of the drug on three downstream D(2) receptor-mediated functional effectors: mitogen-activated protein kinase (MAPK) phosphorylation, potentiation of arachidonic acid (AA) release, and D(2) receptor internalization. Unlike quinpirole (a full D(2) agonist) or (-)3PPP (S(-)-3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride, a D(2) partial agonist), the apparent D(2) affinity of aripiprazole was not decreased significantly by GTP. Moreover, full or partial agonists are expected to have Hill slopes <1.0, yet that of aripiprazole was significantly >1.0. Whereas aripiprazole partially activated both the MAPK and AA pathways, its potency vs MAPK phosphorylation was much lower relative to potencies in assays either of AA release or inhibition of cyclic adenosine 3',5'-cyclic monophosphate accumulation. In addition, unlike typical agonists, neither aripiprazole nor (-)3PPP produced significant internalization of the D(2L) receptor. These data are clear evidence that aripiprazole affects D(2L)-mediated signaling pathways in a differential manner. The results are consistent with the hypothesis that aripiprazole is a functionally selective D(2) ligand rather than a simple partial agonist. Such data may be useful in understanding the novel clinical actions of this drug.

  8. A(2B) receptors mediate antimitogenesis in vascular smooth muscle cells.

    PubMed

    Dubey, R K; Gillespie, D G; Shue, H; Jackson, E K

    2000-01-01

    Adenosine inhibits growth of vascular smooth muscle cells. The goals of this study were to determine which adenosine receptor subtype mediates the antimitogenic effects of adenosine and to investigate the signal transduction mechanisms involved. In rat aortic vascular smooth muscle cells, platelet-derived growth factor-BB (PDGF-BB) (25 ng/mL) stimulated DNA synthesis ([(3)H]thymidine incorporation), cellular proliferation (cell number), collagen synthesis ([(3)H]proline incorporation), total protein synthesis ([(3)H]leucine incorporation), and mitogen-activated protein (MAP) kinase activity. The adenosine receptor agonists 2-chloroadenosine and 5'-N-methylcarboxamidoadenosine, but not N(6)-cyclopentyladenosine or CGS21680, inhibited the growth effects of PDGF-BB, an agonist profile consistent with an A(2B) receptor-mediated effect. The adenosine receptor antagonists KF17837 and 1,3-dipropyl-8-p-sulfophenylxanthine, but not 8-cyclopentyl-1, 3-dipropylxanthine, blocked the growth-inhibitory effects of 2-chloroadenosine and 5'-N-methylcarboxamidoadenosine, an antagonist profile consistent with an A(2) receptor-mediated effect. Antisense, but not sense or scrambled, oligonucleotides to the A(2B) receptor stimulated basal and PDGF-induced DNA synthesis, cell proliferation, and MAP kinase activity. Moreover, the growth-inhibitory effects of 2-chloroadenosine, 5'-N-methylcarboxamidoadenosine, and erythro-9-(2-hydroxy-3-nonyl) adenine plus iodotubericidin (inhibitors of adenosine deaminase and adenosine kinase, respectively) were abolished by antisense, but not scrambled or sense, oligonucleotides to the A(2B) receptor. Our findings strongly support the hypothesis that adenosine causes inhibition of vascular smooth muscle cell growth by activating A(2B) receptors coupled to inhibition of MAP kinase activity. Pharmacological or molecular biological activation of A(2B) receptors may prevent vascular remodeling associated with hypertension, atherosclerosis, and restenosis

  9. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors.

    PubMed

    Sivarao, Digavalli V; Chen, Ping; Senapati, Arun; Yang, Yili; Fernandes, Alda; Benitex, Yulia; Whiterock, Valerie; Li, Yu-Wen; Ahlijanian, Michael K

    2016-08-01

    Schizophrenia patients exhibit dysfunctional gamma oscillations in response to simple auditory stimuli or more complex cognitive tasks, a phenomenon explained by reduced NMDA transmission within inhibitory/excitatory cortical networks. Indeed, a simple steady-state auditory click stimulation paradigm at gamma frequency (~40 Hz) has been reproducibly shown to reduce entrainment as measured by electroencephalography (EEG) in patients. However, some investigators have reported increased phase locking factor (PLF) and power in response to 40 Hz auditory stimulus in patients. Interestingly, preclinical literature also reflects this contradiction. We investigated whether a graded deficiency in NMDA transmission can account for such disparate findings by administering subanesthetic ketamine (1-30 mg/kg, i.v.) or vehicle to conscious rats (n=12) and testing their EEG entrainment to 40 Hz click stimuli at various time points (~7-62 min after treatment). In separate cohorts, we examined in vivo NMDA channel occupancy and tissue exposure to contextualize ketamine effects. We report a robust inverse relationship between PLF and NMDA occupancy 7 min after dosing. Moreover, ketamine could produce inhibition or disinhibition of the 40 Hz response in a temporally dynamic manner. These results provide for the first time empirical data to understand how cortical NMDA transmission deficit may lead to opposite modulation of the auditory steady-state response (ASSR). Importantly, our findings posit that 40 Hz ASSR is a pharmacodynamic biomarker for cortical NMDA function that is also robustly translatable. Besides schizophrenia, such a functional biomarker may be of value to neuropsychiatric disorders like bipolar and autism spectrum where 40 Hz ASSR deficits have been documented. PMID:26837462

  10. Administration of a non-NMDA antagonist, GYKI 52466, increases excitotoxic Purkinje cell degeneration caused by ibogaine.

    PubMed

    O'Hearn, E; Molliver, M E

    2004-01-01

    Ibogaine is a tremorigenic hallucinogen that has been proposed for clinical use in treating addiction. We previously reported that ibogaine, administered systemically, produces degeneration of a subset of Purkinje cells in the cerebellum, primarily within the vermis. Ablation of the inferior olive affords protection against ibogaine-induced neurotoxicity leading to the interpretation that ibogaine itself is not directly toxic to Purkinje cells. We postulated that ibogaine produces sustained excitation of inferior olivary neurons that leads to excessive glutamate release at climbing fiber terminals, causing subsequent excitotoxic injury to Purkinje cells. The neuronal degeneration induced by ibogaine provides an animal model for studying excitotoxic injury in order to analyze the contribution of glutamate receptors to this injury and to evaluate neuroprotective strategies. Since non-N-methyl-D-aspartate (NMDA) receptors mediate Purkinje cell excitation by climbing fibers, we hypothesized that 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI-52466), which antagonizes non-NMDA receptors, may have a neuroprotective effect by blocking glutamatergic excitation at climbing fiber synapses. To test this hypothesis, rats were administered systemic ibogaine plus GYKI-52466 and the degree of neuronal injury was analyzed in cerebellar sections. The results indicate that the AMPA antagonist GYKI-52466 (10 mg/kg i.p. x 3) does not protect against Purkinje cell injury at the doses used. Rather, co-administration of GYKI-52466 with ibogaine produces increased toxicity evidenced by more extensive Purkinje cell degeneration. Several hypotheses that may underlie this result are discussed. Although the reason for the increased toxicity found in this study is not fully explained, the present results show that a non-NMDA antagonist can produce increased excitotoxic injury under some conditions. Therefore, caution should be exercised before employing glutamate

  11. Association between genetic variations of NMDA receptor NR3 subfamily genes and heroin addiction in male Han Chinese.

    PubMed

    Xie, Xiaohu; Liu, Huifen; Zhang, Jianbing; Chen, Weisheng; Zhuang, Dingding; Duan, Shiwei; Zhou, Wenhua

    2016-09-19

    Growing amounts of evidence suggest that N-Methyl-d-aspartate (NMDA) receptor mediated glutamate neurotransmission may be involved in the pathophysiology of drug dependence. The NMDA receptor consists of three subfamilies (NR1, NR2, and NR3). The ability of subunit NR3 to negatively modulate the NMDA receptor function makes it an attractive candidate gene of heroin addiction. The purpose of this study is to explore the association between four single nucleotide polymorphisms (SNPs) of NR3 gene and heroin addiction. Genotyping of two SNPs (rs3739722 and rs17189632) in GRIN3A and two SNPs (rs4807399 and rs2240158) in GRIN3B was performed using TaqMan SNP genotyping method. The association between heroin addiction and these SNPs was assessed among 332 male heroin dependent patients and 400 male normal control subjects. The results showed the genotype and allele frequencies of rs17189632 and rs2240158 were significantly different between the cases and the controls (nominal P values were 0.0284, 0.0136 for rs17189632; 0.0048, 0.0013 for rs2240158, respectively). After Bonferroni correction, rs2240158 of GRIN3B was still found to be associated with heroin addiction. The frequencies of haplotype C-A at GRIN3A (rs3739722-rs17189632) and of C-C and C-T at GRIN3B (rs4807399-rs2240158) differed significantly between the cases and the controls. The genotype and allele distributions of rs3739722 and rs4807399 were not significantly different between in the cases and in the controls (P>0.05). These results suggest that GRIN3A rs17189632 and GRIN3B rs2240158 may contribute to the susceptibility of heroin addiction. PMID:27542340

  12. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  13. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  14. Subunit Arrangement and Function in NMDA Receptors

    SciTech Connect

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  15. Selective blockade of CaMKII-alpha inhibits NMDA-induced caspase-3-dependent cell death but does not arrest PARP-1 activation or loss of plasma membrane selectivity in rat retinal neurons.

    PubMed

    Goebel, Dennis J

    2009-02-23

    Calcium/calmodulin-dependent protein kinase II-alpha (CaMKII-alpha) has been implicated in a number of receptor mediated events in neurons. Pharmacological blockade of CaMKII-alpha has been shown to prevent phosphorylation of NMDA-R2A and R2B receptor subunits, suggesting that this enzyme may be linked to receptor trafficking of glutamate receptors and serve as a regulatory protein for neuronal cell death. In the retina, inhibition of CaMKII-alpha has been reported to be neuroprotective against NMDA-induced cell death by preventing the activation of the caspase-3 dependent pathway. However, the effects of CaMKII-alpha blockade on the caspase-3 independent, PARP-1 dependent and the non-programmed cell death pathways have not previously been investigated. In the present study, blockade of CaMKII-alpha with the highly specific antagonist myristoylated autocamtide-2-related inhibitory peptide (AIP) was used in a rat in vivo model of retinal toxicity to compare the effects of on NMDA-induced caspase-3-dependent, PARP-1 dependent and the non-programmed (necrosis) cell death pathways. Results confirmed that AIP fully attenuates caspase-3 activation for at least 8 h following NMDA insult and also significantly improves retinal ganglion cell survival. However, this blockade had little effect on reducing the loss of plasma membrane selectivity (LPMS, e.g. necrosis) in cells located in the ganglion cell and inner nuclear layers and did not alter NMDA-induced PARP-1 hyperactivation, or prevent TUNEL labeling following a moderate NMDA-insult. These findings support a specific role for CaMKII-alpha in mediating the caspase-3 dependent cell death pathway and provide evidence that it is not directly linked to the signaling of either the PARP-1 dependent or the non-programmed cell death pathways.

  16. The Role of NMDA Receptor Subtypes in Short-Term Plasticity in the Rat Entorhinal Cortex

    PubMed Central

    Chamberlain, Sophie E. L.; Yang, Jian; Jones, Roland S. G.

    2008-01-01

    We have previously shown that spontaneous release of glutamate in the entorhinal cortex (EC) is tonically facilitated via activation of presynaptic NMDA receptors (NMDAr) containing the NR2B subunit. Here we show that the same receptors mediate short-term plasticity manifested by frequency-dependent facilitation of evoked glutamate release at these synapses. Whole-cell patch-clamp recordings were made from layer V pyramidal neurones in rat EC slices. Evoked excitatory postsynaptic currents showed strong facilitation at relatively low frequencies (3 Hz) of activation. Facilitation was abolished by an NR2B-selective blocker (Ro 25-6981), but unaffected by NR2A-selective antagonists (Zn2+, NVP-AAM077). In contrast, postsynaptic NMDAr-mediated responses could be reduced by subunit-selective concentrations of all three antagonists. The data suggest that NMDAr involved in presynaptic plasticity in layer V are exclusively NR1/NR2B diheteromers, whilst postsynaptically they are probably a mixture of NR1/NR2A, NR1/NR2B diheteromers and NR1/NR2A/NR2B triheteromeric receptors. PMID:18989370

  17. Glutamate and Dopamine Transmission from Midbrain Dopamine Neurons Share Similar Release Properties But Are Differentially Affected by Cocaine

    PubMed Central

    Adrover, Martín F.; Shin, Jung Hoon

    2014-01-01

    Synaptic transmission between ventral tegmental area and nucleus accumbens (NAc) is critically involved in reward-motivated behaviors and thought to be altered in addiction. In addition to dopamine (DA), glutamate is packaged and released by a subset of mesolimbic DA neurons, eliciting EPSCs onto medium spiny neurons in NAc. Little is known about the properties and modulation of glutamate release from DA midbrain terminals and the effect of cocaine. Using an optogenetic approach to selectively activate midbrain DA fibers, we compared the properties and modulation of DA transients and EPSCs measured using fast-scan cyclic voltammetry and whole-cell recordings in mouse brain slices. DA transients and EPSCs were inhibited by DA receptor D2R agonist and showed a marked paired-pulse depression that required 2 min for full recovery. Cocaine depressed EPSCs amplitude by 50% but enhanced the overall DA transmission from midbrain DA neurons. AMPA and NMDA receptor-mediated EPSCs were equally inhibited by cocaine, suggesting a presynaptic mechanism of action. Pharmacological blockage and genetic deletion of D2R in DA neurons prevented the cocaine-induced inhibition of EPSCs and caused a larger increase in DA transient peak, confirming the involvement of presynaptic D2R. These findings demonstrate that acute cocaine inhibits DA and glutamate release from midbrain DA neurons via presynaptic D2R but has differential overall effects on their transmissions in the NAc. We postulate that cocaine, by blocking DA reuptake, prolongs DA transients and facilitates the feedback inhibition of DA and glutamate release from these terminals. PMID:24573277

  18. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  19. The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity.

    PubMed

    Decker, Jochen Martin; Krüger, Lars; Sydow, Astrid; Dennissen, Frank Ja; Siskova, Zuzana; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2016-04-01

    We report on a novel transgenic mouse model expressing human full-length Tau with the Tau mutation A152T (hTau(AT)), a risk factor for FTD-spectrum disorders including PSP and CBD Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis-sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short- or long-term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage-gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTau(AT) causes excitotoxicity mediated by NR2B-containing NMDA receptors due to enhanced extracellular glutamate. PMID:26931569

  20. A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors

    PubMed Central

    Mullasseril, Praseeda; Hansen, Kasper B.; Vance, Katie M.; Ogden, Kevin K.; Yuan, Hongjie; Kurtkaya, Natalie L.; Santangelo, Rose; Orr, Anna G.; Le, Phuong; Vellano, Kimberly M.; Liotta, Dennis C.; Traynelis, Stephen F.

    2011-01-01

    NMDA receptors are tetrameric complexes of NR1 and NR2A-D subunits that mediate excitatory synaptic transmission and play a role in neurological disorders. We have identified a novel subunit-selective potentiator of NMDA receptors containing the NR2C or NR2D subunit, which could allow selective modification of circuit function in regions expressing NR2C/D subunits. The substituted tetrahydroisoquinoline CIQ enhances receptor responses two-fold with an EC50 of 3 μM by increasing channel opening frequency without altering mean open time or EC50 values for glutamate or glycine. The actions of CIQ depend on a single residue in the M1 region (NR2D Thr592) and the linker between the amino terminal domain and agonist binding domain. CIQ potentiates native NR2D-containing NMDA receptor currents from subthalamic neurons. Our identification of a subunit-selective NMDA receptor modulator reveals a new class of pharmacological tools with which to probe the role of NR2C- and NR2D-containing NMDA receptors in brain function and disease. PMID:20981015

  1. Isoflurane/nitrous oxide anesthesia induces increases in NMDA receptor subunit NR2B protein expression in the aged rat brain.

    PubMed

    Mawhinney, Lana J; de Rivero Vaccari, Juan Pablo; Alonso, Ofelia F; Jimenez, Christopher A; Furones, Concepción; Moreno, W Javier; Lewis, Michael C; Dietrich, W Dalton; Bramlett, Helen M

    2012-01-11

    Postoperative cognitive dysfunction, POCD, afflicts a large number of elderly surgical patients following surgery with general anesthesia. Mechanisms of POCD remain unclear. N-methyl-D-aspartate (NMDA) receptors, critical in learning and memory, that display protein expression changes with age are modulated by inhalation anesthetics. The aim of this study was to identify protein expression changes in NMDA receptor subunits and downstream signaling pathways in aged rats that demonstrated anesthesia-induced spatial learning impairments. Three-month-old and 18-month-old male Fischer 344 rats were randomly assigned to receive 1.8% isoflurane/70% nitrous oxide (N(2)O) anesthesia for 4h or no anesthesia. Spatial learning was assessed at 2weeks and 3months post-anesthesia in Morris water maze. Hippocampal and cortical protein lysates of 18-month-old rats were immunoblotted for activated caspase 3, NMDA receptor subunits, and extracellular-signal regulated kinase (ERK) 1/2. In a separate experiment, Ro 25-6981 (0.5mg/kg dose) was administered by I.P. injection before anesthesia to 18-month-old rats. Immunoblotting of NR2B was performed on hippocampal protein lysates. At 3months post-anesthesia, rats treated with anesthesia at 18-months-old demonstrated spatial learning impairment corresponding to acute and long-term increases in NR2B protein expression and a reduction in phospho-ERK1/2 in the hippocampus and cortex. Ro 25-6981 pretreatment attenuated the increase in acute NR2B protein expression. Our findings suggest a role for disruption of NMDA receptor mediated signaling pathways in the hippocampus and cortex of rats treated with isoflurane/ N(2)O anesthesia at 18-months-old, leading to spatial learning deficits in these animals. A potential therapeutic intervention for anesthesia associated cognitive deficits is discussed. PMID:22137658

  2. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD).

    PubMed

    Okada, Y; Maeno, E; Shimizu, T; Dezaki, K; Wang, J; Morishima, S

    2001-04-01

    A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl- channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl- channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl- conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNF receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma x rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be abolished by

  3. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  4. Bilaterally evoked monosynaptic EPSPs, NMDA receptors and potentiation in rat sympathetic preganglionic neurones in vitro.

    PubMed

    Spanswick, D; Renaud, L P; Logan, S D

    1998-05-15

    1. Whole-cell patch clamp and intracellular recordings were obtained from 190 sympathetic preganglionic neurones (SPNs) in spinal cord slices of neonatal rats. Fifty-two of these SPNs were identified histologically as innervating the superior cervical ganglion (SCG) by the presence of Lucifer Yellow introduced from the patch pipette and the appearance of retrograde labelling following the injection of rhodamine-dextran-lysine into the SCG. 2. Electrical stimulation of the ipsilateral (n = 71) or contralateral (n = 32) lateral funiculi (iLF and cLF, respectively), contralateral intermediolateral nucleus (cIML, n = 41) or ipsilateral dorsal horn (DH, n = 34) evoked EPSPs or EPSCs that showed a constant latency and rise time, graded response to increased stimulus intensity, and no failures, suggesting a monosynaptic origin. 3. In all neurones tested (n = 60), fast rising and decaying components of EPSPs or EPSCs evoked from the iLF, cLF, cIML and DH in response to low-frequency stimulation (0.03-0.1 Hz) were sensitive to non-NMDA receptor antagonists. 4. In approximately 50 % of neurones tested (n = 29 of 60), EPSPs and EPSCs evoked from the iLF, cLF, cIML and DH during low-frequency stimulation were reduced by NMDA receptor antagonists. In the remaining neurones, an NMDA receptor antagonist-sensitive EPSP or EPSC was revealed only in magnesium-free bathing medium, or following high-frequency stimulation. 5. EPSPs evoked by stimulation of the iLF exhibited a sustained potentiation of the peak amplitude (25.3 +/- 11.4 %) in six of fourteen SPNs tested following a brief high-frequency stimulus (10-20 Hz, 0.1-2 s). 6. These results indicate that SPNs, including SPNs innervating the SCG, receive monosynaptic connections from both sides of the spinal cord. The neurotransmitter mediating transmission in some of the pathways activated by stimulation of iLF, cLF, cIML and DH is glutamate acting via both NMDA and non-NMDA receptors. Synaptic plasticity is a feature of

  5. GHB-Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor.

    PubMed

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A K

    2011-03-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex.

  6. GHB–Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor

    PubMed Central

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A.K

    2011-01-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex. PMID:21886597

  7. H2 receptor-mediated facilitation and H3 receptor-mediated inhibition of noradrenaline release in the guinea-pig brain.

    PubMed

    Timm, J; Marr, I; Werthwein, S; Elz, S; Schunack, W; Schlicker, E

    1998-03-01

    , hippocampal or hypothalamic slices were used instead of cortical slices. The Ca2+-induced tritium overflow in guinea-pig cortex slices was inhibited by histamine (in the presence of ranitidine); this effect was abolished by clobenpropit. In slices superfused in the presence of clobenpropit, impromidine failed to facilitate the Ca2+-evoked tritium overflow. The electrically evoked tritium overflow in mouse brain cortex slices was inhibited by histamine by about 60% (both in the absence or presence of ranitidine). The inhibitory effect of histamine was abolished (but not reversed) by clobenpropit. In conclusion, noradrenaline release in the guinea-pig brain cortex is inhibited via presynaptic H3 receptors and facilitated via H2 receptors not located presynaptically. In the mouse brain cortex, only inhibitory H3 receptors occur. The extent of the H3 receptor-mediated effect is more marked in the mouse than in the guinea-pig brain cortex.

  8. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    PubMed Central

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  9. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    PubMed Central

    Dhiman, Vineet K.; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J.

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation. PMID:26646795

  10. Receptor-Mediated Entry of Pristine Octahedral DNA Nanocages in Mammalian Cells.

    PubMed

    Vindigni, Giulia; Raniolo, Sofia; Ottaviani, Alessio; Falconi, Mattia; Franch, Oskar; Knudsen, Birgitta R; Desideri, Alessandro; Biocca, Silvia

    2016-06-28

    DNA offers excellent programming properties for the generation of nanometer-scaled polyhedral structures with a broad variety of potential applications. Translation to biomedical applications requires improving stability in biological fluids, efficient and selective cell binding, and/or internalization of the assembled DNA nanostructures. Here, we report an investigation on the selective mechanism of cellular uptake of pristine DNA nanocages in cells expressing the receptor "oxidized low-density lipoprotein receptor-1" (LOX-1), a scavenger receptor associated with cardiovascular diseases and, more recently, identified as a tumor marker. For this purpose a truncated octahedral DNA nanocage functionalized with a single biotin molecule, which allows DNA cage detection through the biotin-streptavidin assays, was constructed. The results indicate that DNA nanocages are stable in biological fluids, including human serum, and are selectively bound and very efficiently internalized in vesicles only in LOX-1-expressing cells. The amount of internalized cages is 30 times higher in LOX-1-expressing cells than in normal fibroblasts, indicating that the receptor-mediated uptake of pristine DNA nanocages can be pursued for a selective cellular internalization. These results open the route for a therapeutic use of pristine DNA cages targeting LOX-1-overexpressing tumor cells. PMID:27214742

  11. Coated vesicles participate in the receptor-mediated endocytosis of insulin

    PubMed Central

    1983-01-01

    We have purified coated vesicles from rat liver by differential ultracentrifugation. Electron micrographs of these preparations reveal only the polyhedral structures typical of coated vesicles. SDS PAGE of the coated vesicle preparation followed by Coomassie Blue staining of proteins reveals a protein composition also typical of coated vesicles. We determined that these rat liver coated vesicles possess a latent insulin binding capability. That is, little if any specific binding of 125I-insulin to coated vesicles is observed in the absence of detergent. However, coated vesicles treated with the detergent octyl glucoside exhibit a substantial specific 125I-insulin binding capacity. We visualized the insulin binding structure of coated vesicles by cross- linking 125I-insulin to detergent-solubilized coated vesicles using the bifunctional reagent disuccinimidyl suberate followed by electrophoresis and autoradiography. The receptor structure thus identified is identical to that of the high-affinity insulin receptor present in a variety of tissues. We isolated liver coated vesicles from rats which had received injections of 125I-insulin in the hepatic portal vein. We found that insulin administered in this fashion was rapidly and specifically taken up by liver coated vesicles. Taken together, these data are compatible with a functional role for coated vesicles in the receptor-mediated endocytosis of insulin. PMID:6131074

  12. Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells.

    PubMed

    Park, B; Lee, J; Moon, H; Lee, G; Lee, D-H; Cho, J Hoon; Park, D

    2015-01-01

    During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways.

  13. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    SciTech Connect

    Majumdar, S.; Basu, S.K. )

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections.

  14. Peptides in Receptor-Mediated Radiotherapy: From Design to the Clinical Application in Cancers

    PubMed Central

    Lozza, Catherine; Navarro-Teulon, Isabelle; Pèlegrin, André; Pouget, Jean-Pierre; Vivès, Eric

    2013-01-01

    Short peptides can show high affinity for specific receptors overexpressed on tumor cells. Some of these are already used in cancerology as diagnostic tools and others are in clinical trials for therapeutic applications. Therefore, peptides exhibit great potential as a diagnostic tool but also as an alternative or an additional antitumoral approach upon the covalent attachment of a therapeutic moiety such as a radionuclide or a cytotoxic drug. The chemistry offers flexibility to graft onto the targeting-peptide either fluorine or iodine directly, or metallic radionuclides through appropriate chelating agent. Since short peptides are straightforward to synthesize, there is an opportunity to further improve existing peptides or to design new ones for clinical applications. However, several considerations have to be taken into account to optimize the recognition properties of the targeting-peptide to its receptor, to improve its stability in the biological fluids and its residence in the body, or to increase its overall therapeutic effect. In this review, we highlight the different aspects which need to be considered for the development of an efficient peptide receptor-mediated radionuclide therapy in different neoplasms. PMID:24093086

  15. Receptor-Mediated Endocytosis of Lysozyme in Renal Proximal Tubules of the Frog Rana Temporaria

    PubMed Central

    Seliverstova, E.V.

    2015-01-01

    The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals. PMID:26150156

  16. Modulation of receptor-mediated gonadotropin action in rat testes by dietary fat.

    PubMed

    Sebokova, E; Garg, M L; Clandinin, M T

    1988-06-01

    The effect of feeding diets enriched with 18:2 omega 6, 18:3 omega 3, or saturated fatty acids on lipid composition and receptor-mediated action of luteinizing hormone/human chorionic gonadotropin (LH/hCG) in rat testicular plasma membranes was investigated. Linoleic and alpha-linolenic acid treatments reduced total phospholipid and cholesterol content of the testicular plasma membrane and altered membrane phospholipid composition. Change in phospholipid and cholesterol content after feeding the polyunsaturated fats decreased cholesterol to phospholipid ratios and binding capacity of the LH/hCG receptor in the testicular plasma membrane. LH-stimulated adenylate cyclase activity was decreased in animals fed the linolenic acid-rich diet. NaF-stimulated adenylate cyclase activity was decreased in animals fed diets high in either polyunsaturated fatty acid. Decreased plasma membrane LH/hCG receptor content was associated with decreased testosterone production in Leydig cells in response to LH in the linolenic acid-fed group. It is suggested that change in cholesterol-to-phospholipid ratios alters the physical properties of testicular plasma membranes in a manner that influences accessibility of LH/hCG receptors in testicular tissue. PMID:2897795

  17. Characterization of NPY receptors mediating contraction in rat intramyocardial coronary arteries.

    PubMed

    Prieto, D; García-Sacristán, A; Simonsen, U

    1998-09-25

    In vitro experiments in a microvascular myograph were designed in order to characterize the receptor subtypes and the mechanisms underlying the contractions induced by neuropeptide Y (NPY) in rat coronary small arteries. The rank order of potency for NPY-receptor agonist-induced increases in tension in endothelium-intact preparations was polypeptide Y (PYY)> NPY > or = [Leu31Pro34]NPY, while NPY(13-36) only induced small contractions at the highest concentration applied. The selective neuropeptide Y1 receptor antagonist, BIBP 3226, caused rightward shifts in the concentration-response curves for NPY and the slope of the Schild plot was not significantly different from unity. The pA2 value for BIBP 3226 against NPY was 7.88+/-0.15 (n = 6). We have earlier shown that endothelial cell removal does not change the contractile responses induced by NPY, but indomethacin (3 x 10(-6) M) significantly reduced the contractions induced by the peptide. In contrast, the thromboxane receptor antagonist, SQ29548, which abolished the contractions induced by the thromboxane analogue, U46619, did not change the concentration-response curves for NPY. In conclusion, the present study suggests that Y1 receptors mediate NPY-induced contractions in rat coronary resistance arteries, and that a non-thromboxane prostanoid is involved in the contractile mechanism.

  18. Tonic GABAA Receptor-Mediated Inhibition in the Rat Dorsal Motor Nucleus of the Vagus

    PubMed Central

    Gao, Hong

    2010-01-01

    Type A γ-aminobutyric acid (GABAA) receptors expressed in the dorsal motor nucleus of vagus (DMV) critically regulate the activity of vagal motor neurons and, by inference, the gastrointestinal (GI) tract. Two types of GABAA receptor-mediated inhibition have been identified in the brain, represented by phasic (Iphasic) and tonic (Itonic) inhibitory currents. The hypothesis that Itonic regulates neuron activity was tested in the DMV using whole cell patch-clamp recordings in transverse brain stem slices from rats. An Itonic was present in a subset of DMV neurons, which was determined to be mediated by different receptors than those mediating fast, synaptic currents. Preapplication of tetrodotoxin significantly decreased the resting Itonic amplitude in DMV neurons, suggesting that most of the current was due to action potential (AP)–dependent GABA release. Blocking GABA transport enhanced Itonic and multiple GABA transporters cooperated to regulate Itonic. The Itonic was composed of both a gabazine-insensitive component that was nearly saturated under basal conditions and a gabazine-sensitive component that was activated when extracellular GABA concentration was elevated. Perfusion of THIP (10 μM) significantly increased Itonic amplitude without increasing Iphasic amplitude. The Itonic played a major role in determining the overall excitability of DMV neurons by contributing to resting membrane potential and AP frequency. Our results indicate that Itonic contributes to DMV neuron membrane potential and activity and is thus an important regulator of vagally mediated GI function. PMID:20018836

  19. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    PubMed

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. PMID:26824654

  20. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    PubMed

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  1. NK-1 receptor mediation of neurogenic plasma extravasation in rat skin.

    PubMed Central

    Andrews, P. V.; Helme, R. D.; Thomas, K. L.

    1989-01-01

    1. Plasma extravasation was induced by electrical nerve stimulation and by perfusion of tachykinins over a vacuum-induced blister base on rat footpad. 2. Stimulation of the sciatic nerve (18 V, 15 Hz, 0.5 ms) for 20 min produced a significant increase in the protein content of the perfusate. The response in capsaicin pretreated rats was only 4% of the control response. This indicates that the electrically-induced plasma extravasation response was mediated by capsaicin-sensitive sensory fibres. 3. Exogenous perfusion of the mammalian tachykinins substance P, neurokinin A and neurokinin B and the non-mammalian tachykinins physalaemin, kassinin and eledoisin was used to determine the tachykinin receptor type mediating the plasma extravasation response. Dose-response curves of the tachykinins (10(-9) M-10(-4) M) gave a rank order of potency of substance P = physalaemin greater than eledoisin greater than or equal to kassinin greater than neurokinin B = neurokinin A. 4. In addition, specific agonists of neurokinin receptors were perfused. Perfusion of [Glp6, D-Pro9] SP6-11 and [Glp6, L-Pro9]SP6-11 demonstrated that the L-Pro isomer was much more potent than the D-Pro isomer. 5. The rank order of potency and the greater potency of [Glp6, L-Pro9]SP6-11 over its D-isomer indicate an NK-1 neurokinin receptor mediates plasma extravasation in rat footpad skin. PMID:2477105

  2. Dynamics of Cytoskeletal Proteins during Fcγ Receptor-mediated Phagocytosis in MacrophagesV⃞

    PubMed Central

    Diakonova, Maria; Bokoch, Gary; Swanson, Joel A.

    2002-01-01

    Particle ingestion by phagocytosis results from sequential rearrangements of the actin cytoskeleton and overlying membrane. To assemble a chronology of molecular events during phagosome formation and to examine the contributions of phosphoinositide 3-kinase (PI 3-kinase) to these dynamics, a method was developed for synchronizing Fcγ receptor-mediated phagocytosis by murine macrophages. Erythrocytes opsonized with complement component C3bi were bound to macrophages at 37°C, a condition that does not favor particle phagocytosis. Addition of soluble anti-erythrocyte IgG resulted in rapid opsonization of the bound erythrocytes, followed by their immediate internalization via phagocytosis. Cellular content of F-actin, as measured by binding of rhodamine-phalloidin, increased transiently during phagocytosis, and this increase was not diminished by inhibitors of PI 3-kinase. Immunofluorescence localization of myosins in macrophages fixed at various times during phagocytosis indicated that myosins II and IXb were concentrated in early phagosomes, myosin IC increased later, and myosin V appeared after phagosome closure. Other cytoskeletal proteins showed similar variations in the timing of their appearance in phagosomes. The PI 3-kinase inhibitor wortmannin did not change the dynamics of PI 3-kinase or ezrin localization but prevented the loss of PAK1 from phagosomes. These results suggest that PI 3-kinase deactivates PAK1, and that this may be needed for phagosome closure. PMID:11854399

  3. Lactate Modulates the Activity of Primary Cortical Neurons through a Receptor-Mediated Pathway

    PubMed Central

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism. PMID:23951229

  4. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-11-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  5. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism.

    PubMed

    Pron, G; Mahrour, N; Orlowski, S; Tounekti, O; Poddevin, B; Belehradek, J; Mir, L M

    1999-01-01

    Bleomycin (BLM) does not diffuse through the plasma membrane but nevertheless displays cytotoxic activity due to DNA break generation. The aim of the study was to describe the mechanism of BLM internalisation. We previously provided evidence for the existence of BLM-binding sites at the surface of DC-3F Chinese hamster fibroblasts, as well as of their involvement in BLM cytotoxicity on DC-3F cells and related BLM-resistant sublines. Here we report that A253 human cells and their BLM-resistant subline C-10E also possessed a membrane protein of ca. 250 kDa specifically binding BLM. Part of this C-10E cell resistance could be explained by a decrease in the number of BLM-binding sites exposed at the cell surface with respect to A253 cells. The comparison between A253 and DC-3F cells exposing a similar number of BLM-binding sites revealed that the faster the fluid phase endocytosis, the greater the cell sensitivity to BLM. Moreover, the experimental modification of endocytotic vesicle size showed that BLM cytotoxicity was directly correlated with the flux of plasma membrane area engulfed during endocytosis rather than with the fluid phase volume incorporated. Thus, BLM would be internalised by a receptor-mediated endocytosis mechanism which would first require BLM binding to its membrane receptor and then the transfer of the complex into intracellular endocytotic vesicles, followed by BLM entry into the cytosol, probably from a nonacidic compartment.

  6. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells

    SciTech Connect

    Sanborn, B.B.; Schneider, A.S. )

    1990-01-01

    Inositol trisphosphate (IP{sub 3}), a product of the phosphoinositide cycle, mobilizes intracellular Ca{sup 2+} in many cell types. New evidence suggests that inositol tetrakisphosphate (IP{sub 4}), an IP{sub 3} derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP{sub 4} are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP{sub 4} in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine stimulated an increase in ({sup 3}H)IP{sub 4} and ({sup 3}H)IP{sub 3} accumulation in chromaffin cells and this effect was completely blocked by atropine. ({sup 3}H)IP{sub 4} accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP{sub 3} and IP{sub 4} hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP{sub 4} and calcium homeostasis.

  7. Structural Basis for Receptor-Mediated Selective Autophagy of Aminopeptidase I Aggregates.

    PubMed

    Yamasaki, Akinori; Watanabe, Yasunori; Adachi, Wakana; Suzuki, Kuninori; Matoba, Kazuaki; Kirisako, Hiromi; Kumeta, Hiroyuki; Nakatogawa, Hitoshi; Ohsumi, Yoshinori; Inagaki, Fuyuhiko; Noda, Nobuo N

    2016-06-28

    Selective autophagy mediates the degradation of various cargoes, including protein aggregates and organelles, thereby contributing to cellular homeostasis. Cargo receptors ensure selectivity by tethering specific cargo to lipidated Atg8 at the isolation membrane. However, little is known about the structural requirements underlying receptor-mediated cargo recognition. Here, we report structural, biochemical, and cell biological analysis of the major selective cargo protein in budding yeast, aminopeptidase I (Ape1), and its complex with the receptor Atg19. The Ape1 propeptide has a trimeric coiled-coil structure, which tethers dodecameric Ape1 bodies together to form large aggregates. Atg19 disassembles the propeptide trimer and forms a 2:1 heterotrimer, which not only blankets the Ape1 aggregates but also regulates their size. These receptor activities may promote elongation of the isolation membrane along the aggregate surface, enabling sequestration of the cargo with high specificity. PMID:27320913

  8. Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of the protein core.

    PubMed Central

    Glössl, J; Schubert-Prinz, R; Gregory, J D; Damle, S P; von Figura, K; Kresse, H

    1983-01-01

    Endocytosis by cultured human skin fibroblasts of 35SO4(2-)-labelled or [3H]leucine-labelled proteoglycans from fibroblast secretions and of 125I-proteodermatan sulphate from pig skin was quantitatively investigated. The following results were obtained. (1) Core proteins prepared by digestion with chondroitin ABC lyase were at least as efficiently endocytosed as native proteoglycans. Pig skin proteodermatan sulphate was a competitive inhibitor of endocytosis of 35SO4(2-)-labelled proteoglycans. (2) Proteoglycans produced in the presence of tunicamycin and native proteoglycans degraded with endoglycosaminidase H were internalized at a normal rate. Several monosaccharides that can be bound by mammalian lectins were unable to influence the internalization of proteoglycans. Treatment of proteoglycans with neuraminidase, however, resulted in an increased clearance rate. (3) Reductive methylation or acetoacetylation of lysine residues was accompanied by a parallel decrease in the rate of proteoglycan endocytosis. Reversal of acetoacetylation normalized the uptake properties. Endocytosis of native proteoglycans was also reduced in the presence of poly-L-lysine, and this reduction in endocytosis was observed as well with proteoglycans synthesized in the presence of the lysine analogue S-2-aminoethylcysteine. These results suggest that the recognition marker required for receptor-mediated endocytosis of proteodermatan sulphate resides in its protein moiety and involves lysine residues. Images Fig. 2. PMID:6316923

  9. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    PubMed

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  10. Receptor-mediated adhesion phenomena. Model studies with the Radical-Flow Detachment Assay.

    PubMed

    Cozens-Roberts, C; Quinn, J A; Lauffenberger, D A

    1990-07-01

    Receptor-mediated cell adhesion phenomena play a vital role in many physiological and biotechnology-related processes. To investigate the physical and chemical factors that influence the cell/surface interaction, we have used a radial flow device, a so-called Radial-Flow Detachment Assay (RFDA). The RFDA allows us to make direct observations of the detachment process under specified experimental conditions. In results reported here, we have studied the detachment of receptor-coated latex beads (prototype cells) from ligand-coated glass surfaces. The receptors and ligands used in this work are complementary antibodies. The beads enable us to examine several aspects of the adhesion process with particles having uniform properties that can be varied systematically. Advantages of the RFDA are many, especially direct observation of cell detachment over a range of shear stresses with quantitative measurement of the adhesive force. We focus our studies on the effects of ligand and receptor densities, along with the influence of pH and ionic strength of the medium. These data are analyzed with a mathematical model based on the theoretical framework of Bell, G. I. (1978. Science [Wash. DC]. 200:618-627) and Hammer, D. A. and D. A. Lauffenburger (1987. Biophys. J. 52:475-487). We demonstrate experimental validation of a theoretical expression for the critical shear stress for particle detachment, and show that it is consistent with reasonable estimates for the receptor-ligand bond affinity.

  11. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  12. Spatial learning and goldfish telencephalon NMDA receptors.

    PubMed

    Gómez, Yolanda; Vargas, Juan Pedro; Portavella, Manuel; López, Juan Carlos

    2006-05-01

    Recent results have demonstrated that the mammalian hippocampus and the dorso-lateral telencephalon of ray-finned fishes share functional similarities in relation to spatial memory systems. In the present study, we investigated whether the physiological mechanisms of this hippocampus-dependent spatial memory system were also similar in mammals and ray-finned fishes, and therefore possibly conserved through evolution in vertebrates. In Experiment 1, we studied the effects of the intracranial administration of the noncompetitive NMDA receptor antagonist MK-801 during the acquisition of a spatial task. The results indicated dose-dependent drug-induced impairment of spatial memory. Experiment 2 evaluated if the MK-801 produced disruption of retrieval of a learned spatial response. Data showed that the administration of MK-801 did not impair the retrieval of the information previously stored. The last experiment analyzed the involvement of the telencephalic NMDA receptors in a spatial and in a cue task. Results showed a clear impairment in spatial learning but not in cue learning when NMDA receptors were blocked. As a whole, these results indicate that physiological mechanisms of this hippocampus-dependent system could be a general feature in vertebrate, and therefore phylogenetically conserved.

  13. Anti-NMDA Receptor Encephalitis in a Pregnant Woman

    PubMed Central

    Kim, Jiyoung; Park, Seung Ha; Jung, Yu Ri; Park, Soon Won; Jung, Dae Soo

    2015-01-01

    Anti N-methyl-D-aspartate (NMDA) receptor encephalitis is one of the most common types of autoimmune synaptic encephalitis. Anti-NMDA receptor encephalitis commonly occurs in young women with ovarian teratoma. It has variable clinical manifestations and treatment responses. Sometimes it is misdiagnosed as a psychiatric disorder or viral encephalitis. To the best of our knowledge, anti-NMDA receptor encephalitis is a rare condition in pregnant women. We report a case of anti-NMDA receptor encephalitis in a pregnant woman who presented with abnormal behavior, epileptic seizure, and hypoventilation. PMID:26157673

  14. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  15. Receptor and non-receptor mediated formation of superoxide anion and hydrogen peroxide in neutrophils of intensive care patients.

    PubMed

    Manhart, N; Oismüller, C; Lassnig, A; Spittler, A; Sautner, T; Götzinger, P; Függer, R; Roth, E

    1998-11-27

    Generation of reactive oxygen intermediates (ROI) has been implicated in tissue damage in a variety of disease states including sepsis and trauma. On the other hand, generation of ROI in polymorphonuclear granulocytes (PMN) presents a crucial element in the defence of the host against invading microorganisms. In the present study we investigated the generation of superoxide anions (O2-) and hydrogen peroxide (H2O2) by neutrophils (PMN)5 of 17 critically ill patients treated at a intensive care unit (ICU) after polytrauma (n = 6), heart operation (n = 6) or during septic shock (n = 5) using flow cytometry. O2- production of PMN from ICU patients was significantly lower (p < 0.01) than that in healthy volunteers (HV) during non-receptor mediated stimulation with phorbol-myristate-acetate (PMA) but higher (p < 0.001) during receptor mediated stimulation with formylmethionine-leucine-phenylalanine (FMLP). H2O2 generation of PMN from ICU patients was increased after stimulation with FMLP (p < 0.01) and remained unchanged after stimulation with PMA. Patients in septic shock had lower O2(-)-generation of PMN than did injured patients and patients after heart operations. We conclude that receptor mediated formation of O2- and H2O2 is stimulated in ICU patients. However, in patients in septic shock O2(-)-generation decreases, which potentially might contribute to the immunoparalysis present in septic shock.

  16. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  17. Optogenetic evocation of field inhibitory postsynaptic potentials in hippocampal slices: a simple and reliable approach for studying pharmacological effects on GABAA and GABAB receptor-mediated neurotransmission

    PubMed Central

    Dine, Julien; Kühne, Claudia; Deussing, Jan M.; Eder, Matthias

    2014-01-01

    The GABAergic system is the main source of inhibition in the mammalian brain. Consequently, much effort is still made to develop new modulators of GABAergic synaptic transmission. In contrast to glutamatergic postsynaptic potentials (PSPs), accurate monitoring of GABA receptor-mediated PSPs (GABAR-PSPs) and their pharmacological modulation in brain tissue invariably requires the use of intracellular recording techniques. However, these techniques are expensive, time- and labor-consuming, and, in case of the frequently employed whole-cell patch-clamp configuration, impact on intracellular ion concentrations, signaling cascades, and pH buffering systems. Here, we describe a novel approach to circumvent these drawbacks. In particular, we demonstrate in mouse hippocampal slices that selective optogenetic activation of interneurons leads to prominent field inhibitory GABAAR- and GABABR-PSPs in area CA1 which are easily and reliably detectable by a single extracellular recording electrode. The field PSPs exhibit typical temporal and pharmacological characteristics, display pronounced paired-pulse depression, and remain stable over many consecutive evocations. Additionally validating the methodological value of this approach, we further show that the neuroactive steroid 5α-THDOC (5 μM) shifts the inhibitory GABAAR-PSPs towards excitatory ones. PMID:24478627

  18. Synaptic commitment: developmentally regulated reciprocal changes in hippocampal granule cell NMDA and AMPA receptors over the lifespan.

    PubMed

    Yang, Zhiyong; Krause, Michael; Rao, Geeta; McNaughton, Bruce L; Barnes, C A

    2008-06-01

    Synaptic transmission in hippocampal field CA1 is largely N-methyl-d-aspartate receptor (NMDA(R)) dependent during the early postnatal period. It becomes increasingly mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptors until an adult ratio of AMPA to NMDA receptors is achieved. It is shown here that increases in the AMPA receptor (AMPA(R))-mediated field potential response continue over the life span of the F-344 rat at the perforant path-granule cell synapse in the dentate gyrus. In contrast, the NMDA(R)-dependent component of the response decreases with age between 1 and 27 mo, leading to an increase of AMPA(R)/NMDA(R) ratio with age. One possible explanation of this age difference is that the AMPA(R)/NMDA(R) ratio can be modified by experience. To test the idea that the changed ratio is caused by the old rats' longer lives, an intensive 10-mo period of enrichment treatment was given to a group of animals, beginning at 3 mo of age. Compared with animals housed in standard cages, the enrichment treatment did not alter the glutamatergic response ratio measured with field potential recording methods. These data provide support for the conclusion that the observed change with age is developmentally regulated rather than experience dependent. Given the role of the NMDA(R) in synaptic plasticity, these changes suggest a progressive commitment of perforant path synapses to particular weights over the life span. One possible implication of this effect includes preservation of selected memories, ultimately at the expense of a reduced capacity to store new information.

  19. Coexistence of NMDA and AMPA receptor subunits with nNOS in the nucleus tractus solitarii of rat.

    PubMed

    Lin, Li-Hsien; Talman, William T

    2002-11-01

    We previously showed that most neuronal nitric oxide synthase (nNOS)-containing neurons in the nucleus tractus solitarii (NTS) contain NMDAR1, the fundamental subunit for functional N-methyl-D-aspartate (NMDA) receptors. Likewise, we found that almost all nNOS-containing neurons in the NTS contain GluR1, the calcium permeable AMPA receptor subunit. These data suggest that AMPA and NMDA receptors may colocalize in NTS neurons that contain nNOS. However, other investigators have suggested that non-NMDA receptors are located primarily on second-order neurons and NMDA receptors are located predominantly on higher-order neurons in NTS. We now seek to test the hypothesis that NMDA receptors, AMPA receptors and nNOS are colocalized in NTS cells. We performed triple fluorescent immunohistochemical staining of nNOS, NMDAR1 and GluR1, and performed confocal laser scanning microscopic analysis of the NTS. The distributions of nNOS immunoreactivity (IR), NMDAR1-IR and GluR1-IR in the NTS were similar to those we reported earlier. Superimposed images revealed that almost all NMDAR1-IR cells contained GluR1-IR and almost all GluR1-IR cells contained NMDAR1-IR. Some double-labeled cells were additionally labeled for nNOS-IR. All nNOS-IR neurons contained both GluR1-IR and NMDAR1-IR. These studies support our hypothesis that NMDA and AMPA receptors are colocalized in NTS neurons and are consistent with a role of both types of ionotropic receptors in transmission of afferent signals in NTS. In addition, these data provide support for an anatomical link between ionotropic glutamate receptors and nitric oxide in the NTS.

  20. Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells.

    PubMed

    Kalgaonkar, Swati; Lönnerdal, Bo

    2009-04-01

    Ferritin (Ft) is a large iron (Fe)-binding protein ( approximately 450 kDa) that is found in plant and animal cells and can sequester up to 4500 Fe atoms per Ft molecule. Our previous studies on intestinal Caco-2 cells have shown that dietary factors affect the uptake of Fe from Ft in a manner different from that of Fe from FeSO4, suggesting a different mechanism for cellular uptake. The objective of this study was to determine the mechanism for Ft-Fe uptake using Caco-2 cells. Binding of (59)Fe-labeled Ft at 4 degrees C showed saturable kinetics, and Scatchard analysis resulted in a K(d) of 1.6 muM, strongly indicating a receptor-mediated process. Competitive binding studies with excess unlabelled Ft significantly reduced binding, and uptake studies at 37 degrees C showed saturation after 4 h. Enhancing and blocking endocytosis using Mas-7 (a G-protein activator) and hypertonic medium (0.5 M sucrose), respectively, demonstrated that Ft-Fe uptake by Mas-7-treated cells was 140% of control cells, whereas sucrose treatment resulted in a statistically significant reduction in Ft-Fe uptake by 70% as compared to controls. Inhibition of macropinocytosis with 5-(N,N-dimethyl)-amiloride (Na+/H+ antiport blocker) resulted in a decrease (by approximately 20%) in Ft-Fe uptake at high concentrations of Ft, suggesting that enterocytes can use more than one Ft uptake mechanism in a concentration-dependent manner. These results suggest that Ft uptake by enterocytes is carried out via endocytosis when Ft levels are within a physiological range, whereas Ft at higher concentrations may be absorbed using the additional mechanism of macropinocytosis. PMID:18602806

  1. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  2. Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid

    SciTech Connect

    Walsh, R.J.; Slaby, F.J.; Posner, B.I.

    1987-05-01

    Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of (/sup 125/-I)iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of (/sup 125/I)iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on (/sup 125/I)iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of (/sup 125/I)iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of (/sup 125/I)iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions.

  3. Greater Beta-Adrenergic Receptor Mediated Vasodilation in Women Using Oral Contraceptives

    PubMed Central

    Limberg, Jacqueline K.; Peltonen, Garrett L.; Johansson, Rebecca E.; Harrell, John W.; Kellawan, Jeremy M.; Eldridge, Marlowe W.; Sebranek, Joshua J.; Walker, Benjamin J.; Schrage, William G.

    2016-01-01

    Background: β-adrenergic receptors play an important role in mitigating the pressor effects of sympathetic nervous system activity in young women. Based on recent data showing oral contraceptive use in women abolishes the relationship between muscle sympathetic nervous system activity and blood pressure, we hypothesized forearm blood flow responses to a β-adrenergic receptor agonist would be greater in young women currently using oral contraceptives (OC+, n = 13) when compared to those not using oral contraceptives (OC–, n = 10). Methods: Women (18–35 years) were studied during the early follicular phase of the menstrual cycle (days 1–5) or placebo phase of oral contraceptive use. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured at baseline and during graded brachial artery infusion of the β-adrenergic receptor agonist, Isoproterenol (ISO), as well as Acetylcholine (ACH, endothelium-dependent vasodilation) and Nitroprusside (NTP, endothelium-independent vasodilation). Forearm vascular conductance was calculated (FVC = FBF/MAP, ml/min/100 mmHg) and the rise in FVC from baseline during infusion quantified vasodilation (ΔFVC = FVCinfusion − FVCbaseline). Results: ISO increased FVC in both groups (p < 0.01) and ISO-mediated ΔFVC was greater in OC+ compared to OC– (Main effect of group, p = 0.02). Expressing data as FVC and FBF resulted in similar conclusions. FVC responses to both ACH and NTP were also greater in OC+ compared to OC–. Conclusions: These data are the first to demonstrate greater β-adrenergic receptor-mediated vasodilation in the forearm of women currently using oral contraceptives (placebo phase) when compared to those not using oral contraceptives (early follicular phase), and suggest oral contraceptive use influences neurovascular control. PMID:27375493

  4. Central beta-adrenergic receptors mediate renal nerve activity during stress in conscious spontaneously hypertensive rats.

    PubMed

    Koepke, J P; DiBona, G F

    1985-01-01

    The effects of intracerebroventricular (i.c.v.) administration of beta-adrenergic receptor antagonists (d,l-propranolol or timolol, 30 micrograms in 2 microL of isotonic saline) on the increased renal sympathetic nerve activity and decreased urinary sodium excretion (UNaV) responses to stressful environmental stimulation (air jet to head) in conscious spontaneously hypertensive rats (SHR) were examined. Before i.c.v. d,l-propranolol or timolol, air stress increased renal activity (68% from 10.6 +/- 2.1 and 63% from 8.2 +/- 0.9 integrator resets/min respectively). In contrast, after i.c.v. d,l-propranolol or timolol in the same conscious SHR, air stress had no effect on renal sympathetic nerve activity (+7% from 8.1 +/- 1.7 and +7% from 5.5 +/- 1.0 integrator resets/min respectively). Air stress decreased UNaV in conscious SHR given i.c.v. saline vehicle (25% from 2.8 +/- 0.5 microEq/min/100 g body weight), but had no effect on effective renal plasma flow or glomerular filtration rate. In contrast, after i.c.v. d,l-propranolol or timolol, air stress had no effect on UNaV (0% from 2.8 +/- 0.5 and +9% from 3.3 +/- 0.3 microEq/min/100 g body weight respectively). Mean arterial pressure increased similarly during air stress with i.c.v. saline-vehicle or beta-adrenergic receptor antagonists. Intravenous administration of the same doses of d,l-propranolol or timolol did not prevent the increased renal sympathetic nerve activity or decreased UNaV responses resulting from air stress. These results suggest that central nervous system beta-adrenergic receptors mediate the increased renal sympathetic nerve activity and decreased UNaV responses resulting from stressful environmental stimulation in conscious SHR.

  5. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes

    PubMed Central

    1983-01-01

    At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis. PMID:6309857

  6. Scavenger Receptors Mediate the Role of SUMO and Ftz-f1 in Drosophila Steroidogenesis

    PubMed Central

    Talamillo, Ana; Herboso, Leire; Pirone, Lucia; Pérez, Coralia; González, Monika; Sánchez, Jonatan; Mayor, Ugo; Lopitz-Otsoa, Fernando; Rodriguez, Manuel S.; Sutherland, James D.; Barrio, Rosa

    2013-01-01

    SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval–pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi–mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. PMID:23637637

  7. Desensitization of histamine H1 receptor-mediated inositol phosphate production in HeLa cells.

    PubMed Central

    Bristow, D. R.; Zamani, M. R.

    1993-01-01

    1. Histamine stimulated the accumulation of total [3H]-inositol phosphates (IPn) in control HeLa cells with an EC50 of 3.7 +/- 0.7 microM in the presence of 10 mM LiCl. The maximum response to histamine after 15 min incubation was 43 +/- 5% over basal accumulation and occurred at a concentration of 1 mM histamine. 2. The histamine-induced IPn production in HeLa cells was confirmed as H1 receptor-mediated, since the H1 antagonist mepyramine (10(-6) M) inhibited the histamine response (10(-4) M) by 83 +/- 7%, whereas the H2 antagonist, ranitidine (10(-4) M), and H3 antagonist, thioperamide (10(-6) M), were ineffective. 3. Histamine (10(-4) M) pretreatment of HeLa cells for 30 min desensitized the subsequent histamine-induced IPn accumulation. The desensitized cells accumulated IPn in response to histamine with an EC50 of 1.7 +/- 0.7 microM after 15 min incubation. The maximum histamine-induced IPn accumulation at 10(-4) M was 19 +/- 5% over basal and was significantly lower (P < 0.03) than the maximum response in control cells. 4. The desensitization of histamine-induced IPn accumulation was time-dependent and, at a desensitizing histamine concentration of 10(-4) M, the half-maximal attenuation occurred after approximately 9 min and maximum desensitization was achieved by 15-20 min. The desensitization of the IPn accumulation was a reversible phenomenon and full recovery of the response occurred 150 min after the removal of the desensitizing histamine-containing medium. The half-time for the recovery of the histamine-induced response was estimated at 120 min.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358540

  8. Sumatriptan inhibits synaptic transmission in the rat midbrain periaqueductal grey

    PubMed Central

    Jeong, Hyo-Jin; Chenu, David; Johnson, Emma E; Connor, Mark; Vaughan, Christopher W

    2008-01-01

    Background There is evidence to suggest that the midbrain periaqueductal grey (PAG) has a role in migraine and the actions of the anti-migraine drug sumatriptan. In the present study we examined the serotonergic modulation of GABAergic and glutamatergic synaptic transmission in rat midbrain PAG slices in vitro. Results Serotonin (5-hydroxytriptamine, 5-HT, IC50 = 142 nM) and the selective serotonin reuptake inhibitor fluoxetine (30 μM) produced a reduction in the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (IPSCs) in all PAG neurons which was associated with an increase in the paired-pulse ratio of evoked IPSCs. Real time PCR revealed that 5-HT1A, 5-HT1B, 5-HT1D and 5-HT1F receptor mRNA was present in the PAG. The 5-HT1A, 5-HT1B and 5-HT1D receptor agonists 8-OH-DPAT (3 μM), CP93129 (3 μM) and L694247 (3 μM), but not the 5-HT1F receptor agonist LY344864 (1 – 3 μM) inhibited evoked IPSCs. The 5-HT (1 μM) induced inhibition of evoked IPSCs was abolished by the 5-HT1B antagonist NAS181 (10 μM), but not by the 5-HT1A and 5-HT1D antagonists WAY100135 (3 μM) and BRL15572 (10 μM). Sumatriptan also inhibited evoked IPSCs with an IC50 of 261 nM, and reduced the rate, but not the amplitude of spontaneous miniature IPSCs. The sumatriptan (1 μM) induced inhibition of evoked IPSCs was abolished by NAS181 (10 μM) and BRL15572 (10 μM), together, but not separately. 5-HT (10 μM) and sumatriptan (3 μM) also reduced the amplitude of non-NMDA mediated evoked excitatory postsynaptic currents (EPSCs) in all PAG neurons tested. Conclusion These results indicate that sumatriptan inhibits GABAergic and glutamatergic synaptic transmission within the PAG via a 5-HT1B/D receptor mediated reduction in the probability of neurotransmitter release from nerve terminals. These actions overlap those of other analgesics, such as opioids, and provide a mechanism by which centrally acting 5-HT1B and 5-HT1D ligands might lead to novel anti

  9. 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats.

    PubMed Central

    MacLean, M. R.; Sweeney, G.; Baird, M.; McCulloch, K. M.; Houslay, M.; Morecroft, I.

    1996-01-01

    1. We investigated 5-hydroxytryptamine (5-HT)-receptor mediated vasoconstriction in the main, first branch and resistance pulmonary arteries removed from control and pulmonary hypertensive rats. Contractile responses to 5-HT, 5-carboxamidotryptamine (5-CT, non-selective 5-HT1 agonist), and sumatriptan (5-HT1D-like receptor agonist) were studied. The effects of methiothepin (non-selective 5-HT1 + 2-receptor antagonist) and ketanserin (5-HT2A receptor antagonist) and GR55562 (a novel selective 5-HT1D receptor antagonist) on 5-HT-mediated responses were also studied. Basal levels of adenosine 3':5'-cyclic monophosphate ([cyclic AMP]i) and guanosine 3':5'-cyclic monophosphate ([cyclic GMP]i) were determined and we assessed the degree of inherent tone in the vessels under study. 2. 5-HT was most potent in the resistance arteries. pEC50 values were 5.6 +/- 0.1, 5.3 +/- 0.1, 5.0 +/- 0.2 in the resistance arteries, pulmonary branch and main pulmonary artery, respectively (n = at least 5 from 5 animals). The sensitivity to, and maximum response of, 5-HT was increased in all the arteries removed from the chronic hypoxic (CH) rats. In CH rats the pEC50 values were 5.9 +/- 0.2, 6.3 +/- 0.2, 6.4 +/- 0.2 and the increase in the maximum response was 35%, 51% and 41% in the resistance arteries, pulmonary branch and main pulmonary artery, respectively. Sumatriptan did not contract any vessel from the control rats whilst 5-CT did contract the resistance arteries. In the CH rats, however, they both contracted the resistance arteries (responses to sumatriptan were small) (pEC50: 5-CT; 5.4 +/- 0.2) and the pulmonary artery branches (pEC50: sumatriptan, 5.4 +/- 0.2; 5-CT, 5.4 +/- 0.2). 5-CT also caused a contraction in the main pulmonary artery (pEC50: 6.0 +/- 0.3). 3. Ketanserin (1 nM-1 microM) caused a competitive antagonism of the 5-HT response in all vessels tested. In control rats, the estimated pKb values for ketanserin in resistance arteries, pulmonary branches and main pulmonary

  10. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  11. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels.

    PubMed

    Novelli, A; Díaz-Trelles, R; Groppetti, A; Fernández-Sánchez, M T

    2005-03-01

    Nefopam hydrochloride is a potent non sedative benzoxazocine analgesic that possesses a profile distinct from that of anti-inflammatory drugs. Previous evidence suggested a central action of nefopam but the detailed mechanism remains unclear. We have investigated the actions of nefopam on voltage sensitive calcium channels and calcium-mediated pathways. We found that nefopam prevented N-methyl-D-aspartate (NMDA)-mediated excitotoxicity following stimulation of L-type voltage sensitive calcium channels by the specific agonist BayK8644. Nefopam protection was concentration-dependent. 47 muM nefopam provided 50% protection while full neuroprotection was achieved at 100 muM nefopam. Neuroprotection was associated with a 73% reduction in the BayK8644-induced increase in intracellular calcium concentration. Nefopam also inhibited intracellular cGMP formation following BayK8644 in a concentration-dependent manner, 100 muM nefopam providing full inhibition of cGMP synthesis and 58 muM allowing 50% cGMP formation. Nefopam reduced NMDA receptor-mediated cGMP formation resulting from the release of glutamate following activation of channels by BayK8644. Finally, we also showed that nefopam effectively reduced cGMP formation following stimulation of cultures with domoic acid, while not providing neuroprotection against domoic acid. Thus, the novel action of nefopam we report here may be important both for its central analgesic effects and for its potential therapeutic use in neurological and neuropsychiatric disorders involving an excessive glutamate release.

  12. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  13. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study.

    PubMed

    Kumar, Gaurav; Patnaik, Ranjana

    2016-07-01

    N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases. PMID:27241252

  14. Homeostatic plasticity and NMDA receptor trafficking.

    PubMed

    Pérez-Otaño, Isabel; Ehlers, Michael D

    2005-05-01

    Learning, memory and brain development are associated with long-lasting modifications of synapses that are guided by specific patterns of neuronal activity. Such modifications include classical Hebbian plasticities (such as long-term potentiation and long-term depression), which are rapid and synapse-specific, and others, such as synaptic scaling and metaplasticity, that work over longer timescales and are crucial for maintaining and orchestrating neuronal network function. The cellular mechanisms underlying Hebbian plasticity have been well studied and involve rapid changes in the trafficking of highly mobile AMPA receptors. An emerging concept is that activity-dependent alterations in NMDA receptor trafficking contribute to homeostatic plasticity at central glutamatergic synapses.

  15. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  16. Involvement of NMDA receptors in nicotine-mediated central control of hypotensive effects.

    PubMed

    Hong, Ling-Zong; Cheng, Pei-Wen; Cheng, Wen-Han; Chen, Siang-Ru; Wang, Ling-Lin; Tseng, Ching-Jiunn

    2012-10-31

    It is known that enrichment of glutamatergic transmission in the nucleus tractus solitarii (NTS) plays an important role in central cardiovascular regulation. Our previous study demonstrated that nicotine decreased blood pressure and heart rate in the NTS probably acting via the nicotinic acetylcholine receptors (nAChRs)-Ca²⁺-calmodulin-eNOS-NO signaling pathway. The possible relationship between glutamate and nicotine in the NTS for cardiovascular regulation is poorly understood. This study investigated the involvement of glutamate receptors in the cardiovascular effects of nicotine in the NTS. Nicotine (a non-selective nAChRs agonist), MK801 (a non-competitive NMDA receptor antagonist), APV (a competitive NMDA receptor antagonist), or NBQX (a selective AMPA receptor antagonist) was microinjected into the NTS of anesthetized Wistar-Kyoto rats. Microinjection of nicotine (1.5 pmol) into the NTS produced decreases in blood pressure and heart rate. The hypotensive and bradycardic effects of nicotine were abolished by prior administration of MK801 (1 nmol) and APV (10 nmol), but was completely restored after 60 min of recovery. In contrast, prior administration of NBQX (10 pmol) into the NTS did not alter the cardiovascular effects of nicotine. The nitrate (served as total NO) production in response to nicotine microinjection into the NTS was suppressed by prior administration of APV. These results suggest that the hypotensive and bradycardic effects of nicotine in the NTS might be mediated through NMDA receptors, and that the nAChRs-NMDA receptor-NO pathway could be involved.

  17. The Impact of Hyperthermia on Receptor-Mediated Interleukin-6 Regulation in Mouse Skeletal Muscle

    PubMed Central

    Welc, Steven S.; Morse, Deborah A.; Mattingly, Alex J.; Laitano, Orlando; King, Michelle A.; Clanton, Thomas L.

    2016-01-01

    In inflammatory cells, hyperthermia inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) gene expression and protein secretion. Since hyperthermia alone stimulates IL-6 in skeletal muscle, we hypothesized that it would amplify responses to other receptor-mediated stimuli. IL-6 regulation was tested in C2C12 myotubes and in soleus during treatment with epinephrine (EPI) or LPS. In EPI-treated myotubes (100 ng/ml), 1 h exposure at 40.5°C-42°C transiently increased IL-6 mRNA compared to EPI treatment alone at 37°C. In LPS-treated myotubes (1 μg/ml), exposure to 41°C-42°C also increased IL-6 mRNA. In isolated mouse soleus, similar amplifications of IL-6 gene expression were observed in 41°C, during both low (1 ng/ml) and high dose (100 ng/ml) EPI, but only in high dose LPS (1 μg/ml). In myotubes, heat increased IL-6 secretion during EPI exposure but had no effect or inhibited secretion with LPS. In soleus there were no effects of heat on IL-6 secretion during either EPI or LPS treatment. Mechanisms for the effects of heat on IL-6 mRNA were explored using a luciferase-reporter in C2C12 myotubes. Overexpression of heat shock factor-1 (HSF-1) had no impact on IL-6 promoter activity during EPI stimulation, but elevated IL-6 promoter activity during LPS stimulation. In contrast, when the activator protein-1 (AP-1) element was mutated, responses to both LPS and EPI were suppressed in heat. Using siRNA against activating transcription factor-3 (ATF-3), a heat-stress-induced inhibitor of IL-6, no ATF-3-dependent effects were observed. The results demonstrate that, unlike inflammatory cells, hyperthermia in muscle fibers amplifies IL-6 gene expression to EPI and LPS. The effect appears to reflect differential engagement of HSF-1 and AP-1 sensitive elements on the IL-6 gene, with no evidence for involvement of ATF-3. The functional significance of increased IL-6 mRNA expression during heat may serve to overcome the well-known suppression of protein synthetic

  18. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  19. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  20. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex

    PubMed Central

    Lalo, U.; Palygin, O.; Verkhratsky, A.; Grant, S. G. N.; Pankratov, Y.

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  1. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex.

    PubMed

    Lalo, U; Palygin, O; Verkhratsky, A; Grant, S G N; Pankratov, Y

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca(2+)-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca(2+)-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  2. Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate.

    PubMed

    Lange, Sofie C; Winkler, Ulrike; Andresen, Lars; Byhrø, Mathilde; Waagepetersen, Helle S; Hirrlinger, Johannes; Bak, Lasse K

    2015-12-01

    We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis seems to be negatively affected by the presence of lactate alone, suggesting that glucose is needed to support neuronal energy metabolism during activation.

  3. p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer's disease.

    PubMed

    Ittner, Arne A; Gladbach, Amadeus; Bertz, Josefine; Suh, Lisa S; Ittner, Lars M

    2014-01-01

    Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer's disease (AD). Mouse models of AD expressing mutated forms of the amyloid-β precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.

  4. Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells.

    PubMed

    Sidaway, James E; Davidson, Robert G; McTaggart, Fergus; Orton, Terry C; Scott, Robert C; Smith, Graham J; Brunskill, Nigel J

    2004-09-01

    Renal proximal tubule cells are responsible for the reabsorption of proteins that are present in the tubular lumen. This occurs by receptor-mediated endocytosis, a process that has a requirement for some GTP-binding proteins. Statins are inhibitors of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase used for the therapeutic reduction of cholesterol-containing plasma lipoproteins. However, they can also reduce intracellular levels of isoprenoid pyrophosphates that are derived from the product of the enzyme, mevalonate, and are required for the prenylation and normal function of GTP-binding proteins. The hypothesis that inhibition of HMG-CoA reductase in renal proximal tubule cells could reduce receptor mediated-endocytosis was therefore tested. Five different statins inhibited the uptake of FITC-labeled albumin by the proximal tubule-derived opossum kidney cell line in a dose-dependent manner and in the absence of cytotoxicity. The reduction in albumin uptake was related to the degree of inhibition of HMG-CoA reductase. Simvastatin (e.g., statin) inhibited receptor-mediated endocytosis of both FITC-albumin and FITC-beta(2)-microglobulin to similar extents but without altering the binding of albumin to the cell surface. The effect on albumin endocytosis was prevented by mevalonate and by the isoprenoid geranylgeranyl pyrophosphate but not by cholesterol. Finally, evidence that the inhibitory effect of statins on endocytosis of proteins may be caused by reduced prenylation and thereby decreased function of one or more GTP-binding proteins is provided. These data establish the possibility in principle that inhibition of HMG-CoA reductase by statins in proximal tubule cells may reduce tubular protein reabsorption. PMID:15339975

  5. Zonal differences in ethanol-induced impairments in receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J. )

    1991-02-01

    We have shown previously that ethanol-induced defects in receptor-mediated endocytosis of asialoorosomucoid occurred as early as 1 wk after ethanol feeding. This study was undertaken as an initial attempt to establish a possible role of defective receptor-mediated endocytosis in liver injury by investigating whether differences exist in the effects of ethanol on receptor-mediated endocytosis in hepatocytes isolated from different regions of the liver. Perivenule cells, present in the distal half of the liver, are thought to be more susceptible to ethanol-induced liver injury than are the periportal cells located in the proximal half of the liver acini. For these studies, we fed male Sprague-Dawley rats for 7 days with liquid diets containing either ethanol (36% of calories) or isocaloric carbohydrate. Perivenule and periportal hepatocytes were then isolated using a digitonin-collagenase perfusion method. In control animals, cells isolated from the perivenule region bound significantly more ligand than did cells from the periportal region. Amounts of ligand internalized and degraded were also greater in perivenule than in periportal cells in these animals. After ethanol feeding, cells isolated from both the perivenule and periportal regions bound significantly less ligand than their respective controls. This impairment in surface and total binding was more pronounced in perivenule than in periportal cells. Internalization and degradation of the ligand were also more adversely affected in the centrilobular region as shown by decreases of greater than 60% in perivenule cells and by only 20% to 30% in periportal cells of ethanol-fed animals compared with controls.

  6. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively

    PubMed Central

    Shojima, Kensaku; Sato, Akira; Hanaki, Hideaki; Tsujimoto, Ikuko; Nakamura, Masahiro; Hattori, Kazunari; Sato, Yuji; Dohi, Keiji; Hirata, Michinari; Yamamoto, Hideki; Kikuchi, Akira

    2015-01-01

    Wnt5a activates the Wnt/β-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. PMID:25622531

  7. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  8. Sequential involvement of NMDA receptor-dependent processes in hippocampus, amygdala, entorhinal cortex and parietal cortex in memory processing.

    PubMed

    Zanatta, M.S.; Schaeffer, E.; Schmitz, P.K.; Medina, J.H.; Quevedo, J.; Quillfeldt, J.A.; Izquierdo, I.

    1996-08-01

    Rats bilaterally implanted with cannulae in the CA1 region of the dorsal hippocampus and/or in the amygdaloid nucleus, in the entorhinal cortex, and in the posterior parietal cortex, were trained in a step-down inhibitory avoidance task. At various times after training (immediately, 30, 60 or 90min) they received, through the cannulae, 0.5µl microinfusions of saline or of 5.0µg of AP5 dissolved in saline. A retention test was carried out 24h after training. Retention test performance was hindered by AP5 given into hippocampus, amygdala, or both hippocampus and amygdala immediately but not 30min post-training. The drug was amnestic when given into the entorhinal cortex 30, 60 or 90min after training, or into the parietal cortex 60 or 90min after training, but not at earlier times. The findings suggest a sequential entry in operation, in the post-training period, of NMDA-receptor mediated mechanisms involved in memory processing; first in hippocampus and amygdala, 30min later in entorhinal cortex, and 30min later in posterior parietal cortex.

  9. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  10. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption. PMID:19660541

  11. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    PubMed

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  12. Receptor-mediated endocytosis of albumin by kidney proximal tubule cells is regulated by phosphatidylinositide 3-kinase.

    PubMed

    Brunskill, N J; Stuart, J; Tobin, A B; Walls, J; Nahorski, S

    1998-05-15

    Receptor-mediated endocytosis of albumin is an important function of the kidney proximal tubule epithelium. We have measured endocytosis of [125I]-albumin in opossum kidney cells and examined the regulation of this process by phosphatidylinositide 3-kinase (PI 3-kinase). Albumin endocytosis was inhibited by both wortmannin (IC50 6.9 nM) and LY294002 (IC50 6.5 microM) at concentrations that suggested the involvement of PI 3-kinase in its regulation. Recycling rates were unaffected. We transfected OK cells with either a wild-type p85 subunit of PI 3-kinase, or a dominant negative form of the p85 subunit (Deltap85) using the LacSwitch expression system. Transfects were screened by immunoblotting with anti-PI 3-kinase antibodies. Under basal conditions, transfects demonstrated no expression of p85 or Deltap85, but expression was briskly induced by treatment of the cells with IPTG (EC50 13.7 microM). Inhibition of PI 3-kinase activity by Deltap85 was confirmed by in vitro kinase assay of anti-phosphotyrosine immunoprecipitates from transfected cells stimulated with insulin. Expression of Deltap85 resulted in marked inhibition of albumin endocytosis, predominantly as a result of reduction of the Vmax of the transport process. Expression of p85 had no significant effect on albumin uptake. The results demonstrate that PI 3-kinase regulates an early step in the receptor-mediated endocytosis of albumin by kidney proximal tubular cells. PMID:9593770

  13. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system

    PubMed Central

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2012-01-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins. PMID:16603603

  14. Receptor-Mediated Endocytosis of Two-Dimensional Nanomaterials Undergoes Flat Vesiculation and Occurs by Revolution and Self-Rotation.

    PubMed

    Mao, Jian; Chen, Pengyu; Liang, Junshi; Guo, Ruohai; Yan, Li-Tang

    2016-01-26

    Two-dimensional nanomaterials, such as graphene and transitional metal dichalcogenide nanosheets, are promising materials for the development of antimicrobial surfaces and the nanocarriers for intracellular therapy. Understanding cell interaction with these emerging materials is an urgently important issue to promoting their wide applications. Experimental studies suggest that two-dimensional nanomaterials enter cells mainly through receptor-mediated endocytosis. However, the detailed molecular mechanisms and kinetic pathways of such processes remain unknown. Here, we combine computer simulations and theoretical derivation of the energy within the system to show that the receptor-mediated transport of two-dimensional nanomaterials, such as graphene nanosheet across model lipid membrane, experiences a flat vesiculation event governed by the receptor density and membrane tension. The graphene nanosheet is found to undergo revolution relative to the membrane and, particularly, unique self-rotation around its normal during membrane wrapping. We derive explicit expressions for the formation of the flat vesiculation, which reveals that the flat vesiculation event can be fundamentally dominated by a dimensionless parameter and a defined relationship determined by complicated energy contributions. The mechanism offers an essential understanding on the cellular internalization and cytotoxicity of the emerging two-dimensional nanomaterials.

  15. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis

    PubMed Central

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-01-01

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990

  16. NMDA treatment and K(+)-induced depolarization selectively promote the expression of an NMDA-preferring class of the ionotropic glutamate receptors in cerebellar granule neurones.

    PubMed

    Balázs, R; Resink, A; Hack, N; Van der Valk, J B; Kumar, K N; Michaelis, E

    1992-03-16

    Growth conditions which promote the survival of cerebellar granule cells in culture, such as high K+ or N-methyl-D-aspartate (NMDA) treatment, also promote the functional expression of an NMDA-preferring subtype alone of the ionotropic glutamate receptors. The selective regulation of NMDA receptors detected electrophysiologically in individual cells, using the whole cell patch clamp technique, is characteristic of granule cells in general: NMDA-induced 45Ca2+ influx increased several-fold in cultures treated with either high K+ or NMDA. The increase in NMDA receptor activity was correlated with an increase in the expression of an NMDA receptor protein. Since the effect of these 'trophic' conditions is mediated through Ca2+, the induced increase in the density of NMDA receptors (which gate a Ca2+ conductance) provides a positive feedback for strengthening the trophic influences.

  17. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    PubMed

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  18. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse

    PubMed Central

    Feltenstein, Matthew W.; See, Ronald E.

    2007-01-01

    Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 μl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse. PMID:17613253

  19. Anti-NMDA-receptor antibody encephalitis in infants

    PubMed Central

    Matoq, Amr A.; Rappoport, Adam S.; Yang, Yiting; O'Babatunde, Jessica; Bakerywala, Rubina; Sheth, Raj D.

    2015-01-01

    Purpose Anti-N-methyl-d-aspartate (NMDA) receptor antibody encephalitis is an autoimmune disorder manifesting subacutely with prominent aberrant movements and psychiatric symptoms. The clinical course is one of progressive clinical deterioration that can be halted and often reversed by early diagnosis and treatment. Patterns of presentation and etiology of anti-NMDA-receptor antibody encephalitis are dependent on age and can be challenging to recognize in very young children. Reports Sequential clinical case observations of anti-NMDA-receptor antibody encephalitis presenting in very young children were examined over a year at a single tertiary pediatric institution. Cerebrospinal fluid confirmed anti-NMDA-receptor antibodies in two cases (a 21-month-old boy and a 29-month-old girl) that demonstrated either bizarre behavioral patterns or status epilepticus both associated with progressive deterioration. Once recognized, the clinical course was arrested and reversed by aggressive treatment with plasma exchange, immunoglobulin, and high dose IV steroids. Conclusion Infants with anti-NMDA-receptor antibody encephalitis can present with frank seizures or seizure mimics. Regardless, prompt recognition and aggressive treatment of anti-NMDA-receptor antibody encephalitis, while challenging, can quickly arrest deterioration and hasten recovery, thereby, limiting neurological morbidity. PMID:26744696

  20. Synaptic localization of NMDA receptor subunits in the rat retina.

    PubMed

    Fletcher, E L; Hack, I; Brandstätter, J H; Wässle, H

    2000-04-24

    The distribution and synaptic clustering of N-methyl-D-aspartate (NMDA) receptors were studied in the rat retina by using subunit specific antisera. A punctate immunofluorescence was observed in the inner plexiform layer (IPL) for all subunits tested, and electron microscopy confirmed that the immunoreactive puncta represent labeling of receptors clustered at postsynaptic sites. Double labeling of sections revealed that NMDA receptor clusters within the IPL are composed of different subunit combinations: NR1/NR2A, NR1/NR2B, and in a small number of synapses NR1/NR2A/NR2B. The majority of NMDA receptor clusters were colocalized with the postsynaptic density proteins PSD-95, PSD-93, and SAP 102. Double labeling of the NMDA receptor subunit specific antisera with protein kinase C (PKC), a marker of rod bipolar cells, revealed very little colocalization at the rod bipolar cell axon terminal. This suggests that NMDA receptors are important in mediating neurotransmission within the cone bipolar cell pathways of the IPL. The postsynaptic neurons are a subset of amacrine cells and most ganglion cells. Usually only one of the two postsynaptic processes at the bipolar cell ribbon synapses expressed NMDA receptors. In the outer plexiform layer (OPL), punctate immunofluoresence was observed for the NR1C2; subunit, which was shown by electron microscopy to be localized presynaptically within both rod and cone photoreceptor terminals.

  1. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  2. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    SciTech Connect

    Chen, S.; Wong, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Ojima, I.

    2010-05-01

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate, drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism

  3. Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase.

    PubMed Central

    Bliska, J B; Black, D S

    1995-01-01

    Suppression of host-cell-mediated immunity is a hallmark feature of Yersinia pseudotuberculosis infection. To better understand this process, the interaction of Y. pseudotuberculosis with macrophages and the effect of the virulence plasmid-encoded Yersinia tyrosine phosphatase (YopH) on the oxidative burst was analyzed in a chemiluminescence assay. An oxidative burst was generated upon infection of macrophages with a plasmid-cured strain of Y. pseudotuberculosis opsonized with immunoglobulin G antibody. Infection with plasmid-containing Y. pseudotuberculosis inhibited the oxidative burst triggered by secondary infection with opsonized bacteria. The tyrosine phosphatase activity of YopH was necessary for this inhibition. These results indicate that YopH inhibits Fc receptor-mediated signal transduction in macrophages in a global fashion. In addition, bacterial protein synthesis was not required for macrophage inhibition, suggesting that YopH export and translocation are controlled at the posttranslational level. PMID:7822039

  4. Fc receptor-mediated phagocytosis, superoxide production and calcium signaling of beta 2 integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, H; Sawada, C; Higuchi, H; Teraoka, H; Yamaguchi, M

    1997-01-01

    Fc receptor for immunoglobulin G-mediated phagocytosis, superoxide production and intracellular calcium ([Ca2+]i) signaling of complement receptor type 3 (CR3)-deficient neutrophils from a heifer with leukocyte adhesion deficiency (BLAD) were compared to those of control heifers. The mean phagocytic activity of IgG-coated yeasts and aggregated bovine IgG (Agg-IgG)-induced superoxide production of CR3-deficient neutrophils were 10% and 77.9%, respectively, of those of control neutrophils. The [Ca2+]i signals in CR3-deficient neutrophils stimulated with Agg-IgG or concanavalin A were different with mean peak [Ca2+]i concentrations of 78% and 41.9%, respectively, of those of control neutrophils. These findings suggest that Fc receptor-mediated neutrophil functions are closely dependent on the presence of CR3 (CD11b/CD18) on the neutrophil cell surfaces. PMID:9343828

  5. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics.

    PubMed

    Jia, Xu; Han, Yu; Pei, Mingliang; Zhao, Xubo; Tian, Kun; Zhou, Tingting; Liu, Peng

    2016-11-01

    Hyaluronic acid (HA)-based theranostic nanogels were designed for the tumor diagnosis and chemotherapy, by crosslinking the folate-terminated poly(ethylene glycol) modified hyaluronic acid (FA-PEG-HA) with carbon dots (CDs) for the first time. Due to the extraordinary fluorescence property of the integrated CDs, the theranostic nanogels could be used for the real-time and noninvasive location tracking to cancer cells. HA could load Doxorubicin (DOX) via electrostatic interaction with a drug-loading capacity (DLC) of 32.5%. The nanogels possessed an ideal release of DOX in the weak acid environment, while it was restrained in the neutral media, demonstrating the pH-responsive controlled release behavior. The cytotoxicity and cellular uptake results clearly illustrated that most DOX was released and accumulated in the cell nuclei and killed the cancer cells efficaciously, due to their dual receptor-mediated targeting characteristics. PMID:27516286

  6. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation.

    PubMed

    Klika, Václav; Baker, Ruth E; Headon, Denis; Gaffney, Eamonn A

    2012-04-01

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction. PMID:22072186

  7. Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-stokes Raman scattering probe.

    PubMed

    Tong, Ling; Lu, Yanhui; Lee, Robert J; Cheng, Ji-Xin

    2007-08-23

    Coherent anti-Stokes Raman scattering (CARS) microscopy was used to visualize receptor-mediated endocytosis and intracellular trafficking with the aid of a CARS probe. The probe was made of 200-nm polystyrene particles encapsulated in folate-targeted liposomes. By tuning (omega(p) - omega(s)) to 3045 cm(-1), which corresponds to the aromatic C-H stretching vibration, the polystyrene nanoparticles with a high density of aromatic C-H bonds were detected with a high signal-to-noise ratio, while the epi-detected CARS signal from cellular organelles was cancelled by the destructive interference between the resonant contribution from the aliphatic C-H vibration and the nonresonant contribution. Without any photobleaching, the CARS probe allowed single-particle tracking analysis of intracellular endosome transport. No photodamage to cells was observed under the current experimental conditions. These results show the advantages and potential of using a CARS probe to study cellular processes. PMID:17663581

  8. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    PubMed Central

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  9. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    PubMed

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  10. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    SciTech Connect

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.

  11. Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes

    PubMed Central

    Ruiz, A; Matute, C; Alberdi, E

    2010-01-01

    Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. PMID:21364659

  12. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    SciTech Connect

    Yashima, N.; Wada, A.; Izumi, F.

    1986-04-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of /sup 45/Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of /sup 45/Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of /sup 45/Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the /sup 45/Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the /sup 45/Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of /sup 45/Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of /sup 45/Ca. Based on these findings, the authors suggest that inhibition of the /sup 45/Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels.

  13. Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?

    PubMed Central

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling. PMID:24670989

  14. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?

    PubMed

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

  15. Excitatory Amino Acid Receptors Mediate Asymmetry and Lateralization in the Descending Cardiovascular Pathways from the Dorsomedial Hypothalamus

    PubMed Central

    Xavier, Carlos Henrique; Ianzer, Danielle; Lima, Augusto Martins; Marins, Fernanda Ribeiro; Pedrino, Gustavo Rodrigues; Vaz, Gisele; Menezes, Gustavo Batista; Nalivaiko, Eugene; Fontes, Marco Antônio Peliky

    2014-01-01

    The dorsomedial hypothalamus (DMH) and lateral/dorsolateral periaqueductal gray (PAG) are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R-) sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA). In the current study, we investigated whether excitatory amino acid (EAA) receptors in the DMH–PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p.) anesthetized rats, we observed that: (i) nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl) into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii) nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii) blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L-) PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL) into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG. PMID:25397884

  16. AMPA glutamate receptors mediate the antidepressant-like effects of N-acetylcysteine in the mouse tail suspension test.

    PubMed

    Linck, Viviane M; Costa-Campos, Luciane; Pilz, Luísa K; Garcia, Cícero R L; Elisabetsky, Elaine

    2012-04-01

    The aim of this study was to investigate the involvement of noradrenaline, serotonin, and subtypes of glutamate receptors in the antidepressant-like effects of N-acetylcysteine (NAC). The tail suspension test was used with male CF1 albino mice. D,L-α-methyl-ρ-tyrosine and ρ-chlorophenylalanine methyl ester hydrochloride were used as synthesis inhibitors of noradrenaline and serotonin, respectively. N-methyl-D-aspartate (NMDA) and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione were used as an NMDA receptor agonist and an α-amino acid-3-hydroxy-5-methyl-4-isoxazol propionic acid (AMPA) receptor antagonist, respectively. NAC (10, 25, and 50 mg/kg intraperitoneally) significantly (P<0.05) decreased tail suspension test immobility time, whereas pretreatment with D,L-α-methyl-ρ-tyrosine, ρ-chlorophenylalanine methyl ester hydrochloride, and NMDA partially prevented (P<0.05) the effects of NAC (25 mg/kg), and pretreatment with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione completely abolished (P<0.01) this effect. The study corroborates the antidepressant-like effects of NAC in the TST, a model with a well-established predictive value. The results point to the key role of AMPA receptors in the mechanism of the antidepressant-like action of NAC. Like other AMPA potentiators, NAC indirectly modulates noradrenaline and serotonin pathways. It is suggested that the value of NAC as an antidepressant arises from combined and intertwined effects on a variety of pathways.

  17. Synthetic conantokin peptides potently inhibit N-methyl-D-aspartate receptor-mediated currents of retinal ganglion cells.

    PubMed

    Huang, Luoxiu; Balsara, Rashna D; Castellino, Francis J

    2014-12-01

    Retinal ganglion cells (RGCs), which are the sole output neurons of the retina, express N-methyl-D-aspartate receptors (NMDARs), rendering these cells susceptible to glutamate excitotoxicity, with implications for loss of normal RGC excitatory responses in disorders such as glaucoma and diabetic retinopathy. Therefore, antagonists that inhibit NMDAR-mediated currents specifically by targeting the GluN2B component of the ion channel have the potential to serve as a basis for developing potential therapeutics. The roles of peptidic conantokins, which are potent brain neuronal NMDAR inhibitors, were studied. By using patch-clamp whole-cell analyses in dissociated RGCs and retinal whole-mount RGCs, we evaluated the effects of synthetic conantokin-G (conG) and conantokin-T (conT), which are small γ-carboxyglutamate-containing peptides, on NMDA-mediated excitatory responses in mouse RGCs. Both conG and conT inhibited the NMDA-mediated currents of dark-adapted dissociated and whole-mount RGCs in a dose-dependent, reversible, noncompetitive manner. Inhibition of NMDA-mediated steady-state currents by NMDAR nonsubunit-selective conT was approximately threefold greater than GluN2B-selective conG or ifenprodil, demonstrating its potential ability to inhibit both GluN2A- and GluN2B-containing ion channels in RGCs. Because the extent of inhibition of NMDA-evoked currents by conG and the pharmacologic GluN2B-selective inhibitor ifenprodil were similar (40-45%) to that of the GluN2A-selective antagonist NVP-AAM0077, we conclude that the levels of GluN2A and GluN2B subunits are similar in RGCs. These results provide a novel basis for developing effective neuroprotective agents to aid in the prevention of undesired glutamatergic excitotoxicity in neurodegenerative diseases of the retina and demonstrate functional assembly of NMDARs in RGCs. PMID:25043917

  18. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function.

    PubMed

    Sivarao, Digavalli V

    2015-05-01

    When subjected to a phasic input, sensory cortical neurons display a remarkable ability to entrain faithfully to the driving stimuli. The entrainment to rhythmic sound stimuli is often referred to as the auditory steady-state response (ASSR) and can be captured using noninvasive techniques, such as scalp-recorded electroencephalography (EEG). An ASSR to a driving frequency of approximately 40 Hz is particularly interesting in that it shows, in relative terms, maximal power, synchrony, and synaptic activity. Moreover, the 40-Hz ASSR has been consistently found to be abnormal in schizophrenia patients across multiple studies. The nature of the reported abnormality has been less consistent; while most studies report a deficit in entrainment, several studies have reported increased signal power, particularly when there are concurrent positive symptoms, such as auditory hallucinations. However, the neuropharmacological basis for the 40-Hz ASSR, as well as its dysfunction in schizophrenia, has been unclear until recently. On the basis of several recent reports, it is argued that the 40-Hz ASSR represents a specific marker for cortical NMDA transmission. If confirmed, the 40-Hz ASSR may be a simple and easy-to-access pharmacodynamic biomarker for testing the integrity of cortical NMDA neurotransmission that is robustly translational across species. PMID:25809615

  19. Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits

    PubMed Central

    Buchanan, Katherine A.; Blackman, Arne V.; Moreau, Alexandre W.; Elgar, Dale; Costa, Rui P.; Lalanne, Txomin; Tudor Jones, Adam A.; Oyrer, Julia; Sjöström, P. Jesper

    2012-01-01

    Summary Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. PMID:22884329

  20. Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation

    PubMed Central

    Bonini, Daniela; Mora, Cristina; Tornese, Paolo; Sala, Nathalie; Filippini, Alice; La Via, Luca; Milanese, Marco; Calza, Stefano; Bonanno, Gianbattista; Racagni, Giorgio; Gennarelli, Massimo; Popoli, Maurizio; Musazzi, Laura; Barbon, Alessandro

    2016-01-01

    Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser845 immediately after stress and of GluA2 Ser880 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser880, suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors. PMID:26966584

  1. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    SciTech Connect

    K Vance; N Simorowski; S Traynelis; H Furukawa

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands reveal that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.

  2. The role of NMDA and non-NMDA receptors in the NTS in mediating three distinct sympathoinhibitory reflexes.

    PubMed

    Sartor, Daniela M; Verberne, Anthony J M

    2007-12-01

    Cholecystokinin (CCK) elicits a sympathetic vasomotor reflex that is implicated in gastrointestinal circulatory control. We sought to determine (1) the site in the solitary tract nucleus (NTS) responsible for mediating this reflex and (2) the possible involvement of excitatory amino acid (EAA) receptors. In addition, we sought to determine whether the NTS site responsible for mediating the baroreflex (phenylephrine, PE, 10 microg/kg i.v.) and the von Bezold-Jarisch reflex (phenylbiguanide, PBG, 10 microg/kg i.v) overlap with that involved in the CCK-induced reflex (CCK, 4 microg/kg, i.v.), and to compare the relative importance of NMDA and non-NDMA receptors in these reflexes. In separate experiments, the effects of PE, PBG, and CCK on mean arterial blood pressure, heart rate, and splanchnic sympathetic nerve discharge were tested before and after bilateral microinjection into the NTS of the gamma-aminobutyric acid(A) (GABA(A)) agonist muscimol, the EAA antagonist kynurenate, the NMDA receptor antagonist D: (-)-2-amino-5-phosphopentanoic acid (AP-5), the non-NMDA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), AP-5 + NBQX, or vehicle. While all treatments (except vehicle) significantly attenuated/abolished/reversed the splanchnic sympathoinhibitory responses to PE, PBG, and CCK, the extent of blockade varied between the different treatment groups. Both NMDA and non-NMDA receptors were essential to the baroreflex and the von Bezold-Jarisch reflex, whereas the CCK reflex was more dependent on non-NMDA receptors. Muscimol, kynurenate, and AP-5 + NBQX significantly attenuated the bradycardic responses to PE and PBG (P < 0.05), whereas AP-5, NBQX, or vehicle did not. The bradycardic responses to CCK remained intact after all treatments. These results suggest that while there is overlap in the area of the NTS responsible for eliciting all three reflexes, NMDA and non-NMDA receptors are recruited differentially for the

  3. PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons.

    PubMed

    Yang, D-J; Wang, X-L; Ismail, A; Ashman, C J; Valori, C F; Wang, G; Gao, S; Higginbottom, A; Ince, P G; Azzouz, M; Xu, J; Shaw, P J; Ning, K

    2014-02-27

    Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast-iPS-motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders.

  4. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Ishizuka, Ken'Ichi; Oskutyte, Diana; Satoh, Yoshihide; Murakami, Toshiki

    2008-02-29

    We investigated the effects of the ionophoretic application of ionotropic non-NMDA receptor agonist (AMPA) and NMDA receptor agonist (NMDA) on extracellularly recorded and antidromically identified superior salivatory nucleus (SSN) neurons. A great majority (93%) of SSN neurons was induced to fire by ionophoretic application of AMPA, and they were classified into high firing rate (more than 6 spikes/s), and low firing rate (less than 3 spikes/s) neurons. No clear differences were found between high firing rate and low firing rate neurons according their fibre type and histological locations. Of the SSN neurons that excited by AMPA, 22% (4/18) and 50% (5/9) of the neurons also were induced to fire following ionophoretic application of the NMDA receptor agonist NMDA in different concentrations, 20 mM and 100 mM, respectively. In neurons that induced firing by AMPA and by NMDA, AMPA-evoked firings were induced by the lower intensities of applied current and had higher mean firing rates than NMDA-evoked firing. Neurons that were induced firing by AMPA and by NMDA had B fibre and C fibre axons as well as those that induced firing only by AMPA. Neurons that were fired only by AMPA were found in whole SSN area, whereas neurons that were induced firing by AMPA and by NMDA were mainly found in intermediate SSN area. In conclusion, activation of ionotoropic non-NMDA receptor has a greater excitatory effect on the SSN neurons than that of ionotropic of NMDA receptor. Our data support the view that non-NMDA receptor plays a major role, whereas NMDA receptor plays a minor role, in the activation of SSN neurons.

  5. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  6. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA.

    PubMed

    Gantz, Stephanie C; Levitt, Erica S; Llamosas, Nerea; Neve, Kim A; Williams, John T

    2015-08-11

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission. PMID:26235617

  7. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  8. Receptor-mediated presynaptic facilitation of quantal release of acetylcholine induced by pralidoxime in Aplysia.

    PubMed

    Fossier, P; Baux, G; Poulain, B; Tauc, L

    1990-09-01

    1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation. PMID:2253262

  9. Receptor-mediated presynaptic facilitation of quantal release of acetylcholine induced by pralidoxime in Aplysia.

    PubMed

    Fossier, P; Baux, G; Poulain, B; Tauc, L

    1990-09-01

    1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.

  10. Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus.

    PubMed

    Stempel, A Vanessa; Stumpf, Alexander; Zhang, Hai-Ying; Özdoğan, Tuğba; Pannasch, Ulrike; Theis, Anne-Kathrin; Otte, David-Marian; Wojtalla, Alexandra; Rácz, Ildikó; Ponomarenko, Alexey; Xi, Zheng-Xiong; Zimmer, Andreas; Schmitz, Dietmar

    2016-05-18

    Endocannabinoids (eCBs) exert major control over neuronal activity by activating cannabinoid receptors (CBRs). The functionality of the eCB system is primarily ascribed to the well-documented retrograde activation of presynaptic CB1Rs. We find that action potential-driven eCB release leads to a long-lasting membrane potential hyperpolarization in hippocampal principal cells that is independent of CB1Rs. The hyperpolarization, which is specific to CA3 and CA2 pyramidal cells (PCs), depends on the activation of neuronal CB2Rs, as shown by a combined pharmacogenetic and immunohistochemical approach. Upon activation, they modulate the activity of the sodium-bicarbonate co-transporter, leading to a hyperpolarization of the neuron. CB2R activation occurred in a purely self-regulatory manner, robustly altered the input/output function of CA3 PCs, and modulated gamma oscillations in vivo. To conclude, we describe a cell type-specific plasticity mechanism in the hippocampus that provides evidence for the neuronal expression of CB2Rs and emphasizes their importance in basic neuronal transmission. PMID:27133464

  11. Food Restriction Increases Glutamate Receptor-Mediated Burst Firing of Dopamine Neurons

    PubMed Central

    Branch, Sarah Y.; Goertz, R. Brandon; Sharpe, Amanda L.; Pierce, Janie; Roy, Sudip; Ko, Daijin; Paladini, Carlos A.

    2013-01-01

    Restriction of food intake increases the acquisition of drug abuse behavior and enhances the reinforcing efficacy of those drugs. However, the neurophysiological mechanisms responsible for the interactions between feeding state and drug use are largely unknown. Here we show that chronic mild food restriction increases the burst firing of dopamine neurons in the substantia nigra. Dopamine neurons from food-restricted mice exhibited increased burst firing in vivo, an effect that was enhanced by an injection of the psychomotor stimulant cocaine (10 mg/kg, i.p.). Food restriction also enhanced aspartic acid-induced burst firing of dopamine neurons in an ex vivo brain slice preparation, consistent with an adaptation occurring in the somatodendritic compartment and independent of a circuit mechanism. Enhanced burst firing persisted after 10 d of free feeding following chronic food restriction but was not observed following a single overnight fast. Whole-cell patch-clamp recordings indicated that food restriction also increased electrically evoked AMPAR/NMDAR ratios and increased D2 autoreceptor-mediated desensitization in dopamine neurons. These results identify dopamine neurons in the substantia nigra as a convergence point for the interactions between feeding state and drugs of abuse. Furthermore, increased glutamate transmission combined with decreased autoreceptor inhibition could work in concert to enhance drug efficacy in response to food restriction. PMID:23966705

  12. Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release

    NASA Astrophysics Data System (ADS)

    Datz, Stefan; Argyo, Christian; Gattner, Michael; Weiss, Veronika; Brunner, Korbinian; Bretzler, Johanna; von Schirnding, Constantin; Torrano, Adriano A.; Spada, Fabio; Vrabel, Milan; Engelke, Hanna; Bräuchle, Christoph; Carell, Thomas; Bein, Thomas

    2016-04-01

    Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal attachment of even very sensitive targeting ligands such as folic acid and anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel nanocarrier concept provides a promising platform for the development of precisely controllable and highly modular theranostic systems.Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal attachment of even very sensitive targeting ligands such as folic acid and anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel nanocarrier concept provides a promising platform for the

  13. Synergistic activity between the delta-opioid agonist SNC80 and amphetamine occurs via a glutamatergic NMDA-receptor dependent mechanism

    PubMed Central

    Bosse, Kelly E.; Jutkiewicz, Emily M.; Schultz, Kristin N.; Mabrouk, Omar S.; Kennedy, Robert T.; Gnegy, Margaret E.; Traynor, John R.

    2014-01-01

    Glutamate is known to cause the release of dopamine through a Ca2+-sensitive mechanism that involves activation of NMDA ionotropic glutamate receptors. In the current study, we tested the hypothesis that the delta opioid agonist SNC80 acts indirectly, via the glutamatergic system, to enhance both amphetamine-stimulated dopamine efflux from striatal preparations and amphetamine-stimulated locomotor activity. SNC80 increased extracellular glutamate content, which was accompanied by a concurrent decrease in GABA levels. Inhibition of NMDA signaling with the selective antagonist MK801 blocked the enhancement of both amphetamine-induced dopamine efflux and hyperlocomotion observed with SNC80 pretreatment. Addition of exogenous glutamate also potentiated amphetamine-stimulated dopamine efflux in a Mg2+- and MK801-sensitive manner. After removal of Mg2+ to relieve the ion conductance inhibition of NMDA receptors, SNC80 both elicited dopamine release alone and produced a greater enhancement of amphetamine-evoked dopamine efflux. The action of SNC80 to enhance amphetamine-evoked dopamine efflux was mimicked by the GABAB antagonist 2-hydroxysaclofen. These cumulative findings suggest SNC80 modulates amphetamine-stimulated dopamine efflux through an intra-striatal mechanism involving inhibition of GABA transmission leading to the local release of glutamate followed by subsequent activation of NMDA receptors. PMID:24035916

  14. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients

    PubMed Central

    Mellone, Manuela; Stanic, Jennifer; Hernandez, Ledia F.; Iglesias, Elena; Zianni, Elisa; Longhi, Annalisa; Prigent, Annick; Picconi, Barbara; Calabresi, Paolo; Hirsch, Etienne C.; Obeso, Jose A.; Di Luca, Monica; Gardoni, Fabrizio

    2015-01-01

    Levodopa-induced dyskinesias (LIDs) are major complications in the pharmacological management of Parkinson’s disease (PD). Abnormal glutamatergic transmission in the striatum is considered a key factor in the development of LIDs. This work aims at: (i) characterizing N-methyl-D-aspartate (NMDA) receptor GluN2A/GluN2B subunit ratio as a common synaptic trait in rat and primate models of LIDs as well as in dyskinetic PD patients; and (ii) validating the potential therapeutic effect of a cell-permeable peptide (CPP) interfering with GluN2A synaptic localization on the dyskinetic behavior of these experimental models of LIDs. Here we demonstrate an altered ratio of synaptic GluN2A/GluN2B-containing NMDA receptors in the striatum of levodopa-treated dyskinetic rats and monkeys as well as in post-mortem tissue from dyskinetic PD patients. The modulation of synaptic NMDA receptor composition by a cell-permeable peptide interfering with GluN2A subunit interaction with the scaffolding protein postsynaptic density protein 95 (PSD-95) leads to a reduction in the dyskinetic motor behavior in the two animal models of LIDs. Our results indicate that targeting synaptic NMDA receptor subunit composition may represent an intriguing therapeutic approach aimed at ameliorating levodopa motor side effects. PMID:26217176

  15. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    PubMed

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the recognition

  16. Ionotropic Glutamate Receptors Mediate Inducible Defense in the Water Flea Daphnia pulex

    PubMed Central

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K.; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, “neckteeth,” in response to chemical cues or signals, referred to as “kairomones,” in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the

  17. Swim stress differentially blocks CRF receptor mediated responses in dorsal raphe nucleus.

    PubMed

    Lamy, Christophe M; Beck, Sheryl G

    2010-10-01

    Modulation of the serotonergic (5-HT) neurotransmitter system arising from the dorsal raphe nucleus (DR) is thought to support the behavioral effects of swim stress, i.e., immobility. In vivo pharmacological and anatomical studies suggest that corticotropin-releasing factor (CRF) and γ-aminobutyric acid (GABA) synaptic transmission closely interact to set the response of the DR to swim stress. To investigate the cellular basis of these physiological mechanisms the effects of ovine CRF (oCRF) on GABA(A)-dependent miniature inhibitory postsynaptic currents (mIPSCs) in 5-HT and non-5-HT DR neurons in acute mesencephalic slices obtained from rats either naïve or 24h after a 15 min swim stress session were tested. In this study, the effect of swim stress alone was to decrease the holding current, i.e., hyperpolarize the neuron, and to increase the amplitude and charge of mIPSCs recorded from non-5-HT neurons. Ovine CRF (10 nM) induced an increase in mIPSC frequency in 5-HT neurons recorded from naïve rats, an effect that was suppressed by swim stress. The inward current elicited by oCRF in both 5-HT and non-5-HT neurons was also blocked by swim stress. Ovine CRF increased mIPSCs amplitude and charge in both 5-HT and non-5-HT neurons, but this effect was not modified by swim stress. In concert with our previous findings that swim stress decreased input resistance, action potential threshold and action potential duration and increased glutamatergic synaptic activity the overall primary effect of swim stress is to increase the excitability of 5-HT neurons. These data provide a mechanism at the cellular level for the immobility induced by swim stress and identifies critical components of the raphe circuitry responsible for the altered output of 5-HT neurons induced by swim stress.

  18. The positive feedback action of vasopressin on its own release from rat septal tissue in vitro is receptor-mediated.

    PubMed

    Landgraf, R; Ramirez, A D; Ramirez, V D

    1991-04-01

    The effect of arginine vasopressin (AVP) on its own septal release was evaluated using an in vitro superfusion procedure. As compared to basal release from septal fragments, pulses of synthetic AVP (15 pg/5 min) resulted in a 25-fold augmented release of endogenous AVP, indicating a positive feedback action. Both the basal and stimulated AVP release were significantly increased by 60 mM potassium and markedly reduced by omission of calcium. Preincubation of the septal fragments with the V2/V1 AVP receptor antagonist d(CH2)5 [D-Tyr (Et)2,Val4]AVP resulted in a dose-dependent inhibition of the positive feedback action of AVP which was nearly completely blocked at doses between 1.25 and 5 ng per 100 microliters incubation medium. As compared to this effect, the V1 antagonist d(CH2)5 Tyr (Me)2 AVP as well as oxytocin were significantly less potent. The results suggest that the positive feedback action of AVP on its own release from septal fragments is potassium-stimulated, calcium-dependent and mainly V2 receptor-mediated. The physiological significance of this phenomenon remains to be shown. PMID:1830507

  19. An special epithelial staining agents: folic acid receptor-mediated diagnosis (FRD) effectively and conveniently screen patients with cervical cancer.

    PubMed

    Lu, Meng-Han; Hu, Ling-Yun; Du, Xin-Xin; Yang, Min; Zhang, Wei-Yi; Huang, Ke; Li, Li-An; Jiang, Shu-Fang; Li, Ya-Li

    2015-01-01

    High-quality screening with cytology has markedly reduced mortality from cervical cancer. However, it needs experienced pathologists to review and make the final decisions. We have developed folic acid receptor-mediated diagnosis (FRD) kits to effectively and conveniently screen patients with cervical cancer. We conduct present study aim to assess clinical significances of FRD in screening cervical cancer. A total of 169 patients were enrolled at Chinese People's liberation Army (PLA) general hospital. We compared diagnostic significances of FRD with thinprep cytology test (TCT). Meanwhile, colposcopy was also performed to confirm any lesion suspicious for cervical cancer. The sensitivity and specificity of FRD were 71.93% and 66.07% in diagnosis cervical cancer, respectively. Meanwhile, the positive predictive values (PPV), negative predictive values (NPV), Youden index were 51.90%, 82.22%, 0.38, respectively. On the other hand, the sensitivity and specificity of TCT in diagnosis cervical cancer were 73.68% and 61.61% respectively. PPV, NPV and Youden index for TCT were 49.41%, 82.14% and 0.35 respectively. Overall, FRD have high values of sensitivity, specificity and Youden index. However, this difference failed to statistical significance. FRD have comparable diagnostic significance with TCT. Therefore, FRD might serve as one effective method to screen cervical cancer. Especially for those patients living in remote regions of China, where cytology was unavailable.

  20. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production.

    PubMed

    Bilal, Mahmood Yousif; Houtman, Jon C D

    2015-01-01

    GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.

  1. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations

    PubMed Central

    2016-01-01

    Lipid–polymer hybrid (LPH) nanoparticles represent a novel class of targeted drug delivery platforms that combine the advantages of liposomes and biodegradable polymeric nanoparticles. However, the molecular details of the interaction between LPHs and their target cell membranes remain poorly understood. We have investigated the receptor-mediated membrane adhesion process of a ligand-tethered LPH nanoparticle using extensive dissipative particle dynamics (DPD) simulations. We found that the spontaneous adhesion process follows a first-order kinetics characterized by two distinct stages: a rapid nanoparticle–membrane engagement, followed by a slow growth in the number of ligand–receptor pairs coupled with structural re-organization of both the nanoparticle and the membrane. The number of ligand–receptor pairs increases with the dynamic segregation of ligands and receptors toward the adhesion zone causing an out-of-plane deformation of the membrane. Moreover, the fluidity of the lipid shell allows for strong nanoparticle–membrane interactions to occur even when the ligand density is low. The LPH–membrane avidity is enhanced by the increased stability of each receptor–ligand pair due to the geometric confinement and the cooperative effect arising from multiple binding events. Thus, our results reveal the unique advantages of LPH nanoparticles as active cell-targeting nanocarriers and provide some general principles governing nanoparticle–cell interactions that may aid future design of LPHs with improved affinity and specificity for a given target of interest. PMID:25438167

  2. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay.

    PubMed Central

    Cozens-Roberts, C; Quinn, J A; Lauffenburger, D A

    1990-01-01

    Quantitative information regarding the kinetics of receptor-mediated cell adhesion to a ligand-coated surface are crucial for understanding the role of certain key parameters in many physiological and biotechnology-related processes. Here, we use the probabilistic attachment and detachment models developed in the preceding paper to interpret transient data from well-defined experiments. These data are obtained with a simple model cell system that consists of receptor-coated latex beads (prototype cells) and a Radial-Flow Detachment Assay (RFDA) using a ligand-coated glass disc. The receptors and ligands used in this work are complementary antibodies. The beads enable us to examine transient behavior with particles that possess fairly uniform properties that can be varied systematically, and the RFDA is designed for direct observation of adhesion to the ligand-coated glass surface over a range of shear stresses. Our experiments focus on the effects of surface shear stress, receptor density, and ligand density. These data provide a crucial test of the probabilistic framework. We show that these data can be explained with the probabilistic analyses, whereas they cannot be readily interpreted on the basis of a deterministic analysis. In addition, we examine transient data on cell adhesion reported from other assays, demonstrating the consistency of these data with the predictions of the probabilistic models. Images FIGURE 2 PMID:2174272

  3. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense

    PubMed Central

    Zimmermann, Sabine; Nürnberger, Thorsten; Frachisse, Jean-Marie; Wirtz, Wolfgang; Guern, Jean; Hedrich, Rainer; Scheel, Dierk

    1997-01-01

    Pathogen recognition at the plant cell surface typically results in the initiation of a multicomponent defense response. Transient influx of Ca2+ across the plasma membrane is postulated to be part of the signaling chain leading to pathogen resistance. Patch-clamp analysis of parsley protoplasts revealed a novel Ca2+-permeable, La3+-sensitive plasma membrane ion channel of large conductance (309 pS in 240 mM CaCl2). At an extracellular Ca2+ concentration of 1 mM, which is representative of the plant cell apoplast, unitary channel conductance was determined to be 80 pS. This ion channel (LEAC, for large conductance elicitor-activated ion channel) is reversibly activated upon treatment of parsley protoplasts with an oligopeptide elicitor derived from a cell wall protein of Phytophthora sojae. Structural features of the elicitor found previously to be essential for receptor binding, induction of defense-related gene expression, and phytoalexin formation are identical to those required for activation of LEAC. Thus, receptor-mediated stimulation of this channel appears to be causally involved in the signaling cascade triggering pathogen defense in parsley. PMID:11038609

  4. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  5. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains

    PubMed Central

    Yokote, Hideyuki; Fujita, Koji; Jing, Xuefeng; Sawada, Takahiro; Liang, Sitai; Yao, Li; Yan, Xiaomei; Zhang, Yueqiang; Schlessinger, Joseph; Sakaguchi, Kazushige

    2005-01-01

    A yeast two-hybrid analysis has shown that the juxtamembrane region of FGF receptor 3 (FGFR3) interacts with the cytoplasmic domain of EphA4, which is a member of the largest family of receptor tyrosine kinases. Complex formation between the two receptors was shown to be mediated by direct interactions between the juxtamembrane domain of FGFR1, FGFR2, FGFR3, or FGFR4 and the N-terminal portion of the tyrosine kinase domain of EphA4. Activation of FGFR1 in transfected cells resulted in tyrosine phosphorylation of a kinase-negative EphA4 mutant and activation of EphA4 led to tyrosine phosphorylation of a kinase-negative FGFR1 mutant. Moreover, both receptors stimulate tyrosine phosphorylation of the docking protein FRS2α and induce mitogen-activated protein kinase stimulation with a time course and intensity that depends on the ligand that is applied. We also demonstrate that FGF-receptor-mediated mitogen-activated protein kinase stimulation is potentiated in cells costimulated with ephrin-A1. The direct interaction between EphA4 and FGFRs and the potentiation of FGF response that is induced by ephrin-A1 stimulation may modulate the biological responses that are mediated by these receptor families in cells or tissues in which the two receptors are coexpressed. PMID:16365308

  6. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    SciTech Connect

    Watanabe, H.; Grubb, J.H.; Sly, W.S. )

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.

  7. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Zhenlong; Gorfe, Alemayehu A.

    2014-12-01

    Lipid-polymer hybrid (LPH) nanoparticles represent a novel class of targeted drug delivery platforms that combine the advantages of liposomes and biodegradable polymeric nanoparticles. However, the molecular details of the interaction between LPHs and their target cell membranes remain poorly understood. We have investigated the receptor-mediated membrane adhesion process of a ligand-tethered LPH nanoparticle using extensive dissipative particle dynamics (DPD) simulations. We found that the spontaneous adhesion process follows a first-order kinetics characterized by two distinct stages: a rapid nanoparticle-membrane engagement, followed by a slow growth in the number of ligand-receptor pairs coupled with structural re-organization of both the nanoparticle and the membrane. The number of ligand-receptor pairs increases with the dynamic segregation of ligands and receptors toward the adhesion zone causing an out-of-plane deformation of the membrane. Moreover, the fluidity of the lipid shell allows for strong nanoparticle-membrane interactions to occur even when the ligand density is low. The LPH-membrane avidity is enhanced by the increased stability of each receptor-ligand pair due to the geometric confinement and the cooperative effect arising from multiple binding events. Thus, our results reveal the unique advantages of LPH nanoparticles as active cell-targeting nanocarriers and provide some general principles governing nanoparticle-cell interactions that may aid future design of LPHs with improved affinity and specificity for a given target of interest.

  8. Histaminergic H1 receptors mediate L-histidine-induced anxiety in elevated plus-maze test in mice.

    PubMed

    Kumar, Kuchibhotla Vijaya; Krishna, Devarakonda Rama; Palit, Gautam

    2007-05-01

    The central histaminergic system is reported to mediate behavioural, hormonal and physiological homeostasis of living organisms. Recent reports indicate its prominent role in various neurobehavioural disorders such as depression and psychosis. This study evaluated the effect of activation of the central histaminergic system in anxiety-like conditions, using the elevated plus-maze test in mice, and elucidated the role of different histaminergic receptors mediating such effects. Peripheral administration of L-histidine (L-His), in a dose-dependent manner, significantly decreased the exploration time in open arms and number of entries into open arms without modifying the number of entries into closed arms of the elevated plus-maze, indicating anxiogenesis. Further, such effects of central histamine were significantly attenuated, in a dose-dependent manner, by pretreatment with pyrilamine (H1 receptor antagonist). Pretreatment with either zolantidine (H2 receptor antagonist) or thioperamide (H3 receptor antagonist), however, failed to attenuate the L-His-induced anxiogenesis. Our results indicate that anxiogenic effects of central histaminergic system appear to be mediated prominently by activation of H1 receptors.

  9. Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells

    SciTech Connect

    Mong, S.; Miller, J.; Wu, H.L.; Crooke, S.T.

    1988-02-01

    A sheep tracheal smooth muscle primary culture cell system was developed to characterize leukotriene D4 (LTD4) receptor-mediated biochemical and pharmacological effects. (/sup 3/H)LTD4 binding to the enriched plasma membrane receptor was specific, stereoselective and saturable. LTE4 and high affinity receptor antagonists bound to the receptors with a rank-order potency that was expected from previous smooth muscle contraction studies. In the (/sup 3/H)myoinositol labeled cells, LTD4 and LTE4 induced phosphoinositide hydrolysis. The biosynthesis of (/sup 3/H)inositol-trisphosphate was rapid and the induction of biosynthesis of (/sup 3/H)inositol-monophosphate by LTs was stereoselective and specific and was inhibited specifically by a receptor antagonist, SKF 104353. In the fura-2 loaded smooth muscle cells, LTD4 and LTE4 induced transient intracellular Ca++ mobilization. The fura-2/Ca++ transient was stereoselective and specific and was inhibited by receptor antagonist, SKF 104353. These results suggest that the cultured sheep tracheal smooth muscle cells have plasma membrane receptors for LTD4. These receptors were coupled to a phospholipase C that, when activated by agonists, induced hydrolysis of inositol containing phospholipids. The hydrolysis products, e.g. diacylglycerol and inositol-trisphosphate, may serve as intracellular messengers that trigger or contribute to the contractile effect in sheep tracheal smooth muscle.

  10. Fatty acyl specificity of the receptor-mediated release of polyunsaturated fatty acids from vascular endothelial cells

    SciTech Connect

    Rosenthal, M.D.

    1987-05-01

    Histamine and bradykinin appear to exhibit the same fatty acid specificity as thrombin. Incubation of human umbilical vein endothelial cells with 10 ..mu..M histamine for 10 min in buffered saline containing 50 ..mu..M fat-free albumin stimulates the release of previously incorporated (/sup 14/C)arachidonate but not (/sup 14/C)22:4(n-6) or (/sup 14/C)20:3(n-6). Similarly calf pulmonary artery endothelial cells release (/sup 14/C)arachidonate but not (/sup 14/C)22:4(n-6) in response to either bradykinin (1 /sup +/g/ml) or histamine (10..mu..M). In both types of endothelial cells, the calcium ionophore A23187 (10 ..mu..M) exhibits the same pattern of fatty acyl specificity as the receptor-mediated agonists. By contrast, mellitin (2-4 ..mu..g/ml) stimulates the release of free 22:4(n-6) and oleate in addition to arachidonate; release of 22:4(n-6) is 30-70% that of arachidonate. These results suggest that histamine, bradykinin and thrombin stimulate a common calcium-dependent fatty acyl-specific phospholipase activity.

  11. Resveratrol attenuates acute kidney injury by inhibiting death receptor-mediated apoptotic pathways in a cisplatin-induced rat model

    PubMed Central

    Hao, Qiufa; Xiao, Xiaoyan; Zhen, Junhui; Feng, Jinbo; Song, Chun; Jiang, Bei; Hu, Zhao

    2016-01-01

    Acute kidney injury is a clinical syndrome characterized by a loss of renal function and acute tubular necrosis. Resveratrol exerts a wide range of pharmacological effects based on its anti-inflammatory, antioxidant and cytoprotective properties. The present study aimed to evaluate whether resveratrol attenuates acute kidney injury in a cisplatin-induced rat model and to investigate the potential mechanisms involved. Rats were randomly divided into four treatment groups: Control, cisplatin, resveratrol, and cisplatin plus resveratrol. Rats exposed to cisplatin displayed acute kidney injury, identified by analysis of renal function and histopathological observation. Resveratrol significantly ameliorated the increased serum creatinine, blood urea nitrogen, renal index and histopathological damage induced by cisplatin. Furthermore, compared with untreated control animals, cisplatin lead to significantly increased expression of Fas ligand, tumor necrosis factor-α (TNF-α), caspase-8 and Bcl-2 associated protein X apoptosis regulator (Bax), and decreased expression of anti-apoptosis regulators, BH3 interacting domain death agonist (BID) and B cell lymphoma 2 apoptosis regulator (Bcl-2). Administration of resveratrol significantly reversed the cisplatin-induced alteration in these apoptosis-associated proteins. In conclusion, these findings suggest that resveratrol attenuates cisplatin-induced acute kidney injury through inactivation of the death receptor-mediated apoptotic pathway, and may provide a new therapeutic strategy to ameliorate the process of acute kidney injury. PMID:27600998

  12. Nuclear Membranes ETB Receptors Mediate ET-1-induced Increase of Nuclear Calcium in Human Left Ventricular Endocardial Endothelial Cells.

    PubMed

    Jules, Farah; Avedanian, Levon; Al-Khoury, Johny; Keita, Ramatoulaye; Normand, Alexandre; Bkaily, Ghassan; Jacques, Danielle

    2015-07-01

    In fetal human left ventricular endocardial endothelial cells (EECLs), both plasma membrane (PM) ET(A)R and ET(B)R were reported to mediate ET-1-induced increase of intracellular calcium [Ca](i); however, this effect was mediated by ET(A)R in right EECs (EECRs). In this study, we verified whether, as for the PM, nuclear membranes (NMs) ET-1 receptors activation in EECLs and EECRs induce an increase of nuclear calcium ([Ca](n)) and if this effect is mediated through the same receptor type as in PM. Using a plasmalemma-perforated technique and 3D confocal microscopy, our results showed that, as in PM intact cells, superfusion of nuclei of both cell types with cytosolic ET-1 induced a concentration-dependent sustained increase of [Ca](n). In EECRs, the ET(A)R antagonist prevented the effect of ET-1 on [Ca](n) without affecting EECLs. However, in both cell types, the effect of cytosolic ET-1 on [Ca](n) was prevented by the ETBR antagonist. In conclusion, both NMs' ET(A)R and ET(B)R mediated the effect of cytosolic ET-1 on [Ca](n) in EECRs. In contrast, only NMs' ET(B)R activation mediated the effect of cytosolic ET-1 in EECLs. Hence, the type of NMs' receptors mediating the effect of ET-1 on [Ca](n) are different from those of PM mediating the increase in [Ca](i).

  13. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.

    PubMed

    Li, Zhenlong; Gorfe, Alemayehu A

    2015-01-14

    Lipid-polymer hybrid (LPH) nanoparticles represent a novel class of targeted drug delivery platforms that combine the advantages of liposomes and biodegradable polymeric nanoparticles. However, the molecular details of the interaction between LPHs and their target cell membranes remain poorly understood. We have investigated the receptor-mediated membrane adhesion process of a ligand-tethered LPH nanoparticle using extensive dissipative particle dynamics (DPD) simulations. We found that the spontaneous adhesion process follows a first-order kinetics characterized by two distinct stages: a rapid nanoparticle-membrane engagement, followed by a slow growth in the number of ligand-receptor pairs coupled with structural re-organization of both the nanoparticle and the membrane. The number of ligand-receptor pairs increases with the dynamic segregation of ligands and receptors toward the adhesion zone causing an out-of-plane deformation of the membrane. Moreover, the fluidity of the lipid shell allows for strong nanoparticle-membrane interactions to occur even when the ligand density is low. The LPH-membrane avidity is enhanced by the increased stability of each receptor-ligand pair due to the geometric confinement and the cooperative effect arising from multiple binding events. Thus, our results reveal the unique advantages of LPH nanoparticles as active cell-targeting nanocarriers and provide some general principles governing nanoparticle-cell interactions that may aid future design of LPHs with improved affinity and specificity for a given target of interest.

  14. Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice.

    PubMed

    Silva, Francisco; Zambre, Ajit; Campello, Maria Paula Cabral; Gano, Lurdes; Santos, Isabel; Ferraria, Ana Maria; Ferreira, Maria João; Singh, Amolak; Upendran, Anandhi; Paulo, António; Kannan, Raghuraman

    2016-04-20

    To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake. PMID:27003101

  15. Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides.

    PubMed

    Celik, Melih Ö; Labuz, Dominika; Henning, Karen; Busch-Dienstfertig, Melanie; Gaveriaux-Ruff, Claire; Kieffer, Brigitte L; Zimmer, Andreas; Machelska, Halina

    2016-10-01

    Opioids are the most powerful analgesics. As pain is driven by sensory transmission and opioid receptors couple to inhibitory G proteins, according to the classical concept, opioids alleviate pain by activating receptors on neurons and blocking the release of excitatory mediators (e.g., substance P). Here we show that analgesia can be mediated by opioid receptors in immune cells. We propose that activation of leukocyte opioid receptors leads to the secretion of opioid peptides Met-enkephalin, β-endorphin and dynorphin A (1-17), which subsequently act at local neuronal receptors, to relieve pain. In a mouse model of neuropathic pain induced by a chronic constriction injury of the sciatic nerve, exogenous agonists of δ-, μ- and κ-opioid receptors injected at the damaged nerve infiltrated by opioid peptide- and receptor-expressing leukocytes, produced analgesia, as assessed with von Frey filaments. The analgesia was attenuated by pharmacological or genetic inactivation of opioid peptides, and by leukocyte depletion. This decrease in analgesia was restored by the transfer of wild-type, but not opioid receptor-lacking leukocytes. Ex vivo, exogenous opioids triggered secretion of opioid peptides from wild-type immune cells isolated from damaged nerves, which was diminished by blockade of Gαi/o or Gβγ (but not Gαs) proteins, by chelator of intracellular (but not extracellular) Ca(2+), by blockers of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptors, and was partially attenuated by protein kinase C inhibitor. Similarly, the leukocyte depletion-induced decrease in exogenous opioid analgesia was re-established by transfer of immune cells ex vivo pretreated with extracellular Ca(2+) chelator, but was unaltered by leukocytes pretreated with intracellular Ca(2+) chelator or blockers of Gαi/o and Gβγ proteins. Thus, both ex vivo opioid peptide release and in vivo analgesia were mediated by leukocyte opioid receptors coupled to the G

  16. Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides.

    PubMed

    Celik, Melih Ö; Labuz, Dominika; Henning, Karen; Busch-Dienstfertig, Melanie; Gaveriaux-Ruff, Claire; Kieffer, Brigitte L; Zimmer, Andreas; Machelska, Halina

    2016-10-01

    Opioids are the most powerful analgesics. As pain is driven by sensory transmission and opioid receptors couple to inhibitory G proteins, according to the classical concept, opioids alleviate pain by activating receptors on neurons and blocking the release of excitatory mediators (e.g., substance P). Here we show that analgesia can be mediated by opioid receptors in immune cells. We propose that activation of leukocyte opioid receptors leads to the secretion of opioid peptides Met-enkephalin, β-endorphin and dynorphin A (1-17), which subsequently act at local neuronal receptors, to relieve pain. In a mouse model of neuropathic pain induced by a chronic constriction injury of the sciatic nerve, exogenous agonists of δ-, μ- and κ-opioid receptors injected at the damaged nerve infiltrated by opioid peptide- and receptor-expressing leukocytes, produced analgesia, as assessed with von Frey filaments. The analgesia was attenuated by pharmacological or genetic inactivation of opioid peptides, and by leukocyte depletion. This decrease in analgesia was restored by the transfer of wild-type, but not opioid receptor-lacking leukocytes. Ex vivo, exogenous opioids triggered secretion of opioid peptides from wild-type immune cells isolated from damaged nerves, which was diminished by blockade of Gαi/o or Gβγ (but not Gαs) proteins, by chelator of intracellular (but not extracellular) Ca(2+), by blockers of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptors, and was partially attenuated by protein kinase C inhibitor. Similarly, the leukocyte depletion-induced decrease in exogenous opioid analgesia was re-established by transfer of immune cells ex vivo pretreated with extracellular Ca(2+) chelator, but was unaltered by leukocytes pretreated with intracellular Ca(2+) chelator or blockers of Gαi/o and Gβγ proteins. Thus, both ex vivo opioid peptide release and in vivo analgesia were mediated by leukocyte opioid receptors coupled to the G

  17. [Anti-NMDA receptor encephalitis: two paediatric cases].

    PubMed

    González-Toro, M Cristina; Jadraque-Rodríguez, Rocío; Sempere-Pérez, Ángela; Martínez-Pastor, Pedro; Jover-Cerdá, Jenaro; Gómez-Gosálvez, Francisco

    2013-12-01

    Introduccion. La encefalitis asociada a anticuerpos antirreceptores de N-metil-D-aspartato (NMDA) es una patologia neurologica autoinmune documentada en la poblacion pediatrica de manera creciente en los ultimos años. Se presentan dos casos de nuestra experiencia con clinica similar. Casos clinicos. Caso 1: niña de 5 años que inicia un cuadro de convulsiones y alteracion de conciencia, asociando trastornos del movimiento y regresion de habilidades previamente adquiridas que evoluciona a autismo. Caso 2: niña de 13 años que presenta hemiparesia izquierda, movimientos anomalos, trastorno de conducta y disautonomia. En ambos casos se obtienen anticuerpos antirreceptores de NMDA positivos en el liquido cefalorraquideo y se diagnostican de encefalitis antirreceptor de NMDA. En el primer caso se inicia el tratamiento con perfusion intravenosa de corticoides e inmunoglobulinas y es necesario asociar rituximab. En el segundo, corticoides e inmunoglobulinas. La evolucion fue favorable en ambas pacientes, con una leve alteracion del lenguaje como secuela en el primer caso y una recaida en el segundo caso, con resolucion completa. Conclusion. La encefalitis antirreceptor de NMDA es un trastorno tratable y es importante el diagnostico y tratamiento precoz, ya que mejora el pronostico y disminuye las recaidas.

  18. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    PubMed

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic. PMID:11554551

  19. NMDA receptor structures reveal subunit arrangement and pore architecture

    PubMed Central

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  20. Preparation and characterization of folate-poly(ethylene glycol)-grafted-trimethylchitosan for intracellular transport of protein through folate receptor-mediated endocytosis.

    PubMed

    Zheng, Yu; Song, Xiangrong; Darby, Michael; Liang, Yufeng; He, Ling; Cai, Zheng; Chen, Qiuhong; Bi, Yueqi; Yang, Xiaojuan; Xu, Jiapeng; Li, Yuanbo; Sun, Yiyi; Lee, Robert J; Hou, Shixiang

    2010-01-01

    To develop a receptor-mediated intracellular delivery system that can transport therapeutic proteins to specific tumor cells, folate-poly(ethylene glycol)-grafted-trimethylchitosan (folate-PEG-g-TMC) was synthesized. Nano-scaled spherical polyelectrolyte complexes between the folate-PEG-g-TMC and fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) were prepared under suitable weight ratio of copolymer to FITC-BSA by ionic interaction between the positively charged copolymers and the negatively charged FITC-BSA. Intracellular uptake of FITC-BSA was specifically enhanced in SKOV3 cells (folate receptor over-expressing cell line) through folate receptor-mediated endocytosis compared with A549 cells (folate receptor deficient cell line). Folate-PEG-g-TMC shows promise for intracellular transport of negatively charged therapeutic proteins into folate receptor over-expressing tumor cells.

  1. Monoacylglycerol lipase promotes Fcγ receptor-mediated phagocytosis in microglia but does not regulate LPS-induced upregulation of inflammatory cytokines.

    PubMed

    Kouchi, Zen

    2015-08-21

    Monoacylglycerol lipase (MAGL) is important for neuroinflammation. However, the regulatory mechanisms underlying its expression and function remain unknown. Lipopolysaccharide (LPS) treatment post-translationally upregulated MAGL expression, whereas it downregulated MAGL transcription through a Stat6-mediated mechanism in microglia. Neither MAGL knockdown nor JZL-184, a selective MAGL inhibitor, suppressed LPS-induced upregulation of inflammatory cytokines in microglia. Moreover, exogenous expression of MAGL in BV-2 microglial cell line, which lacks endogenous MAGL, did not promote the induction of inflammatory cytokines by LPS treatment. Interestingly, MAGL knockdown reduced Fcγ receptor-mediated phagocytosis in primary microglia, and introduction of MAGL into the BV-2 cells increased Fcγ receptor-mediated phagocytosis. Collectively, these results suggest that MAGL regulates phagocytosis, but not LPS-mediated cytokine induction in microglia.

  2. From molecular phylogeny towards differentiating pharmacology for NMDA receptor subtypes.

    PubMed

    Platt, Randall J; Curtice, Kigen J; Twede, Vernon D; Watkins, Maren; Gruszczyński, Paweł; Bulaj, Grzegorz; Horvath, Martin P; Olivera, Baldomero M

    2014-04-01

    In order to decode the roles that N-methyl-D-aspartate (NMDA) receptors play in excitatory neurotransmission, synaptic plasticity, and neuropathologies, there is need for ligands that differ in their subtype selectivity. The conantokin family of Conus peptides is the only group of peptidic natural products known to target NMDA receptors. Using a search that was guided by phylogeny, we identified new conantokins from the marine snail Conus bocki that complement the current repertoire of NMDA receptor pharmacology. Channel currents measured in Xenopus oocytes demonstrate conantokins conBk-A, conBk-B, and conBk-C have highest potencies for NR2D containing receptors, in contrast to previously characterized conantokins that preferentially block NR2B containing NMDA receptors. Conantokins are rich in γ-carboxyglutamate, typically 17-34 residues, and adopt helical structure in a calcium-dependent manner. As judged by CD spectroscopy, conBk-C adopts significant helical structure in a calcium ion-dependent manner, while calcium, on its own, appears insufficient to stabilize helical conformations of conBk-A or conBk-B. Molecular dynamics simulations help explain the differences in calcium-stabilized structures. Two-dimensional NMR spectroscopy shows that the 9-residue conBk-B is relatively unstructured but forms a helix in the presence of TFE and calcium ions that is similar to other conantokin structures. These newly discovered conantokins hold promise that further exploration of small peptidic antagonists will lead to a set of pharmacological tools that can be used to characterize the role of NMDA receptors in nervous system function and disease.

  3. Regulation of rat cortical 5-hydroxytryptamine2A-receptor mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine

    PubMed Central

    Marek, Gerard J.

    2008-01-01

    Down-regulation of 5-hydroxytryptamine2A (5-HT2A) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT2A receptor binding sites. However, the effects of antidepressants on 5-HT2A receptor-mediated responses on identified cells of the cerebral cortex has not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT2A receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT2A receptors was consistent with 5-HT2A receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT2A receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex. PMID:18294819

  4. Regulation of rat cortical 5-hydroxytryptamine2A receptor-mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine.

    PubMed

    Marek, Gerard J

    2008-07-01

    Down-regulation of 5-hydroxytryptamine(2A) (5-HT(2A)) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT(2A) receptor binding sites. However, the effects of antidepressants on 5-HT(2A) receptor-mediated responses on identified cells of the cerebral cortex have not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT(2A) receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT(2A) receptors were consistent with 5-HT(2A) receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT(2A) receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex.

  5. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms.

    PubMed

    Wu, Kuo; Len, Guo-Wei; McAuliffe, Geoff; Ma, Chia; Tai, Jessica P; Xu, Fei; Black, Ira B

    2004-11-01

    Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that

  6. NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons.

    PubMed

    Molosh, Andrei I; Sajdyk, Tammy J; Truitt, William A; Zhu, Weiguo; Oxford, Gerry S; Shekhar, Anantha

    2013-06-01

    Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.

  7. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    SciTech Connect

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  8. Inhibitory effects of nordihydroguaiaretic acid on ETA-receptor-mediated contractions to endothelin-1 in rat trachea.

    PubMed Central

    Henry, P. J.

    1994-01-01

    1. It has been shown previously that nordihydroguaiaretic acid (NDGA) inhibits endothelin-1 (ET-1)-induced contractions in rat isolated tracheal smooth muscle. To investigate the underlying mechanisms, this study examined the effects of NDGA on various aspects of the ETA and ETB receptor-effector systems which mediate ET-1-induced contractions in this preparation. 2. NDGA inhibited contractions induced by each of the isoforms of ET (ET-1, ET-2 and ET-3) but not those induced by the ETB receptor-selective agonist, sarafotoxin S6c, the cholinoceptor agonist, carbachol or the depolarizing spasmogen, KCl. 3. Quantitative autoradiographic studies of [125I]-ET-1 binding to rat tracheal smooth muscle indicated that NDGA was not an ET receptor antagonist. 4. NDGA inhibited the ETA receptor-mediated, intracellular Ca(2+)-dependent contractions induced by 100 nM ET-1 in Ca(2+)-free solution (by 75%, P < 0.01). Furthermore, NDGA markedly inhibited the contractions induced by ryanodine and cyclopiazonic acid; contractions purportedly due to Ca2+ release from intracellular stores. 5. Like NDGA, the sarcoplasmic reticulum Ca(2+)-ATPase inhibitors cyclopiazonic acid and thapsigargin inhibited contractions to ET-1, but not carbachol or KCl. However, cyclopiazonic acid, but not NDGA, also (a) induced transient contractions in rat trachea, (b) potentiated contractions induced by KCl, and (c) potentiated the extracellular Ca(2+)-dependent phase of ET-1-induced contractions, indicating that NDGA did not inhibit ET-1-induced contractions through Ca(2+)-ATPase inhibition and depletion of sarcoplasmic reticular Ca2+. 6. In control preparations, ET-1 induced a slowly developing, sustained contraction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004399

  9. Receptor-mediated hepatic uptake of M6P-BSA-conjugated triplex-forming oligonucleotides in rats.

    PubMed

    Ye, Zhaoyang; Cheng, Kun; Guntaka, Ramareddy V; Mahato, Ram I

    2006-01-01

    Excessive production of extracellular matrix, predominantly type I collagen, results in liver fibrosis. Earlier we synthesized mannose 6-phosphate-bovine serum albumin (M6P-BSA) and conjugated to the type I collagen specific triplex-forming oligonucleotide (TFO) for its enhanced delivery to hepatic stellate cells (HSCs), which is the principal liver fibrogenic cell. In this report, we demonstrate a time-dependent cellular uptake of M6P-BSA-33P-TFO by HSC-T6 cells. Both cellular uptake and nuclear deposition of M6P-BSA-33P-TFO were significantly higher than those of 33P-TFO, leading to enhanced inhibition of type I collagen transcription. Following systemic administration into rats, hepatic accumulation of M6P-BSA-33P-TFO increased from 55% to 68% with the number of M6P per BSA from 14 to 27. Unlike 33P-TFO, there was no significant decrease in the hepatic uptake of (M6P)20-BSA-33P-TFO in fibrotic rats. Prior administration of excess M6P-BSA decreased the hepatic uptake of (M6P)20-BSA-33P-TFO from 66% to 40% in normal rats, and from 60% to 15% in fibrotic rats, suggesting M6P/insulin-like growth factor II (M6P/IGF II) receptor-mediated endocytosis of M6P-BSA-33P-TFO by HSCs. Almost 82% of the total liver uptake in fibrotic rats was contributed by HSCs. In conclusion, by conjugation with M6P-BSA, the TFO could be potentially used for the treatment of liver fibrosis.

  10. Ca(2+)-independent F-actin assembly and disassembly during Fc receptor- mediated phagocytosis in mouse macrophages

    PubMed Central

    1991-01-01

    Phagocytosis of IgG-coated particles by macrophages is presumed to involve the actin-based cytoskeleton since F-actin accumulates beneath forming phagosomes, and particle engulfment is blocked by cytochalasins, drugs that inhibit actin filament assembly. However, it is unknown whether Fc receptor ligation affects the rate or extent of F- actin assembly during phagocytosis of IgG-coated particles. To examine this question we have used a quantitative spectrofluorometric method to examine F-actin dynamics during a synchronous wave of phagocytosis of IgG-coated red blood cells by inflammatory mouse macrophages. We observed a biphasic rise in macrophage F-actin content during particle engulfment, with maxima at 1 and 5 min after the initiation of phagocytosis. F-actin declined to resting levels by 30 min, by which time particle engulfment was completed. These quantitative increases in macrophage F-actin were reflected in localized changes in F-actin distribution. Previous work showed that the number of IgG-coated particles engulfed by macrophages is unaffected by buffering extracellular calcium or by clamping cytosolic free calcium concentration ([Ca2+]i) to very low levels (Di Virgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. J. Cell Biol. 106: 657-666). To determine whether clamping [Ca2+]i in macrophages affects the rate of particle engulfment, or the assembly or disassembly of F- actin during phagocytosis, we examined these parameters in macrophages whose [Ca2+]i had been clamped to approximately less than 3 nM with fura 2/AM and acetoxymethyl ester of EGTA. We found that the initial rate of phagocytosis, and the quantities of F-actin assembled and disassembled were similar in Ca(2+)-replete and Ca(2+)-depleted macrophages. We conclude that Fc receptor-mediated phagocytosis in mouse macrophages is accompanied by an ordered sequence of assembly and disassembly of F-actin that is insensitive to [Ca2+]i. PMID:2026648

  11. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue.

    PubMed

    Silkworth, J B; Antrim, L A; Sack, G

    1986-12-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue.

  12. Modulation of the input–output function by GABAA receptor-mediated currents in rat oculomotor nucleus motoneurons

    PubMed Central

    Torres-Torrelo, Julio; Torres, Blas; Carrascal, Livia

    2014-01-01

    The neuronal input–output function depends on recruitment threshold and gain of the firing frequency–current (f–I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at the synaptic cleft activates postsynaptic GABAA receptors, allowing neuronal information transfer. In some neuronal populations, low concentrations of GABA activate non-synaptic GABAA receptors and generate a tonic inhibition, which modulates cell excitability. This study determined how ambient GABA concentrations modulate the input–output relationship of rat oculomotor nucleus MNs. Superfusion of brain slices with GABA (100 μm) produced a GABAA receptor-mediated current that reduced the input resistance, increased the recruitment threshold and shifted the f–I relationship rightward without any change in gain. These modifications did not depend on MN size. In absence of exogenous GABA, gabazine (20 μm; antagonist of GABAA receptors) abolished spontaneous inhibitory postsynaptic currents and revealed a tonic current in MNs. Gabazine increased input resistance and decreased recruitment threshold mainly in larger MNs. The f–I relationship shifted to the left, without any change in gain. Gabazine effects were chiefly due to MN tonic inhibition because tonic current amplitude was five-fold greater than phasic. This study demonstrates a tonic inhibition in ocular MNs that modulates cell excitability depending on cell size. We suggest that GABAA tonic inhibition acting concurrently with glutamate receptors activation could reproduce the positive covariation between threshold and gain reported in alert preparation. PMID:25194049

  13. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  14. Pentosan polysulfate regulates scavenger receptor-mediated, but not fluid-phase, endocytosis in immortalized cerebral endothelial cells.

    PubMed

    Deli, M A; Abrahám, C S; Takahata, H; Katamine, S; Niwa, M

    2000-12-01

    1. Effects of pentosan polysulfate (PPS) and the structurally related sulfated polyanions dextran sulfate, fucoidan, and heparin on the scavenger receptor-mediated and fluidphase endocytosis in GP8 immortalized rat brain endothelial cells were investigated. 2. Using 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarboxyamine perchlorate-labeled acetylated low-density lipoprotein (DiI-AcLDL), we found a binding site with high affinity and low binding capacity, and another one with low affinity and high binding capacity. Increasing ligand concentrations could not saturate DiI-AcLDL uptake. DiI-AcLDL uptake, but not binding, was sensitive to pretreatment with filipin, an inhibitor of caveola formation. 3. PPS (20-200 microg/ml) significantly reduced the binding of DiI-AcLDL after coincubation for 3 hr, though this effect was less expressed after 18 hr. Among other polyanions, only fucoidan decreased the DiI-AcLDL binding after 3 hr, whereas dextran sulfate significantly increased it after 18 hr. PPS treatment induced an increase in DiI-AcLDL uptake, whereas other polysulfated compounds caused a significant reduction. 4. Fluid-phase endocytosis determined by the accumulation of Lucifer yellow was concentration and time dependent in GP8 cells. Coincubation with PPS or other sulfated polyanions could not significantly alter the rate of Lucifer yellow uptake. 5. In conclusion. PPS decreased the binding and increased the uptake of DiI-AcLDL in cerebral endothelial cells, an effect not mimicked by the other polyanions investigated.

  15. Receptor-Mediated Recognition and Uptake of Iron from Human Transferrin by Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Modun, Belinda; Evans, Robert W.; Joannou, Christopher L.; Williams, Paul

    1998-01-01

    Staphylococcus aureus and Staphylococcus epidermidis both recognize and bind the human iron-transporting glycoprotein, transferrin, via a 42-kDa cell surface protein receptor. In an iron-deficient medium, staphylococcal growth can be promoted by the addition of human diferric transferrin but not human apotransferrin. To determine whether the staphylococcal transferrin receptor is involved in the removal of iron from transferrin, we employed 6 M urea–polyacrylamide gel electrophoresis, which separates human transferrin into four forms (diferric, monoferric N-lobe, and monoferric C-lobe transferrin and apotransferrin). S. aureus and S. epidermidis but not Staphylococcus saprophyticus (which lacks the transferrin receptor) converted diferric human transferrin into its apotransferrin form within 30 min. During conversion, iron was removed sequentially from the N lobe and then from the C lobe. Metabolic poisons such as sodium azide and nigericin inhibited the release of iron from human transferrin, indicating that it is an energy-requiring process. To demonstrate that this process is receptor rather than siderophore mediated, we incubated (i) washed staphylococcal cells and (ii) the staphylococcal siderophore, staphyloferrin A, with porcine transferrin, a transferrin species which does not bind to the staphylococcal receptor. While staphyloferrin A removed iron from both human and porcine transferrins, neither S. aureus nor S. epidermidis cells could promote the release of iron from porcine transferrin. In competition binding assays, both native and recombinant N-lobe fragments of human transferrin as well as a naturally occurring human transferrin variant with a mutation in the C-lobe blocked binding of 125I-labelled transferrin. Furthermore, the staphylococci removed iron efficiently from the iron-loaded N-lobe fragment of human transferrin. These data demonstrate that the staphylococci efficiently remove iron from transferrin via a receptor-mediated process and

  16. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  17. Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice.

    PubMed

    Kramer, Elizabeth L; Mushaben, Elizabeth M; Pastura, Patricia A; Acciani, Thomas H; Deutsch, Gail H; Khurana Hershey, Gurjit K; Korfhagen, Thomas R; Hardie, William D; Whitsett, Jeffrey A; Le Cras, Timothy D

    2009-10-01

    Transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-alpha in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-alpha in airway epithelium (Clara cell secretory protein-rtTA(+/-)/[tetO](7)-TGF-alpha(+/-)). The goal of this study was to determine the role of Egr-1 in TGF-alpha-induced lung disease. To accomplish this, TGF-alpha-transgenic mice were crossed to Egr-1 knockout (Egr-1(ko/ko)) mice. The lack of Egr-1 markedly increased the severity of TGF-alpha-induced pulmonary disease, dramatically enhancing airway muscularization, increasing pulmonary fibrosis, and causing greater airway hyperresponsiveness to methacholine. Smooth muscle hyperplasia, not hypertrophy, caused the ASM thickening in the absence of Egr-1. No detectable increases in pulmonary inflammation were found. In addition to the airway remodeling disease, vascular remodeling and pulmonary hypertension were also more severe in Egr-1(ko/ko) mice. Thus, Egr-1 acts to suppress epidermal growth factor receptor-mediated airway and vascular muscularization, fibrosis, and airway hyperresponsiveness in the absence of inflammation. This provides a unique model to study the processes causing pulmonary fibrosis and ASM thickening without the complicating effects of inflammation.

  18. Role of various kinases in muscarinic M3 receptor-mediated contraction of longitudinal muscle of rat colon

    PubMed Central

    Anderson, Charles D.; Kendig, Derek M.; Al-Qudah, Mohammad; Mahavadi, Sunila; Murthy, Karnam S.; Grider, John R.

    2016-01-01

    The longitudinal muscle layer in gut is the functional opponent to the circular muscle layer during peristalsis. Differences in innervation of the layers allow for the contraction of one layer concurrently with the relaxation of the other, enabling the passage of gut contents in a controlled fashion. Differences in development have given the cells of the two layers differences in receptor populations, membrane lipid handling, and calcium handling profiles/behaviors. The contractile activity of the longitudinal muscle is largely mediated by cholinergic neural input from myenteric plexus. Activation of muscarinic receptors leads to rapid activation of several kinases including MLC kinase, ERK1/2, CaMKII and Rho kinase. Phosphorylation of myosin light chain (MLC20) by MLC kinase (MLCK) is a prerequisite for contraction in both circular and longitudinal muscle cells. In rat colonic longitudinal muscle strips, we measured muscarinic receptor-mediated contraction following incubation with kinase inhibitors. Basal tension was differentially regulated by Rho kinase, ERK1/2, CaMKII and CaMKK. Selective inhibitors of Rho kinase, ERK1/2, CaMKK/AMPK, and CaMKII each reduced carbachol-induced contraction in the innervated muscle strips. These inhibitors had no direct effect on MLCK activity. Thus unlike previously reported for isolated muscle cells where CaMKII and ERK1/2 are not involved in contraction, we conclude that the regulation of carbachol-induced contraction in innervated longitudinal muscle strips involves the interplay of Rho kinase, ERK1/2, CaMKK/AMPK, and CAMKII. PMID:25891767

  19. Modulation of the input-output function by GABAA receptor-mediated currents in rat oculomotor nucleus motoneurons.

    PubMed

    Torres-Torrelo, Julio; Torres, Blas; Carrascal, Livia

    2014-11-15

    The neuronal input-output function depends on recruitment threshold and gain of the firing frequency-current (f-I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at the synaptic cleft activates postsynaptic GABAA receptors, allowing neuronal information transfer. In some neuronal populations, low concentrations of GABA activate non-synaptic GABAA receptors and generate a tonic inhibition, which modulates cell excitability. This study determined how ambient GABA concentrations modulate the input-output relationship of rat oculomotor nucleus MNs. Superfusion of brain slices with GABA (100 μm) produced a GABAA receptor-mediated current that reduced the input resistance, increased the recruitment threshold and shifted the f-I relationship rightward without any change in gain. These modifications did not depend on MN size. In absence of exogenous GABA, gabazine (20 μm; antagonist of GABAA receptors) abolished spontaneous inhibitory postsynaptic currents and revealed a tonic current in MNs. Gabazine increased input resistance and decreased recruitment threshold mainly in larger MNs. The f-I relationship shifted to the left, without any change in gain. Gabazine effects were chiefly due to MN tonic inhibition because tonic current amplitude was five-fold greater than phasic. This study demonstrates a tonic inhibition in ocular MNs that modulates cell excitability depending on cell size. We suggest that GABAA tonic inhibition acting concurrently with glutamate receptors activation could reproduce the positive covariation between threshold and gain reported in alert preparation.

  20. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  1. Bisphenol A promotes dendritic morphogenesis of hippocampal neurons through estrogen receptor-mediated ERK1/2 signal pathway.

    PubMed

    Xu, Xiaohong; Lu, Yang; Zhang, Guangxia; Chen, Lei; Tian, Dong; Shen, Xiuying; Yang, Yanling; Dong, Fanni

    2014-02-01

    Bisphenol A (BPA), an environmental endocrine disruptor, has attracted increasing attention to its adverse effects on brain developmental process. The previous study indicated that BPA rapidly increased motility and density of dendritic filopodia and enhanced the phosphorylation of N-methyl-d-aspartate (NMDA) receptor subunit NR2B in cultured hippocampal neurons within 30min. The purpose of the present study was further to investigate the effects of BPA for 24h on dendritic morphogenesis and the underlying mechanisms. After cultured for 5d in vitro, the hippocampal neurons from 24h-old rat were infected by AdV-EGFP to indicate time-lapse imaging of living neurons. The results demonstrated that the exposure of the cultured hippocampal neurons to BPA (10, 100nM) or 17β-estradiol (17β-E2, 10nM) for 24h significantly promoted dendritic development, as evidenced by the increased total length of dendrite and the enhanced motility and density of dendritic filopodia. However, these changes were suppressed by an ERs antagonist, ICI182,780, a non-competitive NMDA receptor antagonist, MK-801, and a mitogen-activated ERK1/2-activating kinase (MEK1/2) inhibitor, U0126. Meanwhile, the increased F-actin (filamentous actin) induced by BPA (100nM) was also completely eliminated by these blockers. Furthermore, the result of western blot analyses showed that, the exposure of the cultures to BPA or 17β-E2 for 24h promoted the expression of Rac1/Cdc42 but inhibited that of RhoA, suggesting Rac1 (Ras related C3 botulinum toxinsubstrate 1)/Cdc42 (cell divisioncycle 42) and RhoA (Ras homologous A), the Rho family of small GTPases, were involved in BPA- or 17β-E2-induced changes in the dendritic morphogenesis of neurons. These BPA- or 17β-E2-induced effects were completely blocked by ICI182,780, and were partially suppressed by U0126. These results reveal that, similar to 17β-E2, BPA exerts its effects on dendritic morphogenesis by eliciting both nuclear actions and extranuclear

  2. NMDA Receptors of Gastric-Projecting Neurons in the Dorsal Motor Nucleus of the Vagus Mediate the Regulation of Gastric Emptying by EA at Weishu (BL21).

    PubMed

    Zhang, Xin; Cheng, Bin; Jing, Xianghong; Qiao, Yongfa; Gao, Xinyan; Yu, Huijuan; Zhu, Bing; Qiao, Haifa

    2012-01-01

    A large number of studies have been conducted to explore the efficacy of electroacupuncture (EA) for the treatment of gastrointestinal motility. While several lines of evidence addressed the basic mechanism of EA on gastrointestinal motility regarding effects of limb and abdomen points, the mechanism for effects of the back points on gastric motility still remains unclear. Here we report that the NMDA receptor (NMDAR) antagonist kynurenic acid inhibited the gastric emptying increase induced by high-intensity EA at BL21 and agonist NMDA enhanced the effect of the same treatment. EA at BL21 enhanced NMDAR, but not AMPA receptor (AMPAR) component of miniature excitatory postsynaptic current (mEPSC) in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). In sum, our data demonstrate an important role of NMDAR-mediated synaptic transmission of gastric-projecting DMV neurons in mediating EA at BL21-induced enhancement of gastric emptying. PMID:22654955

  3. Receptor-mediated mitophagy.

    PubMed

    Yamaguchi, Osamu; Murakawa, Tomokazu; Nishida, Kazuhiko; Otsu, Kinya

    2016-06-01

    Mitochondria are essential organelles that supply ATP through oxidative phosphorylation to maintain cellular homeostasis. Extrinsic or intrinsic agents can impair mitochondria, and these impaired mitochondria can generate reactive oxygen species (ROS) as byproducts, inducing cellular damage and cell death. The quality control of mitochondria is essential for the maintenance of normal cellular functions, particularly in cardiomyocytes, because they are terminally differentiated. Accumulation of damaged mitochondria is characteristic of various diseases, including heart failure, neurodegenerative disease, and aging-related diseases. Mitochondria are generally degraded through autophagy, an intracellular degradation system that is conserved from yeast to mammals. Autophagy is thought to be a nonselective degradation process in which cytoplasmic proteins and organelles are engulfed by isolation membrane to form autophagosomes in eukaryotic cells. However, recent studies have described the process of selective autophagy, which targets specific proteins or organelles such as mitochondria. Mitochondria-specific autophagy is called mitophagy. Dysregulation of mitophagy is implicated in the development of chronic diseases including neurodegenerative diseases, metabolic diseases, and heart failure. In this review, we discuss recent progress in research on mitophagy receptors. PMID:27021519

  4. The acute effects of NMDA antagonism: from the rodent to the human brain.

    PubMed

    Gunduz-Bruce, Handan

    2009-05-01

    In the past decade, the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has received support from several lines of clinical evidence, including genetic, postmortem and human psychosis modeling. Recently, superiority of a mGluR2/3 receptor agonist over placebo was demonstrated in a randomized double-blind clinical trial in patients with schizophrenia. Considering the fact that currently available antipsychotics are all dopamine blockers to varying degrees without direct effects on glutamate transmission, this clinical trial highlights the potential utility of glutamatergic agents. In healthy volunteers, the NMDA channel antagonist ketamine induces transient cognitive dysfunction, perceptual aberrations and changes reminiscent of the negative symptoms of schizophrenia. However, how ketamine produces these effects is unclear. Preclinical data on NMDAR hypofunction offer further insights into the pathogenesis of the disorder as it relates to disorganized behavior, stereotypic movements and cognitive dysfunction in the rodent. This review evaluates the existing clinical and preclinical literature in an effort to shed light on the mechanism of action of ketamine as a probe to model NMDAR hypofunction in healthy volunteers. Included in this perspective are direct and indirect effects of ketamine at the neuronal level and in the intact brain. In addition to ketamine's effects on presynaptic and postsynaptic function, effects on glia and other neurotransmitter systems are discussed. While increased extracellular glutamate levels following NMDA antagonist administration stand out as a well replicated finding, evidence suggests that ketamine's effects are not restricted to pyramidal cells, but extend to GABAergic interneurons and the glia. In the glia, ketamine has significant downstream effects on the glutathione metabolism. Further studies are needed to identify the mechanistic connections between ketamine's effects at the cellular and

  5. NMDA receptor currents suppress synapse formation on sprouting axons in vivo.

    PubMed

    Colonnese, Matthew T; Zhao, Jian-Ping; Constantine-Paton, Martha

    2005-02-01

    NMDA receptors (NMDARs) play an important role in the structural maintenance and functional strength of synapses. The causal relationship between these anatomical and functional roles is poorly defined. Using quantitative confocal microscopy, synaptic vesicle immunoreactivity, and differential label of retinal projections, we measured axon volume and synapse density along ipsilateral retinal axons (ipsi axons) sprouting into the superficial visual layers of the superior colliculus (sSC) deafferented by a contralateral retinal lesion (a scotoma) 8 d earlier. When retinal lesions were made at postnatal day 6 (P6), glutamatergic synaptic currents on neurons within the scotoma were significantly reduced. Both ipsi axon sprouting and synapse density were increased by chronic d-AP-5 antagonism of NMDARs. Conversely, ipsi axon sprouting and synapse density were reduced by chronic exposure to the agonist, NMDA, known to functionally depress glutamate transmission in this system. After P11 lesions, however, NMDAR blockade had no effect on sprouting or synapse density. Developmental changes in NMDAR current kinetics could not account for this difference in the structural effects of NMDAR function. Also, synaptic current frequencies within the scotoma were not affected after the P11 lesions. The corticocollicular projection matures during the P11 survival interval and, as indicated by previous work, it is a source of competition for synaptic space and probably of maintained activity in the older sSC. Thus, our results suggest that during early development, NMDAR currents predominantly destabilize nascent synapses. As the neuropil matures, however, competition for synaptic space suppresses axon sprouting and synapse formation regardless of NMDAR function.

  6. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis.

    PubMed

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers' critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position. PMID:27114630

  7. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  8. Synthesis and NMDA receptor affinity of fluorinated dioxadrol analogues.

    PubMed

    Banerjee, Ashutosh; Schepmann, Dirk; Wünsch, Bernhard

    2010-06-01

    A series of dioxadrol analogues with fluorine substituents in position 4 of the piperidine ring has been synthesized and pharmacologically evaluated. The key step in the synthesis was the fluorination of diastereomeric piperidones 6a and 6c as well as diastereomeric alcohols 9a and 9c with DAST. The reaction of the alcohols 9a and 9c took place with inversion of configuration. After removal of the Cbz-protective group, the NMDA receptor affinities of the resulting secondary amines 8a, 8c, 12b, and 12d were investigated in receptor binding studies. It was shown that the like-configuration of the ring junction was crucial for high NMDA receptor affinity. An axially oriented fluorine atom in position 4 led to 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-4-fluoropiperidine (12d, WMS-2517) with a K(i)-value of 27nM. The NMDA receptor affinity of 8c (WMS-2513) with an additional fluorine atom in equatorial 4-position was slightly reduced (K(i)=81 nM). Both fluorinated dioxadrol derivatives 8c and 12d showed high selectivity against sigma(1) and sigma(2) receptors as well as the polyamine binding site of NR2B receptors.

  9. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis

    PubMed Central

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers’ critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position. PMID:27114630

  10. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  11. NMDA Receptor Antagonist Ketamine Impairs Feature Integration in Visual Perception

    PubMed Central

    Meuwese, Julia D. I.; van Loon, Anouk M.; Scholte, H. Steven; Lirk, Philipp B.; Vulink, Nienke C. C.; Hollmann, Markus W.; Lamme, Victor A. F.

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  12. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  13. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting. PMID:10764906

  14. Anti-NMDA Receptor antibody encephalitis with concomitant detection of Varicella zoster virus.

    PubMed

    Solís, Natalia; Salazar, Lucrecia; Hasbun, Rodrigo

    2016-10-01

    The typical presentation of anti-NMDA (N-Methyl-d-Aspartate) receptor encephalitis involves young women with psychiatric, neurologic and autonomic symptoms; it is often associated with mature ovarian teratomas. NMDA receptor encephalitis has been described following Herpes simplex virus (HSV) encephalitis. This case describes a classic presentation of anti-NMDA receptor encephalitis with the concomitant presence of Varicella zoster virus in the cerebrospinal fluid. PMID:27529308

  15. Pre and Post Synaptic NMDA Effects Targeting Purkinje Cells in the Mouse Cerebellar Cortex

    PubMed Central

    Lonchamp, Etienne; Gambino, Frédéric; Dupont, Jean Luc; Doussau, Frédéric; Valera, Antoine; Poulain, Bernard; Bossu, Jean-Louis

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application. PMID:22276158

  16. Proteomic analysis of the mice hippocampus after preconditioning induced by N-methyl-D-aspartate (NMDA).

    PubMed

    do Amaral e Silva Müller, Gabrielle; Vandresen-Filho, Samuel; Tavares, Carolina Pereira; Menegatti, Angela C O; Terenzi, Hernán; Tasca, Carla Inês; Severino, Patricia Cardoso

    2013-05-01

    Preconditioning induced by N-methyl-D-aspartate (NMDA) has been used as a therapeutic tool against later neuronal insults. NMDA preconditioning affords neuroprotection against convulsions and cellular damage induced by the NMDA receptor agonist, quinolinic acid (QA) with time-window dependence. This study aimed to evaluate the molecular alterations promoted by NMDA and to compare these alterations in different periods of time that are related to the presence or lack of neuroprotection. Putative mechanisms related to NMDA preconditioning were evaluated via a proteomic analysis by using a time-window study. After a subconvulsant and protective dose of NMDA administration mice, hippocampi were removed (1, 24 or 72 h) and total protein analyzed by 2DE gels and identified by MALDI-TOF. Differential protein expression among the time induction of NMDA preconditioning was observed. In the hippocampus of protected mice (24 h), four proteins: HSP70(B), aspartyl-tRNA synthetase, phosphatidylethanolamine binding protein and creatine kinase were found to be up-regulated. Two other proteins, HSP70(A) and V-type proton ATPase were found down-regulated. Proteomic analysis showed that the neuroprotection induced by NMDA preconditioning altered signaling pathways, cell energy maintenance and protein synthesis and processing. These events may occur in a sense to attenuate the excitotoxicity process during the activation of neuroprotection promoted by NMDA preconditioning.

  17. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  18. Prolonged GABA(B) receptor-mediated synaptic inhibition in the cat spinal cord: an in vivo study.

    PubMed

    Curtis, D R; Lacey, G

    1998-08-01

    methochloride. Intravenously administered bicuculline hydrochloride, however, had little or no effect on the inhibition of reflexes following continuous flexor-nerve stimulation. These observations are discussed in the context of possible intraspinal pathways and pre- and postsynaptic mechanisms for GABA(A) and GABA(B) receptor-mediated inhibition of the monosynaptic excitation of spinal motoneurones and of the functional significance of central GABA(B) receptor-associated inhibitory processes, given the relatively minimal effects on motor activity and behaviour produced by baclofen antagonists that penetrate the mammalian blood-brain barrier.

  19. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    PubMed

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  20. Evidence for an atypical receptor mediating the augmented bronchoconstrictor response to adenosine induced by allergen challenge in actively sensitized Brown Norway rats.

    PubMed

    Hannon, J P; Tigani, B; Wolber, C; Williams, I; Mazzoni, L; Howes, C; Fozard, J R

    2002-02-01

    The bronchoconstrictor response to adenosine is markedly and selectively increased following ovalbumin (OA) challenge in actively sensitized, Brown Norway rats. We present a pharmacological analysis of the receptor mediating this response. Like adenosine, the broad-spectrum adenosine receptor agonist, NECA, induced dose-related bronchoconstriction in actively sensitized, OA-challenged animals. In contrast, CPA, CGS 21680 and 2-Cl-IB-MECA, agonists selective for A(1) A(2A) and A(3) receptors, respectively, induced no, or minimal, bronchoconstriction. Neither the selective A(1) receptor antagonist, DPCPX, nor the selective A(2A) receptor antagonist, ZM 241385, blocked the bronchoconstrictor response to adenosine. MRS 1754, which has similar affinity for rat A(2B) and A(1) receptors, failed to block the bronchoconstrictor response to adenosine despite blockade of the A(1) receptor-mediated bradycardia induced by NECA. 8-SPT and CGS 15943, antagonists at A(1), A(2A), and A(2B) but not A(3) receptors, inhibited the bronchoconstrictor response to adenosine. However, the degree of blockade (approximately 3 fold) did not reflect the plasma concentrations, which were 139 and 21 times greater than the K(B) value at the rat A(2B) receptor, respectively. Adenosine and NECA, but not CPA, CGS 21680 or 2-Cl-IB-MECA, induced contraction of parenchymal strip preparations from actively sensitized OA-challenged animals. Responses to adenosine could not be antagonized by 8-SPT or MRS 1754 at concentrations >50 times their affinities at the rat A(2B) receptor. The receptor mediating the bronchoconstrictor response to adenosine augmented following allergen challenge in actively sensitized BN rats cannot be categorized as one of the four recognized adenosine receptor subtypes.

  1. NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory.

    PubMed

    Liu, Xing; Gu, Qin-Hua; Duan, Kaizheng; Li, Zheng

    2014-06-25

    NMDA receptor-dependent long-term depression (NMDAR-LTD) is a form of synaptic plasticity leading to long-lasting decreases in synaptic strength. NMDAR-LTD is essential for spatial and working memory, but its role in hippocampus-dependent fear memory has yet to be determined. Induction of NMDAR-LTD requires the activation of caspase-3 by cytochrome c. Cytochrome c normally resides in mitochondria and during NMDAR-LTD is released from mitochondria, a process promoted by Bax (Bcl-2-associated X protein). Bax induces cell death in apoptosis, but it plays a nonapoptotic role in NMDAR-LTD. Here, we investigated the role of NMDAR-LTD in fear memory in CA1-specific Bax knock-out mice. In hippocampal slices from these knock-out mice, while long-term potentiation of synaptic transmission, basal synaptic transmission, and paired-pulse ratio are intact, LTD in both young and fear-conditioned adult mice is obliterated. Interestingly, in CA1-specific Bax knock-out mice, long-term contextual fear memory is impaired, but the acquisition of fear memory and innate fear are normal. Moreover, these conditional Bax knock-out mice exhibit less behavioral despair. These findings indicate that NMDAR-LTD is required for consolidation, but not the acquisition of fear memory. Our study also shows that Bax plays an important role in depressive behavior.

  2. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models

    NASA Astrophysics Data System (ADS)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis.We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor

  3. Impairment of the Anterior Thalamic Head Direction Cell Network Following Administration of the NMDA antagonist MK-801

    PubMed Central

    Housh, Adam A.; Berkowitz, Laura E.; Ybarra, Isaac; Kim, Esther U.; Lee, Brian R.; Calton, Jeffrey L.

    2014-01-01

    Head direction (HD) cells, found in the rodent Papez circuit, are thought to form the neural circuitry responsible for directional orientation. Because NMDA transmission has been implicated in spatial tasks requiring directional orientation, we sought to determine if the NMDA antagonist dizocilpine (MK-801) would disrupt the directional signal carried by the HD network. Anterior thalamic HD cells were isolated in female Long-Evans rats and initially monitored for baseline directional activity while the animals foraged in a familiar enclosure. The animals were then administered MK-801 at a dose of .05 mg/kg or 0.1 mg/kg, or isotonic saline, and cells were re-examined for changes in directional specificity and landmark control. While the cells showed no changes in directional specificity and landmark control following administration of saline or the lower dose of MK-801, the higher dose of MK-801 caused a dramatic attenuation of the directional signal, characterized by decreases in peak firing rates, signal to noise, and directional information content. While the greatly attenuated directional specificity of cells in the high dose condition usually remained stable relative to the landmarks within the recording enclosure, a few cells in this condition exhibited unstable preferred directions within and between recording sessions. Our results are discussed relative to the possibility that the findings explain the effects of MK-801 on the acquisition and performance of spatial tasks. PMID:25307435

  4. Alpha 1-adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2

    SciTech Connect

    Slivka, S.R.; Insel, P.A.

    1987-03-25

    alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2.

  5. NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice.

    PubMed

    Wlaź, Piotr; Kasperek, Regina; Wlaź, Aleksandra; Szumiło, Michał; Wróbel, Andrzej; Nowak, Gabriel; Poleszak, Ewa

    2011-01-01

    It is known that tianeptine exhibits antidepressant-like activity. Its influence on the glutamatergic system is also known, but the mechanisms involved in this activity remain to be established. The aim of this study was to investigate the involvement of the glutamate pathway in the antidepressant-like action of tianeptine. We investigated the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor ligands on tianeptine-induced activity in the forced swim test (FST) in mice. The antidepressant-like activity of tianeptine (30 m/kg, ip) was significantly antagonized by D-serine (100 nmol/mouse icv) and NBQX (10 mg/kg, ip). Moreover, low, ineffective doses of the glycine/NMDA site antagonist L-701,324 (1 mg/kg, ip) administered together with low, ineffective doses of tianeptine (20 mg/kg, ip) exhibited a significant reduction of immobility time in the FST. These doses of the examined agents, which did have an effect in the FST, did not alter locomotor activity. The present study indicates that the antidepressant-like activity of tianeptine in the FST involves both NMDA and AMPA receptors and suggests that the interaction between serotonergic and glutamatergic transmission may play an important role in the action of tianeptine.

  6. Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration

    PubMed Central

    Abrahao, K.P.; Ariwodola, O.J.; Butler, T.R.; Rau, A.R.; Skelly, M.J.; Carter, E.; Alexander, N.P.; McCool, B.A.; Souza-Formigoni, M.L.O.; Weiner, J.L.

    2013-01-01

    Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. Notably, the specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In these studies, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss mice were treated daily with saline or 1.8 g/kg ethanol for 21 days. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least eleven days of withdrawal, cohorts of saline and ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor behavioral sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanolsensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol. PMID:23486954

  7. NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice.

    PubMed

    Wlaź, Piotr; Kasperek, Regina; Wlaź, Aleksandra; Szumiło, Michał; Wróbel, Andrzej; Nowak, Gabriel; Poleszak, Ewa

    2011-01-01

    It is known that tianeptine exhibits antidepressant-like activity. Its influence on the glutamatergic system is also known, but the mechanisms involved in this activity remain to be established. The aim of this study was to investigate the involvement of the glutamate pathway in the antidepressant-like action of tianeptine. We investigated the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor ligands on tianeptine-induced activity in the forced swim test (FST) in mice. The antidepressant-like activity of tianeptine (30 m/kg, ip) was significantly antagonized by D-serine (100 nmol/mouse icv) and NBQX (10 mg/kg, ip). Moreover, low, ineffective doses of the glycine/NMDA site antagonist L-701,324 (1 mg/kg, ip) administered together with low, ineffective doses of tianeptine (20 mg/kg, ip) exhibited a significant reduction of immobility time in the FST. These doses of the examined agents, which did have an effect in the FST, did not alter locomotor activity. The present study indicates that the antidepressant-like activity of tianeptine in the FST involves both NMDA and AMPA receptors and suggests that the interaction between serotonergic and glutamatergic transmission may play an important role in the action of tianeptine. PMID:22358100

  8. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation.

    PubMed

    Lipton, Stuart A

    2007-05-01

    neurodegenerative disorders. In contrast, studies in our laboratory have shown that the adamantane derivative, memantine, preferentially blocks excessive NMDA receptor activity without disrupting normal activity. Memantine does this through its action as an uncompetitive, low-affinity, open-channel blocker; it enters the receptor-associated ion channel preferentially when it is excessively open, and, most importantly, its off-rate is relatively fast so that it does not substantially accumulate in the channel to interfere with subsequent normal synaptic transmission. Clinical use has corroborated the prediction that memantine is well tolerated. Besides Alzheimer's disease, memantine is currently in trials for additional neurological disorders, including HIV-associated dementia, depression, glaucoma, and severe neuropathic pain. A series of second-generation memantine derivatives are currently in development and may prove to have even greater neuroprotective properties than memantine. These second-generation drugs take advantage of the fact that the NMDA receptor has other modulatory sites in addition to its ion channel that potentially could also be used for safe but effective clinical intervention.

  9. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex.

    PubMed

    Martin, Kathryn P; Wellman, Cara L

    2011-10-01

    The development and relapse of many psychopathologies can be linked to both stress and prefrontal cortex dysfunction. Glucocorticoid stress hormones target medial prefrontal cortex (mPFC) and either chronic stress or chronic administration of glucocorticoids produces dendritic remodeling in prefrontal pyramidal neurons. Exposure to stress also causes an increase in the release of the excitatory amino acid glutamate, which binds to N-methyl-D-aspartate (NMDA) receptors, which are plentiful in mPFC. NMDA receptor activation is crucial for producing hippocampal dendritic remodeling due to stress and for dendritic reorganization in frontal cortex after cholinergic deafferentation. Thus, NMDA receptors could mediate stress-induced dendritic retraction in mPFC. To test this hypothesis, dendritic morphology of pyramidal cells in mPFC was assessed after blocking NMDA receptors with the competitive NMDA antagonist ±3-(2-carboxypiperazin-4yl)propyl-1-phosphonic acid (CPP) during restraint stress. Administration of CPP prevented stress-induced dendritic atrophy. Instead, CPP-injected stressed rats showed hypertrophy of apical dendrites compared with controls. These results suggest that NMDA activation is crucial for stress-induced dendritic atrophy in mPFC. Furthermore, NMDA receptor blockade uncovers a new pattern of stress-induced dendritic changes, suggesting that other neurohormonal changes in concert with NMDA receptor activation underlie the net dendritic retraction seen after chronic stress.

  10. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell.

    PubMed

    Ashkani, Jahanshah; Rees, D J G

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1-VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1-VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1-VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes. PMID:27249937

  11. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of (125I)iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    SciTech Connect

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-07-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, (/sup 125/I)iodoglucagon internalization was increased, while at the same time (/sup 125/I)iodoinsulin internalization was decreased. The defect in (/sup 125/I)iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of (/sup 125/I)iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion.

  12. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.

  13. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell

    PubMed Central

    Ashkani, Jahanshah; Rees, D. J. G.

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1–VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1–VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1–VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes. PMID:27249937

  14. Specific inhibition of herpes virus replication by receptor-mediated entry of an antiviral peptide linked to Escherichia coli enterotoxin B subunit.

    PubMed Central

    Marcello, A; Loregian, A; Cross, A; Marsden, H; Hirst, T R; Palù, G

    1994-01-01

    Mimetic peptides capable of selectively disrupting protein-protein interactions represent potential therapeutic agents for inhibition of viral and cellular enzymes. This approach was first suggested by the observation that the peptide YAGAVVNDL, corresponding to the carboxyl-terminal 9 amino acids of the small subunit of ribonucleotide reductase of herpes simplex virus, specifically inhibited the viral enzyme in vitro. Evaluation and use of this peptide as a potential antiviral agent has, however, been thwarted by its failure to inhibit virus replication in vivo, presumably because the peptide is too large to enter eukaryotic cells unaided. Here, we show that the nontoxic B subunit of Escherichia coli heat-labile enterotoxin can be used as a recombinant carrier for the receptor-mediated delivery of YAGAVVNDL into virally infected cells. The resultant fusion protein specifically inhibited herpes simplex virus type 1 replication and ribonucleotide reductase activity in quiescent Vero cells. Preincubation of the fusion protein with soluble GM1 ganglioside abolished this antiviral effect, indicating that receptor-mediated binding to the target cell is necessary for its activity. This provides direct evidence of the usefulness of carrier-mediated delivery to evaluate the intracellular efficacy of a putative antiviral peptide. Images PMID:8090758

  15. Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1.

    PubMed

    Moshal, Karni S; Kumar, Munish; Tyagi, Neetu; Mishra, Paras K; Metreveli, Naira; Rodriguez, Walter E; Tyagi, Suresh C

    2009-03-01

    Homocysteine (HCY) activated mitochondrial matrix metalloproteinase-9 and led to cardiomyocyte dysfunction, in part, by inducing mitochondrial permeability (MPT). Treatment with MK-801 [N-methyl-d-aspartate (NMDA) receptor antagonist] ameliorated the HCY-induced decrease in myocyte contractility. However, the role of cardiomyocyte NMDA-receptor 1 (R1) activation in hyperhomocysteinemia (HHCY) leading to myocyte dysfunction was not well understood. We tested the hypothesis that the cardiac-specific deletion of NMDA-R1 mitigated the HCY-induced decrease in myocyte contraction, in part, by decreasing nitric oxide (NO). Cardiomyocyte-specific knockout of NMDA-R1 was generated using cre/lox technology. NMDA-R1 expression was detected by Western blot and confocal microscopy. MPT was determined using a spectrophotometer. Myocyte contractility and calcium transients were studied using the IonOptix video-edge detection system and fura 2-AM loading. We observed that HHCY induced NO production by agonizing NMDA-R1. HHCY induced the MPT by agonizing NMDA-R1. HHCY caused a decrease in myocyte contractile performance, maximal rate of contraction and relaxation, and prolonged the time to 90% peak shortening and 90% relaxation by agonizing NMDA-R1. HHCY decreased contraction amplitude with the increase in calcium concentration. The recovery of calcium transient was prolonged in HHCY mouse myocyte by agonizing NMDA-R1. It was suggested that HHCY increased mitochondrial NO levels and induced MPT, leading to the decline in myocyte mechanical function by agonizing NMDA-R1.

  16. Alcohol Related Changes in Regulation of NMDA Receptor Functions

    PubMed Central

    Nagy, József

    2008-01-01

    Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol’s action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory “up-regulation” of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal. A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure. PMID:19305787

  17. Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications.

    PubMed

    Lussier, Marc P; Sanz-Clemente, Antonio; Roche, Katherine W

    2015-11-27

    Many molecular mechanisms underlie the changes in synaptic glutamate receptor content that are required by neuronal networks to generate cellular correlates of learning and memory. During the last decade, posttranslational modifications have emerged as critical regulators of synaptic transmission and plasticity. Notably, phosphorylation, ubiquitination, and palmitoylation control the stability, trafficking, and synaptic expression of glutamate receptors in the central nervous system. In the current review, we will summarize some of the progress made by the neuroscience community regarding our understanding of phosphorylation, ubiquitination, and palmitoylation of the NMDA and AMPA subtypes of glutamate receptors. PMID:26453298

  18. Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex.

    PubMed

    Sidorov, Michael S; Kaplan, Eitan S; Osterweil, Emily K; Lindemann, Lothar; Bear, Mark F

    2015-10-13

    A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5. Here we report that chronic postnatal down-regulation of mGluR5 signaling produces coordinated impairments in both NMDAR-dependent LTD in vitro and ocular dominance plasticity in vivo. The data suggest that ongoing mGluR5 signaling during a critical period of postnatal development establishes the biochemical conditions that are permissive for activity-dependent sculpting of excitatory synapses via the mechanism of NMDAR-dependent LTD.

  19. Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex.

    PubMed

    Sidorov, Michael S; Kaplan, Eitan S; Osterweil, Emily K; Lindemann, Lothar; Bear, Mark F

    2015-10-13

    A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5. Here we report that chronic postnatal down-regulation of mGluR5 signaling produces coordinated impairments in both NMDAR-dependent LTD in vitro and ocular dominance plasticity in vivo. The data suggest that ongoing mGluR5 signaling during a critical period of postnatal development establishes the biochemical conditions that are permissive for activity-dependent sculpting of excitatory synapses via the mechanism of NMDAR-dependent LTD. PMID:26417096

  20. Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney

    PubMed Central

    Li, Xiao C.; Gu, Victor; Miguel-Qin, Elise

    2014-01-01

    Caveolin 1 (CAV-1) functions not only as a constitutive scaffolding protein of caveolae but also as a vesicular transporter and signaling regulator. In the present study, we tested the hypothesis that CAV-1 knockout (CAV-1 KO) inhibits ANG II type 1 [AT1 (AT1a)] receptor-mediated uptake of ANG II in the proximal tubule and attenuates blood pressure responses in ANG II-induced hypertension. To determine the role of CAV-1 in mediating the uptake of FITC-labeled ANG II, wild-type (WT) mouse proximal convoluted tubule cells were transfected with CAV-1 small interfering (si)RNA for 48 h before AT1 receptor-mediated uptake of FITC-labeled ANG II was studied. CAV-1 siRNA knocked down CAV-1 expression by >90% (P < 0.01) and inhibited FITC-labeled ANG II uptake by >50% (P < 0.01). Moreover, CAV-1 siRNA attenuated ANG II-induced activation of MAPK ERK1/2 and Na+/H+ exchanger 3 expression, respectively (P < 0.01). To determine whether CAV-1 regulates ANG II uptake in the proximal tubule, Alexa 488-labeled ANG II was infused into anesthetized WT and CAV-1 KO mice for 60 min (20 ng/min iv). Imaging analysis revealed that Alexa 488-labeled ANG II uptake was decreased by >50% in CAV-1 KO mice (P < 0.01). Furthermore, Val5-ANG II was infused into WT and CAV-1 KO mice for 2 wk (1.5 mg·kg−1·day−1 ip). Basal systolic pressure was higher, whereas blood pressure and renal excretory and signaling responses to ANG II were attenuated, in CAV-1 KO mice (P < 0.01). We concluded that CAV-1 plays an important role in AT1 receptor-mediated uptake of ANG II in the proximal tubule and modulates blood pressure and renal responses to ANG II. PMID:25164083

  1. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  2. Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells.

    PubMed

    Joo, Jae-Yeol; Kim, Byung-Woo; Lee, Jeong-Sik; Park, Jin-Yong; Kim, Sunoh; Yun, Young-Joo; Lee, Sang-Hun; Lee, Suk-Ho; Rhim, Hyewhon; Son, Hyeon

    2007-04-15

    The prolonged effects of N-methyl-D-aspartate (NMDA) receptor activation on the proliferation and differentiation of hippocampal neural progenitor cells (NPCs) were studied. Under conditions of mitogen-mediated proliferation, a single NMDA pulse (5 microM) increased the fraction of 5-bromo-2-deoxyuridine (BrdU)-positive (BrdU(+)) cells after a delay of 72 hours. Similarly, a single systemic injection of NMDA (100 mg/kg) increased the number of BrdU(+) cells in the dentate gyrus (DG) after 28 days, but not after 3 days. NMDA receptor activation induced an immediate influx of Ca(2+) into the NPCs and the NPCs expressed and released vascular endothelial growth factor (VEGF) in an NMDA receptor-dependent manner within 72 hours. With repetitive stimulation at the same dose, NMDA stimulated the acquisition of a neuronal phenotype accompanied by an increase in the expression of proneural basic helix-loop-helix (bHLH) factors. Together these findings suggest that neurogenesis in the developing brain is likely to be both directly and indirectly regulated by complex interactions between Ca(2+) influx and excitation-releasable cytokines, even at mild levels of excitation. In addition, our results are the first to show that stimulation of NPCs may lead to either proliferation or neuronal differentiation, depending on the level of NMDA receptor activation.

  3. PSD-95 Uncouples Dopamine-Glutamate Interaction in the D1/PSD-95/NMDA Receptor Complex

    PubMed Central

    Zhang, Jingping; Xu, Tai-Xiang; Hallett, Penelope J.; Watanabe, Masahiko; Grant, Seth G. N.; Isacson, Ole; Yao, Wei-Dong

    2008-01-01

    Classical dopaminergic signaling paradigms and emerging studies on direct physical interactions between the D1 dopamine (DA) receptor and the N-Methyl-D-Aspartate (NMDA) glutamate receptor predict a reciprocally facilitating, positive feedback loop. This loop, if not controlled, may cause concomitant overactivation of both D1 and NMDA receptors, triggering neurotoxicity. Endogenous protective mechanisms must exist. Here we show that PSD-95, a prototypical structural and signaling scaffold in the postsynaptic density, inhibits D1-NMDA receptor association and uncouples NMDA receptor-dependent enhancement of D1 signaling. This uncoupling is achieved, at least in part, via a disinhibition mechanism by which PSD-95 abolishes NMDA receptor-dependent inhibition of D1 internalization. Knockdown of PSD-95 immobilizes D1 receptors on the cell surface and escalates NMDA receptor-dependent D1 cAMP signaling in neurons. Thus, in addition to its role in receptor stabilization and synaptic plasticity, PSD-95 acts as a brake on the D1-NMDA receptor complex and dampens the interaction between them. PMID:19261890

  4. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.

    PubMed

    Dukoff, David James; Hogg, David William; Hawrysh, Peter John; Buck, Leslie Thomas

    2014-09-15

    Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.

  5. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia.

    PubMed

    Schmitt, Andrea; Koschel, Jiri; Zink, Mathias; Bauer, Manfred; Sommer, Clemens; Frank, Josef; Treutlein, Jens; Schulze, Thomas; Schneider-Axmann, Thomas; Parlapani, Eleni; Rietschel, Marcella; Falkai, Peter; Henn, Fritz A

    2010-03-01

    To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia.

  6. Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus

    PubMed Central

    Zdobnova, Irina; König, Imbritt; Landwehr, Marco; Kreutz, Martin; Smalla, Karl-Heinz; Richter, Karin; Landgraf, Peter; Reissner, Carsten; Boeckers, Tobias M; Zuschratter, Werner; Spilker, Christina; Seidenbecher, Constanze I; Garner, Craig C; Gundelfinger, Eckart D; Kreutz, Michael R

    2008-01-01

    NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-α to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration. PMID:18303947

  7. Defining the role of NMDA receptors in anesthesia: are we there yet?

    PubMed

    Petrenko, Andrey B; Yamakura, Tomohiro; Sakimura, Kenji; Baba, Hiroshi

    2014-01-15

    N-methyl-d-aspartate (NMDA) receptors are important in mediating excitatory neurotransmission in the nervous system. They are preferentially inhibited by some general anesthetics and have, therefore, been implied in the mediation of their effects. This review summarizes the main research findings available related to NMDA receptors and their role in anesthesia. The contribution of NMDA receptors to the anesthetized state is discussed separately for each of its components: amnesia, analgesia, unconsciousness and immobility. Anesthetic-induced unconsciousness and immobility have received the most attention in the research community and are the main focus of this review. In the overall perspective, however, studies using pharmacological or electrophysiological approaches have failed to reach definitive conclusions regarding the contribution of NMDA receptors to these anesthetic endpoints. None of the studies have specifically addressed the role of NMDA receptors in the amnestic effect of general anesthetics, and the few available data are (at best) only indirect. NMDA receptor antagonism by general anesthetics may have a preventive anti-hyperalgesic effect. The only and most extensively used genetic tool to examine the role of NMDA receptors in anesthesia is global knockout of the GluN2A subunit of the NMDA receptor. These animals are resistant to many intravenous and inhalational anesthetics, but the interpretation of their phenotype is hindered by the secondary changes occurring in these animals after GluN2A knockout, which are themselves capable of altering anesthetic sensitivity. Generation of more sophisticated conditional knockout models targeting NMDA receptors is required to finally define their role in the mechanisms of anesthesia. PMID:24333550

  8. Lasting inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst--a novel mechanism for secretory blockade in acute pancreatitis?

    PubMed

    Liang, Hui Yuan; Song, Zhi Min; Cui, Zong Jie

    2013-08-01

    Although overwhelming evidence indicates that neutrophil infiltration is an early event in acute pancreatitis, the effect of neutrophil respiratory burst on pancreatic acini has not been investigated. In the present work, effect of fMLP-induced neutrophil respiratory burst on pancreatic acini was examined. It was found that neutrophil respiratory burst blocked calcium oscillations induced by cholecystokinin or by acetylcholine. Such lasting inhibition was dependent on the density of bursting neutrophils and could be overcome by increased agonist concentration. Inhibition of cholecystokinin stimulation was also observed in AR4-2J cells. In sharp contrast, neutrophil respiratory burst had no effect on calcium oscillations induced by phenylephrine (PE), vasopressin, or by ATP in rat hepatocytes. These data together suggest that inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst would lead to secretory blockade, which is a hallmark of acute pancreatitis. The present work has important implications for clinical treatment and management of acute pancreatitis.

  9. Hippocampus NMDA receptors selectively mediate latent extinction of place learning.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2016-09-01

    Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were

  10. Hippocampus NMDA receptors selectively mediate latent extinction of place learning.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2016-09-01

    Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were

  11. 3-Carboxy-pyrazolinalanine as a new scaffold for developing potent and selective NMDA receptor antagonists.

    PubMed

    Tamborini, Lucia; Pinto, Andrea; Mastronardi, Federica; Iannuzzi, Maria C; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola

    2013-10-01

    A synthetic method for the preparation of suitably protected 3-carboxy-Δ2-pyrazolin-5-yl-alanine was developed. This scaffold is amenable to further decoration at the N1 position and was used to generate novel NMDA receptor ligands. Although weaker than the previously reported N1-Ph derivatives, the new ligands retain the ability to selectively bind to NMDA receptor with micromolar to submicromolar affinity. Considering the relevance of the N-functionalization for the biological activity, the results presented in this communication are preliminary to a full SAR study of this novel class of NMDA receptor antagonists. PMID:23954238

  12. Cell type-specific pharmacology of NMDA receptors using masked MK801

    PubMed Central

    Yang, Yunlei; Lee, Peter; Sternson, Scott M

    2015-01-01

    N-Methyl-D-aspartate receptors (NMDA-Rs) are ion channels that are important for synaptic plasticity, which is involved in learning and drug addiction. We show enzymatic targeting of an NMDA-R antagonist, MK801, to a molecularly defined neuronal population with the cell-type-selectivity of genetic methods and the temporal control of pharmacology. We find that NMDA-Rs on dopamine neurons are necessary for cocaine-induced synaptic potentiation, demonstrating that cell type-specific pharmacology can be used to dissect signaling pathways within complex brain circuits. DOI: http://dx.doi.org/10.7554/eLife.10206.001 PMID:26359633

  13. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia

    2015-12-01

    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  14. Ontogeny of catecholamine and adenosine receptor-mediated cAMP signaling of embryonic red blood cells: role of cGMP-inhibited phosphodiesterase 3 and hemoglobin.

    PubMed

    Baumann, R; Blass, C; Götz, R; Dragon, S

    1999-12-15

    We have previously shown that the cAMP signaling pathway controls major aspects of embryonic red blood cell (RBC) function in avian embryos (Glombitza et al, Am J Physiol 271:R973, 1996; and Dragon et al, Am J Physiol 271:R982, 1996) that are important for adaptation of the RBC gas transport properties to the progressive hypercapnia and hypoxia of later stages of avian embryonic development. Data about the ontogeny of receptor-mediated cAMP signaling are lacking. We have analyzed the response of primitive and definitive chick embryo RBC harvested from day 3 to 18 of development towards forskolin, beta-adrenergic, and A2 receptor agonists. The results show a strong response of immature definitive and primitive RBC to adenosine A2 and beta-adrenergic receptor agonists, which is drastically reduced in the last stage of development, coincident with the appearance of mature, transcriptionally inactive RBC. Modulation of cGMP-inhibited phosphodiesterase 3 (PDE3) has a controlling influence on cAMP accumulation in definitive RBC. Under physiological conditions, PDE3 is inhibited due to activation of soluble guanylyl cyclase (sGC). Inhibition of sGC with the specific inhibitor ODQ decreases receptor-mediated stimulation of cAMP production; this effect is reversed by the PDE3 inhibitor milrinone. sGC is acitivated by nitric oxide (NO), but we found no evidence for production of NO by erythrocyte NO-synthase. However, embryonic hemoglobin releases NO in an oxygen-linked manner that may activate guanylyl cyclase.

  15. Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection

    SciTech Connect

    Cote, Marceline; Zheng, Yi-Min; Albritton, Lorraine M.; Liu, Shan-Lu

    2011-12-20

    Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two amino acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.

  16. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate the gain and the neural code transformation in hippocampal CA1 pyramidal cells.

    PubMed

    Jang, Hyun Jae; Park, Kyerl; Lee, Jaedong; Kim, Hyuncheol; Han, Kyu Hun; Kwag, Jeehyun

    2015-12-01

    Diverse variety of hippocampal interneurons exists in the CA1 area, which provides either feedforward (FF) or feedback (FB) inhibition to CA1 pyramidal cell (PC). However, how the two different inhibitory network architectures modulate the computational mode of CA1 PC is unknown. By investigating the CA3 PC rate-driven input-output function of CA1 PC using in vitro electrophysiology, in vitro-simulation of inhibitory network, and in silico computational modeling, we demonstrated for the first time that GABAA receptor-mediated FF and FB inhibition differentially modulate the gain, the spike precision, the neural code transformation and the information capacity of CA1 PC. Recruitment of FF inhibition buffered the CA1 PC spikes to theta-frequency regardless of the input frequency, abolishing the gain and making CA1 PC insensitive to its inputs. Instead, temporal variability of the CA1 PC spikes was increased, promoting the rate-to-temporal code transformation to enhance the information capacity of CA1 PC. In contrast, the recruitment of FB inhibition sub-linearly transformed the input rate to spike output rate with high gain and low spike temporal variability, promoting the rate-to-rate code transformation. These results suggest that GABAA receptor-mediated FF and FB inhibitory circuits could serve as network mechanisms for differentially modulating the gain of CA1 PC, allowing CA1 PC to switch between different computational modes using rate and temporal codes ad hoc. Such switch will allow CA1 PC to efficiently respond to spatio-temporally dynamic inputs and expand its computational capacity during different behavioral and neuromodulatory states in vivo.

  17. Whole-Cell Patch-Clamp Analysis of Recombinant NMDA Receptor Pharmacology Using Brief Glutamate Applications

    PubMed Central

    Glasgow, Nathan G.; Johnson, Jon W.

    2015-01-01

    Summary NMDA receptors (NMDARs) are ionotropic glutamate receptors that are essential for synaptic plasticity, learning and memory. Dysfunction of NMDARs has been implicated in many nervous system disorders; therefore, pharmacological modulation of NMDAR activity has great therapeutic potential. However, given the broad physiological importance of NMDARs, modulating their activity often has detrimental side effects precluding pharmaceutical use of many NMDAR modulators. One approach to possibly improve the therapeutic potential of NMDAR modulators is to identify compounds that modulate subsets of NMDARs. An obvious target for modulating NMDAR subsets are the many NMDAR subtypes produced through different combinations of NMDAR subunits. With seven identified genes that encode NMDAR subunits, there are many neuronal NMDAR subtypes with distinct properties and potentially differential pharmacological sensitivities. Study of NMDAR subtype-specific pharmacology is complicated in neurons, however, because most neurons express at least three NMDAR subtypes. Thus, use of an approach that permits study in isolation of a single receptor subtype is preferred. Additionally, the effects of drugs on agonist-activated responses typically depend on duration of agonist exposure. To evaluate drug effects on synaptic transmission, an approach should be used that allows activation of receptor responses as brief as those observed during synaptic transmission, both in the absence and presence of drug. To address these issues, we designed a fast perfusion system capable of (1) delivering brief (~5 ms) and consistent applications of glutamate to recombinant NMDARs of known subunit composition, and (2) easily and quickly (~5 seconds) changing between glutamate applications in the absence and presence of drug. PMID:25023300

  18. Neonatal NMDA receptor blockade disrupts spike timing and glutamatergic synapses in fast spiking interneurons in a NMDA receptor hypofunction model of schizophrenia.

    PubMed

    Jones, Kevin S; Corbin, Joshua G; Huntsman, Molly M

    2014-01-01

    The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.

  19. The NMDA receptor as a target for cognitive enhancement

    PubMed Central

    Collingridge, Graham L.; Volianskis, Arturas; Bannister, Neil; France, Grace; Hanna, Lydia; Mercier, Marion; Tidball, Patrick; Fang, Guangyu; Irvine, Mark W.; Costa, Blaise M.; Monaghan, Daniel T.; Bortolotto, Zuner A.; Molnár, Elek; Lodge, David; Jane, David E.

    2015-01-01

    NMDA receptors (NMDAR) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. PMID:22796429

  20. NMDA Receptors in Dopaminergic Neurons are Crucial for Habit Learning

    PubMed Central

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z.

    2011-01-01

    Summary Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning however remain unclear. Here we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit learning tasks while normal in some other dopamine-modulated functions such as locomotor activities, goal directed learning, and spatial reference memories. In vivo neural recording revealed that DA neurons in these mutant mice could still develop the cue-reward association responses, but their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning. PMID:22196339

  1. Serotonin and NMDA receptors in respiratory long-term facilitation

    PubMed Central

    Ling, Liming

    2008-01-01

    Some have postulated that long-term facilitation (LTF), a persistent augmentation of respiratory activity after episodic hypoxia, may play a beneficial role in helping stabilize upper airway patency in obstructive sleep apnea (OSA) patients. However, the neuronal and cellular mechanisms underlying this plasticity of respiratory motor behavior are still poorly understood. The main purpose of this review is to summarize recent findings about serotonin and NMDA receptors involved in both LTF and its enhancement after chronic intermittent hypoxia (CIH). The potential roles of these receptors in the initiation, formation and/or maintenance of LTF, as well as the CIH effect on LTF, will be discussed. As background, different paradigms for the stimulus protocol, different patterns of LTF expression and their mechanistic implications in LTF will also be discussed. PMID:18606575

  2. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut

    PubMed Central

    Prüss, H.; Leubner, J.; Wenke, N. K.; Czirják, G. Á.; Szentiks, C. A.; Greenwood, A. D.

    2015-01-01

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut’s encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut’s cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed. PMID:26313569

  3. N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of memantine in rats.

    PubMed

    Schwarz, M; Block, F; Sontag, K H

    1992-08-31

    The present study examined in vivo whether memantine exerts muscle relaxant activity via an antagonistic action at N-methyl-D-aspartate (NMDA) receptors. Intraperitoneal (i.p.) administration of memantine, 50-100 mumol/kg, reduced the tonic activity in the electromyogram recorded from the gastrocnemius muscle of spastic mutant rats. This effect was prevented by coadministration of NMDA. Memantine, while not affecting monosynaptic Hoffmann (H)-reflexes, depressed polysynaptic flexor reflexes in anaesthetized rats following i.p. (6.25-100 mumol/kg) or intrathecal (i.t., 10-500 nmol) administration. The latter effect was prevented by i.t. coadministration of NMDA, but not of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). These observations suggest that NMDA receptors might be involved in the mediation of the muscle relaxant activity of memantine.

  4. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists.

    PubMed

    Jackisch, R; Kruchen, A; Sauermann, W; Hertting, G; Feuerstein, T J

    1994-10-24

    N-Methyl-D-aspartate- (NMDA-) evoked [3H]acetylcholine release in rabbit caudate nucleus slices was inhibited by the antiparkinsonian drugs budipine (1-tert-butyl-4,4-diphenylpiperidine) and biperiden (1-bicyclo[2.2.1.]hept-5-en-2-yl-1-phenyl-3-piperidino propanol) yielding functional Ki values of 4.6 and 8.8 microM. In contrast to the competitive antagonist 2-amino-5-phosphonopentaonate, budipine and biperidene significantly reduced both the apparent KD and the Emax value of NMDA. Moreover, they displaced [3H]MK-801 specifically bound to membranes of the same tissue, although with low affinity (IC50: 38 and 92 microM). It is concluded that budipine and biperiden are use-dependent (uncompetitive) antagonists at the NMDA receptor, binding to the receptor-linked ion channel, but probably not to the MK-801 binding site. NMDA antagonism may contribute to the antiparkinsonian effects of budipine.

  5. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

    PubMed

    Prüss, H; Leubner, J; Wenke, N K; Czirják, G Á; Szentiks, C A; Greenwood, A D

    2015-08-27

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut's encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut's cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed.

  6. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

    PubMed

    Prüss, H; Leubner, J; Wenke, N K; Czirják, G Á; Szentiks, C A; Greenwood, A D

    2015-01-01

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut's encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut's cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed. PMID:26313569

  7. Effects of pharmacological manipulations of NMDA-receptors on deliberation in the Multiple-T task

    PubMed Central

    Blumenthal, Anna; Steiner, Adam; Seeland, Kelsey

    2011-01-01

    Both humans and non-human animals have the ability to navigate and make decisions within complex environments. This ability is largely dependent upon learning and memory processes, many of which are known to depend on NMDA-sensitive receptors. When humans come to difficult decisions they often pause to deliberate over their choices. Similarly, rats pause at difficult choice points. This behavior, known as vicarious trial and error (VTE), is hippocampally dependent and entails neurophysiological representations of expectations of future outcomes in hippocampus and downstream structures. In order to determine the dependence of VTE behaviors on NMDA-sensitive receptors, we tested rats on a Multiple-T choice task with a reward-delivery reversal known to elicit VTE. Rats under the influence of NMDA-receptor antagonists (CPP) showed a significant reduction in VTE, particularly at the reward reversal, implying a role for NMDA-sensitive receptors in the generation of vicarious trial and error behaviors. PMID:21296174

  8. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro.

    PubMed Central

    Khateb, A; Fort, P; Serafin, M; Jones, B E; Mühlethaler, M

    1995-01-01

    1. Intracellular recordings were performed in neurones within the basal forebrain of guinea-pig brain slices. Following injection of biocytin (or biotinamide), a subset of recorded neurones which displayed distinct intrinsic membrane properties were confirmed as being cholinergic by immunohistochemical staining for choline acetyltransferase (ChAT). They were all located within the nucleus basalis magnocellularis. The response of the cholinergic cells to NMDA and to the agonists of the other glutamate receptors was tested by bath application of NMDA, t-ACPD, AMPA and kainate. 2. When depolarized from a hyperpolarized level, cholinergic basalis neurones display the intrinsic ability to discharge in rhythmic bursts that are generated by low-threshold Ca2+ spikes. In control solution, these rhythmic bursts were not sustained for more than 5-6 cycles. However, in the presence of NMDA when the membrane was held at a hyperpolarized level, low-threshold bursting activity was sustained for prolonged periods of time. This activity could be reversibly eliminated by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), showing that it depended upon specific activation of NMDA receptors. 3. NMDA-induced, voltage-dependent, rhythmic depolarizations persisted in the presence of tetrodotoxin (TTX), indicating that they did not depend upon a TTX-sensitive Na+ current and were generated postsynaptically. The rhythmic depolarizations were, however, eliminated by the partial replacement of Na+ with choline, demonstrating that they did depend upon Na+, the major carrier of the NMDA current. 4. In the presence of TTX, the NMDA-induced rhythmic depolarizations were also eliminated by removal of Ca2+ from or addition of Ni2+ to the bath, indicating that they also depended upon Ca2+, which is carried by both the NMDA current and the low-threshold Ca2+ current. The duration of the rhythmic depolarizations was increased in the presence of apamin, suggesting that the repolarization of the cells

  9. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  10. Leptin Induces a Novel Form of NMDA Receptor-Dependent LTP at Hippocampal Temporoammonic-CA1 Synapses(1,2,3).

    PubMed

    Luo, Xiao; McGregor, Gemma; Irving, Andrew J; Harvey, Jenni

    2015-01-01

    It is well documented that the hormone leptin regulates many central functions and that hippocampal CA1 pyramidal neurons are a key target for leptin action. Indeed, leptin modulates excitatory synaptic transmission and synaptic plasticity at the Schaffer-collateral input to CA1 neurons. However the impact of leptin on the direct temporoammonic (TA) input to CA1 neurons is not known. Here we show that leptin evokes a long-lasting increase [long-term potentiation (LTP)] in excitatory synaptic transmission at TA-CA1 synapses in rat juvenile hippocampus. Leptin-induced LTP was NMDA receptor-dependent and specifically involved the activation of GluN2B subunits. The signaling pathways underlying leptin-induced LTP involve the activation of phosphoinositide 3-kinase, but were independent of the ERK signaling cascade. Moreover, insertion of GluA2-lacking AMPA receptors was required for leptin-induced LTP as prior application of philanthotoxin prevented the effects of leptin. In addition, synaptic-induced LTP occluded the persistent increase in synaptic efficacy induced by leptin. In conclusion, these data indicate that leptin induces a novel form of NMDA receptor-dependent LTP at juvenile TA-CA1 synapses, which has important implications for the role of leptin in modulating hippocampal synaptic function in health and disease. PMID:26464986

  11. Exaggerated NMDA Mediated LTD in a Mouse Model of Down Syndrome and Pharmacological Rescuing by Memantine

    ERIC Educational Resources Information Center

    Scott-McKean, Jonah J.; Costa, Alberto C. S.

    2011-01-01

    The Ts65Dn mouse is the best-studied animal model for Down syndrome. In the experiments described here, NMDA-mediated or mGluR-mediated LTD was induced in the CA1 region of hippocampal slices from Ts65Dn and euploid control mice by bath application of 20 [mu]M NMDA for 3 min and 50 [mu]M DHPG for 5 min, respectively. We found that Ts65Dn mice…

  12. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel

    PubMed Central

    Emnett, Christine M; Eisenman, Lawrence N; Mohan, Jayaram; Taylor, Amanda A; Doherty, James J; Paul, Steven M; Zorumski, Charles F; Mennerick, Steven

    2015-01-01

    Background and Purpose Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. Experimental Approach We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. Key Results SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks – measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. Conclusions and Implications Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour. PMID:25377730

  13. Nitric oxide modulates blood pressure through NMDA receptors in the rostral ventrolateral medulla of conscious rats.

    PubMed

    Machado, Natalia L S; Silva, Fernanda C S; Chianca, Deoclecio A; de Menezes, Rodrigo C

    2016-07-15

    The rostral ventrolateral medulla (RVLM) is an important site of cardiovascular control related to the tonic excitation and regulating the sympathetic vasomotor tone through local presympathetic neurons. Nitric oxide (NO) has been implicated in the modulation of neurotransmission by several areas of the central nervous system including the RVLM. However the pathways driving NO affects and the correlation between NO and glutamate-induced mechanisms are not well established. Here, we investigate the influence of NO on the cardiovascular response evoked by the activation of NMDA and non-NMDA glutamatergic receptors in the RVLM in conscious rats. For that, we examined the influence of acute inhibition of the NO production within the RVLM, by injecting the nonselective constitutive NOS inhibitor, l-NAME, on responses evoked by the microinjection of excitatory amino acids l-glutamate, NMDA or AMPA agonists into RVLM. Our results show that the injection of l-glutamate, NMDA or AMPA agonists into RVLM, unilaterally, induced a marked increase in the mean arterial pressure (MAP). Pretreatment with l-NAME reduced the hypertensive response evoked by the glutamate injection, and also abolished the pressor response induced by the injection of NMDA into the RVLM. However, blocking the NO synthesis did not alter the response produced by the injection of AMPA agonist. These data provide evidence that the glutamatergic neurotransmission within the RVLM depends on excitatory effects exerted by NO on NMDA receptors, and that this mechanism might be essential to regulate systemic blood pressure. PMID:27150817

  14. Anti-NMDA receptor antibodies in patients with a first episode of schizophrenia

    PubMed Central

    Masopust, Jiří; Andrýs, Ctirad; Bažant, Jan; Vyšata, Oldřich; Kuca, Kamil; Vališ, Martin

    2015-01-01

    Background Encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDA-R) is classified as an autoimmune disorder with psychotic symptoms, which are frequently dominant. However, it remains unclear how frequently NMDA-R antibodies lead to a condition that mimics psychosis and first-episode schizophrenia. In our work, we investigated the presence of antibodies against NMDA-R in patients with first-episode psychosis (FEP) in comparison with healthy volunteers. Methods This study included 50 antipsychotic-naïve patients with FEP (including 21 women) and 50 healthy volunteers (including 21 women). The mean age of the patients was 27.4 (±7.4) years and that of the healthy controls was 27.0 (±7.3) years. Antibodies against NMDA-R in the serum were detected by immunofluorescence. Results None of the investigated patients with an FEP and none of the healthy controls showed positive antibodies against NMDA-Rs. Conclusion According to results of studies, a small proportion of patients with an FEP possess antibodies against NMDA-R. However, the extent to which this finding contributes to the etiopathogenesis of the response to antipsychotic medication and whether immunomodulatory therapy is indicated in these cases remains uncertain. PMID:25834440

  15. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury.

    PubMed

    Wang, Y; Rao, W; Zhang, C; Zhang, C; Liu, M-D; Han, F; Yao, L-b; Han, H; Luo, P; Su, N; Fei, Z

    2015-08-06

    Excessive N-methyl-D-aspartate receptor (NMDAR) activation and the resulting activation of neuronal nitric oxide synthase (nNOS) cause neuronal injury. Homer1b/c facilitates NMDAR-PSD95-nNOS complex interactions, and Homer1a is a negative competitor of Homer1b/c. We report that Homer1a was both upregulated by and protected against NMDA-induced neuronal injury in vitro and in vivo. The neuroprotective activity of Homer1a was associated with NMDA-induced Ca2+ influx, oxidative stress and the resultant downstream signaling activation. Additionally, we found that Homer1a functionally regulated NMDAR channel properties in neurons, but did not regulate recombinant NR1/NR2B receptors in HEK293 cells. Furthermore, we found that Homer1a detached the physical links among NR2B, PSD95 and nNOS and reduced the membrane distribution of NMDAR. NMDA-induced neuronal injury was more severe in Homer1a homozygous knockout mice (KO, Homer1a-/-) when compared with NMDA-induced neuronal injury in wild-type mice (WT, Homer1a+/+). Additionally, Homer1a overexpression in the cortex of Homer1a-/- mice alleviated NMDA-induced neuronal injury. These findings suggest that Homer1a may be a key neuroprotective endogenous molecule that protects against NMDA-induced neuronal injury by disassembling NR2B-PSD95-nNOS complexes and reducing the membrane distribution of NMDARs.

  16. Magnesium as NMDA receptor blocker in the traditional Chinese medicine Danshen.

    PubMed

    Sun, X; Chan, L N; Sucher, N J

    2005-03-01

    Aqueous extracts of the traditional Chinese medicine Danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae), blocked N-methyl-D-aspartate (NMDA) evoked currents in cerebrocortical neurons in vitro. The block of the NMDA-evoked currents was voltage dependent and showed the negative slope conductance reminiscent of the effect of Mg2+ ions. Atomic absorption spectrophotometry (AAS) revealed that aqueous Danshen extracts contained approximately 9mM magnesium. Fractionation of the extracts by high performance liquid chromatography followed by patch clamp recording and AAS indicated that magnesium ions were present in two distinct fractions. One fraction contained approximately 5 mM magnesium and blocked NMDA-induced currents indicating that it contained mostly free Mg2+ ions, while a second fraction did not possess NMDA antagonist activity despite the presence of approximately 4 mM magnesium suggesting that Mg2+ in this fraction was mostly chelated. Following removal of the free Mg2+ by ion exchange chromatography, the previously observed block of the NMDA-induced currents was abolished. These data demonstrate that Danshen contains both free and chelated Mg2+. Free Mg2+ ions account for the NMDA antagonist activity of Danshen in vitro.

  17. Differential Expression of AMPA Subunits Induced by NMDA Intrahippocampal Injection in Rats

    PubMed Central

    Fachim, Helene A.; Pereira, Adriana C.; Iyomasa-Pilon, Melina M.; Rosa, Maria L. N. M.

    2016-01-01

    Glutamate is involved in excitotoxic mechanisms by interacting with different receptors. Such interactions result in neuronal death associated with several neurodegenerative disorders of the central nervous system (CNS). The aim of this work was to study the time course of changes in the expression of GluR1 and GluR2 subunits of glutamate amino-acid-3-hydroxy-5-methyl-isoxazol-4-propionic acid (AMPA) receptors in rat hippocampus induced by NMDA intrahippocampal injection. Rats were submitted to stereotaxic surgery for NMDA or saline (control) microinjection into dorsal hippocampus and the parameters were evaluated 24 h, 1, 2, and 4 weeks after injection. The extension and efficacy of the NMDA-induced injury were evaluated by Morris water maze (MWM) behavioral test and Nissl staining. The expression of GluR1 and GluR2 receptors, glial fibrillary acidic protein (GFAP), and neuronal marker (NeuN) was analyzed by immunohistochemistry. It was observed the impairment of learning and memory functions, loss of neuronal cells, and glial proliferation in CA1 area of NMDA compared with control groups, confirming the injury efficacy. In addition, NMDA injection induced distinct changes in GluR1 and GluR2 expression over the time. In conclusion, such changes may be related to the complex mechanism triggered in response to NMDA injection resulting in a local injury and in the activation of neuronal plasticity. PMID:26912994

  18. Competitive NMDA and strychnine-insensitive glycine-site antagonists disrupt prepulse inhibition.

    PubMed

    Furuya, Y; Ogura, H

    1997-08-01

    Prepulse inhibition (PPI) is thought to reflect the operation of a sensorimotor gating system in the brain. Sensorimotor gating abnormalities have been identified in schizophrenic patients, and various neural systems are involved in this function. To study the modulation of the sensorimotor gating system by the N-methyl-D-aspartate (NMDA) receptor channel complex, the effects of noncompetitive and competitive NMDA antagonists on PPI were examined in rats. PPI was not disrupted by CGS 19755, a competitive NMDA antagonist, at 30 min after subcutaneous (s.c.) administration. However, CGS 19755 (40 mg/kg s.c.) decreased PPI at 120 min after administration with a marked decrease of startle amplitude. Late onset of the effect of CGS 19755 was also observed in the increase of spontaneous locomotor activity (SLA). On the other hand, phencyclidine, a noncompetitive NMDA antagonist, disrupted PPI at 30 min after administration and increased SLA from 20 min after administration. PPI was also disrupted by bilateral intracerebroventricular administration of 5,7-dichlorokyn urenate (10 and 20 micrograms/side X 2), an antagonist at the strychnine-insensitive glycine receptor, which is an allosteric binding site in the NMDA receptor-channel complex. It is concluded that the NMDA receptor-channel complex plays an important role in regulation of PPI.

  19. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons.

    PubMed

    Fleming, Tiffany M; Scott, Victoria; Naskar, Krishna; Joe, Natalie; Brown, Colin H; Stern, Javier E

    2011-08-15

    Despite the long-established presence of glutamate NMDA receptors at extrasynaptic sites (eNMDARs), their functional roles remain poorly understood. Factors influencing the concentration and time course of glutamate in the extrasynaptic space, such as the topography of the neuronal–glial microenvironment, as well as glial glutamate transporters, are expected to affect eNMDAR-mediated signalling strength. In this study, we used in vitro and in vivo electrophysiological recordings to assess the properties, functional relevance and modulation of a persistent excitatory current mediated by activation of eNMDARs in hypothalamic supraoptic nucleus (SON) neurons. We found that ambient glutamate of a non-synaptic origin activates eNMDARs to mediate a persistent excitatory current (termed tonic I(NMDA)), which tonically stimulates neuronal activity. Pharmacological blockade of GLT1 astrocyte glutamate transporters, as well as the gliotoxin α-aminodadipic acid, enhanced tonic I(NMDA) and neuronal activity, supporting an astrocyte regulation of tonic I(NMDA) strength. Dehydration, a physiological challenge known to increase SON firing activity and to induce neuroglial remodelling, including reduced neuronal ensheathment by astrocyte processes, resulted in blunted GLT1 efficacy, enhanced tonic I(NMDA) strength, and increased neuronal activity. Taken together, our studies support the view that glial modulation of tonic I(NMDA) activation contributes to regulation of SON neuronal activity, contributing in turn to neuronal homeostatic responses during a physiological challenge. PMID:21690192

  20. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes

    PubMed Central

    Poleg-Polsky, Alon

    2015-01-01

    Cortical neurons can respond to glutamatergic stimulation with regenerative N-Methyl-D-aspartic acid (NMDA)-spikes. NMDA-spikes were initially thought to depend on clustered synaptic activation. Recent work had shown however a new variety of a global NMDA-spike, which can be generated by randomly distributed inputs. Very little is known about the factors that influence the generation of these global NMDA-spikes, as well the potentially distinct rules of synaptic integration and the computational significance conferred by the two types of NMDA-spikes. Here I show that the input resistance (RIN) plays a major role in influencing spike initiation; while the classical, focal NMDA-spike depended upon the local (dendritic) RIN, the threshold of global NMDA-spike generation was set by the somatic RIN. As cellular morphology can exert a large influence on RIN, morphologically distinct neuron types can have dissimilar rules for NMDA-spikes generation. For example, cortical neurons in superficial layers were found to be generally prone to global NMDA-spike generation. In contrast, electric properties of cortical layer 5b cells clearly favor focal NMDA-spikes. These differences can translate into diverse synaptic integration rules for the different classes of cortical cells; simulated superficial layers neurons were found to exhibit strong synaptic interactions between different dendritic branches, giving rise to a single integrative compartment mediated by the global NMDA-spike. In these cells, efficiency of postsynaptic activation was relatively little dependent on synaptic distribution. By contrast, layer 5b neurons were capable of true multi-unit computation involving independent integrative compartments formed by clustered synaptic input which could trigger focal NMDA-spikes. In a sharp contrast to superficial layers neurons, randomly distributed synaptic inputs were not very effective in driving firing the layer 5b cells, indicating a possibility for different

  1. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors

    PubMed Central

    Lambot, Laurie; Chaves Rodriguez, Elena; Houtteman, Delphine; Li, Yuquing; Schiffmann, Serge N.; Gall, David

    2016-01-01

    The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic

  2. The Adapter Molecule Sin Regulates T-Cell-Receptor-Mediated Signal Transduction by Modulating Signaling Substrate Availability

    PubMed Central

    Xing, Luzhou; Donlin, Laura T.; Miller, Rebecca H.; Alexandropoulos, Konstantina

    2004-01-01

    Engagement of the T-cell receptor (TCR) results in the activation of a multitude of signaling events that regulate the function of T lymphocytes. These signaling events are in turn modulated by adapter molecules, which control the final functional output through the formation of multiprotein complexes. In this report, we identified the adapter molecule Sin as a new regulator of T-cell activation. We found that the expression of Sin in transgenic T lymphocytes and Jurkat T cells inhibited interleukin-2 expression and T-cell proliferation. This inhibitory effect was specific and was due to defective phospholipase C-γ (PLC-γ) phosphorylation and activation. In contrast to other adapters that become phosphorylated upon TCR stimulation, Sin was constitutively phosphorylated in resting cells by the Src kinase Fyn and bound to signaling intermediates, including PLC-γ. In stimulated cells, Sin was transiently dephosphorylated, which coincided with transient dissociation of Fyn and PLC-γ. Downregulation of Sin expression using Sin-specific short interfering RNA oligonucleotides inhibited transcriptional activation in response to TCR stimulation. Our results suggest that endogenous Sin influences T-lymphocyte signaling by sequestering signaling substrates and regulating their availability and/or activity in resting cells, while Sin is required for targeting these intermediates to the TCR for fast signal transmission during stimulation. PMID:15121874

  3. Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice.

    PubMed Central

    Versluis, A. J.; van Geel, P. J.; Oppelaar, H.; van Berkel, T. J.; Bijsterbosch, M. K.

    1996-01-01

    Selective delivery of cytotoxic anti-neoplastic drugs can diminish the severe side-effects associated with these drugs. Many malignant tumours express high levels of low-density lipoprotein (LDL) receptors on their membranes. Therefore, LDL may be used as a carrier to obtain selective delivery of anti-neoplastic drugs to tumours. The present study was performed to investigate the feasibility of the murine B16 tumour/mouse model for the evaluation of LDL-mediated tumour therapy. LDL binds with high affinity to LDL receptors on cultured B16 cells (Kd, 5.9 +/- 2.3 micrograms ml-1; Bmax 206 +/- 23 ng LDL mg-1 cell protein). After binding and internalisation, LDL was very efficiently degraded: 724 +/- 19 ng LDL mg-1 cell protein h-1. Chloroquine and ammonium chloride completely inhibited the degradation of LDL by the B16 cells, indicating involvement of lysosomes. LDL receptors were down-regulated by 70% after preincubation of B16 cells with 300 micrograms ml-1 LDL, indicating that their expression is regulated by intracellular cholesterol. To evaluate the uptake of LDL by the B16 tumour in vivo, tissue distribution studies were performed in C57/B1 mice inoculated with B16 tumours. For these experiments, LDL was radiolabelled with tyramine cellobiose, a non-degradable label, which is retained in cells after uptake. At 24 h after injection of LDL, the liver, adrenals and the spleen were found to be the major organs involved in LDL uptake, with tissue-serum (T/S) ratios of 0.82 +/- 0.08, 1.17 +/- 0.20 and 0.69 +/- 0.08 respectively. Of all the other tissues, the tumour showed the highest uptake of LDL (T/S ratio of 0.40 +/- 0.07). A large part of the LDL uptake was receptor mediated, as the uptake of methylated LDL was much lower. Although the LDL uptake by the liver, spleen and adrenals is higher than that by the tumour, the LDL receptor-mediated uptake by these organs may be selectively down-regulated by methods that do not affect the expression of LDL receptors on

  4. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  5. Opposite Roles of NMDA Receptors in Relapsing and Primary Progressive Multiple Sclerosis

    PubMed Central

    Rossi, Silvia; Studer, Valeria; Moscatelli, Alessandro; Motta, Caterina; Coghe, Giancarlo; Fenu, Giuseppe; Caillier, Stacy; Buttari, Fabio; Mori, Francesco; Barbieri, Francesca; Castelli, Maura; De Chiara, Valentina; Monteleone, Fabrizia; Mancino, Raffaele; Bernardi, Giorgio; Baranzini, Sergio E.; Marrosu, Maria G.; Oksenberg, Jorge R.; Centonze, Diego

    2013-01-01

    Synaptic transmission and plasticity mediated by NMDA receptors (NMDARs) could modulate the severity of multiple sclerosis (MS). Here the role of NMDARs in MS was first explored in 691 subjects carrying specific allelic variants of the NR1 subunit gene or of the NR2B subunit gene of this glutamate receptor. The analysis was replicated for significant SNPs in an independent sample of 1548 MS subjects. The C allele of rs4880213 was found to be associated with reduced NMDAR-mediated cortical excitability, and with increased probability of having more disability than the CT/TT MS subjects. MS severity was higher in the CC group among relapsing-remitting MS (RR-MS) patients, while primary progressive MS (PP-MS) subjects homozygous for the T allele had more pronounced clinical worsening. Mean time to first relapse, but not to an active MRI scan, was lower in the CC group of RR-MS patients, and the number of subjects with two or more clinical relapses in the first two years of the disease was higher in CC compared to CT/TT group. Furthermore, the percentage of relapses associated with residual disability was lower in subjects carrying the T allele. Lesion load at the MRI was conversely unaffected by the C or T allele of this SNP in RR-MS patients. Axonal and neuronal degeneration at the optical coherence tomography was more severe in the TT group of PP-MS patients, while reduced retinal nerve fiber thickness had less consequences on visual acuity in RR-MS patients bearing the T allele. Finally, the T allele was associated with preserved cognitive abilities at the Rao’s brief repeatable neuropsychological battery in RR-MS. Signaling through glutamate NMDARs enhances both compensatory synaptic plasticity and excitotoxic neurodegeneration, impacting in opposite ways on RR-MS and PP-MS pathophysiological mechanisms. PMID:23840674

  6. Activation of α2A-Containing Nicotinic Acetylcholine Receptors Mediates Nicotine-Induced Motor Output in Embryonic Zebrafish

    PubMed Central

    Menelaou, Evdokia; Udvadia, Ava J.; Tanguay, Robert L.; Svoboda, Kurt R.

    2014-01-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as evidence from others suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. In order to examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChR are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself. PMID:24738729

  7. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits

    PubMed Central

    Schaaf, Laura; Heeley, Nicholas; Heuschmid, Lena; Bai, Yunjing; Barrantes, Francisco J.; Apergis-Schoute, John

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine’s (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission. PMID:26247203

  8. Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish.

    PubMed

    Menelaou, Evdokia; Udvadia, Ava J; Tanguay, Robert L; Svoboda, Kurt R

    2014-07-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as previous evidence suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. To examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChRs are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself.

  9. Synthesis of 4-(aminoalkyl) substituted 1,3-dioxanes as potent NMDA and σ receptor antagonists.

    PubMed

    Utech, Tina; Köhler, Jens; Wünsch, Bernhard

    2011-06-01

    Elongation of the distance between the oxygen heterocycle and the basic amino moiety or ring expansion of the oxygen heterocycle of the NMDA receptor antagonists dexoxadrol and etoxadrol led to compounds with promising NMDA receptor affinity. Herein the combination of both structural features, i.e. elongation of the O-heterocycle--amine distance with a 1,3-dioxane ring is envisaged. The synthesis of aminoethyl-1,3-dioxanes 13, 22, 23 and 29 was performed by transacetalization of various acetals with pentane-1,3,5-triol, activation of the remaining free OH moiety with tosyl chloride and subsequent nucleophilic substitution. The corresponding 3-aminopropyl derivatives 33-35 were prepared by substitution of the tosylates with KCN and LiAlH4 reduction. The highest NMDA receptor affinity was found for 1,3-dioxanes with a phenyl and an ethyl residue at the acetalic position (23) followed by diphenyl (22) and monophenyl derivatives (13). Generally the NMDA affinity of primary amines is higher than the NMDA affinity of secondary and tertiary amines. Altogether the primary amine 23a (Ki=24 nM) represents the most promising NMDA receptor antagonist of this series exceeding the NMDA affinity of the mono-homologues (2-aminoethyl)-1,3-dioxolanes (3,4) and (aminomethyl)-1,3-dioxanes (5,6). Whereas the primary amine 23a turned out to be selective against σ1 and σ2 receptors the benzylamine 13d was identified as potent (Ki=19 nM) and selective σ1 antagonist, which showed extraordinarily high antiallodynic activity in the capsaicin assay. PMID:21444132

  10. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation.

    PubMed

    Wong, Hayes; Dong, Xu-Dong; Cairns, Brian E

    2014-11-01

    Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2-7 m/s) than fast Aδ-fibers (7-12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.

  11. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat

    PubMed Central

    Losi, Gabriele; Prybylowski, Kate; Fu, Zhanyan; Luo, Jianhong; Wenthold, Robert J; Vicini, Stefano

    2003-01-01

    We transfected a green fluorescent protein-tagged PSD-95 (PSD-95gfp) into cultured rat cerebellar granule cells (CGCs) to investigate the role of PSD-95 in excitatory synapse maturation. Cells were grown in low potassium to favour functional synapse formation in vitro. Transfected cells displayed clear clusters of PSD-95gfp, often at the extremities of the short dendritic trees. We recorded NMDA and AMPA miniature excitatory postsynaptic currents (NMDA- and AMPA-mESPCs) in the presence of TTX and bicuculline. At days in vitro (DIV) 7–8 PSD-95gfp-transfected cells had NMDA-mEPSCs with faster decay and smaller amplitudes than matching controls. In contrast, AMPA-mEPSC frequencies and amplitudes were increased. Whole-cell current density and ifenprodil sensitivity were reduced in PSD-95gfp cells, indicating a reduction of NR2B subunits containing NMDA receptors. No changes were observed compared to control when cells were transfected with cDNA for PSD-95gfp with palmitoylation site mutations that prevent targeting to the synapse. Overexpression of the NMDA receptor NR2A subunit, but not the NR2B subunit, prevented NMDA-mEPSC amplitude reduction when cotransfected with PSD-95gfp. PSD-95gfp overexpression produced faster NMDA-mEPSC decay when transfected alone or with either NR2 subunit. Surface staining of the epitope-tagged NR2 subunits revealed that colocalization with PSD-95gfp was higher for flag-tagged NR2A subunit clusters than for flag-tagged NR2B subunit clusters. These data suggest that PSD-95 overexpression in CGCs favours synaptic maturation by allowing synaptic insertion of NR2A and depressing expression of NR2B subunits. PMID:12576494

  12. Shingles Transmission

    MedlinePlus

    ... on Shingles Immunization Action Coalition Chickenpox Q&As Transmission Language: English Español (Spanish) Recommend on Facebook Tweet ... Prevention & Treatment Related Pages Preventing Varicella Zoster Virus Transmission in Healthcare Settings Related Links Medline Plus NIH ...

  13. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    PubMed

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  14. Three-dimensional models of non-NMDA glutamate receptors.

    PubMed Central

    Sutcliffe, M J; Wo, Z G; Oswald, R E

    1996-01-01

    Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:8785317

  15. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  16. NMDA receptor antibodies associated with distinct white matter syndromes

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

    2014-01-01

    Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

  17. Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: an in vivo and in vitro study

    PubMed Central

    Song, J; Kang, S M; Kim, E; Kim, C-H; Song, H-T; Lee, J E

    2015-01-01

    In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis. PMID:26247729

  18. CD36 is not involved in scavenger receptor-mediated endocytic uptake of glycolaldehyde- and methylglyoxal-modified proteins by liver endothelial cells.

    PubMed

    Nakajou, Keisuke; Horiuchi, Seikoh; Sakai, Masakazu; Hirata, Kenshiro; Tanaka, Makiko; Takeya, Motohiro; Kai, Toshiya; Otagiri, Masaki

    2005-05-01

    Circulating proteins modified by advanced glycation end-products (AGE) are mainly taken up by liver endothelial cells (LECs) via scavenger receptor-mediated endocytosis. Endocytic uptake of chemically modified proteins by macrophages and macrophage-derived cells is mediated by class A scavenger receptor (SR-A) and CD36. In a previous study using SR-A knockout mice, we demonstrated that SR-A is not involved in endocytic uptake of AGE proteins by LECs [Matsumoto et al. (2000) Biochem. J. 352, 233-240]. The present study was conducted to determine the contribution of CD36 to this process. Glycolaldehyde-modified BSA (GA-BSA) and methylglyoxal-modified BSA (MG-BSA) were used as AGE proteins. 125I-GA-BSA and 125I-MG-BSA underwent endocytic degradation by these cells at 37 degrees C, and this process was inhibited by several ligands for the scavenger receptors. However, this endocytic uptake of 125I-GA-BSA by LECs was not inhibited by a neutralizing anti-CD36 antibody. Similarly, hepatic uptake of (111)In-GA-BSA after its intravenous injection was not significantly attenuated by co-administration of the anti-CD36 antibody. These results clarify that CD36 does not play a significant role in elimination of GA-BSA and MG-BSA from the circulation, suggesting that the receptor involved in endocytic uptake of circulating AGE proteins by LEC is not SR-A or CD36.

  19. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia.

    PubMed

    Pamenter, Matthew E; Dzal, Yvonne A; Milsom, William K

    2015-02-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O₂ for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O₂ min(-1) kg(-1), and 1412 ± 244 to 417 ± 62 ml min(-1) kg(-1), respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg(-1), in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR.

  20. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia

    PubMed Central

    Pamenter, Matthew E.; Dzal, Yvonne A.; Milsom, William K.

    2015-01-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O2 for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O2 min−1 kg−1, and 1412 ± 244 to 417 ± 62 ml min−1 kg−1, respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg−1, in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR. PMID:25520355

  1. Specific Endocytosis Blockade of Trypanosoma cruzi Exposed to a Poly-LAcNAc Binding Lectin Suggests that Lectin-Sugar Interactions Participate to Receptor-Mediated Endocytosis

    PubMed Central

    Brosson, Sébastien; Fontaine, Frédéric; Vermeersch, Marjorie; Perez-Morga, David; Pays, Etienne; Bousbata, Sabrina; Salmon, Didier

    2016-01-01

    Trypanosoma cruzi is a protozoan parasite transmitted by a triatomine insect, and causing human Chagas disease in South America. This parasite undergoes a complex life cycle alternating between non-proliferative and dividing forms. Owing to their high energy requirement, replicative epimastigotes of the insect midgut display high endocytic activity. This activity is mainly restricted to the cytostome, by which the cargo is taken up and sorted through the endosomal vesicular network to be delivered to reservosomes, the final lysosomal-like compartments. In African trypanosomes tomato lectin (TL) and ricin, respectively specific to poly-N-acetyllactosamine (poly-LacNAc) and β-D-galactose, allowed the identification of giant chains of poly-LacNAc in N-glycoproteins of the endocytic pathway. We show that in T. cruzi epimastigote forms also, glycoproteins of the endocytic pathway are characterized by the presence of N-linked glycans binding to both ricin and TL. Affinity chromatography using both TL and Griffonia simplicifolia lectin II (GSLII), specific to non-reducing terminal residue of N-acetylglucosamine (GlcNAc), led to an enrichment of glycoproteins of the trypanosomal endocytic pathway. Incubation of live parasites with TL, which selectively bound to the cytostome/cytopharynx, specifically inhibited endocytosis of transferrin (Tf) but not dextran, a marker of fluid endocytosis. Taken together, our data suggest that N-glycan modification of endocytic components plays a crucial role in receptor-mediated endocytosis of T. cruzi. PMID:27685262

  2. Cell Type-Specific Delivery of RNAi by Ligand-Functionalized Curdlan Nanoparticles: Balancing the Receptor Mediation and the Charge Motivation.

    PubMed

    Wu, Yinga; Cai, Jia; Han, Jingfen; Baigude, Huricha

    2015-09-30

    Tissue-specific delivery of therapeutic RNAi has great potential for clinical applications. Receptor-mediated endocytosis plays a crucial role in targeted delivery of biotherapeutics including short interfering RNA (siRNA). Previously we reported a novel Curdlan-based nanoparticle for intracellular delivery of siRNA. Here we designed a nanoparticle based on ligand-functionalized Curdlan. Disaccharides were site-specifically conjugated to 6-deoxy-6-amino Curdlan, and the cell line specificity, cellular uptake, cytotoxicity, and siRNA delivery efficiency of the corresponding disaccharide-modified 6-deoxy-6-amino-Curdlan were investigated. Observation by fluorescence microscopy as well as flow cytometry showed that galactose-containing Curdlan derivatives delivered fluorescently labeled short nucleic acid to HepG2 cells expressing ASGPR receptor but not in other cells lacking surface ASGPR protein. Moreover, highly galactose-substituted Curdlan derivatives delivered siRNA specifically to ASGPR-expressing cells and induced RNAi activities, silencing endogenous GAPDH gene expression. Our data demonstrated that galactose-functionalized 6-deoxy-6-amino-Curdlan is a promising carrier for short therapeutic nucleic acids for clinical applications.

  3. Reduction of α1GABAA receptor mediated by tyrosine kinase C (PKC) phosphorylation in a mouse model of fragile X syndrome

    PubMed Central

    Zhao, Weidong; Wang, Jiaqin; Song, Shunyi; Li, Fang; Yuan, Fangfang

    2015-01-01

    Fragile X syndrome (FXS) caused by lack of fragile X mental retardation protein (Fmr1) is the most common cause of inherited intellectual disability and characterized by many cognitive disturbances like attention deficit, autistic behavior, and audiogenic seizure and have region-specific altered expression of some gamma-aminobutyric acid (GABAA) receptor subunits. Quantitative real-time polymerase chain reaction and western blot experiments were performed in the cultured cortical neurons and forebrain obtained from wild-type (WT) and Fmr1 KO mice demonstrate the reduction in the expression of α1 gamma-aminobutyric acid (α1GABAA) receptor, phospho-α1GABAA receptor, PKC and phosphor-PKC in Fmr1 KO mice comparing with WT mice, both in vivo and in vitro. Furthermore, we found that the phosphorylation of the α1GABAA receptor was mediated by PKC. Our results elucidate that the lower phosphorylation of the α1GABAA receptor mediated by PKC neutralizes the seizure-promoting effects in Fmr1 KO mice and point to the potential therapeutic targets of α1GABAA agonists for the treatment of fragile X syndrome. PMID:26550246

  4. Ethanol-induced impairments in receptor-mediated endocytosis of asialoorosomucoid in isolated rat hepatocytes: Time course of impairments and recovery after ethanol withdrawal

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J.

    1989-04-01

    Chronic ethanol administration markedly impairs the process of receptor-mediated endocytosis (RME) of a representative asialoglycoprotein, asialoorosomucoid (ASOR), by the liver. In this study, we further characterized these impairments by identifying the time of onset for ethanol-induced changes in RME as well as establishing the time course for recovery to normal endocytotic values after ethanol withdrawal. Ethanol administration for 3 days did not alter any aspect of endocytosis examined in this study. After feeding ethanol to rats for 7 days, however, significant decreases in amounts of ligand bound, internalized, and degraded were apparent. These impairments persisted throughout the 5-week feeding study although the effects were somewhat attenuated with more prolonged ethanol feeding. In addition, an accumulation of intracellular receptors was observed in ethanol-fed animals relative to controls after 7 days of ethanol feeding. In all cases, recovery of endocytotic values to control levels was partially completed after 2 to 3 days of refeeding control diet and was fully completed after 7 days of refeeding. These results indicate that ethanol feeding for as little as 7 days profoundly impairs the process of RME by the liver. These impairments can be reversed after refeeding control diet for 7 days.

  5. Somatostatin Receptor-Mediated Tumor-Targeting Nanocarriers Based on Octreotide-PEG Conjugated Nanographene Oxide for Combined Chemo and Photothermal Therapy.

    PubMed

    Zhang, Xuyuan; Yang, Chongyin; Zhou, Jianping; Huo, Meirong

    2016-07-01

    Nano-sized in vivo active targeting drug delivery systems have been developed to a high anti-tumor efficacy strategy against certain cancer-cells-specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO-PEG-OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor-mediated tumor-specific targeting delivery. Owing to the high loading efficiency and accurate targeting delivery of anti-cancer drug doxorubicin (DOX), our DOX loaded NGO-PEG-OCT complex offers a remarkably improved cancer-cell-specific cellular uptake, chemo-cytotoxicity, and decreased systemic toxicity compared to free DOX or NGO-PEG. More importantly, due to its strong near-infrared absorption, the NGO-PEG-OCT complex further enhances efficient photothermal ablation of tumors, delivering combined chemo and photothermal therapeutic effect against cancer cells. PMID:27244649

  6. Metabolism of glycosylated human salivary amylase: in vivo plasma clearance by rat hepatic endothelial cells and in vitro receptor mediated pinocytosis by rat macrophages

    SciTech Connect

    Niesen, T.E.; Alpers, D.H.; Stahl, P.D.; Rosenblum, J.L.

    1984-09-01

    Salivary-type amylase normally comprises about 60% of the amylase activity in human serum, but only a small fraction is a glycosylated isoenzyme (amylase A). In contrast, 1/3 of amylase in human saliva is glycosylated. Since glycosylation can affect circulatory clearance, we studied the clearance of amylase A in rats and its uptake by rat alveolar macrophages. Following intravenous injection, /sup 125/I-labeled amylase A disappeared rapidly from plasma (t 1/2 . 9 min) and accumulated in the liver. Simultaneous injection of mannose-albumin slowed its clearance to a rate comparable to that of /sup 125/I-labeled nonglycosylated salivary amylase (t 1/2 . 45 min). In contrast, galactose-albumin had no effect. Electron microscope autoradiography of the liver following injection of /sup 125/I-labeled amylase A revealed a localization of grains over the hepatic endothelial cells. In vitro studies indicated that amylase A is taken up by alveolar macrophages via receptor-mediated pinocytosis. Uptake was linear over time, saturable, and inhibited by mannan and mannose-albumin, but not by galactose-albumin. We conclude that amylase A, which is a naturally occurring human glycoprotein with at most three terminal L-fucose residues per molecule, is recognized in rats by a mannose receptor located on hepatic endothelial cells. We speculate that this receptor, by rapidly clearing circulating amylase A, may be responsible for the low level of amylase A in human serum.

  7. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  8. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    13. This study provides new insights into the types of purinergic receptors that contribute to the fine-tuning of cholinergic transmission at mammalian neuromuscular junction.

  9. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    13. This study provides new insights into the types of purinergic receptors that contribute to the fine-tuning of cholinergic transmission at mammalian neuromuscular junction. PMID:27058149

  10. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  11. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors.

  12. Effects of Anti-NMDA Antibodies on Functional Recovery and Synaptic Rearrangement Following Hemicerebellectomy.

    PubMed

    Laricchiuta, Daniela; Cavallucci, Virve; Cutuli, Debora; De Bartolo, Paola; Caporali, Paola; Foti, Francesca; Finke, Carsten; D'Amelio, Marcello; Manto, Mario; Petrosini, Laura

    2016-06-01

    The compensation that follows cerebellar lesions is based on synaptic modifications in many cortical and subcortical regions, although its cellular mechanisms are still unclear. Changes in glutamatergic receptor expression may represent the synaptic basis of the compensated state. We analyzed in rats the involvement of glutamatergic system of the cerebello-frontal network in the compensation following a right hemicerebellectomy. We evaluated motor performances, spatial competencies and molecular correlates in compensated hemicerebellectomized rats which in the frontal cortex contralateral to the hemicerebellectomy side received injections of anti-NMDA antibodies from patients affected by anti-NMDA encephalitis. In the compensated hemicerebellectomized rats, the frontal injections of anti-NMDA antibodies elicited a marked decompensation state characterized by slight worsening of the motor symptoms as well as severe impairment of spatial mnesic and procedural performances. Conversely, in the sham-operated group the frontal injections of anti-NMDA antibodies elicited slight motor and spatial impairment. The molecular analyses indicated that cerebellar compensatory processes were related to a relevant rearrangement of glutamatergic synapses (NMDA and AMPA receptors and other glutamatergic components) along the entire cortico-cerebellar network. The long-term maintenance of the rearranged glutamatergic activity plays a crucial role in the maintenance of recovered function. PMID:27027521

  13. Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice.

    PubMed

    Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka

    2010-08-01

    Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.

  14. Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus

    PubMed Central

    Park, Pojeong; Sanderson, Thomas M.; Amici, Mascia; Choi, Sun-Lim; Bortolotto, Zuner A.; Zhuo, Min

    2016-01-01

    Two forms of NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) at hippocampal CA1 synapses can be distinguished based on their sensitivity to inhibitors of protein kinase A (PKA). The PKA-dependent form requires multiple episodes of high-frequency stimulation (HFS) or theta burst stimuli (TBS) with a spacing between episodes in the order of minutes. To investigate the mechanism by which spaced episodes induce the PKA-dependent form of LTP, we have compared, in interleaved experiments, spaced (s) and compressed (c) TBS protocols in the rat CA1 synapses. We find that LTP induced by sTBS, but not that induced by cTBS, involves the insertion of calcium-permeable (CP) AMPARs, as assessed using pharmacological and electrophysiological criteria. Furthermore, a single TBS when paired with rolipram [4-(3-(cyclopentyloxy)-4-methoxyphenyl)pyrrolidin-2-one], to activate PKA, generates an LTP that also involves the insertion of CP-AMPARs. These data demonstrate that the involvement of CP-AMPARs in LTP is critically determined by the timing of the induction trigger and is associated specifically with the PKA-dependent form of LTP. SIGNIFICANCE STATEMENT Long-term potentiation is a family of synaptic mechanisms that are believed to be important for learning and memory. Two of the most extensively studied forms are triggered by the synaptic activation of NMDA receptors and expressed by changes in AMPA receptor function. They can be distinguished on the basis of their requirement for activation of a protein kinase, PKA. We show that the PKA-dependent form also involves the transient insertion of calcium-permeable AMPA receptors. These results have implications for relating synaptic plasticity to learning and memory and suggest a specific linkage between PKA activation and the rapid synaptic insertion of calcium-permeable AMPA receptors during long-term potentiation. PMID:26758849

  15. The nicotinic agonist RJR-2403 compensates the impairment of eyeblink conditioning produced by the noncompetitive NMDA-receptor antagonist MK-801.

    PubMed

    Rodríguez-Moreno, Antonio; Carrión, Miriam; Delgado-García, José María

    2006-07-10

    The classical conditioning of eyelid responses using trace paradigms is a hippocampal-related model of associative learning, involving the activation of N-methyl-D-aspartate (NMDA) receptors. We have evaluated here the effects of NMDA-receptor blockage with the selective noncompetitive antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine, MK-801). Mice were implanted with stimulating electrodes on the supraorbitary nerve and with recording electrodes in the ipsilateral orbicularis oculi muscle. Animals were conditioned with a trace shock-SHOCK paradigm. MK-801-injected animals (0.02 mg/kg) seemed unable to acquire this type of associative learning task, but the latency and amplitude of their unconditioned eyelid responses was not affected by drug administration. The administration of the nicotinic agonist (E)-N-methyl-4-(3-pyridinyl)-3-buten-1-amine (RJR-2403; 2 mg/kg) was able to restore completely the acquisition of the conditioned response when administered both before and after MK-801. In vitro recordings of field excitatory postsynaptic potentials (fEPSPs) evoked in the hippocampal CA1 area by the electrical stimulation of the Schaffer collateral pathway indicates that RJR-2403 application to the bath enhance the release of glutamate by a presynaptic mechanism. These findings reveal that nicotinic acetylcholine receptors enhance glutamatergic transmission in hippocampal circuits involved in the acquisition of associative learning.

  16. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression

    PubMed Central

    Barr, Jeffrey L.; Forster, Gina L.; Unterwald, Ellen M.

    2014-01-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In the present study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-D-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A:NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. PMID:24832868

  17. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression.

    PubMed

    Treccani, Giulia; Gaarn du Jardin, Kristian; Wegener, Gregers; Müller, Heidi Kaastrup

    2016-11-01

    Glutamatergic abnormalities have recently been implicated in the pathophysiology of depression, and the ionotropic glutamate receptors in particular have been suggested as possible underlying molecular determinants. The Flinders Sensitive Line (FSL) rats constitute a validated model of depression with dysfunctional regulation of glutamate transmission relatively to their control strain Flinders Resistant Line (FRL). To gain insight into how signaling through glutamate receptors may be altered in the FSL rats, we investigated the expression and phosphorylation of AMPA and NMDA receptor subunits in an enriched postsynaptic fraction of the hippocampus and prefrontal cortex. Compared to the hippocampal postsynaptic fractions of FRL rats, FSL rats exhibited decreased and increased levels of the NMDA receptor subunits GluN2A and GluN2B, respectively, causing a lower ratio of GluN2A/GluN2B. The GluA2/GluA3 AMPA receptor subunit ratio was significantly decreased while the expression of the individual GluA1, GluA2, and GluA3 subunits were unaltered including phosphorylation levels of GluA1 at S831 and S845. There were no changes in the prefrontal cortex. These results support altered expression of postsynaptic glutamate receptors in the hippocampus of FSL rats, which may contribute to the depressive-like phenotype of these rats. PMID:27262028

  18. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer's disease and other neurologic disorders.

    PubMed

    Lipton, Stuart A

    2004-12-01

    , studies in our laboratory have shown that the adamantane derivative, memantine, preferentially blocks excessive NMDA receptor activity without disrupting normal activity. Memantine does this through its action as an uncompetitive, low-affinity, open-channel blocker; it enters the receptor-associated ion channel preferentially when it is excessively open, and, most importantly, its off-rate is relatively fast so that it does not substantially accumulate in the channel to interfere with normal synaptic transmission. Clinical use has corroborated the prediction that memantine is thus well tolerated. Besides Alzheimer's disease, memantine is currently in trials for additional neurological disorders, including other forms of dementia, depression, glaucoma, and severe neuropathic pain. A series of second-generation memantine derivatives are currently in development and may prove to have even greater neuroprotective properties than memantine. These second-generation drugs take advantage of the fact that the NMDA receptor has other modulatory sites in addition to its ion channel that potentially could